WorldWideScience

Sample records for radiological safety handbook

  1. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  2. Handbooks in radiology: Nuclear medicine

    International Nuclear Information System (INIS)

    Datz, F.L.

    1988-01-01

    This series of handbooks covers the basic facts, major concepts and highlights in seven radiological subspecialties. ''Nuclear Medicine'' is a review of the principles, procedures and clinical applications that every radiology resident and practicing general radiologist should know about nuclear medicine. Presented in an outline format it covers all of the organ systems that are imaged by nuclear medicine

  3. Safety and environmental health handbook

    Science.gov (United States)

    ,

    1989-01-01

    This Safety Handbook (445-1-H.) supplements the Geological Survey Safety Management Program objectives set forth in Survey Manual 445.1. Specifically, it provides a compact source of basic information to assist management and employees in preventing motor vehicle accidents, personal injuries, occupational diseases, fire, and other property damage or loss. All work situations incidental to the Geological Survey cannot be discussed in a handbook, and such complete coverage is not intended in this document. However, a wide range of subjects are covered in which a "common sense" approach to safety has been expressed. These subjects have been organized such that Chapters 1-5 address administrative issues, Chapters 6-12 address activities usually conducted within a facility, and Chapters 13-20 address field activities. No information contained in the Handbook is intended to alter any provision of any Federal law or executive order, Department of the Interior or Survey directive, or collective bargaining agreement. Questions or suggestions regarding the content of the Safety Handbook may be directed to the Survey Safety Manager, Administrative Division, Office of Facilities and Management Services, National Center, Reston, Virginia, Mail Stop 246. The previous edition of the Safety Handbook is superseded.

  4. DOE handbook electrical safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  5. The health physics and radiological health handbook

    International Nuclear Information System (INIS)

    Shleien, B.

    1992-01-01

    This handbook was conceived in order to fill the need of health physics practitioners, technicians, and students for an easy to use, practical handbook containing health physics and radiological health data. While briefer and more specific data sources are sources are available on single subject areas, as are multi-volume compendia, there is no current up-to-date compilation of information useful on a daily basis by the health physicist. Separate abstracts have been prepared for 16 chapters in this book

  6. Handbook of selected organ doses for projections common in pediatric radiology

    International Nuclear Information System (INIS)

    Rosenstein, M.; Beck, T.J.; Warner, G.G.

    1979-05-01

    This handbook contains data from which absorbed dose (mrad) to selected organs can be estimated for common projections in pediatric radiology. The organ doses are for three reference patients: a newborn (0 to 6 months), a 1-year old child, and a 5-year old child. One intent of the handbook is to permit the user to evaluate the effect on organ dose to these reference pediatric patients as a function of certain changes in technical parameters used in or among facilities. A second intent is to permit a comparison to be made of organ doses as a function of age. This comparison can be extended to a reference adult by referring to the previous Handbook of Selected Organ Doses fo Projections Common in Diagnostic Radiology, FDA 76-8031. Assignment of organ doses to individual pediatric patients using the Handbook data is not recommended unless the physical characteristics of the patient closely correlate with one of the three reference pediatric patients given in Appendix A

  7. Present status of Japanese Criticality Safety Handbook

    International Nuclear Information System (INIS)

    Okuno, Hiroshi

    1999-01-01

    A draft of the second edition of Nuclear Criticality Safety Handbook has been finalized, and it is under examination by reviewing committee for JAERI Report. Working Group designated for revising the Japanese Criticality Safety Handbook, which is chaired by Prof. Yamane, is now preparing for 'Guide on Burnup Credit for Storage and Transport of Spent Nuclear Fuel' and second edition of 'Data Collection' part of Handbook. Activities related to revising the Handbook might give a hint for a future experiment at STACY. (author)

  8. Safety handbook

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills

  9. Nuclear criticality safety handbook. Version 2

    International Nuclear Information System (INIS)

    1999-03-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modelled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision is made based on previous studies for the chapter that treats modelling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, and burnup credit. This revision solves the inconsistencies found in the first version between the evaluation of errors found in JACS code system and criticality condition data that were calculated based on the evaluation. (author)

  10. Radiological protection: a summary handbook of ICRP publications and recommendations

    International Nuclear Information System (INIS)

    Nagaratnam, A.

    1995-01-01

    The biological effects of radiation and potential risks therefrom far exceeds the knowledge of any other hazardous agent, whether in the industrial field, or in the general environment affecting members of the public. The International Commission on Radiological Protection (ICRP) has been playing a pioneering role for decades in this direction. The extensive database that has been established over the decades by the ICRP, the methodologies, techniques and the organizational structures that have been developed to control radiation hazards, and, above all, the philosophy of risk evaluation and management that has been evolved by ICRP, would serve as valuable guides not only to those concerned with radiological protection but to scientist, technologist and administrators involved in all facets of occupational and industrial safety, as well as those concerned with environmental protection. From 1959 to the end of 1993 ICRP has brought out 64 publications running to around 9000 pages. It is important that everyone connected with the uses of ionizing radiations should be familiar with at least the basic features of the thinking of ICRP as embodied in these publications. The present handbook attempts to give in a concise, consolidated and codified form the salient features of all the relevant information contained in the voluminous ICRP publications. The material has been presented in 7 parts, each dealing with one major aspect of the recommendations, and summarizing the various publications connected with it. A separate note following the preface gives a brief summary of the way the contents of the handbook have been arranged. refs., tabs., figs

  11. Radiological worker training

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

  12. Radiological worker training

    International Nuclear Information System (INIS)

    1998-10-01

    This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance

  13. Nuclear Criticality Safety Handbook, Version 2. English translation

    International Nuclear Information System (INIS)

    2001-08-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of the Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modeled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision has been made based on previous studies for the chapter that treats modeling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, an burnup credit. This revision has solved the inconsistencies found in the first version between the evaluation of errors found in JACS code system and the criticality condition data that were calculated based on the evaluation. This report is an English translation of the Nuclear Criticality Safety Handbook, Version 2, originally published in Japanese as JAERI 1340 in 1999. (author)

  14. Introduction to 'International Handbook of Criticality Safety Benchmark Experiments'

    International Nuclear Information System (INIS)

    Komuro, Yuichi

    1998-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) is now an official activity of the Organization for Economic Cooperation and Development-Nuclear Energy Agency (OECD-NEA). 'International Handbook of Criticality Safety Benchmark Experiments' was prepared and is updated year by year by the working group of the project. This handbook contains criticality safety benchmark specifications that have been derived from experiments that were performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used. The author briefly introduces the informative handbook and would like to encourage Japanese engineers who are in charge of nuclear criticality safety to use the handbook. (author)

  15. ICSBEP-2007, International Criticality Safety Benchmark Experiment Handbook

    International Nuclear Information System (INIS)

    Blair Briggs, J.

    2007-01-01

    1 - Description: The Critically Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United Sates Department of Energy. The project quickly became an international effort as scientist from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) is now an official activity of the Organization of Economic Cooperation and Development - Nuclear Energy Agency (OECD-NEA). This handbook contains criticality safety benchmark specifications that have been derived from experiments that were performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material. The example calculations presented do not constitute a validation of the codes or cross section data. The work of the ICSBEP is documented as an International Handbook of Evaluated Criticality Safety Benchmark Experiments. Currently, the handbook spans over 42,000 pages and contains 464 evaluations representing 4,092 critical, near-critical, or subcritical configurations and 21 criticality alarm placement/shielding configurations with multiple dose points for each and 46 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. The handbook is intended for use by criticality safety analysts to perform necessary validations of their calculational techniques and is expected to be a valuable tool for decades to come. The ICSBEP Handbook is available on DVD. You may request a DVD by completing the DVD Request Form on the internet. Access to the Handbook on the Internet requires a password. You may request a password by completing the Password Request Form. The Web address is: http://icsbep.inel.gov/handbook.shtml 2 - Method of solution: Experiments that are found

  16. Radiological safety training for uranium facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  17. International handbook of evaluated criticality safety benchmark experiments

    International Nuclear Information System (INIS)

    2010-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency (OECD-NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span over 55,000 pages and contain 516 evaluations with benchmark specifications for 4,405 critical, near critical, or subcritical configurations, 24 criticality alarm placement / shielding configurations with multiple dose points for each, and 200 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 770 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be

  18. S-HAL : safety handbook for locals.

    Science.gov (United States)

    2014-01-01

    The Safety Handbook for Locals (S-HAL) is intended to be a comprehensive : traffic safety resource for all local communities in Missouri, be it cities or : counties. The S-HAL mirrors the national Highway Safety Manual (HSM) : (AASHTO, 2010) in using...

  19. DOE handbook: Integrated safety management systems (ISMS) verification. Team leader's handbook

    International Nuclear Information System (INIS)

    1999-06-01

    The primary purpose of this handbook is to provide guidance to the ISMS verification Team Leader and the verification team in conducting ISMS verifications. The handbook describes methods and approaches for the review of the ISMS documentation (Phase I) and ISMS implementation (Phase II) and provides information useful to the Team Leader in preparing the review plan, selecting and training the team, coordinating the conduct of the verification, and documenting the results. The process and techniques described are based on the results of several pilot ISMS verifications that have been conducted across the DOE complex. A secondary purpose of this handbook is to provide information useful in developing DOE personnel to conduct these reviews. Specifically, this handbook describes methods and approaches to: (1) Develop the scope of the Phase 1 and Phase 2 review processes to be consistent with the history, hazards, and complexity of the site, facility, or activity; (2) Develop procedures for the conduct of the Phase 1 review, validating that the ISMS documentation satisfies the DEAR clause as amplified in DOE Policies 450.4, 450.5, 450.6 and associated guidance and that DOE can effectively execute responsibilities as described in the Functions, Responsibilities, and Authorities Manual (FRAM); (3) Develop procedures for the conduct of the Phase 2 review, validating that the description approved by the Approval Authority, following or concurrent with the Phase 1 review, has been implemented; and (4) Describe a methodology by which the DOE ISMS verification teams will be advised, trained, and/or mentored to conduct subsequent ISMS verifications. The handbook provides proven methods and approaches for verifying that commitments related to the DEAR, the FRAM, and associated amplifying guidance are in place and implemented in nuclear and high risk facilities. This handbook also contains useful guidance to line managers when preparing for a review of ISMS for radiological

  20. Handbook of advanced nuclear hydrogen safety. 1st edition

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takegami, Hiroaki; Ogawa, Toru

    2017-03-01

    In the aftermath of the Fukushima nuclear accident, safety measures against hydrogen in severe accident has been recognized as a serious technical problem in Japan. Therefore, efforts have begun to form a common knowledge base between nuclear engineers and experts on combustion and explosion, and to secure and improve future nuclear energy safety. As one of such activities, we have prepared the 'Handbook of Advanced Nuclear Hydrogen Safety'. A handbook committee consisting of Japanese experts in the fields of nuclear and combustion-explosion in universities, nuclear companies, electric companies and research institutes was established in 2012. The objective and consents of the handbook were determined, and the outline of the contents was decided. The concepts of the handbook are as follows: to show advanced nuclear hydrogen safety technologies that nuclear engineers should understand, to show hydrogen safety points to make combustion-explosion experts cooperate with nuclear engineers, to expand information on water radiolysis considering the situation from just after the Fukushima accidents and to the waste management necessary for decommissioning after the accident etc. Many experts have participated to manuscript preparation, which was the first step of forming a hydrogen community across the boundaries of fields. The hydrogen community is expected to grow along with its improvement to the knowledge base on nuclear hydrogen safety. (author)

  1. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    The application of radioactive isotopes and various scientific instruments based on different ionizing and non-ionizing radiation have brought new safety problems to laboratory workers today. Therefore, there is a need to revise present knowledge of safety measures to deal with new hazards, thus broadening the outlook towards health and safety measures for contemporary laboratory staff. This handbook presents a series of articles on current knowledge regarding laboratory safety

  2. Radiation safety. Handbook for laboratory workers in the USA

    International Nuclear Information System (INIS)

    Hotte, E.D.; Krueger, D.J.; Connor, K.

    2000-01-01

    The aim of the Handbook is to provide a source of information on radiation safety for those who are involved in the use of ionizing radiation in the laboratory. The potential reader may be a laboratory worker in the university or biomedical setting or the safety professional who desires a basic understanding of radiation protection within the research environment. The Handbook may be used as a reference by the radiation protection specialist or Radiation Safety Officer. To this end, liberal use is made of Appendices to make the Handbook a source of reference for a wide spectrum of readership while avoiding complicating the main body of the text. Each chapter or appendix is designed to stand alone. A complete reading of the Handbook will show that topics may be covered more than once. For example, one may read about the hazards and protective measures on handling radioiodine in Chapter 5 on Practical Radiation Protection as well as in Appendix 19 on Safe Handling of 125 I. Extensive use of figures, rather than tables has been made to present data, in the belief that these produce a good visual representation to a level of precision which is sufficient for most purposes of radiation protection in laboratories. The reader must remember that this Handbook should be taken as a guide only to the applicable regulations. You must consult the appropriate state or federal regulation directly or receive advice of a qualified radiation safety professional. Also, some information in the Appendices, such as commercially available training institutions or radioactive waste brokers, may change with time. Telephone numbers are given for the reader to call directly and check the services provided

  3. Supplement report to the Nuclear Criticality Safety Handbook of Japan

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Komuro, Yuichi; Nakajima, Ken

    1995-10-01

    Supplementing works to 'The Nuclear Criticality Safety Handbook' of Japan have been continued since 1988, the year the handbook edited by the Science and Technology Agency first appeared. This report publishes the fruits obtained in the supplementing works. Substantial improvements are made in the chapters of 'Modelling the evaluation object' and 'Methodology for analytical safety assessment', and newly added are chapters of 'Criticality safety of chemical processes', 'Criticality accidents and their evaluation methods' and 'Basic principles on design and installation of criticality alarm system'. (author)

  4. Industrial hazard and safety handbook

    CERN Document Server

    King, Ralph W

    1979-01-01

    Industrial Hazard and Safety Handbook (Revised Impression) describes and exposes the main hazards found in industry, with emphasis on how these hazards arise, are ignored, are identified, are eliminated, or are controlled. These hazard conditions can be due to human stresses (for example, insomnia), unsatisfactory working environments, as well as secret industrial processes. The book reviews the cost of accidents, human factors, inspections, insurance, legal aspects, planning for major emergencies, organization, and safety measures. The text discusses regulations, codes of practice, site layou

  5. Enforcement handbook: Enforcement of DOE nuclear safety requirements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department`s enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion.

  6. Enforcement handbook: Enforcement of DOE nuclear safety requirements

    International Nuclear Information System (INIS)

    1995-06-01

    This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department's enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion

  7. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual

  8. Implementation of a Radiological Safety Coach program

    Energy Technology Data Exchange (ETDEWEB)

    Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  9. Implementation of a Radiological Safety Coach program

    International Nuclear Information System (INIS)

    Konzen, K.K.

    1998-01-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets

  10. EURANOS. Generic handbook for assisting in the management of contaminated food production systems in Europe following a radiological emergency

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Howard, B.J.; Jones, A.

    production sectors and others who may be affected. The handbook is a living document that requires updating from time to time to remain state-of-the-art and customisation of the generic handbook is an essential part of its use within individual countries. The handbook includes management options......The handbook for food production systems has been developed as a result of a series of UK and European initiatives involving a wide range of stakeholders. It is aimed at national and local authorities, central government departments and agencies, radiation protection experts, agriculture and food...... for application in the pre-release, emergency and longer term phases of an incident. Sources of contamination considered in the handbook are nuclear accidents, radiological dispersion devices and satellite accidents. Agricultural and domestic food production systems are considered, including the gathering of free...

  11. Radiation safety handbook for ionizing and nonionizing radiation

    International Nuclear Information System (INIS)

    Kincaid, C.B.

    1976-10-01

    The Handbook is directed primarily to users of radiation sources throughout the Food and Drug Administration. Specific precautions regarding the possession and use of radiation sources in meeting the Agency's objectives are an inherent responsibility of all employees. In addition, the increased emphasis on occupational safety and health and the responsibilities placed on the Department by Public Law and Executive Order make it mandatory that all organizational levels and activities conform to the intent of this Handbook. The policies and procedures described in this document apply to all Agency operators and activities and are intended to protect employees and the general public

  12. Radiological emergency response planning: Handbook for Federal Assistance to State and Local Governments

    International Nuclear Information System (INIS)

    1978-12-01

    The handbook is directed toward those federal agencies involved in providing direct field assistance to state and local governments in radiological emergency response planning. Its principal purpose is to optimize the effectiveness of this effort by specifying the functions of the following federal agencies: Nuclear Regulatory Commission, Environmental Protection Agency, Department of Energy, Department of Health, Education, and Welfare, Department of Transportation, Defense Civil Preparedness Agency, Federal Disaster Assistance Administration, and Federal Preparedness Agency

  13. Radiological safety training for accelerator facilities: DOE handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M&O) contractors having responsibility for implementing the core training recommended by the RadCon Manual.

  14. Radiological safety training for accelerator facilities: DOE handbook

    International Nuclear Information System (INIS)

    1997-03-01

    This program management guide describes the proper implementation standard for core training as outline in the DOE Radiological Control (RadCon) Manual. Its purpose is to assist DOE employees and Managing and Operating (M ampersand O) contractors having responsibility for implementing the core training recommended by the RadCon Manual

  15. RECENT ADDITIONS OF CRITICALITY SAFETY RELATED INTEGRAL BENCHMARK DATA TO THE ICSBEP AND IRPHEP HANDBOOKS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Sartori

    2009-09-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  16. Recent additions of criticality safety related integral benchmark data to the ICSBEP and IRPHEP handbooks

    International Nuclear Information System (INIS)

    Briggs, J. B.; Scott, L.; Rugama, Y.; Sartori, E.

    2009-01-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions. (authors)

  17. REcent Additions Of Criticality Safety Related Integral Benchmark Data To The Icsbep And Irphep Handbooks

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Scott, Lori; Rugama, Yolanda; Sartori, Enrico

    2009-01-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  18. Handbook of radiologic procedures

    International Nuclear Information System (INIS)

    Hedgcock, M.

    1986-01-01

    This book is organized around radiologic procedures with each discussed from the points of view of: indications, contraindications, materials, method of procedures and complications. Covered in this book are: emergency radiology chest radiology, bone radiology, gastrointestinal radiology, GU radiology, pediatric radiology, computerized tomography, neuroradiology, visceral and peripheral angiography, cardiovascular radiology, nuclear medicine, lymphangiography, and mammography

  19. Safety aspects in radiology

    International Nuclear Information System (INIS)

    Silva, D.C. da.

    1991-05-01

    The development of a program for the evaluation of the physical installations and operational procedures in diagnostic radiology with respect to radiation-safety is described. In addition, a proposal for the quality analysis of X-ray equipment and film-processing is presented. The purpose is both to ensure quality and safety of the radiology service, as well as to aid in the initial and in-service training of the staff. Interviews with patients, staff practicing radiology at a wide range of levels and the controlling authorities were carried out in the State of Rio de Janeiro in order to investigate the existence and the effective use of personal radioprotection equipment as well as user's and staff's concern for radiation safety. Additionally physical measurements were carried out in University Hospitals in Rio de Janeiro to assess the quality of equipment in day-to-day use. It was found that in the locations which did not have routine maintenance the equipment was generally in a poor state which lead to a high incidence of repetition of examinations and the consequent financial loss. (author)

  20. Handbook on criticality. Vol. 1. Criticality and nuclear safety; Handbuch zur Kritikalitaet. Bd. 1. Kritikalitaet und nukleare Sicherheit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-04-15

    This handbook was prepared primarily with the aim to provide information to experts in industry, authorities or research facilities engaged in criticality-safety-related problems that will allow an adequate and rapid assessment of criticality safety issues already in the planning and preparation of nuclear facilities. However, it is not the intention of the authors of the handbook to offer ready solutions to complex problems of nuclear safety. Such questions have to remain subject to an in-depth analysis and assessment to be carried out by dedicated criticality safety experts. Compared with the previous edition dated December 1998, this handbook has been further revised and supplemented. The proven basic structure of the handbook remains unchanged. The handbook follows in some ways similar criticality handbooks or instructions published in the USA, UK, France, Japan and the former Soviet Union. The expedient use of the information given in this handbook requires a fundamental understanding of criticality and the terminology of nuclear safety. In Vol. 1, ''Criticality and Nuclear Safety'', therefore, first the most important terms and fundamentals are introduced and explained. Subsequently, experimental techniques and calculation methods for evaluating criticality problems are presented. The following chapters of Vol. 1 deal i. a. with the effect of neutron reflectors and absorbers, neutron interaction, measuring methods for criticality, and organisational safety measures and provide an overview of criticality-relevant operational experience and of criticality accidents and their potential hazardous impact. Vol. 2 parts 1 and 2 finally compile criticality parameters in graphical and tabular form. The individual graph sheets are provided with an initially explained set of identifiers, to allow the quick finding of the information of current interest. Part 1 includes criticality parameters for systems with {sup 235}U as fissile material, while part

  1. A Handbook for Public Playground Safety. Volume II: Technical Guidelines for Equipment and Surfacing.

    Science.gov (United States)

    Consumer Product Safety Commission, Washington, DC.

    This handbook suggests safety guidelines for public playground equipment and describes various surfaces used under the equipment and possible injuries resulting from falls. The handbook is intended for use mainly by manufacturers, installers, school and park officials, and others interested in technical criteria for public playground equipment.…

  2. Design aspects of radiological safety in nuclear facilities

    International Nuclear Information System (INIS)

    Patkulkar, D.S.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    In order to keep operational performance of a nuclear facility high and to keep occupational and public exposure ALARA, radiological safety provisions must be reviewed at the time of facility design. Deficiency in design culminates in deteriorated system performance and non adherence to safety standards and could sometimes result in radiological incident. Important radiological aspects relevant to safety were compiled based on operating experiences, design deficiencies brought out from past nuclear incidents, experience gained during maintenance, participation in design review of upcoming nuclear facilities and radiological emergency preparedness

  3. The safety relief valve handbook design and use of process safety valves to ASME and International codes and standards

    CERN Document Server

    Hellemans, Marc

    2009-01-01

    The Safety Valve Handbook is a professional reference for design, process, instrumentation, plant and maintenance engineers who work with fluid flow and transportation systems in the process industries, which covers the chemical, oil and gas, water, paper and pulp, food and bio products and energy sectors. It meets the need of engineers who have responsibilities for specifying, installing, inspecting or maintaining safety valves and flow control systems. It will also be an important reference for process safety and loss prevention engineers, environmental engineers, and plant and process designers who need to understand the operation of safety valves in a wider equipment or plant design context. . No other publication is dedicated to safety valves or to the extensive codes and standards that govern their installation and use. A single source means users save time in searching for specific information about safety valves. . The Safety Valve Handbook contains all of the vital technical and standards informat...

  4. Occupational Safety and Health Act Handbook for Vocational and Technical Education Teachers.

    Science.gov (United States)

    Shashack, Willard F., Ed.

    The purpose of the handbook is to assist the school shop teacher in participating in voluntary compliance with the standards and regulations of the Occupational Safety and Health Act of 1970. The first major section deals with general shop safety and how the shop teacher can use the checklist to control possible safety violations in his shop. The…

  5. Preparation for the second edition of nuclear criticality safety handbook

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Nomura, Yasushi

    1997-01-01

    The making of the second edition of Nuclear Criticality Safety Handbook entered the final stage of investigation by the working group. In the second edition, the newest results of the researches in Japan were taken. In this report, among the subjects which were examined continuously from the first edition published in 1988, the size of fuel particles which can be regarded as homogeneous even in a heterogeneous system, the reactivity effect when fuel concentration distribution became not uniform in a homogeneous fuel system, the method of evaluating criticality safety in which submersion is not assumed, and the criticality data when fuel burning is considered are explained. Further, about the matters related to the criticality in chemical processes and the matters related to criticality accident, the outlines are introduced. Finally, the state of preparation for aiming at the third edition is mentioned. Criticality safety control is important for overall nuclear fuel cycle including the transportation and storage of fuel. The course of the publication of this Handbook is outlined. The matters which have been successively examined from the first edition, the results of criticality safety analysis for the dissolving tanks of fuel reprocessing, and the analysis code and the simplified evaluation method for criticality accident are reported. (K.I.)

  6. International Criticality Safety Benchmark Evaluation Project (ICSBEP) - ICSBEP 2015 Handbook

    International Nuclear Information System (INIS)

    Bess, John D.

    2015-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy (DOE). The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirements and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross-section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span approximately 69000 pages and contain 567 evaluations with benchmark specifications for 4874 critical, near-critical or subcritical configurations, 31 criticality alarm placement/shielding configurations with multiple dose points for each, and 207 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the handbook are benchmark specifications for neutron activation foil and thermoluminescent dosimeter measurements performed at the SILENE critical assembly in Valduc, France as part of a joint venture in 2010 between the US DOE and the French Alternative Energies and Atomic Energy Commission (CEA). A photograph of this experiment is shown on the front cover. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these

  7. Brazing handbook

    CERN Document Server

    American Welding Society

    2007-01-01

    By agreement between the American Welding Society C3 Committee on Brazing and Soldering and the ASM Handbook Committee, the AWS Brazing Handbook has been formally adopted as part of the ASM Handbook Series. Through this agreement, the brazing content in the ASM Handbook is significantly updated and expanded. The AWS Brazing Handbook, 5th Edition provides a comprehensive, organized survey of the basics of brazing, processes, and applications. Addresses the fundamentals of brazing, brazement design, brazing filler metals and fluxes, safety and health, and many other topics. Includes new chapters on induction brazing and diamond brazing.

  8. Improving patient safety in radiology: a work in progress

    International Nuclear Information System (INIS)

    Sze, Raymond W.

    2008-01-01

    The purpose of this paper is to share the experiences, including successes and failures, as well as the ongoing process of developing and implementing a safety program in a large pediatric radiology department. Building a multidisciplinary pediatric radiology safety team requires successful recruitment of team members, selection of a team leader, and proper and ongoing training and tools, and protected time. Challenges, including thorough examples, are presented on improving pediatric radiology safety intradepartmentally, interdepartmentally, and institutionally. Finally, some major challenges to improving safety in pediatric radiology, and healthcare in general, are presented along with strategies to overcome these challenges. Our safety program is a work in progress; this article is a personal account and the reader is asked for tolerance of its occasional subjective tone and contents. (orig.)

  9. Occupational safety and health law handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sarvadi, D.G. [ed.; Keller; Heckman

    1999-09-01

    This book reviews the regulations and standards governing the protection of employees in the workplace and provides insight into dealing with pertinent regulations and regulatory authorities. Written for safety professionals, industrial hygienists, human resource professionals, attorneys, and students, this companion to Government Institutes' best-selling ``Environmental Law Handbook'' offers the legal fundamentals behind occupational safety and health laws in one concise and authoritative volume. In 19 chapters, the authoring law firm of Keller and Heckman cover the OSHAct and its development; OSHA, NIOSH, and OSHRC; the roles played by other regulatory agencies; the OSHA rulemaking process; OSHA Standards and the General Duty Clause; record keeping and reporting; employers' and employees' rights; inspections; violations, penalties, and how to contest them; criminal prosecutions; state plans; industry-specific issues; OSHA reform; and international regulations and standards. This book references approximately 400 seminal OSHA legal decisions from the approximately 1,300 cases on record and includes coverage of Canadian and European Community regulations, making it the first comprehensive global overview of occupational safety and health law.

  10. What Should I Do? A Safety and Emergency Care Handbook.

    Science.gov (United States)

    Crist, Mary Jo; And Others

    One of a series written especially for parents and other caregivers, this handbook offers an overview of emergency care and safety considerations. The discussion of emergency care focuses on supplies for the first aid kit and provides guidelines for dealing with bleeding, bites, burns, suffocation, eye injury, broken bones, head injuries, fevers,…

  11. Decommissioning Handbook

    International Nuclear Information System (INIS)

    Cusack, J.G.; Dalfonso, P.H.; Lenyk, R.G.

    1994-01-01

    The Decommissioning Handbook provides technical guidance on conducting decommissioning projects. Information presented ranges from planning logic, regulations affecting decommissioning, technology discussion, health and safety requirements, an developing a cost estimate. The major focus of the handbook are the technologies -- decontamination technologies, waste treatment, dismantling/segmenting/demolition, and remote operations. Over 90 technologies are discussed in the handbook providing descriptions, applications, and advantages/disadvantages. The handbook was prepared to provide a compendium of available or potentially available technologies in order to aid the planner in meeting the specific needs of each decommissioning project. Other subjects presented in the Decommissioning Handbook include the decommissioning plan, characterization, final project configuration based planning, environmental protection, and packaging/transportation. These discussions are presented to complement the technologies presented in the handbook

  12. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety. Radiological protection in Latin America and the Caribbean. Vol. 1,2

    International Nuclear Information System (INIS)

    1996-08-01

    Two volumes contain more than 183 complete papers presented during the Third Regional Meeting on Radiological Protection and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin american specialist talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  13. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  14. Handbook of safety assessment of nanomaterials from toxicological testing to personalized medicine

    CERN Document Server

    Fadeel, Bengt

    2014-01-01

    "The Handbook of Safety Assessment of Nanomaterials: From Toxicological Testing to Personalized Medicine provides a comprehensive overview of the state of the art of nanotoxicology and is a unique resource that fills up many knowledge gaps in the toxicity issue of nanomaterials in medical applications. The book is distinguished by up-to-date insights into creating a science-based framework for safety assessment of nanomedicines." -Prof. Yuliang Zhao, National Center for Nanosciences and Technology, China.

  15. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  16. The development of a packaging handbook

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1994-01-01

    The Packaging Handbook, dealing with the development of packagings designed to carry radioactive material, is being written for DOE's Transportation and Packaging Safety Division. The primary goal of the Handbook is to provide sufficient technical information and guidance to improve the quality of Safety Analysis Reports on Type B Packagings (SARPs) that are submitted to DOE for certification. This paper provides an update on the status of the Handbook

  17. Radiological safety evaluation report for NUWAX-79 exercise

    International Nuclear Information System (INIS)

    King, W.C.

    1979-03-01

    An analysis of the radiological safety of the NUWAX-79 exercise to be conducted on the Nevada Test Site in April 1979 is given. An evaluation of the radiological safety to the participants is made using depleted uranium (D-38) in mock weapons parts, and 223 Ra and its daughters as a radioactive contaminant of equipment and terrain. The radiological impact to offsite persons is also discussed, particularly for people living at Lathrop Wells, Nevada, which is located 7 miles south of the site proposed for the exercise. It is the conclusion of this evaluation that the potential radiological risk of this exercise is very low, and that no individual should receive exposure to radioactivity greater than one-tenth of the level permitted under current federal radiation exposure guidelines

  18. A combined deterministic and probabilistic procedure for safety assessment of components with cracks - Handbook.

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Bergman, Mats; Brickstad, Bjoern; Weilin Zang; Sattari-Far, Iradj; Andersson, Peder; Sund, Goeran; Dahlberg, Lars; Nilsson, Fred (Inspecta Technology AB, Stockholm (Sweden))

    2008-07-01

    SSM has supported research work for the further development of a previously developed procedure/handbook (SKI Report 99:49) for assessment of detected cracks and tolerance for defect analysis. During the operative use of the handbook it was identified needs to update the deterministic part of the procedure and to introduce a new probabilistic flaw evaluation procedure. Another identified need was a better description of the theoretical basis to the computer program. The principal aim of the project has been to update the deterministic part of the recently developed procedure and to introduce a new probabilistic flaw evaluation procedure. Other objectives of the project have been to validate the conservatism of the procedure, make the procedure well defined and easy to use and make the handbook that documents the procedure as complete as possible. The procedure/handbook and computer program ProSACC, Probabilistic Safety Assessment of Components with Cracks, has been extensively revised within this project. The major differences compared to the last revision are within the following areas: It is now possible to deal with a combination of deterministic and probabilistic data. It is possible to include J-controlled stable crack growth. The appendices on material data to be used for nuclear applications and on residual stresses are revised. A new deterministic safety evaluation system is included. The conservatism in the method for evaluation of the secondary stresses for ductile materials is reduced. A new geometry, a circular bar with a circumferential surface crack has been introduced. The results of this project will be of use to SSM in safety assessments of components with cracks and in assessments of the interval between the inspections of components in nuclear power plants

  19. The Nordic nuclear safety program 1994-1997. Project handbook

    International Nuclear Information System (INIS)

    1997-06-01

    This is a new revision of the handbook for administrators of the Nordic reactor safety program NKS. The most important administrative functions in project management are described, which should secure a uniform management approach in all the projects. The description of the organizational scheme of the NKS and distribution of responsibilities is followed by examples of various administrative routines and document forms. In the annex the names and addresses of the staff involved in administration of the NKS program are listed. (EG)

  20. Radiological safety by design

    International Nuclear Information System (INIS)

    Gundaker, W.E.

    1977-01-01

    Under the Radiation Control for Health and Safety Act enacted by the U.S. Congress in 1968, the Food and Drug Administration's Bureau of Radiological Health may prescribe performance standards for products that emit radiation. A description is given of the development of these standards and outlines the administrative procedures by which they are enforced. (author)

  1. Overview of the 2014 Edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook)

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; J. Blair Briggs; Jim Gulliford; Ian Hill

    2014-10-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) is a widely recognized world class program. The work of the IRPhEP is documented in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Integral data from the IRPhEP Handbook is used by reactor safety and design, nuclear data, criticality safety, and analytical methods development specialists, worldwide, to perform necessary validations of their calculational techniques. The IRPhEP Handbook is among the most frequently quoted reference in the nuclear industry and is expected to be a valuable resource for future decades.

  2. International Handbook of Evaluated Criticality Safety Benchmark Experiments - ICSBEP (DVD), Version 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical experiment facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span nearly 66,000 pages and contain 558 evaluations with benchmark specifications for 4,798 critical, near critical or subcritical configurations, 24 criticality alarm placement/shielding configurations with multiple dose points for each and 200 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the Handbook are benchmark specifications for Critical, Bare, HEU(93.2)- Metal Sphere experiments referred to as ORSphere that were performed by a team of experimenters at Oak Ridge National Laboratory in the early 1970's. A photograph of this assembly is shown on the front cover

  3. Radiological safety in petroleum industry. Towards prevention culture

    International Nuclear Information System (INIS)

    Truppa, Walter A.

    2007-01-01

    Within the frame of regulatory control of industrial applications the audit of sealed and open radioactive sources in oil uses is one of the most relevant. The handling of radioactive sources, the requirement of procedures and training are just a few examples among all those that make up the radiological safety culture. A number of requirements divided into three main groups: operational safety at the storage area of radioactive sources, during transportation and during the applications (Cementation, well logging and use of radiotracers) are highlighted. Due to the great number of aspects that have to be taken in account as well as the interrelation of all control processes it is highly recommended that aspects of safety culture and quality should be considered and improvements regarding prevention, should be introduced so as to correct deviations that could arise in order to avoid radiological risk situations, emphasizing risk perception situations, attitude training, implementation of audit and level of safety in the facilities and control of duties, involving radiological material handling, described in the present work. (author) [es

  4. Crane handbook

    CERN Document Server

    Dickie, D E

    1975-01-01

    Crane Handbook offers extensive advice on how to properly handle a crane. The handbook highlights various safety requirements and rules. The aim of the book is to improve the readers' crane operating skills, which could eventually make the book a standard working guide for training operators. The handbook first reminds the readers that the machine should be carefully tested by a regulatory board before use. The text then notes that choosing the right crane for a particular job is vital and explains why this is the case. It then discusses how well-equipped and durable the crane should be. T

  5. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  6. Emergency radiological monitoring and analysis United States Federal Radiological Monitoring and Assessment Center

    International Nuclear Information System (INIS)

    Thome, D.J.

    1994-01-01

    The United States Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. Following a major radiological incident the FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC). The FRMAC is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted states and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis and quality assurance. This program includes: (1) Aerial Radiological Monitoring - Fixed Wing and Helicopter, (2) Field Monitoring and Sampling, (3) Radioanalysis - Mobile and Fixed Laboratories, (4) Radiation Detection Instrumentation - Calibration and Maintenance, (5) Environmental Dosimetry, and (6) An integrated program of Quality Assurance. To assure consistency, completeness and the quality of the data produced, a methodology and procedures handbook is being developed. This paper discusses the structure, assets and operations of FRMAC monitoring and analysis and the content and preparation of this handbook

  7. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety, Regional Meeting on International Radiation Protection Association (IRPA)and 3. Peruvian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    1995-10-01

    There we show works of the Third Regional Meeting on Radiological and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin americans specialists talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation. More than 225 works were presented on the meeting

  8. DOE handbook: Tritium handling and safe storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  9. DOE handbook: Tritium handling and safe storage

    International Nuclear Information System (INIS)

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance

  10. Radiological safety and control

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sea Young; Yoo, Y S; Lee, J C; Lee, T Y; Lee, J L; Kim, B W; Lee, B J; Chung, K K; Chung, R I; Kim, J S; Lee, H S; Han, Y D; Lee, J I; Lee, K C; Yoon, J H; Sul, C W; Kim, C K; Yoon, K S; Seo, K W; Yoon, Y C [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report describes the annual results of radiological safety and control program of 1995. This program consists of working area monitoring including HANARO, personnel radiation monitoring, education for radiation protection. As a result, the objectives of radiation protection have been achieved satisfactorily through the activities mentioned above. Also, the calibration services were provided to insure accurate radiation measurement in the radiation working places. 21 figs., 39 tabs., 5 refs. (Author) .new.

  11. A Checklist to Improve Patient Safety in Interventional Radiology

    International Nuclear Information System (INIS)

    Koetser, Inge C. J.; Vries, Eefje N. de; Delden, Otto M. van; Smorenburg, Susanne M.; Boermeester, Marja A.; Lienden, Krijn P. van

    2013-01-01

    To develop a specific RADiological Patient Safety System (RADPASS) checklist for interventional radiology and to assess the effect of this checklist on health care processes of radiological interventions. On the basis of available literature and expert opinion, a prototype checklist was developed. The checklist was adapted on the basis of observation of daily practice in a tertiary referral centre and evaluation by users. To assess the effect of RADPASS, in a series of radiological interventions, all deviations from optimal care were registered before and after implementation of the checklist. In addition, the checklist and its use were evaluated by interviewing all users. The RADPASS checklist has two parts: A (Planning and Preparation) and B (Procedure). The latter part comprises checks just before starting a procedure (B1) and checks concerning the postprocedural care immediately after completion of the procedure (B2). Two cohorts of, respectively, 94 and 101 radiological interventions were observed; the mean percentage of deviations of the optimal process per intervention decreased from 24 % before implementation to 5 % after implementation (p < 0.001). Postponements and cancellations of interventions decreased from 10 % before implementation to 0 % after implementation. Most users agreed that the checklist was user-friendly and increased patient safety awareness and efficiency. The first validated patient safety checklist for interventional radiology was developed. The use of the RADPASS checklist reduced deviations from the optimal process by three quarters and was associated with less procedure postponements.

  12. Radiological Protection Criteria for the Safety of LILW Repository in Croatia

    International Nuclear Information System (INIS)

    Levanat, I.; Lokner, V.; Subasic, D.

    2000-01-01

    Preparations for a LILW repository development in Croatia, conducted by APO Hazardous Waste Management Agency, have reached a point where the first safety assessment of the prospective facility is being attempted. For evaluation of the calculated radiological impact in the assessed option of repository development, a set of radiological protection criteria should be included in the definition of the assessment context. The Croatian regulations do not explicitly require that the repository development be supported by such safety assessment process, and do not provide a specific set of radiological criteria intended for the repository assessment which would be suitable for the constrained optimization of protection. For the initial safety assessment iterations of the prospective repository, which will address long term performance of the facility for various design and other safety options, we propose to use relatively simple radiological protection criteria, consisting only of individual dose and risk constraints for the general population. The numerical values for these constraints are established in accordance with the recognized international recommendations and in compliance with all possibly relevant Croatian safety requirements. (author)

  13. Radiological safety and risk assessment

    International Nuclear Information System (INIS)

    Hunter, P.H.; Barg, D.C.; Baird, R.D.; Card, D.H.; de Souza, F.; Elder, J.; Felthauser, K.; Jensen, C.; Winkler, V.

