WorldWideScience

Sample records for radioisotope stirling generator

  1. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  2. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  3. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  4. Advanced Stirling Radioisotope Generator EU2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2016-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically-heated Stirling radioisotope generator built to date. NASA Glenn Research Center (GRC) completed the assembly of the ASRG EU2 in September, 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's ASC-E3 Stirling convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's Engineering Development Unit (EDU) 4 controller. After just 179 hours of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hours later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January, 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from GRC, Sunpower, and Lockheed Martin conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  5. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  6. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  7. Characterization of the Advanced Stirling Radioisotope Generator EU2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  8. Parametric System Model for a Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  9. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  10. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  11. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  12. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  13. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    Science.gov (United States)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  14. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  15. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  16. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    Science.gov (United States)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  17. Testing of the Advanced Stirling Radioisotope Generator Engineering Unit at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.

    2013-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a high-efficiency generator being developed for potential use on a Discovery 12 space mission. Lockheed Martin designed and fabricated the ASRG Engineering Unit (EU) under contract to the Department of Energy. This unit was delivered to NASA Glenn Research Center in 2008 and has been undergoing extended operation testing to generate long-term performance data for an integrated system. It has also been used for tests to characterize generator operation while varying control parameters and system inputs, both when controlled with an alternating current (AC) bus and with a digital controller. The ASRG EU currently has over 27,000 hours of operation. This paper summarizes all of the tests that have been conducted on the ASRG EU over the past 3 years and provides an overview of the test results and what was learned.

  18. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    Science.gov (United States)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  19. Self-supporting radioisotope generators with STC-55W Stirling converters

    International Nuclear Information System (INIS)

    Or, C.; Kumar, V.; Carpenter, R.; Schock, A.

    2000-01-01

    Previous Orbital Stirling generator designs rely on the spacecraft mounting structure to fasten the radiators, the converters, and the heat source assembly. This paper describes a self-supporting generator concept with a 1-piece honeycomb panel serving as a radiator and a rigid platform for the converters and the heat source assembly to be bolted on. This self-supporting generator allows for simpler mounting structure and more options on mounting location. Using this self-supporting generator concept, we derived four different design options to connect the converter pair rigidly to reduce vibration. This paper describes the four design options and their assembly procedure

  20. Reliability Issues in Stirling Radioisotope Power Systems

    Science.gov (United States)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  1. Epoxy Adhesives for Stator Magnet Assembly in Stirling Radioisotope Generators (SRG)

    Science.gov (United States)

    Cater, George M.

    2004-01-01

    As NASA seeks to fulfill its goals of exploration and understanding through missions planned to visit the moons of Saturn and beyond, a number of challenges arise from the idea of deep space flight. One of the first problems associated with deep space travel is electrical power production for systems on the spacecraft. Conventional methods such as solar power are not practical because efficiency decreases substantially as the craft moves away from the Sun. The criterion for power generation during deep space missions are very specific, the main points requiring high reliability, low mass, minimal vibration and a long lifespan. A Stirling generator, although fairly old in concept, is considered to be a potential solution for electrical power generation for deep space flight. A Stirling generator works on the same electromagnetic principles of a standard generator, using the linear motion of the alternator through the stationary stator which produces electric induction. The motion of the alternator, however, is produced by the heating and cooling dynamics of pressurized gases. Essentially heating one end and cooling another of a contained gas will cause a periodic expansion and compression of the gas from one side to the other, which a displacer translates into linear mechanical motion. NASA needs to confirm that the materials used in the generator will be able to withstand the rigors of space and the life expectancy of the mission. I am working on the verification of the epoxy adhesives used to bond magnets to the steel lamination stack to complete the stator; in terms of in-service performance and durability under various space environments. Understanding the proper curing conditions, high temperature properties, and degassing problems as well as production difficulties are crucial to the long term success of the generator. system and steel substrate used in the stator. To optimize the curing conditions of the epoxies, modulated differential scanning calorimetry

  2. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  3. Radioisotope power system based on derivative of existing Stirling engine

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.T.; Kumar, V.

    1995-01-01

    In a recent paper, the authors presented the results of a system design study of a 75-watt(c) RSG (Radioisotope Stirling Generator) for possible application to the Pluto Fast Flyby mission. That study was based on a Stirling engine design generated by MTI (Mechanical Technology, Inc.). The MTI design was a derivative of a much larger (13 kwe) engine that they had developed and tested for NASA's LERC. Clearly, such a derivative would be a major extrapolation (downsizing) from what has actually been built and tested. To avoid that, the present paper describes a design for a 75-watt RSG system based on derivatives of a small (11-watt) engine and linear alternator system that has been under development by STC (Stirling Technology Company) for over three years and that has operated successfully for over 15,000 hours as of March 1995. Thus, the STC engines would require much less extrapolation from proven designs. The design employs a heat source consisting of two standard General Purpose Heat Source (GPHS) modules, coupled to four Stirling engines with linear alternators, any three of which could deliver the desired 75-watt(e) output if the fourth should fail. The four engines are coupled to four common radiators with redundant heatpipes for rejecting the engines' waste heat to space. The above engine and radiator redundancies promote system reliability. The paper describes detailed analyses to determine the effect of radiator geometry on system mass and performance, before and after an engine or heatpipe failure

  4. Stirling Convertor Performance Mapping Test Results for Future Radioisotope Power Systems

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; Faultersack, Franklyn D.; Redinger, Darin L.; Augenblick, John E.

    2004-02-01

    Long-life radioisotope-fueled generators based on free-piston Stirling convertors are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been performance-testing its Stirling generators to provide data for potential system integration contractors. This paper describes the most recent test results from the STC RemoteGen™ 55 W-class Stirling generators (RG-55). Comparisons are made between the new data and previous Stirling thermodynamic simulation models. Performance-mapping tests are presented including variations in: internal charge pressure, cold end temperature, hot end temperature, alternator temperature, input power, and variation of control voltage.

  5. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  6. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  7. Developing a Free-Piston Stirling Convertor for advanced radioisotope space power systems

    Science.gov (United States)

    Qiu, Songgang; Augenblick, John E.; White, Maurice A.; Peterson, Allen A.; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. This paper provides a description of the Flight Prototype (FP) Stirling convertor design as compared to the previous TDC design. The initial flight prototype units are already undergoing performance tuning at STC. The new design will be hermetically scaled and will provide a weight reduction from approximately 4.8 kg to approximately 3.9 kg. .

  8. Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions

    Science.gov (United States)

    Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.

    2001-01-01

    The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.

  9. Power characteristics of a Stirling radioisotope power system over the life of the mission

    International Nuclear Information System (INIS)

    Schreiber, Jeffrey G.

    2001-01-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays

  10. Using SpaceClaimTD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    Science.gov (United States)

    Fabanich, William A., Jr.

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.

  11. Using SpaceClaim/TD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    Science.gov (United States)

    Fabanich, William

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.

  12. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    Dobry, T.J.; Walberg, G.

    2001-01-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  13. The Use of Redundancy to Improve Reliability of Deep Space Missions Using Stirling Radioisotope Generator Power Sources

    Science.gov (United States)

    Bolotin, Gary; Everline, Chet; Schmitz, Paul; Distefano, Sal

    2014-01-01

    This study will look at the 140 We class generator as originally envisioned for the ASRG and a larger generator that is scaled up to use four times the fuel. The results discussed below quantify the effect of the use of smaller generators and indicates that a scheme that makes use of several smaller generators enhances the system reliability and allows for more graceful degradation.

  14. Technology development for a Stirling radioisotope power system

    International Nuclear Information System (INIS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions

  15. Radio-isotope generator

    International Nuclear Information System (INIS)

    Benjamins, H.M.

    1983-01-01

    A device is claimed for interrupting an elution process in a radioisotope generator before an elution vial is entirely filled. The generator is simultaneously exposed to sterile air both in the direction of the generator column and of the elution vial

  16. Status of an advanced radioisotope space power system using free-piston Stirling technology

    International Nuclear Information System (INIS)

    White, M.A.; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-01-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  17. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  18. The NASA Next Generation Stirling Technology Program Overview

    Science.gov (United States)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  19. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    Science.gov (United States)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  20. Generation of radioisotopes

    International Nuclear Information System (INIS)

    Panek-Finda, H.

    1984-01-01

    A method of producing radioisotopes for radiopharmaceutical applications is claimed. A physiological solution is used to elute a radioactive daughter isotope from a fission-produced parent isotope adsorbed on an adsorbent. The eluate containing the daughter isotope is purified with a cation-exchange material. In separate claims: the parent isotope is molybdenum-99; aluminium oxide which contains fully or partly hydrated manganese dioxide is used as the adsorbent for the parent isotope; a resin is used as the cation-exchange material; a strongly acid cation-exchange resin which has been neutralized is used as a resin; and a strongly acid cation-exchange resin which has been converted into the Na + , K + or NH 4 + form is used as a resin; an isotope generator system is also claimed

  1. Support housing for radioisotope generation

    International Nuclear Information System (INIS)

    Fries, B.A.

    1976-01-01

    A support housing for on-site radioisotope generation is disclosed in which the formation of a short-lived daughter radioisotope from its longer-lived parent features countercurrent batch flow of the eluting reagent interior of the housing. 6 claims, 4 drawing figures

  2. Rotary Stirling-Cycle Engine And Generator

    Science.gov (United States)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  3. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  4. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  5. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  6. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  7. Radioisotope and radiopharmaceutical generators

    International Nuclear Information System (INIS)

    Barak, M.; Winchell, H.W.

    1975-01-01

    A chromatographic column for generating technetium-99m isotopes and technetium-99m labeled pharmaceuticals in a simple two-step process is described. Technetium-99m pertechnetate in a first step is isolated by adsorption upon an adsorbent packing. Then the technetium-99m in a second step is eluted from the packing, either with an immediately labeled biological compound to form a radiopharmaceutical, or by a controlled volume of eluant to produce a 99m-technetium-bearing eluate of a desired specific concentration. (Official Gazette)

  8. Americium-241 radioisotope thermoelectric generator development for space applications

    International Nuclear Information System (INIS)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal

    2013-01-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  9. Americium-241 radioisotope thermoelectric generator development for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal, E-mail: rma8@le.ac.uk [University of Leicester, (United Kingdom); and others

    2013-07-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  10. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  11. Test results and commercialization plans for long life Stirling generators

    International Nuclear Information System (INIS)

    Erbeznik, R.M.; White, M.A.

    1996-01-01

    Many optimistic predictions regarding commercialization of Stirling engines have been announced over the years, but to date no real successes have emerged. STC is excited to announce the availability of beta prototypes for its RemoteGen trademark family of free-piston Stirling generators. STC is working with suppliers, manufacturers, and beta customers to commercialize the RemoteGen family of generators. STC is proving that these machines overcome previously inhibiting barriers by providing long life, high reliability, cost effective mass production, and market relevance. Stirling power generators are generally acknowledged to offer much higher conversion efficiencies than direct energy conversion systems. Life and reliability, on the other hand, are generally considered superior for direct conversion systems, as established by the exceptional endurance records (though with degradation) for thermoelectric (TE) and photovoltaic (PV) systems. STC's unique approaches combine dynamic system efficiency with static system reliability. The RemoteGen family presently includes a 10-watt RG-10, a 350-watt RG-350, and with 1-kW and 3-kW sizes planned for the future. They all use the same basic configuration with flexure bearings, clearance seals, and moving iron linear alternators. The third generation RG-10 has entered limited production with a radioisotope-fueled version, and a niche market for a propane-fueled version has been identified. Market analysis has led STC to focus on early commercial production of the RG-350. The linear alternator power module portion of the RG-350 is also used in its sister BeCool trademark family of coolers as the linear motor. By using a common power module, both programs will benefit by each other's commercialization efforts. The technology behind the RemoteGen generators, test results, and plans for commercialization are described in this paper

  12. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  13. Stirling co-generation plants - Is this the future?; Stirling-BHKWs - Zukunft oder...?

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, M.

    2000-07-01

    This article gives an overview of the history and main features of Stirling engines and their use in combined-cycle power generation. The principles behind the Stirling and its thermo-dynamic characteristics are discussed and compared with the internal combustion engine and other thermally-driven machines. The two main types of Stirling - the free-piston and the kinematic Stirling engines are discussed. Also, the important role played by the burner in the operation of Stirling engines is discussed. The use of Stirling engines as a basis for small combined heat and power (CHP) units to produce thermal heating power and electricity is examined. Three examples - the implementations made by the Solo, Whispergen and SIG companies - are looked at in detail and compared with alternative CHP-solutions using small gas engines and fuel cells. The advantages and disadvantages of these different solutions are listed.

  14. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  15. Third generation development of an 11-watt Stirling converter

    International Nuclear Information System (INIS)

    Montgomery, W.L.; Ross, B.A.; Penswick, L.B.

    1996-01-01

    This paper describes recent design enhancements, performance results, and development of an artificial neural network (ANN) model related to the Radioisotope Stirling Generator (RSG), an 11-watt converter designed for remote power applications. Design enhancements include minor changes to improve performance, increase reliability, facilitate fabrication and assembly for limited production, and reduce mass. Innovative modifications were effected to increase performance and improve reliability of the vacuum foil insulation (VFI) package and linear alternator. High and low operating temperature acceptance testing of the Engineering Model (EM) demonstrated the robust system characteristics. These tests were conducted for 1 week of operation each, with rejector temperatures of 95 C and 20 C, respectively. Endurance testing continues for a complete Stirling converter, the Development Model (DM), with over 25,000 hours of maintenance-free operation. Endurance testing of flexures has attained over 540 flexure-years and endurance testing of linear motors/alternators has achieved nearly 27,000 hours of operation without failure. An ANN model was developed and tested successfully on the DM. Rejection temperatures were varied between 3 C and 75 C while load voltages ranged between engine stall and displacer overstroke. The trained ANN model, based solely on externally measured parameters, predicted values of piston amplitude, displacer amplitude, and piston-displacer phase angle within ±2% of the measured values over the entire operating regime. The ANN model demonstrated its effectiveness in the long-term evaluation of free-piston Stirling machines without adding the complexity, reduced reliability, and increased cost of sophisticated diagnostic instrumentation

  16. Status update of a free-piston Stirling convertor for radioisotope space power systems

    International Nuclear Information System (INIS)

    White, Maurice; Qiu Songgang; Augenblick, Jack; Peterson, Allen; Faultersack, Frank

    2001-01-01

    Free-piston Stirling engines offer a relatively mature technology that is well-suited for advanced, high-efficiency radioisotope space power systems. This paper updates results from a combination of DOE and NASA contracts with Stirling Technology Company (STC). These contracts have demonstrated STC's Stirling convertor technology in a configuration and power level representative of a space power system. Based on demonstrated performance, long-life maintenance-free technology heritage, and success with aggressively imposed vibration testing. DOE has awarded system integration contracts to Boeing, Lockheed Martin and Teledyne Energy Systems. The objectives of these competitive Phase I contracts are to develop complete spacecraft power system conceptual designs based on the STC Stirling convertor, and to plan subsequent phases for two launches. Performance results for the DOE 55-W(e) Technology Demonstration Convertors (TDC's) have met original projections. Although the TDC's were intended only for technology demonstration, they have achieved very aggressive efficiency goals, demonstrated convertor-induced vibration levels below the Jet Propulsion Laboratory (JPL) specifications, passed a simulated launch load vibration test at 0.2 g2/Hz (12.3 g rms), and met EMI/EMC goals for most contemplated missions. No consideration for EMI reduction was included in the TDC design. Minor changes are underway to reduce EMI levels, with a goal of meeting specifications for missions such as Solar Probe with highly sensitive instrumentation. The long-term objective for DOE is to develop a power system with a system efficiency exceeding 20% that can function with a high degree of reliability for 10 years and longer on deep space missions

  17. Status update of a free-piston Stirling convertor for radioisotope space power systems

    Science.gov (United States)

    White, Maurice; Qiu, Songgang; Augenblick, Jack; Peterson, Allen; Faultersack, Frank

    2001-02-01

    Free-piston Stirling engines offer a relatively mature technology that is well-suited for advanced, high-efficiency radioisotope space power systems. This paper updates results from a combination of DOE and NASA contracts with Stirling Technology Company (STC). These contracts have demonstrated STC's Stirling convertor technology in a configuration and power level representative of a space power system. Based on demonstrated performance, long-life maintenance-free technology heritage, and success with aggressively imposed vibration testing. DOE has awarded system integration contracts to Boeing, Lockheed Martin and Teledyne Energy Systems. The objectives of these competitive Phase I contracts are to develop complete spacecraft power system conceptual designs based on the STC Stirling convertor, and to plan subsequent phases for two launches. Performance results for the DOE 55-W(e) Technology Demonstration Convertors (TDC's) have met original projections. Although the TDC's were intended only for technology demonstration, they have achieved very aggressive efficiency goals, demonstrated convertor-induced vibration levels below the Jet Propulsion Laboratory (JPL) specifications, passed a simulated launch load vibration test at 0.2 g2/Hz (12.3 g rms), and met EMI/EMC goals for most contemplated missions. No consideration for EMI reduction was included in the TDC design. Minor changes are underway to reduce EMI levels, with a goal of meeting specifications for missions such as Solar Probe with highly sensitive instrumentation. The long-term objective for DOE is to develop a power system with a system efficiency exceeding 20% that can function with a high degree of reliability for 10 years and longer on deep space missions. .

  18. Continuing Development for Free-Piston Stirling Space Power Systems

    Science.gov (United States)

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  19. Fuel selection for radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Menezes, A.

    1988-06-01

    The availability of Radioisotope Thermoeletric Generator fuels is evaluated based on the amount of fuel discharged from selected power reactors. In general, the best alternatives are either to use Plutonium-238 produced by irradiation of Neptunium-237 generated in typical thermal reactors or to use Curium-244 directly separated from the discharged fuels of fast or thermal reactors. (author) [pt

  20. Radioisotope thermoelectric generators for implanted pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Pustovalov, A.A.; Bovin, A.V.; Fedorets, V.I.; Shapovalov, V.P.

    1986-08-01

    This paper discusses the development and application of long-life lithium batteries and the problems associated with miniature radioisotope thermoelectric generators (RITEG) with service lives of 10 years or longer. On eof the main problems encountered when devising a radioisotope heat source (RHS) for an RITEG is to obtain biomedical /sup 238/PuO/sub 2/ with a specific neutron yield of 3.10/sup 3/-4.10/sup 3/ (g /SUP ./ sec)/sup -1/, equivalent to metallic Pu 238, and with a content of gamma impurities sufficient to ensure a permissible exposure a permissible exposure does rate (EDR) of a mixture of neutron and gamma radiation. After carrying out the isotope exchange and purifying the initial sample of its gamma impurity elements, the authors obtain biomedical Pu 238 satisfying the indicated requirements king suitable for use in the power packs of medical devices. Taking the indicated specifications into account, the Ritm-1o and gamma radioisotope heat sources were designed, built, tested in models and under natural conditions, and then into production as radioisotope thermoelectric generators designed to power the electronic circuits of implanted pacemakers. The Ritm-MT and Gemma radioisotope thermoelectric generators described are basic units, which can be used as self-contained power supplies for electronic equipment with power requirements in the micromilliwatt range.

  1. Evaluation Of Different Power Conditioning Options For Stirling Generators

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  2. Stirling based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, J.S.; Zutt, J.G.M.; Rabou, L.P.L.M.; Beckers, G.J.J. [ECN Clean Fossil Fuels, Petten (Netherlands); Baijens, C.A.W.; Luttikholt, J.J.M. [ATAG Verwarming, Lichtenvoorde (Netherlands)

    2000-04-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%. Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. 5 refs.

  3. Efficient thermo-mechanical generation of electricity from the heat of radioisotopes

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.; Yeats, F.W.

    1975-01-01

    The thermomechanical generator uses a thermomechanical oscillator to convert heat efficiently into a mechanical oscillation which in turn excites a suitable transducer to generate alternating electricity. The thermomechanical oscillator used is based on the Stirling cycle, but avoids the need for rotary motion and for sliding pistons by having a mechanically-resonant, spring-suspended displacer, and by using an oscillating metal diaphragm to provide the mechanical output. The diaphragm drives an alternator consisting of a spring-suspended permanent magnet oscillating between fixed pole pieces which carry the electrical power output windings. Because a thermomechanical generator is much more efficient than a thermo-electric generator at comparable temperatures, it is particularly suitable for use with a radioisotope heat source. The amounts of radioisotope and of shielding required are both greatly reduced. A machine heated by radioisotopes and delivering 10.7W ac at 80Hz began operating in October, 1974. Operating experience with this machine is reported, and these results, together with those obtained with higher-powered machines heated by other means, are used to calculate characteristics and performance of thermo-mechanical radioisotope generators capable of using heat sources such as the waste-management 90 Sr radioisotope sources becoming available from the US nuclear waste management programme. A design to use one of these heat sources in a 52-W underwater generator is described

  4. Linear Generator for a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    OROS (POP Teodora Susana

    2014-05-01

    Full Text Available In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM simulation of magnetic field. The linear generator design starts with the characteristics of the rare earth permanent magnets existing on the market.

  5. Dynamic Analysis and Test Results for an STC Stirling Generator

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.

    2004-02-01

    Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.

  6. A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system

  7. Radioisotope Thermoelectric Generator Transport Trailer System

    International Nuclear Information System (INIS)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System system 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the US Department of Energy to be in accordance with Title 10, Code of federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware

  8. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  9. 82Sr--82Rb radioisotope generator

    International Nuclear Information System (INIS)

    Grant, P.M.; Erdal, B.R.; O'Brien, H.A.

    1976-01-01

    An improved 82 Sr- 82 Rb radioisotope generator system, based upon the complexing ion exchange resin Chelex-100, has been developed. Columns of this material can be easily and rapidly milked, and the Rb-Sr separation factor for a fresh generator was found to be greater than 10 7 . Approximately 80 percent of the 82 Rb present was delivered in a 15-ml volume of aqueous 0.2 M NH 4 Cl solution. After more than 6 liters of eluant had been put through the generator, the Rb-Sr separation factor was still observed to be greater than 10 5 , and no unusual strontium breakthrough behavior was seen in the system over nearly three 82 Sr half lives. 2 claims, no drawings

  10. Maximum Work of Free-Piston Stirling Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-04-01

    Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.

  11. Shielded radioisotope generator and method for using same

    International Nuclear Information System (INIS)

    Fries, B.A.

    1976-01-01

    A nuclide generator for on-site radioisotope generation is disclosed in which the formation of a short-lived daughter radioisotope from its longer-lived parent features batch flow of eluting reagent interior of the generator in a completely shielded environment

  12. Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus

    Science.gov (United States)

    Colozza, Anthony J.

    2012-01-01

    The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.

  13. Stirling convertor performance mapping test results

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; White, Maurice A.; Faultersack, Franklyn; Redinger, Darin L.; Petersen, Stephen L.

    2002-01-01

    The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. Recent TDC performance data are provided in this paper, together with predictions from Stirling simulation models. .

  14. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  15. A facility to remotely assemble radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools

  16. Stirling Engine Controller

    Science.gov (United States)

    Blaze, Gina M.

    2004-01-01

    Stirling technology is being developed to replace RTG s (Radioisotope Thermoelectric Generators), more specifically a stirling convertor, which is a stirling engine coupled to a linear alternator. Over the past three decades, the stirling engine has been designed to perform different functions. Stirling convertors have been designed to decrease fuel consumption in automobiles. They have also been designed for terrestrial and space applications. Currently NASA Glenn is using the convertor for space based applications. A stiring converter is a better means of power for deep space mission and "dusty" mission, like the Mars Rovers, than solar panels because it is not affected by dust. Spirit and Opportunity, two Mars rovers currently navigating the planet, are losing their ability to generate electricity because dust is collecting on their solar panels. Opportunity is losing more energy because its robotic arm has a heater with a switch that can not be turned off. The heater is not needed at night, but yet still runs. This generates a greater loss of electricity and in turn diminishes the performance of the rover. The stirling cycle has the potential to provide very efficient conversion of heat energy to electric a1 energy, more so than RTG's. The stirling engine converts the thermal energy produced by the decaying radioisotope to mechanical energy; the linear alternator converts this into electricity. convertor. Since the early 1990's tests have been performed to maximize the efficiency of the stirling converter. Many months, even years, are dedicated to preparing and performing tests. Currently, two stirling convertors #'s 13 and 14, which were developed by Stirling Technology Company, are on an extended operation test. As of June 7th, the two convertors reached 7,500 hours each of operation. Before the convertors could run unattended, many safety precautions had to be examined. So, special instrumentation and circuits were developed to detect off nominal conditions

  17. Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations

    Directory of Open Access Journals (Sweden)

    Carlos Ulloa

    2013-02-01

    Full Text Available This article describes a simple model obtained from a commercial Stirling engine and used for heating a caravan. The Stirling engine has been tested in the lab under different electrical load conditions, and the operating points obtained are presented. As an application of the model, a series of transient simulations was performed using TRNSYS. During these simulations, the caravan is traveling throughout the day and is stationary at night. Therefore, during the night-time hours, the heating system is turned on by means of the Stirling engine. The study was performed for each month of the year in different European cities. The different heating demand profiles for different cities induce variation in the electricity production, as it has been assumed that electricity is only generated when the thermal demand requires the operation of the Stirling system. As a result, a comparison of the expected power generation in different European cities is presented.

  18. Commercialization possibilities of Stirling engine technology for microscale power generation in Sweden

    OpenAIRE

    Backman, Peter

    2012-01-01

    The presented master’s thesis has evaluated the possibility of commercializing a research project at the Royal Institute of Technologys (KTH) Department of Energy Technology (EGI) in Stockholm, Sweden, where a Stirling engine is used for renewable microscale power generation.  The purpose of the thesis has been to evaluate the current market situation and future prospects by composing a business plan under the working name MicroStirling. In the business plan a potential target group consistin...

  19. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  20. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    Science.gov (United States)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertors (ASCs)-E2 at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains the operation of the ASRG during space missions

  1. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  2. Stirling engine based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, H.; Zutt, S.; Rabou, L.; Beckers, G. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Baijens, K.; Luttikholt, J. [Atag Verwarming BV (Netherlands)

    2000-07-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%: Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. (orig.)

  3. Radioisotope thermoelectric generator licensed hardware package and certification tests

    International Nuclear Information System (INIS)

    Goldmann, L.H.; Averette, H.S.

    1994-01-01

    This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisotope Thermoelectric Generator Transportation System. This package has been designed to meet those portions of the Code of Federal Regulations (10 CFR 71) relating to ''Type B'' shipments of radioactive materials. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the US Department of Energy's Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of 238 Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator's temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. These provisions include test ports used in conjunction with helium mass spectrometers to determine seal leakage rates of each containment during the assembly process

  4. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    International Nuclear Information System (INIS)

    King, D.A.

    1994-01-01

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan

  5. Accomplishments in free-piston stirling tests at NASA GRC

    Science.gov (United States)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  6. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.; Becker, D.L.

    1996-01-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration close-quote s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. copyright 1996 American Institute of Physics

  7. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined

  8. Small radioisotope powered batteries

    International Nuclear Information System (INIS)

    Myatt, J.

