WorldWideScience

Sample records for radioaerosol lung scans

  1. Radioaerosol Inhalation Lung Scan in Pulmonary Emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jeong Soo; Park, Yong Ha; Kyo, Chung Soo; Bahk, Yong Whee [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    Perfusion and ventilation imagings of the lung are well established procedure for diagnosing pulmonary embolism, differentiation it from chronic obstructive lung disease, and making an early detection of chronic obstructive lung disease. To evaluate the usefulness of radioaerosol inhalation imaging (RII) in chronic obstructive lung disease, especially pulmonary emphysema, we analyzed RIIs of five normal adult non-smokers, five asymptomatic smokers (age 25-42 years with the mean 36), and 21 patients with pulmonary emphysema (age 59-78 years with the mean 67). Scintigrams were obtained with radioaerosol produced by a BARC nebuliser with 15 mCi of {sup 99m}Tc-phytate. Scanning was performed in the anterior, posterior, and lateral projections after five to 10-minute inhalation of the radioaerosol on sitting position. The scans were analyzed and correlated with the results of pulmonary function studies and chest radiographs. Also lung perfusion scan with {sup 99m}Tc-MAA was performed in 12 patients. In five patients, we performed follow-up scans for the evaluation of the effects of a bronchodilator. Based on the X-ray findings and clinical symptoms, pulmonary emphysema was classified into four types: centrilobular (3 patients), panlobular (4 patients), intermediate (10 patients), and combined (4 patients). RII findings were patternized according to the type, extent, and intensity of the aerosol deposition in the central bronchial and bronchopulmonary system and lung parenchyma. 10 controls, normal five non-smokers and three asymptomatic smokers revealed homogeneous parenchymal deposition in the entire lung fields without central bronchial deposition. The remaining two of asymptomatic smokers revealed mild central airway deposition. The great majority of the patients showed either central (9/21) or combined type (10/21) of bronchopulmonary deposition and the remaining two patients peripheral bronchopulmonary deposition. Parenchymal aerosol deposition in pulmonary

  2. Radioaerosol Inhalation Lung Scan in Pulmonary Emphysema

    International Nuclear Information System (INIS)

    Jeon, Jeong Soo; Park, Yong Ha; Chung Soo Kyo; Bahk, Yong Whee

    1990-01-01

    Perfusion and ventilation imagings of the lung are well established procedure for diagnosing pulmonary embolism, differentiation it from chronic obstructive lung disease, and making an early detection of chronic obstructive lung disease. To evaluate the usefulness of radioaerosol inhalation imaging (RII) in chronic obstructive lung disease, especially pulmonary emphysema, we analyzed RIIs of five normal adult non-smokers, five asymptomatic smokers (age 25-42 years with the mean 36), and 21 patients with pulmonary emphysema (age 59-78 years with the mean 67). Scintigrams were obtained with radioaerosol produced by a BARC nebuliser with 15 mCi of 99m Tc-phytate. Scanning was performed in the anterior, posterior, and lateral projections after five to 10-minute inhalation of the radioaerosol on sitting position. The scans were analyzed and correlated with the results of pulmonary function studies and chest radiographs. Also lung perfusion scan with 99m Tc-MAA was performed in 12 patients. In five patients, we performed follow-up scans for the evaluation of the effects of a bronchodilator. Based on the X-ray findings and clinical symptoms, pulmonary emphysema was classified into four types: centrilobular (3 patients), panlobular (4 patients), intermediate (10 patients), and combined (4 patients). RII findings were patternized according to the type, extent, and intensity of the aerosol deposition in the central bronchial and bronchopulmonary system and lung parenchyma. 10 controls, normal five non-smokers and three asymptomatic smokers revealed homogeneous parenchymal deposition in the entire lung fields without central bronchial deposition. The remaining two of asymptomatic smokers revealed mild central airway deposition. The great majority of the patients showed either central (9/21) or combined type (10/21) of bronchopulmonary deposition and the remaining two patients peripheral bronchopulmonary deposition. Parenchymal aerosol deposition in pulmonary emphysema was

  3. Studies in radioaerosol lung scanning in urban health survey subjects

    International Nuclear Information System (INIS)

    Doshi, V.B.; Gregat, I.K.; Kamat, S.R.; Papewar, V.N.; Raikar, U.R.; Sharma, S.M.; Ganatra, R.D.

    1984-01-01

    As a part of health survey in relation to air pollution, 16 smokers(11 from 'high' and 5 from 'low' zone) were studied with extensive serial lung functions, chest radiography and radioaerosol lung scanning. The clinical diagnosis were chronic bronchitis(COPD) in 9 subjects; but others (4 'High' and 3 'Low') were considered normal. The values of FVC, FEV were normal in most of these three groups, but FEV 1 /FVC percent values were lower in subjects from 'high' zone.The functional declines were higher in normals of 'high' zone. Radioaerosol (ventilation) scans (with technetium 99 ) showed a normal picture in 2 COPD and 3 normal subjects; in 3 COPD and 1 normal subjects the abnormalities were definite. For perfusion scans, 2 COPD and 3 normal subjects showed a normal pattern while definite abnormalities were seen in 1 COPD and 1 normal subjects. Lung scans may pick up abnormalities in normal smokers at an early stage. (author)

  4. Radioaerosol lung scanning in chronic obstructive pulmonary disease (COPD) and related disorders

    International Nuclear Information System (INIS)

    Yong Whee Bahk; Soo Kyo Chung

    1994-01-01

    As a coordinated research project of the International Atomic Energy Agency (IAEA), a multicentre joint study on radioaerosol lung scan using the BARC nebulizer has prospectively been carried out during 1988-1992 with the participation of 10 member countries in Asia [Bangladesh, China, India, Indonesia, Japan, Korea, Pakistan, Philippines, Singapore and Thailand]. The study was designed so that it would primarily cover chronic obstructive pulmonary disease (COPD) and the other related and common pulmonary diseases. The study also included normal controls and asymptomatic smokers. The purposes of this presentation are three fold: firstly, to document the usefulness of the nebulizer and the validity of user's protocol in imaging COPD and other lung diseases; secondly, to discuss scan features of the individual COPD and other disorders studied and thirdly, to correlate scan alterations with radiographic findings. Before proceeding with a systematic analysis of aerosol scan patterns in the disease groups, we documented normal pattern. The next step was the assessment of scan features in those who had been smoking for more than several years but had no symptoms or signs referable to airways. The lung diseases we analyzed included COPD [emphysema, chronic bronchitis, asthma and bronchiectasis], bronchial obstruction, compensatory overinflation and other common lung diseases such as lobar pneumonia, tuberculosis, interstitial fibrosis, diffuse panbronchiolitis, lung edema and primary and metastatic lung cancers. Lung embolism, inhalation bums and glue-sniffer's lung are separately discussed by Dr. Sundram of Singapore elsewhere in this book. The larger portion of this chapter is allocated to the discussion of COPD with a special effort made in sorting out differential scan features. Diagnostic criteria in individual COPD were defined for each category of disease and basic clinical symptoms and signs and pertinent laboratory data as well as radiographic manifestations are

  5. Radioaerosol lung scanning in chronic obstructive pulmonary disease (COPD) and related disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee [Departments of Radiology and Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of); Chung, Soo Kyo [Department of Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of)

    1994-07-01

    As a coordinated research project of the International Atomic Energy Agency (IAEA), a multicentre joint study on radioaerosol lung scan using the BARC nebulizer has prospectively been carried out during 1988-1992 with the participation of 10 member countries in Asia [Bangladesh, China, India, Indonesia, Japan, Korea, Pakistan, Philippines, Singapore and Thailand]. The study was designed so that it would primarily cover chronic obstructive pulmonary disease (COPD) and the other related and common pulmonary diseases. The study also included normal controls and asymptomatic smokers. The purposes of this presentation are three fold: firstly, to document the usefulness of the nebulizer and the validity of user's protocol in imaging COPD and other lung diseases; secondly, to discuss scan features of the individual COPD and other disorders studied and thirdly, to correlate scan alterations with radiographic findings. Before proceeding with a systematic analysis of aerosol scan patterns in the disease groups, we documented normal pattern. The next step was the assessment of scan features in those who had been smoking for more than several years but had no symptoms or signs referable to airways. The lung diseases we analyzed included COPD [emphysema, chronic bronchitis, asthma and bronchiectasis], bronchial obstruction, compensatory overinflation and other common lung diseases such as lobar pneumonia, tuberculosis, interstitial fibrosis, diffuse panbronchiolitis, lung edema and primary and metastatic lung cancers. Lung embolism, inhalation bums and glue-sniffer's lung are separately discussed by Dr. Sundram of Singapore elsewhere in this book. The larger portion of this chapter is allocated to the discussion of COPD with a special effort made in sorting out differential scan features. Diagnostic criteria in individual COPD were defined for each category of disease and basic clinical symptoms and signs and pertinent laboratory data as well as radiographic manifestations are

  6. Role of radio-aerosol and perfusion lung imaging in early detection of chronic obstructive lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Pande, J N; Guleria, J S; Gopinath, P G

    1983-04-01

    The efficacy of radio-aerosol and perfusion lung imaging in the early detection of chronic obstructive lung disease was evaluated in 38 subjects. The subjects included 5 non-smokers, 21 smokers with minimal or no respiratory symptoms and 12 patients with chronic obstructive lung disease. Each subject consented to a respiratory questionaire, detailed physical examination, chest X-ray examinations, detailed pulmonary function tests and sup(99m)Tc-radioaerosol-inhalation lung imaging. Perfusion lung imaging with sup(99m)Tc-labelled macroaggregated albumin was performed in 22 subjects. A significant correlation (P<0.001) was observed between the degree of abnormalities on radio-aerosol imaging and pulmonary function tests (PFTs) including forced expiratory volume in 1 s, maximum midexpiratory flow rate and mean transit time analysis. Abnormal radio-aerosol patterns and deranged PFTs were observed in 21 subjects each. Of 21 subjects with abnormal radioaerosol pattern 8 had normal PFTs. Of 21 subjects with abnormal PFTs 8 had normal aerosol images. Aerosol lung images and PFTs were abnormal more frequently than perfusion lung images. The results suggest that radio-aerosol lung imaging is as sensitive an indicator as PFTs for early detection of chronic obstructive lung disease and can be usefully combined with PFTs for early detection of alteration in pulmonary physiology in smokers.

  7. Radioaerosol lung scintigraphy in idiopathic scolios

    International Nuclear Information System (INIS)

    Maini, C.L.; Giordano, A.; Santucci, B.; Aulisa, L.; Pistelli, R.; Fuso, L.

    1988-01-01

    The study of respiratory fuctions is of key importance for the clinical evaluation of patients with idiopathic scoliosis. Such study has been traditionally based on classical pulmonary function tests and arterial hemogasanalysis. However, neither procedure gives any information on the topographical distribution of abnormalities, and both might be suboptimal as far as sensitivity is concerned. The preliminary results obtained with radioaerosol lung scintigraphy in 11 patients with scoliosis are here presented. They lead to the conclusion that radioaerosol lung scintigraphy, besides being an useful adjunct to more traditional diagnostic procedures, can yield unique information on the localization of convective ventilation derangements induced by the dynamic abnormalities of the rib cage

  8. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    Energy Technology Data Exchange (ETDEWEB)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different /sup 99/Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values.

  9. Biological clearance and committed dose equivalent in pulmonary region from inhaled radioaerosols for lung scanning

    International Nuclear Information System (INIS)

    Soni, P.S.; Sharma, S.M.; Raghunath, B.; Somasundaram, S.

    1987-01-01

    Biological clearance half-lives (Tsub(b)) of different 99 Tcsup(m)-labelled compounds from each lung have been determined, after administering the radioaerosol to normal subjects using the BARC dry aerosol generation and inhalation system. Based on these experimental clearance half-lives, the committed dose equivalent to the lungs has been computed using both the ICRP lung model and MIRD-11 values. (author)

  10. Radioaerosol lung imaging - history and pharmaceuticals

    International Nuclear Information System (INIS)

    Isawa, Toyoharu

    1994-01-01

    The first use of a radioactive tracer to study lung function was made by Knipping and others in 1955. They used radioactive 133 Xe (xenon) gas as an inhalation agent in a patient with lung cancer and found that distal to a tumor no radioactivity was detected indicating no ventilation although chest x-rays appeared as if there was active ventilation. Subsequently with advance in technology a number of radioactive gases such as 81m Kr (krypton) and cyclotron produced 15 O 2 (oxygen), 11 C (carbon) and 13 N 2 (nitrogen) became available to assess regional lung function. The advantages of these gases are manifold, but their utility is mostly limited due to high cost. An alternative to the use of radioactive gases to study regional ventilation is the use of particulate radioactive aerosol. Radioaerosol inhalation lung imaging technique was developed in 1965 almost simultaneously by Taplin and others and Pircher and others just 2 years following Taplin's invention of 131 I-MAA for perfusion lung imaging. Their main aim was to use 131 I-human serum albumin (HSA), and 99m Tc-HSA, 131 I-rose bengal, 197 Hg-chlormerodrin and colloidal 198 Au as agents for radioaerosol generation, and Taplin himself preferred 198 Au colloids for serial studies from economical reasons. Already in 1965, however, Taplin said that the best agent would be 99m Tc-HSA. Pircher used 131 I-HSA aerosol. Taplin already noted at that time that the inhaled aerosol was removed from the lungs mainly by ciliary action and that it was not absorbed either from the lungs or the intestine. Anyway it is noteworthy that the idea of radioaerosol inhalation lung imaging was proposed soon after the advent of perfusion lung imaging. Besides 131 I-HSA and colloidal 198 Au, the following agents have been or are currently being used. The superiority of 99m TC over other radioisotopes used in the past is beyond dispute

  11. Dynamic 99mTc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    International Nuclear Information System (INIS)

    Maini, C.L.; Marchetti, L.; Bonetti, M.G.; Giordano, A.; Pistelli, R.; Antonelli Incalzi, R.

    1987-01-01

    Pulmonary clearance of small droplet 99m Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the 99m Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p 99m Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease

  12. Radioaerosol lung imaging in small airways disease

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, T; Dorow, P; Felix, R

    1981-06-01

    Aerosol inhalation lung imaging was performed in 35 asymptomatic smokers who have been selected on the basis of abnormal findings in small airways pulmonary function tests. Qualitative (image inspection) and quantitative (aerosol distribution index = ADI) analysis of the radioaerosol lung patterns was accomplished. Compared to healthy subjects as well as to patients with chronic obstructive lung disease significant differences of mean aerosol distribution homogeneity were observed. A characteristic type of abnormal aerosol pattern, indicating peripheral airways obstruction, was found in 71% of the patients with small airways disease.

  13. Dynamic /sup 99m/Tc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    Energy Technology Data Exchange (ETDEWEB)

    Maini, C L; Marchetti, L; Bonetti, M G; Giordano, A; Pistelli, R; Antonelli Incalzi, R

    1987-01-01

    Pulmonary clearance of small droplet /sup 99m/Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the /sup 99m/Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p<0.05) or a highly significant (p<0.01) increase in permeability when compared to group N. No correlation was found between permeability and bronchial obstraction tests. The following conclusions were drawn: 1) /sup 99m/Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease. 35 refs.

  14. Radioaerosol inhalation lung scintigraphy in bronchial asthma

    International Nuclear Information System (INIS)

    Chiba, Takashi

    1993-01-01

    A study on obstructive changes in airways and mucociliary clearance in children and youth with bronchial asthma was performed. Radioaerosol inhalation lung scintigraphies using 99T c-human serum albumin (HSA) were applied to 50 children and youth with bronchial asthma. The deposition patterns of the radioaerosol and aerosol clearance curves were evaluated. Abnormal deposition patterns, which consisted of non-homogeneous distribution and/or hot spot formation, were likely to be seen in patients with asthmatic attacks at the time of measurements. However, a few asymptomatic patients also revealed abnormal deposition patterns. The deposition patterns were related to FEV 1.0 %, MMF, V 50 and V 25 , but especially to FEV 1.0 %. As an index of mucociliary clearance, β, the rate constant of the 99m Tc-HSA aerosol clearance curve, was introduced. β was significantly lower in patients with abnormal aerosol deposition patterns than in normal persons. β was also significantly lower in patients undergoing asthmatic attack at the time of the measurements than in asymptomatic patients. β correlated negatively with FEV 1.0 %, MMF, V 50 and V 25 , but especially with FEV 1.0 %. Although patients with long term affection or moderate-to-severe asthma tended to reveal abnormal deposition patterns and had low β values, these differences were not statistically significant. Radioaerosol inhalation lung scintigraphy with 99m Tc-HSA is useful for evaluating not only obstructive changes in the airways but also for evaluating mucociliary clearance in children with bronchial asthma. (author)

  15. Using 99mTc-DTPA radioaerosol inhalation lung scan as compared with computed tomography to detect lung injury in blunt chest trauma

    International Nuclear Information System (INIS)

    Esme, H.; Kaya, E.; Solak, O.; Yavuz, Y.; Yurumez, Y.; Sezer, M.

    2007-01-01

    Detection of pulmonary contusion in patients with blunt chest trauma is very important so as to commence therapy immediately to avoid irreversible damage. The purpose of our study was to evaluate the efficacy of technetium-99m diethylene triamine penta-acetic acid ( 99m Tc-DTPA) aerosol inhalation lung scintigraphy in comparison with chest computed tomography (CT) in the diagnosis of pulmonary contusion at acute blunt chest trauma. Twenty-nine patients with isolated blunt chest trauma were referred to the emergency department of our hospital, and nine healthy people participated in this study. Sixteen patients who had pulmonary contusion on CT scans were referred to as group 1, and 13 patients who had normal CT scans as group 2. Nine healthy people comprised a control group. 99m Tc-DTPA aerosol inhalation lung scintigraphy was performed on the first day in all patients. The mean half time (T 1/2 ) and penetration index values of 99m Tc-DTPA clearance were significantly lower in groups 1 and 2 compared with the control group. Among the three groups, there were no significant differences in arterial blood gas analysis except for PO 2 . The mean T 1/2 value of 99m Tc-DTPA clearance did correlate with PO 2 values but not with pH, PCO 2 , or HCO 3 values. 99m Tc-DTPA radioaerosol inhalation lung imaging may serve as a useful adjunct and supportive method to chest CT scanning for detecting mild pulmonary contusion. (author)

  16. Radioaerosol imaging of the lung. An IAEA [CRP] group study

    International Nuclear Information System (INIS)

    Yong Whee Bahk; Isawa, Toyoharu

    1994-01-01

    Nuclear scans, radiography and computed tomography (CT) of the lung make up three pantheonic pillars of the modem imaging diagnosis of pulmonary disorders and the contribution of these modalities to the progress of pulmonology has been immense. However the experiences accumulated during the past decades indicate that, with well-known advantages and drawbacks, not one of these imaging modalities can be perfect by itself alone, and it has become obvious that the individual tests are as much complementary to one another as unique. As a matter of fact, the nuclear lung imagings, that include inhalation scan, perfusion scan, ventilation scan and the most recently developed mucociliary transport and alveolar permeability tests, are very sensitive and efficient in respectively providing graphic information about airway patency and alveolar penetration, vascular patency and distribution pattern, alveolar gas exchange and bronchial epithelial integrity in both normal and pathological conditions. But these tests lack fine morphological information. In contrast, radiography with its extremely high level of resolution that is in the order of 30-100 line pairs/mm compared to 3-5 line/cm of nuclear scan resolution power, suffers from the lack of information about the alveolar gas exchange, pulmonary perfusion and respiratory function. Although incomparable to radiography, the resolution power of CT scan is also much greater than that of nuclear scan, but again this test cannot provide the information regarding function and physiology. The aerosol scan findings in each of these diseases are assessed in the i ht of and validated against chest radiography, conventional X-ray tomography and high resolution CT scan. The chapters in this monograph describe a history of radioaerosol lung imaging, radiopharmaceuticals, generation of aerosols by the BARC and other nebulizers, and pertinent lung physiology and the way how aerosol deposits in lung. The technical and constructional aspects

  17. Radioaerosol imaging of the lung. An IAEA [CRP] group study

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee [Departments of Radiology and Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of); Isawa, Toyoharu [Tohoku University Research Institute for Chest Disease and Cancer, Sendai (Japan); eds.

    1994-07-01

    Nuclear scans, radiography and computed tomography (CT) of the lung make up three pantheonic pillars of the modem imaging diagnosis of pulmonary disorders and the contribution of these modalities to the progress of pulmonology has been immense. However the experiences accumulated during the past decades indicate that, with well-known advantages and drawbacks, not one of these imaging modalities can be perfect by itself alone, and it has become obvious that the individual tests are as much complementary to one another as unique. As a matter of fact, the nuclear lung imagings, that include inhalation scan, perfusion scan, ventilation scan and the most recently developed mucociliary transport and alveolar permeability tests, are very sensitive and efficient in respectively providing graphic information about airway patency and alveolar penetration, vascular patency and distribution pattern, alveolar gas exchange and bronchial epithelial integrity in both normal and pathological conditions. But these tests lack fine morphological information. In contrast, radiography with its extremely high level of resolution that is in the order of 30-100 line pairs/mm compared to 3-5 line/cm of nuclear scan resolution power, suffers from the lack of information about the alveolar gas exchange, pulmonary perfusion and respiratory function. Although incomparable to radiography, the resolution power of CT scan is also much greater than that of nuclear scan, but again this test cannot provide the information regarding function and physiology. The aerosol scan findings in each of these diseases are assessed in the i ht of and validated against chest radiography, conventional X-ray tomography and high resolution CT scan. The chapters in this monograph describe a history of radioaerosol lung imaging, radiopharmaceuticals, generation of aerosols by the BARC and other nebulizers, and pertinent lung physiology and the way how aerosol deposits in lung. The technical and constructional aspects

  18. Lung diffusion of soluble radioaerosols in scleroderma

    International Nuclear Information System (INIS)

    Chopra, S.K.; Taplin, G.V.; Tashkin, D.P.; Elam, D.