    1982-02-01

    A brief radiological safety and risk assessment of a nuclear power generation center with an adjacent on-site waste disposal facility at a specific site in the State of Utah is presented. The assessment was conducted to assist in determining the feasibility and practicality of developing a nuclear energy center (NEC) in Utah consisting of nine 1250 MWe nuclear pressurized water reactor (PWR) electrical generating units arranged in 3 clusters of 3 units each known as triads. The site selected for this conceptual study is in the Horse Bench area about 15 miles directly south of the town of Green River, Utah. The radiological issues included direct radiation exposures to on-site workers and the off-site population, release of radioactive material, and effects of these releases for both normal operations and accidental occurrences. The basic finding of this study is that the concept of an NEC in the Green River area, specifically at the Horse Bench site, is radiologically feasible

  14. Implementation of the new regulation on radiological safety in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1997-01-01

    Since its creation in 1975, the Peruvian Institute of Nuclear Energy (IPEN) has enacted three regulations of national importance on the norms of protection against ionizing radiation. The first regulation, which is called regulation of radiological protection (1980) approved by a resolution of IPEN, is the result of the work of a committee constituted by IPEN and the Ministry of Health. Its implementation caused some problems as result of which, in 1989, a new regulation on radiological protection was enacted through a supreme decree. Taking into account the new recommendation of the International Commission on Radiological Protection and the International Basic Safety Standard for Protection against Ionizing Radiation and for the Safety of Radiation Sources, approved in May 1997, the regulation of radiological safety also considers evolving aspects in the Project ARCAL XVII/IAEA. This regulation includes various topics such as exclusions, requirements of protection (medical exposure, occupational exposure, public exposure, chronic exposure), requirements of source safety, interventions and emergencies, control of sources and practices (exemptions, authorizations, inspections) etc. The implementation of this regulation at the national level falls to IPEN, the unique authority commissioned to control nuclear installations, radioactivity and x ray facilities in medicine, industry and research

  15. Radioactive decay data tables: a handbook of decay data for application to radiation dosimetry and radiological assessments

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1982-01-01

    Reviews compendium containing recommended decay data for approx. 500 radionuclides of interest in nuclear medicine and fusion reactor technology or of potential importance in routine or accidental releases from the nuclear fuel cycle. Primary source of the decay data presented in this handbook is the Evaluated Nuclear Structure Data File (ENSDF), developed and maintained by the US Nuclear Data Network. Topics covered include various radioactive decay processes; evaluation process and standards of ENSDF; tables and computer code MEDLIST used to produce ENSDF tables; radiation dosimetry and radiological assessments; parent-daughter activity ratios wherever the adopted decay data may contain significant uncertainties or errors due to the lack of appropriate experimental data

  16. Radiological containment handbook

    International Nuclear Information System (INIS)

    1982-10-01

    The purpose of this NUREG is to be used as a reference text. It is meant to be used by the working personnel as a guide for using temporary radiological containments. The installing group and health physics group may vary among organizations but responsibilities and duties will not change. It covers installation and inspection containments; working and operating guidelines; operating requirement; emergency procedures; and removal of containments

  17. MEMO radiology

    International Nuclear Information System (INIS)

    Wagner-Manslau, C.

    1989-01-01

    This radiology volume is a concise handbook of imaging techniques, nuclear medicine, and radiation therapy, albeit that the main emphasis is on classic radiology. It offers, for instance, a survey of radiological findings for the most frequent pathological conditions, many overviews of differential diagnosis, a glossary of the technical bases of radiology and so forth. The contents are divided into the following chapters: Physical and biological bases; skeleton; thorax with the subdivisions lungs, heart, mediastinum, and pleura; gastrointestinal tract with the subsections esophagus, small and large intestine; liver; biliary tract; pancreas; retroperitoneal space; kidney; suprarenal glands; bladder; blood vessels, lymph nodes, spleen; mammary glands; female genitals; prostate and scrotum, epididymis and seminal vesicle. (orig./MG) With 23 figs [de

  18. Radiological protection. Textbook for radiographers and reference book for radiological safety officers

    International Nuclear Information System (INIS)

    Stieve, F.E.; Stargardt, A.; Stender, H.S.

    1996-01-01

    The textbook is primarily intended for radiologic staff and radiologic safety officers and gives information on the current regulatory provisions of the German X-ray Ordinance, applications of X-rays, quality assurance, organisational aspects of film processing and quality requirements of X-rays. An annex lists the guidelines of the Bundesaerztekammer (German National Chamber of Physicians) relating to quality assurance aspects, and further useful information on commercially available film-screen systems, the various associations of physicians in Germany, and requirements and performance of radiation surveys. (vhe) [de

  19. Radiological safety and control

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Kim, Ki Sub

    1995-01-01

    The practical objective of radiological safety control is intended for achievement and maintenance of appropreately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objectives, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. 34 tabs., 19 figs., 11 refs. (Author) .new

  20. Handbook for structural analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-04-01

    This paper described structural analysis method of radioactive material transport casks for use of a handbook of safety analysis and evaluation. Safety analysis conditions, computer codes for analyses and stress evaluation method are also involved in the handbook. (author)

  1. A procedure for safety assessment of components with cracks - Handbook

    International Nuclear Information System (INIS)

    Andersson, P.; Bergman, M.; Brickstad, B.; Dahlberg, L.; Nilsson, F.; Sattari-Far, I.

    1996-01-01

    In this handbook a procedure is described which can be used both for assessment of detected cracks or crack like defects or for defect tolerance analysis. The procedure can be used to calculate possible crack growth due to fatigue or stress corrosion and to calculate the reserve margin for failure due to fracture and plastic collapse. For ductile materials, the procedure gives the reserve margin for initiation of stable crack growth. Thus, an extra reserve margin, unknown to size, exists for failure in components made of ductile materials. The procedure was developed for operative use with the following objectives in mind: The procedure should be able to handle both linear and non-linear problems without any a priori division; The procedure shall ensure uniqueness of the safety assessment; The procedure should be well defined and easy to use; The conservatism of the procedure should be well validated; The handbook that documents the procedure should be so complete that for most assessments access to any other fracture mechanics literature should not be necessary. The method utilized is based on the R6-method developed at Nuclear Electric plc. This method can in principle be used for all metallic materials. It is, however, more extensively verified for steel alloys only. The method is not intended for use in temperatures where creep deformation is of importance. The first edition of the handbook was released in 1990 and the second in 1991. This third edition has been extensively revised. A Windows-based program (SACC) has been developed which can perform the assessments described in the book including calculation of crack growth due to stress corrosion and fatigue. 52 refs., 27 figs., 35 tabs

  2. Criticality handbook. Pt. 1

    International Nuclear Information System (INIS)

    Heinicke, W.; Krug, H.; Thomas, W.; Weber, W.; Gmal, B.

    1985-12-01

    The GRS Criticality Handbook is intended as a source of information on criticality problems for the persons concerned in industry, authorities, or research laboratories. It is to serve as a guide allowing quick and appropriate evaluation of criticality problems during design or erection of nuclear installations. This present issue replaces the one published in 1979, presenting revised and new data in a modified construction, but within the framework of the proven basic structure of the Handbook. Some fundamental knowledge is required of criticality problems and the relevant terms and definitions of nuclear safety, in order to fully deploy the information given. Part 1 of the Handbook therefore first introduces terminology and definitions, followed by experimental methods and calculation models for criticality calculations. The next chapters deal with the function and efficiency of neutron reflectors and neutron absorbers, measuring methods for criticality monitoring, organisational safety measures, and criticality accidents and their subsequent analysis. (orig./HP) [de

  3. Radiological protection. Responsibility of the Safety Engineering Company

    International Nuclear Information System (INIS)

    Netto, A.L.

    1987-01-01

    This subject takes care of the Safety Engineering at the Radiologic Protection area on the X and Gama Rays Services. It mainly emphasis the case of that companies that, due do not have proper X and Gama Rays Services utilize partime task force on this area, but answer themselves for the safety of their employees in case of any accident occurence. (author) [pt

  4. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    Energy Technology Data Exchange (ETDEWEB)

    Klement, Jr, A W [U.S. Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  5. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    International Nuclear Information System (INIS)

    Klement, A.W. Jr.

    1969-01-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  6. PSA Review Handbook

    International Nuclear Information System (INIS)

    Hallman, Anders; Nyman, Ralph; Knochenhauer, Michael

    2004-05-01

    The Swedish Nuclear Power Inspectorate (SKI) expresses requirements on the performance of PSAs as well as on PSA activities in general in the the regulatory document 'Regulations Concerning Safety in Certain Nuclear Facilities', SKlFS 1998:1. The follow-up of these activities is part of the inspection tasks of the SKI. In view or this, there is a need for documented guidelines on now to perform these inspections and reviews. The SKI PSA Review Handbook is intended to be a support in the SKI inspection and control of the PSA activities or the licensees. These PSA activities include both the organisation and working procedures of the licensee, the layout and contents of the PSA, and its areas of application. Using the regulation SKIFS 1998:1 as a starting point, the review handbook presents important aspects to be considered when judging whether a licensee fulfils the requirements on PSA activities, including the performance of PSA:s or PSA applications. The handbook shall also be a guidance for the review of PSA:s. However, the intention of the PSA Review Handbook is not to be a handbook for how a PSA is performed. The PSA Review Handbook is applicable to all types or initiating events and all operating conditions, and has been structured in a way, which stresses the integrated characteristics of PSA in the creation of the risk picture of a plant. The PSA Review Handbook has been based on the requirements for PSA of nuclear power plants, as this is the most extensive application. However, the relevant parts of it are also applicable when analysing other nuclear installations. The PSA Review Handbook is published as a research report as its contents are judged to be of general interest, and the SKI welcomes comments to the handbook. An update or the PSA Review Handbook may be required as experience with the use of the handbook is acquired and if general PSA requirements change

  7. Handbook on radiation safety. Spravochnik po radiatsionnoj bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V R

    1977-01-01

    The handbook reflects changes, in quotas, providing radiation safety in the Soviet Union, and in state standards. It includes the data, published in the soviet and foreign press up to 1975 on problems of ionizing radiation interaction with a substance, on terminology and units for measuring ionizing radiations and radioactivity, doses of background and admissible personnel irradiation in space, resulting from natural and artificial sources,from medical procedures. Given are the norms and sanitary rules of radiation protection when operating ionizing radiations sources at nuclear power plants, nuclear reactors, critical assemblies, placing and operating charged particle accelerators. Included is ample information on dosimetry of X-ray, gamma-, and neutron radiation, on dosimetry of charged particles, aerosols and gases, on radiometry and spectrometry of internal irradiation and radiation sources. Devices for ionizina radiation registration, model radiation sources, radionuclide solutions and their calibration are described.

  8. Report on nuclear and radiological safety in 1995

    International Nuclear Information System (INIS)

    Lovincic, D.

    1996-07-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate of the Republic of Slovenia and the Administration for Rescue and Disaster Relief (URSZR) has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1995. The report is presenting: the activities of the SNSA; the operation of nuclear facilities; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation.

  9. Effective radiological safety program for electron linear accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.

    1980-10-01

    An outline is presented of some of the main elements of an electron accelerator radiological safety program. The discussion includes types of accelerator facilities, types of radiations to be anticipated, activity induced in components, air and water, and production of toxic gases. Concepts of radiation shielding design are briefly discussed and organizational aspects are considered as an integral part of the overall safety program

  10. Radiological Safety Officer (RSO): role and responsibilities

    International Nuclear Information System (INIS)

    Joshi, M.L.; Yadav, J.S.; Gopalakrishnan, R.K.; Ansari, I.A.

    2017-01-01

    The fundamental safety objective in a radiological facility (RF) is to protect people and the environment from harmful effects of ionising radiation. The radiation risks to people and the environment that may arise from the use of radiation and radioactive material must be assessed and must be controlled by means of the application of the relevant standards of safety. Thus, all facilities handling radioactive material must have experts, who are responsible for assisting the plant management in radiation protection programme

  11. International Cooperation of the Republic of Croatia in the Field of Radiological and Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.

    2011-01-01

    International cooperation of the Republic of Croatia in the field of radiological and nuclear safety can be divided in two parts - political part, for which the Ministry of Foreign Affairs and European Integration is responsible, and technical part, for which the State Office for Radiological and Nuclear Safety is responsible. According to the Radiological and Nuclear Safety Act (OG 28/10) the State Office for Radiological and Nuclear Safety: ''coordinates technical cooperation with the International Atomic Energy Agency for all participants from the Republic of Croatia''; ''fulfils the obligations which the Republic of Croatia has assumed through international conventions and bilateral agreements concerning protection against ionising radiation, nuclear safety and the application of protective measures aimed at the non-proliferation of nuclear weapons'' and ''cooperates with international and domestic organisations and associations in the area of protection against ionising radiation and nuclear safety, and appoints its own expert representatives to take part in the work of such organisations and associations or to monitor their work''. In this paper various aspects of the technical cooperation with the International Atomic Energy Agency, as well as international conventions and bilateral agreements in the field of radiological and nuclear safety, are presented. Also, cooperation with other international organizations and associations in the area of radiological and nuclear safety, such as Nuclear Suppliers Group, the Zangger Committee, the Wassenaar Arrangement, Comprehensive Nuclear-Test-Ban Treaty Organization, Euratom and certain civil expert groups of NATO, is described. (author)

  12. Handbook of radioimmunoassay

    International Nuclear Information System (INIS)

    Abraham, G.E.

    1977-01-01

    This handbook provides clear, detailed descriptions of ways to set up radioimmunoassay procedures for a variety of polypeptides and low molecular weight compounds. It covers extensively the subjects of statistical evaluation of radioimmunoassay, instrumentation in radioimmunoassay, and radiation safety in the performance of radioimmunoassay. Related nonconventional methods are also discussed. Contributors to this handbook have presented their own procedures for performing the radioimmunoassay and their rationale for choosing particular reagents and conditions. Emphasis is on providing sufficient information to enable relatively inexperienced immunoassayists to set up assay systems with a minimum of difficulty

  13. Nuclear and radiological safety in Slovenia in 1995

    International Nuclear Information System (INIS)

    Lovincic, D.

    1996-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate of the Republic of Slovenia and the Administration for Rescue and Disaster Relief (URSZR) has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1995. The report is presenting: the activities of the SNSA; the operation of nuclear facilities; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation. (author)

  14. Preliminary report of radiological safety to hydrology 1993 campaign

    International Nuclear Information System (INIS)

    Badano, A.; Suarez Antola, R.; Dellepere, A.; Barreiro, M.

    1993-01-01

    This report has been prepared based on the interaction between project managers and division radiological Protection and Nuclear Safety. In seeking to establish a basis for approval from the point of view of radiation safety practices . The idea for the audit has been provided at all times because the interest was the exchange of ideas and the use of common sense to improve the safety of radioactive substances, security of operators and public safety and environment.The above shows that in the planned radiation safety condition described in this report,the practice can be carried out according to the criteria of safety accepted .

  15. Hydrogen safety in nuclear power - issues and measures. Preparing 'handbook for improved hydrogen safety in nuclear power'

    International Nuclear Information System (INIS)

    Ogawa, Tooru; Nakajima, Kiyoshi; Hino, Ryutaro

    2015-01-01

    In response to hydrogen explosion at the reactor building of TEPCO Fukushima Daiichi Nuclear Power Station, the common understanding among researchers in various fields has been required for the chain of various events surrounding hydrogen in case of the accident of a light water reactor. The group composed of specialists of nuclear power and gas combustion/explosion from universities, nuclear power equipment manufacturers, business interests, and nuclear power institutes is promoting the preparation work of 'Handbook for upgrading the safety of hydrogen measures related to nuclear power,' which is scheduled to be published in the end of 2015. The main themes dealt with in the handbook are as follows; (1) severe accident management and hydrogen control, (2) hydrogen combustion phenomena to be considered, (3) behavior of air - water vapor - hydrogen system, (4) passive autocatalytic recombiner (PAR) / igniter / containment spray, and (5) water-containing waste management. This paper introduces the outline of these movements and latest achievements. (A.O.)

  16. Development of a management system of radiological safety with application to hospitals

    International Nuclear Information System (INIS)

    Velazquez M, J.D.; Rivera M, T.; Santos R, J.R.

    2008-01-01

    The medicine is the area that more it has benefited with the implementation of the radiation. However, a great number of incidents/accidents they have happened in hospitals in recent years. The above-mentioned stands out the necessity to improve the acting of the radiological safety management systems in Hospitals. This work presents a Management System of Radiological Safety (SGSR). The SGSR has as fundamental objective the one of maintaining the radiological risks inside acceptable levels. The SGSR is generic and it can be applied in the nuclear medicine, radiodiagnostic, radiotherapy, and in other areas of the health sector where it is required to prevent accidents or incidents that affect the health or the well-being of the worker or user. Also it was diagnosed a Specialties Hospital of the Mexico City using some characteristics of the SGSR. The obtained results show that the SGSR can contribute significantly in the improvement of the quality of the service in the attention to the patients and in the radiological safety. (Author)

  17. Human-centred radiological software techniques supporting improved nuclear safety

    International Nuclear Information System (INIS)

    Szoeke, Istvan; Johnsen, Terje

    2013-01-01

    The Institute for Energy Technology (IFE) is an international research foundation for energy and nuclear technology. IFE is also the host for the international OECD Halden Reactor Project. The Software Engineering Department in the Man Technology Organisation at IFE is a leading international centre of competence for the development and evaluation of human-centred technologies, process visualisation, and the lifecycle of high integrity software important to safety. This paper is an attempt to give a general overview of the current, and some of the foreseen, research and development of human-centred radiological software technologies at the Software Engineering department to meet with the need of improved radiological safety for not only nuclear industry but also other industries around the world. (author)

  18. Implementation of a radiological safety management system in a hospital of Mexico City

    International Nuclear Information System (INIS)

    Martinez V, D.; Rivera M, T.; Velez D, V.

    2007-01-01

    Full text: The reflection of this work is based in some radiological accidents that its have happened in some hospital centers or of research. The over exposure of some people is due to the pursuit of the procedures, the lack of quality assurance of the equipment or the inappropriate actions of the technicians. In Mexico one has seen in several hospitals the lack of existence of a Quality Assurance Program to prevent the accidents, the execution of the same ones and those good practices and the lack of Safety Culture makes that the hospital radiological safety it is faulty. The objective of the present work is the implementation of a radiological safety management in a hospital of Mexico City. (Author)

  19. IRPhEP-handbook, International Handbook of Evaluated Reactor Physics Benchmark Experiments

    International Nuclear Information System (INIS)

    Sartori, Enrico; Blair Briggs, J.

    2008-01-01

    1 - Description: The purpose of the International Reactor Physics Experiment Evaluation Project (IRPhEP) is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. This work of the IRPhEP is formally documented in the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments,' a single source of verified and extensively peer-reviewed reactor physics benchmark measurements data. The IRPhE Handbook is available on DVD. You may request a DVD by completing the DVD Request Form available at: http://irphep.inl.gov/handbook/hbrequest.shtml The evaluation process entails the following steps: 1. Identify a comprehensive set of reactor physics experimental measurements data, 2. Evaluate the data and quantify overall uncertainties through various types of sensitivity analysis to the extent possible, verify the data by reviewing original and subsequently revised documentation, and by talking with the experimenters or individuals who are familiar with the experimental facility, 3. Compile the data into a standardized format, 4. Perform calculations of each experiment with standard reactor physics codes where it would add information, 5. Formally document the work into a single source of verified and peer reviewed reactor physics benchmark measurements data. The International Handbook of Evaluated Reactor Physics Benchmark Experiments contains reactor physics benchmark specifications that have been derived from experiments that were performed at various nuclear experimental facilities around the world. The benchmark specifications are intended for use by reactor physics personal to validate calculational techniques. The 2008 Edition of the International Handbook of Evaluated Reactor Physics Experiments contains data from 25 different

  20. Expanding the scope of practice for radiology managers: radiation safety duties.

    Science.gov (United States)

    Orders, Amy B; Wright, Donna

    2003-01-01

    In addition to financial responsibilities and patient care duties, many medical facilities also expect radiology department managers to wear "safety" hats and complete fundamental quality control/quality assurance, conduct routine safety surveillance in the department, and to meet regulatory demands in the workplace. All managers influence continuous quality improvement initiatives, from effective utilization of resource and staffing allocations, to efficacy of patient scheduling tactics. It is critically important to understand continuous quality improvement (CQI) and its relationship with the radiology manager, specifically quality assurance/quality control in routine work, as these are the fundamentals of institutional safety, including radiation safety. When an institution applies for a registration for radiation-producing devices or a license for the use of radioactive materials, the permit granting body has specific requirements, policies and procedures that must be satisfied in order to be granted a permit and to maintain it continuously. In the 32 U.S. Agreement states, which are states that have radiation safety programs equivalent to the Nuclear Regulatory Commission programs, individual facilities apply for permits through the local governing body of radiation protection. Other states are directly licensed by the Nuclear Regulatory Commission and associated regulatory entities. These regulatory agencies grant permits, set conditions for use in accordance with state and federal laws, monitor and enforce radiation safety activities, and audit facilities for compliance with their regulations. Every radiology department and associated areas of radiation use are subject to inspection and enforcement policies in order to ensure safety of equipment and personnel. In today's business practice, department managers or chief technologists may actively participate in the duties associated with institutional radiation safety, especially in smaller institutions, while

  1. Ensuring the safety of surgical teams when managing casualties of a radiological dirty bomb.

    Science.gov (United States)

    Williams, Geraint; O'Malley, Michael; Nocera, Antony

    2010-09-01

    The capacity for surgical teams to ensure their own safety when dealing with the consequences caused by the detonation of a radiological dirty bomb is primarily determined by prior knowledge, familiarity and training for this type of event. This review article defines the associated radiological terminology with an emphasis on the personal safety of surgical team members in respect to the principles of radiological protection. The article also describes a technique for use of hand held radiation monitors and will discuss the identification and management of radiologically contaminated patients who may pose a significant danger to the surgical team. 2010 Elsevier Ltd. All rights reserved.

  2. Regulatory analysis technical evaluation handbook. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this Handbook is to provide guidance to the regulatory analyst to promote preparation of quality regulatory analysis documents and to implement the policies of the Regulatory Analysis Guidelines of the US Nuclear Regulatory Commission (NUREG/BR-0058 Rev. 2). This Handbook expands upon policy concepts included in the NRC Guidelines and translates the six steps in preparing regulatory analyses into implementable methodologies for the analyst. It provides standardized methods of preparation and presentation of regulatory analyses, with the inclusion of input that will satisfy all backfit requirements and requirements of NRC's Committee to Review Generic Requirements. Information on the objectives of the safety goal evaluation process and potential data sources for preparing a safety goal evaluation is also included. Consistent application of the methods provided here will result in more directly comparable analyses, thus aiding decision-makers in evaluating and comparing various regulatory actions. The handbook is being issued in loose-leaf format to facilitate revisions. NRC intends to periodically revise the handbook as new and improved guidance, data, and methods become available

  3. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  4. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  5. Handbook for value-impact assessment

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Burnham, J.B.; Gallucci, R.H.V.

    1983-12-01

    The basic purpose of this handbook is to document a set of systematic procedures for providing information that can be used in performing value-impact assessments of Nuclear Regulatory Commission (NRC) regulatory actions. The handbook describes a structured but flexible process for performing the assessment. Chapter 1 is an introduction to the value-impact assessment process. Chapter 2 describes the attributes most frequently affected by proposed NRC actions, provides guidance concerningthe appropriate level of effort to be devoted to the assessment, suggests a standard format for documenting the assessment, and discusses the treatment of uncertainty. Chapter 3 contains detailed methods for evaluating each of the attributes affected by a regulatory action. The handbook has five appendixes containing background information, technical data, and example applications of the value-impact assessment procedures. This edition of the handbook focuses primarily on assessing nuclear power reactor safety issues

  6. Report on nuclear and radiological safety in 1994

    International Nuclear Information System (INIS)

    Lovincic, D.

    1995-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world.

  7. Patient Safety in Interventional Radiology: A CIRSE IR Checklist

    NARCIS (Netherlands)

    Lee, M. J.; Fanelli, F.; Haage, P.; Hausegger, K.; van Lienden, K. P.

    2012-01-01

    Interventional radiology (IR) is an invasive speciality with the potential for complications as with other invasive specialities. The World Health Organization (WHO) produced a surgical safety checklist to decrease the morbidity and mortality associated with surgery. The Cardiovascular and

  8. Nuclear and radiological safety in Slovenia in 1998

    International Nuclear Information System (INIS)

    Lovincic, D.

    1999-09-01

    This is an English version of the Annual Report of Nuclear and Radiological Safety in the Republic of Slovenia for 1998, which was prepared by The Slovenian Nuclear Safety Administration (SNSA), in cooperation with, Health Inspectorate of the Republic of Slovenia and the Administration for Civil Protection and Disaster Relief. The report presents activities of the SNSA, operation of nuclear facilities, activities of the Agency of Radwaste Management, work of international missions, emergency plan, authorized organizations, monitoring of radioactivity, control of ionizing radiation and nuclear electricity generation

  9. Training Programs on Radiological Safety for users of Ionizing Radiations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2003-01-01

    In Peru, people who work with ionizing radiations must have an authorization (Individual License) as established in the Radiological Safety Regulations, which are the mandatory rules. The Technical Office of the National Authority (OTAN), which is the technical organ of the Peruvian Institute of Nuclear Energy (IPEN) in charge of controlling radiations within the country , grants the authorization after the candidate demonstrates that he/she knows the specific use of the technique using radiations, as well a s the aspects related to safety and radiological protection. Since it was created in 1972, the Superior Center of Nuclear Studies (VSEN) from IPEN has carried out different training courses so that people can work safety with ionizing radiations in medicine, industry and investigation. The analysis of the radiological safety programs carried out by CSEN during the last 30 years, which allowed the training of more than 2200 people in the country and, at the same time, made possible the securing of the respective Individual License, is presented in this work. The courses, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges gamma irradiator, etc...) and are part of the continuous education program of CSEN. (Author)

  10. Decision aiding handbooks for managing contaminated food production systems, drinking water and inhabited areas in Europe

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Brown, J.; Howard, B.J.

    2010-01-01

    Three handbooks have been developed, in conjunction with a wide range of stakeholders to assist in the management of contaminated food production systems, inhabited areas and drinking water following a radiological incident. The handbooks are aimed at national and local authorities, central...... government departments and agencies, emergency services, radiation protection experts, the agriculture and food production sectors, industry and others who may be affected. The handbooks include management options for application in the different phases of an incident. Sources of contamination considered...

  11. Accelerator driven systems from the radiological safety point of view

    Indian Academy of Sciences (India)

    application of the probabilistic safety analysis technique by assessing the probability and ... Technological and theoretical developments necessary for more precise .... Monte Carlo-based) to enable quick estimation of radiological hazards.

  12. Safety coaches in radiology: decreasing human error and minimizing patient harm

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, Julie M.; Adams, Janet M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Koch, Bernadette L.; Donnelly, Lane F. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Department of Pediatrics, Cincinnati, OH (United States); Goodfriend, Martha A. [Cincinnati Children' s Hospital Medical Center, Department of Quality Improvement, Cincinnati, OH (United States)

    2010-09-15

    Successful programs to improve patient safety require a component aimed at improving safety culture and environment, resulting in a reduced number of human errors that could lead to patient harm. Safety coaching provides peer accountability. It involves observing for safety behaviors and use of error prevention techniques and provides immediate feedback. For more than a decade, behavior-based safety coaching has been a successful strategy for reducing error within the context of occupational safety in industry. We describe the use of safety coaches in radiology. Safety coaches are an important component of our comprehensive patient safety program. (orig.)

  13. Safety coaches in radiology: decreasing human error and minimizing patient harm

    International Nuclear Information System (INIS)

    Dickerson, Julie M.; Adams, Janet M.; Koch, Bernadette L.; Donnelly, Lane F.; Goodfriend, Martha A.

    2010-01-01

    Successful programs to improve patient safety require a component aimed at improving safety culture and environment, resulting in a reduced number of human errors that could lead to patient harm. Safety coaching provides peer accountability. It involves observing for safety behaviors and use of error prevention techniques and provides immediate feedback. For more than a decade, behavior-based safety coaching has been a successful strategy for reducing error within the context of occupational safety in industry. We describe the use of safety coaches in radiology. Safety coaches are an important component of our comprehensive patient safety program. (orig.)

  14. Safety coaches in radiology: decreasing human error and minimizing patient harm.

    Science.gov (United States)

    Dickerson, Julie M; Koch, Bernadette L; Adams, Janet M; Goodfriend, Martha A; Donnelly, Lane F

    2010-09-01

    Successful programs to improve patient safety require a component aimed at improving safety culture and environment, resulting in a reduced number of human errors that could lead to patient harm. Safety coaching provides peer accountability. It involves observing for safety behaviors and use of error prevention techniques and provides immediate feedback. For more than a decade, behavior-based safety coaching has been a successful strategy for reducing error within the context of occupational safety in industry. We describe the use of safety coaches in radiology. Safety coaches are an important component of our comprehensive patient safety program.

  15. EURANOS. Generic handbook for assisting in the management of contaminated inhabited areas in Europe following a radiological emergency

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Andersson, Kasper Grann; Brown, J.

    industry and others who may be affected. The handbook is a living document that requires updating from time to time to remain state-of-the-art and customisation of the generic handbook is an essential part of its use within individual countries. The handbook includes management options for application...... and plants; trees and shrubs. The handbook is divided into several independent sections comprising: supporting scientific and technical information; an analysis of the factors influencing recovery; compendia of comprehensive, state-of-the-art datasheets for more than 50 management options; guidance....... The handbook for inhabited areas complements the two other handbooks for food production systems and drinking water supplies....

  16. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities

    International Nuclear Information System (INIS)

    Lourenco, Manuel Jacinto Martins

    2010-01-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  17. A procedure for safety assessment of components with cracks - Handbook. 3rd revised edition

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, P.; Bergman, M.; Brickstad, B.; Dahlberg, L.; Nilsson, F.; Sattari-Far, I. [SAQ Kontroll AB, Stockholm (Sweden)

    1999-12-01

    In this handbook a procedure is described which can be used both for assessment of detected cracks or crack-like defects and for defect tolerance analysis. The procedure can be used to calculate possible crack growth due to fatigue or stress corrosion and to calculate the reserve margin for failure due to fracture and plastic collapse. For ductile materials, the procedure gives the reserve margin for initiation of stable crack growth. Thus, an extra reserve margin, unknown to size, exists for failure in components made of ductile materials. The procedure was developed for operative use with the following objectives in mind: a) The procedure should be able to handle both linear and non-linear problems without any a priori division. b) The procedure shall ensure uniqueness of the safety assessment. c) The procedure should be well defined and easy to use. d) The conservatism of the procedure should be well validated. e) The handbook, that documents the procedure, should be so complete that for most assessments, access to any other fracture mechanics literature should not be necessary. The method utilized in the procedure is based on the R6-method developed at Nuclear Electric plc. The basic assumption is that fracture initiated by a crack can be described by the variables K{sub r} and L{sub r}. K{sub r} is the ratio between the stress intensity factor and the fracture toughness of the material. L{sub r} is the ratio between applied load and the plastic limit load of the structure. The pair of calculated values of these variables is plotted in a diagram. If the point is situated within the noncritical region, fracture is assumed not to occur. If the point is situated outside the region, crack growth and fracture may occur. The method can in principal be used for all metallic materials. It is, however, more extensively verified for steel alloys only. The method is not intended for use in temperature regions where creep deformation is of importance. To fulfil the above

  18. A procedure for safety assessment of components with cracks - Handbook. 3rd revised edition

    International Nuclear Information System (INIS)

    Andersson, P.; Bergman, M.; Brickstad, B.; Dahlberg, L.; Nilsson, F.; Sattari-Far, I.

    1999-12-01

    In this handbook a procedure is described which can be used both for assessment of detected cracks or crack-like defects and for defect tolerance analysis. The procedure can be used to calculate possible crack growth due to fatigue or stress corrosion and to calculate the reserve margin for failure due to fracture and plastic collapse. For ductile materials, the procedure gives the reserve margin for initiation of stable crack growth. Thus, an extra reserve margin, unknown to size, exists for failure in components made of ductile materials. The procedure was developed for operative use with the following objectives in mind: a) The procedure should be able to handle both linear and non-linear problems without any a priori division. b) The procedure shall ensure uniqueness of the safety assessment. c) The procedure should be well defined and easy to use. d) The conservatism of the procedure should be well validated. e) The handbook, that documents the procedure, should be so complete that for most assessments, access to any other fracture mechanics literature should not be necessary. The method utilized in the procedure is based on the R6-method developed at Nuclear Electric plc. The basic assumption is that fracture initiated by a crack can be described by the variables K r and L r . K r is the ratio between the stress intensity factor and the fracture toughness of the material. L r is the ratio between applied load and the plastic limit load of the structure. The pair of calculated values of these variables is plotted in a diagram. If the point is situated within the noncritical region, fracture is assumed not to occur. If the point is situated outside the region, crack growth and fracture may occur. The method can in principal be used for all metallic materials. It is, however, more extensively verified for steel alloys only. The method is not intended for use in temperature regions where creep deformation is of importance. To fulfil the above given objectives

  19. Nuclear and radiological safety in Slovenia in 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lovincic, D [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    1995-07-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world. (author)

  20. Nuclear and radiological safety in Slovenia in 1994

    International Nuclear Information System (INIS)

    Lovincic, D.

    1995-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world. (author)

  1. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users’ Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Bradley J Schrader

    2009-03-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  2. Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users’ Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Bradley J Schrader

    2010-10-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  3. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users Manual

    International Nuclear Information System (INIS)

    Schrader, Bradley J.

    2009-01-01

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods

  4. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  5. Indicators of the management for the continuous improvement of the radiological safety in a radioactive facility

    International Nuclear Information System (INIS)

    Amador B, Z. H.

    2006-01-01

    The use of safety indicators is common in the nuclear industry. In this work the implementation of indicators for the efficiency analysis of the radiological safety management system of a radioactive installation is presented. Through the same ones the occupational exposure, the training Y authorization of the personnel, the control of practices Y radioactive inventory, the results of the radiological surveillance, the occurrence of radiological events, the aptitude of the monitoring equipment, the management of the radioactive waste, the public exposure, the audits Y the costs of safety are evaluated. Its study is included in the periodic training of the workers. Without this interrelation it is not possible to maintain the optimization of the safety neither to achieve a continuous improvement. (Author)

  6. Nuclear and Radiological Safety in Slovenia. Annual Report 1996

    International Nuclear Information System (INIS)

    Lovincic, D.

    1997-08-01

    The Slovenian Nuclear Safety Administration (SNSA), in cooperation with Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1996. The report presents activities of the SNSA; operation of nuclear facilities; activities of the Agency for Radwaste Management; work of international missions; emergency plan; authorized organizations; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation

  7. Radiological safety of nuclear power plants in India

    International Nuclear Information System (INIS)

    Sathish, A.V.

    2015-01-01

    Safety in nuclear power plants (NPPs) is often less understood and more talked about, thus the author wanted to share the facts to clear the myths. Safety is accorded overriding priority in all the activities. All nuclear facilities are sited, designed, constructed, commissioned and operated in accordance with strict quality and safety standards. Principles of defence in depth, redundancy and diversity are followed in the design of all nuclear facilities and their systems/components. PPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, approved standard operating and maintenance procedures, a well-defined waste management methodology, periodically rehearsed emergency preparedness and disaster management plans. The regulatory framework in the country is robust, with the independent Atomic Energy Regulatory Board (AERB) having powers to frame the policies, laying down safety standards, monitoring and enforcing all the safety provisions. As a result, India's safety record has been excellent in over 400 reactor years of operation of power reactors

  8. Patient Safety in Interventional Radiology: A CIRSE IR Checklist.

    LENUS (Irish Health Repository)

    2012-02-01

    Interventional radiology (IR) is an invasive speciality with the potential for complications as with other invasive specialities. The World Health Organization (WHO) produced a surgical safety checklist to decrease the morbidity and mortality associated with surgery. The Cardiovascular and Interventional Society of Europe (CIRSE) set up a task force to produce a checklist for IR. Use of the checklist will, we hope, reduce the incidence of complications after IR procedures. It has been modified from the WHO surgical safety checklist and the RAD PASS from Holland.

  9. The present condition of the radiation safety control education in training schools for radiological technologists

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Saito, Kyoko; Hirai, Shoko; Igarashi, Hiroshi; Negishi, Tooru; Hirano, Kunihiro; Kawaharada, Yasuhiro

    2010-01-01

    We made a detailed study on the course of study in radiation safety control prescribed on March 28, 2003. Questionnaires were sent to 39 training schools for radiological technology, to which 66.7% replied (26/39). Subjects on radiation safety control must include knowledge and technology in both radiation control and medical safety. The contents for instruction of radiation control were in accordance with those given in the traditional program; however, some discrepancies were found in the contents of medical safety. As medical safety, emphasized by the revised Medical Service Law, is regarded as very important by many hospitals, safety control education that include medical ethics should be required as part of the curriculum in the training schools for radiological technologists. (author)

  10. Setting clear expectations for safety basis development

    International Nuclear Information System (INIS)

    MORENO, M.R.

    2003-01-01

    DOE-RL has set clear expectations for a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (10 CFR 830, Nuclear Safety Rule) which will ensure long-term benefit to Hanford. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development resulting in a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was issued to standardized methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was issued for the evaluation of radiological consequences for accident scenarios often postulated for Hanford. A standard Site Documented Safety Analysis (DSA) detailing the safety management programs was issued for use as a means of compliance with a majority of 3009 Standard chapters. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. As a result of setting expectations and providing safety analysis tools, the four Hanford Site waste management nuclear facilities were able to integrate into one Master Waste Management Documented Safety Analysis (WM-DSA)

  11. Radiological protection and nuclear safety postgraduate course

    International Nuclear Information System (INIS)

    Segado, R.C.; Menossi, C.A.

    1998-01-01

    Full text: The first Radiation Protection and Nuclear Safety Postgraduate Course was held in 1977, when the former Radioprotection and Nuclear Safety Branch of the National Atomic Energy Commission decided implement that course for the qualification of its professionals. After then, in 1980, by agreement between the CNEA, the National University of Buenos Aires and the Ministry of Health and Social Welfare got its present academic qualification as a Post-Graduate Course. Since then, it was sponsored by the IAEA. This Organization annually grants fellowships to fifteen students from different countries. Up to now, twenty consecutive courses have been delivered and more than five hundredth graduated, more than half of them coming from abroad. The aim of the course is the qualification and training in Radiological Protection and Nuclear Safety of those professionals involved in the design, construction, operation and decommissioning of Nuclear and Radioactive Installation and their related regulatory issues. (author) [es

  12. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety. Radiological protection in Latin America and the Caribbean. Vol. 1,2; Actas del 3. Congreso Regional sobre Seguridad Radiologica y Nuclear. Proteccion Radiologica en America Latina y el Caribe. Vol. 1,2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Two volumes contain more than 183 complete papers presented during the Third Regional Meeting on Radiological Protection and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin american specialist talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation.

  13. Automated system for the management of the radiological safety in a radiopharmaceutical and labelled compounds production center

    International Nuclear Information System (INIS)

    Amador B, Z.H.; Alvarez Builla de Sologuren, E.

    2006-01-01

    The establishment in the Center of Isotopes of Cuba of a managerial quality system in matter of radiological safety Y the accumulated operational experience, its constitute the foundations for the development of a system of management of the radiological safety organically structured, with the application of evaluative techniques of it management Y it integration in an automated system. The Visual Basic 5 platform for the programming of the 'SASR' system is used. The functions of each one of the 11 modules that integrate it are described. With this it can be carried out the registration of the data of the training Y the personnel's authorization, the checkup of the radioactive inventory of the installation, the annual upgrade of the registrations of the individual doses of those workers, the analysis of the state of the available equipment for magnitude to control, the radiological situation of the work positions, the public exposure by the gassy discharges, the experiences of the radiological events, the annual consolidation of the costs of the safety Y the evaluation of indicators Y of tendencies. A computer tool that facilitates the effective management of the radiological safety in a radioactive installation is obtained. (Author)

  14. Nuclear and radiological safety in Slovenia in 1998, Annual report

    International Nuclear Information System (INIS)

    Lovincic, D.