    1975-06-01

    Various methods of converting the large amounts of energy stored in radioisotopes are described. These are based on:- (a) the Seebeck effect; (b) thermionic emission of electrons from a hot body; (c) the Stirling Cycle; and (d) radiovoltaic charge separation in 'p-n' junctions. Small generators in the range 0 to 100 W(e) developed using these effects are described and typical applications for each of these systems are given. These include data collection and transmission from remote sites, implantable medical devices, lighthouses, radio beacons, and space power supplies. (author)

  9. Radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel

  10. End-on radioisotope thermoelectric generator impact tests

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure

  11. Efficient, Long-Lived Radioisotope Power Generator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Monitoring Devices, Inc., (RMD) proposes to develop an alternative very long term, radioisotope power source with thermoelectric power conversion with...

  12. Research on Control Strategy of Free-Piston Stirling Power Generating System

    Directory of Open Access Journals (Sweden)

    Jigui Zheng

    2017-10-01

    Full Text Available As a clean and fuel adaptive alternative power plant, the Stirling power generating system has drawn attention of experts and scholars in the energy field. In practical application, the instability of free-piston Stirling power generating system caused by abrupt load change is an inevitable problem. Thus, methods to improve the output frequency response and stability of the free-piston Stirling power generating system are necessary. The model of free-piston Stirling power generating system is built by isothermal analysis firstly, and the initial control strategy based on given voltage system is put forward. To further improve the performance of power system, a current feedback decoupling control strategy is proposed, and the mathematical model is established. The influence of full decoupled quadrature-direct (d-q axis currents is analyzed with respect to the output voltage adjusting time and fluctuation amplitude under the variations of piston displacement and output load. The simulation results show that the system performance is significantly improved, but the dynamic regulation lags caused by the decoupled current control still exist. To solve this problem and improve the performance of decoupled-state feedback current control that relies on parameter accuracy, internal model control based on sliding mode (IMC-SM current decoupling control strategy is proposed, the system model is established, and then the performance of voltage ripple in generating mode is improved. Finally, the test bench is built, and the steady state and transient voltage control performances are tested. The feasibility and priority of the control strategy is verified by experiment and simulation results.

  13. Design and analysis of a dead volume control for a solar Stirling engine with induction generator

    International Nuclear Information System (INIS)

    Beltrán-Chacon, Ricardo; Leal-Chavez, Daniel; Sauceda, D.; Pellegrini-Cervantes, Manuel; Borunda, Mónica

    2015-01-01

    In this work, a power generation system dish/Stirling with cavity receiver and an electrical induction generator was simulated. We propose a control system using a variable-dead-volume and analyze its influence on the mechanical performance. A system with a dead volume of 160 cm"3 was designed to control the power and speed of the engine considering annual insolation, mechanical properties of the heater and the limits of frequency and voltage for the systems interconnected to the electricity network. The designed system achieves net efficient solar conversion to electric of 23.38% at an irradiance of 975 W/m"2 and allows an annual increase of 18% of the useful electrical energy compared to a system without control. - Highlights: • Numerical simulation of a nitrogen charged solar Stirling engine for electric power generation. • Design and analysis of a dead volume control for performance increase and power modulation. • Effect of dead space on average working pressure and mass flow rate. • Comparison between dead volume and average pressure control methods. • Impact of Stirling engine control settings on annual generated electric power.

  14. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  15. Development of a 3 kW double-acting thermoacoustic Stirling electric generator

    International Nuclear Information System (INIS)

    Wu, Zhanghua; Yu, Guoyao; Zhang, Limin; Dai, Wei; Luo, Ercang

    2014-01-01

    Highlights: • A 3 kW double-acting thermoacoustic Stirling electric generator is introduced. • 1.57 kW electric power with 16.8% thermal-to-electric efficiency was achieved. • High mechanical damping coefficient greatly decreases the system performance. • Performance difference is significant, which also decreased system performance. - Abstract: In this paper, a double-acting thermoacoustic Stirling electric generator is proposed as a new device capable of converting external heat into electric power. In the system, at least three thermoacoustic Stirling heat engines and three linear alternators are used to build a multiple-cylinder electricity generator. In comparison with the conventional thermoacoustic electricity generation system, the double-acting thermoacoustic Stirling electric generator has advantages on efficiency, power density and power capacity. In order to verify the idea, a prototype of 3 kW three-cylinder double-acting thermoacoustic Stirling electric generator is designed, built and tested. Based on the classic thermoacoustic theory, numerical simulation is performed to obtain the thermodynamic parameters of the engine. And distributions of key parameters are presented for a better understanding of the energy conversion process in the engine. In the experiments, a maximum electric power of about 1.57 kW and a maximum thermal-to-electric conversion efficiency of 16.8% were achieved with 5 MPa pressurized helium and 86 Hz working frequency. However, we find that the mechanical damping coefficient of the piston is dramatically increased due to the deformation of the cylinder wall caused by high thermal stress during the experiments. Thereby, the system performance was greatly reduced. Additionally, the performance differences between three engines and three alternators are significant, such as the heating temperature difference between three heater blocks of the engines, the piston displacement and the output electric power differences between

  16. Heat-transfer aspects of Stirling power generation using incinerator waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.T.; Lin, F.Y.; Chiou, J.S. [National Cheng Kung University, Tainan, Taiwan (China). Department of Mechanical Engineering

    2003-01-01

    The integration of a free-piston Stirling engine with linear alternator and an incinerator is able to effectively recover the waste energy and generate electrical power. In this study, a cycle-averaged heat transfer model is employed to investigate the performance of a free-piston Stirling engine installed on an incinerator. With the input of source and sink temperatures and other realistic heat transfer coefficients, the efficiency and the optimal power output are estimated, and the effect induced by internal and external irreversibilities is also evaluated. The proposed approach and modeling results presented in this study provide valuable information for engineers and designers to recover energy from small-scale incinerators. (author)

  17. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Lin, E.I.

    1997-01-01

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before

  18. Stirling engines for low-temperature solar-thermal-electric power generation

    Science.gov (United States)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves

  19. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  20. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  1. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  2. Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn

    Science.gov (United States)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.

    2004-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.

  3. Stirling Technology Development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  4. Stirling Technology Development at NASA GRC. Revised

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  5. Stirling technology development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  6. Active Vibration Reduction of the Advanced Stirling Convertor

    Science.gov (United States)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC

  7. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  8. Investigation of Insulation Materials for Future Radioisotope Power Systems

    Science.gov (United States)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  9. Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)

    Science.gov (United States)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  10. Advanced Controller for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.

    2004-01-01

    The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.

  11. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  12. Optimized Heat Pipe Backup Cooling System Tested with a Stirling Convertor

    Science.gov (United States)

    Schwendeman, Carl L.; Tarau, Calin; Schifer, Nicholas A.; Anderson, William G.; Garner, Scott

    2016-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal variable conductance heat pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor by bypassing the heat during stops. In a previous NASA Small Business Innovation Research (SBIR) Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for the Stirling RPS. In 2012, one of these VCHPs was successfully tested at NASA Glenn Research Center with a Stirling convertor as an Advanced Stirling Radioisotope Generator (ASRG) backup cooling system. The prototype; however, was not optimized and did not reflect the final heat rejection path. ACT through further funding has developed a semioptimized prototype with the finalized heat path for testing at Glenn with a Stirling convertor. The semioptimized system features a two-phase radiator and is significantly smaller and lighter than the prior prototype to reflect a higher level of flight readiness. The VCHP is designed to activate and remove heat from the GPHS during stoppage with a small temperature increase from the nominal vapor temperature. This small temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the multilayer insulation (MLI). The VCHP passively allows the Stirling convertor to be turned off multiple times during a mission with potentially unlimited off durations. Having the ability to turn the Stirling off allows for the Stirling to be reset and reduces vibrations on the platform during sensitive measurements or

  13. ADielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Institute of Scientific and Technical Information of China (English)

    寿春晖; 骆仲泱; 王涛; 沈伟东; ROSENGARTEN Gary; 王诚; 倪明江; 岑可法

    2011-01-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.%In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications.The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented.A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed.The calculated results show the advantages of this spectrally selective method for solar power generation.

  14. Numerical analysis on a four-stage looped thermoacoustic Stirling power generator for low temperature waste heat

    International Nuclear Information System (INIS)

    Wang, Kai; Qiu, Limin

    2017-01-01

    Highlights: • Four-stage looped thermoacoustic power generator for waste heat is studied. • Coupling position is found to have remarkable effects on performance. • Better efficiency is available when coupled near the cold ends of the cores. • The influence of the regenerator position on the efficiency is weak. • Matching between the acoustic impedances of engine and alternator is important. - Abstract: Recent developments in thermoacoustic technologies have demonstrated that multi-stage looped thermoacoustic Stirling engine would be a promising option for harvesting waste heat. Previous studies on multi-stage looped thermoacoustic systems were mainly focused on heat-driven refrigeration or heat pumping, while much fewer work were done on power generations, especially those for recovering low temperature heat. In this work, a four-stage looped thermoacoustic Stirling power generator for generating electricity from low temperature waste heat at 300 °C is systematically studied. A numerical model is built and then validated on an experimental four-stage looped thermoacoustic Stirling engine. On the basis of the validated model, the effects of the coupling position for the linear alternators and the regenerator position on the acoustic characteristics and performances of the power generation system are numerically investigated. The distributions of the acoustic fields along the loop, including the pressure amplitude, volume flow rate, phase angle, specific acoustic impedance and acoustic power, are presented and analysed for three representative coupling modes. Superior efficiency is achieved when the linear alternators are coupled near the cold ends of the thermoacoustic cores on the resonators, while more electric power is generated at the hot ends. The worst performance is expected when the linear alternators are connected at the middle of the resonators. The underling mechanisms are further explained detailedly by analysing the characteristics of the

  15. Structural Dynamics Testing of Advanced Stirling Convertor Components

    Science.gov (United States)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  16. The Stirling engine accelerates.; Der Stirling-Motor gibt Gas.

    Energy Technology Data Exchange (ETDEWEB)

    Pfannstiel, Dieter [DiWiTech - Ingenieurpraxis fuer technische und wissenschaftliche Dienstleistungen, Breitenbach a.H. (Germany)

    2010-01-15

    At this moment, Stirling engines are the most outstanding micro technology of combined heat and power generation. The free piston machine combines the principle of the conventional Stirling engine with a modern linear generator for power generation utilizing waste heat for the heating of houses or hot water tanks. All large manufacturers concern themselves with this technology and develop devices based on the Stirling engine. The overview contribution under consideration describes the current level of development of the Stirling devices of different manufacturers. In nearly two years, these devices will serially be produced in the market.

  17. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  18. Radioisotope space power generator. Annual report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Elsner, N.B.; Chin, J.; Staley, H.G.; Bass, J.C.; Morris, C.C.; Shearer, C.H.; Steeger, E.J.

    1982-03-01

    The emphasis of the Isotec Technology Program shifted from development of a Galileo generator to study of a segmented selenide element and couple technology. The goal of the FY 79 program was to determine the feasibility of fabricating segmented selenide P and N elements which exploit the high thermoelectric efficiency of (Cu,Ag) 2 Se and Gd 2 Se 3 materials. A preliminary evaluation of segmented element efficiencies, material compatibilities, and fabrication abilities was used to select (Cu,Ag) 2 Se/Fe(Bi,Sb) 2 Te 3 for the P element and Gd 2 Se 3 /PbTe for the N element. The iron barrier between the (Cu,Ag) 2 Se and (Bi,Sb) 2 Te 3 prevented degradation of thermoelectric properties from copper contamination of the (Bi,Sb) 2 Te 3 . Fabrication processes for both elements were developed. Gd 2 Se 3 was friable and difficult to fabricate crack-free. It also exhibited a phase transition from cubic to orthorhombic, which increased its susceptibility to microcracking and reduced its thermoelectric efficiency. Life testing of an all-bonded couple with unsegmented (Cu,Ag) 2 Se P-type and Gd 2 Se 3 N-type elements was stopped after 3300 h in a nominal 830 0 C/390 0 C thermal gradient. The Gd 2 Se 3 leg did not show any significant degradation during the test. Examination of the hot end of the P element showed the need for a less reactive hot cap material and an improved vapor supression system. Module testing of a 1-W (Bi,Sb) 2 (Se,Te) 3 generator was performed for 5000 h with no degradation in power. High-temperature Thermid 600 adhesive curing cycles were examined, 75-mW module loading tests were performed, and diagnostic examination of RTG-2A and RTG-201 was completed

  19. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  20. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  1. Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  2. A prototype on-line work procedure system for radioisotope thermoelectric generator production

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1991-09-01

    An on-line system to manage work procedures is being developed to support radioisotope thermoelectric generator (RTG) assembly and testing in a new production facility. This system implements production work procedures as interactive electronic documents executed at the work site with no intermediate printed form. It provides good control of the creation and application of work procedures and provides active assistance to the worker in performing them and in documenting the results. An extensive prototype of this system is being evaluated to ensure that it will have all the necessary features and that it will fit the user's needs and expectations. This effort has involved the Radioisotope Power Systems Facility (RPSF) operations organization and technology transfer between Westinghouse Hanford Company (Westinghouse Hanford) and EG ampersand G Mound Applied Technologies Inc. (Mound) at the US Department of Energy (DOE) Mound Site. 1 ref

  3. Radioisotopes Thermal Generators and its applications; Generadores térmicos de radioisótopos y sus aplicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.

    2016-07-01

    An historical review of the technologies for electricity generation using the decay heat of the radioisotopes is done. The technologies to convert the heat into electricity in the RTG (Radioisotopes Thermal Generators) Systems are described. The past, todays and future applications of RTG are described, to provide electricity to equipment in spatial satellites and spacecraft, lighthouse tower and sea bouys, submarine rovers, etc. At the end the safety characteristics and international regulations for RTG are mentioned.

  4. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  5. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines. Phase III Final Report for the Radioisotope Power Conversion Technology NRA

    Science.gov (United States)

    Ibrahim, Mounir B.; Gedeon, David; Wood, Gary; McLean, Jeffrey

    2009-01-01

    Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel.

  6. Advanced Stirling Convertor Update

    Science.gov (United States)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  7. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    International Nuclear Information System (INIS)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year's funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge

  8. Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification

    International Nuclear Information System (INIS)

    Kadri, Y.; Hadj Abdallah, H.

    2016-01-01

    Highlights: • Estimation of the output temperature reached by 2 m parabolic dish. • Output power estimation for uncontrollable load was done using Matlab®. • Validation of the proposed system under Tunisian conditions for rural electrification. - Abstract: The development of green power generation such as solar systems that have become a great interest for several countries especially for Tunisia as it presents a significant solar potential. For this purpose, this research has investigated the feasibility and the performance of standalone solar dish/Stirling micro generation plant for rural electrification. The considered hybrid system includes solar dish/Stirling engine, permanent magnet synchronous generator and a storage battery. To start with, thermal modeling and simulation have been carried out using Matlab® for the solar-driven Stirling heat engine system composed of an Alpha Stirling engine, a solar collector and a receiver, in which the radiation, convection, conduction and radiation heat loss have been taken into consideration for the selected design. For numerical validation of the receiver’s thermal model, simulation results were compared with experimental measurements reported for the EURODISH system with a reasonable degree of agreement. Second, the generated torque driving the generator has been estimated by the Adiabatic model of URIELI based on the classical fourth-order Runge-Kutta. In order for an autonomous control, the dish generator is connected to the load via power electronic converters where the bidirectional power flow is possible by the use of two voltage source converters in a back-to-back configuration. They are referred to as Stirling/generator side converter and load side inverter, both are oriented control by space vector pulse width modulation. In this context, the Stirling side converter is used to adjust the synchronous generator while the inverter controls the power flow between the direct current bus and the

  9. Advanced Controller Developed for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  10. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    Science.gov (United States)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  11. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    Science.gov (United States)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  12. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    International Nuclear Information System (INIS)

    Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3

  13. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro

    2001-01-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  14. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  15. Management of radioisotope, radiation generator and fuel materials for independent administrative corporations of national university

    International Nuclear Information System (INIS)

    2003-03-01

    This report states the situation, problems and proposal of management of radioisotope, radiation generator and fuel materials by independent administrative corporations of national universities. Four proposals are stated as followings; 1) in order to improve management of radioisotope, radiation generator, fuel materials and X-ray in the universities, organization and definition of the control department in each university and accident measures have to be decided. The middle object and plan should be needed. An appropriate management for proceeding researches should be discussed by closer connection of universities in the country. 2) The budget for safety control has to be identified at distribution of budget of each national university corporations. The insurance method is needed to be discussed. 3) The department in the MEXT (Ministry of Education, Culture, Sports, Science and Technology) should be enriched to support researches and safety control of the staff and students. 4) The system, which carries out treatment and disposal of disuse materials and keeps them under the responsibility of the nation, is necessary. (S.Y.)

  16. The General-Purpose Heat Source Radioisotope Thermoelectric Generator: Power for the Galileo and Ulysses missions

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Hemler, R.J.; Peterson, J.R.

    1986-01-01

    Electrical power for NASA's Galileo mission to Jupiter and ESA's Ulysses mission to explore the polar regions of the Sun will be provided by General-Purpose Heat Source Radioisotope Thermo-electric Generators (GPHS-RTGs). Building upon the successful RTG technology used in the Voyager program, each GPHS-RTG will provide at least 285 W(e) at beginning-of-mission. The design concept has been proven through extensive tests of an electrically heated Engineering Unit and a nuclear-heated Qualification Unit. Four flight generators have been successfully assembled and tested for use on the Galileo and Ulysses spacecraft. All indications are that the GPHS-RTGs will meet or exceed the power requirement of the missions

  17. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    International Nuclear Information System (INIS)

    Kawamura, Hiroko; Hirata, Yasuki

    2002-01-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m 3 at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  18. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroko; Hirata, Yasuki [Kyushu Univ., Fukuoka (Japan). Radioisotope Center; Taguchi, Kenji [Riken Co. Ltd., Kitakyushu, Fukuoka (Japan)

    2002-03-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m{sup 3} at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  19. Radioisotope thermoelectric generator load and unload sequence from the licensed hardware package system and the trailer system

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1995-01-01

    The Radioisotope Thermoelectric Generator Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), including the Radioisotope Thermoelectric Generator Transportation System packaging is licensed (regularoty) hardware, certified by the U.S. Department of Energy to be in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. This paper focuses on the required interfaces and sequencing of events required by these systems and the shipping and receiving facilities in preparation of the Radioisotope Thermoelectric Generator for space flight. copyright 1995 American Institute of Physics

  20. Generación de energía eléctrica en la edificación mediante tecnología de disco Stirling =Electrical energy generation in building by means of Stirling dish technology

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2017-08-01

    Full Text Available La creciente demanda de energía acompañada de los elevados niveles de emisión de gases contaminantes a la atmosfera hace patente la necesidad de encontrar nuevos sistemas de producción de energía. Una de las posibles alternativas se encuentra en la energía solar de concentración, y más concretamente en la tecnología termosolar con motor Stirling que alcanza unos niveles de rendimiento muy superiores a la energía solar fotovoltaica en cuanto a producción de energía eléctrica. En este trabajo se muestra el diseño y la caracterización de un prototipo de captador paraboloidal con motor Stirling, que permite obtener datos reales del funcionamiento de este tipo de sistemas. Esto permitirá modelizar de manera real el comportamiento esperado de equipos comerciales reales antes de abordar su implantación en edificios y viviendas unifamiliares. Abstract The increasing demand for energy accompanied by high level of emission of the contaminating gases into the atmosphere underscores the need to find new energy production systems. One of the possible alternatives is concentrating solar power and, more specifically, solar thermal technology with a Stirling engine that reaches higher performance levels than photovoltaic solar energy in terms of electricity generation. This paper shows the design and characterization of a prototype paraboloidal collector with a Stirling engine that allows obtaining real data of this type of systems functioning. This will allow modelling in a real way of expected performance of real commercial devices before approaching their introduction in buildings and single-family houses.

  1. Small Stirling dynamic isotope power system for robotic space missions

    International Nuclear Information System (INIS)

    Bents, D.J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the US Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established

  2. A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes

    International Nuclear Information System (INIS)

    Becker, D.L.; McCoy, J.C.

    1996-03-01

    Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA's Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE

  3. Theoretical analysis of heat transfer in, and electrical performance of, a milliwatt radioisotopic powered thermoelectric generator

    International Nuclear Information System (INIS)

    Biver, C.J.

    1975-01-01

    A simplified, theoretical model has been made for a radioisotope-powered milliwatt thermoelectric generator (RTG). Calculations of unit heat transfer and electrical performance characteristics are made in two ways: (a) using discrete values of input physical parameters for an individual unit; and (b) using a statistical simulation (Monte Carlo) approach for estimating the variation in performance in a group of N-units. The statistical simulation approach is useful in: (a) estimating the allowable range of input parameters conducive to the production design meeting specifications in a group of N-units; and (b) determining particular parameters that must be significantly restricted in variation to achieve desired performance. The available experimental data, as compared with the discrete value calculations, are in quite good agreement (within 5 percent generally). (U.S.)

  4. Radiation field calculation in the vicinity of Russian radioisotope generator sources

    Energy Technology Data Exchange (ETDEWEB)

    Pretzsch, Gunter; Hummelsheim, Klemens; Bogorinski, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Kurfuerstendamm 200, 10719 Berlin (Germany)

    2005-07-01

    Germany supports the Russian Federation in the framework of the G8 Global Partnership programme to secure nuclear and radioactive materials against misuse and proliferation. In this context, GRS, on behalf of the German Foreign Office, is coordinating activities to remove disused radioisotope thermoelectric generators (RITEG) from the Baltic Sea which serve as power supply for marine lighthouses and their replacement by alternative energy sources. Further the planned project includes transportation to an interim storage, the storage equipped with radiation monitoring and physical protection measures, later transportation for reprocessing to the Mayak Production Association, where the RITEG will be dismantled in a hot cell and encapsulated radioactive source will be vitrified and stored as radioactive waste. For the whole project safety analyses are to be performed e.g. to meet radiation protection requirements. In the present paper modelling and calculation of radiation fields in the vicinity of RITEG as a basis for safety analyses is reported. (authors)

  5. Overall performance of the duplex Stirling refrigerator

    International Nuclear Information System (INIS)

    Erbay, L. Berrin; Ozturk, M. Mete; Doğan, Bahadır

    2017-01-01

    Highlights: • Overall performance coefficient of duplex Stirling refrigerator was investigated. • A definite region for the coefficient of performance of the refrigerator in duplex Stirling is identified. • A definite region for the thermal efficiency of the heat engine in duplex Stirling is identified. • Benchmark values and design bounds of the duplex Stirling refrigerator were obtained. - Abstract: The duplex Stirling refrigerator is an integrated refrigerator consists of Stirling cycle engine and Stirling cycle refrigerator used for cooling. The equality of the work generation of the heat engine to the work consumption of the refrigerator is the primary constraint of the duplex Stirling. The duplex Stirling refrigerator is investigated thermodynamically by considering the effects of constructional and operational parameters which are namely the temperature ratios for heat engine and refrigerator, and the compression ratios for both sides. The primary concern is given to the parametric effects on the overall coefficient of performance of the duplex Stirling refrigerator. The given diagrams provide a design bounds and benchmark results that allows seeing the big picture about the cooling load and heat input relation. Moreover they ease to determine the corresponding work rate to the target cooling load. As regard to the obtained results, a definite region for coefficient of performance of the refrigerator and a definite region for the thermal efficiency of the heat engine of the duplex Stirling are identified.

  6. Fort Huachuca to Benefit from New Solar Technology: Dish-Stirling System Couples Solar Power with Engine to Generate Electricity

    National Research Council Canada - National Science Library

    1995-01-01

    ... in partnership with industry. A prototype dish-Stirling solar system, which consists of a large dish of solar concentrators and a Stirling heat engine, will be installed at Fort Huachuca in July and should be in operation about two weeks later...

  7. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  8. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    Science.gov (United States)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  9. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    Underwood, M.L.

    1995-01-01

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  10. Power performance of the general-purpose heat source radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Rock, B.J.

    1986-01-01

    The General-Purpose Heat Source Radioisotope Thermoelectric Generator (GRHS-RTG) has been developed under the sponsorship of the Department of Energy (DOE) to provide electrical power for the National Aeronautics and Space Administration (NASA) Galileo mission to Jupiter and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun. A total of five nuclear-heated generators and one electrically heated generator have been built and tested, proving out the design concept and meeting the specification requirements. The GPHS-RTG design is built upon the successful-technology used in the RTGs flown on the two NASA Voyager spacecraft and two US Air Force communications satellites. THe GPHS-RTG converts about 4400 W(t) from the nuclear heat source into at least 285 W(e) at beginning of mission (BOM). The GPHS-RTG consists of two major components: the General-Purpose Heat Source (GPHS) and the Converter. A conceptual drawing of the GPHs-RTG is presented and its design and performance are described

  11. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG'S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG'S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria

  12. Guide to the safe design, construction and use of radioisotopic power generators for certain land and sea applications

    International Nuclear Information System (INIS)

    1970-01-01

    The increasing development and production of certain types of radioisotopic power generators has indicated the need for internationally acceptable recommendations to be formulated governing the health and safety aspects of their construction and use. Accordingly, a Joint IAEA/ENEA Working Group was set up in 1966 with the task of studying the health and safety problems associated with such devices. The Working Group met twice, in April and December 1967, and prepared a draft guide to the safe design, construction and use of radioisotopic power generators. This draft guide was circulated in September 1968 to IAEA and ENEA Member States for consideration, and the comments that were subsequently received have formed the basis of a re-examination of the draft text in June 1969 by a joint IAEA/ENEA group of consultants set up by the two Agencies to bring the draft guide to its final form. This guide is intended to facilitate the establishment of an adequate standard of safety in the design, construction, installation and use of radioisotopic power generators, and in their ultimate disposal. The immediate requirement is considered to be in relation to those generators which are in an advanced state of development and production and which are designed for use on land and on o r under the sea. The guide deals mainly with radioisotopic power generators in the power range from about one hundred milliwatts to some hundred watts. However, competent national authorities may adapt these guidelines to generators outside this power range. It has been decided at this stage to exclude consideration of miniature generators for medical use, in watches and in other devices available to the general public. Generators for use in space have also been excluded.

  13. Experimental and Computational Analysis of Unidirectional Flow Through Stirling Engine Heater Head

    Science.gov (United States)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Demko, Rikako

    2006-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.

  14. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  15. Status report on performance of radioisotope thermoelectric generators using silicon germanium thermoelectric elements

    International Nuclear Information System (INIS)

    Bennett, G.L.; Campbell, R.W.; Putnam, L.R.; Hemler, R.J.

    1994-01-01

    Three general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) are currently in use in space: two on board the Galileo spacecraft on its way to Jupiter and one on the Ulysses spacecraft exploring the polar regions of the Sun. The GPHS-RTG was designed to provide at least 285 W(e) at the beginning of mission (BOM) within a mass constraint of 56 kg and an overall size envelope of 42.2 cm in diameter and 114 cm in length. The Galileo spacecraft, which as already sent back exciting scientific information on Venus, Earth, and the asteroids Gaspra and Ida, carries two GPHS-RTGs which operate at 30 V. The Ulysses spacecraft, which has already successfully swung past Jupiter on its way to the southern polar regions of the Sun, carries one GPHS-RTG which operates at 28 V. The analyses presented in the paper show that both Galileo and Ulysses will have sufficient power for the baseline missions and analyses are under way to determine the power available for an extended Ulysses mission out to the year 2002. Ten other silicon-germanium-based RTGs on the LES 8/9 and Voyager 1/2 spacecraft have completed their prime missions and are now successfully performing extended missions

  16. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  17. Radioisotope generators for nuclear medicine based on Fajans adsorption on glass microspheres

    International Nuclear Information System (INIS)

    Ehrhardt, G.J.; Symes, S.; Guimon, R.K.; Zinn, K.R.