    1978-01-01

    Diffusion rates of soluble radioaerosols of sodium pertechnetate (/sup 99m/TcO 4 ; mol. wt. 163) and diethylentriaminepentaacetate (/sup 99m/Tc-DTPA; mol. wt. 492) were determined in ten normal subjects and ten patients with scleroderma having lung involvement. Twenty millicuries (mCi) each of /sup 99m/TcO 4 and /sup 99m/Tc-DTPA in 5 ml saline were aerosolized and inhaled on two different days. Initial lung retention after three minutes of administration was approximately 2 mCi. Two regions of interest over each posterior lung field were monitored with a scintillation camera and data were stored on magnetic tape. Decreasing levels of radioactivity were plotted semilogarithmically and half time (T 1 / 2 ) removal rates were calculated

  19. Radioaerosol Inhalation Imaging in Bronchial Asthma

    International Nuclear Information System (INIS)

    Kim, Bum Soo; Park, Young Ha; Park, Jeong Mi; Chung, Myung Hee; Chung, Soo Kyo; Shinn, Kyung Sub; Bahk, Yong Whee

    1991-01-01

    Radioaerosol inhalation imaging (RII) has been used in radionuclide pulmonary studies for the past 20 years. The method is well accepted for assessing regional ventilation because of its usefulness, easy fabrication and simple application system. To evaluate its clinical utility in the study of impaired regional ventilation in bronchial asthma, we obtained and analysed RIIs in 31 patients (16 women and 15 men; age ranging 21-76 years) with typical bronchial asthma at the Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical college, from January, 1988 to August, 1989. Scintiscans were obtained with radioaerosol produced by a HARC(Bhabha Atomic Research Center, India) nebulizer with 15 mCi of 99m Tc-phytate. The scanning was performed in anterior, posterior and lateral projections following 5-minute inhalation of radioaerosol on sitting position. The scans were analysed and correlated with the results of pulmonary function study and the findings of chest radiography. Fifteen patients had concomitant lung perfusion image with 99m Tc-MAA. Follow-up scans were obtained in 5 patients after bronchodilator therapy. 1 he patients were divided into (1) attack type (4 patients), (2) resistant type (5 patients), (3) remittent type (10 patients) and (4) bronchitic type (12 patients). Chest radiography showed hyperinflation, altered pulmonary vascularity, thickening of the bronchial wall and accentuation of hasal interstitial markings in 26 of the 31 patients. Chest radiographs were normal in the remaining 5 patients. Regardless of type, the findings of RII were basically the same, and characterized by the deposition of radioaerosol in the central parts or in the main respiratory air ways along with mottled nonsegmental ventilation defects in the periphery. Peripheral parenchymal defects were more extensive than that of expected findings from clinical symptoms, pulmonary function test and chest radiograph. Broomstick sign was present in 1.7 patients

  20. Evaluation of the regional lung function revealed in radioaerosol scintigram of chronic obstructive pulmonary disease, 1. The comparison of radioaerosol scintigram with the lung function tests in chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T [Kyoto Univ. (Japan). Faculty of Medicine

    1980-02-01

    We classified the findings of radioaerosol inhalation scintigrams of patients with various stages of obstructive pulmonary disease (COPD) into 4 grades, according to the extent of peripheral irregularity and central hot spot formation; Stage I represents normal homogeneous distribution, stage II represents peripheral irregularity, stage III represents additional hot spot formation and stage IV represents further regional defect. This aerosol grading criteria was then compared with routine and specific lung function tests. The aerosol grading criterion correlated well with FEV sub(1.0)% which is a good indicator of the severity of COPD. The central hot spot formation correlated well with FEV sub(1.0)% and respiratory resistance (R.p.) determined by the oscillation method, both of which are good indicators of abnormality in central airway resistance. Peripheral irregularity correlated well with: 1) flows at 50%VC and 25%VC in a maximum forced expiratory flow volume curve; 2) closing volume (CV/VC%); 3) delta N/sub 2/%/l in N/sub 2/ single washout test; and 4) the regional delay of /sup 133/Xe washout process, all of which are sensitive indicators of small airway disease. It is therefore reasonable to conclude that the radioaerosol scintigram reveals the regional lung function both in terms of airway resistance (R) and compliance (C). This criterion was useful in quantitatively evaluating the regional ventilation distribution of COPD and the therapeutic effect on bronchial asthma. The mechanism of aerosol particle deposition related to characteristic central hot spot formation accompanied with peripheral irregularity in a radioaerosol scintigram of COPD, needs further exploration concerning the aerodynamic behavior of aerosol particles in the airways both during inspiration and expiration.

  1. Radiation protect during the ventilation scintigraphy of Tc99m DTPA radioaerosol in pediatric application

    International Nuclear Information System (INIS)

    Chen, Yu-Wen; Dai, Zen-Kong; Huang, Ying-Fong; Jong, Shiang-Bing

    2000-01-01

    Lung ventilation-perfusion scintigraphy is of great value for the management of patients with both primary lung disease and heart disease, by proving patho- physiological information of importance for the diagnosis, follow-up and functional evaluation of the patients. Krypton 81m radioactive gas is preferable for pediatric application due to its short half-life. However, the rubidium-krypton 81m generator is not popular in hospital of our country. Tc99m DTPA radioaerosol ventilation scintigraphy has its unique convenient for clinical application. But, the most disadvantage of clinical application of Tc99m DTPA radioaerosol is contamination of environment when the poor-cooperative patient can't breathe by mouth. For this reason, we design the certain procedure to reduce the radioaerosol contamination. During May to Aug., 1999, we collect 36 pediatric patients (male to female ratio 2:1, age from 6 months to 20 years old) with clinical history of lung or heart disease, including congenital heart disease, asthma and so on. Before the cases receive 10 to 15 mCi Tc99m DTPA radioaerosol ventilation scan, all of them were trained with breath training. And during the ventilation scintigraphy, the special mouth mask is designed to prevent the radioaerosol leakage into atmosphere. Then Geiger-Muller survey meter was arranged to detect the environmental contamination of radioaerosol in the mask, one and two metes away from the mask every 10 minutes during ventilation scintigraphy procedure and 1 hour after finishing image. Two nuclear medicine physicians evaluated imaging quality of ventilation scintigraphy. Results: Among thirty-six pediatric patients with prior breath training, thirty-two cases are successful to proceed the Tc99m DTPA ventilation scintigraphy. The other four cases that were under three-year-old fail to receive ventilation scintigraphy. There is limited detectable radioactivity in the mouth mask at early 10 minute by Geiger-Muller counter. No significant

  2. Evaluation of the regional lung function revealed in radioaerosol scintigram of chronic obstructive pulmonary disease, 1

    International Nuclear Information System (INIS)

    Suzuki, Teruyasu

    1980-01-01

    We classified the findings of radioaerosol inhalation scintigrams of patients with various stages of obstructive pulmonary disease (COPD) into 4 grades, according to the extent of peripheral irregularity and central hot spot formation; Stage I represents normal homogeneous distribution, stage II represents peripheral irregularity, stage III represents additional hot spot formation and stage IV represents further regional defect. This aerosol grading criteria was then compared with routine and specific lung function tests. The aerosol grading criterion correlated well with FEV sub(1.0)% which is a good indicator of the severity of COPD. The central hot spot formation correlated well with FEV sub(1.0)% and respiratory resistance (R.p.) determined by the oscillation method, both of which are good indicators of abnormality in central airway resistance. Peripheral irregularity correlated well with: 1) flows at 50%VC and 25%VC in a maximum forced expiratory flow volume curve; 2) closing volume (CV/VC%); 3) delta N 2 %/l in N 2 single washout test; and 4) the regional delay of 133 Xe washout process, all of which are sensitive indicators of small airway disease. It is therefore reasonable to conclude that the radioaerosol scintigram reveals the regional lung function both in terms of airway resistance (R) and compliance (C). This criterion was useful in quantitatively evaluating the regional ventilation distribution of COPD and the therapeutic effect on bronchial asthma. The mechanism of aerosol praticle deposition related to characteristic central hot spot formation accompanied with peripheral irregularity in a radioaerosol scintigram of COPD, needs further exploration concerning the aerodynamic behavior of aerosol particles in the airways both during inspiration and expiration. (author)

  3. Detection of alveolar epithelial injury by 99mTc-DTPA radioaerosol inhalation lung scan following blunt chest trauma

    International Nuclear Information System (INIS)

    Okudan, B.; Han, S.; Baldemir, M.; Yildiz, M.

    2004-01-01

    DTPA clearance rate is a reliable index of alveolar epithelial permeability, and is a highly sensitive marker of pulmonary epithelial damage, even of mild degree. In this study, 99m Tc-DTPA aerosol inhalation scintigraphy was used to assess the pulmonary epithelial membrane permeability and to investigate the possible application of this permeability value as an indicator of early alveolar or interstitial changes in patients with blunt chest trauma. A total of 26 patients was chest trauma (4 female, 22 male, 31-80 yrs, mean age; 53±13 yrs) who were referred to the emergency department in our hospital participated in this study. Technetium-99m diethylene triamine pentaacetic acid (DTPA) aerosol inhalation scintigraphy was performed on the first and thirtieth days after trauma. Clearance half times (T 1/2 ) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. On the first day, mean T 1/2 value of the whole lung was 63±19 minutes (min), and thirtieth day mean T 1/2 value was 67±21 min. On the first day, mean PI values of the lung and 30th day mean PI value were 0.60±0.05, and 0.63 ±0.05, respectively. Significant changes were observed in radioaerosol clearance and penetration indices. Following chest trauma, clearance of 99m Tc-DTPA increased owing to breakdown of the alveolar-capillary barrier. This increase in the epithelial permeability of the lung appears to be an early manifestation of lung disease that may lead to efficient therapy in the early phase. (author)

  4. Technetium-99m diethylenetriaminepentaacetic acid radioaerosol scintigraphy in organophosphate induced pulmonary toxicity: experimental study.

    Science.gov (United States)

    Yavuz, Yucel; Kaya, Eser; Yurumez, Yusuf; Sahin, Onder; Bas, Orhan; Fidan, Huseyin; Sezer, Murat

    2008-09-01

    The aim of this experimental study was to investigate pathological signs of lung damages caused by acute organophosphate (OP) poisoning by using Tc-99m DTPA radioaerosol scintigraphy and histopathological investigation. Fourteen rabbits were divided into two equal groups (n = 7). Group 1 (control group) received normal saline (same volume of fenthion, 2 ml/kg) via orogastric tube. Group 2 (OP toxicity group) received 150 mg/kg of fenthion (diluted fenthion, 2 ml/kg) via orogastric tube. Six hours later, Tc-99m-DTPA aerosol inhalation lung scintigraphy was performed in both groups. Then all rabbits were anesthetized with ketamine hydrochloride (35 mg/kg, i.p.) and xysilazine (5 mg/kg, i.p.), and sacrificed by intracardiac blood discharge. The lungs were then removed. There was a significant difference in T1/2 values of Tc-99m DTPA clearance between control group and OP toxicity group (p = 0.04). Intraparenchymal vascular congestion and thrombosis, intraparenchymal hemorrhage, respiratory epithelial proliferation, number of macrophages in the alveolar, and bronchial lumen, alveolar destruction, emphysematous changes, and bronchoalveolar hemorrhage scores were significantly higher in the rabbits exposed to OP compared with the control group (p < 0.05). This study showed that OP toxicity caused a decrease in the alveolar clearance. Tc-99m DTPA radioaerosol inhalation lung scintigraphy was found to be a sensitive determination of acute lung damage in OP poisoning.

  5. Chemical breakdown of radioaerosols during nebulization

    International Nuclear Information System (INIS)

    Waldman, D.L.; Weber, D.A.; Oberdrster, G.; Drago, S.R.; Utell, M.S.; Hyde, R.W.; Morrow, P.E.

    1985-01-01

    The diagnostic utility of radioaerosols for lung ventilation and lung permeability procedures requires a strong, stable coordinate covalent bond between a radionuclide and a ligand. The stability of the radiopharmaceutical before and after nebulization and hence its molecular size, are an absolute prerequisite for the method to be reproducible. To examine the possible effects of aerosolization on radiopharmaceuticals used for pulmonary imaging, the authors examined the radiochemical purity of Tc-99m DTPA following ultrasonic nebulization, jet nebulization (Dautrebande D-31), and inhalation with subsequent appearance in plasma and urine of dogs. Paper and liquid chromatographic methods were applied to determine radiochemical purity. Chromatographic assays showed a binding efficiency of less than 50% for ultrasonicly aerosolized Tc-99m DTPA. Cooling of the ultrasonic coupling fluid increased the binding efficiency to greater than 95% following nebulization and inhalation. Jet nebulization did not affect the radiochemical purity of the radiopharmaceutical. Ultrasonic nebulization will partially destroy the Tc-99m DTPA complex; cooling the ultrasonic connecting fluid and constant aerosol monitoring are required for consistent, reproducible results

  6. Measurements of the effect of humidity on radio-aerosol penetration through ultrafine capillaries

    International Nuclear Information System (INIS)

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 microm. The ultrafine capillaries had a diameter of 250 microm. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios

  7. Lung imaging in pulmonary disease

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone

  8. The influence of volatile anesthetics on alveolar epithelial permeability measured by noninvasive radionuclide lung scan

    International Nuclear Information System (INIS)

    Hung, Chih-Jen; Wu, Rick Sai-Chuen; Lin, Cheng-Chieh; Kao, Albert; Tsai, Jeffrey J.P.

    2003-01-01

    Many volatile anesthetics have long been thought to affect pulmonary functions including lung ventilation (LV) and alveolar epithelial permeability (AEP). The purpose of this study is to examine the influence of volatile anesthetics on LV and AEP by noninvasive radionuclide lung imaging of technetium-99m labeled diethylene triamine pentaacetic acid radioaerosol inhalation lung scan (DTPA lung scan). Twenty patients undergoing surgery and receiving volatile anesthesia with 1% halothane were enrolled as the study group 1. The other 20 patients undergoing surgery and receiving volatile anesthesia with 1.5% isoflurane were enrolled as the study group 2. At the same time, 20 patients undergoing surgery with intravenous anesthesia drugs were included as a control group. Before surgery, 1 hour after surgery, and 1 week after surgery, we investigated the 3 groups of patients with DTPA lung scan to evaluate LV and AEP by 99m Tc DTPA clearance halftime (T1/2). No significant change or abnormality of LV before surgery, 1 hour after surgery, or 1 week after surgery was found among the 3 groups of patients. In the control group, the 99m Tc DTPA clearance T1/2 was 63.5±16.4, 63.1±18.4, and 62.8±17.0 minutes, before surgery, 1 hour after surgery, and 1 week after surgery, respectively. In group 1, it was 65.9±9.3, 62.5±9.1, and 65.8±10.3 minutes, respectively. No significant change in AEP before surgery, 1 hour after surgery, or 1 week after surgery was found. However, in group 2, the 99m Tc DTPA clearance T1/2 was 65.5±13.2, 44.9±10.5, and 66.1±14.0 minutes, respectively. A significant transient change in AEP was found 1 hour after surgery, but it recovered 1 week after surgery. We conclude that volatile anesthesia is safe for LV and AEP, and only isoflurane can induce transient change of AEP. (author)

  9. Nuclear techniques in the diagnosis of lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Isawa, T

    1993-12-31

    Lung studies by nuclear techniques have been mostly neglected so far in the developing countries because ``total lung imaging`` was not possible. The availability of radioaerosols had now provided means to do complete lung studies in these countries. IAEA`s effort to make radioaerosol techniques more widely available in the Asian countries has been most noteworthy. Pulmonary tuberculosis is still prevalent in the developing countries, scourge of smoking is becoming increasingly wide spread and atmospheric pollution is on the rise as these countries race towards industrialisation with insufficient technical and financial resources. These conditions would provide a fascinating backdrop of infective, cancerous and pollution-induced conditions of lungs where lung imaging techniques would have a large scope of providing useful service 11 figs, 1 tab

  10. Nuclear techniques in the diagnosis of lung diseases

    International Nuclear Information System (INIS)

    Isawa, T.

    1992-01-01

    Lung studies by nuclear techniques have been mostly neglected so far in the developing countries because ''total lung imaging'' was not possible. The availability of radioaerosols had now provided means to do complete lung studies in these countries. IAEA's effort to make radioaerosol techniques more widely available in the Asian countries has been most noteworthy. Pulmonary tuberculosis is still prevalent in the developing countries, scourge of smoking is becoming increasingly wide spread and atmospheric pollution is on the rise as these countries race towards industrialisation with insufficient technical and financial resources. These conditions would provide a fascinating backdrop of infective, cancerous and pollution-induced conditions of lungs where lung imaging techniques would have a large scope of providing useful service

  11. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  12. Recent lung imaging studies

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Radionuclide lung imaging procedures have been available for 11 years but only the perfusion examination has been used extensively and mainly for the diagnosis of pulmonary embolism (P.E.). Its ability to reveal localized ischemia makes it a valuable test of regional lung function as well as a useful diagnostic aid in P.E. Although it had been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing P.E. from COPD. In this review emphasis is placed on our recent experience with both of these inhalation procedures in comparison with pulmonary function tests and roentgenography for the early detection of COPD in population studies. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging for a functional diagnosis of P.E. Two new developments in regional lung diffusion imaging, performed after the inhalation of radioactive gases and/or rapidly absorbed radioaerosols are described. The experimental basis for their potential clinical application in pulmonary embolism detection is presented

  13. 67Ga lung scan

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-01-01

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate 67 Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the 67 Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of 67 Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of 67 Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography

  14. Unevenness on aerosol inhalation lung images and lung function

    International Nuclear Information System (INIS)

    Teshima, Takeo; Isawa, Toyoharu; Hirano, Tomio; Ebina, Akio; Shiraishi, Koichiro; Konno, Kiyoshi

    1985-01-01

    The unevenness or inhomogeneity of aerosol deposition patterns on radioaerosol inhalation lung images has been interpreted rather qualitatively in the clinical practice. We have reported our approach to quantitatively analyze the radioactive count distribution on radioaerosol inhalation lung images in relation to the actual lung function data. We have defined multiple indexes to express the shape and the unevenness of the count distribution of the lung images. To reduce as much as possible the number of indexes to be used in the regression functions, the method of selection of variables was introduced to the multiple regression analysis. Because some variables showed greater coefficients of simple correlation, while others did not, multicollinearity of variables had to be taken into consideration. For this reason, we chose a principal components regression analysis. The multiple regression function for each item of pulmonary function data thus established from analysis of 67 subjects appeared usable as a predictor of the actual lung function: for example, % VC (vital capacity) could be estimated by using four indexes out of the multiple ones with a coefficient of multiple correlation (R) of 0.753, and FEVsub(1.0) % (forced expiratory volume in one second divided by forced expiratory volume), by 7 indexes with R = 0.921. Pulmonary function data regarding lung volumes and lung mechanics were estimated more accurately with greater R's than those for lung diffusion, but even in the latter the prediction was still statistically significant at p less than 0.01. We believe the multiple regression functions thus obtained are useful for estimating not only the overall but also the regional function of the lungs. (author)

  15. /sup 67/Ga lung scan

    Energy Technology Data Exchange (ETDEWEB)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.; Pick, R.

    1977-03-21

    Twenty-three patients with clinical signs of pulmonary embolic disease and lung infiltrates were studied to determine the value of gallium citrate /sup 67/Ga lung scan in differentiating embolic from inflammatory lung disease. In 11 patients without angiographically proved embolism, only seven had corresponding ventilation-perfusion defects compatible with inflammatory disease. In seven of these 11 patients, the /sup 67/Ga concentration indicated inflammatory disease. In the 12 patients with angiographically proved embolic disease, six had corresponding ventilation-perfusion defects compatible with inflammatory disease. None had an accumulation of /sup 67/Ga in the area of pulmonary infiltrate. Thus, ventilation-perfusion lung scans are of limited value when lung infiltrates are present. In contrast, the accumulation of /sup 67/Ga in the lung indicates an inflammatory process. Gallium imaging can help select those patients with lung infiltrates who need angiography.

  16. Mobile on-line working radioaerosol-measuring systems in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    Aures, R.; Wenzel, H.

    1998-01-01

    In Baden-Wuerttemberg eight on-line measuring radioaerosol monitoring stations are successfully working since a lot of years. These monitoring stations spread over the whole country give only a rough overview of the radiological situation in the environment after an event like the Chernobyl accident. But it is expensive to increase the number of the monitoring stations in this network. This is why the 'Landesanstalt fuer Umweltschutz Baden-Wuerttemberg' (LfU) got the order from the 'Ministerium fuer Umwelt und Verkehr Baden-Wuerttemberg' to conceive a mobile on-line working radioaerosol-measuring system for environmental measurements (MORAM). The LfU had made the plans and a company built up the first prototype. In action the MORAM should send every time automatically data of radioactivity in the air and datas of meteorology from its position to the controlling center in Karlsruhe. The MORAM works by remote control, needs little servicing and is independent from main connection. In case of a nuclear event several MORAMs could be used as a local monitoring network or they could increase the number of the radioaerosol monitoring stations for a certain time. Normally, the MORAMs will be storaged and are always ready for action. All the tests with the prototype 1 are finished in the meantime and the result of the tests is a new improved prototype 2, which can be used in the emergency case. This prototype was given to the LfU. (orig.) [de

  17. Lung radiopharmaceuticals

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP

  18. Lung scan abnormalities in asthma and their correlation with lung function

    International Nuclear Information System (INIS)

    Vernon, P.; Burton, G.H.; Seed, W.A.; Charing Cross Hospital, London

    1986-01-01

    We have used asthma as a model of airways disease to test how well an automated, quantitative method of analysis of lung scans correlates with physiological measurements of disturbed lung function and gas exchange. We studies 25 asthmatics (age 16-73) of widely differing severity (forced expiratory volume in 1-s FEV 1 22%-123% of predicted value), who had airways tests, arterial blood gas analysis, and krypton-technetium lung scans within a short time of each other. In all patients with airways obstruction and in some with normal function during remission, scans showed the typical appearances of multiple defects of ventilation and perfusion. The severity of ventilation defects was assessed from the posterior view of the krypton scan compared to an age- and sex-matched normal range to yield an underventilation score. This correlated closely with the severity of airways obstruction as measured by forced expiratory manouevres. Ventilation and perfusion defects were usually imperfectly matched; the severity of this was computed using a subtraction method applied to the counts on the posterior krypton and technetium scans. The degree of mismatch was inversely related to the arterial partial pressure of oxygen (r=-0.86). The results suggest that computer scan analysis can provide usual functional information about the lung in airways disease. (orig.)

  19. Hot spots on Tc-99m MAA perfusion lung scan

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee

    2001-01-01

    A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings. A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities. Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear borders. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan

  20. Lung radiopharmaceuticals; Radioformacos pulmonares

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B M [Instituto Nacional de Pediatroa (Mexico)

    1994-12-31

    Indication or main clinical use of Lung radiopharmaceuticals is presented and clasification of radiopharmaceuticals as ventilation and perfusion studies. Perfusion radiopharmaceuticals, main controls for administration quality acceptance. Clearence after blood administration and main clinical applications. Ventilation radiopharmaceuticals, gases and aerosols, characteristics of a ideal radioaerosol, techniques of good inhalation procedure, clinical applications. Comparison of several radiopharmaceuticals reflering to retention time as 50% administered dose, percent administered dose at 6 hours post inhalation, blood activity at 30 and 60 minutes post inhalation, initial lung absorbed dose, cumulated activity.Kinetic description of two radiopharmaceuticals, 99mTcDTPA and 99mTc-PYP.

  1. Clinical value of measurement of pulmonary radioaerosol mucociliary clearance in the work up of primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Munkholm, Mathias; Nielsen, Kim Gjerum; Mortensen, Jann

    2015-01-01

    BACKGROUND: We aimed to evaluate and define the general clinical applicability and impact of pulmonary radioaerosol mucociliary clearance (PRMC) on the work up of patients suspected of having primary ciliary dyskinesia (PCD). In addition, we wanted to evaluate the accuracy of the reference values...... primarily to results from nasal ciliary function testing, to electron microscopic (EM) examination of the ultrastructure of the cilia, and to the final clinical diagnosis. RESULTS: Of the 239 patients, 27 ended up with a final clinical diagnosis of definitive PCD. No patients with a PRMC test...... of the entire lung. Its greatest strength is its ability to reject a suspected PCD diagnosis with great certainty. In our material, this accounted for 2/3 of referred patients. In addition, the test has a high rate of conclusive results. According to our analyses, reference equations on children would benefit...