    1999-09-01

    The Slovenian Nuclear Safety Administration (SNSA), in cooperation with Health Inspectorate of the Republic of Slovenia and the Administration for Civil Protection and Disaster Relief, has prepared a Report of Nuclear and Radiological Safety in the Republic of Slovenia for 1998. The report presents activities of the SNSA, operation of nuclear facilities, activities of the Agency of Radwaste Management, work of international missions, emergency plan, authorized organizations, monitoring of radioactivity, control of ionizing radiation and nuclear electricity generation

  15. Nuclear and radiological safety 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1995-06-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear and Radiological Safety issued during the period 1980-1994. The following aspects are covered: Uranium mining and milling, Fuel fabrication and storage, Nuclear power plants, Research reactors, Radiation sources and accelerators, Transport of radioactive materials, Waste repositories, Radiation protection, Accident response, Radioactive waste management, Safety analysis, Quality management, Legal and governmental aspects

  16. Nuclear and radiological safety. 1986-1998. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1999-04-01

    This catalogue lists all sales publications of the IAEA dealing with nuclear and radiological safety issued from 1986 to 1998. Publications are sorted according to the following subjects: Uranium mining and milling; Fuel fabrication and storage; Nuclear power plants; Research reactors; Radiation sources and accelerators; Transport of radioactive material; Waste repositories; Radiation protection; Accident response; Radioactive waste management; Safety analysis; Quality management; Legal and governmental aspects

  17. Nuclear and radiological safety. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-08-01

    This catalogue lists all sales publications of the IAEA dealing with nuclear and radiological safety issued from 1990 to 2001. Publications are sorted according to the following subjects: Uranium mining and milling. Fuel fabrication and storage. Nuclear power plants. Research reactors. Radiation sources and accelerators. Transport of radioactive material. Waste repositories. Radiation protection. Accident response. Radioactive waste management. Safety analysis. Quality management. Legal and governmental aspects

  18. Nuclear and radiological safety. 1990-2001. International Atomic Energy Agency publications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    This catalogue lists all sales publications of the IAEA dealing with nuclear and radiological safety issued from 1990 to 2001. Publications are sorted according to the following subjects: Uranium mining and milling. Fuel fabrication and storage. Nuclear power plants. Research reactors. Radiation sources and accelerators. Transport of radioactive material. Waste repositories. Radiation protection. Accident response. Radioactive waste management. Safety analysis. Quality management. Legal and governmental aspects.

  19. IAEA-IFRAM joint development of nuclear plant aging management handbooks

    International Nuclear Information System (INIS)

    Yeji Kim, II Soon Hwang

    2015-01-01

    As attentions to the beyond design basis accident have increased following Fukushima accident, the importance of aging management for key system, structure and components of nuclear power plant (NPP) also has been emerged as the key factor for safety and reliability of NPPs. The diverse experiences can serve as the foundation for aging management processes that has major trust in the understanding of materials degradation mechanisms. IAEA and IFRAM have collaborated to produce the nuclear plant aging management handbook in order to help entry-level engineers and graduate students understand big pictures. As the number of old NPPs and new-comer countries have increased, sharing experiences and accumulated knowledge from existing nuclear industries has become increasingly important. From this point of view, the handbook has been completed for publication by IAEA which assembled a panel of international experts to integrate the vast body of background knowledge regarding aging mechanism and the extensive know-hows of expertsinto a primer handbook. The next step is to actively utilize the IAEA handbook to produce its web version. In order to reach the ultimate purpose of nuclear safety culture of IAEA, information the handbook should be made easily accessible ana understandable. In this regards, the conversion of IFRAM handbook to web version is being planned. Careful considerations about how to restructure the content and how to reflect opinions from experts and readers are needed. In addition, this handbook can be extended to a training program for maintenance managers, vendors, research organizations and regulators to assist them in their work on aging management in operating NPPs. Through these two aspects, this IFRAM handbook on aging management of NPPs will support of NPP staff both new-comer and established countries. This paper introduces the purpose, approach, structure, content of already completed IAEA handbook and the status and plan for IFRAM Web-handbook

  20. Environmental and Social Management System Implementation Handbook : Crop Production

    OpenAIRE

    International Finance Corporation

    2014-01-01

    This Handbook is intended to be a practical guide to help companies in the crop production industry develop and implement an environmental and social management system, which should help to improve overall operations. If a company has existing management systems for quality or health and safety, this Handbook will help to expand them to include environmental and social performance. Sectio...

  1. Radiological and nuclear safety- evolution, standards and similarity

    International Nuclear Information System (INIS)

    Soman, S.D.

    1996-01-01

    With the realisation of potential for severe health affects after the discovery of x-rays and radioactivity, the radiation protection aspect became focus of interest for medical users from the beginning of this century. With the activities of International Commission on Radiological Protection (ICRP), the standards evolved during all these years based on epidemiological data and radio-biological research. The current standards are the ICRP recommendations of 1990. Based on these, internationally harmonised standards for protection against ionising radiation and safety of radioactive sources were brought out by IAEA in 1994. The nuclear safety (implies safety of nuclear power plants) came into prominence when large scale units were designed and operated since mid 1950s. The philosophy in nuclear safety has evolved in past 2-3 decades taking into account the lessons learned from accidents, mainly Three Mile Island (1979) and Chernobyl-4 (1986). These current nuclear safety standards are incorporated in INSAG reports, particularly INSAG-3. This paper brings out salient features of these evolutions, current standards and similarity of radiation and nuclear safety standards in their present form. (author). 7 refs., 10 tabs

  2. Circles of quality in radiological safety

    International Nuclear Information System (INIS)

    Gonzalez F, J.A.

    1991-01-01

    The concept of Circles of quality arose in Japan like an option to capitalize the enormous potential that the workers had developed as a result of its training in the statistical tools of quality. There are presented a series of steps that could be given with the purpose of implementing a program of ALARA circles. The radiological safety is in it finishes instance responsibility of each hard-working one and there won't be a protection program that can work among apathetic people, it is in this sense where the ALARA circles can provide its maximum contribution creating a conscience of responsibility and participation

  3. Radiological safety assessment of a reference INTOR facility

    International Nuclear Information System (INIS)

    Khan, T.A.; Stasko, R.R.; Watts, R.T.; Shaw, G.; Morrison, C.A.; Russell, S.; Kempe, T.; Zimmerman, R.

    1985-03-01

    This report consists of a number of separate studies all of which were performed in support of INTOR Critical Issue D: Tritium Containment and Personnel Access vs Remote Maintenance. The common thread running through these studies is the radiological safety element in the design and operation of the INTOR facility. The intent is to help establish a firm basis for comparisons between a reactor cell maintenance option which requires personnel access, and one which involves completely remote maintenance

  4. CP-50 calibration facility radiological safety assessment document

    International Nuclear Information System (INIS)

    Chilton, M.W.; Hill, R.L.; Eubank, B.F.

    1980-03-01

    The CP-50 Calibration Facility Radiological Safety Assessment document, prepared at the request of the Nevada Operations Office of the US Department of Energy to satisfy provisions of ERDA Manual Chapter 0531, presents design features, systems controls, and procedures used in the operation of the calibration facility. Site and facility characteristics and routine and non-routine operations, including hypothetical incidents or accidents are discussed and design factors, source control systems, and radiation monitoring considerations are described

  5. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  6. Current Approaches of Regulating Radiological Safety of Medical and Industrial Practices in Romania

    International Nuclear Information System (INIS)

    Goicea, C.

    2016-01-01

    The principal document regulating the radiological safety of ionizing radiation application in Romania is the “Fundamental Norms for Radiological Safety”. These norms establish the requirements concerning the assurance of radiological safety of occupational exposed workers, population and environment, in accordance with the provisions of Law 111/1996 on the safe deployment of nuclear activities, republished. Justification of practices for all new practices which lead to exposure to ionizing radiation shall be justified in writing by their initiator, underlining their economic, social or other nature advantages, in comparison with the detriment which they could cause to health. CNCAN authorise these practices, provided that they consider the justification as being thorough. The applicant, respectively the authorisation holder, has to demonstrate that all actions to ensure radiation protection optimization are undertaken, with a view to ensure that all exposures, including the potential ones, within the framework of practice developed are maintained at the lowest reasonable achievable level, taking into account the economic and social factors: ALARA principle.

  7. The NKS programmes for Nordic cooperation on nuclear and radiological safety

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Leino, Kaisu; Magnússon, Sigurður M.

    2013-01-01

    NKS is a platform for Nordic cooperation and competence maintenance in nuclear and radiological safety, including emergency preparedness. It is an informal forum serving as an umbrella for Nordic initiatives and interests. It runs joint activities of interest to financing organisations and other...

  8. Effect of Kiken-Yochi training (KYT) induction on patient safety at the department of radiological technology

    International Nuclear Information System (INIS)

    Yasuda, Mitsuyoshi; Uchiyama, Yushi; Sakiyama, Koshi; Shibata, Masako; Sasaki, Haruaki; Kato, Kyoichi; Nakazawa, Yasuo; Sanbe, Takeyuki; Yoshikawa, Kohki

    2013-01-01

    In this report, we evaluated whether radiological technologists' (RTs') awareness of patient safety would improve and what kind of effects would be seen at the department of radiological technology by introducing KYT [K: kiken (hazard), Y: yochi (prediction), T: (training)]. KYT was carried out by ten RTs based on a KYT sheet for the department of radiological technology. To evaluate the effects of KYT, we asked nine questions each to ten participants before and after KYT enforcement with regard to their attitude to patient safety and to operating procedures for working safely. Significant improvements after KYT enforcement were obtained in two items concerning medical safety: It is important for any risk to be considered by more than one person; The interest in preventive measures against medical accident degree conducted now) and one concerning operating procedures (It is necessary to have a nurse assist during testing with the mobile X-ray apparatus) (p<0.05). Performing KYT resulted in improved awareness of the importance of patient safety. KYT also enabled medical staffers to evaluate objectively whether the medical safety measures currently performed would be effective for patients. (author)

  9. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations

    International Nuclear Information System (INIS)

    Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Bruna, Giovanni; Hache, Georges; Repussard, Jacques

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  10. Handbook for nuclear power plant self-assessment programs. Final report, July 1991

    International Nuclear Information System (INIS)

    1991-07-01

    EPRI has prepared this handbook to help utilities with their Self-Assessment Programs at nuclear power plants. Self-assessments are independent reviews performed by nuclear plant utilities to identify trends in operational activities that are important to safety, and to assess the impact of these trends on plant safety. Activities performed as self-assessments include reviews and evaluations of plant performance and abnormal events, technical evaluations of plant activities to identify potential problem areas, and reviews of other sources of plant design and operating experience for applicability to safety. This handbook is based on information obtained from utilities and includes examples of activities and methods that have proven effective. The handbook includes a summary of NRC requirements, guidelines for self-assessment program planning, descriptions and examples of investigative techniques, and key references that can be consulted for additional information. It can serve as a training guide for plant staff members who are assigned to self-assessment activities. (author)

  11. Proceedings of the 3. Regional Meeting on Radiological and Nuclear Safety, Regional Meeting on International Radiation Protection Association (IRPA)and 3. Peruvian Meeting on Radiological Protection; 3. Congreso Regional sobre Seguridad Radiologica y Nuclear, Congreso Regional IRPA y 3. Congreso Peruano de Proteccion Radiologica. Libro de Resumenes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    There we show works of the Third Regional Meeting on Radiological and Nuclear Safety held on 23-27 October, 1995 in Cusco-Peru. Latin americans specialists talk about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. Also we deal with subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation. More than 225 works were presented on the meeting.

  12. Radiological safety aspects of the operation of neutron generators

    International Nuclear Information System (INIS)

    Boggs, R.F.

    1976-01-01

    The purpose of the manual is to provide some basic guidelines to persons with a minimum of training in radiological health or health physics, on some safety aspects of the operation of sealed-tube and Cockcroft-Walton type neutron generators. The manual does not state rules or regulations but presents a description of the most likely hazards. It is relevant to those relatively compact neutron generators which usually operate at less than 150-200 kV for the purpose of producing 14-MeV neutrons. The scope is limited to basic discussions of hazards and measurement techniques. Separate chapters are devoted to the characteristics and use of neutron generators; radiation hazards and safety considerations; radiation monitoring and interpretation of measurements; and requirements for an effective safety programme. Two appendices deal with non-radiation hazards and safety considerations, and with a neutron generator laboratory, respectively. An extensive list of bibliographic references is included

  13. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  14. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    International Nuclear Information System (INIS)

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A

  15. Assessment of Safety Parameters for Radiological Explosion Based on Gaussian Dispersion Model

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Alok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yu, Hyungjoon; Kim, Hong Suk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    These sources if used with explosive (called RDD - radiological dispersion device), can cause dispersion of radioactive material resulting in public exposure and contamination of the environment. Radiological explosion devices are not weapons for the mass destruction like atom bombs, but can cause the death of few persons and contamination of large areas. The reduction of the threat of radiological weapon attack by terrorist groups causing dispersion of radioactive material is one of the priority tasks of the IAEA Nuclear Safety and Security Program.Emergency preparedness is an essential part for reducing and mitigating radiological weapon threat. Preliminary assessment of dispersion study followed by radiological explosion and its quantitative effect will be helpful for the emergency preparedness team for an early response. The effect of the radiological dispersion depends on various factors like radioisotope, its activity, physical form, amount of explosive used and meteorological factors at the time of an explosion. This study aim to determine the area affected by the radiological explosion as pre assessment to provide feedback to emergency management teams for handling and mitigation the situation after an explosion. Most practical scenarios of radiological explosion are considered with conservative approach for the assessment of the area under a threat for emergency handling and management purpose. Radioisotopes under weak security controls can be used for a radiological explosion to create terror and socioeconomic threat for the public. Prior assessment of radiological threats is helpful for emergency management teams to take prompt decision about evacuation of the affected area and other emergency handling actions. Comparable activities of Co-60 source used in radiotherapy and Sr-90 source of disused and orphaned RTGs with two different quantities of TNT were used for the scenario development of radiological explosion. In the Basic Safety Standard (BSS

  16. Assessment of Safety Parameters for Radiological Explosion Based on Gaussian Dispersion Model

    International Nuclear Information System (INIS)

    Pandey, Alok; Yu, Hyungjoon; Kim, Hong Suk

    2014-01-01

    These sources if used with explosive (called RDD - radiological dispersion device), can cause dispersion of radioactive material resulting in public exposure and contamination of the environment. Radiological explosion devices are not weapons for the mass destruction like atom bombs, but can cause the death of few persons and contamination of large areas. The reduction of the threat of radiological weapon attack by terrorist groups causing dispersion of radioactive material is one of the priority tasks of the IAEA Nuclear Safety and Security Program.Emergency preparedness is an essential part for reducing and mitigating radiological weapon threat. Preliminary assessment of dispersion study followed by radiological explosion and its quantitative effect will be helpful for the emergency preparedness team for an early response. The effect of the radiological dispersion depends on various factors like radioisotope, its activity, physical form, amount of explosive used and meteorological factors at the time of an explosion. This study aim to determine the area affected by the radiological explosion as pre assessment to provide feedback to emergency management teams for handling and mitigation the situation after an explosion. Most practical scenarios of radiological explosion are considered with conservative approach for the assessment of the area under a threat for emergency handling and management purpose. Radioisotopes under weak security controls can be used for a radiological explosion to create terror and socioeconomic threat for the public. Prior assessment of radiological threats is helpful for emergency management teams to take prompt decision about evacuation of the affected area and other emergency handling actions. Comparable activities of Co-60 source used in radiotherapy and Sr-90 source of disused and orphaned RTGs with two different quantities of TNT were used for the scenario development of radiological explosion. In the Basic Safety Standard (BSS

  17. Occupational Exposure to Diagnostic Radiology in Workers without Training in Radiation Safety

    International Nuclear Information System (INIS)

    Gaona, Enrique; Enriquez, Jesus G. Franco

    2004-01-01

    The physicians, technicians, nurses, and others involved in radiation areas constitute the largest group of workers occupationally exposed to man-made sources of radiation. Personnel radiation exposure must be monitored for safety and regulatory considerations, this assessment may need to be made over a period of one month or several months. The purpose of this study was to carry out an exploratory survey of occupational exposures associated with diagnostic radiology. The personnel dosimeters used in this study were thermoluminescent dosimeters (TLDs). The reported number of monitored workers was 110 of different departments of radiology of the Mexican Republic without education in radiation safety, included general fluoscopic/radiographic imaging, computed tomography and mammography procedures. Physicians and X-ray technologist in diagnostic radiology receive an average annual effective dose of 2.9 mSv with range from 0.18 to 5.64 mSv. The average level of occupational exposures is generally similar to the global average level of natural radiation exposure. The annual global per capita effective dose due to natural radiation sources is 2.4 mSv (UNSCEAR 2000 Report). There is not significant difference between average occupational exposures and natural radiation exposure for p < 0.05

  18. DOE Radiological Control Manual Core Training Program

    International Nuclear Information System (INIS)

    Scott, H.L.; Maisler, J.

    1993-01-01

    Over the past year, the Department of Energy (DOE) Office of Health (EH-40) has taken a leading role in the development of new standardized radiological control training programs for use throughout the DOE complex. The Department promulgated its Radiological Control (RadCon) Manual in June 1992. To ensure consistent application of the criteria presented in the RadCon Manual, standardized radiological control core training courses and training materials have been developed for implementation at all DOE facilities. In producing local training programs, standardized core courses are to be supplemented with site-specific lesson plans, viewgraphs, student handbooks, qualification standards, question banks, and wallet-sized training certificates. Training programs for General Employee Radiological Training, Radiological Worker I and II Training, and Radiological Control Technician Training have been disseminated. Also, training committees under the direction of the Office of Health (EH-40) have been established for the development of additional core training courses, development of examination banks, and the update of the existing core training courses. This paper discusses the current activities and future direction of the DOE radiological control core training program

  19. Effect of changes in technical parameters in radiological safety

    International Nuclear Information System (INIS)

    Avendano, Ge; Fernandez, C

    2007-01-01

    This work analyzes the generation of secondary radiation that affects the professionals of health during interventional X ray procedures in first level hospitals. The research objectives were, on the one hand, to quantify the amount of radiation and to compare it with norms in force with respect to magnitudes, and on the other hand to evaluate the elements of protection used. The measurements will help to improve the radiological safety, to assess the eventuality of risks and, in the last term, to the possibility of norms modification for the improvement of the protection, especially that of the personnel who daily make a certain amount of interventional procedures guided by radiation, like angiographic cine applications, using continuous or pulsed fluoroscopy. The motivation of the study is in the suspicion that present interventionism is made with a false sensation of safety, based only in the use of lead apron and protection elements incorporated in the equipment by the manufacturer, nevertheless not always the health personnel are conscious that an excessive proximity with the tube and the patient body becomes a risky source of secondary and scattered radiation. The obtained results allow us to demonstrate the existence of conditions of risk, even possible iatrogenic events, in particular when the procedures imply the use of certain techniques of radiographic exploration, thus reaching the conclusion that the radiographic methodology must be changed in order to rationalize so much?. In order to achieve this we propose modifications to the present norms and legislation referred to the radiological safety in Chile

  20. Handbook of methods for risk-based analyses of technical specifications

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Mankamo, T.; Vesely, W.E.

    1994-12-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements are based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while a few may not be conducive to safety. The US Nuclear Regulatory Commission (USNRC) Office of Research has sponsored research to develop systematic risk-based methods to improve various aspects of TS requirements. This handbook summarizes these risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), scheduled or preventive maintenance, action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), and management of plant configurations resulting from outages of systems, or components. For each topic, the handbook summarizes analytic methods with data needs, outlines the insights to be gained, lists additional references, and gives examples of evaluations

  1. Handbook of methods for risk-based analyses of technical specifications

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, P.K.; Kim, I.S. [Brookhaven National Lab., Upton, NY (United States); Mankamo, T. [Avaplan Oy, Espoo (Finland); Vesely, W.E. [Science Applications International Corp., Dublin, OH (United States)

    1994-12-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements are based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while a few may not be conducive to safety. The US Nuclear Regulatory Commission (USNRC) Office of Research has sponsored research to develop systematic risk-based methods to improve various aspects of TS requirements. This handbook summarizes these risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), scheduled or preventive maintenance, action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), and management of plant configurations resulting from outages of systems, or components. For each topic, the handbook summarizes analytic methods with data needs, outlines the insights to be gained, lists additional references, and gives examples of evaluations.

  2. Proceedings of the 7th National Congress of the Mexican Society of Radiological Safety C.A

    International Nuclear Information System (INIS)

    1997-01-01

    The Mexican Society of Radiological Safety, celebrates on this time the 100 Anniversary of the radioactivity discovery, phenomenon coined by Marie Curie in 1898 and discover by Henry Beckerel in March 1896, when both were working with natural radioactive isotopes. Subsequently, on the new age of Physics, the use of radioactive isotopes was impulse by the invention of Cyclotron made by Dr. Ernest Orland Lawrence in the United States, which permits the manufacturing of tens of artificial radioactive isotopes which convert its in an indispensable tool in Medicine, Industry, Research, Agriculture and other disciplines, by its wide variety of applications, creating the radiological safety culture by the implicit risk in the use of these materials. From its creation in 1976, our society was removing to promote the radiological safety and two years each celebrates its National Congress removing specialists in this discipline and invite new generations to awake their interest by this useful field. (Author)

  3. Proceedings of the 5. Regional congress on radiation protection and safety; 2. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress

    International Nuclear Information System (INIS)

    2001-01-01

    The Fifth Regional Congress on Radiation Protection and Nuclear Safety has been held in Recife (Brazil), from 29th April to 4th May 2001. The congress was hosted by the Brazilian Radiation Protection Society, under the joint sponsorship of FRALC and UFPE-DEN Department of Nuclear Energy. Its designation as a Regional IRPA Congress has been requested. The main purpose of the meeting was to bring together professionals from the industry, universities and research laboratories to present and discuss the latest research results, and to review the state of the art on applied and fundamental aspects of the radiation protection. These specialists have talked about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. In their discussions, also were included subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  4. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  5. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  6. Preparedness and Response for a Nuclear or Radiological Emergency. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication, jointly sponsored by the FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, PAHO, CTBTO, UNEP, OCHA, WHO and WMO, is the new edition establishing the requirements for preparedness and response for a nuclear or radiological emergency which takes into account the latest experience and developments in the area. It supersedes the previous edition of the Safety Requirements for emergency preparedness and response, Safety Standards Series No. GS-R-2, which was published in 2002. This publication establishes the requirements for ensuring an adequate level of preparedness and response for a nuclear or radiological emergency, irrespective of its cause. These Safety Requirements are intended to be used by governments, emergency response organizations, other authorities at the local, regional and national levels, operating organizations and the regulatory body as well as by relevant international organizations at the international level.

  7. Radiological safety and quality paradigms in leadership and innovation

    CERN Document Server

    Lau, Lawrence

    2013-01-01

    This book is the product of a unique collaboration by experts from leading international, regional and national agencies and professional organizations discussing on the current 'hot' issue on the judicious use and safety of radiation in radiology. There have been several cases involving radiation overexposure that have received international attention. Strategies and solutions to guide readers how to maximize the benefits and minimize the risks when using radiation in medicine are covered.

  8. The 7 basic tools of quality applied to radiological safety

    International Nuclear Information System (INIS)

    Gonzalez F, J.A.

    1991-01-01

    This work seeks to establish a series of correspondences among the search of the quality and the optimization of the doses received by the occupationally exposed personnel. There are treated about the seven basic statistic tools of the quality: the Pareto technique, Cause effect diagrams, Stratification, Verification sheet, Histograms, Dispersion diagrams and Graphics and control frames applied to the Radiological Safety

  9. HyApproval - Handbook for the approval of hydrogen refuelling stations - First preliminary achievements

    Energy Technology Data Exchange (ETDEWEB)

    Wurster, R.; Vandendungen, G.; Guichard, J.; Molag, M.; Barron, J.; Reijalt, M.; Hill, H.J.; Landinger, H.

    2007-05-15

    The EU-funded project HyApproval [www.hyapproval.org] aims at developing a universal Handbook to facilitate the approval process of Hydrogen Refuelling Stations (HRS) in Europe. The main goal of the HyApproval partnership with 22 partners from Europe and one each from China, Japan and the USA is to provide a Handbook of technical and regulatory requirements to assist authorisation officials, companies and organisations in the safe implementation and operation of HRS. Achievements during the first 15 months: analyses of HRS technology concepts and of equipment and safety distances/ Intermediate Design Paper/ Regulations, Codes and Standards (RCS) review and comparison/ first Handbook draft and first review sessions with HySafe experts/ safety matrix/ identification of accident scenarios/ agreement on safety documentation/ critical review of reliability data from collections and risk studies/ risk assessment (RA) criteria definition and RA/ matrix of acceptability and awareness levels/ database of Fire Associations and First Responders/ calendar of hydrogen events/ general description of CGH{sub 2} interfaces. (au)

  10. Independent Commission for Radiological Protection and Nuclear Safety CIPRSN: Balance, obligations and future prospects

    International Nuclear Information System (INIS)

    Gieb, M.; Meruje, M. M; Sena Lino, A.

    2010-01-01

    This article summarizes the historical context of the regulatory situation in Portugal that led to the creation of the technical team of the Independent Commission for Radiological Protection and Nuclear Safety (CIPRSN), recalls its early works, and highlights the current work of some members of the team on the self-assessment of the national regulatory system of radiological protection and nuclear safety. The result of this self-assessment allows a detailed analysis of current problems and makes it possible to outline the future work plan of the technical team. It is hoped that this work may contribute to an improvement of the system, especially in view of new international and European legal instruments which are currently under implementation. (author)

  11. Stockholm Safety Conference. Analysis of the sessions on radiological protection, licensing and risk assessment

    International Nuclear Information System (INIS)

    Gea, A.

    1981-01-01

    A summary of the sessions on radiological protection, licensing and risk assessment in the safety conference of Stockholm is presented. It is considered the new point of view of the nuclear safety, probabilistic analysis, components failures probability and accident analysis. They are included conclusions applicable in many cases to development countries. (author)

  12. Development of an auditable safety analysis in support of a radiological facility classification

    International Nuclear Information System (INIS)

    Kinney, M.D.; Young, B.

    1995-01-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23

  13. A bird strike handbook for base-level managers

    Science.gov (United States)

    Payson, R. P.; Vance, J. D.

    1984-09-01

    To help develop more awareness about bird strikes and bird strike reduction techniques, this thesis compiled all relevant information through an extensive literature search, review of base-level documents, and personal interviews. The final product--A Bird Strike Handbook for Base-Level Managers--provides information on bird strike statistics, methods to reduce the strike hazards, and means to obtain additional assistance. The handbook is organized for use by six major base agencies: Maintenance, Civil Engineering, Operations, Air Field Management, Safety, and Air Traffic Control. An appendix follows at the end.

  14. UK legislation on radiological health and safety. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H D

    1983-02-01

    A brief survey is given of current UK legislation on radiological health and safety in areas in which ''Ionising Radiations Regulations 1982'' do not apply. Such areas in which separate Acts or Regulations for ionising radiations operate include: 1) Factories Act Regulations; 2) the disposal of radioactive wastes; 3) the transport of radioactive materials by air, sea, road, rail and post; 4) nuclear reactors and allied plants; 5) schools and further educational establishments and 6) research laboratories.

  15. Demonstration of generic handbooks for assisting in the management of contaminated food production systems and inhabited areas in Europe

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Andersson, Kasper Grann; Duranova, T.

    2010-01-01

    Two handbooks have been developed in conjunction with a wide range of stakeholders that provide assistance in the management of contaminated food production systems and inhabited areas following a radiological incident. Emergency centres in Member States not involved in the development...... of these handbooks were invited to take part in demonstration activities to establish whether the handbooks would be useful for the purposes of contingency planning and accident management. Some eight centres took part. Emergency exercises or similar events based on scenarios involving contamination of the foodchain...... and inhabited areas were used. Feedback from all of the demonstrations was positive with constructive criticism given on how to improve the navigation, structure and format of the handbooks. All of the key improvements highlighted during the demonstrations were taken into account and included in version 2...

  16. Computer program for storage of historical and routine safety data related to radiologically controlled facilities

    International Nuclear Information System (INIS)

    Marsh, D.A.; Hall, C.J.

    1984-01-01

    A method for tracking and quick retrieval of radiological status of radiation and industrial safety systems in an active or inactive facility has been developed. The system uses a mini computer, a graphics plotter, and mass storage devices. Software has been developed which allows input and storage of architectural details, radiological conditions such as exposure rates, current location of safety systems, and routine and historical information on exposure and contamination levels. A blue print size digitizer is used for input. The computer program retains facility floor plans in three dimensional arrays. The software accesses an eight pen color plotter for output. The plotter generates color plots of the floor plans and safety systems on 8 1/2 x 11 or 20 x 30 paper or on overhead transparencies for reports and presentations

  17. The radiological safety in the petroleum industry. The behavior toward the prevention

    International Nuclear Information System (INIS)

    Adrian T, W.

    2006-01-01

    Inside the mark of the regulatory control it takes a preponderant place the control of sealed and open radioactive sources, in oil applications. In this task, the handling of the radioactive sources, the demand of the use of written procedures and the training, they are only some examples, of all those that conform the regulatory control. Among these topics they stand out a series of aspects divided in three big groups: operative radiological safety in the base, in the transport and in the task properly said. Given the great quantity of aspects that should be kept in mind, as well as the integration of all the control processes should be included strongly, aspects of safety and quality culture, and to introduce improvements as for the prevention refers, to correct deviations and remoteness that can be produced, avoiding like this, situations of radiological risk, emphasizing aspects of perception of the risk, training in attitudes, the implementation of audits and verifications of the safety level of the installation and the pursuit and control of the tasks that involve the manipulation of radioactive material, which are described in this work. (Author)

  18. Occupational safety and health textbook for radiological personnel employed in structural material testing

    International Nuclear Information System (INIS)

    Abraham, J.

    1981-01-01

    The comprehensive textbook for X-ray and radiological testing personnel includes requirements and rules of occupational safety and health on the basis of Hungarian and international (mainly German) literature. In the chapter Fundamentals, X-ray and radioactive radiations, their measurements and biological effects, doses etc are described. In the chapter Occupational safety and health, the jobs representing radiation hazards are listed and safety regulations for them are reported. Finally, information for prevention and first aid is presented. Control questions are added to each part. The Appendix contains safety standards and regulations, information on legal aspects of safety and radiation protection as well as recommendations. (Sz.J.)

  19. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India.

    Science.gov (United States)

    Sonawane, A U; Singh, Meghraj; Sunil Kumar, J V K; Kulkarni, Arti; Shirva, V K; Pradhan, A S

    2010-10-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  20. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    International Nuclear Information System (INIS)

    Sonawane, A.U.; Singh, Meghraj; Sunil Kumar, J.V.K.; Kulkarni, Arti; Shirva, V.K.; Pradhan, A.S.

    2010-01-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body. (author)

  1. Barriers to Safety Event Reporting in an Academic Radiology Department: Authority Gradients and Other Human Factors.

    Science.gov (United States)

    Siewert, Bettina; Swedeen, Suzanne; Brook, Olga R; Eisenberg, Ronald L; Hochman, Mary

    2018-05-15

    Purpose To investigate barriers to reporting safety concerns in an academic radiology department and to evaluate the role of human factors, including authority gradients, as potential barriers to safety concern reporting. Materials and Methods In this institutional review board-approved, HIPAA-compliant retrospective study, an online questionnaire link was emailed four times to all radiology department staff members (n = 648) at a tertiary care institution. Survey questions included frequency of speaking up about safety concerns, perceived barriers to speaking up, and the annual number of safety concerns that respondents were unsuccessful in reporting. Respondents' sex, role in the department, and length of employment were recorded. Statistical analysis was performed with the Fisher exact test. Results The survey was completed by 363 of the 648 employees (56%). Of those 363 employees, 182 (50%) reported always speaking up about safety concerns, 134 (37%) reported speaking up most of the time, 36 (10%) reported speaking up sometimes, seven (2%) reported rarely speaking up, and four (1%) reported never speaking up. Thus, 50% of employees spoke up about safety concerns less than 100% of the time. The most frequently reported barriers to speaking up included high reporting threshold (69%), reluctance to challenge someone in authority (67%), fear of disrespect (53%), and lack of listening (52%). Conclusion Of employees in a large academic radiology department, 50% do not attain 100% reporting of safety events. The most common human barriers to speaking up are high reporting threshold, reluctance to challenge authority, fear of disrespect, and lack of listening, which suggests that existing authority gradients interfere with full reporting of safety concerns. © RSNA, 2018.

  2. Course of radiological protection and safety in the medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Dominguez A, C.E.

    1997-01-01

    The obtention of images of human body to the medical diagnostic is one of the more old and generalized applications for X-ray. Therefore the design and performance of equipment and installations as well as the operation procedures must be oriented toward safety with the purpose to guarantee this radiological practice will bring a net positive benefit to the society. Given that in Mexico only exists the standardization related to source and equipment generators of ionizing radiation in the industrial area and medical therapy, but not so to the medical diagnostic area it is the purpose of this work to present those standards related with this application branch. Also it is presented the preparation of a manual for the course named Formation of teachers in radiological protection and safety in the X-ray medical diagnostic in 1997 which was imparted at ININ. (Author)

  3. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  4. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    Directory of Open Access Journals (Sweden)

    Sonawane A

    2010-01-01

    Full Text Available We conducted a radiological safety and quality assurance (QA audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp, linearity of tube current (mA station and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM (Model RAD/FLU-9001, dose Test-O-Meter (ToM (Model 6001, ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%, lack of congruence of radiation and optical field (23%, nonlinearity of mA station (16% and timer (9%, improper collimator/diaphragm (19.6%, faulty adjustor knob for alignment of field size (4%, nonavailability of warning light (red light at the entrance of the X-ray room (29%, and use of mobile protective barriers without lead glass viewing window (14%. The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  5. US Department of Energy standardized radiation safety training

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    The following working groups were formed under the direction of a radiological training coordinator: managers, supervisors, DOE auditors, ALARA engineers/schedulers/planners, radiological control personnel, radiation-generating device operators, emergency responders, visitors, Pu facilities, U facilities, tritium facilities, accelerator facilities, biomedical researchers. General courses for these groups are available, now or soon, in the form of handbooks

  6. Radioactivity Handbook

    International Nuclear Information System (INIS)

    Firestone, R.B.; Browne, E.

    1985-01-01

    The Radioactivity Handbook will be published in 1985. This handbook is intended primarily for applied users of nuclear data. It will contain recommended radiation data for all radioactive isotopes. Pages from the Radioactivity Handbook for A = 221 are shown as examples. These have been produced from the LBL Isotopes Project extended ENDSF data-base. The skeleton schemes have been manually updated from the Table of Isotopes and the tabular data are prepared using UNIX with a phototypesetter. Some of the features of the Radioactivity Handbook are discussed here

  7. Handbook of parameter values for the prediction of radionuclide transfer to wildlife

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This handbook provides generic parameter values for estimating the transfer of radionuclides from environmental media to wildlife for the purpose of assessing potential radiation exposure under equilibrium conditions. These data are intended for use where site specific data are either not available or not required, and to parameterize generic assessment models. They are based on a comprehensive review of the available literature, including many Russian language publications that have not previously been available in English. The publication addresses the limitations of the parameter values and the applicability of data. Some general background information on the assessment of potential impacts of radioactive releases on wildlife is also included. It complements the existing handbook in the same IAEA series with parameter to assess the radiological impact to humans.

  8. Advance of the National Program of Radiological Protection and Safety for medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Verdejo S, M.

    1999-01-01

    The National Program of Radiological Protection and Safety for medical diagnostic with X-ray (Programa Nacional de Proteccion y Seguridad Radiologica para diagnostico medico con rayos X) was initiated in the General Direction of Environmental Health (Direccion General de Salud Ambiental) in 1995. Task coordinated with different dependences of the Public Sector in collaboration between the Secretary of Health (Secretaria de Salud), the National Commission of Nuclear Safety and Safeguards (Comision Nacional de Seguridad Nuclear y Salvaguardias) and, the National Institute of Nuclear Research (Instituto Nacional de Investigaciones Nucleares). The surveillance to the fulfilment of the standardization in matter of Radiological Protection and Safety in the medical diagnostic with X-rays has been obtained for an important advance in the Public sector and it has been arousing interest in the Private sector. (Author)

  9. NAIR: handbook on the national arrangements for incidents involving radioactivity

    International Nuclear Information System (INIS)

    1987-01-01

    A revised handbook on the national arrangements for incidents involving radioactivity (NAIR) has been published. Following brief introductory sections on the administrative aspects and operational aspects, the main part of the handbook is devoted to operational and call-out lists including an index of police forces served by NAIR, an index of establishments providing assistance under NAIR, sources of stage 1 and stage 2 assistance for each police constabulary, hospitals prepared to accept contaminated casualties and to assist with decontamination of personnel, and hospitals prepared to advise on the treatment and admission of casualties exposed to large doses of radiation. Technical appendices are also given on radiological protection in NAIR incidents, instruments and equipment, radionuclide data and a guide to suitable detectors, package and source identification and disposal of radioactive materials involved in NAIR accidents. (U.K.)

  10. Handbook for Policymackers

    DEFF Research Database (Denmark)

    Jensen, Ulla Højmark

    2016-01-01

    The purpose of the handbook is to support policy makers / decision makers by enabling them to make informed decisions about funding for second chance education or the adoption of its methods into mainstream education. The Handbook makes policy recommendations and provides guidelines to structure...... a quality assurance system that evidences success factors of second chance education and the value of informal learning. The handbook draws on the results of the literature review, the development of the quality assurance system (SMS system), the Teachers Handbook and the Organisational Handbook...

  11. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  12. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs

  13. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    Science.gov (United States)

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  14. Handbook of industrial lighting

    CERN Document Server

    Lyons, Stanley L

    2013-01-01

    Handbook of Industrial Lighting is a practical guide on the specification, design, installation, operation, and maintenance of lighting in industrial premises. Coverage of the book includes the importance of good localized lighting; the different lighting schemes; lighting for difficult visual tasks; lighting in consideration to safety; and emergency lighting. The book also includes the practical, thermal, ventilation, and energy considerations; lighting in different environments; maintenance of lighting installations; and the cost benefits of efficient lighting. Appendices include useful info

  15. NASA Accident Precursor Analysis Handbook, Version 1.0

    Science.gov (United States)

    Groen, Frank; Everett, Chris; Hall, Anthony; Insley, Scott

    2011-01-01

    Catastrophic accidents are usually preceded by precursory events that, although observable, are not recognized as harbingers of a tragedy until after the fact. In the nuclear industry, the Three Mile Island accident was preceded by at least two events portending the potential for severe consequences from an underappreciated causal mechanism. Anomalies whose failure mechanisms were integral to the losses of Space Transportation Systems (STS) Challenger and Columbia had been occurring within the STS fleet prior to those accidents. Both the Rogers Commission Report and the Columbia Accident Investigation Board report found that processes in place at the time did not respond to the prior anomalies in a way that shed light on their true risk implications. This includes the concern that, in the words of the NASA Aerospace Safety Advisory Panel (ASAP), "no process addresses the need to update a hazard analysis when anomalies occur" At a broader level, the ASAP noted in 2007 that NASA "could better gauge the likelihood of losses by developing leading indicators, rather than continue to depend on lagging indicators". These observations suggest a need to revalidate prior assumptions and conclusions of existing safety (and reliability) analyses, as well as to consider the potential for previously unrecognized accident scenarios, when unexpected or otherwise undesired behaviors of the system are observed. This need is also discussed in NASA's system safety handbook, which advocates a view of safety assurance as driving a program to take steps that are necessary to establish and maintain a valid and credible argument for the safety of its missions. It is the premise of this handbook that making cases for safety more experience-based allows NASA to be better informed about the safety performance of its systems, and will ultimately help it to manage safety in a more effective manner. The APA process described in this handbook provides a systematic means of analyzing candidate

  16. The Radiological Safety Analysis Computer Program (RSAC-5) user's manual

    International Nuclear Information System (INIS)

    Wenzel, D.R.

    1994-02-01

    The Radiological Safety Analysis Computer Program (RSAC-5) calculates the consequences of the release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or nuclear criticalities. RSAC-5 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated through the inhalation, immersion, ground surface, and ingestion pathways. RSAC+, a menu-driven companion program to RSAC-5, assists users in creating and running RSAC-5 input files. This user's manual contains the mathematical models and operating instructions for RSAC-5 and RSAC+. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-5 and RSAC+. These programs are designed for users who are familiar with radiological dose assessment methods

  17. Maximum permissible body burdens and maximum permissible concentrations of radionuclides in air and in water for occupational exposure. Recommendations of the National Committee on Radiation Protection. Handbook 69

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-06-05

    The present Handbook and its predecessors stem from the Second International Congress of Radiology, held in Stockholm in 1928. At that time, under the auspices of the Congress, the International Commission on Radiological Protection (ICRP) was organized to deal initially with problems of X-ray protection and later with radioactivity protection. At that time 'permissible' doses of X-rays were estimated primarily in terms of exposures which produced erythema, the amount of exposure which would produce a defined reddening of the skin. Obviously a critical problem in establishing criteria for radiation protection was one of developing useful standards and techniques of physical measurement. For this reason two of the organizations in this country with a major concern for X-ray protection, the American Roentgen Ray Society and the Radiology Society of North America, suggested that the National Bureau of Standards assume responsibility for organizing representative experts to deal with the problem. Accordingly, early in 1929, an Advisory Committee on X-ray and Radium Protection was organized to develop recommendations on the protection problem within the United States and to formulate United States points of view for presentation to the International Commission on Radiological Protection. The organization of the U.S. Advisory Committee included experts from both the medical and physical science fields. The recommendations of this Handbook take into consideration the NCRP statement entitled 'Maximum Permissible Radiation Exposures to Man', published as an addendum to Handbook 59 on April 15, 1958. As noted above this study was carried out jointly by the ICRP and the NCRP, and the complete report is more extensive than the material contained in this Handbook.