    1992-01-01

    Several radioisotope generator systems exist in which the carrier-free daughter product would precipitate if present in macro amounts at pH levels at which the parent is soluble. Included among these are the 68 Ge/ 68 Ga, 90 Sr/ 90 Y, and 47 Ca/ 47 Sc pairs. This paper reveals that in these systems, chemical separation can be achieved by Fajans adsorption of the radiocolloidal daughter products onto surfaces such as activated glass microspheres at an appropriate pH. This is followed by washing to remove the parent solution and desorption of the daughter crop by acid washes. Investigation of the Ge/Ga and Sr/Y systems demonstrated that this solid-phase extraction method is erratic, but can give daughter yields as high at 89% with separation factors up to ∼ 10,000 form parent isotope. This method has the potential for producing daughter isotopes with a minimum of metal and organic impurities for labeling cells, receptor binding ligands, and antibodies for diagnostic and radiotherapeutic purposes

  18. Advanced Stirling Convertor (ASC) Development for NASA RPS

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  19. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    International Nuclear Information System (INIS)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-01

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided

  20. Free-piston Stirling Engine system considerations for various space power applications

    Science.gov (United States)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  1. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  2. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  3. Novel Ring-Configuration Double-Acting Free-Piston Stirling Convertor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA SBIR-2015 Topic S3.01 seeks to evaluate and advance Stirling convertors as a potentially more efficient alternative to the radioisotope-heated thermoelectric...

  4. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, J. [U.S. Department of Energy, Oak Ridge Operations Office, 200 Administrative Road, Oak Ridge, TN 37830 (United States); Patterson, J.; DeRoos, K. [SEC Federal Services Corporation (SEC), 2800 Solway Road, Knoxville, TN 37931 (United States); Patterson, J.E.; Mitchell, K.G. [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN 37932 (United States)

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC

  5. Assessment of dynamic energy conversion systems for radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745 0 C, and case III with a BOL source temperature of 945 0 C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of 238 Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass

  6. Free-piston Stirling component test power converter test results and potential Stirling applications

    Science.gov (United States)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  7. KOVEC studies of radioisotope thermoelectric generator response (In connection with possible NASA space shuttle accident explosion scenarios)

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.; Weston, A.; Lee, E.

    1984-06-26

    The Department of Energy (DOE) commissioned a study leading to a final report (NUS-4543, Report of the Shuttle Transportation System (STS) Explosion Working Group (EWG), June 8, 1984), concerned with PuO/sub 2/ dispersal should the NASA space shuttle explode during the proposed Galileo and ISPN launches planned for 1986. At DOE's request, LLNL furnished appendices that describe hydrocode KOVEC calculations of potential damage to the Radioisotope Thermoelectric Generators, fueled by PuO/sub 2/, should certain explosion scenarios occur. These appendices are contained in this report.

  8. Performance Measurement of Advanced Stirling Convertors (ASC-E3)

    Science.gov (United States)

    Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing data of the Advanced Stirling Convertor (ASC). The latest version of the ASC (ASC-E3, to represent the third cycle of engineering model test hardware) is of a design identical to the forthcoming flight convertors. For this generation of hardware, a joint Sunpower and GRC effort was initiated to improve and standardize the test support hardware. After this effort was completed, the first pair of ASC-E3 units was produced by Sunpower and then delivered to GRC in December 2012. GRC has begun operation of these units. This process included performance verification, which examined the data from various tests to validate the convertor performance to the product specification. Other tests included detailed performance mapping that encompassed the wide range of operating conditions that will exist during a mission. These convertors were then transferred to Lockheed Martin for controller checkout testing. The results of this latest convertor performance verification activity are summarized here.

  9. Radioisotope battery for particular application

    International Nuclear Information System (INIS)

    Shen Tianjian; Liang Daihua; Cai Jianhua; Dai Zhimin; Xia Huihao; Wang Jianhua; Sun Sen; Yu Guojun; Wang Xiao; Wang Dongxing; Liu Xin

    2010-01-01

    Radioisotope battery, as a new type of power source, was developed in 1960s. It is advantageous in terms of long working life, high reliability, flexibility to rugged environment, maintenance free, and high capacity rate, hence its unique applications in space, isolated terrestrial or ocean spots, deep waters, and medicine. In this paper, we analysz the primary performances and classification of radioisotope thermoelectric generator, as well as characteristic, basic principle,and structure of radioisotope thermoelectric generator (RTG), which is the most popular in application of radioisotope battery in space, undersea, terrestrial and medicine. A prospect for development and application of radioisotope battery in the 21 st century is given, too. (authors)

  10. Experimental demonstration of radiation effects on the performance of a stirling-alternator convertor and candidate materials evaluation

    Science.gov (United States)

    Mireles, Omar R.

    Free-piston Stirling power convertors are under consideration by NASA for service in the Advanced Stirling Radioisotope Generator (ASRG) and Fission Surface Power (FSP) systems to enable aggressive exploration missions by providing a reliable and constant power supply. The ASRG must withstand environmental radiation conditions, while the FSP system must tolerate a mixed neutron and gamma-ray environment resulting from self-irradiation. Stirling-alternators utilize rare earth magnets and a variety of organic materials whose radiation limits dominate service life estimates and shielding requirements. The project objective was to demonstrate the performance of the alternator, identify materials that exhibit excessive radiation sensitivity, identify radiation tolerant substitutes, establish empirical dose limits, and demonstrate the feasibility of cost effective nuclear and radiation tests by selection of the appropriate personnel and test facilities as a function of hardware maturity. The Stirling Alternator Radiation Test Article (SARTA) was constructed from linear alternator components of a Stirling convertor and underwent significant pre-exposure characterization. The SARTA was operated at the Sandia National Laboratories Gamma Irradiation Facility to a dose of over 40 Mrad. Operating performance was within nominal variation, although modestly decreasing trends occurred in later runs as well as the detection of an electrical fault after the final exposure. Post-irradiation disassembly and internal inspection revealed minimal degradation of the majority of the organic components. Radiation testing of organic material coupons was conducted since the majority of the literature was inconsistent. These inconsistencies can be attributed to testing at environmental conditions vastly different than those Stirling-alternator organics will experience during operation. Samples were irradiated at the Texas A&M TRIGA reactor to above expected FSP neutron fluence. A thorough

  11. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    Science.gov (United States)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-07-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  12. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  13. Economical Radioisotope Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Almost all robotic space exploration missions and all Apollo missions to the moon used Radioisotopic Thermoelectric Generators (RTGs) to provide electrical power to...

  14. Free-Piston Stirling Engines

    Science.gov (United States)

    Shaltens, Richard K.

    1989-01-01

    Engines promise cost-effective solar-power generation. Report describes two concepts for Stirling-engine systems for conversion of solar heat to electrical energy. Recognized most promising technologies for meeting U.S. Department of Energy goals for performance and cost for terrestrial electrical-energy sources.

  15. Stability of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the

  16. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  17. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  18. Screening of High Temperature Organic Materials for Future Stirling Convertors

    Science.gov (United States)

    Shin, Euy-sik E.; Scheiman, Daniel A.

    2017-01-01

    Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection

  19. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    Science.gov (United States)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  20. Raytheon Stirling/pulse Tube Cryocooler Development

    Science.gov (United States)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  1. Radioisotope fueled pulsed power generation system for propulsion and electrical power for deep space missions

    Science.gov (United States)

    Howe, Troy

    Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.

  2. Nano-technology contributions towards the development of high performance radioisotope generators: The future promise to meet the continuing clinical demand.

    Science.gov (United States)

    Sakr, Tamer M; Nawar, Mohamed F; Fasih, T W; El-Bayoumy, S; Abd El-Rehim, H A

    2017-11-01

    Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Update on the NASA GRC Stirling Technology development project

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  4. A comparative reliability analysis of free-piston Stirling machines

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability

  5. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    Science.gov (United States)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  6. Free-piston Stirling engine system considerations for various space power applications

    International Nuclear Information System (INIS)

    Dochat, G.R.; Dhar, M.

    1991-01-01

    The U.S. Government is evaluating power requirements for future space applications. As power requirements increase solar or nuclear dynamic systems become increasingly attractive. Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (AC, DC, high or low voltage, and fixed or variable load). This paper will review potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. Currently free-piston Stirling engine technology for space power applications is being developed under contract with NASA-Lewis Research Center. This paper will also briefly outline the program and recent progress

  7. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel

  8. Small Stirling dynamic isotope power system for multihundred-watt robotic missions

    International Nuclear Information System (INIS)

    Bents, D.J.

    1991-01-01

    Free Piston Stirling Engine (FPSE) and linear alternator (LA) technology is combined with radioisotope heat sources to produce a compact dynamic isotope power system (DIPS) suitable for multihundred watt space application which appears competitive with advance radioisotope thermoelectric generators (RTGs). The small Stirling DIPS is scalable to multihundred watt power levels or lower. The FPSE/LA is a high efficiency convertor in sizes ranging from tens of kilowatts down to only a few watts. At multihundred watt unit size, the FPSE can be directly integrated with the General Purpose Heat Source (GPHS) via radiative coupling; the resulting dynamic isotope power system has a size and weight that compares favorably with the advanced modular (Mod) RTG, but requires less than a third the amount of isotope fuel. Thus the FPSE extends the high efficiency advantage of dynamic systems into a power range never previously considered competitive for DIPS. This results in lower fuel cost and reduced radiological hazard per delivered electrical watt. 33 refs

  9. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  10. Treatment of Radioactive Waste Generated from the Production of Molybdenum-99 Radioisotope

    International Nuclear Information System (INIS)

    Aisyah; Herlan Martono

    2007-01-01

    The 99 Mo is produced as the parent radionuclide for 99m Tc radioisotope which is used as medical radiodiagnostic for certain disease. In Indonesia 99 Mo is produced by irradiating target of high enriched U in the reactor. The characteristics of radioactive waste from the production of 99 Mo depend on the U enrichment of the target and the irradiation time. The characteristic of the radioactive waste can be directly determined by laboratory analysis or by ORIGEN 2 code. Producing 99 Mo from high enriched uranium target will produce radioactive waste containing 235 U, 238 U and fission product, while from low enriched uranium target will produce radioactive waste containing large amount of 239 Pu. Plutonium-239 is a long half life actinide that need to be separated from the fission product due to a different treatment is required. The fission product, after it is allowed to decay then needs to be categorized as low or medium level waste, while 239 Pu are categorized as transuranic waste. The disposal of low and medium level waste are stored in near surface disposal, while the disposal of transuranic waste is stored in a geologic formation. (author)

  11. Development of a module combustor biomass-motor Stirling applied to a isolated generation system and based on induction generator; Desenvolvimento de um modulo combustor biomassa-motor Stirling aplicado a sistemas de geracao isolada e baseados em gerador de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Humberto; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2004-07-01

    In some areas in Brazil the great distance of the generating and consuming centers, together with the low consumption of electric energy of these areas, they make unfeasible investments with transmission and distribution. The use of the biomass as fuel in the distributed generation, is low pollutions, it is renewable, besides possessing a low cost when compared to the fossil fuels [Barros, 2003]. By the way the generation distributed through renewable fuels, becomes an attractive solution for generation in distant and isolated areas of the electric system. Inside of this context, this paper proposes the use of a module combustor, biomass-motor Stirling, based on induction generator, applied to isolated areas, such as the north and northeast areas of the Brazil. (author)

  12. Effect of heat treatment on the electrical resistance of photoresist as related to radioisotopic thermoelectric generator aging

    International Nuclear Information System (INIS)

    Johnson, R.T. Jr.

    1979-03-01

    Photoresist is used in electrical contact definition and processing in radioisotopic thermoelectric generators. Inadequate removal of material during processing could lead to electrical shorting when exposed to the high temperature use environment. This effect has been simulated through studies of the electrical resistance of thin layers of photoresist (Kodak Metal Etch Resist) on glass (Corning 7052) with tungsten electrodes. Results show that both the photoresist and the glass contribute to the resistance. The glass resistance decreases with increasing temperature and becomes significant at high temperatures. Annealing studies on the photoresist show that the resistance of the photoresist decreases by over five orders of magnitude upon annealing to 500 0 C, with a corresponding decrease in activation energy from 0.27 eV (350 0 C anneal) to 0.10 eV (500 0 C anneal). Time dependent decreases in resistance of the photoresist were also measured for up to 8 to 9 days during high temperature anneals. Some electrolytic transport of tungsten may occur through the photoresist at high temperatures. Results are compared with data on thermoelectric generators and show that photoresist could cause the electrical aging (voltage degradation) problem observed in some generators

  13. Stirling Engine Cycle Efficiency

    OpenAIRE

    Naddaf, Nasrollah

    2012-01-01

    ABSTRACT This study strives to provide a clear explanation of the Stirling engine and its efficiency using new automation technology and the Lab View software. This heat engine was invented by Stirling, a Scottish in 1918. The engine’s working principles are based on the laws of thermodynamics and ability of volume expansion of ideal gases at different temperatures. Basically there are three types of Stirling engines: the gamma, beta and alpha models. The commissioner of the thesis ...

  14. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    Science.gov (United States)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  15. Simulation of a photo-solar generator for an optimal output by a parabolic photovoltaic concentrator of Stirling engine type

    Science.gov (United States)

    Kaddour, A.; Benyoucef, B.

    Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.

  16. New 5 Kilowatt Free-piston Stirling Space Convertor Developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2007-01-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc. s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 W and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  17. Analysis and design of a dish/Stirling system for solar electric generation with a 2.7 kW air-cooled engine; Analisis y diseno de un sistema de generacion electrica termosolar con concentrador de disco parabolico y motor Stirling de 2.7 kW enfriado por aire

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Chacon, R.; Velazquez-Limon, N. [Universidad Autonoma de Baja California, Baja California (Mexico)]. E-mails: rbeltran1@uabc.edu.mx; nicolas.velazquez@uabc.edu.mx; Sauceda-Carvajal, D. [Universidad Politecnica de Baja California, Baja California (Mexico)]. E-mail: dsaucedac@upbc.edu.mx

    2012-01-15

    This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, since the design of the cooler needs greater amounts of heat removal by increasing the air flow without affecting the internal conditions of the process (mass flow of working gas and internal dimensions of the same). The system was optimized and achieves an overall efficiency of solar to electric energy conversion of 26.7%. This study shows that the use of an air-cooled Stirling engine is potentially attractive for power generation at low capacities. [Spanish] Este trabajo presenta un modelado matematico, la simulacion y diseno de un sistema de generacion electrica termosolar de disco parabolico con motor Stirling de 2.7 kW enfriado directamente por aire. El modelo utilizado para el concentrador, la cavidad y el motor Stirling, fueron validados satisfactoriamente con datos experimentales. Con base en un estudio parametrico se realizo el dimensionamiento de los componentes del motor. El estudio realizado muestra que conforme se incrementa la capacidad del sistema, la eficiencia global se ve limitada por la potencia requerida por el ventilador, dado que el diseno del enfriador necesita retirar mayores cantidades de calor aumentando el flujo de aire, sin afectar las condiciones internas del proceso (flujo masico del gas de trabajo y dimensiones internas del mismo). El sistema fue optimizado obteniendo una eficiencia global de conversion de energia solar a electrica de 26.7%. Este estudio muestra que el uso de un motor Stirling enfriado directamente por aire es potencialmente

  18. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  19. Radioisotope Power Sources

    International Nuclear Information System (INIS)

    Culwell, J. P.

    1963-01-01

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  20. An assessment of dynamic energy conversion systems for terrestrial radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.

    1985-01-01

    The use of dynamic conversion systems to convert to electricity the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source is examined. Brayton Cycle, three Organic Rankine systems (Barber-Nichols/ORMAT, Sundstrand, and TRW concepts), Organic Rankine plus thermoelectrics, and Stirling Engine systems were studied. The systems were ranked for a North Warning System mission using a Los Alamos Multi-Attribute Decision Theory code. Three different heat source designs were used: Case I with a beginning of life (BOL) source temperature of 640 0 C, Case II with a BOL source temperature of 745 0 C, and Case III with a BOL source temperature of 945 0 C. The Stirling Engine system was the top-ranked system for Cases I and II, closely followed by the ORC systems in Case I and ORC and thermoelectrics in Case II. The Brayton-Cycle system was top-ranked for Case III, with the Stirling Engine system a close second

  1. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    Science.gov (United States)

    Wilcox, Douglas A., Jr.

    Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta

  2. Pseudo-random generator to allow to an electronic pulse simulator the ability to emulate radioisotopes spectra

    International Nuclear Information System (INIS)

    Lucianna F A; Carrillo M A; Mangussi M J

    2012-01-01

    The present work describes the development of a pseudo-random system to provide to a simulator pulse of radiation detectors the ability to emit pulses patterns similar to those recorded when measuring actual radioisotope. The idea is that the system can emulate characteristic spectral distributions of known radioisotopes, as well as creating individual spectra for specific purposes. This design is based on an improvement in terms of software from earlier development that only supplied predefined amplitude pulses at constant intervals (author)

  3. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  4. Development of Molybdenum Adsorbent for 99Mo/99mTc Radioisotope Generator Based on Irradiated Natural Molybdenum

    International Nuclear Information System (INIS)

    Rohadi Awaludin; Hotman Lubis; Sriyono; Abidin; Herlina; Endang Sarmini; Indra Saptiama; Hambali

    2011-01-01

    Preparation of 99 Mo/ 99m Tc radioisotope generator using irradiated natural molybdenum requires an adsorbent with high absorption capacity. Zirconium-based materials (ZBM), adsorbent with adsorption capacity of about 183 mg(Mo) / g(adsorbent), has been successfully synthesized. However, the adsorbent was easily broken in the Mo adsorption process due to many fractures in the grain. To increase the hardness, the material was immersed in tetraethyl orthosilicate (TEOS) and coated by TEOS flow in a column. The hardness test results showed that the ZBM with TEOS treatment was not broken when immersed into the Mo solution. Observations using SEM showed that the fractures formed on the ZBM were successfully removed by TEOS treatment. Measurements using EDS showed that after TEOS treatment, the silicon was detected and the oxygen content increased in the material surface. Adsorption test results showed that the TEOS immersion decreased the adsorption capacity of molybdenum from 183 to 79.8 mg of Mo per gram of adsorbent. The TEOS flow-in a column gave material with relatively high adsorption capacity, 140 mgMo per gram adsorbent. The content of Silicon in the surface was lower than that of adsorbent immersed in TEOS. (author)

  5. European Stirling forum 2000. Proceedings; Europaeisches Stirling Forum 2000. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document comprises all 42 papers presented at the 'European Stirling Forum 2000', held in Osnabrueck on February 22-24, 2000. Among others, the following subjects were discussed: Thermodynamics, new developments, Stirling engines, free piston heat pumps, flow optimisation of regenerators for Stirling engines, simulation for modelling of flow and heat transfer in the gas cycle of Stirling engines, design and performance, Stirling refrigerators, economic efficiency of biomass Stirling engines, power control of a Stirling CHP system, a Stirling refrigerator for ultralow temperatures in the refrigeration industry. [German] Das vorliegende Dokument enthaelt alle (42) Beitraege der Referenten des 'Europaeischen Stirling Forums 2000', das vom 22. bis 24. Februar 2000 in Osnabrueck stattgefunden hat. Einige der behandelten Themenschwerpunkte im Zusammenhang mit der Stirling-Maschine waren die Thermodynamik, neue Entwicklungen des Kreisprozesses, Heissgasmotoren, Freikolben-Waermepumpe, stroemungstechnische Optimierung von Regeneratoren fuer Stirling-Maschinen, Simulation zur Modellierung der Stroemung und Waermeuebertragung im Gaskreislauf von Stirling-Maschinen, Entwurf und Betriebsverhalten, Stirling-Kaeltemaschine, Wirtschaftlichkeit von Biomasse-Stirlingmotoren, Leistungsregelung eines Stirling-Blockheizkraftwerks, Anwendung eines Stirling-Kuehlers, zum Ultratiefkuehlen in der Kuehlindustrie. (AKF)

  6. Developmental Considerations on the Free-piston Stirling Power Convertor for Use in Space

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.

  7. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    Science.gov (United States)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady state, nearly sinusoidal behavior of the components in a Free Piston Stirling Engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F=ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB by taking user input data, passing it to Sage, a 1-D thermodynamic modeling program used to model the Stirling convertor, running Sage and then automatically plotting the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot end temperature, cold end temperature, operating frequency, and displacer spring constant. By using these phasor diagrams, better insight can be gained as to why the convertor operates the way that it does.

  8. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    Science.gov (United States)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady-state, nearly sinusoidal behavior of the components in a free-piston Stirling engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F = ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB (MathWorks), which takes user input data, passes it to Sage (Gedeon Associates), a one-dimensional thermodynamic modeling program used to model the Stirling convertor, runs Sage, and then automatically plots the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot-end temperature, cold-end temperature, operating frequency, and displacer spring constant. These phasor diagrams offer useful insight into convertor operation and performance.

  9. Creep properties of forged 2219 T6 aluminum alloy shell of general-purpose heat source-radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Hammond, J.P.

    1981-12-01

    The shell (2219 T6 aluminum forging) of the General Purpose Heat Source-Radioisotope Thermoelectric Generator was designed to retain the generator under sufficient elastic stress to secure it during space flight. A major concern was the extent to which the elastic stress would relax by creep. To determine acceptability of the shell construction material, the following proof tests simulating service were performed: 600 h of testing at 270 0 C under 24.1 MPa stress followed by 10,000 h of storage at 177 0 C under 55.1 MPa, both on the ground; and 10,000 h of flight in space at 270 0 C under 34.4 MPa stress. Additionally, systematic creep testing was performed at 177 and 260 0 C to establish creep design curves. The creep tests performed at 177 0 C revealed comparatively large amounts of primary creep followed by small amounts of secondary creep. The early creep is believed to be abetted by unstable substructures that are annealed out during testing at this temperature. The creep tests performed at 270 0 C showed normal primary creep followed by large amounts of secondary creep. Duplicate proof tests simulating the ground exposure conditions gave results that were in good agreement. The proof test simulating space flight at 270 0 C gave 0.11% primary creep followed by 0.59% secondary creep. About 10% of the second-stage creep was caused by four or five instantaneous strains, which began at the 4500-h mark. One or two of these strain bursts, occurred in each of several other tests at 177 and 260 0 C but were assessed as very moderate in magnitude. The effect is attributable to a slightly microsegregated condition remaining from the original cast structure

  10. Radioisotopic heat source

    Science.gov (United States)

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  11. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes

    International Nuclear Information System (INIS)

    Spencer, I.; Ledingham, K.W.D.; Singhal, R.P.; McCanny, T.; McKenna, P.; Clark, E.L.; Krushelnick, K.; Zepf, M.; Beg, F.N.; Tatarakis, M.; Dangor, A.E.; Norreys, P.A.; Clarke, R.J.; Allott, R.M.; Ross, I.N.

    2001-01-01

    Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10 20 W cm -2 ) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β + -emitting nuclei of relevance to the nuclear medicine community, namely 11 C and 13 N via (p, n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed

  12. Radioisotope power sources in the terrestrial and marine environment

    International Nuclear Information System (INIS)

    Holleman, T.J.; Wahlquist, E.J.

    1976-01-01

    In response to user agency needs, the Energy Research and Development Administration (ERDA), Division of Nuclear Research and Applications (NRA), has undertaken a variety of research and development efforts to insure the availability of highly reliable, long-lived nuclear power sources for special purpose terrestrial missions planned for the late 1970's and early 1980's. One such effort currently being pursued is the development of a 1kW(e) Stirling Radioisotope Power System for integration into an Unmanned Free Swimming Submersible (UFSS) demonstration vehicle now under development by the Naval Research Laboratory. Another important effort which NRA has undertaken is a study to evaluate both isotope fueled and non-isotope fueled unattended power systems in the 2kW(e) range for application in cold regions. In the lower power ranges of Radioisotope Thermoelectric Generators, NRA continues to support new development efforts and new application areas. The Division is providing assistance to the Navy on a 1 / 2 W(e) RTG for use in various underwater applications. The various efforts are briefly discussed

  13. Radioisotope Thermoelectric Generator Transporation System licensed hardware second certification test series and package shock mount system test

    International Nuclear Information System (INIS)

    Ferrell, P.C.; Moody, D.A.

    1995-10-01

    This paper presents a summary of two separate drop test a e performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of Title 10, Code of Federal Regulations, ''Part 71'' (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, Transit Drop Procedure (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G's at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G's was not exceeded in any test from a free drop height of 457 mm (18 in.)

  14. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  15. Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2005-01-01

    A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time.

  16. Design and development of Stirling Engines for stationary power generation applications in the 500 to 3000 hp range. Subtask 1A report: state-of-the-art conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.

  17. Stirling engine application study

    Science.gov (United States)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  18. Reactor-produced therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    2002-01-01

    The significant worldwide increase in therapeutic radioisotope applications in nuclear medicine, oncology and interventional cardiology requires the dependable production of sufficient levels of radioisotopes for these applications (Reba, 2000; J. Nucl. Med., 1998; Nuclear News, 1999; Adelstein and Manning, 1994). The issues associated with both accelerator- and reactor-production of therapeutic radioisotopes is important. Clinical applications of therapeutic radioisotopes include the use of both sealed sources and unsealed radiopharmaceutical sources. Targeted radiopharmaceutical agents include those for cancer therapy and palliation of bone pain from metastatic disease, ablation of bone marrow prior to stem cell transplantation, treatment modalities for mono and oligo- and polyarthritis, for cancer therapy (including brachytherapy) and for the inhibition of the hyperplastic response following coronary angioplasty and other interventional procedures (For example, see Volkert and Hoffman, 1999). Sealed sources involve the use of radiolabeled devices for cancer therapy (brachytherapy) and also for the inhibition of the hyperplasia which is often encountered after angioplasty, especially with the exponential increase in the use of coronary stents and stents for the peripheral vasculature and other anatomical applications. Since neutron-rich radioisotopes often decay by beta decay or decay to beta-emitting daughter radioisotopes which serve as the basis for radionuclide generator systems, reactors are expected to play an increasingly important role for the production of a large variety of therapeutic radioisotopes required for these and other developing therapeutic applications. Because of the importance of the availability of reactor-produced radioisotopes for these applications, an understanding of the contribution of neutron spectra for radioisotope production and determination of those cross sections which have not yet been established is important. This

  19. Radioisotope camera

    International Nuclear Information System (INIS)

    Tausch, L.M.; Kump, R.J.