  2. Characterization of the radioaerosol sup(99m)Tc-DTPA produced by different nebulizers

    International Nuclear Information System (INIS)

    Medeiros, R.B.; Nery, L.E.; Tabacniks, M.H.

    1991-01-01

    Our aim was to characterize the aerosol produced by different nebulizers through the use of sup(99m)Tc-DTPA normally applied in pulmonar ventilation studies in nuclear medicine. We have found the mass distribution's MMD and the geometric standard deviation for this type of radioaerosol. (author)

  3. Liver-lung scan in the diagnosis of right subphrenic abscess

    International Nuclear Information System (INIS)

    Middleton, H.M. III; Patton, D.D.; Hoyumpa, A.M. Jr.; Schenker, S.

    1976-01-01

    To assess the value of liver-lung scanning in the diagnosis of right subphrenic abscess, 148 scans were reviewed against corresponding charts. Of 91 scans with adequate clinical data, overall scanning error was 19.3 percent with 14 false positive and 3 false negative scans. Among 49 scans (of the initial group of 91 studies) with presence or absence of actual pathology proved by surgery and/or autopsy, there were 3 true positive, 12 false positive, 29 true negative, and 3 false negative scans. Analysis of data indicated lower accuracy of scan interpretation than generally reported, low specificity for positive scans and high specificity for negative scans, correlation of false interpretations with atypical degrees of liver-lung separation and with scanning defects in liver and lung, and failure of rereading significantly to improve accuracy of interpretation

  4. Emergency perfusion lung scan of pulmonary embolism

    International Nuclear Information System (INIS)

    Ueno, Kyoichi; Kabuto, Hiroko; Rikimaru, Shigeho

    1984-01-01

    Pulmonary embolism (PE) has been reported to be quite rare in Japan, and there have been few clinical studies on the nuclear diagnosis of PE with the exception of several case reports. However, we have experienced 12 acute PE, and 2 chronic PE in 5 years 2 months. In 33 emergency cases who were highly suspected to have PE, we could diagnose 12 cases of PE, and 19 cases of non-PE. However, the remaining 2 cases were equivocal because of underlying chronic lung disease. Using Kr-81m ventilation lung scan, V/Q mismatch was found in all of 10 cases. Usefulness of emergency perfusion lung scan in Japan should be stressed. (author)

  5. Prediction of postoperative respiratory function of lung cancer patients using quantitative lung scans

    International Nuclear Information System (INIS)

    Konishi, Hiroshi

    1982-01-01

    Quantitative sup(99m)Tc-MISA inhalation scan and sup(99m)Tc-MAA perfusion scan were performed in 35 patients with lung cancer who underwent lobectomies. Quantitative 133 Xe ventilation-perfusion scans were also performed in 34 patients with lung cancer who underwent lobectomies. To predict functional loss after lobectomy, the proportion of the No. of segments in the lobe to be resected to the No. of entire segments of that lung was provided for the study. Postoperative FVC, FEVsub(1.0) and MVV were predicted in the study, and which were compared to the respiratory function at one month after operation and more than four months after operation. The predicted postoperative respiratory function was highly correlated with the actually observed postoperative respiratory function (0.7413 lt r lt 0.9278, p lt 0.001). In this study, the postoperative respiratory function was proven to be quite accurately predicted preoperatively with combination of quantitative lung scans and spirometric respiratory function. Therefore this method is useful not only for judgement of operative indication but also for choice of operative method and for counterplan of postoperative respiratory insufficiency. (J.P.N.)

  6. Clinical assessment of a commercial aerosol delivery system for ventilation scanning by comparison with KR-81m

    International Nuclear Information System (INIS)

    Wollmer, P.; Eriksson, L.; Andersson, A.C.

    1984-01-01

    Radioactive aerosols offer a means for steady state ventilation scanning in multiple views. The clinical use of radioaerosol techniques has been hampered by the lack of delivery systems producing sufficiently small particles. If the aerosol contains large particles, heavy deposition occurs in major airways, especially in patients with airways disease. The authors have assessed a new, commercial aerosol delivery system (Syntevent) by comparison with Kr-81m ventilation scanning in 23 patients with airways obstruction. An indirect comparison was also made with a settling bad technique. Ventilation scans in four projections were obtained during continuous inhalation of Kr-81m. Subsequently, the patient inhaled an aerosol labelled with In-113m from the Syntevent system, and aerosol ventilation scans were obtained in the same projections. Spirometry was performed to establish the degree of airways obstruction. The aerosol delineated the ventilated regions of the lungs adequately in all the patients. Deposition of aerosol in larger airways was seen in a few patients only, and this did not impede the interpretation of the scintigram. A quantitative analysis of the penetration of the aerosol to the periphery of the lung failed to demonstrate any significant correlation between particle penetration and airways obstruction. Aerosol penetration was significantly greater (p<0.001) with the Syntevent system than with a settling bag technique

  7. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    Science.gov (United States)

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  8. Perfusion lung scanning: differentiation of primary from thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Lisbona, R.; Kreisman, H.; Novales-Diaz, J.; Derbekyan, V.

    1985-01-01

    Of eight patients with pulmonary arterial hypertension, final diagnosis established by autopsy or angiography, four had primary hypertension and four hypertension from thromboembolism. The perfusion lung scan was distinctly different in the two groups. The lung scan in primary pulmonary hypertension was associated with nonsegmental, patchy defects of perfusion, while in thromboembolic hypertensives it was characterized by segmental and/or lobar defects of perfusion with or without subsegmental defects. The perfusion lung scan is a valuable, noninvasive study in the evaluation of the patient with pulmonary hypertension of undetermined cause and in the exclusion of occult large-vessel pulmonary thromboembolism

  9. Radioaerosol inhalation lung imaging for the diagnosis of chronic obstructive pulmonary diseases in Thailand. Final report for the period 10 December 1987 - 15 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Buachum, V [Chulalongkorn Univ., Bangkok (Thailand). Nuclear Medicine Div.

    1993-12-01

    The radionuclide pulmonary function studies such as aerosol inhalation lung imaging, mucociliary clearance and pulmonary epithelial were developed and studied in normal and chronic obstructive pulmonary disease. The results of the aerosol inhalation lung imaging in 71 cases of COPD revealed that the aerosol inhalation lung scan was the most sensitive test for the diagnosis of early COPD as compared to the chest X-ray, vascular perfusion lung scan and spirometric test (% FEVI). The aerosol and perfusion lung scan were also performed in 21 cases of carcinoma of lung who had been treated with external radiation or chemotherapy. The result of study revealed 5 patients died during treatment, 5 patients were slightly improved, no significant change was detected in 10 cases and deterioration was found in one patient. The lung scintigraphy was studied in 15 cases of well differentiated carcinoma of thyroid with pulmonary metastasis who had I-131 treatment. The study showed that the radioactive iodine treatment dose had minimal effect on the post treatment lung imaging study. The perfusion and aerosol study in 15 cases of operated patients revealed no evidence of pulmonary embolism in post operative study. Abnormal vascular disease or pulmonary embolism was observed in one patient preoperatively. 12 refs, 13 figs, 13 tabs.

  10. Radioaerosol inhalation lung imaging for the diagnosis of chronic obstructive pulmonary diseases in Thailand. Final report for the period 10 December 1987 - 15 December 1993

    International Nuclear Information System (INIS)

    Buachum, V.

    1993-12-01

    The radionuclide pulmonary function studies such as aerosol inhalation lung imaging, mucociliary clearance and pulmonary epithelial were developed and studied in normal and chronic obstructive pulmonary disease. The results of the aerosol inhalation lung imaging in 71 cases of COPD revealed that the aerosol inhalation lung scan was the most sensitive test for the diagnosis of early COPD as compared to the chest X-ray, vascular perfusion lung scan and spirometric test (% FEVI). The aerosol and perfusion lung scan were also performed in 21 cases of carcinoma of lung who had been treated with external radiation or chemotherapy. The result of study revealed 5 patients died during treatment, 5 patients were slightly improved, no significant change was detected in 10 cases and deterioration was found in one patient. The lung scintigraphy was studied in 15 cases of well differentiated carcinoma of thyroid with pulmonary metastasis who had I-131 treatment. The study showed that the radioactive iodine treatment dose had minimal effect on the post treatment lung imaging study. The perfusion and aerosol study in 15 cases of operated patients revealed no evidence of pulmonary embolism in post operative study. Abnormal vascular disease or pulmonary embolism was observed in one patient preoperatively. 12 refs, 13 figs, 13 tabs

  11. ''Inhalation lung imaging with radioactive aerosols and gases''

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1977-01-01

    Lung imaging procedures, performed after the inhalation of /sup 99m/Tc labeled aerosols, 133 Xe and /sup 81m/Kr gases, were used to visualize the sites of airway obstruction and regional abnormalities of ventilatory function in normal volunteers, patients with obstructive airway disease, and pulmonary embolism suspects. Comparisons were made of three methods regarding their functional significance, diagnostic merits, and limitations. A new nebulizer-radioaerosol delivery system is described

  12. Clinical application of radioaerosol studies - pulmonary embolism, inhalation burns and glue-sniffers and COPD

    International Nuclear Information System (INIS)

    Sundram, Felix

    1994-01-01

    The alveolar epithelium and the capillary endothelium together form the alveolar capillary membrane. Fluid exchange occurs across this membrane, and is dependent on intravascular and interstitial hydrostatic and oncotic pressures, and on permeability of this membrane. Damage to either the alveolar or capillary component can result in a high permeability pulmonary oedema, even though the alveolar epithelium forms an extremely tight membrane which is ten times less permeable than the capillary endothelium. Nuclear medicine methods can be used to observe changes in integrity of pulmonary capillary endothelium (with first pass dual-indicator dilution technique using successive injections of radiotracer), and of alveolar epithelium, and it is important that the damage should be detected before patients develop clinical pulmonary oedema so that intensive therapy can be instituted early. We have used 99m Tc DTPA radioaerosol to measure alteration in pulmonary epithelial permeability and to image the distribution of ventilation in normal and some pathological states. In some clinical studies Tc-99m (tin) colloid radioaerosol has been used to obtain the ventilation images

  13. Metabolic lung scanning with N-isopropyl-I-123-p-iodoamphetamine

    International Nuclear Information System (INIS)

    Touya, J.; Akber, S.F.; Rashimian, J.; Bennett, L.R.

    1982-01-01

    The mechanisms of uptake of N-Isopropyl-I-123-p-Iodoamphetamine (IMP) in the lung was studied in dogs. It has been concluded that this amine is taken in low specificity - high capacity endothelial receptors. Competitive effect of propranolol guanethidine, amphetamine and ketanine for the binding sites of IMP in the pulmonary endothelial cells was observed. These results show that IMP can be an agent for nonparticulate lung perfusion scans as well as for metabolic lung scans

  14. Two methods for isolating the lung area of a CT scan for density information

    International Nuclear Information System (INIS)

    Hedlund, L.W.; Anderson, R.F.; Goulding, P.L.; Beck, J.W.; Effmann, E.L.; Putman, C.E.

    1982-01-01

    Extracting density information from irregularly shaped tissue areas of CT scans requires automated methods when many scans are involved. We describe two computer methods that automatically isolate the lung area of a CT scan. Each starts from a single, operator specified point in the lung. The first method follows the steep density gradient boundary between lung and adjacent tissues; this tracking method is useful for estimating the overall density and total area of lung in a scan because all pixels within the lung area are available for statistical sampling. The second method finds all contiguous pixels of lung that are within the CT number range of air to water and are not a part of strong density gradient edges; this method is useful for estimating density and area of the lung parenchyma. Structures within the lung area that are surrounded by strong density gradient edges, such as large blood vessels, airways and nodules, are excluded from the lung sample while lung areas with diffuse borders, such as an area of mild or moderate edema, are retained. Both methods were tested on scans from an animal model of pulmonary edema and were found to be effective in isolating normal and diseased lungs. These methods are also suitable for isolating other organ areas of CT scans that are bounded by density gradient edges

  15. Diagnosis of thromboembolic disease: combined ventilation perfusion lung scan and compression ultrasonography

    International Nuclear Information System (INIS)

    Dadparvar, S.; Woods, K.; Magno, R.M.; Sabatino, J. C.; Patil, S.; Dou, Y.

    2002-01-01

    The clinical management of pulmonary embolism and deep venous thrombosis of the legs are similar and require prolonged anticoagulation therapy. The standard diagnostic approach in patients suspected of pulmonary embolism is ventilation-perfusion (V/Q) lung scan and compression ultrasonography to detect deep venous thrombosis. This retrospective study analyzed the role of V Q lung scan and compression ultrasonography in detection of thromboembolic disease. One hundred-twenty consecutive patients (65 female, 55 male) age range 18-95 (mean age 60.7) suspected for pulmonary embolism underwent concomitant V/Q lung scan and compression ultrasonography of the lower extremities. The clinical and radiographic correlation was performed. Of patients with non-diagnostic (low or intermediate probability ) lung scans, 15.4 % (14/91) received anticoagulation therapy for pulmonary embolism. This patients had either high pre-clinical suspicion for PE or underwent pulmonary arterio gram. However, there was an additional 7 % (7/91) increase in the number of patients who received anticoagulation therapy based on the results of ultrasound with confidence interval (3 %-16 %). We conclude that V/Q lung scan is a more sensitive examination for thromboembolic disease, and has a high negative predictive value. Ultrasonography of lower extremities demonstrated higher specificity and positive value. Among patients with non-diagnostic lung scan, the detection rate of thromboembolic disease is improved with addition of ultrasound

  16. Measurement of lung volume by lung perfusion scanning using SPECT and prediction of postoperative respiratory function

    International Nuclear Information System (INIS)

    Andou, Akio; Shimizu, Nobuyosi; Maruyama, Shuichiro

    1992-01-01

    Measurement of lung volume by lung perfusion scanning using single photon emission computed tomography (SPECT) and its usefulness for the prediction of respiratory function after lung resection were investigated. The lung volumes calculated in 5 patients by SPECT (threshold level 20%) using 99m Tc-macroaggregated albumin (MAA), related very closely to the actually measured lung volumes. This results prompted us to calculate the total lung volume and the volume of the lobe to be resected in 18 patients with lung cancer by SPECT. Based on the data obtained, postoperative respiratory function was predicted. The predicted values of forced vital capacity (FVC), forced expiratory volume (FEV 1.0 ), and maximum vital volume (MVV) showed closer correlations with the actually measured postoperative values (FVC, FEV 1.0 , MVV : r=0.944, r=0.917, r=0.795 respectively), than the values predicted by the ordinary lung perfusion scanning. This method facilitates more detailed evaluation of local lung function on a lobe-by-lobe basis, and can be applied clinically to predict postoperative respiratory function. (author)

  17. Bone scanning in the evaluation of lung cancer

    International Nuclear Information System (INIS)

    Jung, Kun Sik; Zeon, Seok Kil; Lee, Hee Jung; Song, Hong Suk

    1994-01-01

    We studied the diagnostic significance of bone scan in evaluation of bone metastasis by lung cancer, prevalence rate, and the causes of false positive bone scan and soft tissue accumulation of bone seeking agent. This subject include 73 lung cancer patients with bone scan, We analyzed the frequency of the metastasis, its distribution and configuration, and any relationship between bone pain and corresponding region on bone scan. The positive findings of bone scans were compared with simple X-ray film, CT, MRI and other diagnostic modalities. The false positive bone scan and the soft tissue accumulation of bone seeking agent were analyzed. The positive findings on bone scan were noted in 26 cases(36%) and they were coexistent with bone pain in 30%. The correspondence between bone scan and bone X-ray was 38%. False positive bone scans were seen in 12 cases(16%), which include fracture due to thoracotomy and trauma, degenerative bone disease, and bifid rib. Accumulation of bone seeking agent in soft tissue were seen in 13 cases(18%), which included primary tumor, enlarged cervical lymph node, pleural effusion, ascites and pleural thickening. Bone scans should be carefully interpreted in detecting bone metastasis in primary malignancy, because of the 16% false positivity and 18% soft tissue accumulation rate. It is very important to note that the correlation between bone pain and positive findings of bone scans was only 38%

  18. Bone scanning in the evaluation of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kun Sik; Zeon, Seok Kil; Lee, Hee Jung; Song, Hong Suk [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1994-05-15

    We studied the diagnostic significance of bone scan in evaluation of bone metastasis by lung cancer, prevalence rate, and the causes of false positive bone scan and soft tissue accumulation of bone seeking agent. This subject include 73 lung cancer patients with bone scan, We analyzed the frequency of the metastasis, its distribution and configuration, and any relationship between bone pain and corresponding region on bone scan. The positive findings of bone scans were compared with simple X-ray film, CT, MRI and other diagnostic modalities. The false positive bone scan and the soft tissue accumulation of bone seeking agent were analyzed. The positive findings on bone scan were noted in 26 cases(36%) and they were coexistent with bone pain in 30%. The correspondence between bone scan and bone X-ray was 38%. False positive bone scans were seen in 12 cases(16%), which include fracture due to thoracotomy and trauma, degenerative bone disease, and bifid rib. Accumulation of bone seeking agent in soft tissue were seen in 13 cases(18%), which included primary tumor, enlarged cervical lymph node, pleural effusion, ascites and pleural thickening. Bone scans should be carefully interpreted in detecting bone metastasis in primary malignancy, because of the 16% false positivity and 18% soft tissue accumulation rate. It is very important to note that the correlation between bone pain and positive findings of bone scans was only 38%.

  19. Interactive lung segmentation in abnormal human and animal chest CT scans

    International Nuclear Information System (INIS)

    Kockelkorn, Thessa T. J. P.; Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-01-01

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  20. Lung scan alterations in congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, R; Sanchez, J; Munoz, A; Lanaro, A E; Pico, A M

    1975-04-01

    This report analyzes the patterns in 54 lung scannings of 34 patients with altered pulmonary blood flow due to congenital heart disease. The technique and the results are presented. According to the images obtained, the patients are classified in three groups: Group I--normal distribution with more concentration of particles over the right lung and the bases. Group II--normal scannings found in left to right shunts unless there is pulmonary venous hypertension in which case the apex-base relationship was inverted. Group III--patients with right to left shunts of different types presenting various patterns according to severity, associated anomalies and palliative surgery. The hemodynamics created by cardiac defects and surgical procedures explain these alterations. This method is recommended in view of its advantages and accurate results.

  1. Domiciliary humidification improves lung mucociliary clearance in patients with bronchiectasis.

    Science.gov (United States)

    Hasani, A; Chapman, T H; McCool, D; Smith, R E; Dilworth, J P; Agnew, J E

    2008-01-01

    Inspired air humidification has been reported to show some benefit in bronchiectatic patients. We have investigated the possibility that one effect might be to enhance mucociliary clearance. Such enhancement might, if it occurs, help to lessen the risks of recurrent infective episodes. Using a radioaerosol technique, we measured lung mucociliary clearance before and after 7 days of domiciliary humidification. Patients inhaled high flow saturated air at 37 degrees C via a patient-operated humidification nasal inhalation system for 3 h per day. We assessed tracheobronchial mucociliary clearance from the retention of (99m)Tc-labelled polystyrene tracer particles monitored for 6 h, with a follow-up 24-h reading. Ten out of 14 initially recruited patients (age 37-75 years; seven females) completed the study (two withdrew after their initial screening and two prior to the initial clearance test). Seven patients studied were non-smokers; three were ex-smokers (1-9 pack-years). Initial tracer radioaerosol distribution was closely similar between pre- and post-treatment. Following humidification, lung mucociliary clearance significantly improved, the area under the tracheobronchial retention curve decreased from 319 +/- 50 to 271 +/- 46%h (p humidification treatment improved lung mucociliary clearance in our bronchiectatic patients. Given this finding plus increasing laboratory and clinical interest in humidification mechanisms and effects, we believe further clinical trials of humidification therapy are desirable, coupled with analysis of humidification effects on mucus properties and transport.

  2. 67Gallium citrate lung scans in interstitial lung disease

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-01-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting

  3. Lung uptake in bone scan - Two case reports

    International Nuclear Information System (INIS)

    Nahar, N.; Kabir, F.; Islam, N.; Karim, M.A.

    2001-01-01

    Breast cancer is the 2nd most common cancer in female in our country. When a case of breast cancer is diagnosed a base line bone scan is asked for to exclude skeletal metastasis. This helps for treatment planning and future follow up. Scan pattern in bone metastasis is usually multiple, randomly distributed foci of intensely increased tracer accumulation. Uptake of radio pharmaceutical in breast tissue is frequently observed. Kidneys are another extra skeletal organs through which 99m Tc-MDP is excreted and that's why normal kidneys are faintly visualized in delayed views suggesting normal exertion of tracer. If there is any outflow obstruction in any kidney, it will show hold up of radiotracer on that side. Often radiopharmaceuticals are seen to accumulate in other organs like lungs. Here two cases of breast cancer are discussed where bone scan shows significant uptake of tracer in lungs

  4. Value and pitfalls of the lateral lung scan

    International Nuclear Information System (INIS)

    Sy, W.M.; Krol, G.; Faunce, H.; Bay, R.

    1975-01-01

    Two hundred eighty-one of 443 lung scans composed of anterior, posterior, and lateral projections (done in our hospital) demonstrated defects. In 3.9 percent of them (11 cases), the defects were delineated in the lateral views only, while in 29.2 percent (82 cases), the lateral views either outlined additional defects not appreciated on the straight views, or showed more extensive lung involvement. In the majority of instances, 56.6 percent (159 cases), the lateral views showed comparable findings and also tended to segmentally localize the defects better. However, in 10.3 percent (29 cases), defects present on the straight projections were not detected on the lateral views. Various causes that could give rise to artefactual abnormalities in the lateral lung scan and therefore inhibit its proper interpretation are reviewed and discussed. Despite these problems, the lateral may be the only view to demonstrate abnormalities and, in fact, frequently provides additional useful information

  5. Distribution of radioactive aerosol in the airways of children and adolescents with bronchial hyper-responsiveness

    International Nuclear Information System (INIS)

    Backer, V.; Mortensen, J.

    1992-01-01

    The purpose of this study was to examine the relationship between the pulmonary distribution of inhaled radioaerosol, bronchial responsiveness, and lung function in children and adolescents. The participating subjects were divided into three groups: (1) 14 asthmatics with bronchial hyper-responsiveness (BHR), (2) five non-asthmatic subjects with BHR, and (3) 20 controls without BHR. Pulmonary distribution of [ 99 Tc m ] albumin radioaerosol, maximal expiratory flow when 25% of forced vital capacity remain to be exhaled (MEF 25 ), and bronchial responsiveness to inhaled histamine were measured. Twenty subjects (52%) has irregular central distribution and 19 subjects (48%) had regular distribution of radioaerosol in their lungs. No difference in distribution of radioaerosol was found between the three groups of children. The median MEF 25 among non-asthmatic subjects (80% predicted) was lower than that found in controls (92% predicted) but higher than that found in asthmatic subjects (55% predicted). A relationship was found between reduced flow at the peripheral airways, as indicated by MEF 25 and the degree of central distribution of radioaerosol. Furthermore, subjects with irregular central distribution of radioaerosol had an increase degree of bronchial responsiveness. In conclusion, children and adolescents who have flow rates in the peripheral airways or increased degree of bronchial responsiveness tend to have abnormal distribution of radioaerosols. (author)

  6. /sup 67/Gallium citrate lung scans in interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-02-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting.