  18. Maximum permissible body burdens and maximum permissible concentrations of radionuclides in air and in water for occupational exposure. Recommendations of the National Committee on Radiation Protection. Handbook 69

    International Nuclear Information System (INIS)

    1959-01-01

    The present Handbook and its predecessors stem from the Second International Congress of Radiology, held in Stockholm in 1928. At that time, under the auspices of the Congress, the International Commission on Radiological Protection (ICRP) was organized to deal initially with problems of X-ray protection and later with radioactivity protection. At that time 'permissible' doses of X-rays were estimated primarily in terms of exposures which produced erythema, the amount of exposure which would produce a defined reddening of the skin. Obviously a critical problem in establishing criteria for radiation protection was one of developing useful standards and techniques of physical measurement. For this reason two of the organizations in this country with a major concern for X-ray protection, the American Roentgen Ray Society and the Radiology Society of North America, suggested that the National Bureau of Standards assume responsibility for organizing representative experts to deal with the problem. Accordingly, early in 1929, an Advisory Committee on X-ray and Radium Protection was organized to develop recommendations on the protection problem within the United States and to formulate United States points of view for presentation to the International Commission on Radiological Protection. The organization of the U.S. Advisory Committee included experts from both the medical and physical science fields. The recommendations of this Handbook take into consideration the NCRP statement entitled 'Maximum Permissible Radiation Exposures to Man', published as an addendum to Handbook 59 on April 15, 1958. As noted above this study was carried out jointly by the ICRP and the NCRP, and the complete report is more extensive than the material contained in this Handbook

  19. NASA Risk Management Handbook. Version 1.0

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Maggio, Gaspare; Stamatelatos, Michael; Youngblood, Robert; Guarro, Sergio; Rutledge, Peter; Sherrard, James; Smith, Curtis; hide

    2011-01-01

    The purpose of this handbook is to provide guidance for implementing the Risk Management (RM) requirements of NASA Procedural Requirements (NPR) document NPR 8000.4A, Agency Risk Management Procedural Requirements [1], with a specific focus on programs and projects, and applying to each level of the NASA organizational hierarchy as requirements flow down. This handbook supports RM application within the NASA systems engineering process, and is a complement to the guidance contained in NASA/SP-2007-6105, NASA Systems Engineering Handbook [2]. Specifically, this handbook provides guidance that is applicable to the common technical processes of Technical Risk Management and Decision Analysis established by NPR 7123.1A, NASA Systems Engineering Process and Requirements [3]. These processes are part of the \\Systems Engineering Engine. (Figure 1) that is used to drive the development of the system and associated work products to satisfy stakeholder expectations in all mission execution domains, including safety, technical, cost, and schedule. Like NPR 7123.1A, NPR 8000.4A is a discipline-oriented NPR that intersects with product-oriented NPRs such as NPR 7120.5D, NASA Space Flight Program and Project Management Requirements [4]; NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Management Requirements [5]; and NPR 7120.8, NASA Research and Technology Program and Project Management Requirements [6]. In much the same way that the NASA Systems Engineering Handbook is intended to provide guidance on the implementation of NPR 7123.1A, this handbook is intended to provide guidance on the implementation of NPR 8000.4A. 1.2 Scope and Depth This handbook provides guidance for conducting RM in the context of NASA program and project life cycles, which produce derived requirements in accordance with existing systems engineering practices that flow down through the NASA organizational hierarchy. The guidance in this handbook is not meant

  20. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  1. Specialized consulting in radiological safety to the North Central Hospital of high specialty, PEMEX. V. November of 2001

    International Nuclear Information System (INIS)

    Angeles C, A.; Vizuet G, J.; Benitez S, J. A.; Garcia A, J.; Rodriguez A, F.

    2002-01-01

    It is a report of a specialized consulting in radiological safety that to be carried the ININ to PEMEX for the North Central Hospital of High Specialty, to maintain the sanitary license for the use of X ray equipment of medical diagnostic, and guarantee these services with a program of quality assurance. To give fulfilment to that requests it is programmed a technical assistance monthly, with reports of results during the development of the service. In this document it is carried a report of the advances and results in the month of November of the 2001, where the following documents are analyzed: Manual of radiological safety, program of quality assurance, operation procedures, procedure of maintenance team, procedure of medical radiological control of the specialized personnel; also are annotate the obtained results and their observations. (Author)

  2. Specialized consulting in radiological safety to the south central hospital of high specialty, PEMEX. VI. December of 2001

    International Nuclear Information System (INIS)

    Angeles C, A.; Vizuet G, J.; Benitez S, J.A.; Garcia A, J.; Rodriguez A, F.

    2002-01-01

    It is a report of a specialized consulting in radiological safety that to be carried the ININ to PEMEX for the South Central Hospital of High Specialty, to maintain the sanitary license for the use of X-ray equipment of medical diagnostic, and guarantee these services with a program of quality assurance. To give fulfilment to that requests it is programmed a technical assistance monthly, with reports of results during the development of the service. In this document it is carried a report of the advances and results in the month of december of the 2001, where the following documents are analyzed: Manual of radiological safety, program of quality assurance, operation procedures, procedure of maintenance team, procedure of medical radiological control of the specialized personnel; also are annotate the obtained results and their observations. (Author)

  3. Safety requirements and radiological protection for ore installations

    International Nuclear Information System (INIS)

    2003-06-01

    This norm establishes the safety and radiological protection requirements for mining installations which manipulates, process and storing ores, raw materials, steriles, slags and wastes containing radionuclides of the uranium and thorium natural series, simultaneously or separated, and which can cause undue exposures to the public and workers, at anytime of the functioning or pos operational stage. This norm applies to the mining installations activities, suspended or which have ceased their activities before the issue date of this norm, destined to the mining, physical, chemical and metallurgical processing, and the industrialization of raw materials and residues containing associated radionuclides from the natural series of uranium and thorium, including the stages of implantation, operation and decommissioning of the installation

  4. United States Department of Energy Nevada Operations Office Environmental Compliance Handbook. Third edition

    International Nuclear Information System (INIS)

    1998-03-01

    The Environment, Safety and Health Division (ESHD) of the Nevada Operations Office has prepared this Environmental Compliance Handbook for all users of the Nevada Test Site (NTS) and other US Department of Energy, Nevada Operations Office (DOE/NV) facilities. The Handbook gives an overview of the important environmental laws and regulations that apply to the activities conducted by the Nevada Operations Office and other users of DOE/NV facilities in Nevada

  5. United States Department of Energy Nevada Operations Office Environmental Compliance Handbook. Third edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Environment, Safety & Health Division (ESHD) of the Nevada Operations Office has prepared this Environmental Compliance Handbook for all users of the Nevada Test Site (NTS) and other US Department of Energy, Nevada Operations Office (DOE/NV) facilities. The Handbook gives an overview of the important environmental laws and regulations that apply to the activities conducted by the Nevada Operations Office and other users of DOE/NV facilities in Nevada.

  6. Mechanical engineer's handbook

    CERN Document Server

    Marghitu, Dan B

    2001-01-01

    The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanic

  7. Radiological safety methodology in radioactive tracer applications for hydrodynamics and environmental studies

    International Nuclear Information System (INIS)

    Suarez, R.; Badano, A.; Dellepere, A.; Artucio, G.; Bertolotti, A.

    1995-01-01

    The use of radioactive tracer techniques as control sewage disposal contamination in Montevideo Estuarine and Carrasco beach has been studied for the Nuclear Technology National Direction. Hydrodynamic models simulation has been introduced as work methodology. As well as radiological safety and radioactive material applications in the environmental studies has been evaluated mainly in the conclusions and recommendations in this report. maps

  8. Technical handbook on the National Arrangements for Incidents involving Radioactivity. NAIR technical handbook

    International Nuclear Information System (INIS)

    McColl, N.P.; Kruse, P.

    2002-01-01

    This Technical Handbook contains information for radiation specialists participating in the National Arrangements for Incidents involving Radioactivity (NAIR). Together with the NAIR Users Handbook 2000 edition, it updates and replaces the NAIR Handbook published in 1995. The Users Handbook was designed for those who might seek assistance through NAIR, principally the police or other emergency services. Both Handbooks are reproduced on the NRPB website (www.nrpb.org) and are available from NRPB

  9. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  10. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  11. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    2000-08-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  12. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-15

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  13. Verification of implementation of the radiological safety standards through the regulatory inspections

    International Nuclear Information System (INIS)

    Perez Gonzalez, Francisco; Fornet Rodriguez, Ofelia M.

    2008-01-01

    Full text: As an element of the updating process of the legal framework on radiological safety in Cuba, a new rule was put into force; the Radiological Basic Safety Standards (RBSS) in January 2002. Five years after the application of these new safety requirements, it was considered appropriate to assess the effectiveness of its implementation. Therefore, in this work the authors analysed the outcomes of the regulatory inspections conducted in this period upon medical and industrial practices in a sample of facilities representative of those with the highest radiological risks in the territory under supervision of a Territorial Delegation of the Nuclear Regulatory Authority. For better understanding of this presentation, a summary explanation of the structure of the rule is given in its introduction. The work was to identify for each deficiency, or finding, or counter-measure; out of the relevant inspections; the corresponding requirement/Article of the RBSS that shows difficulties in implementation. For each installation an analysis is made with regard to the relevant articles difficult to implement. Finally, the appraisal is shown separately for the medical practice, and for the industrial practice, and also in general for the whole sample of installations under review. The study showed that the implementation of the Standards has been satisfactory and uniform in the practices under review. So far it seems that there have not been major difficulties with the implementation of the Titles; III On Intervention, IV Dose Limits, as well as with the Especial, Final, and Transitory Dispositions. On the other hand, it is shown there is a need for continued work only with regard to the implementation of the requirements in Section IV Verification of Safety and in Section V On the responsibilities with regard to occupational exposure in Chapter III Title I, and correspondingly in Chapter II Occupational Exposure in Title II. It is recommended to conduct this kind of

  14. Handbook of methods for risk-based analysis of technical specification requirements

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.

    1994-01-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: Quantitatively evaluate the risk and justify changes based on objective risk arguments; Provide a defensible basis for these requirements for regulatory applications. The US NRC Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations

  15. Handbook of methods for risk-based analysis of Technical Specification requirements

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.

    1993-01-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: quantitatively evaluate the risk impact and justify changes based on objective risk arguments. Provide a defensible basis for these requirements for regulatory applications. The United States Nuclear Regulatory Commission (USNRC) Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations

  16. 'On line' course for the periodical training in radiological safety of the workers of a radioactive facility

    International Nuclear Information System (INIS)

    Amador B, Z.H.; Ayra P, F.E.; Torres B, M.B.

    2006-01-01

    The results of an 'on line' course for the periodical training in radiological safety of the workers of a radioactive installation are presented. The course is developed for own specialists. The following topics are approached: the state of the art of the studies on the biological effects of the ionizing radiations, the new national regulations, the analysis of the behavior of the occupational exposure, of the obtained experiences of the radiological events, of the results of the radiological surveillance of the work positions, of the detected violations and of the behavior of the outstanding systems and the optimization. The study of the acquired experiences in the packing and the transportation of radioactive materials and the administration of the radioactive waste are included. The study of the course by one month is organized and then two convocations of theoretical exams are executed and one for the evaluation practices of the instructions and procedures. To evaluate the effectiveness of the course a survey it is applied and the later behavior of indicators of the radiological safety of the plant is analyzed. The results that are obtained show a positive balance. (Author)

  17. Building 773-A, Lab F003 Glovebox Project Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Gaul, W.C.

    2003-01-01

    Engineering Standards present the radiological design criteria and requirements, which must be satisfied for all SRS facility designs. The radiological design criteria and requirements specified in the standard are based on the Code of Federal Regulations, DOE Orders, Site manuals, other applicable standards, and various DOE guides and handbooks. This report contains top-level requirements for the various areas of radiological protection for workers. For the purposes of demonstrating compliance with these requirements, the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This document reports a radiological design review for the STREAK lab glovebox upgrades of inlet ventilation, additional mechanical and electrical services, new glovebox instrumentation and alarms. This report demonstrates that the gloveboxes meet the radiological design requirements of Engineering Standards

  18. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  19. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  20. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  1. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs.

  2. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs

  3. Report of radiological safety for a micro PET

    International Nuclear Information System (INIS)

    Gallegos M, R.; Ruiz T, C. G.; Martinez D, A.; Rodriguez V, M.

    2010-09-01

    Considering one of the guides emitted by the National Commission of Nuclear Security and Safeguards, was realized the report of radiological safety for a micro tomography by positrons emission that is part of Bimodal System of Images developed in their entirety for personnel of the Physics Institute of UNAM. With this system is sought to obtain tomography images of small animals using non destructive methods, such as computerized micro tomography and micro tomography by positrons emission. In this work each one of the report points is enumerated and only it is described, to big features on that consist, due to the great extension of each one of them. The report has two parts; the first is denominated -Of the installation and the Organization- and is given to know the interior and external characteristics of the installation, besides how and under which authority the activities will be executed inside the laboratory. The second part is called -of the Radiological Protection- and has for objective to describe the radiation sources that will be used, as well as the measures of radiological protection foreseen inside the laboratory. The most important part in the report consists on the description of the three radionuclides to use: 18 F, 11 C and 13 N, as well as the methods for the shielding calculation and for the estimate of the dose equivalent during the normal operation of the equipment. These methods were applied three times, because the calculation was made for each radionuclide. The results of these calculations show that: 1) it not is necessary to have a structural shielding, due to the activity sources very reduced, and 2) the dose limit per year (according to the ICRP-60) it will not be surpassed neither in the case of the occupationally exposed personnel, neither on the public in general. (Author

  4. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  5. Proceedings of the 4. National Congress of the Mexican Society of Radiological Safety C.A

    International Nuclear Information System (INIS)

    1991-01-01

    In these sessions it had the participation of personalities of diverse internationally grateful organizations, with exhibitions about the situation of the nuclear industry of power, the applications of the radiations and the radiological safety in the international context. Also its were presented works about Emergency plans in Nuclear facilities and plants, Nuclear medicine, Food processing, Thermal neutrons, Neutron dosimetry, Charged particles, Thermoluminescence, Industrial radiography, Radiation monitoring, all of them with the participation of specialists with international prestige. The 41 works that are presented in the technical sessions come from Spanish, Brazilian, Greek and Mexican grateful institutions. All they are a sample of the intense activity in investigation and development in the areas of the nuclear industry as of the radiological safety. This congress reveals the impulse that the nuclear community grants to the formation of human resources

  6. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities

    International Nuclear Information System (INIS)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10 -11 /yr to 10 -5 /yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10 -9 /yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution

  7. Multi-criteria analysis for evaluating the radiological and ecological safety measures in radioactive waste management

    International Nuclear Information System (INIS)

    Sazykina, T.G.; Kryshev, I.I.

    2006-01-01

    A methodological approach is presented for multicriterial evaluating the effectiveness of radiation ecological safety measures during radioactive waste management. The approach is based on multicriterial analysis with consideration of radiological, ecological, social, economical consequences of various safety measures. The application of the multicriterial approach is demonstrated taking as an example of decision-making on the most effective actions for rehabilitation of a water subject, contaminated with radionuclides [ru

  8. Summary of project to develop handbook of human reliability analysis for nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1978-01-01

    For the past two years Alan Swain and Henry E. Guttmann, of the Statistics, Computing, and Human Factors Division, Sandia Laboratories, have been developing a handbook to aid qualified persons to evaluate the effect of human error on the availability of engineered safety systems and features in nuclear power plants. The handbook includes a mathematical model, procedures, derived human failure data, and principles of human behavior and ergonomics. The handbook is expanding the human error analyses which were presented in WASH--1400. The work, under the sponsorship of Probabilistic Analysis Staff, NRC Office of Nuclear Regulatory Research (Dr. M.C. Cullingford, NRC Program Manager), is about half completed. An outline of the handbook contents is given in copies of vugraphs (attached), followed by copies of human performance model abstractors (also attached). A first draft of the handbook is scheduled for NRC review by July 1, 1979

  9. Radiological safety in extraction of rare earths in India: regulatory control

    International Nuclear Information System (INIS)

    Sinha, S.; Bhattacharya, R.

    2011-01-01

    The term 'rare earths' refers to a group of f-block elements in the periodic table including those with atomic numbers 57 (Lanthanum) to 71 (Lutetium), as well as the transition metals Yttrium (39) and Scandium (21). Economically extractable concentrations of rare earths are found in minerals such as monazite, bastnaesite, cerites, xenotime etc. Of these, monazite forms the main source for rare earths in India, which along with other heavy minerals is found abundantly in the coastal beach sands. However, in addition to rare earths, monazite also contains 0.35% U 3 O 8 and 8-9% ThO 2 . Hence, extraction of rare earths involves chemical separation of the rare earths from thorium and uranium which are radioactive. The processing and extraction of rare earths from monazite therefore invariably results in occupational radiation exposure to the workers involved in these operations. In addition, in the process of removal of radioactivity from rare earths, radioactive solid waste gets generated which has 2 2 8Ra concentration in the range 2000-5000 Bq/g. Unregulated disposal of such high active waste would not only result in contamination of the soil but the radionuclides would eventually enter the food chain and lead to internal exposure of the general public. Therefore such facilities involved in recovery of rare earths from monazite attract the provisions of radiological safety regulations. Atomic Energy Regulatory Board of India has been enforcing the provisions of The Atomic Energy (Radiation Protection) Rules, 2004 and The Atomic Energy (Safe Disposal of Radioactive Waste) Rules, 1987 in these facilities. This paper shall discuss the associated radiological hazard involved in recovery of rare earths from monazite. It shall also highlight the regulatory requirements for controlling the occupational exposure of workers during design stage such as requirements on lay out of the building, ventilation, containment of radioactivity, etc and also the during operational

  10. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  11. Present status of education for radiation safety during clinical examinations and the role of the radiological technologist

    International Nuclear Information System (INIS)

    Satou, Yukimitsu

    1988-01-01

    The applications of radiation to the medical field are increasing steadily, along with advances in radiation technology and development of new medical equipment. Medical applications of radiation differ from applications in other fields, because the patient is exposed to radiation during examination and radiotherapy. Consequently, it is important that training courses in radiation safety for radiological technologists, medical doctors and nurses be periodically carried out to ensure a more effective and safe utilization of radiation. Furthermore, it is important that such training be based on a practical education curriculum, including basic knowledge, technical training, and safe habits. In this paper, we discuss the appropriate role and attitudes of the radiological technologist in radiation safety education. (author)

  12. Present status of education for radiation safety during clinical examinations and the role of the radiological technologist

    Energy Technology Data Exchange (ETDEWEB)

    Satou, Yukimitsu

    1988-10-01

    The applications of radiation to the medical field are increasing steadily, along with advances in radiation technology and development of new medical equipment. Medical applications of radiation differ from applications in other fields, because the patient is exposed to radiation during examination and radiotherapy. Consequently, it is important that training courses in radiation safety for radiological technologists, medical doctors and nurses be periodically carried out to ensure a more effective and safe utilization of radiation. Furthermore, it is important that such training be based on a practical education curriculum, including basic knowledge, technical training, and safe habits. In this paper, we discuss the appropriate role and attitudes of the radiological technologist in radiation safety education.

  13. New U.K. safety legislation and its effects on the control of radiological hazards

    International Nuclear Information System (INIS)

    Bell, B.H.J.; Luxon, S.G.

    1977-01-01

    This paper explains the objectives of the Health and Safety at Work etc Act 1974 and refers in particular to its effects on the control of hazards at nuclear installations and, more widely, on the control of radiological hazards generally. It deals also with the changes resulting from the setting up of the Health and Safety Commission and its Executive under the new Act, and the effects of these changes on the work of the Nuclear Installations Inspectorate. (auth.) [fr

  14. Gen IV Materials Handbook Functionalities and Operation (2B) Handbook Version 2.0

    International Nuclear Information System (INIS)

    Ren, Weiju

    2011-01-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  15. Gen IV Materials Handbook Functionalities and Operation (4A) Handbook Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL

    2013-09-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  16. Gen IV Materials Handbook Functionalities and Operation (2B) Handbook Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL

    2011-08-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  17. Nuclear and radiological safety nuclear power nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    1997-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear and Radiological Safety, Nuclear Power and Nuclear Fuel Cycle and Waste Management and issued during the period of 1995-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (Arabic, Chinese, French, Russian or Spanish), but all these papers have abstracts in English

  18. Handbook of methods for risk-based analysis of technical specifications

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Mankamo, T.; Vesely, W.E.

    1996-01-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operations (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements are based on deterministic analyses and engineering judgments. Improvements in these requirements are facilitated by the availability of plant-specific Probabilistic Risk Assessments (PRAs). The US Nuclear Regulatory Commission (USNRC) Office of Research sponsored research to develop systematic, risk-based methods to improve various aspects of TS requirements. A handbook of methods summarizing such risk-based approaches has been completed in 1994. It is expected that this handbook will provide valuable input to NRC's present work in developing guidance for using PRA in risk-informed regulation. The handbook addresses reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), managing plant configurations, and scheduling maintenance

  19. Reevaluation of environmental monitoring program for radiological emergency at Almirante Alvaro Alberto Nuclear Power Plant, Angra dos Reis, Rio de Janeiro - Brazil

    International Nuclear Information System (INIS)

    Ferreira, Lilia M.J. Belem; Ramos Junior, Anthenor C.; Gomes, Carlos A.; Carvalho, Zenildo L.; Gouveia, Vandir; Estrada, Julio; Ney, Cezar

    1996-01-01

    In order to respond to a major radiological emergency at the Almirante Alvaro Alberto Nuclear Power Plant, located in Angra dos Reis, Rio de Janeiro, the Emergency Response Team of the Institute for Radiation Protection and Dosimetry (IRD/CNEN) established a program of environmental monitoring. The purpose of this program is to define a monitoring trend to assess the off-site radiological conditions and give support to decision making for implementing protective measures in case of a radiological accident, taking into account atmospheric diffusion, population conglomerates and their habits, water and land use, contemplating the entire Emergency Planning Zone of 15 km radius. This program has been reevaluated recently, aiming to optimize it and keep it up to date to assure adequacy of environmental surveillance data in support to a prompt response in case of an emergency situation in the nuclear power plant. It has been organized in the form of a handbook to facilitate handling by field teams. Future revisions will be necessary to incorporate additional pertinent information and keep the handbook up to date, since Angra dos Reis is a summer resort region, subject to constant changes. This paper discusses the structure of the environmental monitoring program and describes the content and preparation of this handbook. (author)

  20. Radiological and environmental safety in front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Puranik, V.D.

    2011-01-01

    The front end nuclear fuel cycle comprises of mining and processing of beach mineral sands along the southern coast of Kerala, Tamilnadu and Orissa, mining and processing of uranium ore in Singhbhum-East in Jharkhand and refining and fuel fabrication at Hyderabad. The Health Physics Units (HPUs)/Environmental Survey Laboratories (ESLs) set up at each site from inception of operation to carry out regular in-plant, personnel monitoring and environmental surveillance to ensure safe working conditions, evaluate radiation exposure of workers, ensure compliance with statutory norms, help in keeping the environmental releases well within the limits and advise appropriate control measures. This paper describes the occupational and environmental radiological safety measures associated with the operations of front end of nuclear fuel cycle. Radiological monitoring in these facilities is important to ensure safe working environment, protection of workers against exposure to radiation and comply with regulatory limits of exposure. The radiation exposure of workers in different units of the front end nuclear fuels cycle facilities operated by IREL, UCIL and NFC and environmental monitoring results are summarised in this paper

  1. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A D; Guttmann, H E

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  2. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks

  3. Evaluation of the Radiological Safety of 192 Ir Apparatus for Industrial Gamma Radiography

    International Nuclear Information System (INIS)

    Aquino, J. O.; Silva, F. C. A. da; Ramalho, A. T.; Godoy, J. M. O.

    2004-01-01

    The majority of the 192Ir apparatus for industrial gamma radiography have been in usage in Brazil for more than 20 years. They are portable, and almost all operate according to category II. The main objective of this work was to assess the radiological safety of the 11 models of 192Ir apparatus most used in Brazil. The 11 models of 192Ir apparatus were studied with respect to compliance with the main safety requirements of three editions of international Standards ISO 3999. Six models were already manufactured incorporating the safety devices specified in the first edition of ISO 3999, issued in 1977. However, five models were not. The validity of their type B certificates for transport packages was also evaluated. (Author) 8 refs

  4. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below); Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions; and Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment; by persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients; and by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  5. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    radiotherapy owing to an ageing population. In addition, further growth in medical radiology can be expected in developing States, where at present facilities and services are often lacking. The risks associated with these expected increases in medical exposures should be outweighed by the benefits. For the purposes of radiation protection, ionizing radiation exposures are divided into three types: Medical exposure, which is mainly the exposure of patients as part of their diagnosis or treatment (see below). Occupational exposure, which is the exposure of workers incurred in the course of their work, with some specific exclusions. And Public exposure, which comprises all other exposures of members of the public that are susceptible to human control. Medical exposure is defined in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS, the Standards) as: 'Exposure incurred by patients as part of their own medical or dental diagnosis or treatment. By persons, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients. And by volunteers in a programme of biomedical research involving their exposure.' This Safety Guide covers all of the medical exposures defined above, with emphasis on the radiological protection of patients, but does not cover exposures of workers or the public derived from the application of medical radiation sources. Guidance relating to these exposures can be found in the Safety Guide on Occupational Radiation Protection. In addition to the IAEA, several intergovernmental and international organizations, among them the European Commission, the International Commission on Radiological Protection (ICRP), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), have already published numerous recommendations, guides and codes of practice relevant to this subject area. National authorities should therefore

  6. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  7. Radiological safety programs in the petroleum and petrochemistry industry of Venezuela

    International Nuclear Information System (INIS)

    Romero M, C.

    1996-01-01

    A diagnosis carried out five years ago showed that in Petroleos de Venezuela (PDVSA) and its subsidiaries, exist about 530 radioactive sources. Also, about 1500 workers were also occupationally exposed, during operations such as industrial radiography and well logging. The same study determined the occurrence of some non-reported accidents and incidents with the overexposure of workers, specially contractors. Most of these problems were the result of the bad application of the radiological protection practices, and on the other hand, the disregarding of the governmental authorities in applying the regulatory standards. In order to solve this situation, PDVSA settled the safety guide for working with ionizing radiation, in which guidelines and technical advice are stablished to perform a safer work with radioactive elements. A radiological protection program was also organized in all the company operational areas. The paper includes the programs, practices and procedures implemented by PDVSA and its subsidiaries. Besides, the result of applying this comprehensive radiation protection program will be showed. (author). 1 ref

  8. Radiologic safety program for ionizing radiation facilities in Parana, Brazil

    International Nuclear Information System (INIS)

    Schmidt, M.F.S.; Tilly Junior, J.G.

    1997-01-01

    A radiologic safety program for inspection, licensing and control of the use of ionizing radiation in medical, industrial and research facilities in Parana, Brazil is presented. The program includes stages such as: 1- division into implementation phases considering the activity development for each area; 2-use of the existing structure to implement and to improve services. The development of the program will permit to evaluate the improvement reached and to correct operational strategic. As a result, a quality enhancement at the services performed, a reduction for radiation dose exposure and a faster response for emergency situations will be expected

  9. Bevatron/Bevalac user's handbook: biology and medicine. Revision

    International Nuclear Information System (INIS)

    1985-04-01

    The Bevalac Biomedical Facility develops a source of near-relativistic heavy ions for applications to radiation biology, radiation therapy and diagnostic radiology. Pulsed beams of high LET heavy ions with variable pulse width, frequency, intensity and energy are produced and delivered to the Biomedical Facility by the Bevatron/Bevalac accelerator complex. Dosimetry equipment under computer control provides accurate determinations of absorbed doses in all regions of the Bragg curve. Depth-dose modifying devices and precise specimen positioning equipment are available. Animal housing and tissue culture facilities are convenient to the experimenter. This handbook is designed to provide the user with the relevant information for planning, proposing and executing an experiment

  10. FCRD Advanced Reactor (Transmutation) Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, important to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and

  11. Employee Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Madelyn

    2008-09-05

    Welcome to Berkeley Lab. You are joining or are already a part of a laboratory with a sterling tradition of scientific achievement, including eleven Nobel Laureates and thirteen National Medal of Science winners. No matter what job you do, you make Berkeley Lab the outstanding organization that it is. Without your hard work and dedication, we could not achieve all that we have. We value you and thank you for choosing to be part of our community. This Employee Handbook is designed to help you navigate the Lab. With over 3,000 employees, an additional 3,000 guests visiting from countries around the world, a 200-acre campus and many policies and procedures, learning all the ins and outs may seem overwhelming, especially if you're a new employee. However, even if you have been here for a while, this Handbook should be a useful reference tool. It is meant to serve as a guide, highlighting and summarizing what you need to know and informing you where you can go for more detailed information. The general information provided in this Handbook serves only as a brief description of many of the Lab's policies. Policies, procedures and information are found in the Lab's Regulations and Procedures Manual (RPM), Summary Plan Descriptions, University of California policies, and provisions of Contract 31 between the Regents of the University and the U.S. Department of Energy. In addition, specific terms and conditions for represented employees are found in applicable collective bargaining agreements. Nothing in this Handbook is intended to supplant, change or conflict with the previously mentioned documents. In addition, the information in this Handbook does not constitute a contract or a promise of continued employment and may be changed at any time by the Lab. We believe employees are happier and more productive if they know what they can expect from their organization and what their organization expects from them. The Handbook will familiarize you with the

  12. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations. Published on September 24, 2012

    International Nuclear Information System (INIS)

    Couturier, Jean; Bruna, Giovanni; Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Hache, Georges

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  13. Challenges in ensuring radiological safety and nuclear forensic for malicious acts involving nuclear and other radioactive material

    International Nuclear Information System (INIS)

    Sharma, Ranjit; Chatterjee, M.K.; Singh, Rajvir; Pradeepkumar, K.S.

    2010-01-01

    Nuclear and other radioactive materials may get smuggled into the country aimed at malicious acts. Radioactive material detected accidentally or during inspection at the entry points/national borders may indicate illicit trafficking for the purpose of nuclear/radiological terrorism. As country requires prevention and preparedness for response to these malicious acts, nuclear forensic techniques are to be developed incorporating radiological safety aspects. Nuclear forensics helps in determining the origin, intended use, legal owner and the smuggled route etc. by using fingerprinting as well as comparison with reference data. The suggested sequence of methods for analysis of radioactive material/samples will be radiological assessment, physical characterization, traditional forensic analysis, isotope analysis along with elemental/chemical analysis

  14. Survey of radiological safety in dental practice

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J R [UKAEA Health and Safety Branch, London; Hudson, A P

    1977-01-01

    A pilot survey of radiological protection in dental practice in Great Britain has been requested by the Health and Safety Executive and is now in progress. The survey should provide more precise data on the use of X-ray equipment. There are approximately 13,000 dentists in Great Britain using X-ray apparatus, and some 600 of these have been selected, on a statistical basis, to be invited to make use of a postal survey over a six month period. The postal survey technique to be used has already been developed as a service following requests from individual dentists. The dentist receives a questionnaire and three initial films to test the timer, then two special cassettes incorporating film and filters. Film badges are worn over a 12 week period by the dentist and by any staff who assist in radiography. Follow-up visits to discuss the survey will be made to one in ten of the selected dentists. The results will give the individual dentists, without cost, assurance of the efficient functioning of their equipment, and advice, should any remedial measures be necessary. Concurrently, the resulting statistics will give an indication of how many, if any, practices fall short of the recommendations of the Code of Practice for the Protection of Persons against Ionizing Radiations arising from Medical and Dental Use. Further action in respect of the Health and Safety at Work Act will be determined in the light of the survey.

  15. Radiology

    International Nuclear Information System (INIS)

    Sykora, A.

    2006-01-01

    In this text-book basic knowledge about radiology, biomedical diagnostic methods (radiography, computer tomography), nuclear medicine and safety and radiation protection of personnel on the radiodiagnostic place of work are presented

  16. Control development of radiation protection and safety on personnel eye lens of interventional radiology

    International Nuclear Information System (INIS)

    Titik Kartika; Ishak

    2013-01-01

    The review on radiation protection and safety to the lens of personnel especially in interventional radiology activities has been carried out. The use of radiation in interventional radiology installations provide significant exposure to the lens of the eye, especially personnel. The results of the latest various surveys and researches on the effects of low dose radiation to the eye lens indicates that the eye lens dose threshold is less than the preconceived values. Based on these facts, recently, ICRP and IAEA provides recommendations regarding the reduction of the value of the eye lens dose limit for personnel. BAPETEN have adopted the value of the eye lens dose limit in the development of new regulations on radiation protection and safety. However, the application of this provision has various challenges that BAPETEN provide 3 (three) years transitional period. These challenges include the problem of monitoring the eye lens dose, the eye lens protective equipment which is not adequate, the lack of understanding of personnel related to the risk of low radiation to the eye lens, as well as the proper procedures to mitigate those risks. BAPETEN as a regulatory agency is expected to provide solutions to the problems faced by the stake holders. Therefore, to answer the challenge, it is necessary to develop better monitoring of radiation protection and safety. (author)

  17. Metallic Fuels Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Burkes, Douglas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cole, James I. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fielding, Randall S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frank, Steven M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hartmann, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hyde, Timothy A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, J. Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddison, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mariani, Robert D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Middlemas, Scott C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Holleran, Thomas P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sencer, Bulent H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Squires, Leah N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-07

    This is not a typical External Report--It is a Handbook. No Abstract is involved. This includes both Parts 1 and 2. The Metallic Fuels Handbook summarizes currently available information about phases and phase diagrams, heat capacity, thermal expansion, and thermal conductivity of elements and alloys in the U-Pu-Zr-Np-Am-La-Ce-Pr-Nd system. Although many sections are reviews and updates of material in previous versions of the Handbook [1, 2], this revision is the first to include alloys with four or more elements. In addition to presenting information about materials properties, the handbook attempts to provide information about how well each property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data.

  18. Federal Radiological Monitoring and Assessment Center Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    FRMAC Health and Safety Working Group

    2012-03-20

    This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

  19. 6. Regional Congress on Radiation Protection and Safety; 3. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress. Book of abstracts

    International Nuclear Information System (INIS)

    2003-11-01

    The 6th Regional Congress on Radiation Protection and Safety was organized by the Peruvian Radiation Protection Society and the Peruvian Institute of Nuclear Energy, held in Lima, Peru, between 9 and 13 of november of 2003. In this event, were presented 227 papers that were articulated in the following sessions: radiation natural exposure, biological effects of ionizing radiation, instruments and dosimetry, radiological emergency and accidents, occupational radiation protection, radiological protection in medical exposure, radiological environmental protection, legal aspects, standards and regulations, training, education and communication, radioactive waste management, radioactive material transport, nuclear safety and biological effects of non-ionizing radiation. (APC)

  20. The International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    International Nuclear Information System (INIS)

    Briggs, J.B.

    2003-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organisation for Economic Cooperation and Development (OECD) - Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Israel, Spain, and Brazil are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled 'International Handbook of Evaluated Criticality Safety Benchmark Experiments.' The 2003 Edition of the Handbook contains benchmark model specifications for 3070 critical or subcritical configurations that are intended for validating computer codes that calculate effective neutron multiplication and for testing basic nuclear data. (author)

  1. Diagnosis of radiological security of installations

    International Nuclear Information System (INIS)

    Herrera V, L.

    1991-01-01

    The objective of this work is to discuss the diagnosis of the radiological safety of nuclear or radioactive facilities. It was concluded that the one diagnoses like discipline of the radiological safety is susceptible of being represented, taught and programmable in computer and useful systems as preventive tool and of inspection

  2. Handbook of energy

    CERN Document Server

    Cleveland, Cutler J

    2013-01-01

    Handbook of Energy, Volume II: Chronologies, Top Ten Lists, and Word Clouds draws together a comprehensive account of the energy field from the prestigious and award-winning authors of the Encyclopedia of Energy (2004), The Dictionary of Energy, Expanded Edition (2009), and the Handbook of Energy, Volume I (2013). Handbook of Energy, Volume II takes the wealth of information about historical aspects of energy spread across many books, journals, websites, disciplines, ideologies, and user communities and synthesizes the information in one central repository. This book meets the needs of a di

  3. Completion of the radioactive materials packaging handbook

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1998-01-01

    'The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance', which will serve as a replacement for the 'Cask Designers Guide'(1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US DOE and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials. Even though the Handbook is concerned with both small and large packagings, most of the emphasis is placed on large packagings that are capable of transporting fissile, radioactive sources (e.g. spent fuels). The safety analysis reports for packagings (SARPs) must address the widest range of technical topics in order to meet United States and/or international regulations, all of which are covered in the Handbook. One of the primary goals of the Handbook is to provide information which would guide designers of radioactive materials packages to make decisions that would most likely be acceptable to regulatory agencies during the approval process of the packaging. It was therefore important to find those authors who not only were experts in one or more of the areas that are addressed in a SARP, but who also had been exposed to the regulatory process or had operational experience dealing with a wide variety of package types. Twenty-five such people have contributed their time and talents to the development of this document, mostly on a volunteer basis

  4. Radiological safety aspects in the fabrication of mixed oxide fuel elements

    International Nuclear Information System (INIS)

    Krishnamurthi, T.N.; Janardhanan, S.; Soman, S.D.

    1981-01-01

    The problems of radiological safety in the fabrication of (U, Pu)O 2 fuel assemblies for fast reactors utilising high exposure plutonium are discussed. Derived working limits for plutonium as a function of the burn-up of RAPS (Rajasthan Atomic Power Station) fuel, external gamma and neutron exposures from feed product batches, finished fuel pins and assemblies are presented. Shielding requirements for the various glove box operations are also indicated. In general, high exposure plutonium handling calls for remote fabrication and automation at various stages would play a key role in minimising exposures to personnel in a large production plant. (author)

  5. DOE Handbook: Supplementary guidance and design experience for the fusion safety standards DOE-STD-6002-96 and DOE-STD-6003-96

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-01-01

    Two standards have been developed that pertain to the safety of fusion facilities. These are DOE- STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements, and DOE-STD-6003-96, Safety of Magnetic Fusion Facilities: Guidance. The first of these standards identifies requirements that subscribers to that standard must meet to achieve safety in fusion facilities. The second standard contains guidance to assist in meeting the requirements identified in the first This handbook provides additional documentation on good operations and design practices as well as lessons learned from the experiences of designers and operators of previous fusion facilities and related systems. It is intended to capture the experience gained in the various fields and pass it on to designers of future fusion facilities as a means of enhancing success and safety. The sections of this document are presented according to the physical location of the major systems of a fusion facility, beginning with the vacuum vessel and proceeding to those systems and components outside the vacuum vessel (the "Ex-vessel Systems"). The last section describes administrative procedures that cannot be localized to specific components. It has been tacitly assumed that the general structure of the fusion facilities addressed is that of a tokamak though the same principles would apply to other magnetic confinement options.

  6. EURANOS. The Handbook Users Group (HUG)

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Andersson, Kasper Grann; Carlé, B.

    Three handbooks to assist in the management of contaminated food production systems, inhabited areas and drinking water supplies have been developed in conjunction with a wide range of stakeholders in Europe. These handbooks are living documents that will require updating from time to time.......eu-neris.net) to facilitate information exchange. Emergency centres in Member States not involved in the development of the handbooks were invited to take part in demonstration activities to establish whether the handbooks were useful for the purposes of contingency planning and accident management. Results from...... to remain state-of-the-art. To address this need, a handbook users’ group (HUG) was established in 2007 to provide a platform for maintaining the handbooks and to build a network of users for both the generic handbooks and any subsequently customised versions. A web site was set up (www...

  7. Radiological Evaluation Standards in the Radiology Department of Shahid Beheshti Hospital (RAH) YASUJ Based on Radiology standards in 92

    OpenAIRE

    A َKalantari; SAM Khosravani

    2014-01-01

    Background & aim: Radiology personnel’s working in terms of performance and safety is one of the most important functions in order to increase the quality and quantity. This study aimed to evaluate the radiological standards in Shahid Beheshti Hospital of Yasuj, Iran, in 2013. Methods: The present cross-sectional study was based on a 118 randomly selected graphs and the ranking list, with full knowledge of the standards in radiology was performed two times. Data were analyzed using descri...