    1978-01-01

    The electronic ciruit corrects distortions caused by the distance between the individual photomultiplier tubes of the multiple radioisotope camera on one hand and between the tube configuration and the scintillator plate on the other. For this purpose the transmission characteristics of the nonlinear circuits are altered as a function of the energy of the incident radiation. By this means the threshold values between lower and higher amplification are adjusted to the energy level of each scintillation. The correcting circuit may be used for any number of isotopes to be measured. (DG) [de

  20. Research and development for the application of radioisotope technology in SINR

    International Nuclear Information System (INIS)

    Zhang Jiahua

    1987-01-01

    A brief systematic account on the research and development for the application of radioisotope technology in Shanghai Institute of Nuclear Research (SINR) is presented. It comprehensively covers the following categories: 1. Radioisotopes produced by cyclotron; 2. Radioisotope-labelled compounds; 3. Radioisotope as source of energy converter; 4. Induced-radioisotope generation as a means for elemental analysis--the activation analysis; 5. Radioisotope equipped with electronic instrument for various application; and 6. Special usage of some radioisotopes

  1. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  2. Assessment of the Free-piston Stirling Convertor as a Long Life Power Convertor for Space

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-01-01

    There is currently a renewed interest in the use of free-piston Stirling power convertors for space power applications. More specifically, the Stirling convertor is being developed to be part of the Stirling Radioisotope Power System to supply electric power to spacecraft for NASA deep space science missions. The current development effort involves the Department of Energy, Germantown, MD, the NASA Glenn Research Center, Cleveland, OH, and the Stirling Technology Company, Kennewick, WA. The Stirling convertor will absorb heat supplied from the decay of plutonium dioxide contained in the General Purpose Heat Source modules and convert it into electricity to power the spacecraft. For many years the "potentials" of the free-piston Stirling convertor have been publicized by it's developers. Among these "potentials" were long life and high reliability. This paper will present an overview of the critical areas that enable long life of the free-piston Stirling power convertor, and present some of the techniques that have been used when long life has been achieved.

  3. Stirling Energy Module (SEM) as Micro-CHP; Stirling Energy Module (SEM) als Mini-BHKW

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, A.

    2006-07-01

    Since many years, a lot of effort is being put into the development of combined heat and power units (CHP) for the decentralised production of electric power. For long time, the main focus was on fuel cells. In the meantime, the Stirling technology, which is based upon classical mechanical engineering and innovative technical concepts, proceeded in its development as well. The following article describes the technology and the actual state of the development of the Stirling Energy Module (SEM) for the application as Micro-CHP in one-family-houses. SEM is based on a free-piston engine with a linear power generator, producing electric power while heating. The Stirling engine is planned the be introduced into the market as a replacement for the conventional heating systems within a couple of years. (author)

  4. An approach to design a 90Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP.

    Science.gov (United States)

    Khajepour, Abolhasan; Rahmani, Faezeh

    2017-01-01

    In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Solar Stirling for deep space applications

    International Nuclear Information System (INIS)

    Mason, Lee S.

    2000-01-01

    A study was performed to quantify the performance of solar thermal power systems for deep space planetary missions. The study incorporated projected advances in solar concentrator and energy conversion technologies. These technologies included inflatable structures, lightweight primary concentrators, high efficiency secondary concentrators, and high efficiency Stirling convertors. Analyses were performed to determine the mass and deployed area of multihundred watt solar thermal power systems for missions out to 40 astronomical units. Emphasis was given to system optimization, parametric sensitivity analyses, and concentrator configuration comparisons. The results indicated that solar thermal power systems are a competitive alternative to radioisotope systems out to 10 astronomical units without the cost or safety implications associated with nuclear sources

  6. Stirling engine alternatives for the terrestrial solar application

    Science.gov (United States)

    Stearns, J.

    1985-01-01

    The first phase of the present study of Stirling engine alternatives for solar thermal-electric generation has been completed. Development risk levels are considered to be high for all engines evaluated. Free-piston type and Ringbom-type Stirling engine-alternators are not yet developed for the 25 to 50-kW electrical power range, although smaller machines have demonstrated the inherent robustness of the machines. Kinematic-type Stirling engines are presently achieving a 3500 hr lifetime or longer on critical components, and lifetime must still be further extended for the solar application. Operational and technical characteristics of all types of Stirling engines have been reviewed with engine developers. Technical work of merit in progress in each engine development organization should be recognized and supported in an appropriate manner.

  7. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  8. A Stirling Idea

    Science.gov (United States)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  9. Stirling in Another Context.

    Science.gov (United States)

    Papademetriou, Peter

    1981-01-01

    An analysis and a critique of how remodeling and extension of the Rice University School of Architecture, by James Stirling, Michael Wilford, and Associates, fits into the campus plan and its eclectic style established early in this century. (Author/MLF)

  10. Radioisotope production

    International Nuclear Information System (INIS)

    1988-01-01

    The trial production runs started in the previous report period were continued and have been extended to 67 Ga, 81 Rb/ 81m Kr and 111 In, the production of which will be taken over from the Pretoria cyclotron at the end of this year, when that machine is scheduled to be shut down. After commissioning of the target water cooling system and the helium cooling system for beam foil windows at the beginning of this year, these production runs could also be extended to high beam currents (up to 50 μA). Test consignments of a number of products have been supplied to various potential future users, and 123 I, in the form of Na 123 I capsules as well as 123 I-sodium hippurate, and 52 Fe-citrate have actually been used with success in trial diagnostic studies on patients. A procedure for labelling IPPA and 3-IPMPA with 123 I has been developed, while initial work has also been done on the radioiodination of monoclonal antifibrine antibodies. The last major facility needed for the commencement of the routine radioisotope production programme, namely the multiple-target facility, is now ready for installation in the production vault within the next few weeks, and routine production runs are expected to start in November 1988. 4 figs., 18 refs

  11. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes...

  12. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    Directory of Open Access Journals (Sweden)

    Chia-En Ho

    2012-09-01

    Full Text Available This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.

  13. Innovation at Stirling

    Science.gov (United States)

    1998-11-01

    The 24th Stirling Meeting of the Scottish Branch of the Institute of Physics was held on 21 May 1998. It was, for the first time, coupled to a Physics Update Course, which then continued in the Heriot-Watt University over the following two days. This encouraged many more exhibitors to come to Stirling where some 220 physics teachers were present. Ten manufacturers, five publishers and, of course, the ASE and the Institute of Physics exhibited materials during the conference. Morning In his introductory remarks Jack Woolsey reminded teachers that a great deal of information about the Scottish Qualifications Authority was available on the web (http://www.sqa.org.uk). Lorna Neill chaired the morning session, which was devoted to teaching chips and assessing pupils! Tony Joyce (Motorola) emphasized the need to invest in the skills required by the electronics industry. There has been an explosion in the demand for microchips and Motorola, together with Edinburgh University, Compugraphics and Scottish Enterprise, have produced a number of `teaching chips' which are being used throughout Britain and abroad. Les Haworth (Edinburgh University) discussed the construction, operating principles and educational relevance of MOS devices. MOSFETs, he claimed, are the best vehicle for early teaching of device physics. Andrew Moore (Balerno High School) gave an entertaining presentation in which he suggested ways of using the `teaching chips' in practice. Although there were many good information sheets with suggested experiments and investigations, teachers often found it difficult to tailor them to specific courses. To reduce hassle Andrew recommended using the Teaching Chip Project Board which was now available. It was particularly useful for practical investigations at Standard Grade. For the question session Jim Jamieson (SSERC) and Walter Whitelaw (Edinburgh Council) joined the three speakers. Ian Kennedy (Kilwinning Academy) described a fascinating system, developed in his

  14. Radioisotope relay instrument

    International Nuclear Information System (INIS)

    Pozdnyakov, V.N.; Sazonov, O.L.; Taksar, I.M.; Tesnavs, Eh.R.; Yanushkovskij, V.A.

    1974-01-01

    The paper describes a radioisotope relay device containing a radiation source, a detector, an electronic relay block with a comparative threshold mechanism. The device differs from previously known ones in that, for the purpose of increasing stability and speed of action, the electronic relay block is a separate unit and contains two threshold pulse generators which are joined up, across series-connected ''and'' and ''or'' elements, with one of the inputs of the comparative threshold mechanism, whose second input is connected with a detector and whose outputs are connected with a relay element connected by feedback with the above-mentioned ''and'' elements. (author)

  15. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  16. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    International Nuclear Information System (INIS)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-01

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power (≥330 We at beginning of life) during the 10-year cruise and 1-year science mission (∼11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030

  17. New 5 kW free-piston Stirling space convertor developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2008-07-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc.'s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free-piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 h. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling convertor assembly. The characteristics of the design along with progress in developing the system will be described.

  18. Thermodynamic analysis and experimental investigation of a Solo V161 Stirling cogeneration unit

    International Nuclear Information System (INIS)

    Rogdakis, E.D.; Antonakos, G.D.; Koronaki, I.P.

    2012-01-01

    In order to investigate the Stirling engine implementation technology, a Solo Stirling Engine V161 cogeneration module has been installed at the Laboratory of Applied Thermodynamics of National Technical University of Athens. A special thermodynamic analysis of the engine's performance has been conducted introducing and utilizing specially designed computing codes along with the thermal balance study of the unit. Measurements were conducted under different operational conditions concerning various heat load stages of the engine, working pressure, as well as electric power production. Analysis of the experimental results has shown that the overall performance of the Stirling unit proved very promising and quite adequate for various areal applications, equally competing with other CHP systems. The performance of the unit experienced significant stability all over the operating range. The power stand ratio 0.35 differentiates Stirling cogeneration units from others that use diverging technologies significantly. The energy savings using a Stirling CHP unit, in respect to the concurrent use of a thermal and an electrical system at the same equivalent power has revealed 36.8%. -- Highlights: ► Thermodynamic analysis of an a-type Stirling engine. ► Development of generated electrical and thermal power of the m-CHP Solo Stirling Unit to engine's load comparison. ► Stirling m-CHP until heat balance analysis. ► Evaluation of the Solo Stirling V161 unit efficiency.

  19. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  20. Stirling engine power control

    Science.gov (United States)

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  1. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    Science.gov (United States)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  2. Stirling engine design manual

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  3. A Stirling engine for use with lower quality fuels

    Science.gov (United States)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  4. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  5. Use of biomass as fuel for Stirling motors; Uso de biomassa como combustivel para acionamento de motores Stirling

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Robledo Wakin; Aradas, Maria Eugenia Coria; Cobas, Vladmir Rafael Melian; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mail: robledo@unifei.edu.br

    2004-07-01

    The search to increase the electrical generation, together with the need to decrease the pollution emission, has encouraged the alternative energy sources. Nowadays around the world there are a lot of alternative energy sources incentive programs. In Brazil have PROINFA - Alternative Energy Sources Incentive Program. An example of alternative energy sources is the use of biomass as combustible. In the electrical generation, the biomass can be used directly, having it's directly combustion, and transforming the thermal energy liberated in electrical energy, or can be transformed in gas or liquid, and after use technology as internal combustion engine and gas turbine to generate electricity with these combustibles. Few technologies can be used to generate electricity burning directly to the biomass. Among these technologies, have the Stirling engine. It is possible to use this engine because the Stirling engines are external combustion engines, and it has not contact between the work gas and the flue gas. In this way, the Stirling engine needs a heat source, independent of the combustible type that will be used, including solar source. In this work will be present this technology, the different kinds of Stirling engines according to their configuration, moreover will be present the ST 05 G Stirling engine, which is a 500 W engine, acquired by University Federal of Itajuba. Also are present the tests results of this engine, and the installation to work with wood waste as combustible. (author)

  6. Radioisotope detection with accelerators

    International Nuclear Information System (INIS)

    Mast, T.S.; Muller, R.A.; Tans, P.P.

    1979-12-01

    High energy mass spectrometry is a new and very sensitive technique of measuring rare radioisotopes. This paper describes the techniques used to select and identify the individual radioisotope atoms in a sample and the status of the radioisotope measurements and their applications

  7. Stirling Engine with Unidirectional Gas Flow

    OpenAIRE

    Blumbergs, Ilmars

    2014-01-01

    In this study, a Stirling engine with unidirectional gas flow configuration of beta type Stirling engine is described and studied from kinematic and thermodynamics points of view. Some aspects of the Stirling engine with unidirectional gas flow engine are compared to classic beta type Stirling engines. The aim of research has been to develop a new type of Stirling engine, using SolidWorks 3D design software and Flow Simulation software. In the development process, special attention has been d...

  8. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    Science.gov (United States)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  9. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    Science.gov (United States)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  10. Design of radioisotope power systems facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.C.; Wiemers, M.J.

    1991-01-01

    Radioisotope power systems currently produced for the U.S. Department of Energy Office of Special Applications by the Mound Laboratory at Miamisburg, Ohio, have been used in a variety of configurations by the Department of Defense and the National Aeronautics and Space Administration. A forecast of fugure radioisotope power systems requirements showed a need for an increased production rate beyond the capability of the existing Mound Laboratory. Westinghouse Hanford Company is modifying the Fuels and Materials Examination Facility on the Hanford Site near Richland, Washington, to install the new Radioisotope Power Systems Facility for assembling future radioisotope power systems. The facility is currently being prepared to assemble the radioisotope thermoelectric generators required by the National Aeronautics and Space Administration missions for Comet Rendezvous Asteroid Flyby in 1995 and Cassini, an investigation of Saturn and its moons, in 1996

  11. Stirling Engine Configuration Selection

    Directory of Open Access Journals (Sweden)

    Jose Egas

    2018-03-01

    Full Text Available Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.

  12. The Stirling engine

    International Nuclear Information System (INIS)

    Dunn, P.D.

    1989-01-01

    The Stirling engine can be used with any heat source including direct flame, heating from oil, gas, wood or coal combustors, by solar and by nuclear energy. As an alternative to conventional combustors fuels such as coal, oil, gas, vegetable waste can be combusted in a fluidized bed. The engine can be heated by coupling it directly to one of these sources of heat or it can be separated from the heat source and the heat transported by a heat pipe. There is clearly considerable flexibility in the choice of heat source. A major economic penalty is the need for a high temperature heat exchanger to transfer the heat to the engine working fluid from the heat source. Since in order to achieve good heat transfer a large surface area is needed and hence a complicated arrangement of small bore piping. Since the working fluid is not consumed an expensive substance such as helium can be used; however, if the power is to be extracted by a mechanical shaft it is necessary to design a seal between the engine body and the output shaft which will not allow any significant loss of helium. The seal problem is still one of the major technical difficulties in the development of Stirling engines using Helium or Hydrogen as the working fluid. For this reason interest in using air as the working fluid in lower speed engines has revived. 14 refs, 19 figs

  13. Effective multi-objective optimization of Stirling engine systems

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2016-01-01

    Highlights: • Multi-objective optimization of three recent Stirling engine models. • Use of efficient crossover and mutation operators for real coded Genetic Algorithm. • Demonstrated supremacy of the strategy over the conventionally used algorithm. • Improvements of up to 29% in comparison to literature results. - Abstract: In this article we demonstrate the supremacy of the Non-dominated Sorting Genetic Algorithm-II with Simulated Binary Crossover and Polynomial Mutation operators for the multi-objective optimization of Stirling engine systems by providing three examples, viz., (i) finite time thermodynamic model, (ii) Stirling engine thermal model with associated irreversibility and (iii) polytropic finite speed based thermodynamics. The finite time thermodynamic model involves seven decision variables and consists of three objectives: output power, thermal efficiency and rate of entropy generation. In comparison to literature, it was observed that the used strategy provides a better Pareto front and leads to improvements of up to 29%. The performance is also evaluated on a Stirling engine thermal model which considers the associated irreversibility of the cycle and consists of three objectives involving eleven decision variables. The supremacy of the suggested strategy is also demonstrated on the experimentally validated polytropic finite speed thermodynamics based Stirling engine model for optimization involving two objectives and ten decision variables.

  14. Optimization of powered Stirling heat engine with finite speed thermodynamics

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar; Hosseinzade, Hadi; Feidt, Michel

    2016-01-01

    Highlights: • Based on finite speed method and direct method, the optimal performance is investigated. • The effects of major parameters on the optimal performance are investigated. • The accuracy of the results was compared with previous works. - Abstract: Popular thermodynamic analyses including finite time thermodynamic analysis was lately developed based upon external irreversibilities while internal irreversibilities such as friction, pressure drop and entropy generation were not considered. The aforementioned disadvantage reduces the reliability of the finite time thermodynamic analysis in the design of an accurate Stirling engine model. Consequently, the finite time thermodynamic analysis could not sufficiently satisfy researchers for implementing in design and optimization issues. In this study, finite speed thermodynamic analysis was employed instead of finite time thermodynamic analysis for studying Stirling heat engine. The finite speed thermodynamic analysis approach is based on the first law of thermodynamics for a closed system with finite speed and the direct method. The effects of heat source temperature, regenerating effectiveness, volumetric ratio, piston stroke as well as rotational speed are included in the analysis. Moreover, maximum output power in optimal rotational speed was calculated while pressure losses in the Stirling engine were systematically considered. The result reveals the accuracy and the reliability of the finite speed thermodynamic method in thermodynamic analysis of Stirling heat engine. The outcomes can help researchers in the design of an appropriate and efficient Stirling engine.

  15. Radioisotope production in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wan Awang, Wan Anuar [Medical Technology Div., Malaysian Inst. for Nuclear Technology Research (MINT) (Malaysia)

    1998-10-01

    Production of Mo-99 by neutron activation of Mo-99 in Malaysia began as early as 1984. Regular supply of the Tc-99m extracted from it to the hospitals began in early 1988 after going through formal registration with the Malaysian Ministry of Health. Initially, the weekly demand was about 1.2 Ci of Mo-99 which catered the needs of 3 nuclear medicine centres. Sensitive to the increasing demand of Tc-99m, we have producing our own Tc-99m generator from imported TeO{sub 2} because irradiation TeO{sub 2} with our reactor give low yield of I-131. We have established the production of radioisotope for industrial use. By next year, Sm-153 EDTMP will be produce after we have license from our competent authority. (author)

  16. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    International Nuclear Information System (INIS)

    Brandhorst, Henry W. Jr.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-01

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described

  17. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    Science.gov (United States)

    Brandhorst, Henry W.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-01

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  18. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  19. Experimental study of the pressure characteristics in the Stirling refrigerator

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2001-01-01

    The linear compressor have been widely used for pressure wave generation in the Stirling cryocooler and Stirling type pulse tube cryocooler for tactical purpose. The linear compressor has small and compact structure, and long life due to having non-contact sealing mechanism and the pressure drop through regenerator was ver important role in the motion of displacer in the expander of the Stirling cryocooler. In this study, the characteristic of the linear compressor and the pressure drop through regenerator in the expander was experimentally investigated. The results show resonance of the compressor is very important to get maximum performance and the gas spring force in the compression space of the compressor has effect on the characteristic of resonance and the results show the pressure drop through regenerator is very small than operating pressure change

  20. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  1. Four-Cylinder Stirling-Engine Computer Program

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1986-01-01

    Computer program developed for simulating steady-state and transient performance of four-cylinder Stirling engine. In model, four cylinders interconnected by four working spaces. Each working space contains seven volumes: one for expansion space, heater, cooler, and compression space and three for regenerator. Thermal time constant for regenerator mass associated with each regenator gas volume. Former code generates results very quickly, since it has only 14 state variables with no energy equation. Current code then used to study various aspects of Stirling engine in much more detail. Program written in FORTRAN IV for use on IBM 370 computer.

  2. Transport of radioisotopes

    International Nuclear Information System (INIS)

    Aoki, Shigefumi

    1978-01-01

    Presently the amount of radioisotopes increased very much and the application spread to wide fields in Japan. Since facilities using radioisotopes are distributed to every place in the country, every transport means such as airplanes, automobiles, railways, ships and mail are employed. The problems in the transport of radioisotopes include too much difference in the recognition of criticality among the persons concerning the transportation and treatment, knowledges of shielding and energy difference in the types of radiation and handling of sealed and unsealed sources and the casks for transport. IAEA established the latest regulation on the package of radioisotopes in 1973, and in Japan, the related regulations will be revised according to the IAEA's regulation in near future. The present status in the inspection at the time of shipment, supervision, and the measures to the accidents are described for the transport means of airplanes, ships and automobiles. Finally, concerning the insurance for cargo, the objects of the insurance for radioisotopes include either the radioisotopes contained in casks for transportation or radioisotopes only. Generally, radioisotopes are accepted in all-risk condition including casks and limited to the useful radioisotopes for peaceful use. (Wakatsuki, Y

  3. Radioisotopes production and applications

    International Nuclear Information System (INIS)

    Dash, Ashutosh

    2015-01-01

    Application of radioisotopes for both medical and industrial applications constitutes one of the most important peaceful uses of atomic energy. The striking diffusion and the exciting perspective of radioisotope for a plethora of medical and industrial applications are mainly attributable to the penetrating and ionization properties of radiation emanating from radioisotopes. The revolutionary medical applications of radioisotopes for the diagnosis and treatment of a multitude of diseases are causing a rapid expansion of the nuclear medicine field. While the industrial uses of radioisotopes are not expanding as quickly, also require large amounts of radioisotopes. Production of radioisotopes is not only the first step, but also the most crucial for the success as well as sustainable growth of radioisotope applications. With the rapid growth and expanding areas of applications, the demands for isotopes have increased several folds. A number of radioisotopes of different physical half-life, energy of the particle or gamma emission, specific activity and chemistry are now regularly produced both at commercial centers as well as at selected nuclear science research institutes utilizing reactors and cyclotrons to meet the ever growing need

  4. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also

  5. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  6. Technical diagnosis of industrial plants with radioisotopes

    International Nuclear Information System (INIS)

    Hartmann, G.

    1984-01-01

    A survey is given of the application of radioisotopes in technical diagnosis of industrial plants. Proceeding from the economic importance and the state of the art of radioisotope applications, the principles of tracer techniques are outlined including topical examples of application such as passage of coal through a steam generator, wear in impact crashing of coal, wear and corrosion in pipelines, testing the effective cross section of pipes, and investigations of microstructures. Limits and restrictions of applications are briefly discussed

  7. Radioisotope tracers in industrial flow studies

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    The scope of radioisotope tracer work carried out by ANSTO has involved most sectors of Australian industry including iron and steel coal, chemical, petrochemical, natural gas, metallurgical, mineral, power generation, liquified air plant, as well as port authorities, water and sewerage instrumentalities, and environmental agencies. A major class of such studies concerns itself with flow and wear studies involving industrial equipment. Some examples are discussed which illustrate the utility of radioisotope tracer techniques in these applications

  8. In-line stirling energy system

    Science.gov (United States)

    Backhaus, Scott N [Espanola, NM; Keolian, Robert [State College, PA

    2011-03-22

    A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.

  9. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  10. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  11. A simple free-piston Sterling engine for combined heat and power generation (CHP) in the residential sector; Einfacher Stirling-Freikolben-Motor fuer die Kraft-Waerme-Kopplung (KWK) im Wohnbereich

    Energy Technology Data Exchange (ETDEWEB)

    Budliger, J.P.

    2001-07-01

    A completely static resonance tube is used in the Stirling cycle, as a substitute for a displacer piston. The Sterling system described works with only one, elastically suspended piston. The simple, cost-effective and maintenance-free basic design concept is explained in full detail, as well as some possible design types of resonance tube-charged, one-piston Stirling systems and their major advantages and performance characterisitcs. (orig./CB) [German] Anstelle eines Schwingkolbens kann auch ein voellig statisches Resonanzrohr eingesetzt werden: das resultierende Stirling-System umfasst nur noch einen einzigen, elastisch aufgehaengten Kolben. Dieses einfache, kostenguenstige und unterhaltsfreie Konzept stellt eine erwartungsvolle Loesung fuer dezentrale KWK-Anlagen dar. Im Vortrag werden einige moegliche Auslegungen solcher, mit Resonanzrohren aufgeladenen 1-Kolben-Stirling-Aggregate diskutiert, ihre wesentlichsten Eigenschaften und Leistungscharakteristiken beschrieben. (orig./CB)

  12. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  13. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  14. A simple method of calculating Stirling engines for engine design optimization

    Science.gov (United States)

    Martini, W. R.

    1978-01-01

    A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.

  15. On Generalizations of the Stirling Number Triangles

    Science.gov (United States)

    Lang, Wolfdieter

    2000-09-01

    Sequences of generalized Stirling numbers of both kinds are introduced. These sequences of triangles (i.e. infinite-dimensional lower triangular matrices) of numbers will be denoted by S2(k;n,m) and S1(k;n,m) with k in Z. The original Stirling number triangles of the second and first kind arise when k = 1. S2(2;n,m) is identical with the unsigned S1(2;n,m) triangle, called S1p(2;n,m), which also represents the triangle of signless Lah numbers. Certain associated number triangles, denoted by s2(k;n,m) and s1(k;n,m), are also defined. Both s2(2;n,m) and s1(2;n + 1, m + 1) form Pascal's triangle, and s2(-1,n,m) turns out to be Catalan's triangle. Generating functions are given for the columns of these triangles. Each S2(k) and S1(k) matrix is an example of a Jabotinsky matrix. Therefore the generating functions for the rows of these triangular arrays constitute exponential convolution polynomials. The sequences of the row sums of these triangles are also considered. These triangles are related to the problem of obtaining finite transformations from infinitesimal ones generated by x^k d/dx, for k in Z.

  16. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  17. Stirling converters for space dynamic power concepts with 2 to 130 We output

    International Nuclear Information System (INIS)

    Ross, B.A.

    1995-01-01

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance

  18. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  19. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  20. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  1. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    Science.gov (United States)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859

  2. Radioisotopic Thermoelectric Generator (RTG) Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta Nancy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    This lecture discusses stockpile stewardship efforts and the role surveillance plays in the process. Performance of the RTGs is described, and the question of the absence of anticipated He is addressed.

  3. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  4. Too Much of a Good Thing ? Radioisotope Power Conversion Technology and `Waste' Heat in the Titan Environment

    Science.gov (United States)

    Lorenz, Ralph

    Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system

  5. Production and utilization of radioisotopes

    International Nuclear Information System (INIS)

    Sekine, Toshiaki; Matsuoka, Hiromitsu

    1999-01-01

    A plan of developing radioisotopes with a high power proton accelerator of the Neutron Science Project is presented. The status of production and utilization of radioisotopes in Japan is briefly discussed. The radioisotopes to be produced for biomedical use are discussed together with the facility for production of those radioisotopes and for research with the products. (author)

  6. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  7. Radioisotopes in industry

    International Nuclear Information System (INIS)

    Popple, B.N.

    1977-01-01

    The author explains clearly what is radiography, enumerates four major factors in considering a practical source to use namely half-life, penetrating power, half value layer and specific activity and also the advantages and disadvantages in using isotopes. Common radioisotopes used in industrial radiography are iridium, cesium, cobalt and thulium. Main uses of the radioisotopes are for radiographic testing like welding castings, forgoings etc.; thickness, level or density measurement and tracing. (RTD)

  8. Development and evaluation of a Stirling-powered cardiac assist system. Annual report, May 1974--Jul 1975

    International Nuclear Information System (INIS)

    Andrus, S.; Faeser, R.J.; Moise, J.; Hoffman, L.C.; Rudnicki, M.I.