  7. Volume Adjustment of Lung Density by Computed Tomography Scans in Patients with Emphysema

    International Nuclear Information System (INIS)

    Shaker, S.B.; Dirksen, A.; Laursen, L.C.; Skovgaard, L.T.; Holstein-Rathlou, N.H.

    2004-01-01

    Purpose: To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. Material and Methods: Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software package that detected the lung in contiguous images and subsequently generated a histogram of the pixel attenuation values. The total lung volume (TLV), lung weight, percentile density (PD), and relative area of emphysema (RA) were calculated from this histogram. RA and PD are commonly applied measures of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. Results: The coefficients for volume adjustment for PD were relatively stable over a wide range from the 10th to the 80th percentile, whereas for RA the coefficients showed large variability especially in the lower range, which is the most relevant for quantitation of pulmonary emphysema. Conclusion: Volume adjustment is mandatory in repeated CT densitometry and is more robust for PD than for RA. Therefore, PD seems more suitable for monitoring the progression of emphysema

  8. Xenon ventilation-perfusion lung scans. The early diagnosis of inhalation injury

    International Nuclear Information System (INIS)

    Schall, G.L.; McDonald, H.D.; Carr, L.B.; Capozzi, A.

    1978-01-01

    The use of xenon Xe-133 ventilation-perfusion lung scans for the early diagnosis of inhalation injury was evaluated in 67 patients with acute thermal burns. Study results were interpreted as normal if there was complete pulmonary clearance of the radioactive gas by 150 seconds. Thirty-two scans were normal, 32 abnormal, and three technically inadequate. There were three true false-positive study results and one false-negative study result. Good correlation was found between the scan results and various historical, physical, and laboratory values currently used to evaluate inhalation injury. The scans appeared to be the most sensitive method for the detection of early involvement, often being abnormal several days before the chest roentgenogram. Xenon lung scanning is a safe, easy, accurate, and sensitive method for the early diagnosis of inhalation injury and has important therapeutic and prognostic implications as well

  9. Immune complexes, gallium lung scans, and bronchoalveolar lavage in idiopathic interstitial pneumonitis-fibrosis

    International Nuclear Information System (INIS)

    Gelb, A.F.; Dreisen, R.B.; Epstein, J.D.; Silverthorne, J.D.; Bickel, Y.; Fields, M.; Border, W.A.; Taylor, C.R.

    1983-01-01

    We obtained results of lung immune complexes (LIC), circulating immune complexes (CIC), 48-hour gallium lung scans (scans), bronchoalveolar lavage (BAL), and pulmonary function tests in 20 patients with idiopathic interstitial pneumonitis-fibrosis. Sixteen patients had predominantly interstitial (13 cases UIP) and/or intraalveolar (3 cases DIP) cellular disease (group 1). Prior to corticosteroid therapy in group 1, scans were positive in 75 percent, CIC were elevated in 86 percent, LIC were present in 64 percent, and BAL was abnormal in 90 percent. Duration of follow-up after treatment was 3.5 +/- 1.0 year. In group 1 after treatment with corticosteroids in 13 patients and corticosteroids and penicillamine (three patients) and plasmapheresis (one patient), only four patients remain stable or improved. After corticosteroid therapy, elevated CIC returned to normal values despite progressive patient deterioration. In three patients, lung immune complexes were still detected after circulating immune complexes had returned to normal after corticosteroid therapy. In group 2 were four patients with fibrotic disease; scans and CIC were uniformly negative, LIC were weakly present in only one patient, and BAL was abnormal in all. Despite corticosteroid therapy, all have died or deteriorated. These results suggest that positive gallium lung scans, BAL, circulating immune complexes, and to a lesser extent, lung immune complexes are associated with the cellular phase of interstitial pneumonia, but do not reliably identify a corticosteroid-responsive group

  10. Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans.

    Science.gov (United States)

    Ritchie, Alexander J; Sanghera, Calvin; Jacobs, Colin; Zhang, Wei; Mayo, John; Schmidt, Heidi; Gingras, Michel; Pasian, Sergio; Stewart, Lori; Tsai, Scott; Manos, Daria; Seely, Jean M; Burrowes, Paul; Bhatia, Rick; Atkar-Khattra, Sukhinder; van Ginneken, Bram; Tammemagi, Martin; Tsao, Ming Sound; Lam, Stephen

    2016-05-01

    To implement a cost-effective low-dose computed tomography (LDCT) lung cancer screening program at the population level, accurate and efficient interpretation of a large volume of LDCT scans is needed. The objective of this study was to evaluate a workflow strategy to identify abnormal LDCT scans in which a technician assisted by computer vision (CV) software acts as a first reader with the aim to improve speed, consistency, and quality of scan interpretation. Without knowledge of the diagnosis, a technician reviewed 828 randomly batched scans (136 with lung cancers, 556 with benign nodules, and 136 without nodules) from the baseline Pan-Canadian Early Detection of Lung Cancer Study that had been annotated by the CV software CIRRUS Lung Screening (Diagnostic Image Analysis Group, Nijmegen, The Netherlands). The scans were classified as either normal (no nodules ≥1 mm or benign nodules) or abnormal (nodules or other abnormality). The results were compared with the diagnostic interpretation by Pan-Canadian Early Detection of Lung Cancer Study radiologists. The overall sensitivity and specificity of the technician in identifying an abnormal scan were 97.8% (95% confidence interval: 96.4-98.8) and 98.0% (95% confidence interval: 89.5-99.7), respectively. Of the 112 prevalent nodules that were found to be malignant in follow-up, 92.9% were correctly identified by the technician plus CV compared with 84.8% by the study radiologists. The average time taken by the technician to review a scan after CV processing was 208 ± 120 seconds. Prescreening CV software and a technician as first reader is a promising strategy for improving the consistency and quality of screening interpretation of LDCT scans. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. Volume adjustment of lung density by computed tomography scans in patients with emphysema

    DEFF Research Database (Denmark)

    Shaker, S B; Dirksen, A; Laursen, Lars Christian

    2004-01-01

    of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. RESULTS: The coefficients for volume adjustment for PD were...... relatively stable over a wide range from the 10th to the 80th percentile, whereas for RA the coefficients showed large variability especially in the lower range, which is the most relevant for quantitation of pulmonary emphysema. CONCLUSION: Volume adjustment is mandatory in repeated CT densitometry......PURPOSE: To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. MATERIAL AND METHODS: Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software...

  12. Pulmonary embolic disease: roles of angiography and lung scanning in diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D C; Tyson, J W; Johnsrude, I S; Wilkinson, Jr, R H

    1975-06-01

    The definitive diagnosis of pulmonary embolism remains difficult despite recent advances in nuclear medicine and angiography. In 10% of a selected series of 145 patients a negative chest x-ray and a positive lung scan was associated with no arteriographic evidence of pulmonary emboli. A normal perfusion lung scan excludes significant pulmonary embolism. When pulmonary arteriography is necessary, a biplane selective pulmonary angiogram should be performed and subselective injections may be required. Pulmonary arteriography is less of a threat to a patient suspected of having pulmonary embolic disease than inappropriate treatment.

  13. Critical study of the diagnostic value of lung scans using 67 gallium in respiratory diseases

    International Nuclear Information System (INIS)

    Perrin-Fayolle, M.; Brun, J.; Moret, R.; Kofman, J.; Ortonne, J.P.; Petigny, C.

    1975-01-01

    70 lungs scans using gallium 67 were carried out. Among the 41 malignant lesions, an uptake of the radio-isotope by the tumour in 51% of cases was noted. Among the 29 benign lesions, there were also 34% of cases which took up gallium 67. Their lack of reliability and selectivity make gallium 67 lung scans unsuitable for the recognition of the malignant nature of lung diseases [fr

  14. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    Science.gov (United States)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  15. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    International Nuclear Information System (INIS)

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-01-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established

  16. Lung cancer in hilar region: the resectability evaluation with dual phase enhanced EBCT scan

    International Nuclear Information System (INIS)

    Tan Guosheng; Zhou Xuhui; Li Xiangmin; Fan Miao; Meng Quanfei; Peng Qian; Tan Zhiyu

    2005-01-01

    Objective: To explore the clinical value of duralphase enhanced electronic beam computed tomography (EBCT) scans in resectability evaluation of lung cancer located in hilar region. Methods: Dual phase enhanced EBCT scans were available for 40 cases that were initially diagnosed as 'carcinoma of lung' in hilar region. The relations between masses and trachea, bronchi, hilar and mediastinal great vessels were analyzed and compared with operation. Results: 38 cases in our series confirmed by operation and pathological examination were divided two groups: respectable (28 cases) and non-resectable (10 cases) groups. 25 cases in the former group were consistent with operation, accounting for 89.3%, and 8 cases, in the latter group, accounting for 80%. The sensitivity, specificity and accuracy of dural-phase enhanced EBCT scan evaluating the relations between masses and hilar and mediastinal structure were as follows: 92.6%, 72.7% and 86.8%. Conclusion: Dural-phase enhanced EBCT scans can provide precise and feasible pre-operative evaluation of lung cancer in hilar region. (authors)

  17. Clinical studies of alveolar-capillary permeability using technetium-99m DTPA aerosol

    International Nuclear Information System (INIS)

    Sundram, F.X.

    1995-01-01

    Soluble radioaerosols such as technetium-99m diethylene triamine pentacetate (DTPA) permit simple quantitative studies of alveolar-capillary permeability to be performed, since the submicronic aerosols are deposited mainly at the lung periphery and are cleared across the alveolar-capillary membrane. Regional alterations in permeability can also be noted using this radionuclide technique. We have measured the pulmonary epithelial permeability in normal subjects and the alteration in smokers, glue-sniffers, patients with inhalation burns, chronic obstructive pulmonary disease (COPD) and patients with lung metastases from thyroid cancer treated with radioiodine 131 I. In the normal volunteers, the time taken for 50% of inhaled 99m Tc DTPA to be cleared from the lungs (T1/2) was 66 minutes±1 sd of 12 mins. The smokers had a mean T1/2 of 20 mins±1 sd 4 min. In the hard-core glue-sniffing group, the majority were smokers who had stopped smoking and glue-sniffing for periods varying from 1 day to 42 days, and it was possible to note the changes in clearance times against period of abstinence. In the patients with inhalation burns, there was change in lung clearance arising from pulmonary epithelial damage; these patients showed increased rate of clearance (short T1/2) with mean T1/2 of 36 min±1 sd of 11 mins, while the retention images revealed regional lung damage in moderately severe inhalation burns. Twenty-four patients with COPD had inhalation scans done with Tc-99m tin colloid radioaerosol, and these images were compared with the perfusion lung scans done with 99m Tc macroaggregated albumin (MAA); in general the perfusion images matched the defects noted in the inhalation scans. The 99m Tc DTPA clearance rate in these patients was normal i.e. T1/2=78±14 mins. In the thyroid cancer patients with lung metastases, who had high doses of radioiodine treatment, the T1/2 values were normal or prolonged slightly, mean T1/2=76 min±23. (author)

  18. Technetium /sup 99m/Tc macroaggregated albumin lung scans. Use in chronic childhood asthma

    International Nuclear Information System (INIS)

    Hyde, J.S.; Koch, D.F.; Isenberg, P.D.; Werner, P.

    1976-01-01

    Serial roentgenograms and technetium /sub 99m/Tc macroaggregated albumin lung scans were done simultaneously in 30 bronchodilator-dependent asthmatic children and young adults during both relative remission and attacks of status asthmaticus. When chest roentgenograms showed air trapping and increased peribronchial vascular markings associated with persistent perfusion defects, the children benefited from further laboratory studies and continuous comprehensive therapy. Serial scans provided information about underperfusion that was not discernible either by roentgenograms or by usual blood gas studies. Also, lung scans are easier to obtain in children with long-standing asthma than are detailed pulmonary tests. In our study, technetium /sup 99m/Tc macroaggregated albumin scans showed persistent regional perfusion defects in 20 children with chronic asthma during relative remission and exacerbations

  19. Feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in lung cancer treatment planning

    International Nuclear Information System (INIS)

    Xiao Jianghong; Zhang Hong; Gong Youling; Fu Yuchuan; Tang Bin; Wang Shichao; Jiang Qingfeng; Li Ping

    2010-01-01

    Background and purpose: To investigate the feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in 3-dimensional conformal radiotherapy (3D-CRT), stereotactic body radiation therapy (SBRT) and intensity-modulated radiotherapy (IMRT) treatment planning for lung cancers, respectively. Materials and methods: Twelve patients with bulky lung tumors and 14 patients with small lung tumors were retrospectively analyzed. Each patient took two sets of CT in the same position with active breathing control (ABC) technique before and after intravenous contrast agent (CA) injections. Bulky tumors were planned with 3D-CRT, while SBRT plans were generated for patients with small tumors based on CT scans with intravenous CA. In addition, IMRT plans were generated for patients with bulky tumors to continue on a planning study. All plans were copied and replaced on the scans without intravenous CA. The radiation doses calculated from the two sets of CTs were compared with regard to planning volumes (PTV), the organ at-risk (OAR) and the lungs using Wilcoxon's signed rank test. Results: In comparisons for 3D-CRT plans, CT scans with intravenous CA reduced the mean dose and the maximum dose of PTV with significant differences (p 95 ) for targets, respectively (p < 0.05). There was no statistical significance for lung parameters between two sets of scans in SBRT plans and IMRT plans. Conclusions: The enhanced CT scans can be used for both target delineation and treatment planning in 3D-CRT. The dose difference caused by intravenous CA is small. But for SBRT and IMRT, the minimum irradiation dose in targets may be estimated to be increased up to 2.71% while the maximum dose may be estimated to be decreased up to 1.36%. However, the difference in dose distribution in most cases were found to be clinical tolerable.

  20. Tc-99m erythromycin lactobionate inhalation scintigraphy in parenchymal lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Hatice E-mail: hdurak@kordon.deu.edu.tr; Aktogu, Serir; Degirmenci, Berna; Sayit, Elvan; Ertay, Tuerkan; Dereli, Sevket

    1999-08-01

    We have investigated Technetium 99m erythromycin lactobionate (Tc 99m EL) clearance from the lungs after inhalation, in the presence of an alveolitis. Eighteen patients (6 sarcoidosis, 7 idiopathic fibrosis, and 5 miliary tuberculosis) were imaged after the patients inhaled 1,110 MBq of Tc 99m EL. Clearance half time for the first 45 min, for 24 h, and retention at 24 h correlated with percentage of lymphocytes in bronchoalveolar lavage fluid (BAL) (r=.729, r=.883, and r=.826, respectively). There was a positive correlation between peripheral penetration (PP) and forced expiratory volume in 1 s (FEV{sub 1}) (r=.806) and forced vital capacity (FVC) (r=.781). Retention was more marked in sarcoidosis compared with tuberculosis (0.025Radioaerosol lung imaging may reflect the pulmonary function impairment in parenchymal lung diseases. Retention of Tc 99m EL may be related to number of BAL cells or presence of a lymphocytic alveolitis. Long residency time of Tc 99m EL in the lungs implies that erythromycin can also be administered by inhalation for therapeutic purposes.

  1. Cystic lung disease: a comparison of cystic size, as seen on expiratory and inspiratory HRCT scans

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Yoon, Seong Kuk; Nam, Kyung Jin; Choi, Seok Jin; Goo, Jin Mo

    2000-01-01

    To determine the effects of respiration on the size of lung cysts by comparing inspiratory and expiratory high-resolution CT (HRCT) scans. The authors evaluated the size of cystic lesions, as seen on paired inspiratory and expiratory HRCT scans, in 54 patients with Langerhans cell histiocytosis (n = 3), pulmonary lymphangiomyomatosis (n = 4), confluent centrilobular emphysema (n = 9), paraseptal emphysema and bullae (n = 16), cystic bronchiectasis (n = 13), and honeycombing (n = 9). Using paired inspiratory and expiratory HRCT scans obtained at the corresponding anatomic level, a total of 270 cystic lesions were selected simultaneously on the basis of five lesions per lung disease. Changes in lung cyst size observed during respiration were assessed by two radiologists. In a limited number of cases (n = 11), pathologic specimens were obtained by open lung biopsy or lobectomy. All cystic lesions in patients with Langerhans cell histiocytosis, lymphangiomyomatosis, cystic bronchiectasis, honeycombing, and confluent centrilobular emphysema became smaller on expiration, but in two cases of paraseptal emphysema and bullae there was no change. In cases in which expiratory CT scans indicate that cysts have become smaller, cystic lesions may communicate with the airways. To determine whether, for cysts and cystic lesions, this connection does in fact exist, paired inspiratory and expiratory HRCT scans are necessary

  2. Cystic lung disease: a comparison of cystic size, as seen on expiratory and inspiratory HRCT scans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Nam; Yoon, Seong Kuk; Nam, Kyung Jin [Donga University College of Medicine, Pusan (Korea, Republic of); Choi, Seok Jin [Inje University College of Medicine, Gimhae (Korea, Republic of); Goo, Jin Mo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To determine the effects of respiration on the size of lung cysts by comparing inspiratory and expiratory high-resolution CT (HRCT) scans. The authors evaluated the size of cystic lesions, as seen on paired inspiratory and expiratory HRCT scans, in 54 patients with Langerhans cell histiocytosis (n = 3), pulmonary lymphangiomyomatosis (n = 4), confluent centrilobular emphysema (n = 9), paraseptal emphysema and bullae (n = 16), cystic bronchiectasis (n = 13), and honeycombing (n = 9). Using paired inspiratory and expiratory HRCT scans obtained at the corresponding anatomic level, a total of 270 cystic lesions were selected simultaneously on the basis of five lesions per lung disease. Changes in lung cyst size observed during respiration were assessed by two radiologists. In a limited number of cases (n = 11), pathologic specimens were obtained by open lung biopsy or lobectomy. All cystic lesions in patients with Langerhans cell histiocytosis, lymphangiomyomatosis, cystic bronchiectasis, honeycombing, and confluent centrilobular emphysema became smaller on expiration, but in two cases of paraseptal emphysema and bullae there was no change. In cases in which expiratory CT scans indicate that cysts have become smaller, cystic lesions may communicate with the airways. To determine whether, for cysts and cystic lesions, this connection does in fact exist, paired inspiratory and expiratory HRCT scans are necessary.

  3. Introduction of helical computed tomography affects patient selection for V/Q lung scan

    International Nuclear Information System (INIS)

    Zettinig, G.; Baudrexel, S.; Leitha, Th.

    2002-01-01

    Aim: Retrospective analysis for determination of the effect of helical computed tomography (HCT) on utilization of V/Q lung scanning to diagnose pulmonary embolism (PE) in a large general hospital. Methods: A total number of 2676 V/Q scans of in- and out-patients referred to our department between March 1992 and December 1998 and between April 1997 and December 1998 were analyzed by an identical group of nuclear physicians. Results: Neither the total number of annually performed V/Q scans (446 ± 135) nor the mean age of patients (56 years ± 17) changed significantly since the introduction of HCT. However, the referral pattern was different. The percentage of patients with high and intermediate probability for PE decreased significantly from 15.2% to 9.4% (p <0.01) and from 10.2% to 7.3% (p <0.05), respectively. Low probability scans significantly increased from 37.8% to 42.7% (p <0.05). The percentage of normal scans did not change significantly, however, there was a highly significant increase summarizing patients with normal and low probability scans (74.6% to 83.3%; p <0.01). Conclusion: The introduction of HCT affected the selection of patients referred for V/Q lung scanning since V/Q scanning was primarily used to exclude rather to confirm PE. (orig.)

  4. A prospective study of the clinical impact of PET scanning in lung cancer patients

    International Nuclear Information System (INIS)

    Hicks, R.J.; Kalff, V.; Binns, D.S.; McManus, M.; Millward, M.; Ball, D.J.

    1998-01-01

    Full text: PET scanning using F-18 fluorodeoxyglucose (FDG), has been shown to very accurately stage patients with non-small cell lung cancer. At this Institute these patients are only sent for PET imaging where there remains any significant doubt as to their clinical staging or management after the completion of conventional screening test including CT scanning. This study examines how PET scan findings influenced the clinical management decisions in 45 consecutive patients (26 males, mean age 69±9 yrs: range 36-78 yrs). Referring doctors were asked to indicate reason for the PET scan, stage their patients on the basis of aU their current investigations, including CT scans, and to indicate their management plans prior to PET scanning. Follow-up of subsequent patient management at 2-4 weeks post PET scan was then obtained and compared to pre scan plans. Results:, PET was used to stage 27 patients, restage 8, plan radiotherapy in 4, post treatment follow-up in 3, assess solitary nodules in 2, and as a baseline for experimental therapy in 1. To date follow-up has shown that in 14 (31%) patients PET scanning found new distant abnormalities which caused planned radical surgery or radiotherapy to be changed to palliative treatment only. Following PET findings, which clarified equivocal findings on other imaging modalities 9 patients underwent curative lung surgery. This found localised disease only in the 5 who have had surgery to this time. Similarly 7 patients continued on to have radical radiotherapy. In 3 patients, original treatment protocols changed (smaller radiation portal, surgery after good response to radiotherapy, planned chemotherapy ceased). In 8(18%) patients PET scans did not alter planned therapy. 1 patient awaits follow-up. Conclusions: In carefully selected patients with lung cancer, PET scanning significantly affected management decisions in 82%. It was used not only to spare unnecessary treatment, but also to target treatment appropriate to

  5. Difference in inhaled aerosol deposition patterns in the lungs due to three different sized aerosols

    International Nuclear Information System (INIS)

    Miki, M.; Isawa, T.; Teshima, T.; Anazawa, Y.; Motomiya, M.