  8. Importance of the lower limit of detection in radiological safety

    International Nuclear Information System (INIS)

    Rafael Terol T.; Hermenegildo Maldonado M.

    1991-01-01

    The concept of the Lower Limit of Detection (LLD) it contributes in the solution of some problems related with the radiological safety, such as the realization of the tests of flight of the sealed radioactive sources; the determination of radioisotopes in environmental samples; the estimate of present radionuclides in polluted foods; in general, the detection of small quantities of radioactive materials present in materials of use or consumption by part of the man in his daily life; as the one Lower Limit of Detection is related with topics of statistics, in this work a small review of them is made, it was superficially discussed the mensuration problems related with the establishment of the Lower Limit of Detection

  9. 512-S Facility, Actinide Removal Process Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Nathan, S.J.

    2004-01-01

    This report contains top-level requirements for the various areas of radiological protection for workers. Detailed quotations of the requirements for applicable regulatory documents can be found in the Radiological Design Summary Report Implementation Guide. For the purposes of demonstrating compliance with these requirements, per Engineering Standard 01064, ''shall consider / shall evaluate'' indicates that the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This report describes how the Building 512-S, Actinide Removal Process meets the required radiological design criteria and requirements based on 10CFR835, DOE Order 420.1A, WSRC Manual 5Q and various other DOE guides and handbooks. The analyses supporting this Radiological Design Summary Report initially used a source term of 10.6 Ci/gallon of Cs-137 as the basis for bulk shielding calculations. As the project evolved, the source term was reduced to 1.1 Ci/gallon of Cs-137. This latter source term forms the basis for later dose rate evaluations

  10. About the necessity to update the Radiological safety and protection regulations of the National Institute of Nuclear Research (ININ)

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1997-01-01

    It is argued the necessity to update the Radiological safety and Protection regulations (Review 3) of ININ, with the purpose that it implements the ICRU operative magnitudes system. Such a system used with radiological protection purposes. The objective of this system is to do an estimation of the effective equivalent dose H E and/or the Effective dose E, proposed in the ICRP 26 and ICRU 60 dose limits systems respectively. (Author)

  11. Handbook of systems toxicology

    National Research Council Canada - National Science Library

    Casciano, Daniel A; Sahu, Saura C

    2011-01-01

    "In the first handbook to comprehensively cover the emerging area of systems toxicology, the Handbook of Systems Toxicology provides an authoritative compilation of up-to-date developments presented...

  12. Radioactivity: Recommendations of the International Commission on Radiological Units and Measurements (1962), (ICRU) Report 10 c.

    Science.gov (United States)

    National Bureau of Standards (DOC), Washington, DC.

    This handbook presents recommendations agreed upon at the meeting of the International Commission on Radiological Units and Measurements (ICRU) held in Montreux, Switzerland, in April 1962. It is written in a report form with a preface including symbols, abbreviations and definitions of terms used in the report. The report consists of four…

  13. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  14. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  15. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  16. Ewe (for Togo): Grammar Handbook. Peace Corps Language Handbook Series.

    Science.gov (United States)

    Kozelka, Paul R.

    This handbook is composed of: (1) 20 grammar lessons; (2) an introduction to the handbook and to the Ewe language; (3) an appendix presenting the most important differences between Ewe and Mina, the lingua franca in the capital and in markets, offices, and work-sites throughout Togo; (4) answers to written summary exercises; (5) an Ewe-English…

  17. Development of a management system of radiological safety with application to hospitals; Desarrollo de un sistema de gestion de seguridad radiologica con aplicacion a hospitales

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez M, J.D.; Rivera M, T. [CICATA, IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico); Santos R, J.R. [SEPI, ESIME, IPN, 07738 Mexico D.F. (Mexico)

    2008-07-01

    The medicine is the area that more it has benefited with the implementation of the radiation. However, a great number of incidents/accidents they have happened in hospitals in recent years. The above-mentioned stands out the necessity to improve the acting of the radiological safety management systems in Hospitals. This work presents a Management System of Radiological Safety (SGSR). The SGSR has as fundamental objective the one of maintaining the radiological risks inside acceptable levels. The SGSR is generic and it can be applied in the nuclear medicine, radiodiagnostic, radiotherapy, and in other areas of the health sector where it is required to prevent accidents or incidents that affect the health or the well-being of the worker or user. Also it was diagnosed a Specialties Hospital of the Mexico City using some characteristics of the SGSR. The obtained results show that the SGSR can contribute significantly in the improvement of the quality of the service in the attention to the patients and in the radiological safety. (Author)

  18. FINODEX Handbook for Entrepreneurs

    DEFF Research Database (Denmark)

    The handbook provides short introductions to necessary knowledge for applicants in the two calls in October 2014 and June 2015 where they can present an idea for product development and apply for up to 10,000 Euro. Furthermore, the handbook is relevant for the next phase, where the selected approx....... 50 projects elaborate detailed technical and market plans. Last, the handbook provides links to further study and information about how to get help in later phases....

  19. Energy Efficiency Governance: Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This handbook has been written to assist EE practitioners, government officials and stakeholders to establish effective EE governance structures for their country. The handbook provides readers with relevant information in an accessible format that will help develop comprehensive and effective governance mechanisms. For each of the specific topics dealt with (see Figure 1 in the Handbook), the IEA offers guidelines for addressing issues, or directs readers to examples of how such issues have been dealt with by specific countries.

  20. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  1. NASA Systems Engineering Handbook

    Science.gov (United States)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  2. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  3. Shallow-land-burial handbook

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.; Davis, E.C.

    1981-01-01

    The initial draft of the Shallow-Land Burial Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. The Handbook informs the reader of the current way in which low-level wastes are being handled, outlines the legal and institutional problems that would be involved in developing and licensing such a facility, and describes in some detail the considerations and data needs for siting, designing, operating, and closing such a facility. The initial draft is not a Handbook that provides answers to all questions, nor insures that following the steps detailed in the Handbook guarantees that the facility will be licensed. It does illustrate the types of actions that must be considered and the types of information required to achieve successful operations

  4. Preliminary report of radiological safety to hydrology 1993 campaign; Informe preliminar de seguridad radiologica para la campana de hidrologia 1993

    Energy Technology Data Exchange (ETDEWEB)

    Badano, A; Suarez Antola, R; Dellepere, A; Barreiro, M [MIEM, Direccion Nacional de Tecnologia Nuclear, Montevideo (Uruguay)

    1993-07-01

    This report has been prepared based on the interaction between project managers and division radiological Protection and Nuclear Safety. In seeking to establish a basis for approval from the point of view of radiation safety practices . The idea for the audit has been provided at all times because the interest was the exchange of ideas and the use of common sense to improve the safety of radioactive substances, security of operators and public safety and environment.The above shows that in the planned radiation safety condition described in this report,the practice can be carried out according to the criteria of safety accepted .

  5. Operation Praetorian onsite radiological safety report, October 1981-September 1982

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1983-09-01

    PRAETORIAN was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1981 through September 30, 1982. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeros before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  6. Operation QUICKSILVER. Onsite radiological safety report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1980-02-01

    QUICKSILVER was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1978 to September 30, 1979. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific optional procedures are defined

  7. Operation CRESSET: onsite radiological safety report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1979-06-01

    CRESSET was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1977 to September 30, 1978. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  8. Operation FULCRUM: onsite radiological safety report, October 1976--September 1977

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1978-03-01

    FULCRUM was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1976 to September 30, 1977. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  9. Operation GUARDIAN onsite radiological safety report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1983-02-01

    GUARDIAN was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1980 to September 30, 1981. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection intruments surveyed reentry routes into ground zeroes before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  10. Preventing violence : service station employer handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    According to part 3 of British Columbia's Workers Compensation Act, employers must ensure the health and safety of their employees and any other workers present at their worksite. Workers are also responsible for following established safe work procedures and protecting their own health and safety. This handbook was designed for service station employers who do not already have adequate violence-prevention procedures. In addition to providing guidelines, it describes employment standards for workplace health and safety. It describes general duties of supervisors, owners and suppliers and includes the forms needed to fill out, notably an inspection list; an action plan; a violent incident report for workers to fill out in the event of a violent incident; a suspect and vehicle identification form; an employer incident investigation report; and a safety and security feedback report for workers. Regulations that relate to young and new worker orientation and training were also provided along with regulations for working alone or in isolation, violence in the workplace, and high-visibility apparel.

  11. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.

    1993-01-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located

  12. Radiological safety system based on real-time tritium-in-air monitoring in room and effluents

    Energy Technology Data Exchange (ETDEWEB)

    Bidica, N.; Sofalca, N.; Balteanu, O.; Stefan, I. [National Institute of Cryogenics and Isotopes Technologies, Ramnicu Valcea (Romania)

    2006-07-01

    The conceptual design of the radiological safety system based on real time-in-air monitoring in room and effluents is intended to provide the maximum achievable safety level, basing no the ALARA concept. the capabilities of this system are not only to inform any time personnel about tritium in air concentration level, but it will be able to: initiate the shut down procedure and drain off the plant, as well to start the Air cleaning System when the tritium-in-air concentration exceed pre-established threshold; estimate tritium effective dose rate before starting an activity into the monitored area, or during this activity, or soon as the activity was finished; estimate tritium effective dose and instantly record and update individual effective doses, using a special computer application called 'dose record'; lock access into the radiological area for individuals when tritium dose rate in the monitoring area will exceed the pre-established thresholds, or when any individual dose data provided by 'dose records' application ask for, or for other protection consideration; calculate the total tritium activity released to the environment (per day, week, or month). (N.C.)

  13. Radiological safety system based on real-time tritium-in-air monitoring in room and effluents

    International Nuclear Information System (INIS)

    Bidica, N.; Sofalca, N.; Balteanu, O.; Stefan, I.

    2006-01-01

    The conceptual design of the radiological safety system based on real time-in-air monitoring in room and effluents is intended to provide the maximum achievable safety level, basing no the ALARA concept. the capabilities of this system are not only to inform any time personnel about tritium in air concentration level, but it will be able to: initiate the shut down procedure and drain off the plant, as well to start the Air cleaning System when the tritium-in-air concentration exceed pre-established threshold; estimate tritium effective dose rate before starting an activity into the monitored area, or during this activity, or soon as the activity was finished; estimate tritium effective dose and instantly record and update individual effective doses, using a special computer application called 'dose record'; lock access into the radiological area for individuals when tritium dose rate in the monitoring area will exceed the pre-established thresholds, or when any individual dose data provided by 'dose records' application ask for, or for other protection consideration; calculate the total tritium activity released to the environment (per day, week, or month). (N.C.)

  14. IAEA Perspectives on Radiological Characterisation

    International Nuclear Information System (INIS)

    O'Sullivan, Patrick; Ljubenov, Vladan

    2012-01-01

    Requirements for characterization of radiological and other hazards in nuclear facilities are reflected in the IAEA Safety Standards. WS-R-5, Safety Requirements for Decommissioning of Facilities using Radioactive Material, includes a requirement that 'During the preparation of the final decommissioning plan, the extent and type of radioactive material (irradiated and contaminated structures and components) at the facility shall be determined by means of a detailed characterization survey and on the basis of records collected during the operational period'. The subsidiary Safety Guide WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, further elaborates that 'A survey of radiological and non-radiological hazards provides an important input for the safety assessment and for implementing a safe approach during the work'. Although the characterisation requirements addressed in the Safety Standards relate primarily to the detailed survey activities undertaken following the shutdown of the facility, it is evident that radiological characterization is of relevance to all major phases of the lifetime of a nuclear facility, including: - the siting phase - baseline surveys are undertaken to determine background radiation levels; - the construction phase - construction materials are retained to support future calculations of radioactivity distributions; - the operational phase - surveys are done regularly, with additional surveys being required following incidents involving plant contamination; - the transition phase - detailed radiological surveys are required to support the development of the final decommissioning plan; and - the closure phase - a final survey of the site and any remaining structures will be needed to support an application for release of the site from regulatory control. In the case of facilities that are already shut down, the main purpose of radiological characterisation is to provide a reliable database of information on the

  15. Radiological impacts analysis with use of new endpoint as complementary safety indicators

    International Nuclear Information System (INIS)

    Peralta Vital, J.L.; Gil Castillo, R.; Fleitas Estevez, G.G.; Olivera Acosta, J.

    2015-01-01

    The paper shows the new safety indicators on risk assessment (safety assessment) to radioactive waste environmental management implementation (concentrations and fluxes of naturally occurring radioactive materials (NORM)). The endpoint obtained, allow the best analysis of the radiological impact associated to radioactive waste isolation system. The common safety indicators for safety assessment purpose, dose and risk, are very time dependent, increasing the uncertainties in the results for long term assessment. The complementary and new proposed endpoints are more stable and they are not affected by changes in the critical group, pathways, etc. The NORM values on facility site were obtained as result of national surveys, the natural concentrations of U, Ra, Th, K has been associated with the variation of the lithologies in 3 geographical areas of the Country (Occidental, Central and Oriental). The results obtained are related with the safety assessment topics and allowed to apply the new complementary safety indicators, by comparisons between the natural concentrations and fluxes on site and its calculated values for the conceptual repository design. In order to normalize the concentration results, the analysis was realized adopting the criteria of the Repository Equivalent Rock Volume (RERV). The preliminary comparison showed that the calculated concentrations and fluxes in the Cuban conceptual radioactive waste repository are not higher than the natural values in the host rock. According to the application of new safety indicators, the reference disposal facility does not increase the natural activity concentration and fluxes in the environment. In order to implement these new safety indicator it has been used the current 226 Ra inventory of the Repository and the 226 Ra as natural concentration on the site. (authors)

  16. Java EE 7 handbook

    CERN Document Server

    Pilgrim, Peter A

    2013-01-01

    Java EE 7 Handbook is an example based tutorial with descriptions and explanations.""Java EE 7 Handbook"" is for the developer, designer, and architect aiming to get acquainted with the Java EE platform in its newest edition. This guide will enhance your knowledge about the Java EE 7 platform. Whether you are a long-term Java EE (J2EE) developer or an intermediate level engineer on the JVM with just Java SE behind you, this handbook is for you, the new contemporary Java EE 7 developer!

  17. DOE Handbook: Supplementary guidance and design experience for the fusion safety standards DOE-STD-6002-96 and DOE-STD-6003-96

    International Nuclear Information System (INIS)

    1999-01-01

    Two standards have been developed that pertain to the safety of fusion facilities. These are DOE- STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements, and DOE-STD-6003-96, Safety of Magnetic Fusion Facilities: Guidance. The first of these standards identifies requirements that subscribers to that standard must meet to achieve safety in fusion facilities. The second standard contains guidance to assist in meeting the requirements identified inthefirst This handbook provides additional documentation on good operations and design practices as well as lessons learned from the experiences of designers and operators of previous fusion facilities and related systems. It is intended to capture the experience gained in the various fields and pass it on to designers of future fusion facilities as a means of enhancing success and safeiy. The sections of this document are presented according to the physical location of the major systems of a t%sion facility, beginning with the vacuum vessel and proceeding to those systems and components outside the vacuum vessel (the ''Ex-vessel Systems''). The last section describes administrative procedures that cannot be localized to specific components. It has been tacitly assumed that the general structure of the fusion facilities addressed is that of a tokamak though the same principles would apply to other magnetic confinement options

  18. Gen IV Materials Handbook Implementation Plan

    International Nuclear Information System (INIS)

    Rittenhouse, P.; Ren, W.

    2005-01-01

    A Gen IV Materials Handbook is being developed to provide an authoritative single source of highly qualified structural materials information and materials properties data for use in design and analyses of all Generation IV Reactor Systems. The Handbook will be responsive to the needs expressed by all of the principal government, national laboratory, and private company stakeholders of Gen IV Reactor Systems. The Gen IV Materials Handbook Implementation Plan provided here addresses the purpose, rationale, attributes, and benefits of the Handbook and will detail its content, format, quality assurance, applicability, and access. Structural materials, both metallic and ceramic, for all Gen IV reactor types currently supported by the Department of Energy (DOE) will be included in the Gen IV Materials Handbook. However, initial emphasis will be on materials for the Very High Temperature Reactor (VHTR). Descriptive information (e.g., chemical composition and applicable technical specifications and codes) will be provided for each material along with an extensive presentation of mechanical and physical property data including consideration of temperature, irradiation, environment, etc. effects on properties. Access to the Gen IV Materials Handbook will be internet-based with appropriate levels of control. Information and data in the Handbook will be configured to allow search by material classes, specific materials, specific information or property class, specific property, data parameters, and individual data points identified with materials parameters, test conditions, and data source. Details on all of these as well as proposed applicability and consideration of data quality classes are provided in the Implementation Plan. Website development for the Handbook is divided into six phases including (1) detailed product analysis and specification, (2) simulation and design, (3) implementation and testing, (4) product release, (5) project/product evaluation, and (6) product

  19. A Poetry Handbook.

    Science.gov (United States)

    Oliver, Mary

    Intended to impart the basic ways a poem is constructed, this concise handbook is a prose guide to writing poetry. The handbook talks about meter and rhyme, form and diction, sound and sense, iambs and trochees, couplets and sonnets, and how and why this should matter to any person writing or reading poetry. Interspersing history and analysis with…

  20. Recommendations for waste disposal of phosphorus-32 and iodine-131 for medical users. Handbook 49

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1951-11-02

    With the increasing use of radioactive isotopes by industry, the medical profession, and research laboratories, it is essential that certain minimal precautions be taken to protect the users and the public. The recommendations contained in this Handbook represent what is believed to be the best available opinions on the subject as of this date. As our experience with radioisotopes broadens, we will undoubtedly be able to improve and strengthen the recommendations for their safe handling, utilization, and disposal of wastes. Comments on those recommendations will be welcomed by the committee. One of the greatest difficulties encountered in the preparation of this Handbook lay in the uncertainty regarding permissible radiation exposure levels, particularly for ingested radioactive materials. The establishment of sound figures for such exposure still remains a problem of high priority for many conditions and radioactive substances. Such figures as are used in this report represent the best available information today. If, in the future, these can be improved upon, appropriate corrections will be issued. The subject will be under continuous study by the subcommittees mentioned above. The best available information on permissible radiation levels and permissible quantities of ingested radioactive material may be found in the Recommendations of the International Commission on Radiological Protection and the Supplement to these recommendations in NBS Handbook 47. It should be borne in mind, however, that even the values given in that Handbook may be subject to change. As the problem of the disposal of radioactive wastes varies over such wide limits, depending upon the usage to which the isotopes are put, the committee has decided that it will not be feasible to incorporate in one volume broad recommendations covering all situations and materials. This is the first of a series of such reports. The present Handbook has been prepared by the Subcommittee on Waste Disposal and

  1. Recommendations for waste disposal of phosphorus-32 and iodine-131 for medical users. Handbook 49

    International Nuclear Information System (INIS)

    1951-01-01

    With the increasing use of radioactive isotopes by industry, the medical profession, and research laboratories, it is essential that certain minimal precautions be taken to protect the users and the public. The recommendations contained in this Handbook represent what is believed to be the best available opinions on the subject as of this date. As our experience with radioisotopes broadens, we will undoubtedly be able to improve and strengthen the recommendations for their safe handling, utilization, and disposal of wastes. Comments on those recommendations will be welcomed by the committee. One of the greatest difficulties encountered in the preparation of this Handbook lay in the uncertainty regarding permissible radiation exposure levels, particularly for ingested radioactive materials. The establishment of sound figures for such exposure still remains a problem of high priority for many conditions and radioactive substances. Such figures as are used in this report represent the best available information today. If, in the future, these can be improved upon, appropriate corrections will be issued. The subject will be under continuous study by the subcommittees mentioned above. The best available information on permissible radiation levels and permissible quantities of ingested radioactive material may be found in the Recommendations of the International Commission on Radiological Protection and the Supplement to these recommendations in NBS Handbook 47. It should be borne in mind, however, that even the values given in that Handbook may be subject to change. As the problem of the disposal of radioactive wastes varies over such wide limits, depending upon the usage to which the isotopes are put, the committee has decided that it will not be feasible to incorporate in one volume broad recommendations covering all situations and materials. This is the first of a series of such reports. The present Handbook has been prepared by the Subcommittee on Waste Disposal and

  2. 76 FR 60474 - Commercial Item Handbook

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System Commercial Item Handbook AGENCY.... SUMMARY: DoD has updated its Commercial Item Handbook. The purpose of the Handbook is to help acquisition personnel develop sound business strategies for procuring commercial items. DoD is seeking industry input on...

  3. ASTM reference radiologic digital image standards

    International Nuclear Information System (INIS)

    Wysnewski, R.; Wysnewski, D.

    1996-01-01

    ASTM Reference Radiographs have been essential in defining industry's material defect grade levels for many years. ASTM Reference Radiographs are used extensively as even the American Society for Metals Nondestructive Inspection and Quality Control Metals Handbook, Volume 11, eighth edition refers to ASTM Standard Reference Radiographs. The recently published E 1648 Standard Reference Radiographs for Examination of Aluminum Fusion Welds is a prime example of the on-going need for these references. To date, 14 Standard Reference Radiographs have been published to characterize material defects. Standard Reference Radiographs do not adequately address film-less radiologic methods. There are differences in mediums to content with. On a computer CRT defect indications appear differently when compared to indications viewed in a radiograph on a view box. Industry that uses non-film radiologic methods of inspection can be burdened with additional time and money developing internal standard reference radiologic images. These references may be deemed necessary for grading levels of product defects. Because there are no ASTM Standard Reference Radiologic data files for addressing this need in the industry, the authors of this paper suggested implementing a method for their creation under ASTM supervision. ASTM can assure continuity to those users making the transition from analog radiographic images to digital image data by swiftly addressing the requirements for reference digital image standards. The current status and possible future activities regarding a method to create digital data files is presented in this paper summary

  4. Report on nuclear and radiological safety in 1994; Porocilo o jedrski in radioloski varnosti v letu 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lovincic, D [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    1995-07-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world.

  5. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung (and others)

    2008-04-15

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out.

  6. Modeling and Analysis on Radiological Safety Assessment of Low- and Intermediate Level Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jung, Jong Tae; Kang, Chul Hyung

    2008-04-01

    Modeling study and analysis for technical support for the safety and performance assessment of the low- and intermediate level (LILW) repository partially needed for radiological environmental impact reporting which is essential for the licenses for construction and operation of LILW has been fulfilled. Throughout this study such essential area for technical support for safety and performance assessment of the LILW repository and its licensing as gas generation and migration in and around the repository, risk analysis and environmental impact during transportation of LILW, biosphere modeling and assessment for the flux-to-dose conversion factors for human exposure as well as regional and global groundwater modeling and analysis has been carried out

  7. History and Organizations for Radiological Protection.

    Science.gov (United States)

    Kang, Keon Wook

    2016-02-01

    International Commission on Radiological Protection (ICRP), an independent international organization established in 1925, develops, maintains, and elaborates radiological protection standards, legislation, and guidelines. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) provides scientific evidence. World Health Organization (WHO) and International Atomic Energy Agency (IAEA) utilise the ICRP recommendations to implement radiation protection in practice. Finally, radiation protection agencies in each country adopt the policies, and adapt them to each situation. In Korea, Nuclear Safety and Security Commission is the governmental body for nuclear safety regulation and Korea Institute of Nuclear Safety is a public organization for technical support and R&D in nuclear safety and radiation protection.

  8. Newly Available Reactor Physics Benchmark data in the March 2011 Edition of the IRPhEP Handbook

    International Nuclear Information System (INIS)

    Bess, John D.; Briggs, J. Blair; Gulliford, Jim

    2011-01-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications. Numerous experiments that have been performed worldwide, represent a large investment of infrastructure, expertise, and cost, and are valuable resources of data for present and future research. These valuable assets provide the basis for recording, development, and validation of methods. If the data are compromised, it is unlikely that any of these measurements would be repeated in the future. The purpose of the IRPhEP is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. Contributors from around the world collaborate in the evaluation and review of selected benchmark experiments for inclusion in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Several new evaluations have been prepared for inclusion in the March 2011 edition of the IRPhEP Handbook.

  9. Preparedness and response for a nuclear or radiological emergency. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Requirements publication establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. Their implementation is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. The fulfilment of these requirements will also contribute to the harmonization of arrangements in the event of a transnational emergency. These requirements are intended to be applied by authorities at the national level by means of adopting legislation, establishing regulations and assigning responsibilities. The requirements apply to all those practices and sources that have the potential for causing radiation exposure or environmental radioactive contamination warranting an emergency intervention and that are: (a) Used in a State that chooses to adopt the requirements or that requests any of the sponsoring organizations to provide for the application of the requirements. (B) Used by States with the assistance of the FAO, IAEA, ILO, PAHO, OCHA or WHO in compliance with applicable national rules and regulations. (C) Used by the IAEA or which involve the use of materials, services, equipment, facilities and non-published information made available by the IAEA or at its request or under its control or supervision. Or (d) Used under any bilateral or multilateral arrangement whereby the parties request the IAEA to provide for the application of the requirements. The requirements also apply to the off-site jurisdictions that may need to make an emergency intervention in a State that adopts the requirements. The types of practices and sources covered by these requirements include: fixed and mobile nuclear reactors. Facilities for the mining and processing of radioactive ores. Facilities for fuel reprocessing and other fuel cycle facilities. Facilities for the management of radioactive waste. The transport of radioactive material. Sources of radiation used in

  10. Study contribution to the new international philosophy of the radiological safety system on chemical processing of the natural uranium

    International Nuclear Information System (INIS)

    Silva, T.M. da.

    1988-01-01

    The objective of the work is to adapt the radiological Safety System in the facilities concerned to the chemical treatment of the uranium concentrated (yellow-cake) until conversion in uranium hexafluoride in the pilot plant of IPEN-CNEN/SP, to the new international philosophy adopted by the International Commission Radiological on Protection ICPR publication 22(1973), 26(1977), 30(1978) and the International Atomic Energy Agency IAEA publication 9(1982). The new philosophy changes fully the Radiological Protection concepts of preceding philosophy, changes, also, the concept of the work place and individual monitoring as well as the classification of the working areas. These new concepts are applied in each phase of the natural uranium treatment chemical process in conversion facility. (author)

  11. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.; Melendez, M.; Gonzales, J.; Lynch, L.; Boale, B.; Kohout, J.

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protect against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.

  12. Radiological protection and its organization in radiotherapy

    International Nuclear Information System (INIS)

    Gaona, E.; Canizal, C.; Garcia, M.A.

    1996-01-01

    By means of a research carried out in Radiotherapy Centers in Mexico City, divided in 7 public institutions and 5 private, aspects related to the radiological safety and its organization in radiotherapy were evaluated. The population being studied was: medical and technical personnel, that works in the selected radiotherapy centers. The survey was made with 36 dichotomic variables, being obtained 90 surveys. The personnel characteristics are: 76% works for more than 3 years in radiotherapy, 93% has updated information about radiological protection, 67% knows the general radiological safety regulations, 93% knows the radiological emergency project and 95% makes use of personal dosemeter. As result of this research we found that the main problems that the radiological protection have are: lack of personnel training in radiological protection, although the 93% states to have updated information, the few number of persons that takes part in clinical meetings and professional associations. (authors). 7 refs., 3 tabs

  13. Radiological optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.

    1998-01-01

    Radiological optimization is one of the basic principles in each radiation-protection system and it is a basic requirement in the safety standards for radiation protection in the European Communities. The objectives of the research, performed in this field at the Belgian Nuclear Research Centre SCK-CEN, are: (1) to implement the ALARA principles in activities with radiological consequences; (2) to develop methodologies for optimization techniques in decision-aiding; (3) to optimize radiological assessment models by validation and intercomparison; (4) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (5) to develop methods and programmes to assist decision-makers during a nuclear emergency; (6) to support the policy of radioactive waste management authorities in the field of radiation protection; (7) to investigate existing software programmes in the domain of multi criteria analysis. The main achievements for 1997 are given

  14. Gen IV Materials Handbook Functionalities and Operation

    International Nuclear Information System (INIS)

    Ren, Weiju

    2009-01-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  15. Gen IV Materials Handbook Functionalities and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL

    2009-12-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  16. Spent fuel transport in Romania by road: An approach considering safety, risk and radiological consequences

    International Nuclear Information System (INIS)

    Vieru, G.

    2001-01-01

    The transport of high-level radioactive wastes, involving Type B packages, is a part of the safety of the Romanian waste management programme and the overall aim of this activity is to promote the safe transport of radioactive materials in Romania. The paper presents a safety case analysis of the transport of a single spent fuel CANDU bundle, using a Romanian built Type B package, from the CANDU type nuclear power plant Cernavoda to the INR Pitesti, in order to be examined within INR's hot-cells facilities. The safety assessment includes the following main aspects: (1) evaluation and analysis of available data on road traffic accidents; (2) estimation of the expected frequency for severe road accident scenarios resulting in potential radionuclide release; and (3) evaluation of the expected radiological consequences and accident risks of transport operations. (author)

  17. Indicators of the management for the continuous improvement of the radiological safety in a radioactive facility; Indicadores de gestion para la mejora continua de la seguridad radiologica en una instalacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Amador B, Z. H. [Centro de Isotopos, Ave. Monumental y Carretera La Rada, Km 3, Guanabacoa, Apartado 3415, Ciudad de La Habana (Cuba)]. e-mail: zabalbona@centis.edu.cu

    2006-07-01

    The use of safety indicators is common in the nuclear industry. In this work the implementation of indicators for the efficiency analysis of the radiological safety management system of a radioactive installation is presented. Through the same ones the occupational exposure, the training Y authorization of the personnel, the control of practices Y radioactive inventory, the results of the radiological surveillance, the occurrence of radiological events, the aptitude of the monitoring equipment, the management of the radioactive waste, the public exposure, the audits Y the costs of safety are evaluated. Its study is included in the periodic training of the workers. Without this interrelation it is not possible to maintain the optimization of the safety neither to achieve a continuous improvement. (Author)

  18. Occupational exposure in interventional radiology

    International Nuclear Information System (INIS)

    Oh, H.J.; Lee, K.Y.; Cha, S.H.; Kang, Y.K.; Kim, H.J.; Oh, H.J.

    2003-01-01

    This study was conducted to survey of radiation safety control and to measure occupational radiation exposure dose of staff in interventional radiology in Korea. Interventioanl radiology requires the operator and assisting personnel to remain close to the patient, and thus close to primary beams of radiation. Therefore exposure doses of these personnel are significant from a radiological protection point of view. We surveyed the status of radiation safety on interventional radiology of 72 hospitals. The result were that 119 radiation equipments are using in interventional radiology and 744 staffs are composed of 307 radiologists, 116 residents of radiology, 5 general physicians, 171 radiologic technologists and 145 nurses. 81.4% and 20.2 % of operating physicians are using neck collar protector and goggle respectively. The average radiation dose was measured 0.46±0.15 mSv/10 hours fluoroscopy inside examination room in radiation protection facilities. Occupational radiation exposure data on the staff were assessed in interventional radiology procedures from 8 interventional radiology equipments of 6 university hospitals. The dose measurements were made by placing a thermoluminesent dosimeter(TLD) on various body surface of operation and assistant staff during actual interventional radiology. The measured points were the corner of the eyes, neck(on the thyroid) , wrists, chest(outside and inside of the protector), and back. Average radiation equivalent dose of the corner of left eye and left wrist of operating physicians were 1.19 mSv(0.11∼4.13 mSv)/100 minutes fluoroscopy and 4.32 mSv(0.16∼11.0 mSv)/100 minutes fluoroscopy respectively. Average exposure dose may vary depending on the type of procedure, personal skills and the quality of equipment. These results will be contributed to prepare the guide line in interventional radiology in Korea

  19. The International Criticality Safety Benchmark Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, B. J.; Dean, V. F.; Pesic, M. P.

    2001-01-01

    experimenters or individuals who are familiar with the experimenters or the experimental facility; (3) compile the data into a standardized format; (4) perform calculations of each experiment with standard criticality safety codes, and (5) formally document the work into a single source of verified benchmark critical data. The work of the ICSBEP is documented as an OECD handbook, in 7 volumes, entitled, 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. This handbook is available on CD-ROM or on the Internet (http://icsbep.inel.gov/icsbep). Over 150 scientists from around the world have combined their efforts to produce this Handbook. The 2000 publication of the handbook will span over 19,000 pages and contain benchmark specifications for approximately 284 evaluations containing 2352 critical configurations. The handbook is currently in use in 45 different countries by criticality safety analysts to perform necessary validation of their calculation techniques and it is expected to be a valuable tool for decades to come. As a result of the efforts of the ICSBEP: (1) a large portion of the tedious, redundant, and very costly research and processing of criticality safety experimental data has been eliminated; (2) the necessary step in criticality safety analyses of validating computer codes with benchmark data is greatly streamlined; (3) gaps in data are being highlighted; (4) lost data are being retrieved; (5) deficiencies and errors in cross section processing codes and neutronic codes are being identified, and (6) over a half-century of valuable criticality safety data are being preserved. (author)

  20. Procurement Career Management Handbook.

    Science.gov (United States)

    Department of the Treasury, Washington, DC.

    This handbook is the result of the Treasury Department's efforts to increase professionalism among its procurement employees nationwide through its Procurement Career Management Program. First, the scope and objectives of the Procurement Career Management Program are discussed. The remaining sections of the handbook deal with the following program…

  1. Requirements to obtain the recognition of radiological protection experts

    International Nuclear Information System (INIS)

    Arguelles, R.; Villarroel, R.; Senderos, V.; Campos, R.; Pinos, M.; Ponjuan, G.; Franco, P.; Rueda, D.

    2003-01-01

    The scope of this paper is to summarize the general requirements related to education, training and skill of the individual to obtain the recognition of radiological protection experts on ionizing radiation (experts on radiological protection- RP). There has been established two levels according to the grade of responsibility: Qualified expert provided with a diploma given by de Nuclear Safety Council. Technician expert on radiological protection whose certification is made by the Qualified expert that supervise their work. To obtain the diploma of qualified expert is required an official degree, a title of Architecture, Engineering or equivalent in case of no national degrees; specific training on radiological protection (300 hours) and the knowledge on safety and radiological protection of the facilities to be supervised. Three years of experience on radiological protection must be proved. To get the recognition of technician expert on radiological protection is required Formacion Profesional de Grado Superior or equivalent and specific training on safety and radiological protection. Knowledge on basis and principles of radiological protection are required. According to the type of the facilities to be supervised there are two models: A model: to deal with facilities included in RD 1836/1999 (nuclear and radioactive facilities). B model: to deal with medical X rays facilities approved under RD 1891/1991 three months of experience on the selected model must be proved. (Author)

  2. Aspects of radiological protection in nuclear installations

    International Nuclear Information System (INIS)

    Hunt, J.G.; Oliveira Filho, D.S.; Rabello, P.N.P.

    1987-01-01

    Due to the short term, long term and genetic effects of radiation, the work with radioactive materials requires special protection measures. The objective of radiological protection is to assure the occupational health of the workers by maintaining the dose levels as low as reasonably achievable. The radiological protection measures implanted in the NUCLEBRAS fuel element factory are described. The philosophy and practical measures taken are explained, and a comparison between radiation protection and industrial safety norms is made. The result of this work shows that the radiological safety of the element factory is assured. (author) [pt

  3. Safety and effectiveness of moderate sedation for radiologic non-vascular intervention

    International Nuclear Information System (INIS)

    Kim, Tae-Hoon

    2006-01-01

    The purpose of this study was to prospectively characterize the safety and effectiveness of moderate sedation/analgesia for performing radiologic non-vascular abdominal intervention. During a 3-month period, a total of 63 adult patients with a mean age of 64 years (range:27-82) underwent moderate sedation for 72 radiologic non-vascular interventional procedures. A combination of fentanyl citrate and midazolam hydrochloride, based on the patient's body weight, was intravenously administered until the patient was drowsy and tranquil. The adverse events associated with this moderate sedation were assessed. The visual analog scale format was used to measure the subjective feelings of the patient's pre-pro- cedural anxiety and intraprocedural pain. The mean total dose per kilogram of body weight of fentanyl used in PTBD was 1.148 μg. The mean total dose per kilogram of body weight of midazolam was 0.035 mg in PTBD, PTGBD, AD, PCN, DJS, GS and FRA, 0.039 mg in TDC, and 0.043 mg in BS. A temporary reduction of systolic blood pressure to less than 80 mmHg was observed during 5 procedures (6.9%), whereas a temporary elevation of systolic blood pressure above 150 mmHg was observed during 10 procedures (13.8%). A reduction of arterial oxygen saturation to less than 90% was observed during 14 procedures (19.4%). None of the patients required pharmacologic reversal agents or cardiopulmonary resuscitation. The mean anxiety score recorded before all procedures was 5.2 (distressing). The mean pain score during the procedure, which was recorded after all procedures, was 2.9 (mild). Moderate sedation allows performance of safe and effective radiologic non-vascular intervention, and it is also easy for an interventional radiologist to use. The patients should be continuously monitored to check their vital signs and arterial oxygen saturation during the procedures

  4. Safety and effectiveness of moderate sedation for radiologic non-vascular intervention

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hoon [Dankook University Hospital, Chungju (Korea, Republic of)

    2006-06-15

    The purpose of this study was to prospectively characterize the safety and effectiveness of moderate sedation/analgesia for performing radiologic non-vascular abdominal intervention. During a 3-month period, a total of 63 adult patients with a mean age of 64 years (range:27-82) underwent moderate sedation for 72 radiologic non-vascular interventional procedures. A combination of fentanyl citrate and midazolam hydrochloride, based on the patient's body weight, was intravenously administered until the patient was drowsy and tranquil. The adverse events associated with this moderate sedation were assessed. The visual analog scale format was used to measure the subjective feelings of the patient's pre-pro- cedural anxiety and intraprocedural pain. The mean total dose per kilogram of body weight of fentanyl used in PTBD was 1.148 {mu}g. The mean total dose per kilogram of body weight of midazolam was 0.035 mg in PTBD, PTGBD, AD, PCN, DJS, GS and FRA, 0.039 mg in TDC, and 0.043 mg in BS. A temporary reduction of systolic blood pressure to less than 80 mmHg was observed during 5 procedures (6.9%), whereas a temporary elevation of systolic blood pressure above 150 mmHg was observed during 10 procedures (13.8%). A reduction of arterial oxygen saturation to less than 90% was observed during 14 procedures (19.4%). None of the patients required pharmacologic reversal agents or cardiopulmonary resuscitation. The mean anxiety score recorded before all procedures was 5.2 (distressing). The mean pain score during the procedure, which was recorded after all procedures, was 2.9 (mild). Moderate sedation allows performance of safe and effective radiologic non-vascular intervention, and it is also easy for an interventional radiologist to use. The patients should be continuously monitored to check their vital signs and arterial oxygen saturation during the procedures.

  5. Warehouse Sanitation Workshop Handbook.

    Science.gov (United States)

    Food and Drug Administration (DHHS/PHS), Washington, DC.

    This workshop handbook contains information and reference materials on proper food warehouse sanitation. The materials have been used at Food and Drug Administration (FDA) food warehouse sanitation workshops, and are selected by the FDA for use by food warehouse operators and for training warehouse sanitation employees. The handbook is divided…

  6. Radiological error: analysis, standard setting, targeted instruction and teamworking

    International Nuclear Information System (INIS)

    FitzGerald, Richard

    2005-01-01

    Diagnostic radiology does not have objective benchmarks for acceptable levels of missed diagnoses [1]. Until now, data collection of radiological discrepancies has been very time consuming. The culture within the specialty did not encourage it. However, public concern about patient safety is increasing. There have been recent innovations in compiling radiological interpretive discrepancy rates which may facilitate radiological standard setting. However standard setting alone will not optimise radiologists' performance or patient safety. We must use these new techniques in radiological discrepancy detection to stimulate greater knowledge sharing, targeted instruction and teamworking among radiologists. Not all radiological discrepancies are errors. Radiological discrepancy programmes must not be abused as an instrument for discrediting individual radiologists. Discrepancy rates must not be distorted as a weapon in turf battles. Radiological errors may be due to many causes and are often multifactorial. A systems approach to radiological error is required. Meaningful analysis of radiological discrepancies and errors is challenging. Valid standard setting will take time. Meanwhile, we need to develop top-up training, mentoring and rehabilitation programmes. (orig.)

  7. Travel time data collection handbook

    Science.gov (United States)

    1998-03-01

    This Travel Time Data Collection Handbook provides guidance to transportation : professionals and practitioners for the collection, reduction, and presentation : of travel time data. The handbook should be a useful reference for designing : travel ti...