    1975-09-01

    The Stirling-Cycle engine is designed to power implantable physiologically compatible heart-assist and total heart replacement devices. Heat is provided by a 238 Pu radioisotope capsule. Program activity during this report period included the development of the PAC-5 and PAC-5M actuators and the MK-VII engine. The report describes extensive endurance and accelerated life testing of complete LVAD systems and individual components

  9. The law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1984-01-01

    The law regulates uses, sales and disposal of radioisotopes, uses of radiation generating apparatuses, disposal of materials contaminated with radioisotopes, and so on, in accordance with the Atomic Energy Fundamental Act, for public safety. Covered are the following: permission for and notification of the uses and permission for businesses selling and disposing of radioisotopes, and approval of designs concerning radiation hazard prevention mechanisms, obligations of the users and business enterprises selling and disposing of radioisotopes, the licensed engineers of radiation, organs, etc. for confirmation of the mechanisms, punitive provisions, and so on. (Mori, K.)

  10. Stirling engine with pressurized crankcase

    Science.gov (United States)

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  11. Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle

    International Nuclear Information System (INIS)

    Dong, Hui; Zhao, Liang; Zhang, Songyuan; Wang, Aihua; Cai, Jiuju

    2013-01-01

    Cryogenic generation is one of the most important ways to utilize cold energy during LNG (liquefied natural gas) regasification. This paper fundamentally investigates LNG cryogenic generation with the Stirling cycle method based on previous studies. A basic process of LNG cryogenic generation with the Stirling cycle was presented initially with seawater and LNG as heat source and heat sink. And its thermodynamic analysis was performed to verify the theoretical feasibility of the Stirling cycle method. The generating capacity, the exergy efficiency and the cold energy utilization efficiency of the basic process were also calculated. Subsequently, the influences of evaporation pressure on net work, equipment performance and comprehensive efficiency of cold energy utilization were discussed and the effect of LNG mass flow as well as the ambient temperature was also studied. Finally an improved process of LNG cryogenic generation with Stirling cycle method combined with an air liquefaction process is proposed as feasibility in improvements of the basic process. - Highlights: • We propose a basic process of LNG cryogenic generation with the Stirling cycle. • Seawater and LNG were applied as heat source and heat sink of the basic process. • The max generating capacity of the basic process is 51 kWh/tLNG. • The max cold energy utilization efficiency of the basic process is 0.56. • We also discussed some feasibilities of optimization of the basic cycle

  12. Radioisotopes production for applications on the health

    International Nuclear Information System (INIS)

    Monroy G, F.; Alanis M, J.

    2010-01-01

    In the Radioactive Materials Department of the Instituto Nacional de Investigaciones Nucleares (ININ) processes have been studied and developed for the radioisotopes production of interest in the medicine, research, industry and agriculture. In particular five new processes have been developed in the last 10 years by the group of the Radioactive Materials Research Laboratory to produce: 99 Mo/ 99m Tc and 188 W/ 188 Re generators, the radio lanthanides: 151 Pm, 147 Pm, 161 Tb, 166 Ho, 177 Lu, 131 I and the 32 P. All these radioisotopes are artificial and they can be produced in nuclear reactors and some of them in particle accelerators. The radioisotope generators are of particular interest, as those of 99 Mo/ 99m Tc and 188 W/ 188 Re presented in this work, because they are systems that allow to produce an artificial radioisotope of interest continually, in these cases the 99m Tc and the 188 Re, without the necessity of having a nuclear reactor or an particle accelerator. They are compact systems armored and sure perfectly of manipulating that, once the radioactive material has decayed, they do not present radiological risk some for the environment and the population. These systems are therefore of supreme utility in places where it is not had nuclear reactors or with a continuous radioisotope supply, due to their time of decaying, for its cost or for logistical problems in their supply, like it is the case of many hospital centers, of research or industries in our country. (Author)

  13. Radioisotope Production for Medical and Physics Applications

    Science.gov (United States)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  14. Radioisotopic indicators in microbiology

    International Nuclear Information System (INIS)

    Isamov, N.N.

    1976-01-01

    The book comprises data obtained by the laboratory of radiobiology (Uzbek Research Veterinary Institute) for 15 years and sums up data of domestic and foreign scientists; it discusses problems of the utilization of radioactive isotopes of sulphur, cadmium, phosphorus and other chemical elements by microorganisms; indicates the specificity of the utilization of radioisotopes in microbiology. The influence is considered of external factors on the inclusion of radioisotopes into microorganisms, methods are discussed of obtaining labelled microorganisms and their antigens, radioactivity of bacteria is considered as affected by the consistency and composition of the nutritive medium and other problems

  15. Radioisotope clocks in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, R E.M. [Oxford Univ. (UK). Research Lab. for Archaeology

    1979-09-06

    Methods of absolute dating which use the rate of disintegration of a radioactive nucleus as the clock, are reviewed. The use of the abundant radioisotopes (/sup 40/K, Th and U) and of the rare radioisotopes (/sup 14/C, /sup 10/Be, /sup 26/Al, /sup 32/Si, /sup 36/Cl, /sup 41/Ca, /sup 53/Mn) is discussed and radiation integration techniques (fission track dating, thermoluminescence and related techniques) are considered. Specific fields of use of the various methods and their accuracy are examined.

  16. Radioisotopes in soil science

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2004-01-01

    Soils form a thin veneer of the Earth that sustain the entire flora and fauna of the terra firma. To that extent the soil as a natural resource is very precious and needs to be managed in a sustainable manner. The fate of degradation of pesticides in soil and build-up of heavy metals in the overall biosafety scenario is also studied gainfully using radioisotopes. Radioisotopes are a very potent tool in the hands of the Soil Scientists, perhaps, the most important among the peaceful applications in service of the mankind

  17. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  18. Radioisotope Power Supply, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Between 1998 and 2003, Hi-Z Technology developed and built a 40 mW radioisotope power supply (RPS) that used a 1 watt radioisotope heater unit (RHU) as the energy...

  19. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  20. Automotive Stirling Engine Development Program

    Science.gov (United States)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  1. Development of the Sunpower 35 We Free-Piston Stirling Convertor

    Science.gov (United States)

    Wood, J. Gary; Lane, Neill

    2005-02-01

    This paper describes the development and performance of the Sunpower 35 We free-piston Stirling convertor. Exceptional thermodynamic performance has been achieved in a small lightweight machine. Efficiency of over 30 percent, at a temperature ratio of 2.6 has been achieved. Specific power of the convertor in final low mass hermetically-sealed form is projected to exceed 90 watts/Kg. This convertor was developed under NASA SBIR funding. Potential applications for this convertor include highly efficient and low mass radioisotope fueled space power systems, as well as terrestrial use as a fuel fired battery replacement.

  2. Radioisotopes in Industry

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Philip S. [Oak Ridge National Laboratory; Fuccillo, Jr., Domenic A. [Oak Ridge National Laboratory; Gerrard, Martha W. [Oak Ridge National Laboratory; Lafferty, Jr., Robert H. [Oak Ridge National Laboratory

    1967-05-01

    Radioisotopes, man-made radioactive elements, are used in industry primarily for measuring, testing and processing. How and why they are useful is the subject of this booklet. The booklet discusses their origin, their properties, their uses, and how they may be used in the future.

  3. Manual of radioisotope production

    International Nuclear Information System (INIS)

    1966-01-01

    The Manual of Radioisotope Production has been compiled primarily to help small reactor establishments which need a modest programme of radioisotope production for local requirements. It is not comprehensive, but gives guidance on essential preliminary considerations and problems that may be met in the early stages of production. References are included as an aid to the reader who wishes to seek further in the extensive literature on the subject. In preparing the Manual, which is in two parts, the Agency consulted several Member States which already have long experience in radioisotope production. An attempt has been made to condense this experience, firstly, by setting out the technical and economic considerations which govern the planning and execution of an isotope programme and, secondly, by providing experimental details of isotope production processes. Part I covers topics common to all radioisotope processing, namely, laboratory design, handling and dispensing of radioactive solutions, quality control, measurement and radiological safety. Part II contains information on the fifteen radioisotopes in most common use. These are bromine-82, cobalt-58, chromium-51, copper-64, fluorine-18, gold-198, iodine-131, iron-59, magnesium-28, potassium-42, sodium-24, phosphorus-32, sulphur-35, yttrium-90 and zinc-65. Their nuclear properties are described, references to typical applications are given and published methods of production are reviewed; also included are descriptions in detail of the production processes used at several national atomic energy organizations. No attempt has been made to distinguish the best values for nuclear data or to comment on the relative merits of production processes. Each process is presented essentially as it was described by the contributor on the understanding that critical comparisons are not necessary for processes which have been well tried in practical production for many years. The information is presented as a guide to enable

  4. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-01-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ''neutron rich'' and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail

  5. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  6. Stirling engine design manual, 2nd edition

    Science.gov (United States)

    Martini, W. R.

    1983-01-01

    This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.

  7. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling...... engine heat exchanger, can be eliminated and the overall electric efficiency of the system can be improved. At the Technical University of Denmark a Stirling engine fueled by gasification gas has been developed. In this engine the combustion system and the geometry of the hot heat exchanger...... of the Stirling engine has been adapted to the use of a gas with a low specific energy content and a high content of tar and particles. In the spring of 2001 a demonstration plant has been built in the western part of Denmark where this Stirling engine is combined with an updraft gasifier. A mathematical...

  8. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  9. Application of radioisotopes in entomology

    International Nuclear Information System (INIS)

    Saour, G.

    1995-01-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are: 3 H, 14 Ca, 32 P, 35 S, 38 Cl. Other radioisotopes contributing to studies on insects are: 198 Au, 134 Cs, 131 I, 86 Rb, 65 Zn, 59 Fe, 45 Ca, 24 Na, 22 Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs

  10. Application of radioisotopes in entomology

    Energy Technology Data Exchange (ETDEWEB)

    Saour, G [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1995-10-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are:{sup 3}H, {sup 14}Ca, {sup 32}P, {sup 35}S, {sup 38}Cl. Other radioisotopes contributing to studies on insects are: {sup 198}Au, {sup 134}Cs, {sup 131}I, {sup 86}Rb, {sup 65}Zn, {sup 59}Fe, {sup 45}Ca, {sup 24}Na, {sup 22}Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs.

  11. Developments in radioisotope production and labelling of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1998-01-01

    Recent developments in both reactor and accelerator production of radioisotopes finding applications in nuclear medicine and in biomedical research are summarised. The priorities for the production of 48 different cyclotron radioisotopes; and for 42 reactor produced radioisotopes finding biomedical applications are identified. Each includes 5 generator systems. The rapid expansion of cyclotron based radioisotope production and automated synthesis of short-lived radiopharmaceuticals with the position-emitting radionuclides continues to gain momentum. Recent feasibility studies of the cyclotron production of 186 Re, 99m Tc and of 99 Mo are cited as examples of motivation to develop accelerator alternatives to use of nuclear reactors for medical radioisotope production. Examples of SPET and PET radiopharmaceuticals labelled with 131 I, 123 I, 124 I, 18 F, and with therapeutic radionuclides are highlighted. (author)

  12. Operational data and thermodynamic modeling of a Stirling-dish demonstration installation in desert conditions

    Science.gov (United States)

    Nilsson, Martin; Jamot, Jakob; Malm, Tommy

    2017-06-01

    To field test its Stirling-dish unit, Cleanergy AB of Sweden in Q1 2015 built a ten unit demo park in Dubai. The first STE (Solar Thermal Energy) generation of its Stirling genset, the C11S, had at its core an 11 kWel Stirling engine/generator combination. The genset was mated with a parabolic concentrator developed for the genset by a supplier. Local weather conditions in Dubai provide opportunities to test performance in an environment with high insolation and high ambient temperature. In addition, the conditions in Dubai are windy, salty, humid and dusty, historically challenging for solar technologies [1]. In Q1 2016 one of the C11S Stirling-dish units was replaced by the first prototype of Cleanergy's second generation Stirling genset, the Sunbox, and an in-house developed parabolic concentrator. Operational data from field testing during the spring of 2016 are presented and discussed and show the large performance improvement achieved with the Sunbox unit.

  13. NASA/DOE automotive Stirling engine project: Overview 1986

    Science.gov (United States)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  14. Development of radioisotope production in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G [Philippine Nuclear Research Institute, Quezon (Philippines)

    1998-10-01

    The Philippine Nuclear Research Institute (PNRI) started its activities on radioisotope production more than three decades ago, when the Philippine Research Reactor (PRR-1) started operating at its full rated power of 1 MW. Since then, several radionuclides in different chemical forms, were routinely produced and supplied for use in nuclear medicine, industry, agriculture, research and training, until the conversion of the PRR-1 to a 3 MW TRIGA type reactor. After the criticality test of the upgraded reactor, a leak was discovered in the pool liner. With the repair of the reactor still ongoing, routine radioisotope production activities have been reduced to dispensing of imported bulk {sup 131}I. In the Philippines, radioisotopes are widely used in nuclear medicine, with {sup 131}I and {sup 99m}Tc as the major radionuclides of interest. Thus the present radioisotope production program of PNRI is directed to meet this demand. With the technical assistance of the International Atomic Energy Agency (IAEA), PNRI is setting up a new {sup 131}I production facility. The in-cell equipment have been installed and tested using both inactive and active target, obtained from BATAN, Indonesia. In order to meet the need of producing {sup 99}Mo-{sup 99m}Tc generators, based on low specific activity reactor-produced {sup 99}Mo, research and development work on the preparation of {sup 99m}Tc gel generators is ongoing. (author)

  15. Radioisotopes and radiopharmaceuticals catalogue

    International Nuclear Information System (INIS)

    2002-01-01

    The Chilean Nuclear Energy Commission (CCHEN) presents its radioisotopes and radiopharmaceuticals 2002 catalogue. In it we found physical characteristics of 9 different reactor produced radioisotopes ( Tc-99m, I-131, Sm-153, Ir-192, P-32, Na-24, K-42, Cu-64, Rb-86 ), 7 radiopharmaceuticals ( MDP, DTPA, DMSA, Disida, Phitate, S-Coloid, Red Blood Cells In-Vivo, Red Blood Cells In-Vitro) and 4 labelled compounds ( DMSA-Tc99m, DTPA-Tc99m, MIBG-I131, EDTMP-Sm153 ). In the near future the number of items will be increased with new reactor and cyclotron products. Our production system will be certified by ISO 9000 on March 2003. CCHEN is interested in being a national and an international supplier of these products (RS)

  16. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  17. NTP Radioisotopes SOC Ltd

    International Nuclear Information System (INIS)

    Letule, T.

    2017-01-01

    NTP Radioisotopes SOC Ltd, a wholly owned subsidiary of the South African Nuclear Energy Corporation (NECSA). Supplies around 20% of the world's medical radioisotopes used. NTP is a pioneer in the introduction and growth of nuclear medicine as in South Africa. Nuclear medicine is the medical specialty that involves the use of radioactive isotopes in the diagnosis and treatment of diseases. Nuclear medicine contributes to enhancing the lives of the society. There is a compelling need for nuclear medicine to be promoted and utilized in the rest of Africa, due to the increasing prevalence of cancer. Cancer is rapidly becoming a public health crisis in low-income and middle-income countries. In sub-Saharan Africa, patients often present with advanced disease

  18. Radioisotope laboratory in Turkey

    International Nuclear Information System (INIS)

    1961-01-01

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies

  19. Radioisotopes for medical applications

    International Nuclear Information System (INIS)

    Carr, S.

    1998-01-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country's main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community

  20. Radioisotope laboratory in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies.

  1. Radioisotopes for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carr, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division

    1998-03-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country`s main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community 2 tabs., 1 fig.

  2. Performance optimum analysis of an irreversible molten carbonate fuel cell–Stirling heat engine hybrid system

    International Nuclear Information System (INIS)

    Chen, Liwei; Zhang, Houcheng; Gao, Songhua; Yan, Huixian

    2014-01-01

    A new hybrid system mainly consists of a molten carbonate fuel cell (MCFC) and a Stirling heat engine is established, where the Stirling heat engine is driven by the high-quality waste heat generated in the MCFC. Based on the electrochemistry and non-equilibrium thermodynamics, analytical expressions for the efficiency and power output of the hybrid system are derived by taking various irreversible losses into account. It shows that the performance of the MCFC can be greatly enhanced by coupling a Stirling heat engine to further convert the waste heat for power generation. By employing numerical calculations, not only the influences of multiple irreversible losses on the performance of the hybrid system are analyzed, but also the impacts of some operating conditions such as the operating temperature, input gas compositions and operating pressure on the performance of the hybrid system are also discussed. The investigation method in the present paper is feasible for some other similar energy conversion systems as well. - Highlights: • A model of MCFC–Stirling heat engine hybrid system is established. • Analytical expressions for the efficiency and power output are derived. • MCFC performance can be greatly enhanced by coupling a Stirling heat engine. • Effects of some operating conditions on the performance are discussed. • Optimum operation regions are subdivided by multi-objective optimization method

  3. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  4. Multi-objective optimization of GPU3 Stirling engine using third order analysis

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Kasaeian, Alibakhsh; Hashemabadi, Seyyed Hasan; Salimi, Morteza

    2014-01-01

    Highlights: • A third-order analysis is carried out for optimization of Stirling engine. • The triple-optimization is done on a GPU3 Stirling engine. • A multi-objective optimization is carried out for a Stirling engine. • The results are compared with an experimental previous work for checking the model improvement. • The methods of TOPSIS, Fuzzy, and LINMAP are compared with each other in aspect of optimization. - Abstract: Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power which operates at closed cycles. These engines are good choices for using in power generation systems; because these engines present a reasonable theoretical efficiency which can be closer to the Carnot efficiency, comparing with other reciprocating thermal engines. Hence, many studies have been conducted on Stirling engines and the third order thermodynamic analysis is one of them. In this study, multi-objective optimization with four decision variables including the temperature of heat source, stroke, mean effective pressure, and the engine frequency were applied in order to increase the efficiency and output power and reduce the pressure drop. Three decision-making procedures were applied to optimize the answers from the results. At last, the applied methods were compared with the results obtained of one experimental work and a good agreement was observed

  5. Current utilization of research reactor on radioisotopes production in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yishu [Nuclear Power Institute of China, Chengdu (China)

    2000-10-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, {gamma}-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, {sup 90}Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  6. Current utilization of research reactor on radioisotopes production in China

    International Nuclear Information System (INIS)

    Liu Yishu

    2000-01-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, γ-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, 90 Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  7. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  8. A free-piston Stirling cryocooler using metal diaphragms

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-12-01

    A novel concept for a free-piston Stirling cryocooler has been proposed. The concept uses a pair of metal diaphragms to seal and suspend the displacer of a free-piston Stirling cryocooler. The diaphragms allow the displacer to move without rubbing or moving seals, potentially resulting in a long-life mechanism. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicates the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. Sage predicted the macroscopic behaviour of the prototype well but did not provide sufficient insights to improve performance significantly. This paper presents details of the development, modelling and testing of the proof-of-concept prototype and a second, improved prototype.

  9. Free-piston Stirling technology for space power

    Science.gov (United States)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  10. Integration of a free-piston Stirling engine and a moving grate incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Y.C.; Hsu, T.C.; Chiou, J.S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2008-01-15

    The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers. From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity. (author)

  11. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    Science.gov (United States)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  12. The Stirling engine mechanism optimization

    Directory of Open Access Journals (Sweden)

    Jiří Podešva

    2016-03-01

    Full Text Available A special type of the gas engine with external combustion is called Stirling engine. The mechanism has two pistons with two volumes inside. The pistons are connected together through cooler, regenerator and warmer. The engine effectivity depends on the piston movement behaviour. The usual sinusoidal time curve leads to low effectiveness. The quick movement from lower to upper position with a certain delay in both top and bottom dead centres is more effective. The paper deals with three types of mechanisms, analyzing the piston movement, and their behavior. Special emphasize is taken to the piston movement regime.

  13. Future radioisotope power needs for missions to the solar system

    International Nuclear Information System (INIS)

    Mondt, J.F.; Underwood, M.L.; Nesmith, B.J.

    1997-01-01

    NASA and DOE plan a cooperative team effort with industry, government laboratories and universities to develop a near term, low cost, low power (100 watt electric class), low mass (<10 kg), advanced radioisotope space power source (ARPS) and in the process reduce the plutonium-related costs as well. The near term is focused on developing an advanced energy converter to use with the General Purpose Heat Source (GPHS). The GPHS was developed and used for the current radioisotope thermoelectric generators (RTGs). Advanced energy converter technologies are needed as a more efficient replacement for the existing thermoelectric converters so that the space radioisotope power source mass and cost can be reduced. a more advanced technology space radioisotope power system program is also planned that addresses a longer-term need. Twenty first century robotic scientific information missions to the outer planets and beyond are planned to be accomplished with microspacecraft which may demand safe, even more compact, lower-power, lower-mass radioisotope power sources than those which can be achieved as a result of the near term efforts. The longer-term program focuses not only on converter technology but also on lower power, more compact radioisotope heat source technology and smaller, lower mass radioisotope heater units for second generation microspacecraft. This more ambitious, longer time-horizon focus necessarily occurs at this time on the technology R and D level rather than at the system technology level

  14. Variable displacement alpha-type Stirling engine

    Science.gov (United States)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  15. Idealization of The Real Stirling Cycle

    Directory of Open Access Journals (Sweden)

    Červenka Libor

    2016-12-01

    Full Text Available The paper presents a potential idealization of the real Stirling cycle. This idealization is performed by modifying the piston movement corresponding to the ideal Stirling cycle. The focus is on the cycle thermodynamics with respect to the indicated efficiency and indicated power. A detailed 1-D simulation model of a Stirling engine is used as a tool for this assessment. The model includes real non-zero volumes of heater, regenerator, cooler and connecting pipe. The model is created in the GT Power commercial simulation software.

  16. Overview 2004 of NASA Stirling-Convertor CFD-Model Development and Regenerator R&D Efforts

    Science.gov (United States)

    Tew, Roy C.; Dyson, Rodger W.; Wilson, Scott D.; Demko, Rikako

    2005-01-01

    This paper reports on accomplishments in 2004 in development of Stirling-convertor CFD model at NASA GRC and via a NASA grant, a Stirling regenerator-research effort being conducted via a NASA grant (a follow-on effort to an earlier DOE contract), and a regenerator-microfabrication contract for development of a "next-generation Stirling regenerator." Cleveland State University is the lead organization for all three grant/contractual efforts, with the University of Minnesota and Gedeor Associates as subcontractors. Also, the Stirling Technology Co. and Sunpower, Inc. are both involved in all three efforts, either as funded or unfunded participants. International Mezzo Technologies of Baton Rouge, LA is the regenerator fabricator for the regenerator-microfabrication contract. Results of the efforts in these three areas are summarized.

  17. Production of radioisotopes using accelerators

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1990-01-01

    Accelerator produced radioisotopes find applications in many fields. Most of them are ideally suited for in-vivo studies of physiological functions. A brief review of various types of accelerators used for radioisotope production is given. The 'state of art' technology relevant to the production of radioisotopes is briefly discussed. Some of the recent advances in nuclear data measurements, target development, chemical processing and quality control are described. There appears to be a definite shift from multipurpose accelerators to dedicated machines, and greater emphasis is placed now on the production of radioisotopes with high radionuclidic purity by choosing a suitable nuclear reaction in a proper energy range. (author)

  18. Applications of radioisotopes in medicine

    International Nuclear Information System (INIS)

    Sivaprasad, N.

    2012-01-01

    The application of radioisotopes in medicine is many folds. They can be classified into two main groups. (a) The radioisotope tagged labeled compounds suitable for safe administration in the body for diagnosis of various diseases of vital organs such as brain, kidney, thyroid etc and for treatment known as radiotherapy (b) The sealed source of radioisotopes for utilizing the radiation emitted from the radioisotope for treatment, particularly for radiation therapy of cancer. The former application of radioisotope in the field of medicine has led to the formation of special branch of medicine termed Nuclear Medicine - the branch of medicine deals with the use of radioisotope in the from of radiopharmaceuticals for investigation, diagnosis and treatment of diseases. Radioisotopes in the form of radiolabelled compound and bio-chemicals that are pharmaceutically and radiologically safe for administration in the body for diagnosis and treatment are called radiopharmaceuticals. The radiopharmaceuticals are the results of world-wide effort to bring nuclear energy in a tangible form for diagnosis and treatment. Radioisotopes as radiopharmaceuticals thus constitute one of the key requirements for nuclear medicine investigation and radiotherapy. In the case of sealed radioisotope source the radiation emitted by the radioactive source is utilized for the treatment and this mode of treatment is called radiation therapy where no radioactive substance is administrated into the body. This does not form the part of nuclear medicine

  19. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  20. An analysis of beta type Stirling engine with rhombic drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, D.J.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Bapat, S.L. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-01-15

    Stirling engine system is one of the options for electrifying a remote community not serviceable by the grid, which can operate on energy input in the form of heat. Major hurdle for the wide-spread usage of rhombic drive beta type Stirling engine is complexity of the drive and requirement of tight tolerances for its proper functioning. However, if the operating and geometrical constraints of the system are accounted for, different feasible design options can be identified. In the present work, various aspects that need to be considered at different decision making stages of the design and development of a Stirling engine are addressed. The proposed design methodology can generate and evaluate a range of possible design alternatives which can speed up the decision making process and also provide a clear understanding of the system design considerations. The present work is mainly about the design methodology for beta type Stirling engine and the optimization of phase angle, considering the effect of overlapping volume between compression and expansion spaces. It is also noticed that variation of compression space volume with phase angle remains sinusoidal for any phase difference. The aim of the present work is to find a feasible solution which should lead to a design of a single cylinder, beta type Stirling engine of 1.5 kW{sub e} capacity for rural electrification. (author)

  1. Administration of radioisotope production

    International Nuclear Information System (INIS)

    1964-01-01

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  2. Administration of radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-01-15

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  3. Thermodynamic model to study a solar collector for its application to Stirling engines

    International Nuclear Information System (INIS)

    Abdollahpour, Amir; Ahmadi, Mohammad H.; Mohammadi, Amir H.

    2014-01-01

    Highlights: • A thermodynamic model is presented to study a solar collector for its application to Stirling engines. • The parabolic collector is analyzed based on optical and thermal. • Effects of changing some conditions and parameters are studied. - Abstract: Energy production through clean and green sources has been paid attention over the last decades owing to high energy consumption and environmental emission. Solar energy is one of the most useful energy sources. Due to high investment cost of centralized generation of electricity and considerable loss in the network, it is necessary to look forward to decentralized electricity generation technologies. Stirling engines have high efficiency and are able to be coupled with solar energy which cannot be applied in internal combustion engines. Solar Stirling engines can be commercialized and used to generate decentralized electricity in small to medium levels. One of the most important steps to set up an efficient solar Stirling engine is choosing and designing the collector. In this study, a solar parabolic collector with 3500 W of power for its application to Stirling engines was designed and analyzed (It is the thermal inlet power for a Stirling engine). We studied the parabolic collector based on optical and thermal analysis. In this case, solar energy is focused by a concentrating mirror and transferred to a pipe containing fluid. MATLAB software was used for obtaining the parameters of the collector, with respect to the geographic, temporal, and environmental conditions, fluid inlet temperature and some other considerations. After obtaining the results of the design, we studied the effects of changing some conditions and parameters such as annular space pressure, type of the gas, wind velocity, environment temperature and absorber pipe coating

  4. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  5. Simple and Clear Proofs of Stirling's Formula

    Science.gov (United States)

    Niizeki, Shozo; Araki, Makoto

    2010-01-01

    The purpose of our article is to show two simpler and clearer methods of proving Stirling's formula than the traditional and conventional ones. The distinction of our method is to use the simple trapezoidal formula.