    1992-01-01

    Deposition patterns of inhaled aerosol in the lungs were studied in five normal subjects and 20 patients with lung disease by inhaling radioaerosols with three different particle size distributions. Particle size distributions were 0.84, 1.04 and 1.93 μm in activity median aerodynamic diameter (AMAD) with its geometric standard deviation (σg) of 1.73, 1.71 and 1.52, respectively. Deposition patterns of inhaled aerosols were compared qualitatively and quantitatively by studying six different parameters: alveolar deposition ratio (ALDR), X max , X mean , standard deviation (S.D.), skewness and kurtosis of the radioactive distribution in the lungs following inhalation. It has been found that aerosol deposition patterns varied with particle size. The unevenness of aerosol deposition, X max , X mean and the number of 'hot spots' became more prominent with increase in particle size, whereas values of ALDR and S.D. decreased as particle size increased. (author)

  6. Interobserver variability in visual evaluation of thoracic CT scans and comparison with automatic computer measurements of CT lung density

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Thomsen, Laura Hohwü; Dirksen, Asger

    2012-01-01

    lung density measurements, i.e. densitometry. Methods – In a pilot study 60 CT scans were selected from a sample of 3980 CT scans from The Danish Lung Cancer Screening Trial (DLCST). The amount of emphysema in these scans was scored independently by two observers, who were blinded regarding clinical...... information. The lung was segmented automatically by in-house developed computer software, and the percentage of pixels below -950 HU was used as a surrogate marker for emphysema. The observer variability, as well as the correlation with the lung density measurements, was analysed using Spearman’s rank...... in emphysema grading. However, the agreement with the CT lung density measurement was poor, indicating that the two types of evaluation represent different aspects of emphysema. Most likely, they should be seen as complementary rather than competitive evaluations. Future comparison with physiological tests...

  7. Generation of aerosols: BARC nebulizer and others

    International Nuclear Information System (INIS)

    Soni, P.S.; Raghunath, B.

    1994-01-01

    The concern with atmospheric pollution in recent times has focused attention on aerosols, their distribution pattern after inhalation and the kinetics of their deposition and exclusion from bronchial passages. The technique of radioaerosols for lung imaging is of recent origin. The procedure was proposed as a means of estimating regional ventilation and localizing areas of airway narrowing. The technique is an alternative in the face of non-availability of radioactive gases, especially in developing countries where the cost is the major factor due to economic reasons. Now, it is beyond doubt that radioaerosol lung studies are a potentially valuable tool in the evaluation of respiratory function in health and disease, especially to detect chronic obstructive pulmonary diseases. Also, the administration of a drug by aerosol inhalation provides a convenient method for the treatment of conditions affecting the respiratory system. This write-up will brief us about radioaerosol, its generation and characterisation

  8. Generation of aerosols: BARC nebulizer and others

    Energy Technology Data Exchange (ETDEWEB)

    Soni, P S; Raghunath, B

    1994-07-01

    The concern with atmospheric pollution in recent times has focused attention on aerosols, their distribution pattern after inhalation and the kinetics of their deposition and exclusion from bronchial passages. The technique of radioaerosols for lung imaging is of recent origin. The procedure was proposed as a means of estimating regional ventilation and localizing areas of airway narrowing. The technique is an alternative in the face of non-availability of radioactive gases, especially in developing countries where the cost is the major factor due to economic reasons. Now, it is beyond doubt that radioaerosol lung studies are a potentially valuable tool in the evaluation of respiratory function in health and disease, especially to detect chronic obstructive pulmonary diseases. Also, the administration of a drug by aerosol inhalation provides a convenient method for the treatment of conditions affecting the respiratory system. This write-up will brief us about radioaerosol, its generation and characterisation.

  9. 67Gallium lung scans in progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Baron, M.; Feiglin, D.; Hyland, R.; Urowitz, M.B.; Shiff, B.

    1983-01-01

    67 Gallium lung scans were performed in 19 patients with progressive systemic sclerosis (scleroderma). Results were expressed quantitatively as the 67 Gallium Uptake Index. The mean total pulmonary 67 Gallium Uptake Index in patients was significantly higher than that in controls (41 versus 25), and 4 patients (21%) fell outside the normal range. There were no clinical or laboratory variables that correlated with the 56 Gallium uptake. Increased pulmonary 67 Gallium uptake in scleroderma may prove useful as an index of pulmonary disease activity

  10. Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans

    NARCIS (Netherlands)

    Ritchie, A.J.; Sanghera, C.; Jacobs, C.; Zhang, W.; Mayo, J.; Schmidt, H.; Gingras, M.; Pasian, S.; Stewart, L.; Tsai, S.; Manos, D.; Seely, J.M.; Burrowes, P.; Bhatia, R.; Atkar-Khattra, S.; Ginneken, B. van; Tammemagi, M.; Tsao, M.S.; Lam, S.; et al.,

    2016-01-01

    To implement a cost-effective low-dose computed tomography (LDCT) lung cancer screening program at the population level, accurate and efficient interpretation of a large volume of LDCT scans is needed. The objective of this study was to evaluate a workflow strategy to identify abnormal LDCT scans in

  11. B-lines with Lung Ultrasound: The Optimal Scan Technique at Rest and During Stress.

    Science.gov (United States)

    Scali, Maria Chiara; Zagatina, Angela; Simova, Iana; Zhuravskaya, Nadezhda; Ciampi, Quirino; Paterni, Marco; Marzilli, Mario; Carpeggiani, Clara; Picano, Eugenio

    2017-11-01

    Various lung ultrasound (LUS) scanning modalities have been proposed for the detection of B-lines, also referred to as ultrasound lung comets, which are an important indication of extravascular lung water at rest and after exercise stress echo (ESE). The aim of our study was to assess the lung water spatial distribution (comet map) at rest and after ESE. We performed LUS at rest and immediately after semi-supine ESE in 135 patients (45 women, 90 men; age 62 ± 12 y, resting left ventricular ejection fraction = 41 ± 13%) with known or suspected heart failure or coronary artery disease. B-lines were measured by scanning 28 intercostal spaces (ISs) on the antero-lateral chest, 2nd-5th IS, along with the midaxillary (MA), anterior axillary (AA), mid-clavicular (MC) and parasternal (PS) lines. Complete 28-region, 16-region (3rd and 4th IS), 8-region (3rd IS), 4-region (3rd IS, only AA and MA) and 1-region (left 3rd IS, MA) scans were analyzed. In each space, the B-lines were counted from 0 = black lung to 10 = white lung. Interpretable images were obtained in all spaces (feasibility = 100 %). B-lines (>0 in at least 1 space) were present at ESE in 93 patients (69%) and absent in 42. More B-lines were found in the 3rd IS and along AA and MA lines. The B-line cumulative distribution was symmetric at rest (right/left = 1.10) and asymmetric with left lung predominance during stress (right/left = 0.67). The correlation of per-patient B-line number between 28-S and 16-S (R 2  = 0.9478), 8-S (R 2  = 0.9478) and 4-S scan (R 2  = 0.9146) was excellent, but only good with 1-S (R 2  = 0.8101). The average imaging and online analysis time were 5 s per space. In conclusion, during ESE, the comet map of lung water accumulation follows a predictable spatial pattern with wet spots preferentially aligned with the third IS and along the AA and MA lines. The time-saving 4-region scan is especially convenient during stress, simply dismissing dry regions and

  12. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    International Nuclear Information System (INIS)

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-01-01

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  13. Can tumour marker assays be a guide in the prescription of bone scan for breast and lung cancers?

    Energy Technology Data Exchange (ETDEWEB)

    Buffaz, P.-D.; Gauchez, A.S.; Caravel, J.P.; Vuillez, J.P.; Cura, C.; Agnius-Delord, C.; Fagret, D. [Service de Medecine Nucleaire, Centre Hospitalier Universitaire de Grenoble (France)

    1999-01-01

    Considering the current need to improve cost-effectiveness in cancer patient management, a prospective study was undertaken in order to define the optimal combination of bone scan and tumour marker assays in breast and lung cancer strategies, as has been done in the case of prostate cancer. All patients with breast or lung cancer referred to the Nuclear Medicine Department of the Grenoble Teaching Hospital between December 1995 and April 1997 were included. A blood sample was drawn in each case for marker assay (CA15-3 or CEA and CYFRA 21-1) on the same day as the bone scan. Two hundred and seventy-five patients were included: 118 with lung cancer and 157 with breast cancer. With regard to lung cancer, no information useful for guiding bone scan prescription was obtained through CEA and CYFRA 21-1 assays. For breast cancer, the results suggest that in asymptomatic patients, a CA15-3 level of less than 25 U/ml (upper normal value chosen as the threshold) is strongly predictive of a negative bone scan; by contrast, high tumour marker levels are predictive of neoplastic bone involvement. When a doubtful bone scan is obtained in a patient with breast cancer, a normal marker level makes it highly probable that bone scan abnormalities are not related to malignancy. (orig.) With 3 figs., 21 refs.

  14. Super bone scan in metastic lung carcinoma: relate of a case

    International Nuclear Information System (INIS)

    Carvalho, A.C.M. de; Calegaro, J.U.M.; Ulyssea, R.

    1985-01-01

    A case of a super bone scan in a patient with a lung cancer is reported. A brief revision of the literature is made with special reference to the causes and physiopathology of this scintigraphic event. The importance of sequential scintigraphic studies in the characterization of the lesions is emphasized. (Author) [pt

  15. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    Diot, Q; Kavanagh, B; Miften, M [University of Colorado School of Medicine, Aurora, CO (United States)

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans to guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent

  16. Incidence of pulmonary embolism in patients with chronic obstructive pulmonary disease and indeterminate lung scans

    International Nuclear Information System (INIS)

    Perlmutt, L.M.; Blinder, R.A.; Newman, G.E.; Braun, S.D.; Coleman, R.E.

    1987-01-01

    Pulmonary embolism (PE) is commonly considered as a cause of acute excerbation of chronic obstructive pulmonary disease (COPD). These patients often have indeterminate lung scans. To determine the incidence of PE in this group of patients, the authors have retrospectively reviewed 157 consecutive patients who underwent pulmonary angiography. Forty (25%) had a diagnosis of COPD. Seven (18%) of these had PE compared with 57 (36%) in the total group. Thirty-seven of the 40 patients had a lung scan, of which 30 (81%) were indeterminate. Of these 30 patients, only four (13%) had PE. In conclusion, the prevalence of PE in patients with COPD is much lower than the prevalence of PE in the total population, and at this prevalence, an indeterminate scan in patients with COPD caries a low probability (13%) for PE

  17. Unsuccessful lung scan due to major right-to-left shunt through a sinus venosus septal defect

    International Nuclear Information System (INIS)

    Brendel, A.J.; Larnaudie, B.; Lambert, B.; Leccia, F.; Barat, J.L.; Ducassou, D.; Fontan, F.

    1985-01-01

    In a patient with a prior history of cerebral abscess and cerebral ischemia, an unsuccessful perfusion lung scan led to a radionuclide angiocardiogram using an arm vein injection. This showed a total right-to-left (R-L) shunt from the superior vena cava (SVC) to the left atrium. Repeat radionuclide study, through a leg vein, demonstrated a moderate R-L shunt and an interpretable lung scan could be obtained. Catheterization and contrast cineangiogram did not provide the exact diagnosis, the preoperative conclusion being anomalous drainage of the SVC into the left atrium, with atrial septal defect (ASD) and partial anomalous pulmonary venous connection to the SVC. The operative diagnosis was high atrial (sinus venosus) septal defect. This example of major but clinically unsuspected R-L shunt emphasizes the value of performing a perfusion lung scan, preferably in conjunction with radionuclide angiocardiography in patients with a prior history of unexplained cerebral abscess or systemic ischemia. Implications of the site of an ASD on quantitation of L-R shunts by radionuclide methods are also discussed

  18. Pulmonary vein stenosis after RF ablation diagnosed on a V/Q lung scan - a case study

    International Nuclear Information System (INIS)

    Edwards, Russell G.

    2009-01-01

    Full text: A 26-year-old female presented to the emergency department with pleuritic chest pain, acute SOB and raised D-dimer. A PE was suspected and a V/Q lung scan was performed. The initial V/Q lung scan displayed normal ventilation images but reduced perfusion throughout the left lung. Further evaluation was required and a CTPA and repeat perfusion scan were performed. After review of these imaging procedures it was discovered the patient had poor opacification of her left upper pulmonary vein compared to the left lower and right pulmonary veins. Further investigation into the patient's medical history revealed she had undergone radiofrequency ablation for atrial fibrillation 12 months prior. This was significant as it is well documented that a delayed complication of radiofrequency ablation is pulmonary vein stenosis. Although it is rare for the stenosis to be severe enough to cause symptomatic complications from this treatment for atrial fibrillation, it is becoming more widely used and therefore cases are becoming more prevalent. The patient subsequently had a stent inserted into her stenosed pulmonary vein with symptomatic relief.

  19. Cross-Disciplinary Analysis of Lymph Node Classification in Lung Cancer on CT Scanning.

    Science.gov (United States)

    El-Sherief, Ahmed H; Lau, Charles T; Obuchowski, Nancy A; Mehta, Atul C; Rice, Thomas W; Blackstone, Eugene H

    2017-04-01

    Accurate and consistent regional lymph node classification is an important element in the staging and multidisciplinary management of lung cancer. Regional lymph node definition sets-lymph node maps-have been created to standardize regional lymph node classification. In 2009, the International Association for the Study of Lung Cancer (IASLC) introduced a lymph node map to supersede all preexisting lymph node maps. Our aim was to study if and how lung cancer specialists apply the IASLC lymph node map when classifying thoracic lymph nodes encountered on CT scans during lung cancer staging. From April 2013 through July 2013, invitations were distributed to all members of the Fleischner Society, Society of Thoracic Radiology, General Thoracic Surgical Club, and the American Association of Bronchology and Interventional Pulmonology to participate in an anonymous online image-based and text-based 20-question survey regarding lymph node classification for lung cancer staging on CT imaging. Three hundred thirty-seven people responded (approximately 25% participation). Respondents consisted of self-reported thoracic radiologists (n = 158), thoracic surgeons (n = 102), and pulmonologists who perform endobronchial ultrasonography (n = 77). Half of the respondents (50%; 95% CI, 44%-55%) reported using the IASLC lymph node map in daily practice, with no significant differences between subspecialties. A disparity was observed between the IASLC definition sets and their interpretation and application on CT scans, in particular for lymph nodes near the thoracic inlet, anterior to the trachea, anterior to the tracheal bifurcation, near the ligamentum arteriosum, between the bronchus intermedius and esophagus, in the internal mammary space, and adjacent to the heart. Use of older lymph node maps and inconsistencies in interpretation and application of definitions in the IASLC lymph node map may potentially lead to misclassification of stage and suboptimal management of lung

  20. Early detection of drug-induced pneumonitis by gallium-67 lung scan in six patients with normal chest radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H; Sawa, H; Takashima, S [Osaka City Univ. (Japan). Hospital

    1981-06-01

    Increased pulmonary accumulation of Gallium-67-citrate was observed in 6 patients (4 with malignant lymphoma, 1 with uterine cancer and 1 with acute myelocytic leukemia) preceding the appearance of any abnormal findings in both chest X-ray and blood gas data. All of them had received multiple courses of chemotherapy. In these patients, the anticancer drugs were administered for 13 to 22 weeks (mean 15 weeks). One patient with malignant lymphoma showed abnormal /sup 67/Ga lung uptake greater than hepatic activity, 3 patients (malignant lymphoma, 2 and uterine cancer, 1) visualized abnormal /sup 67/Ga lung uptake equal to hepatic activity and 2 cases (malignant lymphoma, 1 and acute myelocytic leukemia, 1) demonstrated abnormal accumulation of /sup 67/Ga in the lung greater than background activity. In 4 patients (3 with malignant lymphoma and 1 with uterine cancer) out of 6, transbronchial lung biopsy obtained after the /sup 67/Ga scans showed non-specific interstitial pneumonitis with infiltration of lymphocytes and macrophages compatible with drug-induced pneumonitis. In the other 2 patients, cytology and cultures were negative and follow up /sup 67/Ga lung scans revealed a reduction in intensity of uptake after treatment with corticosteroid. Therefore, we considered that the /sup 67/Ga lung scan was useful for early detection of drug-induced pneumonitis.

  1. A Dual Lung Scan for the Evaluation of Pulmonary Function in Patients with Pulmonary Tuberculosis before and after Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Chong Heon [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1967-09-15

    In 20 normal cases and 39 pulmonary tuberculosis cases, regional pulmonary arterial blood flow measurement and lung perfusion scans by {sup 131}I-Macroaggregated albumin, lung inhalation scans by colloidal {sup 198}Au and spirometries by respirometer were done at the Radiological Research Institute. The measured lung function tests were compared and the results were as the following: 1) The normal distribution of pulmonary blood flow was found to be 54.5{+-}2.82% to the right lung and 45.5{+-}2.39% to the left lung. The difference between the right and left pulmonary arterial blood flow was significant statistically (p<0.01). In the minimal pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be 52.5{+-}5.3% to the right lung and 47.5{+-}1.0% to the left lung when the tuberculous lesion was in the right lung, and 56.2{+-}4.4% to the right lung and 43.8{+-}3.1% to the left lung when the tuberculous lesion was in the left lung. The difference of pulmonary arterial blood flow between the right and left lung was statistically not significant compared with the normal distribution. In the moderately advanced pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be 26.9{+-}13.9% to the right lung and 73.1{+-}13.9% to the left lung when the tuberculous lesion was more severe in the right lung, and 79.6{+-}12.8% to the right lung and 20.4{+-}13.0% to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved, the average distribution of pulmonary arterial blood flow was found to be 49.5{+-}8.01% to the right lung and 50.5{+-}8.01% to the left lung. In the far advanced pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be 18.5{+-}11.6% to the right lung and 81

  2. The value of combined examination of serum CYFRA21-1 levels and bone scan in the diagnosis of bone metastasis in lung cancer

    International Nuclear Information System (INIS)

    Yu Jing; Wang Junhong; Zhengping

    2007-01-01

    Objective: To explore the value of combined examination of serum tumor markers CYFRA21-1 and bone scan in the diagnosis of bone metastasis in lung cancer. Methods: Bone scan and serum CYFRA21-1 levels (with CLIA) determination were performed in 138 patients with lung cancer and 56 patients with benign lung diseases. Results: The serum level of CYFRA21-1 were significantly higher in patients with bone metastasis than those in patients without bone metastasis. The levels were also higher in patients without bone metastasis than those in controls. Most patients with bone metastasis had positive results in bone scan (97.4%), only 2 of the 78 had negative bone scan but positive with CT or MRI. A few patients without bone metastasis and controls had positive bone scan results, caused by previous operation or injury. Conclusion: The combined detection of CYFRA21-1 and bone scan were valuable in the diagnosis of bone metastasis of lung cancer. (authors)

  3. Study and preparation of 99Tcm-GP kit for lung ventilation imaging

    International Nuclear Information System (INIS)

    Zhu Lin; Meng Fanmin; Zhang Jihong; Hong Tao; Liu Yunzhong; Liu Xiujie

    1997-01-01

    The preparation of the lyophilizing reagent, D-glucose-l-phosphate (GP) kit and the method of using this kit to label 99 Tc m to form 99 Tc m -GP for lung ventilation imaging at room temperature in a simple, rapid procedure are described. The stability of the lyophilizing reagent kit under various stock conditions is examined. The results show that all of the 99 Tc m -GP yields by the lyophilizing reagent kit are above 95% at 4 degree C (cold), 20-25 degree C (room temperature) and 40 degree C (oven) for 180, 90 and 3 days, respectively. The clinical practice indicates that in comparison with 99 Tc m -DTPA, 99 Tc m -GP has remarkable difference (P 99 Tc m -GP is an ideal radioaerosol for SPECT studies of lung ventilation. It has high alveolar deposition rate but low adhesion in the major airways compared to those of 99 Tc m -DTPA. 99 Tc m -GP also features prolonged pulmonary clearance time

  4. SU-F-T-133: Uniform Scanning Proton Therapy for Lung Cancer: Toxicity and Its Correlation with Dosimetry

    International Nuclear Information System (INIS)

    Zheng, Y; Rana, S; Larson, G

    2016-01-01

    Purpose: To analyze the toxicity of uniform scanning proton therapy for lung cancer patients and its correlation with dose distribution. Methods: In this study, we analyzed the toxicity of 128 lung cancer patients, including 18 small cell lung cancer and 110 non small cell lung cancer patients. Each patient was treated with uniform scanning proton beams at our center using typically 2–4 fields. The prescription was typically 74 Cobalt gray equivalent (CGE) at 2 CGE per fraction. 4D Computerized Tomography (CT) scans were used to evaluate the target motion and contour the internal target volume, and repeated 3 times during the course of treatment to evaluate the need for plan adaptation. Toxicity data for these patients were obtained from the proton collaborative group (PCG) database. For cases of grade 3 toxicities or toxicities of interest such as esophagitis and radiation dermatitis, dose distributions were reviewed and analyzed in attempt to correlate the toxicity with radiation dose. Results: At a median follow up time of about 21 months, none of the patients had experienced Grade 4 or 5 toxicity. The most common adverse effect was dermatitis (81%: 52%-Grade 1, 28%-Grade 2, and 1% Grade 3), followed by fatigue (48%), Cough (46%), and Esophagitis (45%), as shown in Figure 1. Severe toxicities, such as Grade 3 dermatitis or pain of skin, had a clear correlation with high radiation dose. Conclusion: Uniform scanning proton therapy is well tolerated by lung cancer patients. Preliminary analysis indicates there is correlation between severe toxicity and high radiation dose. Understanding of radiation resulted toxicities and careful choice of beam arrangement are critical in minimizing toxicity of skin and other organs.

  5. SU-F-T-133: Uniform Scanning Proton Therapy for Lung Cancer: Toxicity and Its Correlation with Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y; Rana, S; Larson, G [Procure Proton Therapy Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To analyze the toxicity of uniform scanning proton therapy for lung cancer patients and its correlation with dose distribution. Methods: In this study, we analyzed the toxicity of 128 lung cancer patients, including 18 small cell lung cancer and 110 non small cell lung cancer patients. Each patient was treated with uniform scanning proton beams at our center using typically 2–4 fields. The prescription was typically 74 Cobalt gray equivalent (CGE) at 2 CGE per fraction. 4D Computerized Tomography (CT) scans were used to evaluate the target motion and contour the internal target volume, and repeated 3 times during the course of treatment to evaluate the need for plan adaptation. Toxicity data for these patients were obtained from the proton collaborative group (PCG) database. For cases of grade 3 toxicities or toxicities of interest such as esophagitis and radiation dermatitis, dose distributions were reviewed and analyzed in attempt to correlate the toxicity with radiation dose. Results: At a median follow up time of about 21 months, none of the patients had experienced Grade 4 or 5 toxicity. The most common adverse effect was dermatitis (81%: 52%-Grade 1, 28%-Grade 2, and 1% Grade 3), followed by fatigue (48%), Cough (46%), and Esophagitis (45%), as shown in Figure 1. Severe toxicities, such as Grade 3 dermatitis or pain of skin, had a clear correlation with high radiation dose. Conclusion: Uniform scanning proton therapy is well tolerated by lung cancer patients. Preliminary analysis indicates there is correlation between severe toxicity and high radiation dose. Understanding of radiation resulted toxicities and careful choice of beam arrangement are critical in minimizing toxicity of skin and other organs.