  8. Determination of action zone in the nuclear / radiology handling process

    International Nuclear Information System (INIS)

    Ade Awalludin

    2013-01-01

    Assessment has been conducted on determination of action zone in nuclear or radiological emergency. The assessment is taken into account radiological risk level in nuclear or radiological emergency management process outside nuclear installation. Managing of nuclear emergency is same as that one of other emergency by adding the principles of radiation protection. This study aims to provide guidance in making of safety and security perimeter outside the nuclear installation for first responders during nuclear/radiological emergency based on dose rate, contamination level or distance from the scene. Separation of working zone is important for first responder safety that works in radiological environment in the event of nuclear or radiation emergency without violating their standard operating procedure. Value limit of safety and security perimeter has been made according to the conditions in Indonesia and considering the applicability in practical. (author)

  9. Radiological design criteria

    International Nuclear Information System (INIS)

    Selby, J.M.; Andersen, B.V.; Carter, L.A.; Waite, D.A.

    1977-01-01

    Many new nuclear facilities are unsatisfactory from a radiation protection point of view, particularly when striving to maintain occupational exposure as low as practicable 'ALAP'. Radiation protection is achieved through physical protective features supplemented by administrative controls. Adequate physical protective feature should be achieved during construction so that supplemental administrative controls may be kept simple and workable. Many nuclear facilities fall short of adequate physical protective features, thus, remedial and sometimes awkward administrative procedures are required to safely conduct work. In reviewing the various handbooks, reports and regulations which deal with radiation protection, it may be noted that there is minimal radiological design guidance for application to nuclear facilities. A set of criteria or codes covering functional areas rather than specific nuclear facility types is badly needed. The following are suggested as functional areas to be considered: characterization of the Facility; siting and access; design exposure limits; layout (people and materials flow); ventilation and effluent control; radiation protection facilities and systems. The application of such radiological design criteria early in the design process would provide some assurance that nuclear facilities will be safe, flexible, and efficient with a minimum of costly retrofitting or administrative restrictions. Criteria which we have found helpful in these functional areas is discussed together with justification for adoption of such criteria and identification of problems which still require solution

  10. Mobile retroreflectivity best practices handbook.

    Science.gov (United States)

    2009-07-01

    This handbook documents best practices related to proper use of the mobile retroreflectometer, sampling of : sites for data collection, and handling of mobile retroreflectivity data. The best practices described in this : handbook are derived from th...

  11. CRC handbook of modern telecommunications

    CERN Document Server

    Morreale, Patricia A

    2001-01-01

    This authoritative handbook, contributed to by a team of international experts, covers the most dynamic areas in the changing telecommunications landscape. Written for telecommunications specialists who implement the new technologies, The CRC Handbook of Modern Telecommunications is an excellent companion volume to the authors' The Telecommunications Handbook, but stands well on its own, as it extends the range of topics to include voice over Internet, traffic management, quality of service, and other dominant future trends. It is an indispensable reference for all professionals working in the

  12. International Reactor Physics Experiment Evaluation (IRPhE) Project. IRPhE Handbook - 2015 edition

    International Nuclear Information System (INIS)

    Bess, John D.; Gullifor, Jim

    2015-03-01

    The purpose of the International Reactor Physics Experiment Evaluation (IRPhE) Project is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. This work of the IRPhE Project is formally documented in the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments', a single source of verified and extensively peer-reviewed reactor physics benchmark measurements data. The evaluation process entails the following steps: Identify a comprehensive set of reactor physics experimental measurements data, Evaluate the data and quantify overall uncertainties through various types of sensitivity analysis to the extent possible, verify the data by reviewing original and subsequently revised documentation, and by talking with the experimenters or individuals who are familiar with the experimental facility, Compile the data into a standardized format, Perform calculations of each experiment with standard reactor physics codes where it would add information, Formally document the work into a single source of verified and peer reviewed reactor physics benchmark measurements data. The International Handbook of Evaluated Reactor Physics Benchmark Experiments contains reactor physics benchmark specifications that have been derived from experiments that were performed at nuclear facilities around the world. The benchmark specifications are intended for use by reactor designers, safety analysts and nuclear data evaluators to validate calculation techniques and data. Example calculations are presented; these do not constitute a validation or endorsement of the codes or cross-section data. The 2015 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments contains data from 143 experimental series that were

  13. Education and training in radiological protection for diagnostic and interventional procedures ICRP 113 in brief

    International Nuclear Information System (INIS)

    Salama, S.; Gomaa, M. A.; Alshoufi, J.H.

    2013-01-01

    The international commission on radiological protection (ICRP) is the primary body in protection against ionizing radiation. Among its latest publication is ICRP publication 113 e ducation and training in radiological protection for diagnostic and interventional procedures . This document introduces diagnostic and interventional medical procedures using ionizing radiations in deep details. The document is approved by the commission in October 2010 and translated into Arabic at December 2011. This work is a continuation of the efforts series to translate some of the most important of the radiological protection references into the Arabic; aiming to maximize the benefit. The previous translation include WHO handbook on indoor radon: a public health perspective, issued by world health organization 2009 and Radiation Protection in Medicine, ICRP Publication 105 2007 that translated into Arabic with support of Arab atomic energy authority at 2011.

  14. Implementation of a radiological safety management system in a hospital of Mexico City; Implementacion de un sistema de gestion de seguridad radiologica en un hospital de la Ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez V, D.; Rivera M, T. [CICATA-IPN, 11500 Mexico D.F. (Mexico); Velez D, V. [INER, 14000 Mexico D.F. (Mexico)

    2007-07-01

    Full text: The reflection of this work is based in some radiological accidents that its have happened in some hospital centers or of research. The over exposure of some people is due to the pursuit of the procedures, the lack of quality assurance of the equipment or the inappropriate actions of the technicians. In Mexico one has seen in several hospitals the lack of existence of a Quality Assurance Program to prevent the accidents, the execution of the same ones and those good practices and the lack of Safety Culture makes that the hospital radiological safety it is faulty. The objective of the present work is the implementation of a radiological safety management in a hospital of Mexico City. (Author)

  15. Radiation Biology: A Handbook for Teachers and Students

    International Nuclear Information System (INIS)

    2010-01-01

    courses organized or sponsored by the IAEA are oversubscribed, and the students themselves confirm the great need for this type of teaching. Requests have been received from a number of countries in all regions asking for the IAEA to help organize radiobiology teaching. More qualified professionals are also needed for this exercise. Already there are some initiatives e.g. an IAEA project produced in 2007 a distance-learning course in the Applied Sciences of Oncology (ASO) for Radiation Oncologists (also available on the IAEA-website since 2008) including 10 modules in radiobiology. This handbook for teachers and students was formulated based on the recommendations of a Consultants Meeting on International Syllabus for Radiobiology Teaching held 12-14 December 2005 in Vienna, Austria. Whilst this information is available in various books and other reports, it is summarized and collated here so that the whole document has a degree of completeness. This should be helpful in particular to those countries that do not have easy access to appropriate books and reports. Comments and suggestions on this syllabus as a teaching tool were sought from committees of the ESTRO and ASTRO (American Society for Therapeutic Radiology and Oncology). This handbook is written in two parts: (a) Teaching programme including a common basic radiobiology education and teaching programme for radiation oncologists, radiation therapy technologists, diagnostic radiologists, radiation biologists, medical physicists, radiation protection officers and other disciplines involved in radiation activities. This will take 1 week of teaching (30 hours), including a practical or tutorial session at the end of each day. This is followed by a further week of advanced teaching for radiation oncologists, and a further 3 days for radiation protection personnel. (b) Minimal Essential Syllabus for Radiobiology and two extra modules for radiation oncologists and radiation protection personnel, respectively. For each

  16. Training Programs on Radiological Safety for users of Ionizing Radiations in Peru; Programas de formacion en proteccion radiologica para usuarios de radiaciones ionizantes en el Peru

    Energy Technology Data Exchange (ETDEWEB)

    Medina Gironzini, E.

    2003-07-01

    In Peru, people who work with ionizing radiations must have an authorization (Individual License) as established in the Radiological Safety Regulations, which are the mandatory rules. The Technical Office of the National Authority (OTAN), which is the technical organ of the Peruvian Institute of Nuclear Energy (IPEN) in charge of controlling radiations within the country, grants the authorization after the candidate demonstrates that he/she knows the specific use of the technique using radiations, as well as the aspects related to safety and radiological protection. Since it was created in 1972, the Superior Center of Nuclear Studies (VSEN) from IPEN has carried out different training courses so that people can work safety with ionizing radiations in medicine, industry and investigation. The analysis of the radiological safety programs carried out by CSEN during the last 30 years, which allowed the training of more than 2200 people in the country and, at the same time, made possible the securing of the respective Individual License, is presented in this work. The courses, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges gamma irradiator, etc..., are part of the continuous education program of CSEN. (Author)

  17. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.

    2017-07-01

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning

  18. Harwell emergency handbook

    International Nuclear Information System (INIS)

    1986-12-01

    The Harwell Laboratory Emergency Handbook 1987 contains emergency procedures to deal with any incident which might occur at AERE Harwell involving radioactive or toxic material releases. The Handbook gives details of the duties of members of the Site Emergency Organization and other key members of staff, the methods by which incidents are controlled, the communication links and liaison arrangements with other organizations and the possible consequences and actions that may be needed following an emergency. (UK)

  19. Springer handbook of nanotechnology

    CERN Document Server

    2017-01-01

    This comprehensive handbook has become the definitive reference work in the field of nanoscience and nanotechnology, and this 4th edition incorporates a number of recent new developments. It integrates nanofabrication, nanomaterials, nanodevices, nanomechanics, nanotribology, materials science, and reliability engineering knowledge in just one volume. Furthermore, it discusses various nanostructures; micro/nanofabrication; micro/nanodevices and biomicro/nanodevices, as well as scanning probe microscopy; nanotribology and nanomechanics; molecularly thick films; industrial applications and nanodevice reliability; societal, environmental, health and safety issues; and nanotechnology education. In this new edition, written by an international team of over 140 distinguished experts and put together by an experienced editor with a comprehensive understanding of the field, almost all the chapters are either new or substantially revised and expanded, with new topics of interest added. It is an essential resource for ...

  20. Petra Governance Handbook - WP7 – Governance structures & business models : D7.3: Governance Handbook

    NARCIS (Netherlands)

    Veeneman, W.; Hirschhorn, F.; Klievink, A.J.; Steenhuisen, B.M.; van der Voort, H.G.

    2017-01-01

    This document represents the governance handbook on mobility data platforms for the PETRA project. The governance handbook provides metropolitan authorities contemplating the implementation of a mobility data platform in line with the PETRA project about governance issues and design.
    The

  1. WIPP Project Records Management Handbook

    International Nuclear Information System (INIS)

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Records Management Handbook provides the WIPP Project Records Management personnel with a tool to use to fulfill the requirements of the WIPP Records Program and direct their actions in the important area of records management. The handbook describes the various project areas involved in records management, and how they function. The handbook provides the requirements for Record Coordinators and Master Record Center (MRC) personnel to follow in the normal course of file management, records scheduling, records turnover, records disposition, and records retrieval. More importantly, the handbook provides a single reference which encompasses the procedures set fourth in DOE Order 1324.2A, ''Records Disposition'' ASME NQA-1, ''Quality Assurance Program Requirements for Nuclear Facilities'' and DOE-AL 5700.6B, ''General Operations Quality Assurance.'' These documents dictate how an efficient system of records management will be achieved on the WIPP Project

  2. Handbook of probability

    CERN Document Server

    Florescu, Ionut

    2013-01-01

    THE COMPLETE COLLECTION NECESSARY FOR A CONCRETE UNDERSTANDING OF PROBABILITY Written in a clear, accessible, and comprehensive manner, the Handbook of Probability presents the fundamentals of probability with an emphasis on the balance of theory, application, and methodology. Utilizing basic examples throughout, the handbook expertly transitions between concepts and practice to allow readers an inclusive introduction to the field of probability. The book provides a useful format with self-contained chapters, allowing the reader easy and quick reference. Each chapter includes an introductio

  3. International Reactor Physics Experiment Evaluation (IRPhE) Project. IRPhE Handbook - 2017 edition

    International Nuclear Information System (INIS)

    2017-01-01

    The International Reactor Physics Evaluation (IRPhE) Project was initiated as a pilot in 1999 by the Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June 2003. While the NEA co-ordinates and administers the IRPhE Project at the international level, each participating country is responsible for the administration, technical direction and priorities of the project within their respective countries. The information and data included in this handbook are available to NEA member countries, to all contributing countries and to others on a case-by-case basis. The IRPhE Project is patterned after the International Criticality Safety Benchmark Evaluation Project (ICSBEP). It closely co-ordinates with the ICSBEP to avoid duplication of efforts and publication of conflicting information. Some benchmark data are applicable to both nuclear criticality safety and reactor physics technology. Some have already been evaluated and published by the ICSBEP, but have been extended to include other types of measurements in addition to the critical configuration. Through this effort, the IRPhE Project will be able to 1) consolidate and preserve the existing worldwide information base; 2) retrieve lost data; 3) identify areas where more data are needed; 4) draw upon the resources of the international reactor physics community to help fill knowledge gaps; 5) identify discrepancies between calculations and experiments due to deficiencies in reported experimental data, cross-section data, cross-section processing codes and neutronics codes; 6) eliminate a large amount of redundant research and processing of reactor physics experiment data, and 7) improve future experimental planning, execution and reporting. This handbook contains reactor physics benchmark specifications that have been derived from experiments performed at nuclear facilities around the world. The benchmark specifications are intended for use by

  4. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  5. Methodology - PSA Regulatory handbook. Comparisons to a modern PSA study

    International Nuclear Information System (INIS)

    Bostroem, Urban; Jung, Gunnar; Flodin, Yngve

    2003-03-01

    The regulatory handbook is applicable to all types of initiating events and all operating conditions. It should be noted that it does not make the traditional subdivision of PSA into internal and external events, level 1 and level 2 PSA, or power operation and shut-down. The reason for this is that this has given the regulatory handbook a more logical structure, and that this approach underlines the integrated character of PSA when it comes to creating the plan risk profile. The regulatory handbook has been structured following the requirements on a PSA for a nuclear power plant, as this is the most demanding application. However, it is applicable also to the analysis of other nuclear installations. The purpose of the comparative review presented in this report has been to, as part of a quality review establish the PSA Handbook, compare (parts of) the handbook and its criteria with a recent PSA analysis, and to identify major discrepancies. Considerable weight has also been allocated to a review of the plant model (Risk Spectrum event trees and fault trees). The results presented in the report are not based on a complete review of the PSA in question (or of the complete PSA Handbook). Following discussions between the SKI and SwedPower, and based on the experience of the SwedPower reviewers, the following issues were chosen to be the main parts of the project: 1) General comparison according to content and transparency - Levels of ambition in PSA Handbook, PSA method description and actual PSA report. 2) Detailed comparison of: Selected component failure data - Assumptions regarding room events - CCI frequencies, realism, identification, categorisation - Taking credit for non-safety classified systems - Event tree modelling - Presentation of results 3) Fault tree model, specifically - Time frame for crediting of battery capacity - Modelling of regulators - Modelling of dependencies for room events - general quality, like how the paper documentation and the logic

  6. Handbook of metaheuristics

    CERN Document Server

    Potvin, Jean-Yves

    2010-01-01

    “… an excellent book if you want to learn about a number of individual metaheuristics." (U. Aickelin, Journal of the Operational Research Society, Issue 56, 2005, on the First Edition) The first edition of the Handbook of Metaheuristics was published in 2003 under the editorship of Fred Glover and Gary A. Kochenberger. Given the numerous developments observed in the field of metaheuristics in recent years, it appeared that the time was ripe for a second edition of the Handbook. When Glover and Kochenberger were unable to prepare this second edition, they suggested that Michel Gendreau and Jean-Yves Potvin should take over the editorship, and so this important new edition is now available. Through its 21 chapters, this second edition is designed to provide a broad coverage of the concepts, implementations and applications in this important field of optimization. Original contributors either revised or updated their work, or provided entirely new chapters. The Handbook now includes updated chapters on the b...

  7. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  8. Reference handbook: Level detectors

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this handbook is to provide Rocky Flats personnel with the information necessary to understand level measurement and detection. Upon completion of this handbook you should be able to do the following: List three reasons for measuring level. Describe the basic operating principles of the sight glass. Demonstrate proper techniques for reading a sight glass. Describe the basic operating principles of a float level detector. Describe the basic operating principles of a bubbler level indicating system. Explain the differences between a wet and dry reference leg indicating system, and describe how each functions. This handbook is designed for use by experienced Rocky Flats operators to reinforce and improve their current knowledge level, and by entry-level operators to ensure that they possess a minimum level of fundamental knowledge. Level Detectors is applicable to many job classifications and can be used as a reference for classroom work or for self-study. Although this reference handbook is by no means all-encompassing, you will gain enough information about this subject area to assist you in contributing to the safe operation of Rocky Flats Plant

  9. Chemical Hazards and Safety Issues in Fusion Safety Design

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2003-01-01

    Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard

  10. Standards of diagnostic radiological safety

    International Nuclear Information System (INIS)

    Yacovenco, A.; Ferreira, R.

    1996-01-01

    Brazil as well as many other countries are characterized for the access differentiated from the society to the products of the development. The lacking in specifications tolerance and mainly requirements of security and they of protection have induced to the inadequate utilization of the procedures technical and products in the area of radiology. We in this context are proposing a new mode of relationships between the diverse levels of intervention and responsibility

  11. Nuclear and radiological regulation in Moldova

    International Nuclear Information System (INIS)

    Buzdugan, Artur

    2013-01-01

    The nuclear security and safety legal framework in Moldova has changed significantly over the last 6 years. This has mainly been the result of implementation of IAEA nuclear safety and nuclear security standards, European directives, which are based on new data and evolving concepts at the international level, on adopted in May 2006 of the Law no. 111 On safe deployment of nuclear and radiological activities and establishing on established on March 2007 of a sole regulatory authority - the National Agency for the Regulation of Nuclear and Radiological Activities. (author)

  12. Practical electronics handbook

    CERN Document Server

    Sinclair, Ian R

    1988-01-01

    Practical Electronics Handbook, Second Edition covers information useful in electronics, with focus on mathematical conventions. The handbook discusses the passive (resistors, capacitors, band coding, and inductors) and active discrete (diodes, transistors and negative feedback) components; discrete component circuits; and transferring digital data. Linear I.C.s, which are the single-chip arrangements of amplifier circuits that are intended to be biased and operated in a linear way, and digital I.C.s, which process signals and consist of two significant voltage levels, are also considered. T

  13. Global view on the radiological protection of patients: PAHO position paper

    International Nuclear Information System (INIS)

    Borras, C.

    2001-01-01

    The Pan American Health Organization/World Health Organization (PAHO/WHO), founded in 1902, initiated a radiological health programme in the 1950s. Within this programme, there are currently three lines of work: (a) radiology services; (b) radiation safety; and (c) radiological emergencies. Radiology services deals with health services for diagnostic and interventional imaging, and for radiation therapy. Radiation safety studies the three types of exposures to both ionizing and non-ionizing radiation: occupational; medical; and public. Radiological emergencies involve radioactive waste management programmes and emergency plans. The radiological protection of patients is addressed in each of these areas: (a) when analysing the infrastructure of radiology services; and (b) when determining medical exposures; and (c) when investigating overexposures in interventional or therapeutic procedures or under-doses in radiation therapy. (author)

  14. Handbook of unmanned aerial vehicles

    CERN Document Server

    Vachtsevanos, George

    2015-01-01

    The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, ...

  15. Critical review of the reactor-safety study radiological health effects model. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, D.W.; Evans, J.S.; Jacob, N.; Kase, K.R.; Maletskos, C.J.; Robertson, J.B.; Smith, D.G.

    1983-03-01

    This review of the radiological health effects models originally presented in the Reactor Safety Study (RSS) and currently used by the US Nuclear Regulatory Commission (NRC) was undertaken to assist the NRC in determining whether or not to revise the models and to aid in the revision, if undertaken. The models as presented in the RSS and as implemented in the CRAC (Calculations of Reactor Accident Consequences) Code are described and critiqued. The major elements analyzed are those concerning dosimetry, early effects, and late effects. The published comments on the models are summarized, as are the important findings since the publication of the RSS.

  16. Critical review of the reactor-safety study radiological health effects model. Final report

    International Nuclear Information System (INIS)

    Cooper, D.W.; Evans, J.S.; Jacob, N.; Kase, K.R.; Maletskos, C.J.; Robertson, J.B.; Smith, D.G.

    1983-03-01

    This review of the radiological health effects models originally presented in the Reactor Safety Study (RSS) and currently used by the US Nuclear Regulatory Commission (NRC) was undertaken to assist the NRC in determining whether or not to revise the models and to aid in the revision, if undertaken. The models as presented in the RSS and as implemented in the CRAC (Calculations of Reactor Accident Consequences) Code are described and critiqued. The major elements analyzed are those concerning dosimetry, early effects, and late effects. The published comments on the models are summarized, as are the important findings since the publication of the RSS

  17. Integrated Circuit Electromagnetic Immunity Handbook

    Science.gov (United States)

    Sketoe, J. G.

    2000-08-01

    This handbook presents the results of the Boeing Company effort for NASA under contract NAS8-98217. Immunity level data for certain integrated circuit parts are discussed herein, along with analytical techniques for applying the data to electronics systems. This handbook is built heavily on the one produced in the seventies by McDonnell Douglas Astronautics Company (MDAC, MDC Report E1929 of 1 August 1978, entitled Integrated Circuit Electromagnetic Susceptibility Handbook, known commonly as the ICES Handbook, which has served countless systems designers for over 20 years). Sections 2 and 3 supplement the device susceptibility data presented in section 4 by presenting information on related material required to use the IC susceptibility information. Section 2 concerns itself with electromagnetic susceptibility analysis and serves as a guide in using the information contained in the rest of the handbook. A suggested system hardening requirements is presented in this chapter. Section 3 briefly discusses coupling and shielding considerations. For conservatism and simplicity, a worst case approach is advocated to determine the maximum amount of RF power picked up from a given field. This handbook expands the scope of the immunity data in this Handbook is to of 10 MHz to 10 GHz. However, the analytical techniques provided are applicable to much higher frequencies as well. It is expected however, that the upper frequency limit of concern is near 10 GHz. This is due to two factors; the pickup of microwave energy on system cables and wiring falls off as the square of the wavelength, and component response falls off at a rapid rate due to the effects of parasitic shunt paths for the RF energy. It should be noted also that the pickup on wires and cables does not approach infinity as the frequency decreases (as would be expected by extrapolating the square law dependence of the high frequency roll-off to lower frequencies) but levels off due to mismatch effects.

  18. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  19. Handbook of cosmic hazards and planetary defense

    CERN Document Server

    Allahdadi, Firooz

    2015-01-01

    Covers in a comprehensive fashion all aspects of cosmic hazards and possible strategies for contending with these threats through a comprehensive planetary defense strategy. This handbook brings together in a single reference work a rich blend of information about the various types of cosmic threats that are posed to human civilization by asteroids, comets, bolides, meteors, solar flares and coronal mass ejections, cosmic radiation and other types of threats that are only recently beginning to be understood and studied, such as investigation of the “cracks” in the protective shield provided by the Van Allen belts and the geomagnetosphere, of matter-antimatter collisions, orbital debris and radiological or biological contamination. Some areas that are addressed involve areas about which there is a good deal of information that has been collected for many decades by multiple space missions run by many different space agencies, observatories and scientific researchers. Other areas involving research and ...

  20. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  1. Safety of Conscious Sedation In Interventional Radiology

    International Nuclear Information System (INIS)

    Arepally, Aravind; Oechsle, Denise; Kirkwood, Sharon; Savader, Scott J.

    2001-01-01

    Purpose: To identify rates of adverse events associated with the use of conscious sedation in interventional radiology.Methods: In a 5-month period, prospective data were collected on patients undergoing conscious sedation for interventional radiology procedures (n = 594). Adverse events were categorized as respiratory, sedative, or major adverse events. Respiratory adverse events were those that required oral airway placement, ambu bag, or jaw thrust. Sedation adverse events were unresponsiveness, oxygen saturation less than 90%, use of flumazenil/naloxone, or agitation. Major adverse events were hypotension, intubation, CPR, or cardiac arrest. The frequency of adverse events for the five most common radiology procedures were determined.Results: The five most common procedures (total n = 541) were biliary tube placement/exchange (n = 182), tunneled catheter placement (n 135), diagnostic arteriography (n = 125), vascular interventions (n = 52), and other catheter insertions (n = 46). Rates for respiratory, sedation, and major adverse events were 4.7%, 4.2%, and 2.0%, respectively. The most frequent major adverse event was hypotension (2.0%). Biliary procedures had the highest rate of total adverse events (p < .05) and respiratory adverse events (p < .05).Conclusion: The frequency of adverse events is low with the use of conscious sedation during interventional procedures. The highest rates occurred during biliary interventions

  2. Portrayal of radiology in a major medical television series: How does it influence the perception of radiology among patients and radiology professionals?

    International Nuclear Information System (INIS)

    Heye, T.; Merkle, E.M.; Boll, D.T.; Leyendecker, J.R.; Gupta, R.T.

    2016-01-01

    To assess how the portrayal of Radiology on medical TV shows is perceived by patients and radiology professionals. In this IRB-approved study with patient consent waived, surveys were conducted among adult patients scheduled for radiological examinations and radiology professionals. The questionnaire investigated medical TV watching habits including interest in medical TV shows, appearance of radiological examination/staff, radiology's role in diagnosis-making, and rating of the shows' accuracy in portraying radiology relative to reality. One hundred and twenty-six patients and 240 professionals (133 technologists, 107 radiologists) participated. 63.5 % patients and 63.2 % technologists rated interest in medical TV shows ≥5 (scale 1-10) versus 38.3 % of radiologists. All groups noted regular (every 2nd/3rd show) to >1/show appearance of radiological examinations in 58.5-88.2 % compared to 21.0-46.2 % for radiological staff appearance. Radiology played a role in diagnosis-making regularly to >1/show in 45.3-52.6 %. There is a positive correlation for interest in medical TV and the perception that radiology is accurately portrayed for patients (r = 0.49; P = 0.001) and technologists (r = 0.38; P = 0.001) but not for radiologists (r = 0.01). The majority of patients perceive the portrayed content as accurate. Radiologists should be aware of this cultivation effect to understand their patients' behaviour which may create false expectations towards radiological examinations and potential safety hazards. (orig.)

  3. Operational safety

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The PNL Safety, Standards and Compliance Program contributed to the development and issuance of safety policies, standards, and criteria; for projects in the nuclear and nonnuclear areas. During 1976 the major emphasis was on developing criteria, instruments and methods to assure that radiation exposure to occupational personnel and to people in the environs of nuclear-related facilities is maintained at the lowest level technically and economically practicable. Progress in 1976 is reported on the preparation of guidelines for radiation exposure; Pu dosimetry studies; the preparation of an environmental monitoring handbook; and emergency instrumentation preparedness

  4. The small library manager's handbook

    CERN Document Server

    Graves, Alice

    2014-01-01

    The Small Library Manager's Handbook is for librarians working in all types of small libraries. It covers the everyday nuts-and-bolts operations that all librarians must perform. This handbook, written by experts who are small librarians themselves, will help all small librarians to do multiple jobs at the same time.

  5. Handbook for TEAC Auditors, 2011

    Science.gov (United States)

    Teacher Education Accreditation Council, 2011

    2011-01-01

    This handbook is primarily for the Teacher Education Accreditation Council (TEAC) auditor. It is intended to help in preparing for audits of "Inquiry Briefs" and "Inquiry Brief Proposals" and to contribute to the writing of the audit report. This handbook contains a full description of the audit process, the responsibilities of…

  6. Use of digital dosemeters for supporting staff radiation safety in paediatric interventional radiology suites

    International Nuclear Information System (INIS)

    McNeil, S. M.; Lai, P.; Connolly, B. L.; Gordon, C. L.

    2013-01-01

    Modern-day interventional radiology (IR) procedures impart a wide range of occupational radiation doses to team members. Unlike thermoluminescent badges, digital dosemeters provide real-time dose readings, making them ideal for identifying different components during IR procedures, which influence staff radiation safety. This study focused solely on paediatric IR (PIR) cases. Digital dosemeters measured the impact of imaging modality, shielding, patient and operator specific factors, on the radiation dose received during various simulated and real live PIR procedures. They recorded potential dose reductions of 10-to 100-fold to each staff member with appropriate use of shielding, choice of imaging method, staff position in the room and complex interplay of other factors. The digital dosemeters were well tolerated by staff. Results highlight some unique radiation safety challenges in PIR that arise from dose increases with magnification use and close proximity of staff to the X-ray beam. (authors)

  7. Use of digital dosemeters for supporting staff radiation safety in paediatric interventional radiology suites.

    Science.gov (United States)

    McNeil, Sarah M; Lai, Priscilla; Connolly, Bairbre L; Gordon, Christopher L

    2013-12-01

    Modern-day interventional radiology (IR) procedures impart a wide range of occupational radiation doses to team members. Unlike thermoluminescent badges, digital dosemeters provide real-time dose readings, making them ideal for identifying different components during IR procedures, which influence staff radiation safety. This study focused solely on paediatric IR (PIR) cases. Digital dosemeters measured the impact of imaging modality, shielding, patient and operator specific factors, on the radiation dose received during various simulated and real live PIR procedures. They recorded potential dose reductions of 10- to 100-fold to each staff member with appropriate use of shielding, choice of imaging method, staff position in the room and complex interplay of other factors. The digital dosemeters were well tolerated by staff. Results highlight some unique radiation safety challenges in PIR that arise from dose increases with magnification use and close proximity of staff to the X-ray beam.

  8. Hubble Space Telescope: Faint object spectrograph instrument handbook. Version 1.1

    Science.gov (United States)

    Ford, Holland C. (Editor)

    1990-01-01

    The Faint Object Spectrograph (FOS) has undergone substantial rework since the 1985 FOS Instrument Handbook was published, and we are now more knowledgeable regarding the spacecraft and instrument operations requirements and constraints. The formal system for observation specification has also evolved considerably, as the GTO programs were defined in detail. This supplement to the FOS Instrument Handbook addresses the important aspects of these changes, to facilitate proper selection and specification of FOS observing programs. Since the Handbook was published, the FOS red detector has been replaced twice, first with the best available spare in 1985 (which proved to have a poor, and steadily degrading red response), and later with a newly developed Digicon, which exhibits a high, stable efficiency and a dark-count rate less than half that of its predecessors. Also, the FOS optical train was realigned in 1987-88 to eliminate considerable beam-vignetting losses, and the collimators were both removed and recoated for greater reflectivity. Following the optics and detector rework, the FOS was carefully recalibrated (although only ambient measurements were possible, so the far-UV characteristics could not be re-evaluated directly). The resulting efficiency curves, including improved estimates of the telescope throughput, are shown. A number of changes in the observing-mode specifications and addition of several optional parameters resulted as the Proposal Instructions were honed during the last year. Target-brightness limitations, which have only recently been formulated carefully, are described. Although these restrictions are very conservative, it is imperative that the detector safety be guarded closely, especially during the initial stages of flight operations. Restrictions on the use of the internal calibration lamps and aperture-illumination sources (TA LEDs), also resulting from detector safety considerations, are outlined. Finally, many changes have been made to

  9. Radiological, health, and safety, and occurrence reporting system audit report, Rifle, Colorado

    International Nuclear Information System (INIS)

    1993-11-01

    This paper describes an audit dated September 14--16, 1993. The performance of the contractors and subcontractors responsible for remedial action work at the former uranium ore processing site at Rifle, Colorado, and the uranium tailings disposal cell at Estes Gulch (Colorado) was reviewed during an audit conducted September 14 through 16, 1993. MK-Ferguson Company (MK-F) is the Remedial Action Contractor (RAC) responsible for engineering and construction management of the Rifle operations. The audit focused on radiological issues, occupational safety and health (OS ampersand H) issues, and the Occurrence Reporting and Processing System (ORPS). The close-out meeting was held on September 16, 1993, which was attended by representatives of MK-F, the US Department of Energy (DOE), and the Technical Assistance Contractor (TAC)

  10. Handbook of Technical Communication

    OpenAIRE

    Mehler , Alexander; Romary , Laurent; Gibbon , Dafydd

    2012-01-01

    International audience; The handbook "Technical Communication" brings together a variety of topics which range from the role of technical media in human communication to the linguistic, multimodal enhancement of present-day technologies. It covers the area of computer-mediated text, voice and multimedia communication as well as of technical documentation. In doing so, the handbook takes professional and private communication into account. Special emphasis is put on technical communication bas...

  11. Implementation of a remote system for monitoring of radiological areas of radiological areas

    International Nuclear Information System (INIS)

    Velazquez E, Walter; Galuppo G, Emiliano; Gutierrez G, Jorge; Reyes R, Jerson

    2008-01-01

    Full text: Introduction: The present work shows the development of a radiation remote monitoring system which control radiological areas in the principal facilities at CCHEN and the development in the last years to use this system called SMARR (Remote Radiological Area Monitoring System). This is an important issue in radiological safety is to know 'on line' and in a 'continuously way' the radiological variables of areas, especially if in these areas people manage radioactive sources or material, the monitoring system are operative on La Reina and Lo Aguirre Nuclear Centers. This 'knowledge' gets a good support to the radiological safety to safeguard the environment and people in the facilities. Nuclear Chilean Commission: Actually, this system is daily operating to register the background radiation and level operation, for example of the facilities research reactor, cyclone, irradiators, in order to probe the behaviors under operational requirements. The system was made using common Geiger Muller and NaI detectors. This signal is received, data by data, for a collector computer which uses a Labview program to do this displayed on a screen computer using graphics to show the activity on a radiological area, and when the lectures pass a setting value automatically the system send by e-mail and text message which also can be received for cell phones enabled for this for the supervisor. Each monitored facility is completely independent of each other and store a data backup, also every installation are monitoring with server computer, it's concentrating the information and allow to view it on line in real time, trough the intranet and internet network. In addition, the information is stored in the special report in the server and available for to do a statistics and identify the operation periods, and control of radioactive sources. The Industry: The radiological protection on industry is necessary today, the typical instrumentation on the industry is growing up in the

  12. Handbook of the Economics of Education. Volume 2

    Science.gov (United States)

    Hanushek, Erik A., Ed.; Welch, F., Ed.

    2006-01-01

    The Handbooks in Economics series continues to provide the various branches of economics with handbooks which are definitive reference sources, suitable for use by professional researchers, advanced graduate students, or by those seeking a teaching supplement. With contributions from leading researchers, each Handbook presents an accurate,…

  13. DOE handbook: Design considerations

    International Nuclear Information System (INIS)

    1999-04-01

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline

  14. DOE handbook: Design considerations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  15. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  16. Radiological safety at Argonne National Laboratory's heavy ion research facility

    International Nuclear Information System (INIS)

    Cooke, R.H.; Wynveen, R.A.

    1985-01-01

    This paper discusses the radiological safety system to be employed at the Argonne tandem-linac accelerator system (ATLAS). The design parameters of ATLAS that affect safety have remained unchanged since ATLAS construction began in 1982. This paper will present the details of the hardware, the administrative controls, and the radiation monitoring that will be in effect when beam is produced in April 1985. The experimental hall utilizing the maximum energy beam (proportional27 MeV per nucleon) from the completed ATLAS has been partitioned with shielding blocks into its final configuration. Because scientists want access to some of the partitioned-off areas while beam is present in other areas, an interlock and logic system allowing such occupancy has been designed. The rationale and hardware of the system will be discussed. Since one of the potential radiation hazards is high-energy forward-directed neutrons from any location where the beam impinges (such as collimators, bending and focussing systems, experimental targets, and beam stops), radiation surveys and hazard assessments are necessary for the administrative controls that allow occupancy of various areas. Because of the various uses of ATLAS, neutrons (the dominant beam hazard) will be non-existent in some experiments and will be of energies > or approx.10 MeV for a few experiments. These conditions may exist at specific locations during beam preparation but may change rapidly when beam is finally delivered to an experimental area. Monitoring and assessing such time varying and geographically changing hazards will be a challenge since little data will be available on source terms until various beams are produced of sufficient intensity and energy to make measurements. How the operating division for ATLAS and the Argonne safety division are addressing this aspect through administrative controls will also be discussed. (orig./HSI)

  17. Services Subcontract Technical Representative (STR) handbook

    International Nuclear Information System (INIS)

    Houston, D.H.

    1997-06-01

    The purpose of this handbook is to provide guidance to Bechtel Hanford, Inc. Subcontract Representatives in their assignments. It is the intention of this handbook to ensure that subcontract work is performed in accordance with the subcontract documents

  18. Radiological safety and GMP in the bulk batch manufacturing, formulation and dispensing of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Thulasidhasan, A.; Tiwary, Bikash; Kumar, Uma Sheri; Kale, Pooja; Tiwary, Richa; Gaurav, Ananad; Shah, B.K.; Topale, P.D.; Prabhakar, G.; Sachdev, S.S.

    2010-01-01

    Full text: Radiopharmaceutical Program of BRIT is involved in the manufacturing of ready to use radiopharmaceuticals for therapy for the last three decades. Ready to use Radiopharmaceutical products include, 131 I-Sodium iodide solution and capsules for thyroid carcinoma and metastatic lesions, 131 I MIBG injection for diagnosis and therapy of adrenal medullae tumors and their mets, 153 Sm-EDTMP injection and 32 P- Sodium orthophosphate injection for bone pain palliative treatment. BRIT's radiopharmaceutical production facility is a radioisotope laboratory classified as Type-III facility for handling radioisotopes of Group-II, Group-III and Group-IV approved by AERB. This facility meets all the radiological safety requirements as per AERB guidelines. Production of above mentioned radiopharmaceuticals is carried out in Production Plants (PP), β, γ Glove boxes (GB) and Fume hoods (FH). Typical production procedure involves bulk processing, formulation, sterilization and dispensing of doses. Production Plants (PP) are exclusively designed facilities to carry out the production in a radiologically safe manner, at the same time maintaining aseptic conditions required for injectables as per the current GMP. Each production plant has a leak tight Isolator box, made up of high quality SS which has provisions for remote handling devices like, Tongs, dispensing systems, service points for vacuum, gas, compressed air, water and electric power. This Isolator box is shielded from all sides by required amount of lead (2 inch or 4 inch), and has an access port called 'Transport Port Box' with double door transport lock and is equipped with a trolley. Two filter unit systems are fitted at the top of the plant and each unit comprises of activated Charcoal filter and HEPA filter in tandem, this in turn is connected to special exhaust meant for radioactive gases. Similarly, the designs of β, γ Glove boxes (GB) and Fume hoods (FH) also incorporate all radiological safety features

  19. Review of studies on criticality safety evaluation and criticality experiment methods

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Misawa, Tsuyoshi; Yamane, Yuichi

    2013-01-01

    Since the early 1960s, many studies on criticality safety evaluation have been conducted in Japan. Computer code systems were developed initially by employing finite difference methods, and more recently by using Monte Carlo methods. Criticality experiments have also been carried out in many laboratories in Japan as well as overseas. By effectively using these study results, the Japanese Criticality Safety Handbook was published in 1988, almost the intermediate point of the last 50 years. An increased interest has been shown in criticality safety studies, and a Working Party on Nuclear Criticality Safety (WPNCS) was set up by the Nuclear Science Committee of Organisation Economic Co-operation and Development in 1997. WPNCS has several task forces in charge of each of the International Criticality Safety Benchmark Evaluation Program (ICSBEP), Subcritical Measurement, Experimental Needs, Burn-up Credit Studies and Minimum Critical Values. Criticality safety studies in Japan have been carried out in cooperation with WPNCS. This paper describes criticality safety study activities in Japan along with the contents of the Japanese Criticality Safety Handbook and the tasks of WPNCS. (author)

  20. FCRD Transmutation Fuels Handbook 2015

    Energy Technology Data Exchange (ETDEWEB)

    Janney, Dawn Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Papesch, Cynthia Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloys containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling

  1. Welding engineering handbook. Volume 1

    International Nuclear Information System (INIS)

    Sundarrajan, S.; Bhaskar, S.V.; Amarnath Kumar, G.C.

    1992-11-01

    In this Welding Engineering Handbook, we have brought key application areas of welding which are of technocommercial importance. These details are not normally available. Each author, highly specialized in these areas has spent considerable amount of time and covered the topic exhaustively giving valuable details. Each application area has different quality requirements which are brought out clearly. This handbook is designed to cater the information source for various professionals in core sector industries like fabrication, shipbuilding, automobiles, nuclear plants, machine building, fertilisers and chemical industry, pressure vessel manufactures etc. We are sure that this handbook will serve as a reference reckoner to all plant/works managers, maintenance, projects, engineers, R and D and students. (original)

  2. The International Criticality Safety Benchmark Evaluation Project on the Internet

    International Nuclear Information System (INIS)

    Briggs, J.B.; Brennan, S.A.; Scott, L.