  6. Radioisotopes in the treatment of cancer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    Radiation treatment of malignant growths is not, of course, a novel procedure; both radium implants and X-rays generated at medium voltages (up to 250 kV) have been used all over the world for many years. However, large scale production of radioisotopes in atomic reactors has made radiotherapy available for the first time in less developed areas of the world. Moreover, the treatment has been simplified and, in many cases, made more effective

  7. Micro-battery Development using beta radioisotope

    International Nuclear Information System (INIS)

    Jung, H. K.; Cheong, Y. M.; Lee, N. H.; Choi, Y. S.; Joo, Y. S.; Lee, J. S.; Jeon, B. H.

    2007-06-01

    Nuclear battery which use the beta radiation sources emitting the low penetration radiation energy from radioisotope can be applied as the long term (more than 10 years) micro power source in MEMS and nano components. This report describes the basic concept and principles of nuclear micro-battery and its fabrication in space and military field. In particular direct conversion method is described by investigating the electron-hole generation and recombination in p-n junction of silicon betavoltaics with beta radiation

  8. Alternative thermodynamic cycle for the Stirling machine

    Science.gov (United States)

    Romanelli, Alejandro

    2017-12-01

    We develop an alternative thermodynamic cycle for the Stirling machine, where the polytropic process plays a central role. Analytical expressions for pressure and temperatures of the working gas are obtained as a function of the volume and the parameter that characterizes the polytropic process. This approach achieves closer agreement with the experimental pressure-volume diagram and can be adapted to any type of Stirling engine.

  9. Recent Stirling engine loss - understanding results

    International Nuclear Information System (INIS)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-01-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed

  10. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  11. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  12. Trade-Off Study for an STC 70 W Stirling Engine

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; Augenblick, Jack E.

    2005-02-01

    A high-efficiency, low-weight free-piston Stirling generator, RG-70L, has been conceptually designed. This paper reports the detailed trade-off study of newly designed RG-70L. The trades of operating frequency and piston/displacer strokes on Stirling convertor mass and efficiency are discussed. This paper shows how the operating frequency and strokes were optimized based on the trades. Losses associated with increased frequency were fully investigated and the results are discussed in the paper. Various optional linear alternator configurations are also presented and the estimated masses are reported.

  13. Radioisotopes and radiation technology

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2011-01-01

    The field of radioisotopes and radiation processing has grown enormously all over the world with India being no exception. The chemistry and radiochemistry related inputs to the overall technology development and achievements have been, and will continue to be, of considerable value and importance in this multi-disciplinary and multi-specialty field. Harnessing further benefits as well as sustaining proven applications should be the goal in planning for the future. An objective analysis of the socio-economic impact and benefits from this field to the society at large will undoubtedly justify assigning continued high priority, and providing adequate resources and support, to relevant new projects and programmes on the anvil in the area of radioisotopes and radiation technology. It is necessary to nurture and strengthen inter-disciplinary and multi-specialty collaborations and cooperation - at both national and international level as a rule (not as exception) - for greater efficiency, cost-effectiveness and success of ongoing endeavors and future developments in this important field

  14. Safe Handling of Radioisotopes

    International Nuclear Information System (INIS)

    1958-01-01

    Under its Statute the International Atomic Energy Agency is empowered to provide for the application of standards of safety for protection against radiation to its own operations and to operations making use of assistance provided by it or with which it is otherwise directly associated. To this end authorities receiving such assistance are required to observe relevant health and safety measures prescribed by the Agency. As a first step, it has been considered an urgent task to provide users of radioisotopes with a manual of practice for the safe handling of these substances. Such a manual is presented here and represents the first of a series of manuals and codes to be issued by the Agency. It has been prepared after careful consideration of existing national and international codes of radiation safety, by a group of international experts and in consultation with other international bodies. At the same time it is recommended that the manual be taken into account as a basic reference document by Member States of the Agency in the preparation of national health and safety documents covering the use of radioisotopes.

  15. The safe handling of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-12-31

    A narrative account of a minor contamination accident in a laboratory is used to demonstrate the important role of radiation protection measures in radioisotope work and the necessity of giving proper regard to such measures. It is primarily directed towards the research scientists and medical workers using radioisotopes on a relatively small scale

  16. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.

    Science.gov (United States)

    Sowale, Ayodeji; Kolios, Athanasios J; Fidalgo, Beatriz; Somorin, Tosin; Parker, Alison; Williams, Leon; Collins, Matt; McAdam, Ewan; Tyrrel, Sean

    2018-06-01

    The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.

  17. Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization

    International Nuclear Information System (INIS)

    Punnathanam, Varun; Kotecha, Prakash

    2017-01-01

    Highlights: • Efficient multi-objective optimization algorithm F-YYPO demonstrated. • Three Stirling engine applications with a total of eight cases. • Improvements in the objective function values of up to 30%. • Superior to the popularly used gamultiobj of MATLAB. • F-YYPO has extremely low time complexity. - Abstract: In this work, we demonstrate the performance of Front-based Yin-Yang-Pair Optimization (F-YYPO) to solve multi-objective problems related to Stirling engine systems. The performance of F-YYPO is compared with that of (i) a recently proposed multi-objective optimization algorithm (Multi-Objective Grey Wolf Optimizer) and (ii) an algorithm popularly employed in literature due to its easy accessibility (MATLAB’s inbuilt multi-objective Genetic Algorithm function: gamultiobj). We consider three Stirling engine based optimization problems: (i) the solar-dish Stirling engine system which considers objectives of output power, thermal efficiency and rate of entropy generation; (ii) Stirling engine thermal model which considers the associated irreversibility of the cycle with objectives of output power, thermal efficiency and pressure drop; and finally (iii) an experimentally validated polytropic finite speed thermodynamics based Stirling engine model also with objectives of output power and pressure drop. We observe F-YYPO to be significantly more effective as compared to its competitors in solving the problems, while requiring only a fraction of the computational time required by the other algorithms.

  18. Self-pressurizing Stirling engine

    Science.gov (United States)

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  20. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  1. Agricultural application of radioisotopes

    International Nuclear Information System (INIS)

    Agrawal, H.M.

    2001-01-01

    The radiations and isotopic tracers laboratory (R.I.T.L.) is duly approved B-class laboratory for handling radioactivity and functions as a central research facility of our university which has played a very significant role in ushering green revolution in the country. Radiolabelled fertilizers, insecticides and isotopes mostly supplied by Board of Radiation and Isotope Technology, (BRIT) Department of Atomic Energy (DAE) are being used in our university for the last three decades to study the uptake of fertilizers, micro nutrients, photosynthesis and photorespiration studies in different crop plants, soil-water-plant relations and roots activity, pesticides and herbicides mode of action, plants physiology and microbiology. Main emphasis of research so far has been concentrated on the agricultural productivity. The present talk is an attempt to highlight the enormous potential of radioisotopes to evolve better management of crop system for eco-friendly and sustainable agriculture in the next century. (author)

  2. Cardiovascular: radioisotopic angiocardiography

    International Nuclear Information System (INIS)

    Kriss, J.P.

    1975-01-01

    Radioisotopic angiocardiography, performed after the intravenous injection of 99 /sup m/Tc-labeled pertechnetate or albumin, is a simple, rapid, and safe procedure which permits identification and physiologic assessment of a wide variety of congenital and acquired cardiovascular lesions in infants and children. These include atrial and ventricular septal defect, tetralogy of Fallot, pulmonic stenosis, aortopulmonary window, transposition of the great vessels, valvular stenosis and/or insufficiency, myocardial lesions, and lesions of the great vessels. The simplicity of the procedure lends itself to repeated measurements to assess the effects of therapy or to follow the course of the disease. A wide spectrum of congenital and acquired cardiovascular diseases have been studied which have particular application to the pediatric age group. (auth)

  3. Radioisotopes in sedimentology

    International Nuclear Information System (INIS)

    Courtois, G.

    1967-01-01

    Radioisotopes have two main uses in sedimentology: they are used for the study of sediment movements in rivers and seas, and for continuous measurements of the amount of sediment suspended in a given medium. These two uses are considered in detail, and brief accounts given of some other uses. Study of sediment movements. After describing the basic technique used in sediment movement studies (injection of a labelled sediment or a simulator into the current, followed by tracking the radioactivity), the author enumerates as fully as possible the problems that can be solved with the help of this technique. Essentially, these problems fall into two groups: 1. Problems related to civil engineering works in coastal areas: the siltation of harbour channels and docks, the formation of banks and bars, the choice of sites for disposing of dredged sediment, the siting of ports, coastline protection, etc. Problems associated with civil engineering works in and near rivers; siting of the water intakes of hydroelectric and nuclear power stations, the effects of construction work on the transport of solids, the construction of dams, the protection of river banks, the construction of jetties, the siltation of lakes, etc. Problems common to these include the transport of effluent and the calibration of hydraulic models. The bibliography is based mainly on fairly recent references and on current research work. 2. Problems related to basic or applied research conducted mainly by universities and research centres: the study of the Quarternary of a particular region, pure sedimentology, the investigation of major sediment transport currents, the confirmation or refutation of transport theories, research into fundamental transport phenomena associated with channel experiments. After referring to the possible exploitation of natural tracers (contained in radioactive waste and fallout), the author discusses the technical aspects of using artificial tracers: the choice of radioisotope

  4. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  5. Radioisotopes for nuclear medicine: the future

    International Nuclear Information System (INIS)

    Carr, S.W.

    1998-01-01

    Full text: Nuclear medicine occupies an important niche in the spectrum of medical capability. Since its initial application on a routine basis over 30 years ago its importance has continued to grow. For example, it is expected that over 430,000 Australians will have a nuclear medicine procedure in 1998. Current procedures using nuclear medicine are mainly concerned with diagnosis of oncology, cardiology and neurology. The main radioisotope used in nuclear medicine is Tc 99m, which is produced by a 'so called' Mo-Tc 99m generator. Other isotopes which currently find routine use are Ga-67, Th-201 and I-131. The selective uptakes by particular organs or structures is facilitated by the use of 'cold kits' which after the chemistry of the radioisotope many of the recent advances have been concerned with increasing the selectivity for a particular organ structure. Several of these new agents show increased selectivity using antibody a peptide recognition units

  6. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  7. Cosmogenic radioisotopes in Gebel Kamil meteorite

    Science.gov (United States)

    Taricco, C.; Colombetti, P.; Bhandari, N.; Sinha, N.; Di Martino, M.; Vivaldo, G.

    2012-04-01

    Recently a small (45 m in diameter) and very young (radioisotope activity generated by cosmic rays in the meteoroids as they travel through the interplanetary space before falling on the Earth. From the 26Al activity measurement and its depth production profiles, we infer (i) that the radius of the meteoroid should be about 1 m, constraining to 30-40 ton the range of pre-atmospheric mass previously proposed and (ii) that the fragment should have been located deeply inside the meteoroid, at a depth > 0.7 m. The 44Ti activity is under the detection threshold of the apparatus; using the depth production profiles of this radioisotope and its half-life T1/2 = 59.2 y, we deduce an upper limit to the date of fall.

  8. Modern radioisotope production technologies for medicine

    International Nuclear Information System (INIS)

    Bechtold, V.; Schweickert, H.

    1989-01-01

    The advantages of the accelerator production of radioisotopes for medical purposes, are, above all, the high specific activity attainable as well as the possibility of the generation of nuclei with only a few neutrons which disintegrate due to β + emission or electron capture. It is, for example, possible to diagnostically utilize the developing long-range γ quanta by means of computerized tomography. The production of I-123 at the cyclotron of Karlsruhe (nuclear reaction, target, irradiation arrangement) as well as of ultra-pure I-123 with the help of compact cyclotrons, and the plant developed for this are described in brief. As another radioisotope which can be produced with the help of the compact cyclotron, Rb-81 is mentioned, the disintegration product Kr-81m of which is used in pulmonary diagnostics. (RB) [de

  9. Operating experience with the Harwell thermo-mechanical generators

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1980-06-01

    The Stirling-cycle thermo-mechanical generator (TMG) provides small amounts of electrical power continuously over long periods, while requiring much less fuel than other power sources running from hydrocarbon fuel or radio-isotopes. Two of these 25-watt generators, fuelled by propane, have been used to power the UK National Buoy on two successive missions. A total of more than three years experience at sea has now been accumulated. In addition, a 60-watt version has provided the power for a major lighthouse for more than a year. An early development version of the Thermo-mechanical Generator, adapted to run from the heat of a radio-isotope source, was loaded with strontium 90 titanate in October 1974 and has run continuously in the laboratory ever since. The improvements and changes found necessary in the course of 90,000 generator-hours of running time are described, and the improvements in operational performance and reliability which have resulted are outlined. (author)

  10. Performance analysis of dish solar stirling power system; Stirling engine wo mochiita taiyonetsu hatsuden system no seino yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K; Yamaguchi, I [Meiji University, Tokyo (Japan); Naito, Y; Momose, Y [Aisin Seiki Co. Ltd., Aichi (Japan)

    1996-10-27

    In order to estimate the performance of the dish solar Stirling power system, matching and control of each component system were studied, and the performance of the 25kWe class power system was estimated on the basis of direct solar radiation measured in Miyako island, Okinawa. Application of a Stirling engine to solar heat power generation is highly effective in spite of its small scale. The total system is composed of a converging system, heat receiver, engine/generator system and control system. As the simulation result, the generator output is nearly proportional to direct solar radiation, and the system efficiency approaches to a certain constant value with an increase in direct solar radiation. As accumulated solar radiation is large, the influence of slope error of the converging mirror is comparatively small. The optimum aperture opening ratio of the heat receiver determined on the basis of mean direct solar radiation (accumulated solar radiation/{Delta}t (simulated operation time of the system)), corresponds to the primary approximation of the opening ratio for a maximum total generated output under variable direct solar radiation. 6 refs., 6 figs., 1 tab.

  11. Energetic modeling and performance improvement of a free piston-kinematic displacer Stirling engine, used for electric power generation; Modelisation energetique et amelioration des performances d'un moteur Stirling a piston libre et deplaceur cinematique, destine a la production d'electricite

    Energy Technology Data Exchange (ETDEWEB)

    Seraj Mehdizadeh, N.

    1998-07-01

    This work deals with the different methods of energetic analysis that can be used to simulate a free piston-kinematic displacer Stirling engine. The free pistons directly carry the mobile part of a linear alternator, so there is a strong coupling between the thermodynamical behaviour of the engine and the characteristics of the electric circuit to which the alternator is connected. Various aspects of the engine operation are simulated: the triggering of the over-driven mode and its consequences, the influence of the excitation frequency of the displacer on the engine performance, the operation in a transient frequency mode, and the advantage of taking a non-continuous movement for the displacer. We show that if the circuit is made up of only R-L-C components whose characteristics are steady, the shift between the movement of the free pistons and that of the displacer is far from being optimized. We show that we can increase the net electric power produced by a factor varying from 4 to 10, simply by adapting the value of the resistance of the circuit.

  12. Thermodynamic analysis of a gas turbine cycle equipped with a non-ideal adiabatic model for a double acting Stirling engine

    International Nuclear Information System (INIS)

    Korlu, Mahmood; Pirkandi, Jamasb; Maroufi, Arman

    2017-01-01

    Highlights: • A gas turbine cycle equipped with a double acting Stirling engine is proposed. • The hybrid cycle effects, efficiency and power outputs are investigated. • The energy dissipation, the net enthalpy loss and wall heat leakage are considered. • The hybrid cycle improves the efficiency from 23.6 to 38.8%. - Abstract: The aim of this study is to investigate the thermodynamic performance of a gas turbine cycle equipped with a double acting Stirling engine. A portion of gas turbine exhaust gases are allocated to providing the heat required for the Stirling engine. Employing this hybrid cycle improves gas turbine performance and power generation. The double acting Stirling engine is used in this study and the non-ideal adiabatic model is used to numerical solution. The regenerator’s net enthalpy loss, the regenerator’s wall heat leakage, the energy dissipation caused by pressure drops in heat exchangers and regenerator are the losses that were taken into account for the Stirling engine. The hybrid cycle, gas turbine governing equations and Stirling engine analyses are carried out using the Matlab software. The pressure ratio of the compressor, the inlet temperature of turbine, the porosity, length and diameter of the regenerator were chosen as essential parameters in this article. Also the hybrid cycle effects, efficiency and power outputs are investigated. The results show that the hybrid gas turbine and Stirling engine improves the efficiency from 23.6 to 38.8%.

  13. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  14. Radioisotope indicator, type BETA 2

    International Nuclear Information System (INIS)

    Duszanski, M.; Pankow, A.; Skwarczynski, B.

    1975-01-01

    The authors describe a radioisotope indicator, type BETA 2, constructed in the ZKMPW Works to be employed in mines for counting, checking, signalling the presence and positioning of cars, as well as monitoring the state of some other equipment. (author)

  15. KAERI's challenge to steady production of radioisotopes and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Park, J.H.; Han, H.S.; Park, K.B.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) is a national organization in Korea, and has been doing many research and development works in radioisotope production and applications for more than 30 years. Now KAERI regularly produces radioisotopes (I-131, Tc-99m, Ho-166) for medical use and Ir-192 for industrial use. Various I-131 labeled compounds and more than 10 kinds of Tc-99m cold kits are also produced. Our multi-purpose reactor, named HANARO, has been operative since April of 1995. HANAKO is an open tank type reactor with 30 MW thermal capacity. This reactor was designed not only for research on neutron utilization but for production of radioisotopes. KAERI intended to maximize the radioisotope production capability. For this purpose, radioisotope production facilities (RIPF) have been constructed adjacent to the HANARO reactor building. There are four banks of hot cells equipped with manipulators and some of the hot cells were installed according to the KGMP standards and with clean rooms. In reviewing our RI production plan intensively, emphasis was placed on the development of new radiopharmaceuticals, development of new radiation sources for industrial and therapeutic use, and steady production of selected radioisotopes and radiopharmaceuticals. The selected items are Ho-166 based pharmaceuticals, fission Mo-99/Tc-99m generators. solution and capsules of I-131, and Ir-192 and Co-60 for industrial use. The status and future plan of KAERI's research and development program will be introduced, and will highlight programs for steady production. (author)

  16. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  17. James Stirling Regionalismo y modernidad

    Directory of Open Access Journals (Sweden)

    Javier de Esteban Garbayo

    2015-05-01

    Full Text Available ResumenEn los años treinta, la arquitectura moderna se había introducido en los más remotos lugares del mundo enfrentándose con la infinita idiosincrasia de lo local, y al mismo tiempo, el arquitecto, sintiendo las limitaciones de su estilo e intentando ampliar su vocabulario, se embarcó en un proceso de difusión, asimilación y personalización.La idea de una renovada época después de la posguerra británica, sería compartida por una joven generación de arquitectos con el fin de encontrar una nueva forma de modernidad.Si en sus proyectos domésticos de mediados de los cincuenta, James Stirling partió de una aproximación al regionalismo y a la 'tradición funcional' con el fin de renovar el lenguaje moderno, no abandonaría la idea 'programática' inicial de entender la arquitectura desde una consistencia formal y una lógica que combinaba 'una síntesis común del pasado reciente y una certera actitud hacia el futuro'. AbstractThirties, modern architecture had percolated into remote corners of the world, encountering the infinite idiosyncrasies of locality, and, at the same time, Architects, feelings the limitations of their style and becoming intent upon extending their vocabulary, embarked upon a process of diffusion, assimilation and personalitation.The idea of a renewed period after British postwar, was shared for a new young architects generationto find a new way of modernity.While in his mid fifties housing projects, James Stirling approached to 'regionalism' and 'the functional tradition' to renew the modern language, he wouldn't reject the programmatic idea to understand architecture from a logic and formal consistency that combine 'a common synthesis of the recent past and a certain attitude toward the future'.

  18. Industrial applications of radioisotope tracers

    International Nuclear Information System (INIS)

    Easey, J.F.

    1985-01-01

    Radioisotope tracing techniques are powerful tools for analysing the behaviour of large systems and investigating industrially or economically important processes. The results of radioisotope experiments can yield important information, for example, on parameters such as flow rates, mixing phenomena, flow abnormalities and leaks. Some examples of current AAEC research are described, covering studies on hearth drainage in blast furnaces, flow behaviour in waste-water treatment ponds, and sediment transport in marine environments

  19. Fast Whole-Engine Stirling Analysis

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  20. Combining solid biomass combustion and stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemers, W.; Senkel, N. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany)], e-mail: werner.siemers@cutec.de

    2012-11-01

    Decentralised electricity production in combination with and based on biomass still finds some difficulties in real applications. One concept favoured in a recent project is the connection of a wood chip furmace with a Stirling engine. Because the direct exposure of the Stirling head causes numerous problems, the solution is sought in designing an indirect heat transfer system. The main challenge is the temperature level, which should be reached for high electrical efficiencies. Temperatures above 1000 deg C at the biomass combustion side are needed for an efficient heat transfer at some 850 deg C at the Stirling engine in theory. Measurements on both installations have been conducted and analyzed. After this, the design phase is started. However, no final choice on the design has been taken.

  1. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  2. Cost estimating Brayton and Stirling engines

    Science.gov (United States)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  3. Medical application of radioisotopes

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lim, S. M.; Kim, E. H.

    2000-05-01

    In this project, we studied following subjects: 1. Clinical research for radionuclide therapy 2. Development of in vitro assay method with radioisotope 3. Development of binary therapy; Boron neutron capture therapy and photodynamic therapy 4. Development of diagnostic methods in radionuclide imaging. The results can be applied for the following objectives: 1) Radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial 2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research 3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology 4) The result of the project will be expected to develop the new radioimmunoassay for drug monitoring following the clinical experiments 5) Boron porphyrin has been successfully labeled with iodine. This enables the pharmacodynamic study of the boron compound in human body 6) A method to evaluate the biological effect of neutrons on tumor cells has been developed 7) The establishment of macro- and microscopic dose assessment using alpha-track autoradiography 8) Clinical application of PDT in bladder cancers, oropharyngeal cancer and skin cancer 9) Radionuclide imaging of estrogen receptor in breast cancer, lipid metabolism, gene therapy, cancers, brain function and heart disease

  4. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  5. Medical application of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S M; Kim, E H [and others

    2000-05-01

    In this project, we studied following subjects: 1. Clinical research for radionuclide therapy 2. Development of in vitro assay method with radioisotope 3. Development of binary therapy; Boron neutron capture therapy and photodynamic therapy 4. Development of diagnostic methods in radionuclide imaging. The results can be applied for the following objectives: (1) Radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology (4) The result of the project will be expected to develop the new radioimmunoassay for drug monitoring following the clinical experiments (5) Boron porphyrin has been successfully labeled with iodine. This enables the pharmacodynamic study of the boron compound in human body (6) A method to evaluate the biological effect of neutrons on tumor cells has been developed (7) The establishment of macro- and microscopic dose assessment using alpha-track autoradiography (8) Clinical application of PDT in bladder cancers, oropharyngeal cancer and skin cancer (9) Radionuclide imaging of estrogen receptor in breast cancer, lipid metabolism, gene therapy, cancers, brain function and heart disease.

  6. Manual for reactor produced radioisotopes

    International Nuclear Information System (INIS)

    2003-01-01

    Radioisotopes find extensive applications in several fields including medicine, industry, agriculture and research. Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programmes. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. Specifications for final products and testing procedures for ensuring quality are also an essential part of a radioisotope production programme. The International Atomic Energy Agency (IAEA) has compiled and published such information before for the benefit of laboratories of Member States. The first compilation, entitled Manual of Radioisotope Production, was published in 1966 (Technical Reports Series No. 63). A more elaborate and comprehensive compilation, entitled Radioisotope Production and Quality Control, was published in 1971 (Technical Reports Series No. 128). Both served as useful reference sources for scientists working in radioisotope production worldwide. The 1971 publication has been out of print for quite some time. The IAEA convened a consultants meeting to consider the need for compiling an updated manual. The consultants recommended the publication of an updated manual taking the following into consideration: significant changes have taken place since 1971 in many aspects of radioisotope production; many radioisotopes have been newly introduced while many others have become gradually obsolete; considerable experience and knowledge have been gained in production of important radioisotopes over the years, which can be preserved through compilation of the manual; there is still a need for a comprehensive manual on radioisotope production methods for new entrants to the field, and as a reference. It was also felt that updating all the subjects covered in the 1971 manual at a time may not be practical considering the

  7. Recent progress in radioisotope production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    So, Le Van [Radioisotope Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    This is a report on the recent progress in radioisotope production in Vietnam. Using a nuclear research reactor of 500 KW with continuous operation cycles of 100 hours a month, the production of some important radioisotopes used in nuclear medicine and research was routinely carried out. More than 80 per cent of irradiation capacity of reactor for radioisotope production were exploited. The radioactivity of more than 150 Ci of {sup 131}I, {sup 99}Mo-{sup 99m}Tc, {sup 32}P, {sup 51}Cr, {sup 153}Sm, {sup 46}Sc, {sup 192}Ir was produced annually. Radiopharmaceuticals such as {sup 131}I-Hippuran and in-vivo Kits for {sup 99m}Tc labelling were also prepared routinely and regularly. More than 10 in-vivo Kits including modern radiopharmaceuticals such as HmPAO kit were supplied to hospitals in Vietnam. The research on the improvement of dry distillation technology for production of {sup 131}I was carried out. As a result obtained a new distillation apparatus made from glass was successfully put to routine use in place of expensive quartz distillation furnace. We have also continued the research programme on the development of {sup 99m}Tc generators using low power research reactors. Gel technology using Zr- and Ti- molybdate gel columns for {sup 99m}Tc generator production was developed and improved continually. Portable {sup 99m}Tc generator using Zr-({sup 99}Mo) molybdate gel column and ZISORB adsorbent column for {sup 99m}Tc concentration were developed. The ZISORB adsorbent of high adsorption capacity for {sup 99}Mo and other parent radionuclides was also studied for the development purpose of alternative technology of {sup 99m}Tc and other different radionuclide generator systems. The studies on the preparation of therapeutic radiopharmaceuticals labelling with {sup 153}Sm and {sup 131}I such as {sup 153}Sm-EDTMP, {sup 131}I-MIBG were carried out. (author)

  8. Production of Radioisotopes in Pakistan Research Reactor: Past, Present and Future

    International Nuclear Information System (INIS)

    Mushtaq, A.

    2013-01-01

    Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programs. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. The availability of short-lived radionuclides from radionuclide generators provides an inexpensive and convenient alternative to in-house radioisotope production facilities such as cyclotrons and reactors. The reactor offers large volume for irradiation, simultaneous irradiation of several samples, economy of production and possibility to produce a wide variety of radioisotopes. The accelerator-produced isotopes relatively constitute a smaller percentage of total use. (author)

  9. Biogas and sewage gas in Stirling engines and micro gas turbines. Results of a field study; Bio- und Klaergas in Stirlingmotoren und Mikrogasturbinen. Ergebnisse einer Feldstudie

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Bernd; Wyndorps, Agnes [Hochschule Reutlingen (Germany); Bekker, Marina; Oechsner, Hans [Hohenheim Univ., Landesanstalt fuer Agrartechnik und Bioenergie, Stuttgart (Germany); Kelm, Tobias [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany)

    2010-07-01

    In decentral heat and power generation from biogas, sewage gas, landfill gas and methane in systems with a capacity below 100 kWe, Stirling engines and micro gas turbines may have advantages over gas engines, gasoline engines, and diesel engines. This was proved in a research project in which the operation of a Stirling engine with sewage gas and a micro gas turbine with biogas were investigated. (orig.)