  6. Abnormal extraosseous activity in both lungs and stomach in pre-transplant 99mTc-MDP bone scan disappearing after renal transplant

    International Nuclear Information System (INIS)

    Sonavane, Sunita Tarsarya; Marwah, Atul; Jaiswar, Rajnath; Shah, Hardik

    2013-01-01

    A chronic kidney disease male patient presenting with bone pains, fever, weakness, and clinically ascites was subjected to four technetium-99m-methylene diphosphonate ( 99m Tc-MDP) bone scans, two before renal transplant and two after renal transplants. Pretransplant bone scan revealed metabolic bone disease with focal insufficiency fractures. Marked extraosseous activity in both lungs and stomach was also visualized. On regular hemodialysis (HD) after 4 months, repeat pretransplant bone scan showed persistent uptake in lungs and stomach, representing altered calcium metabolism with microcalcifications. He underwent human leukocyte antigen (HLA) matched live donor renal transplantation, started on immune-suppression and steroids. Posttransplant bone scan at 20 days revealed no definite interval change, but bone scan performed approximately 17 months posttransplant showed resolving metabolic bone disease and the tracer uptake in the lungs and stomach was no more visualized. Patient clinically followed-up until the date (February 2013) is asymptomatic with serum creatinine of 1.5 mg/dl, no bone scan done. (author)

  7. Image processing based detection of lung cancer on CT scan images

    Science.gov (United States)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  8. Making sense of large data sets without annotations: analyzing age-related correlations from lung CT scans

    Science.gov (United States)

    Dicente Cid, Yashin; Mamonov, Artem; Beers, Andrew; Thomas, Armin; Kovalev, Vassili; Kalpathy-Cramer, Jayashree; Müller, Henning

    2017-03-01

    The analysis of large data sets can help to gain knowledge about specific organs or on specific diseases, just as big data analysis does in many non-medical areas. This article aims to gain information from 3D volumes, so the visual content of lung CT scans of a large number of patients. In the case of the described data set, only little annotation is available on the patients that were all part of an ongoing screening program and besides age and gender no information on the patient and the findings was available for this work. This is a scenario that can happen regularly as image data sets are produced and become available in increasingly large quantities but manual annotations are often not available and also clinical data such as text reports are often harder to share. We extracted a set of visual features from 12,414 CT scans of 9,348 patients that had CT scans of the lung taken in the context of a national lung screening program in Belarus. Lung fields were segmented by two segmentation algorithms and only cases where both algorithms were able to find left and right lung and had a Dice coefficient above 0.95 were analyzed. This assures that only segmentations of good quality were used to extract features of the lung. Patients ranged in age from 0 to 106 years. Data analysis shows that age can be predicted with a fairly high accuracy for persons under 15 years. Relatively good results were also obtained between 30 and 65 years where a steady trend is seen. For young adults and older people the results are not as good as variability is very high in these groups. Several visualizations of the data show the evolution patters of the lung texture, size and density with age. The experiments allow learning the evolution of the lung and the gained results show that even with limited metadata we can extract interesting information from large-scale visual data. These age-related changes (for example of the lung volume, the density histogram of the tissue) can also be

  9. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes.

    Science.gov (United States)

    Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R

    2013-06-01

    CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.

  10. Pulmonary aspergilloma: A rare differential diagnosis to lung cancer after positive FDG PET scan

    Directory of Open Access Journals (Sweden)

    Franziska Spycher

    2014-01-01

    Full Text Available Early diagnosis and treatment of lung cancer, one of the leading causes of cancer-related death, is important to improve morbidity and mortality. Therefore any suspect solitary pulmonary nodule should prompt the pursuit for a definitive histological diagnosis. We describe the case of a 55-years-old male ex-smoker, who was admitted to our hospital due to recurrent hemoptysis and dry cough. A CT scan showed an irregular nodule of increasing size (28 mm in diameter in the left lower lobe (LLL. A whole body PET-CT scan (643 MBq F-18 FDG i.v. was performed and confirmed an avid FDG uptake of the nodule in the LLL, highly suspicious of lung cancer, without any evidence of lymphogenic or hematogenic metastasis. Bronchoscopy was not diagnostic and due to severe adhesions after prior chest trauma and the central location of the nodule, a lobectomy of the LLL was performed. Surprisingly, histology showed a simple aspergilloma located in a circumscribed bronchiectasis with no evidence of malignancy. This is a report of an informative example of an aspergilloma, which presented with symptoms and radiological features of malignant lung cancer.

  11. A Dual Lung Scan for the Evaluation of Pulmonary Function in Patients with Pulmonary Tuberculosis before and after Treatment

    International Nuclear Information System (INIS)

    Rhee, Chong Heon

    1967-01-01

    In 20 normal cases and 39 pulmonary tuberculosis cases, regional pulmonary arterial blood flow measurement and lung perfusion scans by 131 I-Macroaggregated albumin, lung inhalation scans by colloidal 198 Au and spirometries by respirometer were done at the Radiological Research Institute. The measured lung function tests were compared and the results were as the following: 1) The normal distribution of pulmonary blood flow was found to be 54.5±2.82% to the right lung and 45.5±2.39% to the left lung. The difference between the right and left pulmonary arterial blood flow was significant statistically (p 131 I-MAA in patients with pulmonary tuberculosis was as follows: a) In the pretreated minimal pulmonary tuberculosis, the decreased area of pulmonary arterial blood flow was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive than had been expected from the chest roentgenogram in the apparently healed minimal pulmonary tuberculosis. b) In the pretreated moderately advanced pulmonary tuberculosis, the decrease of pulmonary arterial blood flow to the diseased area was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive in the treated moderately advanced pulmonary tuberculosis as in the treated minimal pulmonary tuberculosis. c) Pulmonary arterial blood flow in the patients with far advanced pulmonary tuberculosis both before and after chemotherapy were almost similar to the chest roentgenogram. Especially the decrease of pulmonary arterial blood flow to the cavity was usually greater than had been expected from the chest roentgenogram. 3) Lung inhalation scan by colloidal 198 Au in patients with pulmonary tuberculosis was as follows: a) In the minimal pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram. b) In the moderately advanced pulmonary tuberculosis the decrease

  12. Effectiveness of PET Scan in Postoperative Long Term Follow up of Patients with Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Atilla Pekcolaklar

    2012-01-01

    Full Text Available Aim: There is very few data about the use of positron emission tomography [PET] in the long term follow up of patients operated for lung cancer. We aimed to evaluate the effectiveness of PET scan in detecting distant metastases in the long term follow up of asymptomatic patients operated for non-small cell lung cancer [NSCLC]. Material and Method: PET scan was performed to sixty five asymptomatic patients. The patients who had a positive PET scan for metastasis underwent MRI and/or biopsy to verify metastasis. Result: : Mean age of the patients was 58.09 8.64 [44-82] years, and 57 [87.7 %] of them were male. Forty eight [73.8%] of the patients had epidermoid cell, 15 [23.1%] had adeno and 2 [%3.1] had large cell carcinoma. Postoperative stage of 1 [1.5%] patient was 1A, 14 [21.5%] of them were stage 1B, 1 [1.5%] of them was stage 2A, 27 [41.5%] of them were stage 2B and 22 [33.8%] of them were stage 3A. PET scan detected metastasis in 7 [10.8%] patients. In one patient PET scan was proven to be false positive. Sites of metastases in PET scan were lung in 3 [4.5%] patients, vertebra in 3 [4.6%] patients and tibia in 1 [1.5%] patient. In detecting distant metastases accuracy rate of PET was calculated as 98%, sensitivity was 100%, and specificity was 98%. Discussion: In asymptomatic patients with NSCLC, PET imaging appears to be useful as an alternative to conventional imaging to rule out unsuspected systemic disease in the postoperative long term follow up.

  13. Examination of post operative split lung function using quantitative xenon 133 (133Xe) inhalation scan

    International Nuclear Information System (INIS)

    Omote, Yoshiharu; Maeda, Tomio; Ikeda, Koichiro; Kubo, Yoshihiko

    1992-01-01

    133 Xe inhalation scan and ordinary lung function testing were performed three times in 34 patients undergoing pulmonary resection: before surgery, and one and six months postoperatively. Forced vital capacity (FVC) and forced expiratory volume in the first second (FEV 1.0 ) were used as spirometric parameters. From the 133 Xe inhalation scan, a split lung capacity (right to left, upper, middle and lower) and T1/2 (time required for half of the inhalation of 133 Xe gas to be expired) were calculated by computer and used as indices of split lung capacity and ventilation, respectively. The predicted postoperative lung functions were calculated using preoperative spirometric respiratory function and 133 Xe inhalation data according to the formula reported by Ali and associates. At sixth postoperative month, both predicted FVC (r=0.895, p 1.0 (r=0.897, p<0.001) correlated highly with those actually observed. These results appear to be very useful for preoperative evaluation of operative indications and the choice of surgical method. The ratios of observed to predicted lung capacity in the post operative state were examined by splitting the right and left lung and the means±S.D.(%) were 80.5±9.7% on the operated side and 119.2±11.7% on the opposite side one month after surgery. Six months after surgery, the corresponding figures were 111.0±5.6% and 96.7±16.4%. The post operative T1/2 values on the operated sides were about 2.4 times the preoperative values at one month after surgery but returned to the preoperative values by the six postoperative month. From these results, it can be said that respiratory functions after pulmonary resection are maintained primarily by compensatory lung function of opposite and operated sides at one and six months, respectively. These results also provide valuable information on postoperative respiratory care for patients who have undergone lung resection. (author)

  14. Bronchoalveolar lavage analysis, gallium-67 lung scanning and soluble interleukin-2 receptor levels in asbestos exposure

    International Nuclear Information System (INIS)

    Delclos, G.L.; Flitcraft, D.G.; Brousseau, K.P.; Windsor, N.T.; Nelson, D.L.; Wilson, R.K.; Lawrence, E.C.

    1989-01-01

    This study examined different markers of lung immunologic and inflammatory responses to previous asbestos exposure. We performed bronchoalveolar lavage (BAL) and gallium-67 ( 67 Ga) lung scans and measured serum and BAL soluble interleukin-2 receptor (IL-2R) and angiotensin-converting enzyme (SACE) levels in 32 subjects with a history of significant asbestos exposure, 14 without (EXP) and 18 with (ASB) radiographic evidence of asbestosis. BAL analysis revealed increases in neutrophils in both ASB and EXP when compared to controls (P less than 0.01), which persisted after adjustment for smoking category. Although significant abnormalities of macrophage and total lymphocyte profiles were not found in the study population, lymphocyte subpopulation analysis revealed elevation of BAL T4/T8 ratios in the entire study group (ASB + EXP) when compared to controls (P less than 0.05), independent of smoking category. 67 Ga lung scan activity was increased in 56% of ASB and in 36% of EXP: no correlations between positive scans and different radiological and functional parameters could be found. There was no significant elevation of mean SACE, serum, or BAL IL-2R levels in any of the study categories. These data suggest that asbestos exposure may be associated with parenchymal inflammation, even in the absence of clinical criteria for asbestosis. Abnormalities of gallium uptake and of BAL analysis reflect the clinically inapparent inflammation. The increased BAL T4/T8 ratios observed suggest that abnormal local pulmonary immunoregulation may play a role in the pathogenesis of asbestos-related lung diseases

  15. Aerosol lung inhalation scintigraphy in children with bronchial asthma

    International Nuclear Information System (INIS)

    Torii, Yoshikuni; Nakayama, Chikashi; Nakata, Hajime; Takahashi, Satomi; Tanaka, Masaaki; Koori, Tateo

    1988-01-01

    Aerosol lung inhalation scintigraphies performed on 37 children with bronchial asthma during asymptomatic periods were evaluated. The findings of their aerosol lung inhalation scintigrams were classified into 4 patterns, as type I: homogeneous distribution without hot spot formation, type II: peripheral homogeneity with central hot spot formation, type IIID (-): inhomogeneous distribution with hot spot formation, but without defect, and type IIID (+): with defect. These aerosol patterns were compared with those of previously reported adult cases and with the severity of bronchial asthma. Normal pattern of type I was found in 5 cases (12%) of our infantile asthmatics in contrast to previously reported adult cases, in which none of normal pattern was found. There were differences between type II and type III in both distribution and disappearance time of hot spot, which indicated that the two types differed from each other in radioaerosol deposition mechanism. There was no significant correlation between type I and type II in the severity of asthma and the frequency of asthmatic attack. Type II may be clinically considered to be the same type as type I. There is the statistically significant difference between type I, II and type III in the frequency of asthmatic attack, but not in the severity of asthma, although most of serious cases showed type III. Aerosol lung inhalation scintigraphy is a useful examination for children with bronchial asthma in which lung function tests may be difficult to perform. (author)

  16. Applications and interpretation of krypton 81m ventilation/technetium 99m macroaggregate perfusion lung scanning in childhood

    Science.gov (United States)

    Davies, Hugh Trevor Frimston

    Radionuclide ventilation perfusion lung scans now play an important part in the investigation of paediatric lung disease, providing a safe, noninvasive assessment of regional lung function in children with suspected pulmonary disease. In paediatric practice the most suitable radionuclides are Krypton 81m (Kr81m) and Technetium 99m (Tc99m), which are jointly used in the Kr81m ventilation/Tc99m macroaggregate perfusion lung scan (V/Q lung scan). The Kr81m ventilation scan involves a low radiation dose, requires little or no subject cooperation and because of the very short half life of Kr81m (13 seconds) the steady state image acquired during continuous inhalation of the radionuclide is considered to reflect regional distribution of ventilation. It is now the most important noninvasive method available for the investigation of the regional abnormalities of ventilation characteristic of many congenital and acquired paediatric respiratory diseases, such as diaphragmatic hernia, pulmonary sequestration, bronchopulmonary dysplasia, foreign body inhalation and bronchiectasis. It improves diagnostic accuracy, aids clinical decision making and is used to monitor the progress of disease and response to therapy. Theoretical analysis of the steady state Kr81m ventilation image suggests that it may only reflect regional ventilation when specific ventilation (ventilation per unit volume of lung) is within or below the normal adult range (1-3 L/L/min). At higher values such as those seen in neonates and infants (8-15 L/L/min) Kr81m activity may reflect regional lung volume rather than ventilation, a conclusion supported by the studies of Ciofetta et al. There is some controversy on this issue as animal studies have demonstrated that the Kr81m image reflects ventilation over a much wider range of specific ventilation (up to 13 L/L/min). A clinical study of sick infants and very young children is in agreement with this animal work and suggests that the steady state Kr81m image

  17. Reversible bronchial dilatation in children: comparison of serial high-resolution computer tomography scans of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, E.A. E-mail: erol.gaillard@lwh-tr.nwest.nhs.uk; Carty, H.; Heaf, D.; Smyth, R.L

    2003-09-01

    Introduction: bronchiectasis is generally considered irreversible in the adult population, largely based on studies employing bronchography in cases with a significant clinical history. It is assumed, that the same is true for children. Few studies have examined the natural history of bronchiectasis in children and diagnostic criteria on high-resolution computer tomography of the lungs are derived from studies on adults. Frequently, bronchiectasis is reported in children in cases where localised bronchial dilatation is present, incorrectly labelling these children with an irreversible life-long condition. Objective: to evaluate changes in appearance of bronchial dilatation, unrelated to cystic fibrosis in children, as assessed by sequential high-resolution computer tomography (HRCT) of the lungs. Methods: the scans of 22 children with a radiological diagnosis of bronchiectasis, seen at Alder Hey Children's Hospital between 1994 and 2000, who had at least two CT scans of the lungs were reviewed by a single radiologist, who was blinded to the original report. Results: following a median scan interval of 21 months (range 2-43), bronchial dilatation resolved completely in six children and there was improvement in appearances in a further eight, with medical treatment alone. Discussion: a radiological diagnosis of bronchiectasis should be considered with caution in children as diagnostic criteria derived from studies in adults have not been validated in children and the condition is generally considered irreversible.

  18. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    International Nuclear Information System (INIS)

    Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S

    2015-01-01

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General

  19. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General

  20. Impact of the planning CT scan time on the reflection of the lung tumor motion

    International Nuclear Information System (INIS)

    Kim, Su San; Choi, Eun Kyung; Yi, Byong Yong; Ha, Sung Whan

    2004-01-01

    To evaluate the reflection of tumor motion according to the planning CT scan time. A model of N-shape, which moved along the longitudinal axis during the ventilation caused by a mechanical ventilator, was produced. The model was scanned by planning CT, while setting the relative CT scan time (T; CT scan time/ventilatory period) to 0.33, 0.50, 0.67, 0.75, 1.00, 1.33 T, and 1.53 T. In addition, three patients with non-small cell lung cancer who received stereotactic radiosurgery in the Department of Radiation Oncology, Asan Medical Center from 03/19/2002 to 05/21/2002 were scanned. Slow (IQ Premier, Picker, scan time 2.0 seconds per slice) and fast CT scans (Light Speed, GE Medical System, with a scan time of 0.8 second per slice) were performed for each patient. The magnitude of reflected movement of the N-shaped model was evaluated by measuring the transverse length, which reflected the movement of the declined bar of the model at each slice. For patients' scans, all CT data sets were registered using a stereotactic body frame scale with the gross tumor volumes delineated in one CT image set. The volume and three-dimensional diameter of the gross tumor volume were measured and analyzed between the slow and fast CT scans. The reflection degree of longitudinal movement of the model increased in proportion to the relative CT scan times below 1.00 T, but remained constant above 1.00 T. Assuming the mean value of scanned transverse lengths with CT scan time 1.00 T to be 100%, CT scans with scan times of 0.33, 0.50, 0.67, and 0.75 T missed the tumor motion by 30, 27, 20, and 7.0% respectively. Slow (scan time 2.0 sec) and Fast (scan time 0.8 sec) CT scans of three patients with longitudinal movement of 3, 5, and 10 mm measured by fluoroscopy revealed the increases in the diameter along the longitudinal axis increased by 6.3, 17, and 23% in the slow CT scans. As the relative CT scan time increased, the reflection of the respiratory tumor movement on planning CT also

  1. Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans

    Science.gov (United States)

    Ramachandran S., Sindhu; George, Jose; Skaria, Shibon; V. V., Varun

    2018-02-01

    Lung cancer is the leading cause of cancer related deaths in the world. The survival rate can be improved if the presence of lung nodules are detected early. This has also led to more focus being given to computer aided detection (CAD) and diagnosis of lung nodules. The arbitrariness of shape, size and texture of lung nodules is a challenge to be faced when developing these detection systems. In the proposed work we use convolutional neural networks to learn the features for nodule detection, replacing the traditional method of handcrafting features like geometric shape or texture. Our network uses the DetectNet architecture based on YOLO (You Only Look Once) to detect the nodules in CT scans of lung. In this architecture, object detection is treated as a regression problem with a single convolutional network simultaneously predicting multiple bounding boxes and class probabilities for those boxes. By performing training using chest CT scans from Lung Image Database Consortium (LIDC), NVIDIA DIGITS and Caffe deep learning framework, we show that nodule detection using this single neural network can result in reasonably low false positive rates with high sensitivity and precision.

  2. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    International Nuclear Information System (INIS)

    2011-01-01

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule≥3 mm,''''nodule<3 mm,'' and ''non-nodule≥3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule≥3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all

  3. MO-FG-CAMPUS-JeP2-02: Audiovisual Biofeedback Guided Respiratory-Gated MRI: An Investigation of Tumor Definition and Scan Time for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D; Pollock, S; Keall, P [University of Sydney, Sydney, NSW (Australia); Greer, P; Lapuz, C; Ludbrook, J [Calvary Mater Newcastle, Newcastle, NSW (Australia); Kim, T [Virginia Commonwealth University, Glen Allen, VA (United States)

    2016-06-15

    Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gated MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.

  4. MO-FG-CAMPUS-JeP2-02: Audiovisual Biofeedback Guided Respiratory-Gated MRI: An Investigation of Tumor Definition and Scan Time for Lung Cancer

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Keall, P; Greer, P; Lapuz, C; Ludbrook, J; Kim, T

    2016-01-01

    Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gated MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.

  5. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    International Nuclear Information System (INIS)

    Lee, S; Markel, D; Hegyi, G; El Naqa, I

    2016-01-01

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with a grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image

  6. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Markel, D; Hegyi, G [Medical Physics Unit, McGill University, Montreal, Quebec (Canada); El Naqa, I [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with a grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image

  7. Quantitative CT scans of lung parenchymal pathology in premature infants ages 0-6 years.

    Science.gov (United States)

    Spielberg, David R; Walkup, Laura L; Stein, Jill M; Crotty, Eric J; Rattan, Mantosh S; Hossain, Md Monir; Brody, Alan S; Woods, Jason C

    2018-03-01

    Bronchopulmonary dysplasia (BPD) is a common, heterogeneous disease in premature infants. We hypothesized that quantitative CT techniques could assess lung parenchymal heterogeneity in BPD patients across a broad age range and demonstrate how pathologies change over time. A cross-sectional, retrospective study of children age 0-6 years with non-contrast chest CT scans was conducted. BPD subjects met NICHD/NHLBI diagnostic criteria for BPD and were excluded for congenital lung/airway abnormalities or other known/suspected pulmonary diagnoses; control subjects were not premature and had normal CT scan findings. Radiologic opacities, lucencies, and spatial heterogeneity were quantified via: 1) thresholding using CT-attenuation (HU); 2) manual segmentation; and 3) Ochiai reader-scoring system. Clinical outcomes included BPD severity by NICHD/NHLBI criteria, respiratory support at NICU discharge, wheezing, and respiratory exacerbations. Heterogeneity (standard deviation) of lung attenuation in BPD was significantly greater than in controls (difference 36.4 HU [26.1-46.7 HU], P < 0.001); the difference between the groups decreased 0.58 HU per month of age (0.08-1.07 HU per month, P = 0.02). BPD patients had greater amounts of opacities and lucencies than controls except with automated quantification of lucencies. Cross-sectionally, lucencies per Ochiai score and opacities per manual segmentation decreased with time. No approach measured a statistically significant relationship to BPD clinical severity. Opacities, lucencies, and overall heterogeneity of lungs via quantitative CT can distinguish BPD patients from healthy controls, and these abnormalities decrease with age across BPD patients. Defining BPD severity by clinical outcomes such as respiratory support at several time points (vs a single time point, per current guidelines) may be meaningful. © 2017 Wiley Periodicals, Inc.

  8. Comparison of two different segmentation methods on planar lung perfusion scan with reference to quantitative value on SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min Seok; Kang, Yeon Koo; Ha, Seung Gyun [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); and others

    2017-06-15

    Until now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients. Fifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted. The % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation. The PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.

  9. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    Science.gov (United States)

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; Ppulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).

  10. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked &apos

  11. Deposition of aqueous aerosol of technetium-99m diethylene triamine penta-acetic acid generated and delivered by a novel system (AERx) in healthy subjects

    International Nuclear Information System (INIS)

    Chan, H.K.; Eberl, S.; Bautovich, G.