    2000-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in October 1992 by the US Department of Energy's (DOE's) defense programs and is documented in the Transactions of numerous American Nuclear Society and International Criticality Safety Conferences. The work of the ICSBEP is documented as an Organization for Economic Cooperation and Development (OECD) handbook, International Handbook of Evaluated Criticality Safety Benchmark Experiments. The ICSBEP Internet site was established in 1996 and its address is http://icsbep.inel.gov/icsbep. A copy of the ICSBEP home page is shown in Fig. 1. The ICSBEP Internet site contains the five primary links. Internal sublinks to other relevant sites are also provided within the ICSBEP Internet site. A brief description of each of the five primary ICSBEP Internet site links is given

  3. Proceedings of the 7th National Congress of the Mexican Society of Radiological Safety C.A.; Memorias del 7. Congreso Nacional de Sociedad Mexicana de Seguridad Radiologica A.C.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Mexican Society of Radiological Safety, celebrates on this time the 100 Anniversary of the radioactivity discovery, phenomenon coined by Marie Curie in 1898 and discover by Henry Beckerel in March 1896, when both were working with natural radioactive isotopes. Subsequently, on the new age of Physics, the use of radioactive isotopes was impulse by the invention of Cyclotron made by Dr. Ernest Orland Lawrence in the United States, which permits the manufacturing of tens of artificial radioactive isotopes which convert its in an indispensable tool in Medicine, Industry, Research, Agriculture and other disciplines, by its wide variety of applications, creating the radiological safety culture by the implicit risk in the use of these materials. From its creation in 1976, our society was removing to promote the radiological safety and two years each celebrates its National Congress removing specialists in this discipline and invite new generations to awake their interest by this useful field. (Author).

  4. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  5. Diagnosis of current state of the radiological safety system in the radiotherapy services of CCSS

    International Nuclear Information System (INIS)

    Calvo, Carolina Masis

    2013-01-01

    This article presents an analysis of evaluation reports issued by the Area of Control of Quality and Radiation Protection (ACCPR) of the Caja Costarricense de Seguro Social (CCSS, unit responsible for monitoring and auditing the System of Institutional Radiation Safety of the Costa Rica. In addition, were conducted a series of interviews to the radiotherapy services and authorities of the services to determine the internal perception on the performance and suitability of these programs.The results of this research have allowed identifying an improvement in the level of compliments of the current legislation on protection and radiation safety in these services through the previous five years; and how internally there is a positive perception of the officials, confirming the suitability of Radiological Protection and Quality Control Programs local. As a result of the analysis of the information gathered, we propose a series of actions and recommendations, that will allow improvements in the System of Institutional Radiation Safety, as the implementation of evaluations type QUATRO and the improvement of the local training programs

  6. Public Health Service Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    McBride, J R [Southwestern Radiological Health Laboratory, Las Vegas, NV (United States)

    1969-07-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  7. Public Health Service Safety Program

    International Nuclear Information System (INIS)

    McBride, J.R.

    1969-01-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  8. Public competitive examination for radiology technologist: knowledge in radiation protection required in Brazil

    International Nuclear Information System (INIS)

    Oliveira, J.S.; Silva, K.R.; Gomes, A.S.

    2017-01-01

    Ionizing radiations are used in areas such as health, industry and safety, not only in the private sector, but also in the public. Thus, it is necessary the radiological protection, a set of studies and practices that increases the safety in these applications, where the professional involved is the technologist in radiology. The objective was to analyze the contents effectively required by the Brazilian public agencies in their competitions for radiology technologist, regarding the area of radiological protection, identifying their profile of requirement. It consisted of three stages: first, a survey of all the public competitions already carried out in the country up to the end of 2016, that requested a diploma of graduation in Technology in Radiology; second, all the specific questions were collected and grouped in an electronic text file; third, issues involving radiological protection were segregated, using as reference the 2017 edition of the National Nuclear Energy Commission's General Proof of Radioprotection Supervision. The results showed that almost 40% of the competition questions were about radiation protection. From this sampling, the topics most covered were: radiological safety (36%), fundamentals of atomic and nuclear physics (24%) and biological effects of radiation (16%). It is concluded that the competitions for radiologist technologist have the profile of concentration of exigency in radiological safety, fundamentals of atomic and nuclear physics and biological effects of the radiations

  9. Handbook of Social Capital

    DEFF Research Database (Denmark)

    The Handbook of Social Capital balances the ‘troika' of sociology, political science and economics by offering important contributions to the study of bonding and bridging social capital networks. This inter-disciplinary Handbook intends to serve as a bridge for students and scholars within all...... the social sciences. The contributors explore the different scientific approaches that are all needed if international research is to embrace both the bright and the more shadowy aspects of social capital....

  10. Soviet Space Program Handbook.

    Science.gov (United States)

    1988-04-01

    in advance and some events were even broadcast live. Immediately following the first success- ful launch of their new Energia space launch vehicle in...early 1988. Just as a handbook written a couple of years ago would need updating with Mir, Energia , and the SL-16, this handbook will one day need up...1986. Johnson, Nicholas L. The Soviet Year in Space 1983. Colorado Springs, CO: Teledyne Brown Engineering, 1984. Lawton, A. " Energia - Soviet Super

  11. Handbook for Greenhouse Rose Production Ethiopia

    NARCIS (Netherlands)

    Maden, van der E.; Hoogerwerf, F.; Marrewijk, van J.; Kerklaan, E.; Posthumus, J.; Boven, van A.; Elings, A.; Garcia Victoria, N.; Rikken, M.; Humphries, G.

    2012-01-01

    This practical handbook is prepared by DLV Plant, in collaboration with Wageningen UR, CBI and EHPEA, under assignment of the Ethiopia Netherlands Horticulture Partnership (ENHP). The following persons have contributed to this handbook: DVL Plant: Edwin van der Maden, Francis Hoogerwerf, Jeroen van

  12. Radiological protection system in the era of nuclear renaissance expectation for development of radiological protection system

    International Nuclear Information System (INIS)

    Toyomatsu, Hideki

    2008-01-01

    The current radiological protection system, which was established mainly by the ICRP and UNSCEAR, has contributed to the prevention of potential radiological health hazards, and has been a fundamental concept during the development of nuclear energy. Through a detailed discussion regarding the new ICRP recommendations, the world nuclear industry has reached a consensus that the current radiological protection system keeps its integrity in principle although it involves some remaining issues, such as the disposal of radioactive waste. In order to maximize the advantages of nuclear energy while keeping the integrity of radiological protection system, it is essential to address the characteristics of radiation, which is specific to nuclear energy, so that nuclear energy can coexist with other energy sources. The three basic principles of radiological protection (i.e., justification, optimization and dose limits), which were completed in the 1990 recommendations of ICRP, should be retained as the basic concepts for the future radiological protection system in order to maintain the continuity and consistency of the radiological protection system. The radiological protection system can be furthermore developed only by combining the above three principles with best practices extracted from utilities' field experience. The significant reduction of radiation exposures received by members of the public and radiation workers in the field has resulted from the efforts by the world utilities to achieve the optimization. In order to correctly apply the theory to the work practices, it is essential to see how the theory is practically used in the field. Such a process should be also emphasized in the revision work of the IAEA Basic Safety Standards (BSS), which is currently under progress. Integrating the theory in the work practices is the key to the true development of nuclear renaissance, which could lead to the establishment of the nuclear safety regime. (author)

  13. Handbook on modelling for discrete optimization

    CERN Document Server

    Pitsoulis, Leonidas; Williams, H

    2006-01-01

    The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...

  14. Handbook of nuclear data for safeguards

    International Nuclear Information System (INIS)

    Lammer, M.; Schwerer, O.

    1991-06-01

    This handbook contains nuclear data needed by safeguards users for their work. It was initiated by an IAEA working group, and the contents were defined by the relies to a questionnaire sent to safeguards specialists. This is a preliminary edition of the handbook for distribution to safeguards and nuclear data experts for review. The present edition of the handbook contains the following basic nuclear data: actinides: nuclear decay data, thermal neutron cross sections and resonance integrals, prompt neutron data, delayed neutron data; fission products: nuclear decay data, thermal neutron capture cross sections and resonance integrals; fission product yields. Also included are appendices that summarize the data requested by safeguards users, and that present a number of questions to them and to data experts on the data contained in this preliminary issue and about additional data for possible inclusion in future editions and updates of the handbook

  15. Radiological and the other safety aspects in the operation of electron beam facility

    International Nuclear Information System (INIS)

    Loterina, Roel Alamares

    2003-01-01

    The radiological safety aspects of the operation of an electron beam facility in general and the 3 MeV ALURTRON electron beam facility of the Malaysian Institute of Nuclear Technology Research (MINT) in particular were reviewed and evaluated. Evaluation was made based on existing records as well as actual monitoring around facility. Area monitoring results using TLDs are within permissible levels. The maximum reading of 7.29 mSv measured in year 2000 is very low as compared to the annual dose limit of 50 mSv/year. In general, the shielding for the installation is adequate and no significant radiation leakage were detected based on radiation survey results. However, measured radiation levels with a maximum of 1.9 mSv/h at the sampling ports easily exceed the limit of 25μSv/h. The facility is equipped with safety features, such as interlocked system, adequate shielding, engineered safety design of irradiation and accelerator rooms, and accessories such as conveyor system and product handling system. Warning lights and signals are adequately installed around the facility. Other identified hazards that may affect the operator, workers, and personnel were also evaluated based on previous records of monitoring. The ozone concentration levels with a maximum reading of 0.05 ppm measured in the environment of the facility are within the threshold limit value of 0.1 ppm. The measured noise levels at all locations around facility are generally below the maximum permissible level of 80dB. The ALURTRON has achieved a minimum safety requirement to warrant its full operation without relying on administrative controls and procedures to ensure safety in operation. (Auth.)

  16. Handbook on data centers

    CERN Document Server

    Khan, Samee Ullah

    2015-01-01

    This handbook offers a comprehensive review of the state-of-the-art research achievements in the field of data centers. Contributions from international, leading researchers and scholars offer topics in cloud computing, virtualization in data centers, energy efficient data centers, and next generation data center architecture.  It also comprises current research trends in emerging areas, such as data security, data protection management, and network resource management in data centers. Specific attention is devoted to industry needs associated with the challenges faced by data centers, such as various power, cooling, floor space, and associated environmental health and safety issues, while still working to support growth without disrupting quality of service. The contributions cut across various IT data technology domains as a single source to discuss the interdependencies that need to be supported to enable a virtualized, next-generation, energy efficient, economical, and environmentally friendly data cente...

  17. Mechanical Design Handbook for Elastomers

    Science.gov (United States)

    Darlow, M.; Zorzi, E.

    1986-01-01

    Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.

  18. Information security employee handbook: November 2010

    OpenAIRE

    2013-01-01

    This handbook is a quick reference guide to some of the most important points of the London 2012 information security policy. This information security handbook outlines the policies that all staff, secondees, volunteers and certain third parties who process LOCOG information must comply with.

  19. Radiologic considerations

    International Nuclear Information System (INIS)

    Judge, L.O.

    1987-01-01

    An increasing variety of imaging modalities as well as refinements of interventional techniques have led to a resurgence of radiologic interest and participation in urolithiasis management. Judicious selection of the diagnostic examination, close monitoring during the procedure, consultation with urologic colleagues, and a careful regard for radiation safety guidelines define the role of the radiologist in renal stone disease

  20. NMSS handbook for decommissioning fuel cycle and materials licensees

    International Nuclear Information System (INIS)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ''Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.'' The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC's SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook

  1. Radiological risk guidelines for nonreactor nuclear facilities at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Lucas, D.E.; Ikenberry, T.A.

    1994-03-01

    Radiological risk evaluation guidelines for the public and workers have been developed at the Pacific Northwest Laboratory (PNL) based upon the Nuclear Safety Policy of the US Department of Energy (DOE) established in Secretary of Energy Notice SEN-35-91 (DOE 1991). The DOE nuclear safety policy states that the general public be protected-such that no individual bears significant additional risk to health and safety from the operation of a DOE nuclear facility above the risks to which members of the general population are normally exposed. The radiological risk evaluation guidelines developed at PNL are unique in that they are (1) based upon quantitative risk goals and (2) provide a consistent level of risk management. These guidelines are used to evaluate the risk from radiological accidents that may occur during research and development activities at PNL. A safety analyst uses the frequency of the potential accident and the radiological dose to a given receptor to determine if the accident consequences meet the objectives of the Nuclear Safety Policy

  2. DOE handbook: Guide to good practices for training and qualification of chemical operators

    International Nuclear Information System (INIS)

    1996-03-01

    The purpose of this Handbook is to provide contractor training organizations with information that can be used as a reference to refine existing chemical operator training programs, or develop new training programs where no program exists. This guide, used in conjunction with facility-specific job analyses, will provide a framework for training and qualification programs for chemical operators at DOE reactor and nonreactor facilities. Recommendations for qualification are made in four areas: education, experience, physical attributes, and training. Contents include: initial qualification; administrative training; industrial safety training; specialized skills training; on-the-job training; trainee evaluation; continuing training; training effectiveness evaluation; and program records. Two appendices describe Fundamentals training and Process operations. This handbook covers chemical operators in transportation of fuels and wastes, spent fuel receiving and storage, fuel disassembly, fuel reprocessing, and both liquid and solid low-level waste processing

  3. Annual report on occupational safety 1985

    International Nuclear Information System (INIS)

    1986-09-01

    This report presents information on occupational safety relating to the Company's employees for the year 1985, and compares data with figures for the previous year. The following headings are listed: principle activities of BNFL, general policy and organisation, radiological safety, including whole body, skin and extremity, and internal organ doses, non-radiological safety, incidents reportable to the health and safety executive. (U.K.)

  4. Radiological/toxicological sabotage assessments at the Savannah River Site

    International Nuclear Information System (INIS)

    Johnson, H.D.; Pascal, M.D.; Richardson, D.L.

    1995-01-01

    This paper describes the methods being employed by Westinghouse Savannah River Company (WSRC) to perform graded assessments of radiological and toxicological sabotage vulnerability at Savannah River Site (SRS) facilities. These assessments are conducted to ensure that effective measures are in place to prevent, mitigate, and respond to a potential sabotage event which may cause an airborne release of radiological/toxicological material, causing an adverse effect on the health and safety of employees, the public, and the environment. Department of Energy (DOE) Notice 5630.3A, open-quotes Protection of Departmental Facilities Against Radiological and Toxicological Sabotage,close quotes and the associated April 1993 DOE-Headquarters guidance provide the requirements and outline an eight-step process for hazardous material evaluation. The process requires the integration of information from a variety of disciplines, including safety, safeguards and security, and emergency preparedness. This paper summarizes WSRC's approach towards implementation of the DOE requirements, and explains the inter-relationships between the Radiological and Toxicological Assessments developed using this process, and facility Hazard Assessment Reports (HAs), Safety Analysis Reports (SARs), and Facility Vulnerability Assessments (VAs)

  5. Toxicological and radiological safety of chicken meat irradiated with 7.5 MeV X-rays

    Science.gov (United States)

    Song, Beom-Seok; Lee, Yunjong; Park, Jong-Heum; Kim, Jae-Kyung; Park, Ha-Young; Kim, Dong-Ho; Kim, Chang-Jong; Kang, Il-Jun

    2018-03-01

    This study was conducted to evaluate the toxicological and radiological safety of chicken meat that had been irradiated at 30 kGy with 7.5 MeV X-rays. In a sub-chronic toxicity study, ICR mice were fed X-ray-irradiated chicken meat at 2500 mg/kg body weight daily for 90 days, and no mortality or abnormal clinical signs were observed throughout the study period. However, several hematological and serum biochemical parameters of the ICR mice differed significantly from those in the control group; nevertheless, the observed values were all within the normal range for the respective parameters. In addition, no toxicological effects were determined in male or female mice. Furthermore, no differences in gamma-ray spectrometric patterns were detected between the non-irradiated and irradiated samples, indicating that the radioactivity induced by 7.5 MeV X-ray irradiation was below the detection limit. These results tentatively suggest that chicken meat irradiated with 7.5 MeV X-rays would be safe for human consumption in terms of toxicology and radiology.

  6. Protection of staff in interventional radiology

    International Nuclear Information System (INIS)

    Melkamu, M. A.

    2013-04-01

    This project focuses on the interventional radiology. The main objective of this project work was to provide a guidance and advice for occupational exposure and hospital management to optimize radiation protection safety and endorse safety culture. It provides practical information on how to minimize occupational exposure in interventional radiology. In the literature review all considerable parameters to reduce dose to the occupationally exposed are well discussed. These parameters include dose limit, risk estimation, use of dosimeter, personal dose record keeping, analysis of surveillance of occupational dose, investigation levels, and proper use of radiation protection tools and finally about scatter radiation dose rate. In addition the project discusses the ways to reduce occupational exposure in interventional radiology. The methods for dose reduction are minimizing fluoroscopic time, minimizing the number of fluoroscopic image, use of patient dose reduction technologies, use of collimation, planning interventional procedures, positioning in low scattered areas, use of protective shielding, use of appropriate fluoroscopic imaging equipment, giving training for the staff, wearing the dosimeters and know their own dose regularly, and management commitment to quality assurance and quality control system and optimization of radiation protection of safety. (author)

  7. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  8. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  9. The digital media handbook

    CERN Document Server

    Dewdney, Andrew

    2013-01-01

    The new edition of The Digital Media Handbook presents an essential guide to the historical and theoretical development of digital media, emphasising cultural continuity alongside technological change, and highlighting the emergence of new forms of communication in contemporary networked culture.Andrew Dewdney and Peter Ride present detailed critical commentary and descriptive historical accounts, as well as a series of interviews from a range of digital media practitioners, including producers, developers, curators and artists.The Digital Media Handbook highlights key concerns of today's prac

  10. Handbook on Decision Making

    CERN Document Server

    Jain, Lakhmi C

    2010-01-01

    The present "Volume 1: Techniques and Applications" of the "Handbook on Decision Making" presents a useful collection of AI techniques, as well as other complementary methodologies, that are useful for the design and development of intelligent decision support systems. Application examples of how these intelligent decision support systems can be utilized to help tackle a variety of real-world problems in different domains, such as business, management, manufacturing, transportation and food industries, and biomedicine, are presented. The handbook includes twenty condensed c

  11. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  12. Knowledge Service Engineering Handbook

    CERN Document Server

    Kantola, Jussi

    2012-01-01

    Covering the emerging field of knowledge service engineering, this groundbreaking handbook outlines how to acquire and utilize knowledge in the 21st century. Drawn on the expertise of the founding faculty member of the world's first university knowledge engineering service department, this book describes what knowledge services engineering means and how it is different from service engineering and service production. Presenting multiple cultural aspects including US, Finnish, and Korean, this handbook provides engineering, systemic, industry, and consumer use viewpoints to knowledge service sy

  13. Radiological health aspects of uranium milling

    International Nuclear Information System (INIS)

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized

  14. Radiological health aspects of uranium milling

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  15. Automated system for the management of the radiological safety in a radiopharmaceutical and labelled compounds production center; Sistema automatizado para la gestion de la seguridad radiologica un centro de produccion de radiofarmacos y compuestos marcados

    Energy Technology Data Exchange (ETDEWEB)

    Amador B, Z.H. [Centro de Isotopos, Ave. Monumental y Carretera La Rada, Km. 3, Guanabacoa, Apartado 3415, Ciudad de La Habana (Cuba); Alvarez Builla de Sologuren, E. [Centro de Gestion de Informacion y Desarrollo de la Energia, Cale 20 No. 4111 e/47y 18A, Playa, Ciudad de La Habana (Cuba)]. e-mail: zabalbona@centis.edu.cu

    2006-07-01

    The establishment in the Center of Isotopes of Cuba of a managerial quality system in matter of radiological safety Y the accumulated operational experience, its constitute the foundations for the development of a system of management of the radiological safety organically structured, with the application of evaluative techniques of it management Y it integration in an automated system. The Visual Basic 5 platform for the programming of the 'SASR' system is used. The functions of each one of the 11 modules that integrate it are described. With this it can be carried out the registration of the data of the training Y the personnel's authorization, the checkup of the radioactive inventory of the installation, the annual upgrade of the registrations of the individual doses of those workers, the analysis of the state of the available equipment for magnitude to control, the radiological situation of the work positions, the public exposure by the gassy discharges, the experiences of the radiological events, the annual consolidation of the costs of the safety Y the evaluation of indicators Y of tendencies. A computer tool that facilitates the effective management of the radiological safety in a radioactive installation is obtained. (Author)

  16. Student manual, Book 2: Orientation to occupational safety compliance in DOE

    Energy Technology Data Exchange (ETDEWEB)

    Colley, D.L.

    1993-10-01

    This is a student hand-book an Occupational Safety Compliance in DOE. Topics include the following: Electrical; materials handling & storage; inspection responsibilities & procedures; general environmental controls; confined space entry; lockout/tagout; office safety, ergonomics & human factors; medical & first aid, access to records; construction safety; injury/illness reporting system; and accident investigation procedures.

  17. Handbook of Qualitative Research. Second Edition.

    Science.gov (United States)

    Denzin, Norman K., Ed.; Lincoln, Yvonna S., Ed.

    This handbook's second edition represents the state of the art for the theory and practice of qualitative inquiry. It features eight new topics, including autoethnography, critical race theory, applied ethnography, queer theory, and "testimonio"every chapter in the handbook has been thoroughly revised and updated. The book…

  18. Evaluation of radiological safety conditions of panoramic portable irradiators of industrial radiography used in Brazil

    International Nuclear Information System (INIS)

    Aquino, Josilto Oliveira de

    2003-08-01

    In Brazil, the applications of ionizing radiation in industrial area are performed in about 900 installations, in which around 3000 radioactive sources are handled. Industrial radiography represents 14 % of this total, with 217 X rays equipment and 287 gamma radiography apparatus, according to a survey conducted in the present work. From these gamma apparatus, 90 % employ 192 Ir sources, followed by 60 Co and 75 Se, with 5 % each. The great majority of the 192 Ir apparatus have been in continuous usage in Brazil for more than 20 years, which means that they are old equipment. The totality of the 11 models of 192 Ir apparatus used in Brazil is imported from abroad. Those apparatus are portable, and almost all operate according to category II, i.e., the source assembly is mechanically projected out of the container. This last characteristic, besides the fact that the apparatus are already old-fashioned and worn-out, raises concerns about their radiological safety. The main objective of this work was to develop a specific methodology for inspection, testing and assessment of the radiological safety devices and state of maintenance of the 192 Ir apparatus. The idea is to prevent accidents, as physical failures can lead to overexposure of working staffs. In order to accomplish this, almost a hundred 192 Ir apparatus, from the 11 models used in Brazil, were studied. According to our results, almost 20 % of the 97 apparatus evaluated presented some kind of unsafe condition for proper operation, like poor state of maintenance and faults at the lock that retains the source at the secure position. From the 11 imported models of 192 Ir apparatus in use in Brazil, six models were already manufactured incorporating the safety devices specified by the first edition of the Standard ISO 3999, edited in 1977. However, five models do not comply even with this first edition of the Standard ISO 3999. Thus, they lack some important and basic safety devices. None of the 11 models comply

  19. The biodiesel handbook

    National Research Council Canada - National Science Library

    Knothe, Gerhard; Krahl, Jurgen; Van Gerpen, Jon Harlan

    2010-01-01

    .... The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental...

  20. Springer handbook of robotics

    CERN Document Server

    Khatib, Oussama

    2016-01-01

    The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition o...

  1. Speech-Language-Pathology and Audiology Handbook.

    Science.gov (United States)

    New York State Education Dept., Albany. Office of the Professions.

    The handbook contains State Education Department rules and regulations that govern speech-language pathology and audiology in New York State. The handbook also describes licensure and first registration as a licensed speech-language pathologist or audiologist. The introduction discusses professional regulation in New York State while the second…

  2. Medical radiology terminology

    International Nuclear Information System (INIS)

    1986-01-01

    Standardization achievements in the field of radiology induced the IEC to compile the terminology used in its safety and application standards and present it in publication 788 (1984 issue), entitled 'Medical radiology terminology'. The objective pursued is to foster the use of standard terminology in the radiology standards. The value of publication 788 lies in the fact that it presents definitions of terms used in the French and English versions of IEC standards in the field of radiology, and thus facilitates adequate translation of these terms into other languages. In the glossary in hand, German-language definitions have been adopted from the DIN standards in cases where the French or English versions of definitions are identical with the German wording or meaning. The numbers of DIN standards or sections are then given without brackets, ahead of the text of the definition. In cases where correspondance of the various texts is not so good, or reference should be made to a term in a DIN standard, the numbers are given in brackets. (orig./HP) [de

  3. Radiation safety knowledge of medical center radiology technologists in southern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Su Wen-Chuan; Huang Ying-Fong; Chen Cheng-Chung; Chang Pao-Shu [Kaohsiung Medical University, Taiwan (China)

    2000-05-01

    People who live in Taiwan are getting more and more afraid of radiation. Sometimes the phobia results from distorted knowledge. Radiology technologists, in one hand, are more well-educated in radiation and, in the other hand, have more chance to expose to radiation when they are operating radiation producing medical instruments in their daily life. So we are interested in whether they have enough knowledge to protect themselves. We pick up the radiology technology board examination to make the questionnaire for this study. The population is the radiology technologists who work at department of diagnostic radiology, of radiation therapy and nuclear medicine in medical centers. Statistics is then used to see the relationship between knowledge and the factors including gender, age and career period. Based on statistics, we find out that there is significant correlation between the knowledge with age or education level. Elder or lower education level ones has worse knowledge. Continued education may be highly recommended for radiology technologists to avoid occupational radiation injury. (author)

  4. Radiation safety knowledge of medical center radiology technologists in southern Taiwan

    International Nuclear Information System (INIS)

    Su Wen-Chuan; Huang Ying-Fong; Chen Cheng-Chung; Chang Pao-Shu

    2000-01-01

    People who live in Taiwan are getting more and more afraid of radiation. Sometimes the phobia results from distorted knowledge. Radiology technologists, in one hand, are more well-educated in radiation and, in the other hand, have more chance to expose to radiation when they are operating radiation producing medical instruments in their daily life. So we are interested in whether they have enough knowledge to protect themselves. We pick up the radiology technology board examination to make the questionnaire for this study. The population is the radiology technologists who work at department of diagnostic radiology, of radiation therapy and nuclear medicine in medical centers. Statistics is then used to see the relationship between knowledge and the factors including gender, age and career period. Based on statistics, we find out that there is significant correlation between the knowledge with age or education level. Elder or lower education level ones has worse knowledge. Continued education may be highly recommended for radiology technologists to avoid occupational radiation injury. (author)

  5. Federal environmental inspections handbook

    International Nuclear Information System (INIS)

    1991-10-01

    This Federal Environmental Inspection Handbook has been prepared by the Department of Energy (DOE), Office of Environmental Guidance, RCRA/CERCLA Division (EH-231). It is designed to provide DOE personnel with an easily accessible compilation of the environmental inspection requirements under Federal environmental statutes which may impact DOE operations and activities. DOE personnel are reminded that this Handbook is intended to be used in concert with, and not as a substitute for, the Code of Federal Regulations (CFR). Federal Register (FR), and other applicable regulatory documents

  6. Handbook of optical design

    CERN Document Server

    Malacara-Hernández, Daniel

    2013-01-01

    Handbook of Optical Design, Third Edition covers the fundamental principles of geometric optics and their application to lens design in one volume. It incorporates classic aspects of lens design along with important modern methods, tools, and instruments, including contemporary astronomical telescopes, Gaussian beams, and computer lens design. Written by respected researchers, the book has been extensively classroom-tested and developed in their lens design courses. This well-illustrated handbook clearly and concisely explains the intricacies of optical system design and evaluation. It also di

  7. Nanoelectronic device applications handbook

    CERN Document Server

    Morris, James E

    2013-01-01

    Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal-oxide-semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world.These include: Nanoscale advance

  8. Resource handbook on transport risk assessment (invited paper)

    International Nuclear Information System (INIS)

    Chen, S.Y.; Biwer, B.M.; Monette, F.A.; Luna, R.; Weiner, R.; Yoshimura, R.; Detrick, C.; Dunn, T.; Maheras, S.; Bhatnager, S.; Kapoor, A.K.

    2003-01-01

    The US Department of Energy's (DOE's) National Transportation Program established the DOE Transportation Risk Assessment Working Group (TRAWG) to develop the Resource Handbook on DOE Transportation Risk Assessment, published in July 2002. The working group is comprised of technical experts representing DOE national laboratories, the DOE Naval Reactors Program, and DOE contractors. The motivation behind preparing this handbook was to document and disseminate lessons learned and information accumulated from more than 20 years of experience by DOE and its contractors in preparing transport risk assessments that address the shipment of virtually all types of radioactive materials and wastes. The handbook is intended to serve as a primary source of information on conducting transport risk assessments for shipments of radioactive materials or wastes under both normal and accident conditions. The paper provides an overview of the information contained in the handbook. It should be recognised that development of radioactive materials transport risk assessment is an ongoing process, and that the analysis methods are regularly improved. The Resource Handbook on DOE Transportation Risk Assessment appears on the Web at www.ntp.doe.gov/transrisk_handbook.pdf. (author)

  9. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities; Analise das condicoes de protecao e seguranca radiologicas das instalacoes com aceleradores de particulas na area de pesquisa no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Manuel Jacinto Martins

    2010-07-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  10. Quality control in dental diagnostic radiology : anomalous in the use of radiological equipment

    International Nuclear Information System (INIS)

    Alcaraz, M.; Martinez-Beneyto, Y.; Jodar, S.; Velasco, E.; Garcia-Vera, M. C.

    2004-01-01

    7,176 official quality control reports on dental diagnostic radiology were studied, relating to dental clinics located in 37 Spanish provinces covering 16 different autonomous Regions. The reports were issued as a result of the entry into force of Royal Decree 2071/1995 on quality control in General Diagnostic Radiology facilities, this Royal Decree was replaced by R. D. 1976/1999. The reports were writen by the UTPR (Technical Unit of Radiological Protection) Agsigma S. A. L., a company approved by the Nuclear Safety Council, and they correspond with the official reports issued during 1996-2001. This meants that a 5-year period has been monitored in order to observe the impacts of the establlishment of this legislation on quality control in intraoral dental diagnostic radiology facilities. The results show that 72.79% of the reports checked in 2001 would comply with the European Union's official recommendation (70 kVp, 8 mA> 1.5 mm of Al and 20 cm collimator length). Significant alterations have detected in a third (30.59%) of the radiological equipment. (Author) 36 refs

  11. Continuing training in radiological protection as an effective means of avoiding radiological accidents

    International Nuclear Information System (INIS)

    Lima, C.M.A.; Pelegrineli, S.Q.; Martins, G.; Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    it is notorious that one of the main causes of radiological accidents is the lack of knowledge of radiological protection of workers. In order to meet the needs of professionals in acquiring a solid base in radiological protection and safety, was created in 2013, by the Casa Branca School / SP and technically supported by the company MAXIM Cursos, the 'Post-Graduation Course Lato Sensu de Radiological Protection in Medical, Industrial and Nuclear Applications', which offers a broad improvement in radiation protection. The course of 380 hours and duration of 18 months is divided into 13 modules, including theoretical classes, in person and online using the virtual classroom and practical training in radiation protection in general. In the end students should present a monograph, guided by a course teacher and reviewed by an Examining Bank. Five classes have been formed in these four years, totaling 92 students. In all, 51 monographs have been defended on topics of technical and scientific interest. For this, the Faculty consists of 25 professors, being 9 Doctors, 13 Masters and 3 Specialists in Radiological Protection

  12. Handbook on Nuclear Law: Implementing Legislation (Spanish Edition)

    International Nuclear Information System (INIS)

    Stoiber, C.; Cherf, A.; Tonhauser, W.; Vez Carmona, Maria de Lourdes

    2012-01-01

    In 2003, the IAEA published the Handbook on Nuclear Law (the 2003 Handbook), which emphasized that the safe and peaceful uses of nuclear energy in any State can only be ensured with the promulgation and implementation of an effective national legal framework to govern this technology. The IAEA has long been involved in providing assistance to its Member States in developing these frameworks, and demand for such assistance has increased dramatically. Since publication of the 2003 Handbook, requests for IAEA legislative assistance have - if anything - been even more numerous, in large part due to the fact that over sixty Member States that currently do not utilize nuclear energy for the production of electrical power have recently expressed interest in pursuing this option. The current nuclear laws in many of these States are limited to non-power uses of ionizing radiation, such as those utilizing radiation sources for medical, agricultural and industrial purposes. If these States move toward nuclear power development, they will need to adopt legislation consistent with the various relevant international legal instruments covering the field (such as the Convention on Nuclear Safety and the Convention on the Physical Protection of Nuclear Material, among others) and with relevant voluntary guidance documents developed under the aegis of the IAEA. The 2003 Handbook has already made an important contribution to enhancing national capabilities to develop the necessary legal frameworks by setting out the general scheme of nuclear law. However, a number of important developments in nuclear law have occurred since its publication. These developments are discussed in the present volume. Also, over the past six years, representatives of many Member States receiving IAEA legislative assistance have suggested that it would be valuable to develop model texts of legislative provisions covering the key elements needed in a national nuclear law. The present volume provides such

  13. Saving time with a computerised handbook

    International Nuclear Information System (INIS)

    Henrie, D.K.

    1993-01-01

    The DE/CAASE computerised engineering handbook (Desktop Engineering, Mahwah, NJ, USA) is a software tool designed to automate a wide variety of engineering tasks that are typically performed with an engineering handbook and hand calculator. It significantly reduces the time taken to perform these tasks. For example, instead of spending 60 minutes on determining section properties of composite sections in control room panels and other equipment by hand, it might take less than 5 minutes by using the computerised handbook. Similarly, mode shapes and frequencies of simple structures may take less than 10 minutes to calculate, compared with the hours it used to take. (author)

  14. Handbook of divorce and relationship dissolution

    CERN Document Server

    Fine, Mark A

    2013-01-01

    This Handbook presents up-to-date scholarship on the causes and predictors, processes, and consequences of divorce and relationship dissolution. Featuring contributions from multiple disciplines, this Handbook reviews relationship termination, including variations depending on legal status, race/ethnicity, and sexual orientation. The Handbook focuses on the often-neglected processes involved as the relationship unfolds, such as infidelity, hurt, and remarriage. It also covers the legal and policy aspects, the demographics, and the historical aspects of divorce. Intended for researchers, practitioners, counselors, clinicians, and advanced students in psychology, sociology, family studies, communication, and nursing, the book serves as a text in courses on divorce, marriage and the family, and close relationships.

  15. Environmental monitoring program for radiological emergencies at the Almirante Alvaro Alberto Nuclear Power Plant, Angra dos Reis, Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Lilia M.J. Belem; Ramos Junior, Anthenor C.; Gomes, Carlos A.; Carvalho, Zenildo L.; Gouveia, Vandir; Estrada, Julio; Ney, Cezar [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1997-12-31

    In order to respond to a major radiological emergency at the Almirante Alvaro Alberto Nuclear Power Plant, located in Angra do Reis, Rio de Janeiro, the Emergency Response Team of the Institute of Radiation Protection and Dosimetry (IRD/CNEN) established a program of environmental monitoring. A monitoring trend to assess the off-site radiological conditions and give support to decision making for implementing protective measure in case of a radiological accident is presented. For the selection of the monitoring points, the program takes into account atmospheric diffusion, population conglomerates and their habits, water and land use; it includes the entire Emergency Planning Zone of 15 km radius. The program has been organized in the form of a handbook to facilitate handling by field teams 2 refs., 1 fig.; e-mail: lilia at ird.gov.br

  16. Action Handbook for Automotive Service Instruction.

    Science.gov (United States)

    Motor Vehicle Manufacturers Association of the U.S., Inc., Detroit, MI.

    The document is a handbook for a vocational automotive service education program which was formulated as a result of a four-day series of intensive workshops called the National Automotive Service Vocational Education Conference. The handbook discusses the major components of an automotive service vocational education program and aspects of their…

  17. DOE enforcement program roles and responsibilities: DOE handbook

    International Nuclear Information System (INIS)

    1995-08-01

    The Price-Anderson Act provides indemnification to DOE contractors who manage and conduct nuclear activities in the DOE complex. The government acts as an insurer for these contractors against any findings of liability from the nuclear activities of the contractor within the scope of its contract. 10 CFR Part 820 establishes the legal framework for implementing DOE's Nuclear Safety Enforcement Program. Integration with other DOE organizations and programs would assure that the enforcement process properly considers the actual or potential safety significance of a violation when determining an appropriate enforcement sanction. Achieving a proactive contractor compliance assurance rather than a heavy enforcement hand, will require a foundation of cooperation and teamwork across DOE organizations. This handbook identifies the areas of interface for the DOE Enforcement Program and provides guidance on roles and responsibilities for the key DOE organizational areas. It complements DOE-HDBK-1087-95 and 1089-95

  18. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  19. Fundamental features and main problems of nuclear power and radiological safety law

    International Nuclear Information System (INIS)

    Moser, B.

    1981-01-01

    This report deals on a general basis with the legal spheres affected by the utilisation of nuclear energy and protection from ionising radiation. Following a historical survey of the development both in the field of national legisation in Austria and internationally, the five principal legal spheres are discussed in detail. These are administrative law, liability and insurance law, criminal law, constitutional law and international law. In the foreground of discussion is administrative law, which is mainly of a preventive nature. This also comprises radiological safety law. Next in importance is liability and insurance law, which, in contrast to the former, aims at compensation for damage. Criminal law is also intended to have a preventive effect. Finally, the author discusses the peaceful use of nuclear energy in relation to the constitutional law and the international law in force. (Auth.)

  20. Decree No. 78/84 of 5 September 1984 regulating safety and radiological protection in mines and related ore treatment and uranium recovery

    International Nuclear Information System (INIS)

    1984-01-01

    This Decree was issued in pursuance of Decree-Law No. 426/83 of 7 December 1983 which provides that safety and radiological protection regulations shall be made for activities involving the mining of uranium and related treatment of uranium. It lays down definitions of technical radiation protection terms and sets out the requirements for permissible concentrations and internal and sets out the requirements for permissible concentrations and internal and external dose-limits for workers and members of the public. The Decree also sets up a Radiological Protection Service responsible for ensuring that the provisions of the Decree are observed. (NEA) [fr

  1. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  2. Information security management handbook

    CERN Document Server

    2002-01-01

    The Information Security Management Handbook continues its tradition of consistently communicating the fundamental concepts of security needed to be a true CISSP. In response to new developments, Volume 4 supplements the previous volumes with new information covering topics such as wireless, HIPAA, the latest hacker attacks and defenses, intrusion detection, and provides expanded coverage on security management issues and applications security. Even those that don't plan on sitting for the CISSP exam will find that this handbook is a great information security reference.The changes in the tech

  3. The french criticality handbook

    International Nuclear Information System (INIS)

    Maubert, L.; Puit, J.C.

    1987-01-01

    The french criticality handbook, published in 1978 by the ''Commissariat a l'Energie Atomique'', is presented with the main targets aimed by the writer and the main choices taken relating to fissile mediums, reflection conditions, dilution curves. The validation of the critical values is presented as one of the most important aspects of this handbook which is mainly intended, in the mind of the author, to specialists well advertised in the field of criticality. The complements which have been introduced since 1978 and those which are foreseen in a near future are also detailed. (author)

  4. Information security management handbook

    CERN Document Server

    Tipton, Harold F

    2003-01-01

    Since 1993, the Information Security Management Handbook has served not only as an everyday reference for information security practitioners but also as an important document for conducting the intense review necessary to prepare for the Certified Information System Security Professional (CISSP) examination. Now completely revised and updated and in its fifth edition, the handbook maps the ten domains of the Information Security Common Body of Knowledge and provides a complete understanding of all the items in it. This is a ...must have... book, both for preparing for the CISSP exam and as a c

  5. Handbook of surveillance technologies

    CERN Document Server

    Petersen, JK

    2012-01-01

    From officially sanctioned, high-tech operations to budget spy cameras and cell phone video, this updated and expanded edition of a bestselling handbook reflects the rapid and significant growth of the surveillance industry. The Handbook of Surveillance Technologies, Third Edition is the only comprehensive work to chronicle the background and current applications of the full-range of surveillance technologies--offering the latest in surveillance and privacy issues.Cutting-Edge--updates its bestselling predecessor with discussions on social media, GPS circuits in cell phones and PDAs, new GIS s

  6. Software quality assurance handbook

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    There are two important reasons for Software Quality Assurance (SQA) at Allied-Signal Inc., Kansas City Division (KCD): First, the benefits from SQA make good business sense. Second, the Department of Energy has requested SQA. This handbook is one of the first steps in a plant-wide implementation of Software Quality Assurance at KCD. The handbook has two main purposes. The first is to provide information that you will need to perform software quality assurance activities. The second is to provide a common thread to unify the approach to SQA at KCD. 2 figs.