  10. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  11. Start-up and control method and apparatus for resonant free piston Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  12. Multiple Cylinder Free-Piston Stirling Machinery

    Science.gov (United States)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  13. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  14. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  15. Experimental research on the Stirling engine

    Science.gov (United States)

    Ishizaki, Y.; Tani, Y.; Haramura, N.

    1982-01-01

    Experiments on Stirling engines of the 50 KW class were conducted to clarify the characteristics of the engine and its problems. The problems involve durability of the high temperature heat exchanger which is exposed to high flame temperatures above 1600 C, thermal distortion and high temperature corrosion of the devices near combustion, and of the preheater.

  16. Piston rod seal for a Stirling engine

    Science.gov (United States)

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  17. Basic dynamics of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2008-01-01

    The basic features of the split Stirling refrigerator, driven by a linear compressor, are described. Friction of the compressor piston and of the regenerator, and the viscous losses due to the gas flow through the regenerator matrix are taken into account. The temp. at the cold end is an input

  18. Quirks of Stirling's Approximation

    Science.gov (United States)

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  19. The Stirling Lesson-Sampling Instruments.

    Science.gov (United States)

    White, D. R.

    A long-term Leverhulme Research Project was established at Stirling University in 1970 to investigate the potential of microteaching as a major ingredient in the preparation of graduate high school teachers in Scotland. Members of the research team developed systematic observation schedules for each of the skills, in order to sharpen the focus of…

  20. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  1. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  2. Radioisotope techniques in oil wells

    International Nuclear Information System (INIS)

    Jain, Prabuddha

    1998-01-01

    Radioisotope techniques are quite useful in oil exploration and exploitation. Nuclear logging offers a way of gathering information on porosity, permeability, fluid saturations, hydrocarbon types and lithology. Some of the interesting applications in well drilling are determining depth of filtrate invasion, detection of lost circulation, drill-bit erosion control; primary cement measurements and well completions such as permanent tubular markers, perforation position marking, detection of channeling behind casing and gravel pack operations. Radioisotopes have been successfully used in optimizing production processes such as production profiling injection profiling, corrosion measurements and well to well tracer tests. (author)

  3. International off-grid market assessment for dish/Stirling systems

    International Nuclear Information System (INIS)

    Lilienthal, P.; Campbell, K.

    1998-01-01

    Several features of dish/Stirling technology offer potential advantages for off-grid power generation. Dish/Stirling technology's size, modularity, the ease with which it might be hybridized with a storable fuel, the elimination of batteries and inverters, and the production of pure sine-wave AC power without a diesel all indicate that a reliable dish/Stirling module could fit well into an off-grid electrification scheme. At the same time, a combination of factors makes success in off-grid applications difficult, regardless of the technology under consideration. Obstacles include consumer expectations (formed by a long history of subsidies) that electricity should be cheap, existing support infrastructure, and the economic resources of rural communities. Cost is always a factor, but reliability and access to parts and service have been more significant barriers so far in the establishment of renewables. This paper summarizes a much more extensive market assessment. Initial research indicates that a reliable 25 kW dish/Stirling system with reasonable servicing requirements could compete well with other off-grid power systems at a cost considered achievable at early production levels ($3,500 per kW). However, by itself the off-grid power market in regions with adequate solar insolation and inviting political regimes does not justify an adequate scale of production. It is estimated that the aggregate market in five of the largest and most promising countries for which adequate information was available could be 23,000 to 38,000 units of 25 kW dish/Stirling systems. Including the rest of the developing world could more than double this number. However, at a reasonable initial market penetration rate of 1% per year this market is not sufficient, by itself, for the mass production rates required to achieve the necessary economies of scale

  4. Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines

    International Nuclear Information System (INIS)

    Zhong Junhu; Zheng Yuli; Qing Li; Qiang Li

    2010-01-01

    Thermodynamic cycle transferring heat and work was executed in thermoacoustic engines, when the acoustic resonators substituted the moving mechanical components of the traditional heat engines. Based on the traveling-wave phasing and reversible heat transfer, thermoacoustic Stirling engines could achieve 70% of the Carnot efficiency theoretically, if the inevitable viscous dissipation in resonators was also counted as exported power. It should be pointed out an error on this efficiency evaluation in the previous literatures. More than 70% of the acoustic power production was often consumed by the side-branch resonator that was the essential configuration to build up a thermoacoustic Stirling engine. According to the simulation results and some experimental data, the actual available acoustic power consumed by the acoustic loads was restricted by the operating peak-to-mean pressure ratio, i.e. |p 1 /p m |. When the peak-to-mean pressure ratio operated on 4-6.5%, the thermal efficiency and power density of the available acoustic power reached higher levels. But the available acoustic power would approach zero when |p 1 /p m | attained 10%. It was approved that the turbulence oscillation occurred on the higher |p 1 /p m | (usually >4%) was the main reason of the excess dissipation in the side-branch resonator. This character of the available power limited the wide application of thermoacoustic Stirling engines. The evaluation of thermal efficiency and energy conversion also indicated the improving direction of thermoacoustic Stirling engines. Generators driven by the thermoacoustic Stirling engines were an effective way, due to the elimination of the side-branch resonator. To achieve a high power density and a high pressure ratio on the higher available power efficiency level, the standing-wave thermoacoustic engines might outvie the traveling-wave thermoacoustic engines. To enjoy the best features of standing-wave engines and traveling-wave engines simultaneously

  5. Modeling the dynamic and thermodynamic operation of Stirling engines by means of an equivalent electrical circuit

    International Nuclear Information System (INIS)

    Cascella, Franco; Sorin, Mikhail; Formosa, Fabien; Teyssedou, Alberto

    2017-01-01

    Highlights: • A model based on the electrical analogy theory has been developed to predict the operation of a Stirling engine. • The models takes into account the continuity, the momentum and the energy conservation equations. • The model predicts the operating conditions of the RE100 Free piston Stirling engine. • The model is sensible to the modeling of the effects of the machine load. - Abstract: The Stirling engines are inherently efficient; their thermodynamic cycles reach the Carnot efficiency. These technologies are suitable to operate under any low temperature difference between the hot and the cold sources. For these reasons, these engines can be considered as reliable power conversion systems to promote the conversion of low-grade waste heat generated by industrial plants. The need of a model to predict the behavior of these engines is of primary importance. Nevertheless, a great difficulty is encountered in developing such a model since it is not simple to take into account coupled thermodynamic and dynamic effects. This is the main reason why several models make use of electrical analogies to describe Stirling engines (in particular, free-piston machines): by assuming the pressure equivalent to a voltage and the flow rate to an electrical current, a coupled dynamic-thermodynamic analysis of the engine can be performed. In this paper, an electrical circuit whose behavior is equivalent to that of the engine is derived from the electrical analogy theory. To this aim, we propose an electrical analogy model based on the three conservation laws (mass, momentum and energy). Since limited experimental information is available in the open literature, the results obtained with the proposed model are compared with the experimental data collected at the NASA Lewis Research center for a free-piston Stirling engine i.e., the RE-1000 engine.

  6. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  7. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-06-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed.

  8. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-02-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed

  9. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1995-09-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP(Monte Carlo N-Particle) computer code and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time

  10. Berkeley Off-line Radioisotope Generator (BORG)

    CERN Document Server

    Sudowe, R

    2001-01-01

    Development of chemical separations for the transactinides has traditionally been performed with longer-lived tracer activities purchased commercially. With these long-lived tracers, there is always the potential problem that the tracer atoms are not always in the same chemical form as the short-lived atoms produced in on-line experiments. This problem is especially severe for elements in groups 4 and 5 of the periodic table, where hydrolysis is present. The long-lived tracers usually are stored with a complexing agent to prevent sorption or precipitation. Chemistry experiments performed with these long-lived tracers are therefore not analogous to those chemical experiments performed in on-line experiments. One way to eliminate the differences between off-line and on-line chemistry experiments is through the use of a sup 2 sup 5 sup 2 Cf fission fragment collection device. A sup 2 sup 5 sup 2 Cf fission fragment collection device has already been constructed [1]. This device is limited in its capabilities. A ...

  11. Berkeley Off-line Radioisotope Generator (BORG)

    International Nuclear Information System (INIS)

    Sudowe, Ralf; Patin, Joshua B.

    2001-01-01

    Development of chemical separations for the transactinides has traditionally been performed with longer-lived tracer activities purchased commercially. With these long-lived tracers, there is always the potential problem that the tracer atoms are not always in the same chemical form as the short-lived atoms produced in on-line experiments. This problem is especially severe for elements in groups 4 and 5 of the periodic table, where hydrolysis is present. The long-lived tracers usually are stored with a complexing agent to prevent sorption or precipitation. Chemistry experiments performed with these long-lived tracers are therefore not analogous to those chemical experiments performed in on-line experiments. One way to eliminate the differences between off-line and on-line chemistry experiments is through the use of a 252 Cf fission fragment collection device. A 252 Cf fission fragment collection device has already been constructed [1]. This device is limited in its capabilities. A new fission fragment device would allow the study of the chemical properties of the homologues of the heaviest elements. This new device would be capable of producing fission fragments for fast gas chemistry and aqueous chemistry experiments, long-lived tracers for model system development and neutrons for neutron activation. Fission fragment activities produced in this way should have the same chemical form as those produced in Cyclotron irradiations. The simple operation of this source will allow more rapid and reliable development of radiochemical separations with homologues of transactinide elements

  12. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1996-01-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP (Monte Carlo N-Particle) computer code (Briesmeister 1993) and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time. copyright 1996 American Institute of Physics

  13. Radioisotope detection and dating with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T S; Muller, R A [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1980-07-01

    The status of the new technique of high energy mass spectrometry is reviewed. This sensitive method of measuring isotope concentrations has been applied to the detection of rare radioisotopes used for age estimation. The techniques used to select and identify the individual radioisotope atoms in a sample are described and then the status of the radioisotope measurements and their applications is reviewed.

  14. Packaging and transport of radioisotopes

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1976-01-01

    The importance of radioisotope traffic is emphasized. More than a million packages are being transported each year, mostly for medical uses. The involvement of public transport services and the incidental dose to the public (which is very small) are appreciably greater than for movements connected with the nuclear fuel cycle. Modern isotope packages are described, and an outline given of the problems of a large radioisotope manufacturer who has to package many different types of product. Difficulties caused by recent uncoordinated restrictions on the use of passenger aircraft are mentioned. Some specific problems relating to radioisotope packaging are discussed. These include the crush resistance of Type A packages, the closure of steel drums, the design of secure closures for large containers, the Type A packaging of liquids, leak tightness criteria of Type B packages, and the use of 'unit load' overpacks to consign a group of individually approved packages together as a single shipment. Reference is made to recent studies of the impact of radioisotope shipments on the environment. Cost/benefit analysis is important in this field - an important public debate is only just beginning. (author)

  15. Radioisotope study of Eustachian tube

    International Nuclear Information System (INIS)

    De Rossi, G.; Campioni, P.; Vaccaro, A.

    1988-01-01

    Radioisotope studies of Eustachian tube are suggested in the preoperative phase of tympanoplasty, in order to assess tubal drainage and secretion. The use of gamma camera fitted to a computer allowed the AA, to calculate some semi-quantitative parameters for an exact assessment of the radioactivity transit from the tympanic cass up to the pharyngeal cavity, throughout the Eustachian tube. (orig.) [de

  16. Radioisotopes in engineering and industry

    International Nuclear Information System (INIS)

    Castagnet, A.C.G.

    1986-01-01

    The applications of radioisotope techniques in engineering and materials quality control are shown. The inventory of mercury in electrolytical cells, the transit and residence time measurements in several processes and radiotracer control are studied. The radioactive tracers in hydrologycal problems is evaluated. (M.J.C.) [pt

  17. Radioisotopes point the way ahead

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    The use of radiochemicals as tracers in medicine is discussed, with particular reference to the choice of radioisotope to be used, its properties, quality control and its detection and measurement in tracer experiments. The development of autoradiography is discussed. (U.K.)

  18. Uses of radioisotopes in Sudan

    International Nuclear Information System (INIS)

    Elradi, E. A. M.

    2013-07-01

    In this research project, an inventory for the different radioisotopes that were imported by public and private sectors of Sudan in the period between ( 2007-2011) has been set up. These organizations import the appropriates for different but in general we classify them into these applications: Medical, Industrial, Agricultural and Research. However, each broad discipline is subdivided into subgroups. This inventory will help those who are willing to establish research reactors in Sudan on the type and power of the reactors to be purchases according to the actual needs of Sudan with forecasting of the near and for future needs. Also the expenditure that has been spent by these organizations have been estimated for most of the radioisotopes. It was observed that almost 50% of the expenditure went for the fright charges as these radioisotopes need special handling and care by installing a research reactor in Sudan, the cost of purchasing will be cut down several folds. Also it will help in availability of the radioisotopes with very short half lives (hours to days). This will be reflected in the cut down the cost of tests and provision of new tests.(Author)

  19. Radioisotope methodology course radioprotection aspects

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Caro, R.A.; Menossi, C.A.

    1996-01-01

    The advancement knowledge in molecular and cell biology, biochemistry, medicine and pharmacology, which has taken place during the last 50 years, after World War II finalization, is really outstanding. It can be safely said that this fact is principally due to the application of radioisotope techniques. The research on metabolisms, biodistribution of pharmaceuticals, pharmacodynamics, etc., is mostly carried out by means of techniques employing radioactive materials. Radioisotopes and radiation are frequently used in medicine both as diagnostic and therapeutic tools. The radioimmunoanalysis is today a routine method in endocrinology and in general clinical medicine. The receptor determination and characterization is a steadily growing methodology used in clinical biochemistry, pharmacology and medicine. The use of radiopharmaceuticals and radiation of different origins, for therapeutic purposes, should not be overlooked. For these reasons, the importance to teach radioisotope methodology is steadily growing. This is principally the case for specialization at the post-graduate level but at the pre graduate curriculum it is worthwhile to give some elementary theoretical and practical notions on this subject. These observations are justified by a more than 30 years teaching experience at both levels at the School of Pharmacy and Biochemistry of the University of Buenos Aires, Argentina. In 1960 we began to teach Physics III, an obligatory pregraduate course for biochemistry students, in which some elementary notions of radioactivity and measurement techniques were given. Successive modifications of the biochemistry pregraduate curriculum incorporated radiochemistry as an elective subject and since 1978, radioisotope methodology, as obligatory subject for biochemistry students. This subject is given at the radioisotope laboratory during the first semester of each year and its objective is to provide theoretical and practical knowledge to the biochemistry students, even

  20. Control scheme for power modulation of a free piston Stirling engine

    Science.gov (United States)

    Dhar, Manmohan

    1989-01-01

    The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

  1. Development of a pellet boiler with Stirling engine for m-CHP domestic application

    Energy Technology Data Exchange (ETDEWEB)

    Crema, Luigi; Alberti, Fabrizio; Bertaso, Alberto; Bozzoli, Alessandro [Fondazione Bruno Kessler (FBK), Povo, Trento (IT). Renewable Energies and Environmental Technologies Unit (REET)

    2011-12-15

    A new sustainable technology has been designed by Fondazione Bruno Kessler through its unit Renewable Energies and Environmental Technologies. This technology is realized integrating in a single system (1) a Stirling engine (mRT-1K) from a pre-engineering design of Allan J. Organ; (2) a micro-heat exchanger technology, to reduce the net transfer unit deficit on the hot side of the heat engine; (3) a customized pellet boiler, able to extract electrical and thermal power; and (4) a customized hydraulic circuit, connecting the cool side of the Stirling engine and the heat generation on the second section of the pellet boiler. The objective of this paper was to present a new technology for the micro-cogeneration of energy at a distributed level able to be integrated in domestic dwellings. Most part of the available biomass is used in buildings for the generation of thermal power for indoor heating and, in minor cases, for hot sanitary water. In the Province of Trento, 88% of the biomass is used for this purpose. The full system is actually under integration for the test phase and not yet tested. The first tests on the single components have confirmed preliminary results on the Stirling engine with respect to the tolerances, pressurization, and proper integration of the electrical generator-driven control system. The pellet boiler has been tested separately, confirming an overall thermal efficiency of 90%. (orig.)

  2. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  3. Present status of OAP radioisotope production

    International Nuclear Information System (INIS)

    Charoen, Sakda

    2006-01-01

    Radioisotope Production Program (RP), Office of Atoms for Peace (OAP) is a non-profit government organization which responsible for research development and service of radioisotopes. Several research works on radioisotope production have been carried on at OAP. The radioisotope products of successful R and D have been routinely produced to supply for medical, agriculture and research application. The main products are 131 I (solution and capsule), 131 I-MIBG, 131 I-Hippuran, 153 Sm-EDTMP, 153 Sm-HA, and 99m Tc-radiopharmaceutical kits to serve local users. Radioisotopes are very beneficial for science and human welfare so as almost of our products and services are mainly utilized for medical purpose for both diagnosis and therapy. OAP has a policy to serve and response to that community by providing radioisotopes and services with high quality but reasonable price. This policy will give the opportunity to the community to utilize these radioisotopes for their healthcare. (author)

  4. Potential medical applications of the plasma focus in the radioisotope production for PET imaging

    International Nuclear Information System (INIS)

    Roshan, M.V.; Razaghi, S.; Asghari, F.; Rawat, R.S.; Springham, S.V.; Lee, P.; Lee, S.; Tan, T.L.

    2014-01-01

    Devices other than the accelerators are desired to be investigated for generating high energy particles to induce nuclear reaction and positron emission tomography (PET) producing radioisotopes. The experimental data of plasma focus devices (PF) are studied and the activity scaling law for External Solid Target (EST) activation is established. Based on the scaling law and the techniques to enhance the radioisotopes production, the feasibility of generating the required activity for PET imaging is studied. - Highlights: • Short lived radioisotopes for PET imaging are produced in plasma focus device. • The scaling law of the activity induced with plasma focus energy is established. • The potential medical applications of plasma focus are studied

  5. Cermet Coatings for Solar Stirling Space Power

    Science.gov (United States)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.

  6. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  7. Optimization of an irreversible Stirling regenerative cycle

    International Nuclear Information System (INIS)

    Aragón-González, G; Cano-Bianco, M; León-Galicia, A; Rivera-Camacho, J M

    2015-01-01

    In this work a Stirling regenerative cycle with some irreversibilities is analyzed. The analyzed irreversibilities are located at the heat exchangers. They receive a finite amount of heat and heat leakage occurs between both reservoirs. Using this model, power and the efficiency at maximum power are obtained. Some optimal design parameters for the exchanger heat areas and thermal conductances are presented. The relation between the power, efficiency and the results obtained are shown graphically

  8. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  9. Preparing for Harvesting Radioisotopes from FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Peaslee, Graham F. [Hope College, Holland, MI (United States); Lapi, Suzanne E. [Washington Univ., St. Louis, MO (United States)

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In the standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.

  10. Discrete radioisotopic relays of a cyclic action

    International Nuclear Information System (INIS)

    Klempner, K.S.; Vasil'ev, A.G.

    1975-01-01

    A functional diagram of discrete radioisotopic relay equipment (RRP) with cyclic action was examined. An analysis of its rapid action and reliability under stationary conditions and transition regimes is presented. A structural diagram of radioisotopic relay equipment shows three radiation detectors, a pulse standardizer, an integrator and a power amplifier with a threshold cut-off device. It was established that the basic properties of the RRP - rapid action and reliability - are determined entirely by the counting rate of the average frequency of pulses from the radiation detector, n 0 and n 1 , in the 0 and 1 states (absence of current in the electromagnetic relay winding and activation of the winding of the output relay), capacities N 1 and N 2 of the dual counters, and the frequency of the transition threshold, f, of the generator. Formulas are presented which allow making engineering calculations for determining the optimum RRP parameters. High speed and reliability are shown, which are determined by the production purposes of the relay

  11. Rhenium radioisotopes for therapeutic radiopharmaceutical development

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Pinkert, J.; Kropp, J.; Lin, W.Y.; Wang, S.Y.

    2001-01-01

    Rhenium-186 and rhenium-188 represent two important radioisotopes which are of interest for a variety of therapeutic applications in oncology, nuclear medicine and interventional cardiology. Rhenium-186 is directly produced in a nuclear reactor and the 90 hour half-life allows distribution to distant sites. The relatively low specific activity of rhenium-186 produced in most reactors, however, permits use of phosphonates, but limits use for labelled peptides and antibodies. Rhenium-188 has a much shorter 16.9 hour half-life which makes distribution from direct reactor production difficult. However, rhenium-188 can be obtained carrier-free from a tungsten-188/rhenium-188 generator, which has a long useful shelf-life of several months which is cost-effective, especially for developing regions. In this paper we discuss the issues associated with the production of rhenium-186- and rhenium-188 and the development and use of various radiopharmaceuticals and devices labelled with these radioisotopes for bone pain palliation, endoradiotherapy of tumours by selective catheterization and tumour therapy using radiolabelled peptides and antibodies, radionuclide synovectomy and the new field of vascular radiation therapy. (author)

  12. System simulation on fractionation radiation doses and radioisotope handling in Nuclear medicine

    International Nuclear Information System (INIS)

    Dytz, Aline Guerra; Dullius, Marcos Alexandre; Gomes, Camila e Silva

    2008-01-01

    This paper describes the practical and theoretical learning of students from Medical Physics course at the Fundacao Universidade Federal do Rio Grande (FURG) on fractionation radiation doses, radioisotope handling and elution of molybdenum generators (Mo-99) / technetium (Tc -99m)

  13. Determination of the radiological impact of radioisotope waste disposal

    International Nuclear Information System (INIS)

    1986-09-01

    The Atomic Energy Control Board (AECB) controls the uses of radioisotopes and the management of wastes resulting from radioisotope use through licences. In most cases, wastes generated through the use of radioisotopes are required by licence condition to be sent to Chalk River Nuclear Laboratories for storage but if the amounts of radioisotope are very small, have a low activity or a very short half-life, the radioisotope is permitted to be released to regular waste management systems. The AECB commissioned this study to determine the doses to individuals working in municipal waste management systems and to populations of cities where small amounts of radioisotopes are disposed of through the municipal waste managment systems. The Hamilton-Burlington area surrounding Hamilton Harbour was selected as the study area. The pathways and dosimetry models were put into a computer spread sheet, to give the model flexibility so that it could be easily modified to model other cities. Within the occupational critical group, the maximum doses were calculated for the Hamilton sewage treatment plant aeration worker at 1.2E-6 Sv/a. If this individual were also a member of the critical group in the general population, the maximum dose would be 2.0E-6 Sv/a. Individual doses to the critical group within the general population were calculated as 7.7E-7 Sv/a for adults and 6.8E-8 Sv/a for infants. These compare to AECB regulatory limits of 5.0E-2 Sv/a per person for atomic radiation workers and 5.0E-3 Sv/a per person for the general public. The collective population dose for the study area was 1.37E-1 person-Sv/a or an average dose of 2.6E-7 Sv/a per person for the 525,000 population

  14. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  15. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and

  16. Modeling for Control of a Wobble-Yoke Stirling Engine

    NARCIS (Netherlands)

    Garcia Canseco, E.; Scherpen, J.M.A.; Kuindersma, M.

    2009-01-01

    In this paper we derive the dynamical model of a four–cylinder double–acting wobble–yoke Stirling engine introduced originally by [1, 2]. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems perspective to obtain a

  17. Ross-Stirling engines: Variations on a theme

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G; Fauvel, R

    1986-01-01

    A new mechanism called the Ross linkage offers the prospect for compact, lightweight, long-lived, relatively low-cost, Stirling engines with excellent prospects for early commercial developed for various applications. Ross-Stirling engines are unusually compact, with installation envelope about one-third of conventional engines, piston side forces are virtually eliminated facilitating the use of dry lubricated or close tolerance, gas lubricated seals and the linkage geometry automatically favors the large bore/short ratios preferred for Stirling engines. The linkage is simple to make with few moving parts so that cost is relatively low. Various potential or actual embodiments of Ross-Stirling engines are reviewed including Stirling-Stirling gas-fired heat pumps, multicylinder power systems and cryocoolers. The system has sufficient flexibility to readily accommodate widely disparate piston stroke and cylinder diameters. Most work has been done so far with two-piston Stirling engines but the same linkage may be adopted for piston-displacer Stirling engines. 6 refs., 10 figs.

  18. Radioisotope handling facilities and automation of radioisotope production

    International Nuclear Information System (INIS)

    2004-12-01

    If a survey is made of the advances in radioisotope handling facilities, as well as the technical conditions and equipment used for radioisotope production, it can be observed that no fundamental changes in the design principles and technical conditions of conventional manufacture have happened over the last several years. Recent developments are mainly based on previous experience aimed at providing safer and more reliable operations, more sophisticated maintenance technology and radioactive waste disposal. In addition to the above observation, significant improvements have been made in the production conditions of radioisotopes intended for medical use, by establishing aseptic conditions with clean areas and isolators, as well as by introducing quality assurance as governing principle in the production of pharmaceutical grade radioactive products. Requirements of the good manufacturing practice (GMP) are increasingly complied with by improving the technical and organizational conditions, as well as data registration and documentation. Technical conditions required for the aseptic production of pharmaceuticals and those required for radioactive materials conflicting in some aspects are because of the contrasting contamination mechanisms and due consideration of the radiation safety. These can be resolved by combining protection methods developed for pharmaceuticals and radioactive materials, with the necessary compromise in some cases. Automation serves to decrease the radiation dose to the operator and environment as well as to ensure more reliable and precise radiochemical processing. Automation has mainly been introduced in the production of sealed sources and PET radiopharmaceuticals. PC controlled technologies ensure high reliability for the production and product quality, whilst providing automatic data acquisition and registration required by quality assurance. PC control is also useful in the operation of measuring instruments and in devices used for

  19. The radioisotopes and radiations program

    International Nuclear Information System (INIS)

    1982-01-01

    This program of the National Atomic Energy Commission of Argentina refers to the application and production of radionuclides, their compounds and sealed sources. The applications are carried out in the medical, agricultural, cattle raising and industrial areas and in other engineering branches. The sub-program corresponding to the production of radioactive materials includes the production of radioisotopes and of sealed sources, and an engineering service for radioactive materials production and handling facilities. The sub-program of applications is performed through several groups or laboratories in charge of the biological and technological applications, intensive radiation sources, radiation dosimetry and training of personnel or of potential users of radioactive material. Furthermore, several aspects about technology transfer, technical assistance, manpower training courses and scholarships are analyzed. Finally, some legal aspects about the use of radioisotopes and radiations in Argentina are pointed out. (M.E.L.) [es

  20. Some results of radioisotope studies

    Energy Technology Data Exchange (ETDEWEB)

    Isamov, N.N.