    1999-01-01

    Deposition of technetium-99m diethylene triamine penta-acetic acid aqueous radioaerosols generated by a novel aerosol delivery system (AER x ) was studied in six healthy subjects using both planar and single-photon emission tomography (SPET) imaging. AER x is a microprocessor-controlled, bolus inhalation device that is actuated at pre-programmed values of inspiratory flow rate and volume. The aims of the study were to determine the effects of posture and inhaled volume upon deposition of the aerosol in the lungs. Each subject inhaled the radioaerosol in two positions (supine vs sitting) and with two inspiratory manoeuvres [vital capacity (VC) vs ''fixed volume'' of 1 l above functional residual capacity]. Simultaneous transmission-emission planar and tomographic images were acquired. The results showed diffuse deposition of the aerosol in the lung. Neither the breathing manoeuvre nor the posture was found to affect the distribution of the aerosol as measured by the ratio of the activity (counts per pixel) in the peripheral:central (penetration index, PI) or in the apex:base regions of the planar lung images (P>0.1). A small, albeit statistically significant, difference in PI (P x system showed high efficiency of delivery, with approximately 50% of the extruded dose in the device depositing in the lung. The uniformity of radioactivity distributed throughout the lung is attributed to the fine particle size (mass median aerodynamic diameter of 2 μm) of the aerosol and the electronic control of aerosol inhalation by the device. In conclusion, the AER x system can be ideal for diffuse aerosol deposition of therapeutic or diagnostic agents and is largely unaffected by inhaled volume and posture. The efficiency of the device device can limit the total radiation exposure of patients and staff administering the radioaerosols, and can make it suitable for delivery of expensive drugs. (orig.)

  12. Lung scans with significant perfusion defects limited to matching pleural effusions have a low probability of pulmonary embolism

    International Nuclear Information System (INIS)

    Datz, F.L.; Bedont, R.A.; Taylor, A.

    1985-01-01

    Patients with a pleural effusion on chest x-ray often undergo a lung scan to exclude pulmonary embolism (PE). According to other studies, when the scan shows a perfusion defect equal in size to a radiographic abnormality on chest x-ray, the scan should be classified as indeterminate or intermediate probability for PE. However, since those studies dealt primarily with alveolar infiltrates rather than pleural effusions, the authors undertook a retrospective study to determine the probability of PE in patients with pleural effusion and a matching perfusion defect. The authors reviewed 451 scans and x-rays of patients studied for suspected PE. Of those, 53 had moderate or large perfusion defects secondary to pleural effusion without other significant (>25% of a segment) effusion without other significant (>25% of a segment) defects on the scan. Final diagnosis was confirmed by pulmonary angiography (16), thoracentesis (40), venography (11), other radiographic and laboratory studies, and clinical course. Of the 53 patients, only 2 patients had venous thrombotic disease. One patient had PE on pulmonary angiography, the other patient had thrombophlebitis on venography. The remainder of the patients had effusions due to congestive heart failure (12), malignancy (12), infection (7), trauma (7), collegen vascular disease (7), sympathetic effusion (3) and unknown etiology (3). The authors conclude that lung scans with significant perfusion defects limited to matching pleural effusions on chest x-ray have a low probability for PE

  13. CT Scan

    Science.gov (United States)

    ... disease, lung nodules and liver masses Monitor the effectiveness of certain treatments, such as cancer treatment Detect ... scan done in a hospital or an outpatient facility. CT scans are painless and, with newer machines, ...

  14. Effectiveness of different rescanning techniques for scanned proton radiotherapy in lung cancer patients

    Science.gov (United States)

    Engwall, E.; Glimelius, L.; Hynning, E.

    2018-05-01

    Non-small cell lung cancer (NSCLC) is a tumour type thought to be well-suited for proton radiotherapy. However, the lung region poses many problems related to organ motion and can for actively scanned beams induce severe interplay effects. In this study we investigate four mitigating rescanning techniques: (1) volumetric rescanning, (2) layered rescanning, (3) breath-sampled (BS) layered rescanning, and (4) continuous breath-sampled (CBS) layered rescanning. The breath-sampled methods will spread the layer rescans over a full breathing cycle, resulting in an improved averaging effect at the expense of longer treatment times. In CBS, we aim at further improving the averaging by delivering as many rescans as possible within one breathing cycle. The interplay effect was evaluated for 4D robustly optimized treatment plans (with and without rescanning) for seven NSCLC patients in the treatment planning system RayStation. The optimization and final dose calculation used a Monte Carlo dose engine to account for the density heterogeneities in the lung region. A realistic treatment delivery time structure given from the IBA ScanAlgo simulation tool served as basis for the interplay evaluation. Both slow (2.0 s) and fast (0.1 s) energy switching times were simulated. For all seven studied patients, rescanning improves the dose conformity to the target. The general trend is that the breath-sampled techniques are superior to layered and volumetric rescanning with respect to both target coverage and variability in dose to OARs. The spacing between rescans in our breath-sampled techniques is set at planning, based on the average breathing cycle length obtained in conjunction with CT acquisition. For moderately varied breathing cycle lengths between planning and delivery (up to 15%), the breath-sampled techniques still mitigate the interplay effect well. This shows the potential for smooth implementation at the clinic without additional motion monitoring equipment.

  15. Rheumatoid arthritis-associated interstitial lung disease: lung inflammation evaluated with high resolution computed tomography scan is correlated to rheumatoid arthritis disease activity.

    Science.gov (United States)

    Pérez-Dórame, Renzo; Mejía, Mayra; Mateos-Toledo, Heidegger; Rojas-Serrano, Jorge

    2015-01-01

    To describe the association between rheumatoid arthritis disease activity (RA) and interstitial lung damage (inflammation and fibrosis), in a group of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). A retrospective study of RA patients with interstitial lung disease (restrictive pattern in lung function tests and evidence of interstitial lung disease in high resolution computed tomography (HRCT)). Patients were evaluated to exclude other causes of pulmonary disease. RA disease activity was measured with the CDAI index. Interstitial lung inflammation and fibrosis were determined by Kazerooni scale. We compared Kazerooni ground-glass score with the nearest CDAI score to HRCT date scan of the first medical evaluation at our institution. In nine patients, we compared the first ground-glass score with a second one after treatment with DMARDs and corticosteroids. Spearman's rank correlation coefficient was used to evaluate association between RA disease activity and the Kazerooni ground-glass and fibrosis scores. Thirty-four patients were included. A positive correlation between CDAI and ground-glass scores was found (rs=0.3767, P<0.028). Fibrosis and CDAI scores were not associated (rs=-0.0747, P<0.6745). After treatment, a downward tendency in the ground-glass score was observed (median [IQR]): (2.33 [2,3] vs. 2 [1.33-2.16]), P<0.056, along with a lesser CDAI score (27 [8-43] vs. 9 [5-12]), P<0.063. There is a correlation between RA disease activity and ground-glass appearance in the HRCT of RA-ILD patients. These results suggest a positive association between RA disease activity and lung inflammation in RA-ILD. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  16. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution

  17. Identification of early-stage usual interstitial pneumonia from low-dose chest CT scans using fractional high-density lung distribution

    Science.gov (United States)

    Xie, Yiting; Salvatore, Mary; Liu, Shuang; Jirapatnakul, Artit; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2017-03-01

    A fully-automated computer algorithm has been developed to identify early-stage Usual Interstitial Pneumonia (UIP) using features computed from low-dose CT scans. In each scan, the pre-segmented lung region is divided into N subsections (N = 1, 8, 27, 64) by separating the lung from anterior/posterior, left/right and superior/inferior in 3D space. Each subsection has approximately the same volume. In each subsection, a classic density measurement (fractional high-density volume h) is evaluated to characterize the disease severity in that subsection, resulting in a feature vector of length N for each lung. Features are then combined in two different ways: concatenation (2*N features) and taking the maximum in each of the two corresponding subsections in the two lungs (N features). The algorithm was evaluated on a dataset consisting of 51 UIP and 56 normal cases, a combined feature vector was computed for each case and an SVM classifier (RBF kernel) was used to classify them into UIP or normal using ten-fold cross validation. A receiver operating characteristic (ROC) area under the curve (AUC) was used for evaluation. The highest AUC of 0.95 was achieved by using concatenated features and an N of 27. Using lung partition (N = 27, 64) with concatenated features had significantly better result over not using partitions (N = 1) (p-value < 0.05). Therefore this equal-volume partition fractional high-density volume method is useful in distinguishing early-stage UIP from normal cases.

  18. SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, J [Paul Scherrer Institut, Villigen PSI (Switzerland); Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Perrin, R [Paul Scherrer Institut, Villigen PSI (Switzerland); Persson, G F; Engelholm, S A [Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Lomax, A [Paul Scherrer Institut, Villigen PSI (Switzerland); Department of Physics, ETH, Zürich (Switzerland); Josipovic, M; Rosenschöld, AF [Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Weber, D C [Paul Scherrer Institut, Villigen PSI (Switzerland); University of Zürich, Zürich (Switzerland); Munck, P

    2016-06-15

    Purpose: The breath-hold (BH) technique has been suggested to mitigate motion and reduce target coverage degradation due to motion effects. The aim of this study was to investigate the effect of inter-BH residual motion on the dose distribution for pencil beam scanned (PBS) proton therapy of locally-advanced lung cancer patients. Methods: A dataset of visually-guided BH CT scans was acquired (10 scans per patient) taken from five lung cancer patients: three intra-fractionally repeated CT scans on treatment days 2,16 and 31, in addition to the day 0 planning CT scan. Three field intensity-modulated proton therapy (IMPT) plans were constructed on the planning CT scan. Dose delivery on fraction 2, 16 and 31 were simulated on the three consecutive CT scans, assuming BH duration of 20s and soft tissue match. The dose was accumulated in the planning CT using deformable image registration, and scaled to simulate the full treatment of 66Gy(RBE) in 33 fractions. Results: The mean dose to the lungs and heart, and maximum dose to the spinal cord and esophagus were within 1% of the planned dose. The CTV V95% decreased and the inhomogeneity (D5%–D95%) increased on average 4.1% (0.4–12.2%) and 5.8% (2.2–13.4%), respectively, over the five patient cases. Conclusion: The results showed that the BH technique seems to spare the OARs in spite of inter-BH residual motion. However, small degradation of target coverage occurred for all patients, with 3/5 patients having a decrease in V95% ≤1%. For the remaining two patients, where V95% decreased up to 12%, the cause could be related to treatment related anatomical changes and, as in photon therapy, plan adaptation may be necessary to ensure target coverage. This study showed that BH could be a potential treatment option to reliably mitigate motion for the treatment of locally-advanced lung cancer using PBS proton therapy.

  19. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration.

    Science.gov (United States)

    Wolthaus, J W H; Sonke, J J; van Herk, M; Damen, E M F

    2008-09-01

    lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods noise of individual 4D CT scan frames. We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a

  20. Open lung biopsy

    Science.gov (United States)

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia . This means you will be asleep and ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  1. Lung mucociliary clearance

    International Nuclear Information System (INIS)

    Mortensen, J.; Lange, P.; Nyboe, J.; Groth, S.

    1994-01-01

    The aim of this study was to establish reference values for mucociliary clearance and mucociliary clearance reserve capacity as determined by β 2 -adrenergic agonist-induced increase in mucociliary clearance. We studied 62 healthy females (n=33) and males (n=29). Their ages ranged evenly between 18 and 84 years. Fifty-three of the subjects were life-long non-smokers, while nine were ex-smokers. Multiple linear regression analyses showed that mucociliary clearance was significantly faster when the radioaerosol was deposited in the central airways than when it was deposited in the peripheral airways, and faster in life-long non-smokers than in ex-smokers. There was no influence of age, and no convincing association with sex. The variation was less within than between subjects. Mean mucociliary clearance reserve capacity was 21.3% (SD: 10.0%, P 2 agonist-induced increase in lung mucociliary clearance was significantly larger (P<0.05) than the stimulation which has previously been reported in patients with asthma, bronchiectasis or cystic fibrosis. The signal-to-noise ratio of the mucociliary clearance reserve capacity in relation to measurement of baseline mucociliary clearance indicates that measurement of mucociliary clearance reserve capacity may be a more efficient means of distinguishing between ''normal'' and ''abnormal'' mucociliary clearance than single measurement of baseline mucociliary clearance. (orig.)

  2. Novel Automatic Detection of Pleura and B-lines (Comet-Tail Artifacts) on In-Vivo Lung Ultrasound Scans

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse

    2016-01-01

    This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without...

  3. The role of perfusion lung scanning and diffusion capacity for early diagnosis of micro circulatory disturbances in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Petrova, D.; Shoshlov, P.; Hadjikostova, H.

    2002-01-01

    The development of chronic obstructive pulmonary disease (COPD) and the frequent inflammatory exacerbations with development of respiratory failure lead to changes in the micro circulatory and an increased risk of lung thrombotic and thromboembolic complication. The aim of the study was to establish the possibility of the perfusion lung scanning and diffusion capacity for early diagnosis of pulmonary micro circulatory disturbances in COPD with mild and moderate respiratory failure. 59 COPD patients were investigated. The data presented significant segmental disorders. Only in 5 (8.47%) of them the perfusion lung scintigrams were normal. In 23 of the patients, single-breath diffusing capacity (DICO) and its two components: membranous component (Dm) and capillary blood component (Vc) were determined. DICO was lower especially Vc the mean sign of micro circulatory disorders. A relationship between the degree of hypoxaemia and the changes found in the perfusion scintigraphy was found. Changes in the pulmonary lung scanning and in the diffusion capacity in COPD with mild respiratory failure seem to be an early diagnostic test. The early anticoagulant and desaggregant prevention may decrease the risk of thrombotic complications in the development of the disease. (authors)

  4. Inhalation scintiscanning of persons with healthy lungs and lung diseases using sup(99m)Tc-sulfur colloid with special regard to the mucociliary clearance

    International Nuclear Information System (INIS)

    Kluge, F.S.

    1981-01-01

    It is reported about inhalation scintiscanning with radioaerosols under the application of a gamma camera and a magnetic core- and tape memory, providing an interactive display. 89 patients suffering form various pulmonary diseases and 10 test persons with healthy lungs were investigated. The scintigraphic photos were not only evaluated visually, but also according to quantitative parameters, i.e. left/right distribution, degree of central deposition and mucociliary clearance. The latter resulted to be the most informative quantitative diagnostic method. In the 10 test persons with healthy lungs the scintigraphic images always showed a homogeneous distribution of radioactivity and a mucociliary half-time of 9.7 or 11.9 hours respectively was found. A central bronchial carcinoma provoked on the affected side of the lungs a reduced deposition of radioactivity, an increased central deposition and an accelerated mucociliary clearance. In patients suffering from peripheral bronchial carcinoma, pneumonia, pleural processes, pulmonary infarction, pulmonary circular focus or pneumothorax, only inconstant areas of reduced radioactivity deposition could be detected. However, these areas differed by shape, intensity and location from the central bronchial carcinoma. In 3 patients with pulmonary embolism, no pathologic changes could be detected only then, when no infarction occurred. In this case, also the quantitative parameters were normal. With chronical obstructive pulmonary diseases, diseases of the pulmonary framework and in cases of bronchial asthma a clearly pathologic image of the distribution of radioactivity resulted in all cases; in these a differentiation could only be achieved by additionally considering the quantitative parameters. (orig./MG) [de

  5. Do pre-school lung ventilation scans predict outcome by 6 years of age in children with Cystic Fibrosis (CF)?

    OpenAIRE

    Yahia, R; Viviani, L; Carr, S; Bush, A

    2015-01-01

    Introduction and objectives Progressive respiratory disease accounts for most of the mortality and morbidity in CF. Identification of early lung disease is imperative to recognise young patients who are at high risk of developing future lung damage. The London CF collaboration has shown that infant pulmonary function at one and at two years is essentially normal, and one year HRCT has mild abnormalities only, so new markers need to be identified. We have used ventilation scans (VS) at the CF ...

  6. Radiology compared with xenon—133 scanning and bronchoscopic lobar sampling as methods for assessing regional lung function in patients with emphysema

    Science.gov (United States)

    Barter, C. E.; Hugh-Jones, P.; Laws, J. W.; Crosbie, W. A.

    1973-01-01

    Regional lung function was assessed by radiographic methods, by regional function studies using xenon-133 scans, and by lobar sampling with a mass spectrometer flow-meter at bronchoscopy in 12 patients who subsequently had bullae resected at operation. The information given by these three methods of regional assessment was subsequently compared with the findings at operation. When only one lobe was abnormal on the radiographs, these alone were adequate to locate the major site of the emphysema and the regional tests gave relatively little extra information. The xenon scan was sometimes helpful in assessing the state of the remaining lung, but this information could be deduced from the radiographs and overall lung function tests, especially the carbon monoxide transfer and mechanical measurements. Bronchoscopic sampling was helpful in determining whether the affected lobe was acting as a ventilated dead-space. When more than one lobe was affected the regional function tests supplemented the radiographs in defining the site of bullous change as well as locating dead space. Xenon scans, although widely employed for such preoperative assessments, added little to the topographical information obtained by careful radiology. The combination of radiology, lobar sampling, and overall function tests is recommended for assessing which emphysematous patients are likely to benefit from surgery. Images PMID:4685209

  7. A diagnostic strategy for pulmonary embolism based on standardised pretest probability and perfusion lung scanning: a management study

    International Nuclear Information System (INIS)

    Miniati, Massimo; Monti, Simonetta; Bauleo, Carolina; Scoscia, Elvio; Tonelli, Lucia; Dainelli, Alba; Catapano, Giosue; Formichi, Bruno; Di Ricco, Giorgio; Prediletto, Renato; Carrozzi, Laura; Marini, Carlo

    2003-01-01

    Pulmonary embolism remains a challenging diagnostic problem. We developed a simple diagnostic strategy based on combination of assessment of the pretest probability with perfusion lung scan results to reduce the need for pulmonary angiography. We studied 390 consecutive patients (78% in-patients) with suspected pulmonary embolism. The pretest probability was rated low ( 10%, ≤50%), moderately high (>50%, ≤90%) or high (>90%) according to a structured clinical model. Perfusion lung scans were independently assigned to one of four categories: normal; near-normal; abnormal, suggestive of pulmonary embolism (wedge-shaped perfusion defects); abnormal, not suggestive of pulmonary embolism (perfusion defects other than wedge shaped). Pulmonary embolism was diagnosed in patients with abnormal scans suggestive of pulmonary embolism and moderately high or high pretest probability. Patients with normal or near-normal scans and those with abnormal scans not suggestive of pulmonary embolism and low pretest probability were deemed not to have pulmonary embolism. All other patients were allocated to pulmonary angiography. Patients in whom pulmonary embolism was excluded were left untreated. All patients were followed up for 1 year. Pulmonary embolism was diagnosed non-invasively in 132 patients (34%), and excluded in 191 (49%). Pulmonary angiography was required in 67 patients (17%). The prevalence of pulmonary embolism was 41% (n=160). Patients in whom pulmonary embolism was excluded had a thrombo-embolic risk of 0.4% (95% confidence interval: 0.0%-2.8%). Our strategy permitted a non-invasive diagnosis or exclusion of pulmonary embolism in 83% of the cases (95% confidence interval: 79%-86%), and appeared to be safe. (orig.)

  8. Current status of nuclear medicine in chronic airflow limitation

    International Nuclear Information System (INIS)

    Clarke, S.W.; Agnew, J.E.; Royal Free Hospital, London

    1987-01-01

    Radionuclide imaging, quite apart from its role in the diagnosis of pulmonary embolism, offers information about the distribution of ventilatory and perfusion abnormalities within the lung. The extent of ventilatory abnormality seen can be related to the severity of airways obstruction as assessed spirometrically, whilst abnormalities in the matching of perfusion to ventilation can be related to the severity of hypoxaemia in patients with chronic airflow limitation. Clearance of mucus from the lungs of patients with chronic mucus hypersection may be assessed by following the clearance rate of insoluble radioaerosol particles; by such means the relative contributions of mucociliary transport and of cough to the overall clearance can be observed. Clearance is often severely impaired in patients with airways obstruction; the radioaerosol technique can be used to determine the effects of drug or physiotherapy treatment. Chronic airflow limitation leading to hypoxaemia can be associated with pulmonary artery hypertension and right ventricular hypertrophy - this may be investigated noninvasively by a radionuclide test of right ventricular ejection fraction. (orig.)

  9. Current status of nuclear medicine in chronic airflow limitation

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, S.W.; Agnew, J.E.

    1987-06-01

    Radionuclide imaging, quite apart from its role in the diagnosis of pulmonary embolism, offers information about the distribution of ventilatory and perfusion abnormalities within the lung. The extent of ventilatory abnormality seen can be related to the severity of airways obstruction as assessed spirometrically, whilst abnormalities in the matching of perfusion to ventilation can be related to the severity of hypoxaemia in patients with chronic airflow limitation. Clearance of mucus from the lungs of patients with chronic mucus hypersection may be assessed by following the clearance rate of insoluble radioaerosol particles; by such means the relative contributions of mucociliary transport and of cough to the overall clearance can be observed. Clearance is often severely impaired in patients with airways obstruction; the radioaerosol technique can be used to determine the effects of drug or physiotherapy treatment. Chronic airflow limitation leading to hypoxaemia can be associated with pulmonary artery hypertension and right ventricular hypertrophy - this may be investigated noninvasively by a radionuclide test of right ventricular ejection fraction.

  10. Aerosol generation and delivery in medical applications

    International Nuclear Information System (INIS)

    Soni, P.S.; Raghunath, B.

    1998-01-01

    It is well established that radioaerosol lung technique by inhalation is a very versatile technique in the evaluation of health effects and medical diagnostic applications, especially to detect chronic obstructive pulmonary diseases, their defence mechanism permeability and many others. Most important part of aerosol technology is to generate reproducibly stable diagnostic radioaerosols of known characteristics. Many compressed air atomisers are commercially available for generating aerosols but they have limited utility in aerosol inhalation, either because of large droplet size, low aerosol output or high airflow rates. There is clearly a need for a versatile and economical aerosol generation/inhalation system that can produce dry labelled aerosol particles with high deep lung delivery efficiency suitable for clinical studies. BARC (Bhabha Atomic Research Centre) has developed a dry aerosol generation/delivery system which operates on compressed air and generates dry polydisperse aerosols. This system is described along with an assessment of the aerosol characteristics and efficiency for diagnosis of various respiratory disorders

  11. Toxic-oil syndrome. Gallium-67 scanning and bronchoalveolar lavage studies in patients with abnormal lung function

    International Nuclear Information System (INIS)

    De la Cruz, J.L.; Oteo, L.A.; Lopez, C.; Curto, L.M.; Burgaleta, C.; Campos, A.; Sueiro, A.

    1985-01-01

    The toxic-oil syndrome (TOS) is a multisystem disorder whose etiology and pathogenesis are as yet unknown. Lung alterations persist in a significant number of TOS patients due to the underlying vascular lesion. Computer-assisted 67 Ga scanning and bronchoalveolar lavage (BAL) studies were performed in 14 TOS patients with sustained abnormal diffusing capacity for carbon monoxide (Dco). No significant difference was observed between the 67 Ga uptake index of the TOS and control populations. Likewise, there was no significant difference in the number of effector cells recovered from the lungs of TOS patients and controls by bronchoalveolar lavage. However, a rise in IgA and IgG concentrations (p less than 0.002) and a fall in alpha 1-antitrypsin (p less than 0.05) and transferrin (p less than 0.01) were observed in the TOS group. Phospholipid and lecithin concentrations in the lavage fluid were similar for patients and controls. The alveolar macrophage function assayed in three TOS patients was normal. These observations raise new questions about the outcome of lung pathology in TOS and warrant further follow-up studies of the lung abnormalities observed

  12. Contrast enhanced CT-scans are not comparable to non-enhanced scans in emphysema quantification

    International Nuclear Information System (INIS)

    Heussel, C.P.; Kappes, J.; Hantusch, R.; Hartlieb, S.; Weinheimer, O.; Kauczor, H.-U.; Eberhardt, R.