  7. Student manual, Book 2: Orientation to occupational safety compliance in DOE

    International Nuclear Information System (INIS)

    Colley, D.L.

    1993-01-01

    This is a student hand-book an Occupational Safety Compliance in DOE. Topics include the following: Electrical; materials handling ampersand storage; inspection responsibilities ampersand procedures; general environmental controls; confined space entry; lockout/tagout; office safety, ergonomics ampersand human factors; medical ampersand first aid, access to records; construction safety; injury/illness reporting system; and accident investigation procedures

  8. West African Journal of Radiology

    African Journals Online (AJOL)

    ... the Science and Technology of Radiology, clinical case reports, discoveries and ... Magnetic Resonance Imaging Diagnoses in the Lumbar Spine of Adults With ... Safety in Pregnancy among radiologists and other Health Workers in Nigeria.

  9. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  10. Quantification of radionuclide transfer in terrestrial and freshwater environments for radiological assessments

    International Nuclear Information System (INIS)

    2009-05-01

    For more than thirty years, the IAEA has published a set of documents aimed at the limitation of the radiation exposure of the population from various nuclear activities. In particular, in 1994 the IAEA published Technical Reports Series No. 364, Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments. Over the years, it has proved to be a valuable reference for radioecologists, modellers and authorities in Member States, and has been quoted in numerous impact assessments. Technical Reports Series No. 364 was based on a review of available data up to the end of 1992. However, a number of high quality critical reviews have been produced in recent years for some of the transfer parameter values which merit consideration. Thus, it was assumed that there is sufficient new information available to warrant reconsideration of a significant proportion of the values given in Technical Reports Series No. 364 and to initiate an updating of Technical Reports Series No. 364 in the framework of the IAEA EMRAS (Environmental Modelling for RAdiation Safety) project. It is expected that the revision of Technical Reports Series No. 364 will initiate further updating of related IAEA publications, and international and national radiological models. The present IAEA-TECDOC is intended to be a support to the update of Technical Reports Series No. 364, overcoming the limitations of the former, and comprises both revised transfer parameter values, as well as missing data, key transfer processes, concepts and models that were found to be important for radiation safety

  11. Radiological protection and quality control for diagnostic radiology in China

    International Nuclear Information System (INIS)

    Baorong, Yue

    2008-01-01

    Full text: There are 43,000 diagnostic departments, nearly 70,000 X-ray diagnostic facilities, 7,000 CT, 250 million for the annual total numbers of X-ray examinations, 120,000 occupationally exposed workers in diagnostic radiology. 'Basic standards for protection against ionizing radiation and for the safety of radiation sources' is promulgated on October, 2002. This basic standard follows the BSS. 'Rule on the administration of radio-diagnosis and radiotherapy', as a order of the Ministry of Health No. 46, is promulgated by Minister of Health on January 24, 2006. It includes general provisions, requirements and practice, establishment and approval of radio-diagnosis and radiotherapy services, safeguards and quality assurance, and so on. There are a series of radiological protection standards and quality control standards in diagnostic radiology, including 'radiological protection standard for the examination in X-ray diagnosis', 'radiological health protection standards for X-ray examination of child-bearing age women and pregnant women', 'radiological protection standards for the children in X-ray diagnosis', 'standards for radiological protection in medical X-ray diagnosis', 'specification for radiological protection monitoring in medical X-ray diagnosis', 'guide for reasonable application of medical X-ray diagnosis', 'general aspects for quality assurance in medical X-ray image of diagnosis', 'specification of image quality control test for the medical X-ray diagnostic equipment', 'specification of image quality assurance test for X-ray equipment for computed tomography', 'specification for testing of quality control in computed radiography (CR)' and 'specification for testing of quality control in X-ray mammography'. With the X-ray diagnostic equipment, there are acceptant tests, status tests and routing tests in large hospitals. It is poor for routing test in middle and smaller hospitals. CT is used widely in diagnostic radiology, however most workers in CT

  12. Handbook of digital games and entertainment technologies

    NARCIS (Netherlands)

    Nakatsu, R.; Rauterberg, G.W.M.; Ciancarini, P.

    2017-01-01

    The topics treated in this handbook cover all areas of games and entertainment technologies, such as digital entertainment; technology, design/art, and sociology. The handbook consists of contributions from top class scholars and researchers from the interdisciplinary topic areas. The aim of this

  13. Radiological risk guidelines for nonreactor nuclear facilities at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Lucas, D.E.; Ikenberry, T.A.

    1993-09-01

    Radiological risk evaluation guidelines for the public and workers have been developed at the Pacific Northwest Laboratory (PNL) based upon the Nuclear Safety Policy of the US Department of Energy (DOE) established in Secretary of Energy Notice SEN-35-91. The DOE nuclear safety policy states that the general public shall be protected such that no individual bears significant additional risk to health and safety from the operation of a DOE nuclear facility above the risks to which members of the general population are normally exposed. The radiological risk evaluation guidelines developed at PNL are unique in that they are (1) based upon quantitative risk goals and (2) provide a consistent level of risk management. These guidelines are used to evaluate the risk from radiological accidents that may occur during research and development activities at PNL, and are not intended for evaluation of routine exposures. A safety analyst uses the,frequency of the potential accident and the radiological dose to a given receptor to determine if the accident consequences meet the objectives of the Nuclear Safety Policy. The radiological risk evaluation guidelines are an effective tool for assisting in the management of risk at DOE nonreactor nuclear facilities. These guidelines (1) meet the nuclear safety policy of DOE, (2) establish a tool for managing risk at a consistent level within the defined constraints, and (3) set risk at an appropriate level, as compared with other risks encountered by the public and worker. Table S.1 summarizes the guidelines developed in this report

  14. The Fuel Handbook 2012; Braenslehandboken 2012

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta; Herstad Svaerd, Solvie

    2012-04-15

    This fuel handbook provides, from a plant owner's perspective, a method of evaluating different fuels on the market. The fuel handbook concerns renewable fuels (but not including household waste) that are available on the Swedish market today or which are judged to have the potential to be available within the next ten years. The handbook covers 31 different fuels. Analysis data, special properties, operating experience, recommendations, risks when using the fuels and literature references are outlined for each fuel. The handbook also contains 1. A proposed route to follow when one plans to introduce a new fuel. Those analyses and tests one should perform to reduce the risk of encountering problems. 2. A summary of relevant laws and taxes for energy production, with directions as to where relevant documentation can be found. 3. Theory and background to judge the fuel's combustion, ash and corrosion properties and different methods that can be used for such judgement. 4. Summary of standards, databases and handbooks for biomass fuels and other solid fuels, and details on where further information on the fuels can be found, with the help of links to different web sites. Included in the annexes are 1. A proposal for a standard procedure for test burning of fuel. 2. Calculations procedures for, amongst others, heating value, flue gas composition and key numbers. In addition, calculations routines for different units for a number of different applications are provided

  15. The Fuel Handbook 2012; Braenslehandboken 2012

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta; Herstad Svaerd, Solvie

    2012-04-15

    This fuel handbook provides, from a plant owner's perspective, a method of evaluating different fuels on the market. The fuel handbook concerns renewable fuels (but not including household waste) that are available on the Swedish market today or which are judged to have the potential to be available within the next ten years. The handbook covers 31 different fuels. Analysis data, special properties, operating experience, recommendations, risks when using the fuels and literature references are outlined for each fuel. The handbook also contains 1. A proposed route to follow when one plans to introduce a new fuel. Those analyses and tests one should perform to reduce the risk of encountering problems. 2. A summary of relevant laws and taxes for energy production, with directions as to where relevant documentation can be found. 3. Theory and background to judge the fuel's combustion, ash and corrosion properties and different methods that can be used for such judgement. 4. Summary of standards, databases and handbooks for biomass fuels and other solid fuels, and details on where further information on the fuels can be found, with the help of links to different web sites. Included in the annexes are 1. A proposal for a standard procedure for test burning of fuel. 2. Calculations procedures for, amongst others, heating value, flue gas composition and key numbers. In addition, calculations routines for different units for a number of different applications are provided

  16. Importance of the documentation of the manual of quality and procedures handbook in the nuclear technology center

    International Nuclear Information System (INIS)

    Domech More, J.; Bolanos Hernandez, R.; Quitero Rosello, R.; Fernandez Rondon, M.; Milian Lorenzo, D.; Rodriguez Gual, M.

    1997-01-01

    In the present work is presented the methodology used for the elaboration of manual of quality of the Nuclear Technology Center and the technical Procedures Handbook for the execution of Preliminary Safety report of the Juragua Nuclear Power Plant, as well as the importance that has this documentation for the work of the center

  17. NGSLR Safety Handbook

    Science.gov (United States)

    McGarry, Jan

    2015-01-01

    NASA's Next Generation Satellite Laser Ranging (NGSLR) station is the prototype for NASA's Satellite Laser Ranging (SLR) systems which will be deployed around the world in the coming decade. The NGSLR system will be an autonomous, photon-counting SLR station with an expected absolute range accuracy of better than one centimeter and a normal point (time-averaged) range precision better than one millimeter. The system provides continuous (weather permitting), 24 hour tracking coverage to an existing constellation of approximately two dozen artificial satellites equipped with passive retroreflector arrays, using pulsed, 532 nm, class IV laser systems. Current details on the approved laser systems can be found in the Appendix 1 of this document. This safety plan addresses the potential hazards to emitted laser radiation, which can occur both inside and outside the shelter. Hazards within the shelter are mitigated through posted warning signs, activated warning lights, procedural controls, personal protective equipment (PPE), laser curtains, beam blocking systems, interlock controls, pre-configured laser control settings, and other controls discussed in this document. Since the NGSLR is a satellite tracking system, laser hazards exist outside the shelter to personnel on the shelter roof and to passing aircraft. Potential exposure to personnel outside the system is mitigated through the use of posted warning signs, access control, procedural controls, a stairwell interlock, beam attenuation/blocking devices, and a radar based aircraft detection system.

  18. Crisis Communication (Handbooks of Communication Science Vol. 23)

    DEFF Research Database (Denmark)

    Johansen, Winni

    Vol. 23 - The Handbook of Communication Science General editors: Peter J. Schultz and Paul Cobley......Vol. 23 - The Handbook of Communication Science General editors: Peter J. Schultz and Paul Cobley...

  19. Evaluation of radiological safety assessment of a repository in a clay rock formation

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents a comprehensive description of the post-closure radiological safety assessment of a repository for the spent fuel arisings resulting from the Spanish nuclear program excavated in a clay host rock formation. In this report three scenarios have been analysed in detail. The first scenario represents the normal in detail. The first scenario represents the normal evolution of the repository (Reference Scenario); and includes a set of variants to investigate the relative importance of the various repository components and examine the sensitivity of the performance to parameters variations. Two altered scenarios have also been considered: deep well construction and poor sealing of the repository. This document contains a detailed description of the repository system, the methodology adopted for the scenarios generation, the process modelling approach and the results of the consequences analysis. (Author)

  20. School handbooks from yesterday to today: Thefrench example

    Directory of Open Access Journals (Sweden)

    Alain CHOPPIN

    2013-11-01

    Full Text Available The school handbook has been for a long time devaluated for bibliographers, archivists and even for the historian community, but durign the last decades and increasing interest hast emerged among educational and textbook historians. First of all, the author the reasons of a textbook as an important source for the historian and the motives of such an unexpected interest for this subject, and afterwards make a brief historical review of the French school edition, specially focoused to the evolution of the handbook as a pedagogical tool. He tries to enlighten the different parameters that could have been successively implicated in the concept and use of handbooks in France, joining it closely current questions (increasingly complex handbooks, incidence of advanced technologies, teacher's training.

  1. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Huff, Georgianne [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Currier, Aileen B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kaun, Benjamin C [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rastler, Dan M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chen, Stella Bingqing [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Cotter, Andrew L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bradshaw, Dale T. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gauntlett, William D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    The Electricity Storage Handbook (Handbook) is a how - to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluation s of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspective . This Handbook, jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess. This Handbook is best viewed online.

  2. Handbook of signal processing systems

    CERN Document Server

    Deprettere, Ed; Leupers, Rainer; Takala, Jarmo

    2013-01-01

    Handbook of Signal Processing Systems is organized in three parts. The first part motivates representative applications that drive and apply state-of-the art methods for design and implementation of signal processing systems; the second part discusses architectures for implementing these applications; the third part focuses on compilers and simulation tools, describes models of computation and their associated design tools and methodologies. This handbook is an essential tool for professionals in many fields and researchers of all levels.

  3. Toxic substances handbook

    Science.gov (United States)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  4. Handbook of interatomic potentials

    International Nuclear Information System (INIS)

    Stoneham, A.M.; Taylor, R.

    1981-08-01

    This Handbook collects together interatomic potentials for a large number of metals. Most of the potentials describe the interactions of host metal atoms with each other, and these, in some cases, may be applied to solid and liquid metals. In addition, there are potentials (a) for a metallic impurity alloyed with the host, (b) for a small number of chemical impurities in the metal (eg H, O), and (c) for rare-gas impurities, notably He. The Handbook is intended to be a convenient source of potentials for bulk, surface and defect calculations, both static and dynamic. (author)

  5. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  6. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  7. The radiological accident in Yanango

    International Nuclear Information System (INIS)

    2000-01-01

    The use of nuclear technologies has fostered new, more effective and efficient medical procedures and has substantially improved diagnostic and therapeutic capabilities. However, in order that the benefits of the use of ionizing radiation outweigh the potential hazards posed by this medium, it is important that radiation protection and safety standards be established to govern every aspect of the application of ionizing radiation. Adherence to these standards needs to be maintained through effective regulatory control, safe operational procedures and a safety culture that is shared by all. Occasionally, established safety procedures are violated and serious radiological consequences ensue. The radiological accident described in this report, which took place in Lilo, Georgia, was a result of such an infraction. Sealed radiation sources had been abandoned by a previous owner at a site without following established regulatory safety procedures, for example by transferring the sources to the new owner or treating them as spent material and conditioning them as waste. As a consequence, 11 individuals at the site were exposed for a long period of time to high doses of radiation which resulted inter alia in severe radiation induced skin injuries. Although at the time of the accident Georgia was not an IAEA Member State and was not a signatory of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, the IAEA still provided assistance to the Government of Georgia in assessing the radiological situation, while the World Health Organization (WHO) assisted in alleviating the medical consequences of the accident. The two organizations co-operated closely from the beginning, following the request for assistance by the Georgian Government. The IAEA conducted the radiological assessment and was responsible for preparing the report. The WHO and its collaborating centres within the Radiation Emergency Medical Preparedness and Assistance Network

  8. Diagnosis of radiological security of installations; Diagnostico de la seguridad radiologica de instalaciones

    Energy Technology Data Exchange (ETDEWEB)

    Herrera V, L [Laboratorio de Vigilancia Radiologica Ambiental, Gerencia de Seguridad del ININ (Mexico)

    1991-07-01

    The objective of this work is to discuss the diagnosis of the radiological safety of nuclear or radioactive facilities. It was concluded that the one diagnoses like discipline of the radiological safety is susceptible of being represented, taught and programmable in computer and useful systems as preventive tool and of inspection.

  9. Radiological assistance program: Region I. Part I

    International Nuclear Information System (INIS)

    Musolino, S.V.; Kuehner, A.V.; Hull, A.P.

    1985-01-01

    The purpose of the Radiological Assistance Program (RAP) is to make DOE resources available and provide emergency assistance to state and local agencies in order to control radiological hazards, protect the public health and safety, and minimize the loss of property. This plan is an integral part of a nationwide program of radiological assistance established by the US DOE, and is implemented on a regional basis. The Brookhaven Area Office (BHO) Radiological Assistance Program is applicable to DOE Region I, which consists of the New England States, New York, New Jersey, Pennsylvania, Delaware, Maryland and the District of Columbia. The BHO RAP-1 has been developed to: (a) ensure the availability of an effective radiological assistance capability to ensure the protection of persons and property; (b) provide guidelines to RAP-1 Team personnel for the evaluation of radiological incidents and implementation of corrective actions; (c) maintain liaison with other DOE installations, Federal, State and local organizations which may become involved in radiological assistance operations in Region I; and (d) encourage development of a local capability to cope with radiological incidents

  10. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  11. Handbook of Research on Environmental Taxation

    DEFF Research Database (Denmark)

    , their environmental and economic impact and, finally, the larger question of the role of taxation among other policy approaches to environmental protection. Intermixing theory with case studies, the Handbook offers readers lessons that can be applied around the world. It identifies key bodies of research for people......The Handbook of Research on Environmental Taxation captures the state of the art of research on environmental taxation. Written by 36 specialists in environmental taxation from 16 countries, it takes an interdisciplinary and international approach, focusing on issues that are universal to using...... taxation to achieve environmental goals. The Handbook explores the conceptual foundations of environmental taxation, essential elements for designing environmental tax measures, factors that influence the acceptance of environmental taxation, the variety of ways to implement environmental taxes...

  12. International scaling of nuclear and radiological events

    International Nuclear Information System (INIS)

    Wang Yuhui; Wang Haidan

    2014-01-01

    Scales are inherent forms of measurement used in daily life, just like Celsius or Fahrenheit scales for temperature and Richter for scale for earthquakes. Jointly developed by the IAEA and OECD/NEA in 1990, the purpose of International Nuclear and Radiological Event Scale (INES) is to help nuclear and radiation safety authorities and the nuclear industry worldwide to rate nuclear and radiological events and to communicate their safety significance to the general public, the media and the technical community. INES was initially used to classify events at nuclear power plants only. It was subsequently extended to rate events associated with the transport, storage and use of radioactive material and radiation sources, from those occurring at nuclear facilities to those associated with industrial use. Since its inception, it has been adopted in 69 countries. Events are classified on the scale at seven levels: Levels 1-3 are called 'incidents' and Levels 4-7 'accidents'. The scale is designed so that the severity of an event is about ten times greater for each increase in level on the scale. Events without safety significance are called 'deviations' and are classified Below Scale/Level 0. INES classifies nuclear and radiological accidents and incidents by considering three areas of impact: People and the Environment; Radiological Barriers and Control; Defence-in-Depth. By now, two nuclear accidents were on the highest level of the scale: Chernobyl and Fukumashi. (authors)

  13. Radiological safety aspects of industrial radiography

    International Nuclear Information System (INIS)

    Hanekom, A.P.

    1983-01-01

    Industrial radiography and especially gamma-radiography, has established itself as a very powerful tool in non-destructive testing. Unfortunately there is an amount of risk attached to the use of industrial radiography. The primary causes of radiography accidents include: working conditions, equipment failure and lack of supervisory control. To alleviate the radiological risks involved with gamma-radiography, the Atomic Energy Corporation (AEC) has imposed various conditions for the possession, use, and conveyance of radioactive material. This includes personnel training and equipment specifications

  14. Radiological Source Terms for Tank Farms Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  15. Radiological safety of decayed source removal facility (DSRF) - an overview

    International Nuclear Information System (INIS)

    Rajput, Raksha; George, Jain Reji; Pathak, B.K.

    2018-01-01

    Industrial radiography is one of the major applications of radioisotope in engineering industry for Non-Destructive Testing (NDT). The equipment used for this purpose is called Industrial Radiography Exposure Device (IGRED) or radiography (RG) camera. In India, more than 1800 IGREDs including imported cameras are being used in NDT industry. These cameras are of different types and have various capacities to house different radioisotopes. Generally, 192 Ir sources are being used for NDT work. The sources are being supplied by BRIT to the users. After the useful period of the utilization of gamma intensity, the decayed source is returned to BRIT in RG camera. The decayed source is removed from the camera in the Decayed Source Removal Facility (DSRF). This facility serves the purpose of a miniature hot-cell with the capability of storing the decayed sources which are removed from the cameras. The empty camera is inspected for its mechanical functions and sent to BRIT's hot-cell for loading the new source. DSRF is situated at BRIT Vashi Complex. This paper deals with the radiological safety in the operation of DSRF for removing decayed sources from industrial radiography cameras

  16. Radiological safety system based on real-time tritium-in-air monitoring indoors and in effluents

    International Nuclear Information System (INIS)

    Bidica, N.; Sofalca, N; Balteanu, O.; Srefan, I.

    2006-01-01

    Exposure to tritium is an important health hazard in any tritium processing facility so that implementing a real-time tritium monitoring system is necessary for its operation in safety conditions. The tritium processing facility operators need to be informed at any time about the in-air tritium concentration indoors or in the stack effluents, in order to detect immediately any leaks in tritium containments, or any releases inside the buildings or to the environment. This information is very important for adopting if necessary protection measures and correcting actions as quickly as possible. In this paper we describe an improved real-time tritium monitoring system designed for the Heavy Water Detritiation Pilot Plant of National Institute for Cryogenics and Isotopes Separation, Rm. Valcea, Romania. The design of the Radiological Safety System implemented for the ICIT Water Detritiation Pilot Plant is intended to provide the maximum safety level based on the ALARA concept. The main functions of tritium monitoring system are: - monitoring the working areas and gaseous effluents by determination of the tritium-in-air activity concentration; - local and remote data display; - assessing of environment dose equivalent rates and dose equivalents in the working environment (for personnel exposure control and work planning); - assessing the total tritium activity released to the environment through ventilation exhaust stack; - safety functions, i.e., local and remote, locking/unlocking personnel access, process shut-down in emergency conditions and start of the air cleaning systems. With all these features our tritium monitoring system is really a safety system adequate for personnel and environmental protection. (authors)

  17. Materials handbook for fusion energy systems

    Science.gov (United States)

    Davis, J. W.; Marchbanks, M. F.

    A materials data book for use in the design and analysis of components and systems in near term experimental and commercial reactor concepts has been created by the Office of Fusion Energy. The handbook is known as the Materials Handbook for Fusion Energy Systems (MHFES) and is available to all organizations actively involved in fusion related research or system designs. Distribution of the MHFES and its data pages is handled by the Hanford Engineering Development Laboratory (HEDL), while its direction and content is handled by McDonnell Douglas Astronautics Company — St. Louis (MDAC-STL). The MHFES differs from other handbooks in that its format is geared more to the designer and structural analyst than to the materials scientist or materials engineer. The format that is used organizes the handbook by subsystems or components rather than material. Within each subsystem is information pertaining to material selection, specific material properties, and comments or recommendations on treatment of data. Since its inception a little more than a year ago, over 80 copies have been distributed to over 28 organizations consisting of national laboratories, universities, and private industries.

  18. Greater Sudbury fuel efficient driving handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Reducing the amount of fuel that people use for personal driving saves money, improves local air quality, and reduces personal contributions to climate change. This handbook was developed to be used as a tool for a fuel efficient driving pilot program in Greater Sudbury in 2009-2010. Specifically, the purpose of the handbook was to provide greater Sudbury drivers with information on how to drive and maintain their personal vehicles in order to maximize fuel efficiency. The handbook also provides tips for purchasing fuel efficient vehicles. It outlines the benefits of fuel maximization, with particular reference to reducing contributions to climate change; reducing emissions of air pollutants; safe driving; and money savings. Some tips for efficient driving are to avoid aggressive driving; use cruise control; plan trips; and remove excess weight. Tips for efficient winter driving are to avoid idling to warm up the engine; use a block heater; remove snow and ice; use snow tires; and check tire pressure. The importance of car maintenance and tire pressure was emphasized. The handbook also explains how fuel consumption ratings are developed by vehicle manufacturers. refs., figs.

  19. Oil wells and gas wells: aspects of radiological safety

    International Nuclear Information System (INIS)

    Soares, S.M.V.O.

    1987-01-01

    The objective of the present work is to present and analyse the main radiological protection problems associated with non destructive inspections of oil wells, with the view of minimizing the dose to members of the public living in nearby urban zones. Problems related to the surveillance of such activities and the need for well formulated procedures are also discussed based on specific Brasilian regulations. Finally, some examples of radiological accidents that have occured in urban zones are described including the methodology employed for the rescue of Iridium-192 sources and for the estimate of radiation doses for workers and general public. (author) [pt

  20. Loudspeaker handbook

    CERN Document Server

    Eargle, John

    2003-01-01

    The second edition of Loudspeaker Handbook follows the same general outlines as the highly successful first edition and has been augmented and updated in many areas of technology. Most notable are the developments in large-scale, programmable line arrays, distributed mode loudspeakers, and ultrasonic-based audio transduction. Additionally, the core chapters on low frequency systems, system concepts, and horn systems have been expanded to include both more analytical material and a richer array of examples. Much of the success of the first edition has been due to its accessibility both to loudspeaker engineers and to lay technicians working in the field - a point of view the author maintains in the present work. A full understanding of the underlying technology requires a fairly rigorous engineering background through the second year of professional study. At the same time, the generous use of graphs, with their intuitive thrust, will be useful to all readers. Loudspeaker Handbook, Second Edition continues to ...

  1. Sittig's handbook of pesticides and agricultural chemicals

    National Research Council Canada - National Science Library

    Greene, Stanley A; Pohanish, Richard P

    2005-01-01

    ... Card Number: 2005005935 Library of Congress Cataloging-in-Publication Data Sittig's handbook of pesticides and agricultural chemicals / edited by Stanley A. Greene and Richard P. Pohanish. p. cm. Includes bibliographical references. ISBN 0-8155-1516-2 (alk. paper) 1. Fertilizers--Handbooks, manuals, etc. 2. Fertilizers--Environmental aspects--Ha...

  2. Standarized radiological hazard analysis for a broad based operational safety program

    International Nuclear Information System (INIS)

    Wadman, W.W. III; Andrews, L.L.

    1992-01-01

    The Radiological hazard Analysis (RHA) Manual provides a methodology and detailed guidance for systematic analysis of radiological hazards over a broad spectrum of program functions, housed in a wide variety of facilities. Radiological programs at LANL include: research and experimentation; routine materials operations; production; non-destructive examination or testing; isotope and machine produced radiations; chemistry; and metallurgy. The RHA permits uniform evaluation of hazard types over a range of several orders of magnitude of hazard severity. The results are used to estimate risk, evaluate types and level or resource allocations, identify deficiencies, and plan corrective actions for safe working environments. 2 refs

  3. Standardized radiological hazard analysis for a broad based operational safety program

    International Nuclear Information System (INIS)

    Wadman, W. III; Andrews, L.

    1992-01-01

    The Radiological Hazard Analysis (RHA) Manual provides a methodology and detailed guidance for systematic analysis of radiological hazards over a broad spectrum of program functions, housed in a wide variety of facilities. Radiological programs at LANL include: research and experimentation routine materials operations; production; non-destructive examination or testing; isotope and machine produced radiations; chemistry; and metallurgy. The RHA permits uniform evaluation of hazard types over a range of several orders of magnitude of hazard severity. The results are used to estimate risk, evaluate types and level of resource allocations, identify deficiencies, and plan corrective actions for safe working environments. (author)

  4. Time Safety Margin: Theory and Practice

    Science.gov (United States)

    2016-09-01

    Air Education and Training Command Handbook 99-107, T-38 Road to Wings, Randolph Air Force Base, Texas, July 2013. 65 This page was intentionally left...412TW-TIH-16-01 TIME SAFETY MARGIN: THEORY AND PRACTICE WILLIAM R. GRAY, III Chief Test Pilot USAF Test Pilot School SEPTEMBER 2016... Safety Margin: The01y and Practice) was submitted by the Commander, 4 I 2th Test Wing, Edwards AFB, Ca lifornia 93524-6843. Foreign announcement and

  5. Contribution to the study of the new international philosophy of the radiological safety in the natural uranium chemical treatment

    International Nuclear Information System (INIS)

    Moraes da Silva, T. de

    1990-01-01

    The objective of this work is to adapt the Radiological Safety System in the facilities concerned to the chemical treatment of the uranium concentrated (yellow-cake) until conversion in uranium hexafluoride in the pilot plant of IPEN-CNEN/SP, to the new international philosophy adopted by ICRP and IAEA. The new philosophy changes fully the Radiological Protection concepts of preceding philosophy, changes, also, the concept of the workplace and individual monitoring as well as the classification of the working areas. In this paper we show the monitoring program, in each phase of the natural uranium treatment chemical process in conversion facility for external irradiation, surface contamination and air contamination. The results were analysed according with the new philosophy and used to reclassify the workplace. It was introduced the condition work concept taking account the time spent by the worker in that workplace. (author)

  6. DOE handbook table-top needs analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this handbook is to establish guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at DOE nuclear facilities. Information from this handbook can be used to conduct needs analysis as the information and methods apply. Operating contractors are encouraged to use good practices selectively in developing or improving programs to meet the specific needs of their facility.

  7. 2012 Aerospace Medical Certification Statistical Handbook

    Science.gov (United States)

    2013-12-01

    2012 Aerospace Medical Certification Statistical Handbook Valerie J. Skaggs Ann I. Norris Civil Aerospace Medical Institute Federal Aviation...Certification Statistical Handbook December 2013 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Skaggs VJ, Norris AI 9...2.57 Hayfever 14,477 2.49 Asthma 12,558 2.16 Other general heart pathology (abnormal ECG, open heart surgery, etc.). Wolff-Parkinson-White syndrome

  8. Handbook of smoke control engineering

    CERN Document Server

    Klote, John H; Turnbull, Paul G; Kashef, Ahmed; Ferreira, Michael J

    2012-01-01

    The Handbook of Smoke Control Engineering extends the tradition of the comprehensive treatment of smoke control technology, including fundamental concepts, smoke control systems, and methods of analysis. The handbook provides information needed for the analysis of design fires, including considerations of sprinklers, shielded fires, and transient fuels. It is also extremely useful for practicing engineers, architects, code officials, researchers, and students. Following the success of Principles of Smoke Management in 2002, this new book incorporates the latest research and advances in smoke control practice. New topics in the handbook are: controls, fire and smoke control in transport tunnels, and full-scale fire testing. For those getting started with the computer models CONTAM and CFAST, there are simplified instructions with examples. This is the first smoke control book with climatic data so that users will have easy-to-use weather data specifically for smoke control design for locations in the U.S., Can...

  9. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  10. IAEA safety requirements for safety assessment of fuel cycle facilities and activities

    International Nuclear Information System (INIS)

    Jones, G.

    2013-01-01

    The IAEA's Statute authorises the Agency to establish standards of safety for protection of health and minimisation of danger to life and property. In that respect, the IAEA has established a Safety Fundamentals publication which contains ten safety principles for ensuring the protection of workers, the public and the environment from the harmful effects of ionising radiation. A number of these principles require safety assessments to be carried out as a means of evaluating compliance with safety requirements for all nuclear facilities and activities and to determine the measures that need to be taken to ensure safety. The safety assessments are required to be carried out and documented by the organisation responsible for operating the facility or conducting the activity, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorisation process. In addition to the principles of the Safety Fundamentals, the IAEA establishes requirements that must be met to ensure the protection of people and the environment and which are governed by the principles in the Safety Fundamentals. The IAEA's Safety Requirements publication 'Safety Assessment for Facilities and Activities', establishes the safety requirements that need to be fulfilled in conducting and maintaining safety assessments for the lifetime of facilities and activities, with specific attention to defence in depth and the requirement for a graded approach to the application of these safety requirements across the wide range of fuel cycle facilities and activities. Requirements for independent verification of the safety assessment that needs to be carried out by the operating organisation, including the requirement for the safety assessment to be periodically reviewed and updated are also covered. For many fuel cycle facilities and activities, environmental impact assessments and non-radiological risk assessments will be required. The

  11. French days of radiology (J.F.R.) 2005

    International Nuclear Information System (INIS)

    2005-01-01

    Five parts are presented, the nuclear safety authority informs the radiologists on the evolution of the regulation in radiation protection and its practical application; statements of medical and dental radiodiagnosis equipments; licensing for use of radiodiagnosis installation; to use the diagnosis reference levels in radiology to optimize the practices; radiation protection in interventional radiology. (N.C.)

  12. Integrated approach methodology: A handbook for power plant assessment

    International Nuclear Information System (INIS)

    Roush, M.L.; Modarres, M.; Hunt, R.N.M.; Kreps, D.; Pearce, R.

    1987-10-01

    This handbook is a practical document that provides the principles and steps of a method to help a utility's decision-making process on matters concerning plant safety and economy. It provides a framework for analyzing the manner in which plant equipment and personnel work together to achieve successful operation; also making possible the quantitative evaluation of individual contributors to success in overall plant operation. The methodology does not purport to instruct utilities on the proper way to run a power plant. Rather, it is an analytical tool to aid a utility in using plant data and other hands-on knowledge of its own personnel to solve practical problems

  13. German (GRS) approach to accident analysis (part I). German licensing basis for accident analyses. Applicants accident analyses in second part license for Konvoi-plants. Appendix 1. Assessor accident analyses in second part license for Konvoi-plants. Appendix 2. Reference list of DBA to be considered in the safety status analysis of a PSR. Appendix 3a. Reference list of special very rare and BDB plant conditions to be considered in the safety status analysis of a PSE. Appendix 3b

    International Nuclear Information System (INIS)

    Velkov, K.

    2002-01-01

    Appendix 1: The Safety Analysis Report (S.A.R.) is presented from 3 Handbooks - ECC Handbook (LOCA), Plant Dynamics Handbook (Transients incl. ATWS), and Core Design Handbook. The first one Conceived as Living handbook, Basis for design, catalogue of transients, specifications and licensing. Handbook contains LOCA in primary system, it contains also core damage analysis, and description of codes, description of essential plant data and code input data. The second one consists of Basis for design, commissioning, operation, and catalogue of transients, specifications and licensing, as well as specified operation, disturbed operation, incidents, non-LOCA, SS-procedures and Code description. The third book consists of Reactivity balance and reactivity coefficients, efficiency of shutdown systems. Calculation of burn up cycle, power density distribution, and critical boron concentration. Also Codes used, as SAV79A standard analysis methodology including FASER for nuclear data generation, MEDIUM and PANBOX for static and transient core calculations. Appendix 2: The three TUEV (Technical Inspection Agencies) responsible for the three individual plants of type KONVOI: TUEV Bayern for ISAR-2, TUV-Hanover for KKE, TUEV-Stuttgart for GKN-2 and GRS performed the safety assessment. TUV-Bayern for disturbance and failure of secondary heat sink without loss of coolant (failure of main heat sink, erroneous operation of valves in MS and in FW system, failure of MFW supply), long term LONOP, performance of selected SBLOCA analyses. TUV Hanover for disturbances due to failure of MCPs, short term LONOP, damages of SG tubes incl. SGTR, performance of selected LOCA analyses (blowdown phase of LBLOCA). TUV-Stuttgart for breaks and leaks in MS and FW system with and without leaks in SG tubes. GRS for ATWS, sub-cooling transients due to disturbances on secondary side, initial and boundary conditions for transients with opening of pressurizer valves with and without stuck-open, most of the

  14. The Routledge Handbook of Scandinavian Politics

    DEFF Research Database (Denmark)

    Scandinavian politics today through a series of cutting-edge chapters. It will be a key reference point both for advanced-level students developing knowledge about the subject, as well as researchers producing new material in the area and beyond. It brings geographical scope and depth, with comparative...... chapters contributed by experts across the region. Methodologically and theoretically pluralistic, the handbook is in itself a reflection of the field of political science in Scandinavia and the diversity of the issues covered in the volume. The Routledge Handbook of Scandinavian Politics......The Routledge Handbook of Scandinavian Politics is a comprehensive overview of Scandinavian politics provided by leading experts in the field and covering the polity, the politics and the policy of Scandinavia. Coherently structured with a multi-level thematic approach, it explains and details...

  15. 3 GeV Injector Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  16. A conceptualization of a nuclear or radiological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Konstantopoulos, Stasinos [Institute of Informatics and Telecommunications National Center for Scientific Research ‘Demokritos’, Agia Paraskevi 15310, Attiki (Greece); Ikonomopoulos, Andreas, E-mail: anikon@ipta.demokritos.gr [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety National Center for Scientific Research ‘Demokritos’, Agia Paraskevi 15310, Attiki (Greece)

    2015-04-01

    Highlights: • Communicating nuclear and radiological safety concepts to the general public. • Multi-lingual semantic indexing of nuclear or radiological emergency content. • Linking informal language to formal nuclear or radiological emergency terms. • Extracting nuclear or radiological emergency terminologies from textual glossaries. • The IAEA Safety Glossary is the core of a cross-linked system of formal terminologies. - Abstract: A novel implementation is presented for NREO, a subject-specific ontology of the Nuclear or Radiological Emergency domain. The ontology design is driven by the requirements of ontology-based, multi-lingual language processing and retrieval use cases, but care is taken to architect the foundations in a way that can be extended to support other use cases in the domain. More specifically, NREO codifies and cross-references existing terminology glossaries and stakeholder lists into machine-processable terminological resources. At the interest of semantic interoperability, the proposed architecture is based on the Simple Knowledge Organization Scheme catalyzing the extensive cross-linking to different ontologies both within the nuclear technology domain and in related domains and disciplines. This and all other core design decisions are presented and discussed under the prism of their adequacy for our use cases and requirements. Both the ontology and terminological data have been made publicly available.

  17. A conceptualization of a nuclear or radiological emergency

    International Nuclear Information System (INIS)

    Konstantopoulos, Stasinos; Ikonomopoulos, Andreas

    2015-01-01

    Highlights: • Communicating nuclear and radiological safety concepts to the general public. • Multi-lingual semantic indexing of nuclear or radiological emergency content. • Linking informal language to formal nuclear or radiological emergency terms. • Extracting nuclear or radiological emergency terminologies from textual glossaries. • The IAEA Safety Glossary is the core of a cross-linked system of formal terminologies. - Abstract: A novel implementation is presented for NREO, a subject-specific ontology of the Nuclear or Radiological Emergency domain. The ontology design is driven by the requirements of ontology-based, multi-lingual language processing and retrieval use cases, but care is taken to architect the foundations in a way that can be extended to support other use cases in the domain. More specifically, NREO codifies and cross-references existing terminology glossaries and stakeholder lists into machine-processable terminological resources. At the interest of semantic interoperability, the proposed architecture is based on the Simple Knowledge Organization Scheme catalyzing the extensive cross-linking to different ontologies both within the nuclear technology domain and in related domains and disciplines. This and all other core design decisions are presented and discussed under the prism of their adequacy for our use cases and requirements. Both the ontology and terminological data have been made publicly available

  18. Post-graduate course on radiation protection and nuclear safety. Vol. 1,2

    International Nuclear Information System (INIS)

    1998-01-01

    The course handbook on radiation protection and nuclear safety containing two parts some was prepared mainly by scientists of the Nuclear Regulatory Authority (ARN) of the Argentine Republic, under the auspices of the International Atomic Energy Agency. The contents o this handbook have the principals aspects: radiation detection, radio dosimetry, biological effects of the ionizing radiation, occupational exposure, environmental effects, contamination and decontamination, radioactive waste management, transport of radioactive materials, medical and industrial applications and the Argentine regulatory system

  19. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  20. Consensus standards utilized and implemented for nuclear criticality safety in Japan

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Okuno, Hiroshi; Naito, Yoshitaka

    1996-01-01

    The fundamental framework for the criticality safety of nuclear fuel facilities regulations is, in many advanced countries, generally formulated so that technical standards or handbook data are utilized to support the licensing safety review and to implement its guidelines. In Japan also, adequacy of the safety design of nuclear fuel facilities is checked and reviewed on the basis of licensing safety review guides. These guides are, first, open-quotes The Basic Guides for Licensing Safety Review of Nuclear Fuel Facilities,close quotes and as its subsidiaries, open-quotes The Uranium Fuel Fabrication Facility Licensing Safety Review Guidesclose quotes and open-quotes The Reprocessing Facility Licensing Safety Review Guides.close quotes The open-quotes Nuclear Criticality Safety Handbook close-quote of Japan and the Technical Data Collection are published and utilized to supply related data and information for the licensing safety review, such as for the Rokkasho reprocessing plant. The well-established technical standards and data abroad such as those by the American Nuclear Society and the American National Standards Institute are also utilized to complement the standards in Japan. The basic principles of criticality safety control for nuclear fuel facilities in Japan are duly stipulated in the aforementioned basic guides as follows: 1. Guide 10: Criticality control for a single unit; 2. Guide 11: Criticality control for multiple units; 3. Guide 12: Consideration for a criticality accident