    1974-10-01

    The accumulation of radioisotopes by brucellae depends on the consistency of the feed medium on which they are grown. The uptake of P-32 is a factor of 5 to 16 greater, and that of sulfur-35 in the form of sodium sulfate is a factor of 30 to 100 greater when grown on a complex solid agar than in a bouillion solution of the same ingredients. Brucellae are readily tagged with /sup 32/P and /sup 35/S simultaneously. These tagged brucellae were used to study in vitro storage under various temperature regimes. Brucellae actively incorporate iron. The uptake of methionine and cystine tagged with sulfur-35 by brucellae was investigated. Methionine is absorbed directly for the most part by brucellae, while the sulfur-35 in sodium sulfate is primarily transformed to cystine and cysteine. The uptake of various radioisotopes can be used to type various strains of brucellae. Isotopes are used to trace the course of various diseases in animals. (SJR)

  1. Radioisotopes in Burmese agricultural research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-07-15

    The Burmese authorities decided to start a laboratory for the use of radioisotope techniques in agricultural r e search. The laboratory was set up at the Agricultural Research Institute at Gyogon, on the outskirts of Rangoon. Under its technical assistance program, IAEA assigned an expert in the agricultural applications of radioisotopes for this project. Discussions were held with regional representatives of the Food and Agriculture Organization on the best lines of research to be adopted at the laboratory in its early stages. As the most important crop in Burma is rice, a series of experiments were planned for a study of the nutrition of rice, particularly its phosphorus uptake, with special reference to comparative responses on a range of typical paddy soils. The experiments began last year and are being continued.

  2. Use of radioisotopes in Japan

    International Nuclear Information System (INIS)

    Foeldiak, G.

    1974-01-01

    A survey of the following general data on the use of radioisotopes in Japan is given (from the material of the 11th Japan Conference on Radioisotopes): 1. number of the organizations using radioactive isotopes, grouped according to special working fields and instruments; 2. amount of the unsealed sources (Ci) used in the different special working fields in 1971, 4. amount of the sealed sources (Ci) used between 1966 and 1971. 5. number of the institutions using sealed sources, grouped according to special working fields (March, 1972), 6. number of the accelerators applied, grouped according to special working fields (March, 1972), 7. number of the nuclear instruments in the education and research institutes (March, 1972), 8. amount of the collected radioactive waste material between 1960 and 1971 (number of containers). (K.A.)

  3. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    Science.gov (United States)

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.

  4. Energy efficiency and economic feasibility of CCHP driven by stirling engine

    International Nuclear Information System (INIS)

    Kong, X.Q.; Wang, R.Z.; Huang, X.H.

    2004-01-01

    This paper deals with the problem of energy efficiency evaluation and economic feasibility analysis of a small scale trigeneration system for combined cooling, heating and power generation (CCHP) with an available Stirling engine. Trigeneration systems have a large potential of energy saving and economical efficiency. The decisive values for energetic efficiency evaluation of such systems are the primary energy rate and comparative primary energy saving (Δq), while the economic feasibility analysis of such systems relates the avoided cost, the total annual saving and payback period. The investigation calculates and compares the energy saving and economic efficiency of trigeneration system with Stirling engine against contemporary conventional independent cooling, heating and power, showing that a CCHP system saves fuel resources and has the assurance of economic benefits

  5. Single-piston alternative to Stirling engines

    International Nuclear Information System (INIS)

    Glushenkov, Maxim; Sprenkeler, Martin; Kronberg, Alexander; Kirillov, Valeriy

    2012-01-01

    Highlights: ► Thermodynamic analysis of an unconventional heat engine. ► The engine has a number of advantages compared to state-of-the-art Stirling engines. ► The engine can to be fuelled with “difficult” fuels and used for micro-CHP systems. ► The energy conversion efficiency can be as high as 40–50%. ► A prototype of the engine was demonstrated. -- Abstract: Thermodynamic analysis of an unconventional heat engine was performed. The engine studied has a number of advantages compared to state-of-the-art Stirling engines. The main advantage of the engine proposed is its simplicity. A power piston is integral with a displacer and a heat regenerator. It allows solving the problem of the high-temperature sealing of the piston and the displacer typical of all types of Stirling engines. In addition the design proposed provides ideal use of the displacer volume eliminating heat losses from outside gas circuit. Both strokes of the piston are working ones in contrary to any other types of piston engines. The engine can be considered as maintenance-free as it has no piston rings or any other rubbing components requiring lubrication. The only seal is contactless and wear free. It is located in the cold part of the cylinder. As a result the leakage rate in operation can be one-two orders of magnitude as small as that in Stirling engines. Balancing of the engine is much easy compared to Stirling engines with two reciprocating masses because of the only moving part inside the engine cylinder. The engine suits ideally to be fuelled with “difficult” fuels such as bio oil and can be used as a prime mover for micro-CHP systems. The thermodynamic model developed incorporates non-ideal features of the cycle, such as specific regenerator efficiency, dead volumes and other geometrical parameters of the engine. The model shows that the energy efficiency is highly sensitive to regenerator performance. For realistic geometric and operating parameters and the

  6. Physical aspects of radioisotope brachytherapy

    International Nuclear Information System (INIS)

    1967-01-01

    The present report represents an attempt to provide, within a necessarily limited compass, an authoritative guide to all important physical aspects of the use of sealed gamma sources in radiotherapy. Within the report, reference is made wherever necessary to the more extensive but scattered literature on this subject. While this report attempts to cover all the physical aspects of radioisotope 'brachytherapy' it does not, of course, deal exhaustively with any one part of the subject. 384 refs, 3 figs, 6 tabs

  7. Improvement of radioisotope production technology

    International Nuclear Information System (INIS)

    Li Yongjian

    1987-01-01

    The widespreading and deepgoing applications of radioisotopes results the increasing demands on both quality and quantity. This in turn stimulating the production technology to be improved unceasingly to meet the different requirements on availability, variety, facility, purity, specific activity and specificity. The major approaches of achieving these improvements including: optimizing mode of production; enhancing irradiation conditions; amelioration target arrangement; adapting nuclear process and inventing chemical processing. (author)

  8. Background current of radioisotope manometer

    International Nuclear Information System (INIS)

    Vydrik, A.A.

    1987-01-01

    The technique for calculating the main component of the background current of radioisotopic monometers, current from direct collision of ionizing particles and a collector, is described. The reasons for appearance of background photoelectron current are clarified. The most effective way of eliminating background current components is collector protection from the source by a screen made of material with a high gamma-quanta absorption coefficient, such as lead, for example

  9. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  10. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    The External combustion of the Stirling engine makes it very attractive for small-scale Combined Heat and Power (CHP) plants using bio-fuels. Especially wood chips are an attractive fuel because of the high melting point and the low content of ash. Unfortunately, it is more complicated than...... expected to use bio-fuels for a Stirling engine. The high temperature in the hot heat exchanger transferring heat from the combustion to the Stirling engine combined with the low heating value of the fuel reduce the obtainable efficiency of the plant. The limitations of the combustion temperature in order...... to avoid melted ash in the combustion chamber decrease the obtainable efficiency even further. If a Stirling engine, which has an efficiency of 28,5% using natural gas, is converted into utilization of bio-fuel, the efficiency will decrease to 17,5%. Another problem for utilization of bio-fuels in Stirling...

  11. Radioisotopes for therapy: an overview

    International Nuclear Information System (INIS)

    Venkatesh, Meera

    2006-01-01

    Radionuclides made great impact in the history of nuclear sciences both at the end of 19th century with the discoveries of Becquerel and madame Curie and later in 1934, when Frederic Joliet and Irene Curie demonstrated the production of the first artificial radioisotopes, 30 P, by bombardment of 27 Al by alpha particles. The subsequent invention of cyclotron and setting up of nuclear reactor opened the floodgate for production of artificial radionuclides. Currently, majority of radionuclides are made artificially by transforming a stable nuclide into an unstable state and thus far over 2500 radionuclides have been produced artificially. Use of radionuclides in various fields immediately followed their production and last century has witnessed tremendous growth in the applications of radiation and radioisotopes, in diverse fields such as medicine, industry, agriculture, food preservation, water resource management, environmental studies, etc. While radiation and radioisotopes are used both for diagnosis as well as for therapy in the field of medicine, therapeutic applications are among the earliest, which began as an empirical science in the beginning and developed into a well structured modality with time. (author)

  12. CFD analysis of a diaphragm free-piston Stirling cryocooler

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-10-01

    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  13. Comparative analysis of linear motor geometries for Stirling coolers

    Science.gov (United States)

    R, Rajesh V.; Kuzhiveli, Biju T.

    2017-12-01

    Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

  14. Radioisotopes and their applications in highway testings

    International Nuclear Information System (INIS)

    Saxena, S.C.

    1974-01-01

    Applications of radioisotopes in highway testing are described. Radioisotopic methods have been used to determine : (1) moisture and density of soil and base materials for compaction control, (2) magnesium oxide content of cement, (3) permeability of bituminous coverings and (4) field density of freshly laid hot bituminous concrete surface. Possible uses of nuclear explosives for production of aggregates and of radioisotopes for determination of deflection in the design of flexible pavements are indicated. (M.G.B.)

  15. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The United States Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 from RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Be-10, Al-26, Mg-28, Si-32, El-44, Fe-52, Gd-248, and Hg-194. We will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes from Los Alamos and Brookhaven will be described. Chemical separation techniques have been developed to recover the radioisotopes of interest in both high radiochemical purity and yield and at the same time trying to reduce or eliminate the generation of mixed waste. nearly 75 neutron deficient radioisotopes produced in spallation targets have been produced and distributed to researchers around the world since the inception of the program in 1974

  16. Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1998-08-01

    Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated

  17. Research trends in radioisotopes: a scientometric analysis

    International Nuclear Information System (INIS)

    Sagar, Anil; Kademani, B.S.; Bhanumurthy, K.; Ramamoorthy, N.

    2014-01-01

    Radioisotopes or radionuclides are radioactive forms of elements and are usually produced in research reactors and accelerators. They have wide ranging applications in healthcare, industry, food and agriculture, and environmental monitoring. Following over five decades of vast experience accumulated, radioisotope technology has developed to a high degree of sophistication and it is estimated that about 200 radioisotopes are in regular use. This paper attempts to highlight the publication status and growth of radioisotope research across the world and make quantitative and qualitative assessment by way of analyzing the following features of research output based on Web of Science database during the period 1993-2012. (author)

  18. Medical radioisotopes for the next century

    International Nuclear Information System (INIS)

    Carr, S.W.

    1999-01-01

    Radioisotopes are widely used in medicine (Nuclear Medicine) for diagnosis, palliation and therapy of heart disease, cancer, muscoskeletal and neurological conditions. The radioisotopes used are both reactor and cyclotron produced. The utilisation is currently growing and is expected to continue to grow over the next 10-20 years. The combination of radioisotope and delivery vehicle can be designed to meet the intended end use. This paper will deal with the main approaches to the use of radioisotopes for Nuclear medicine ad future prospects for the area

  19. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  20. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985.

  1. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    International Nuclear Information System (INIS)

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985

  2. Stability analysis of free piston Stirling engines

    Science.gov (United States)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  3. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  4. A high performance thermoacoustic Stirling-engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [Energy research Centre of the Netherlands (ECN), PO Box 1, 1755 ZG Petten (Netherlands)

    2011-11-10

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  5. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  6. The 1988 overview of free-piston Stirling technology for space power at the NASA Lewis Research Center

    Science.gov (United States)

    Slaby, Jack G.

    1988-01-01

    The completion of the Space Power Demonstrator Engine (SPDE) testing is discussed, terminating with the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was greater than 22 percent. The SPDE recently was divided into 2 separate single cylinder engines, Space Power Research Engine (SPRE), that serves as test beds for the evaluation of key technology disciplines, which include hydrodynamic gas bearings, high efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor, the design, fabrication, test, and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE) to operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal. The first two phases of this program, the 650 K SPDE and the 1050 K SSE are emphasized.

  7. Survey of industrial radioisotope savings

    International Nuclear Information System (INIS)

    1965-01-01

    Only three decades after the discovery of artificial radioactivity and two after radioisotopes became available in quantity, methods employing these as sources or tracers have found widespread use, not only in scientific research, but also in industrial process and product control. The sums spent by industry on these new techniques amount to millions of dollars a year. Realizing the overall attitude of industry to scientific progress - to accept only methods that pay relatively quickly - one can assume that the economic benefits must be of a still larger order of magnitude. In order to determine the extent to which radioisotopes are in daily use and to evaluate the economic benefits derived from such use, IAEA decided to make an 'International Survey on the Use of Radioisotopes in Industry'. In 1962, the Agency invited a number of its highly industrialized Member States to participate in this Survey. Similar surveys had been performed in various countries in the 1950's. However, the approaches and also the definition of the economic benefits differed greatly from one survey to another. Hence, the Agency's approach was to try to persuade all countries to conduct surveys at the same time, concerning the same categories of industries and using the same terms of costs, savings, etc. In total, 24 Member States of the Agency agreed to participate in the survey and in due course they submitted contributions. The national reports were discussed at a 'Study Group Meeting on Radioisotope Economics', convened in Vienna in March 1964. Based upon these discussions, the national reports have been edited and summarized. A publication showing the administration of the Survey and providing all details is now published by the Agency. From the publication it is evident that in general the return of technical information was quite high, of the order of 90%, but, unfortunately the economic response was much lower. However, most of the reports had some bearing on the economic aspects

  8. The industrial application of radioisotopes

    International Nuclear Information System (INIS)

    Frevert, E.

    1991-01-01

    In this paper the two main fields of the industrial application of radioisotopes are introduced. In the field of process controlling device and control first about the transmission and the backscattering methods is reported. Then the x-ray fluorescence method and the moisture gauging with neutrons are mentioned. Also the measuring of depth of charge. In the field of tracer investigations about all kinds of flow and intermixture measurements is reported. And investigations of corrosion, wear and lubrication and precise location of nonmetallic pipe lines are mentioned. (Author)

  9. Radioisotope Sources of Electric Power

    Science.gov (United States)

    1973-09-20

    u) watt/cm-3 O) specific activity f) curia/watt (curie/a) a) half-life c) specific power output h) years (capacity) 1) days d) watt/p Polonium - 210 ...AD/A-001 210 RADIOISOTOPE SOURCES OF ELECTRIC POWER G. M. Fradkin, et al Army Foreign Science and Technology Center Charlottesville, Virginia 20...narticularlv for nurninn and irocess~ino of wastg.Sheatinc food , conversion of liruld oxtoner to des, and also for removal of imnurities and reula:tion

  10. Radioisotope studies on coconut nutrition

    International Nuclear Information System (INIS)

    Ray, P.K.

    1979-01-01

    Studies on coconut nutrition using radioisotopes are reviewed. Methods of soil placement and plant injection techniques for feeding nutrients to coconut have been studied, and irrigation practices for efficient uptake and utilization of nutrients are suggested. The absorption, distribution and translocation pattern of radioactive phosphorus and its incorporation into the nucleic acid fraction in healthy and root (wilt) diseased coconut palms have been studied. Carbon assimilation rates (using carbon-14) in spherical, semispherical and erect canopied coconut palms having different yield characteristics are reviewed and discussed. (author)

  11. Artificial radioisotopes in hydrological investigation

    International Nuclear Information System (INIS)

    Plata-Bedmar, A.

    1988-01-01

    Radioisotope techniques have an important part in hydrological investigations. Sealed radiation sources have been used for measurements of sediments transported by river water, of thickness and density of sediment layers. X-ray fluorescence analysis and well-logging are widely applied in hydrological research. Tracer techniques have been useful in flow rate and river dynamics research, sediments tracing, irrigation and ground water problems, infiltration rate evaluation etc. The IAEA is supporting several projects involving the use of radioactive tracers in hydrological investigations p.e. in Guatemala, Romania, South East Asia, Brazil, Chile and Nicaragua

  12. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  13. Initial testing of a variable-stroke Stirling engine

    Science.gov (United States)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  14. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  15. Potential impacts of Brayton and Stirling cycle engines

    Science.gov (United States)

    Heft, R. C.

    1980-01-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  16. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  17. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  18. Production capabilities in US nuclear reactors for medical radioisotopes

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr.; Schenter, R.E.

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted

  19. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  20. The regulations for enforcing the law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of and to enforce the ''Law for the prevention of radiation hazards due to radioisotopes'' and the Enforcement Order for the ''Law concerning the prevention of radiation hazards due to radioisotopes''. The Regulation includes the definitions of terms, applications for the permission of the use of radioisotopes, standards on usage, obligation of measurement, persons in charge of radiation, etc. Terms are explained, such as persons engaging in radiation works, persons who enter at any time the control areas, radiation facilities, maximum permissible exposure dose, cumulative dose, maximum permissible cumulative dose, maximum permissible concentration in the air, maximum permissible concentration in water and maximum permissible surface density. The applications for permission in written forms are required for the use, sale and abandonment of radioisotopes. Radioisotopes or the apparatuses for generating radiation shall be used in the using facilities. The measurement of radiation dose rate, particle flux density and contamination due to radioisotopes shall be made with radiation-measuring instruments. At least one person shall be chosen as the chief radiation-handling person in each factory, establishment, selling office or abandoning establishment by a user, a trademan or a person engaged in abandonment of radioisotopes. The forms for the application for permission, etc. are attached. (Okada, K.)

  1. Development of Radioisotope Tracer Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Kim, Jin Seop; Kim, Jae Jo; Park, Soon Chul; Lim, Don Soon; Choi, Byung Jong; Jang, Dong Soon; Kim, Hye Sook

    2007-06-01

    The project is aimed to develop the radiotracer technology for process optimization and trouble-shooting to establish the environmental and industrial application of radiation and radioisotopes. The advanced equipment and software such as high speed data acquisition system, RTD model and high pressure injection tool have developed. Based on the various field application to the refinery/petrochemical industries, the developed technology was transfer to NDT company for commercial service. For the environmental application of radiotracer technology, injector, detector sled, core sampler, RI and GPS data logging system are developed and field tests were implemented successfully at Wolsung and Haeundae beach. Additionally tracer technology were also used for the performance test of the clarifier in a wastewater treatment plant and for the leak detection in reservoirs. From the experience of case studies on radiotracer experiment in waste water treatment facilities, 'The New Excellent Technology' is granted from the ministry of environment. For future technology, preliminary research for industrial gamma transmission and emission tomography which are new technology combined with radioisotope and image reconstruction are carried out

  2. Decontamination of radioisotope production facility

    International Nuclear Information System (INIS)

    Daryoko, M.; Yatim, S.; Suseno, H.; Wiratmo, M.

    1998-01-01

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na 2 , sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10 -3 μCi/cm 2 . This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO 4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  3. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1993-01-01

    In 1982 McDonnell Douglas Aerospace Space System (MDA-SS) and United Stirling AB of Sweden formed a joint venture to develop and market a solar Stirling dish unit. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing have been characterized and modeled in a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing and other maintenance outage time, operation and maintenance (O and M) costs and other cost models. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  4. Economic performance of the SCE Stirling dish

    International Nuclear Information System (INIS)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1995-01-01

    In 1982 McDonnell Douglas Aerospace (MDA) and United Stirling AB (USAB) of Sweden formed a joint venture to develop and market a solar Stirling dish system. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing were characterized and modeled into a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing, and other maintenance outage time, operation and maintenance (O and M) costs, and equipment purchase cost. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes

  5. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Schmitz, P.; Tower, L.; Blue, B.; Dunn, P.

    1994-01-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  6. Aspects of radioisotopes utilization in clinical medicine

    International Nuclear Information System (INIS)

    Rocha, A.F.G.; Lima e Forti, C.A. de; Cunha, M. da C.; Souza Maciel, O. de

    1973-01-01

    A revision concerning radioisotope use in Medicine have been dow. Harmless and effeciency of radioisotopes are shown. Techniques and advantages of tracers used for brain scintiscanning, lung scintiscanning, liver scintinscanning, spleen scintiscanning, bone scintiscanning and thyroid scintiscanning are described and images of them are presented [pt

  7. Trends in the development of radioisotope batteries

    International Nuclear Information System (INIS)

    Goeldner, R.; Leonhardt, J.W.; Radmaneche, R.; Schlegel, H.

    1978-01-01

    Improved methods for producing radioisotopes by nuclear fuel reprocessing and the rapid development of microelectronics offer new possibilities for utilizing radioisotope batteries. A review is given of the main principles of conversion of decay energy into electric power. The current state of such energy sources is evaluated. Finally, new fields of application and further trends in the development are indicated. (author)

  8. Elementary concepts of the radioisotopes uses

    International Nuclear Information System (INIS)

    Pisarev, Mario A.

    2004-01-01

    Endocrinology has been one of the specialties earlier benefited for the radioisotopes uses in the diagnosis and treatment of different affections. These applications are based on the radioisotopes property of biochemical behaving as non- radioactive molecules, and at the same time, radiations emitting that can be detected by suitable means (diagnostic utility) or that have effects on biological systems (therapeutic action). (author) [es

  9. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    International Nuclear Information System (INIS)

    Lamar, D.A.

    1988-01-01

    Data were collected and compiled on radioisotopes produced and sold by Department of Energy (DOE) facilities, and on services rendered by DOE facilities. Compiled data were published and distributed in the document list of DOE Radioisotope Customers with Summary of Radioisotope Shipments, FY 1986, PNL-6361, October 1987. The DOE facilities that supplied information for the compilation were Argonne National Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho National Engineering Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratory, Savannah River Plant, and UNC Nuclear Industries, Inc. (Hanford). The data provided were reported in several different ways: (1) a list of radioisotopes and services provided by each facility; (2) a list of radioisotope customers, the supplying DOE facility, and the radioisotope or service provided to each customer; and (3) a list of the quantity and value of each radioisotope or service sold by each DOE facility. The sales information covered foreign customers, domestic private customers, and domestic DOE customers

  10. Role of radioisotopes in the study of insect pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2013-01-01

    Although the use of nuclear techniques, particularly radioisotopes, in entomological research is less than a century old, the contribution of radioisotopes to the science of studying insects (Entomology) is indispensable. In fact, radioisotopes provided a very important and sometimes a unique tool for solving many research problems in entomology. This article discusses the most important and widely used applications of radioisotopes in studying insect pests. In particular, it concentrates on the subject of radioisotopes used in entomological research, methods of labeling insect with radioisotopes, half life of radioisotopes, and the role of radioisotopes in physiological, ecological, biological and behavioral studies of insects. (author)

  11. Activity calculation of radioisotopes in HFETR

    International Nuclear Information System (INIS)

    Liu Shuiqing

    1996-12-01

    The activity calculating method and formulas of seven kinds of radioisotopes for High Flux Engineering Test REactor (HFETR) are given. The perturbation of targets to neutron fluence rate is considered while targets are put into the neutron fluence rate field of reactor core. All perturbing factors of seven kinds of radioisotopes being used in HFETR are presented. After considering the perturbation, the calculating accuracy of radioisotope activity has been raised 10%. The given method and formulas have ended the history of all activities estimated by experiences, except for that of 60 Co, in the radioisotope production of HFETR. The conclusions are also useful and instructive for the production of radioisotopes in HFETR. (8 tabs.)

  12. Application of radioisotopes in pharmaceutical research

    International Nuclear Information System (INIS)

    Khujaev, S.

    2004-01-01

    Full text: To use of radioisotopes in the processes of receiving radiopharmaceutical diagnostic means it is widely know [1]. Radioactivity labeled chemical compounds, pharmacological kinetics of which allows one solving a concrete diagnostic problem in an organism are used in radio pharmaceutics. In spite of this choice of the radioisotope, possessing the most favorable nuclei-physical characteristics for it to be detected and minimization of beam loadings, be of great importance. Development of a method of introduction of a radioisotope also has important value, as it is included into chemical structure of a radiopharmaceutical preparation. One more way of use of radioisotopes in pharmaceutics is their use as a radioactive mark at a stage of creation of a new medical product. And in this case, all those moments, which are listed above, take place. Preparations labeling by radioisotopes are used basically for their studying pharmacological kinetics. In Institute of nuclear physics AS RU, in recent years, works are done on studying pharmacological kinetics of some new medical products, which have been synthesized in the Tashkent pharmaceutical institute. These preparations are on the basis of microelements with a complex set of properties possessing expressed biological activity and have great value in pharmaceutical science of Republic of Uzbekistan. Reception of labeled compounds of all preparations was carried out by a method of introduction of a radioisotope at a stage of their synthesis. The work presents the results of researches on synthesis and study of pharmacological kinetics of radioactively labeled preparations - PIRACIN, labeled by radioisotope 69m Zn; FERAMED, labeled by radioisotope 59 Fe; COBAVIT, labeled by radioisotope 57 Co; VUC, labeled by radioisotope 57 Co

  13. Prospective production of radioisotopes and radiopharmaceuticals in divisions of IPPE

    International Nuclear Information System (INIS)

    Terentyev, G.O.

    2001-01-01

    The first reason to commence the work on production of radioisotope production in IPPE, was the requirement of Russia medicine for original generators of technetium. The essential extension of their production in conditions of Moscow city has met the declaiming of the Moscow urban authorities. The important moment was that, in IPPE were objective possibilities to deployment the production of radioisotope production. Nowadays, nomenclature of the radioisotopes which have been produced in IPPE, constitutes 29 positions. The profile of production of radioisotope production was generated also. Restricted possibilities of the ray base, from one side, and the needs(requirement) of domestic medicine with other, in main have spotted this profile. The raw isotopes constitute a minority - on sales volumes ∼ 20 % (in main abroad), the defining part is constituted the form ready for the use by ∼ 80 % (in main in Russia). All 'know-how' is conditionally possible to divide into 3 categories: Base. It is technologies provided with an operating production sector, guaranteeing stable on quality production having a rather wide seller's market; Perspective. It is those technologies, in which the main stages of RESEARCH and DEVELOPMENT are fulfilled with positive result, but the working sites yet are not generated, and on the market are delivered only some samples of production. Are guessed RESEARCH AND DEVELOPMENT on perfecting the technology; Preparative. The technology, on which there are no regular orders, is not required of an individual working site. Sometimes it is rather precision operations, bound with usage of unique raw material, with a very stiff price of production. (authors)

  14. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    Science.gov (United States)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  15. 40 kW Stirling Engine for Solid Fuel

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Trærup, Jens

    1996-01-01

    The external combustion in a Stirling engine makes it very attractive for utilisation of solid fuels in decentralised combined heat and power (CHP) plants. Only a few projects have concentrated on the development of Stirling engines specifically for biomass. In this project, a Stirling engine has...... been designed primarily for utilisation of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has...... been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurised crankcase so...

  16. Optimal design of Stirling heat engine using an advanced ...

    Indian Academy of Sciences (India)

    R V Rao

    The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear ... cooling water and had improved the thermal efficiency of ... integrated system of a free-piston Stirling engine and an.

  17. Development of Electronic Load Controllers for Free-Piston Stirling Convertors Aided by Stirling Simulation Model

    Science.gov (United States)

    Regan, Timothy F.

    2004-01-01

    The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.

  18. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1999-01-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions

  19. Small Radioisotope Power System Testing at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  20. White Paper on Dish Stirling Technology: Path Toward Commercial Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Stechel, Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Power Dept.; Becker, Peter [Stirling Energy Systems, Scottsdale, AZ (United States); Messick, Brian [Stirling Energy Systems, Scottsdale, AZ (United States)

    2016-07-01

    Dish Stirling energy systems have been developed for distributed and large-scale utility deployment. This report summarizes the state of the technology in a joint project between Stirling Energy Systems, Sandia National Laboratories, and the Department of Energy in 2011. It then lays out a feasible path to large scale deployment, including development needs and anticipated cost reduction paths that will make a viable deployment product.