    2010-01-01

    Systemic, interventional and surgical treatments have gone new ways in treatment of emphysema. For longitudinal therapy monitoring and as end-points for clinical trials, quantification of the disease is necessary. Sensitive, easy to measure, as well as stable and reproducible parameters have to be characterized. One parameter that might affect emphysema quantification is IV contrast enhancement, which might also be indicated. Whether or not the contrast enhanced scan is also suited for emphysema quantification or an additional scan is necessary, a retrospective analysis of 12 adult patients undergoing clinically indicated both, a non-enhanced and enhanced thin section MSCT within a week (median 0 days, range 0-4 days) was done. The in-house YACTA software was used for automatic quantification of lung and emphysema volume, emphysema index, mean lung density, and 5th, 10th, 15th percentile. After IV contrast administration, the median CT derived lung volume decreased mild by 1.1%, while median emphysema volume decreased by relevant 11%. This results in a decrease of median emphysema index by 9%. The median lung density (15th percentile) increased after contrast application by 18 HU (9 HU). CT quantification delivers emphysema values that are clearly affected by IV contrast application. The detected changes after contrast application show the results of higher density in the lung parenchyma. Therefore the amount of quantified emphysema is reduced and the lung density increased after contrast enhancement. In longitudinal analyses, non-enhanced scans should be the reference, while enhanced scans cannot be used.

  13. Bronchoscintigraphy and pulmonary clearance of {sup 99{sup m}}Tc-albumin colloid in study of mucociliary clearance

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Jann

    1998-12-31

    A radioaerosol based method for measuring MC was introduced. It included an inhalation protocol that resulted in a predominant deposition of radioaerosol in the central bronchi and two simple procedures of evaluation: 1) a visual semi-quantitative bronchoscintigraphic analysis, and 2) a quantitative analysis of the retention of the radioactivity at different points after the inhalation. The results showed that bronchoscintigraphy was a simple technique that may be used to visualize a stimulation of mucociliary transport in the central airways of individuals that do not suffer from too much mucus hypersecretion. Comparison of the MC between individuals, however, should preferably be performed by the method of quantitative analysis of the radioactivity disappearance. A change of MC was found to be one of the first detectable effects on lung function of tobacco smoking. It could be effectively detected by measurement of radioaerosol clearance both by bronchoscintigraphy and simple quantification of the MC. The MC may be either acutely enhanced, reduced or not changed by smoking. Long-term smoking impairs MC. The enhancement of MC by {beta}{sub 2}-agonists was very limited in most patients with CF. In the hope of increasing mucus transport in patients with CF, these are treated with various chest physiotherapy techniques. The radioaerosol based method of measurement of MC could assess mucus clearance by chest physiotherapy and cough. (au) 141 refs.

  14. Bronchoscintigraphy and pulmonary clearance of 99mTc-albumin colloid in study of mucociliary clearance

    International Nuclear Information System (INIS)

    Mortensen, Jann

    1998-01-01

    A radioaerosol based method for measuring MC was introduced. It included an inhalation protocol that resulted in a predominant deposition of radioaerosol in the central bronchi and two simple procedures of evaluation: 1) a visual semi-quantitative bronchoscintigraphic analysis, and 2) a quantitative analysis of the retention of the radioactivity at different points after the inhalation. The results showed that bronchoscintigraphy was a simple technique that may be used to visualize a stimulation of mucociliary transport in the central airways of individuals that do not suffer from too much mucus hypersecretion. Comparison of the MC between individuals, however, should preferably be performed by the method of quantitative analysis of the radioactivity disappearance. A change of MC was found to be one of the first detectable effects on lung function of tobacco smoking. It could be effectively detected by measurement of radioaerosol clearance both by bronchoscintigraphy and simple quantification of the MC. The MC may be either acutely enhanced, reduced or not changed by smoking. Long-term smoking impairs MC. The enhancement of MC by β 2 -agonists was very limited in most patients with CF. In the hope of increasing mucus transport in patients with CF, these are treated with various chest physiotherapy techniques. The radioaerosol based method of measurement of MC could assess mucus clearance by chest physiotherapy and cough. (au)

  15. The Cost-Utility Analysis of PET-Scan in Diagnosis and Treatment of Non-Small Cell Lung Carcinoma in Iran

    International Nuclear Information System (INIS)

    Akbari Sari, Ali; Ravaghi, Hamid; Mobinizadeh, Mohammadreza; Sarvari, Sima

    2013-01-01

    PET scan is a non-invasive, complex and expensive medical imaging technology that is normally used for the diagnosis and treatment of various diseases including lung cancer. The purpose of this study is to assess the cost effectiveness of this technology in the diagnosis and treatment of non- small cell lung carcinoma (NSCLC) in Iran. The main electronic databases including The Cochrane Library and Medline were searched to identify available evidence about the performance and effectiveness of technology. A standard decision tree model with seven strategies was used to perform the economic evaluation. Retrieved studies and expert opinion were used to estimate the cost of each treatment strategy in Iran. The costs were divided into three categories including capital costs (depreciation costs of buildings and equipment), staff costs and other expenses (including cost of consumables, running and maintenance costs). The costs were estimated in both IR-Rials and US-Dollars with an exchange rate of 10.000 IR Rials per one US Dollar according to the exchange rate in 2008. The total annual running cost of a PET scan was about 8850 to 13000 million Rials, (0.9 to 1.3 million US$). The average cost of performing a PET scan varied between 3 and 4.5 million Rials (300 to 450US$). The strategies 3 (mediastinoscopy alone) and 7 (mediastinoscopy after PET scan) were more cost-effective than other strategies, especially when the result of the CT-scan performed before PET scan was negative. The technical performance of PET scan is significantly higher than similar technologies for staging and treatment of NSCLC. In addition, it might slightly improve the treatment process and lead to a small level of increase in the quality adjusted life year (QALY) gained by these patients making it cost-effective for the treatment of NSCLC

  16. The Cost-Utility Analysis of PET-Scan in Diagnosis and Treatment of Non-Small Cell Lung Carcinoma in Iran.

    Science.gov (United States)

    Akbari Sari, Ali; Ravaghi, Hamid; Mobinizadeh, Mohammadreza; Sarvari, Sima

    2013-06-01

    PET scan is a non-invasive, complex and expensive medical imaging technology that is normally used for the diagnosis and treatment of various diseases including lung cancer. The purpose of this study is to assess the cost effectiveness of this technology in the diagnosis and treatment of non- small cell lung carcinoma (NSCLC) in Iran. The main electronic databases including The Cochrane Library and Medline were searched to identify available evidence about the performance and effectiveness of technology. A standard decision tree model with seven strategies was used to perform the economic evaluation. Retrieved studies and expert opinion were used to estimate the cost of each treatment strategy in Iran. The costs were divided into three categories including capital costs (depreciation costs of buildings and equipment), staff costs and other expenses (including cost of consumables, running and maintenance costs). The costs were estimated in both IR-Rials and US-Dollars with an exchange rate of 10.000 IR Rials per one US Dollar according to the exchange rate in 2008. The total annual running cost of a PET scan was about 8850 to 13000 million Rials, (0.9 to 1.3 million US$). The average cost of performing a PET scan varied between 3 and 4.5 million Rials (300 to 450US$). The strategies 3 (mediastinoscopy alone) and 7 (mediastinoscopy after PET scan) were more cost-effective than other strategies, especially when the result of the CT-scan performed before PET scan was negative. The technical performance of PET scan is significantly higher than similar technologies for staging and treatment of NSCLC. In addition, it might slightly improve the treatment process and lead to a small level of increase in the quality adjusted life year (QALY) gained by these patients making it cost-effective for the treatment of NSCLC.

  17. Scintiscanning and Roentgenographic Procedures in Managing Major Pulmonary Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Taplin, G. V.; Poe, N. D. [UCLA School of Medicine, Los Angeles (United States); Dore, E. K. [Memorial Hospital, Long Beach (United States); Swanson, L. A.; Isawa, T. [Los Angeles County Harbor General Hospital, Torrance (United States); Greenberg, A. [Olive View Hospital, Olive View, CA (United States)

    1969-05-15

    The need for practical methods which measure regional as well as integrated pulmonary functions is largely fulfilled by two types of scintiscanning procedure. Chest scanning after the intravenous injection of radioalbumin macroaggregates is a safe and widely applicable procedure for measuring relative arterial perfusion to all parts of the lung. The lung scan image is a photograhic pattern of pulmonary arterial blood flow. Its unique capacity to reveal localized ischemia makes scanning a valuable test of regional lung function, because oligemic lung can not conduct gas exchange normally. The scan has no diagnostic significance by itself but when interpreted in conjunction with chest films and pertinent clinical and laboratory data, scanning becomes a useful diagnostic adjunct and supplements the results of pulmonary function tests and roentgenographic procedures. Chest scanning after radioaerosol inhalation delineates the volume of aerated lung and gives a measure of regional alveolar ventilation in normal subjects and patients without obstructive airways disease. In patients with bronchogenic carcinoma, chronic bronchitis, bronchiectasis and emphysema, the inhalation scan reveals the site(s) of partial or total obstruction but does not give a true measure of alveolar ventilation. In such patients, repeated scans performed 6-18 hours later, when excessive aerosol deposits in the airways are removed by the ciliary escalator mechanism, provide more reliable information on regional disturbances of alveolar ventilation. Both types of lung scintiscanning may be performed during the same visit by using radioactive test agents of widely different energy spectra, such as {sup 99m}Tc albumin aerosol followed by {sup 131}I albumin macroaggregates. This report reviews our five years clinical experience with chest scintiscanning and roentgenography in studying nearly 5000 patients with pulmonary disease. The major categories included: suspected pulmonary embolism, proven

  18. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  19. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans

    Science.gov (United States)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  20. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration

    International Nuclear Information System (INIS)

    Wolthaus, J. W. H.; Sonke, J.-J.; Herk, M. van; Damen, E. M. F.

    2008-01-01

    Purpose: lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. Methods and Materials: 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Results: Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods <0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good

  1. Diffuse infiltrative lung disease

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.

    1984-01-01

    The authors discuss their approach to the diagnosis and management of patients with DILD. Gallium scans play a central role in this process. Not only do they help them decide whom to biopsy, but also where to biopsy. The scans can be used for the early detection of disease in a high-risk population, for following the progression and regression of disease, for the regulation of medication, and for the evaluation of therapy. Bronchoalveolar lung lavage appears to be equally sensitive. However, patients are less willing to undergo repeated fiberoptic bronchoscopies than lung scans. Both tests may prove useful, one complementing the other. Gallium imaging has also been utilized by the authors in select patients with questionable diffuse lung infiltrates roentgenographically or with a normal chest roentgenogram, chronic respiratory symptoms, and abnormal pulmonary function studies. An abnormal gallium lung scan in these clinical situations helps them select which patients have a diffuse active pulmonary process meriting transbronchial biopsies. This has proven to be of particular value in the management of older patients

  2. Feasibility of Pencil Beam Scanned Intensity Modulated Proton Therapy in Breath-hold for Locally Advanced Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Munck Af Rosenschold, Per; Perrin, Rosalind

    2017-01-01

    PURPOSE: We evaluated the feasibility of treating patients with locally advanced non-small cell lung cancer (NSCLC) with pencil beam scanned intensity modulated proton therapy (IMPT) in breath-hold. METHODS AND MATERIALS: Fifteen NSCLC patients who had previously received 66 Gy in 33 fractions wi...

  3. Robustness of the Voluntary Breath-Hold Approach for the Treatment of Peripheral Lung Tumors Using Hypofractionated Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Jenny, E-mail: jenny.dueck@psi.ch [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Knopf, Antje-Christin [Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London (United Kingdom); Lomax, Antony [Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); Department of Physics, ETH Zürich, Zürich (Switzerland); Albertini, Francesca [Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); Persson, Gitte F. [Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Josipovic, Mirjana [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Aznar, Marianne [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (Denmark); Weber, Damien C. [Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); University of Zürich, Zürich (Switzerland); Munck af Rosenschöld, Per [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark)

    2016-05-01

    Purpose: The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. Methods and Materials: Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V{sub 95%} (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. Results: A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V{sub 95%} was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V{sub 95%} (interaction term baseline/size: 2F, P=.005; 3F, P=.002). Conclusions: The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V{sub 95%} are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.

  4. Robustness of the Voluntary Breath-Hold Approach for the Treatment of Peripheral Lung Tumors Using Hypofractionated Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Dueck, Jenny; Knopf, Antje-Christin; Lomax, Antony; Albertini, Francesca; Persson, Gitte F.; Josipovic, Mirjana; Aznar, Marianne; Weber, Damien C.; Munck af Rosenschöld, Per

    2016-01-01

    Purpose: The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. Methods and Materials: Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V 95% (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. Results: A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V 95% was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V 95% (interaction term baseline/size: 2F, P=.005; 3F, P=.002). Conclusions: The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V 95% are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.

  5. Percutaneous CT-guided lung biopsy: sequential versus spiral scanning. A randomized prospective study

    International Nuclear Information System (INIS)

    Ghaye, B.; Dondelinger, R.F.; Dewe, W.

    1999-01-01

    The aim of this study was to evaluate in a prospective and randomized study spiral versus sequential scanning in the guidance of percutaneous lung biopsy. Fifty thoracic lesions occurring in 48 patients were biopsied by a senior and a junior operator. Six different time segments of the procedure were measured. Scanning mode versus length of procedure, pathological results, irradiation and complications were evaluated. Total duration of the procedure and of the first sampling was significantly longer with spiral CT for the senior operator (p < 0.004). No significant time difference was observed for the junior operator. Diameter of the lesion, depth of location, position of the patient and needle entry site did not influence the results. The sensitivity was 90.9, specificity 100, positive predictive value 100 and negative predictive value 60 % for spiral CT, and 94.7, 100, 100 and 85.7 % for sequential CT, respectively. Eleven pneumothoraces and ten perinodular hemorrhages were seen with spiral CT and six and ten, respectively, with sequential CT. The mean dose of irradiation was 4027 mAs for spiral CT and 2358 mAs for conventional CT. Spiral CT does neither reduce procedure time nor the rate of complications. Pathological results do not differ compared with sequential CT, and total dose of irradiation is higher with spiral scanning. (orig.)

  6. Inhalation scan using sup(81m)Kr-gas

    International Nuclear Information System (INIS)

    Kobayashi, Hidetoshi; Sasaki, Tsuneo; Senda, Kohei; Ohara, Ken; Kaii, Osamu

    1979-01-01

    Inhalation scan using sup(81m) Kr-gas was performed in the various pulmonary diseases, in order to examine the ventilatory function of the lung after the measurement of ratio of expiratory ratio in the normal and diseased lung field. Inhalation scan is applied to the various pulmonary diseases such as lung cancer, radiation pulmonary fibrosis and chronic obstructive pulmonary disease. In cases of lung cancer, there is disturbance of respiratory function at the site of lesion when compared to the remainder of the normal lung fields. In cases of chronic obstructive pulmonary disease, the inhalation scan is performed at three states such as pre-, in- and post-attack of the disease. During the asthma attack the respiratory function is disturbed considerably when compared to the pre- and post-attack states. In each pulmonary disease, the ratio of expiratory ratio is measured from the histogram and pulmonary function is evaluated. (author)

  7. The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; McNair, Helen A.; Cronin, Bernadette; Courbon, Frederic; Bedford, James L.; Brada, Michael

    2005-01-01

    Background and purpose: Patients with non-small cell lung cancer (NSCLC) often have inhomogeneous lung perfusion. Radiotherapy planning computed tomography (CT) scans have been accurately co-registered with lung perfusion single photon emission computed tomography (SPECT) scans to design radiotherapy treatments which limit dose to healthy 'perfused' lung. Patients and methods: Patients with localised NSCLC had CT and SPECT scans accurately co-registered in the planning system. The SPECT images were used to define a volume of perfused 'functioning' lung (FL). Inverse planning software was used to create 3D-conformal plans, the planning objective being either to minimise the dose to whole lungs (WL) or to minimise the dose to FL. Results: Four plans were created for each of six patients. The mean difference in volume between WL and FL was 1011.7 cm 3 (range 596.2-1581.1 cm 3 ). One patient with bilateral upper lobe perfusion deficits had a 16% reduction in FLV 2 (the percentage volume of functioning lung receiving ≥20 Gy). The remaining patients had inhomogeneous perfusion deficits such that inverse planning was not able to sufficiently optimise beam angles to avoid functioning lung. Conclusion: SPECT perfusion images can be accurately co-registered with radiotherapy planning CT scans and may be helpful in creating treatment plans for patients with large perfusion deficits

  8. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    International Nuclear Information System (INIS)

    Nelson, Geoff; Fahrig, Rebecca; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian

    2013-01-01

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  9. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  10. Robustness of the Voluntary Breath-Hold Approach for the Treatment of Peripheral Lung Tumors Using Hypofractionated Pencil Beam Scanning Proton Therapy

    DEFF Research Database (Denmark)

    Dueck, Jenny; Knopf, Antje-Christin; Lomax, Antony

    2016-01-01

    PURPOSE: The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delive...

  11. Early detection of lung cancer using ultra-low-dose computed tomography in coronary CT angiography scans among patients with suspected coronary heart disease.

    Science.gov (United States)

    Zanon, Matheus; Pacini, Gabriel Sartori; de Souza, Vinicius Valério Silveiro; Marchiori, Edson; Meirelles, Gustavo Souza Portes; Szarf, Gilberto; Torres, Felipe Soares; Hochhegger, Bruno

    2017-12-01

    To assess whether an additional chest ultra-low-dose CT scan to the coronary CT angiography protocol can be used for lung cancer screening among patients with suspected coronary artery disease. 175 patients underwent coronary CT angiography for assessment of coronary artery disease, additionally undergoing ultra-low-dose CT screening to early diagnosis of lung cancer in the same scanner (80kVp and 15mAs). Patients presenting pulmonary nodules were followed-up for two years, repeating low-dose CTs in intervals of 3, 6, or 12 months based on nodule size and growth rate in accordance with National Comprehensive Cancer Network guidelines. Ultra-low-dose CT identified 71 patients with solitary pulmonary nodules (41%), with a mean diameter of 5.50±4.00mm. Twenty-eight were >6mm, and in 79% (n=22) of these cases they were false positive findings, further confirmed by follow-up (n=20), resection (n=1), or biopsy (n=1). Lung cancer was detected in six patients due to CT screening (diagnostic yield: 3%). Among these, four cases could not be detected in the cardiac field of view. Most patients were in early stages of the disease. Two patients diagnosed at advanced stages died due to cancer complications. The addition of the ultra-low-dose CT scan represented a radiation dose increment of 1.22±0.53% (effective dose, 0.11±0.03mSv). Lung cancer might be detected using additional ultra-low-dose protocols in coronary CT angiography scans among patients with suspected coronary artery disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Weight preserving image registration for monitoring disease progression in lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Haseem, Ashraf

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan...... the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans...

  13. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Kavanagh, Brian; Vinogradskiy, Yevgeniy; Gaspar, Laurie; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Garg, Kavita [Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20 lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.

  14. Tumor scanning with /sup 57/Co-bleomycin

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, S; Hasegawa, Y; Matsuda, Minoru; Ho, T; Doi, O [Osaka Prefectural Center for Adult Diseases (Japan)

    1975-06-01

    The clinical application of /sup 57/Co-bleomycin as a tumor scanning radiopharmaceutical was firstly reported by Nouel and Maeda respectively. The authors conducted studies on the diagnostic significance of this tumor scanning agent and presented the results obtained in 40 patients with malignant and non malignant lesions. Six hours and 24 hours after the injection of 500 ..mu..Ci of /sup 57/Co-bleomycin, scintigrams were taken with a 3-inch scintiscanner. Positive scans were found in 20 out of 36 patients with various malignant tumors. Of 20 patients with lung cancer, positive scans were obtained in 17 cases (85%) and of 6 with breast cancer, 3 cases showed positive scans. False negative scans were obtained in another 10 cases of malignant tumors (3 cases of thyroid carcinoma, 4 cases of hepatoma, and 1 case each of gastric carcinoma, peritoneal carcinomatosis, and reticulum cell sarcoma). Of 4 patients with non malignant disease, one case of pulmonary tuberculosis showed a positive scan. In 8 cases of lung cancer and 6 of breast cancer, the relationship between the size of the excised tumor and the scintigram findings was studied. The smallest tumors detected by scintigram were 2 cm in lung cancer and 3.2 cm in breast cancer.

  15. Respiratory gated lung CT using 320-row area detector CT

    International Nuclear Information System (INIS)

    Sakamoto, Ryo; Noma, Satoshi; Higashino, Takanori

    2010-01-01

    Three hundred and twenty-row Area Detector CT (ADCT) has made it possible to scan whole lung field with prospective respiratory gated wide volume scan. We evaluated whether the respiratory gated wide volume scan enables to reduce motion induced artifacts in the lung area. Helical scan and respiratory gated wide volume scan were performed in 5 patients and 10 healthy volunteers under spontaneous breathing. Significant reduction of motion artifact and superior image quality were obtained in respiratory gated scan in comparison with helical scan. Respiratory gated wide volume scan is an unique method using ADCT, and is able to reduce motion artifacts in lung CT scans of patients unable to suspend respiration in clinical scenes. (author)

  16. Pulmonary scanning: quantitative evaluation of pulmonary arterial flow

    Energy Technology Data Exchange (ETDEWEB)

    Papaleo Netto, M; Fujioka, T [Sao Paulo Univ. (Brazil). Faculdade de Medicina; Dias Neto, A; Carvalho, N [Sao Paulo Univ. (Brazil). Centro de Medicina Nuclear

    1974-01-01

    From ten normal subjects of both sexes, the quantitative regional blood flow of the pulmonary artery was evaluated using scanning with macroaggregated radio-iodinated (/sup 131/I) albumin. It was possible to conclude that: the digital recording of data (counts/cm/sup 2/), from any particular area of interest, is the best method for this evaluation; the lung, even being a thick organ, can be well studied by quantitative scanning, since its structure doesn't hinder the passage of radiations because it is covered only by the thoracic wall; scanning can be used to evaluate regional perfusion of the pulmonary artery, based on the proportionality between density of aggregates and blood flux in the different areas; the concentration of macroaggregates on the lung's superior section never reaches more than 40% of the radioactivity of the whole lung; there is no significant difference between left and right lungs, concerning the relationship between radioactivity on the superior section and the total area and quantitative analysis of pulmonary artery flow by means of scanning is a possible, reliable, and safe technique, without distress for the patient.

  17. Pulmonary scanning: quantitative evaluation of pulmonary arterial flow

    International Nuclear Information System (INIS)

    Papaleo Netto, M.; Fujioka, T.; Dias Neto, A.; Carvalho, N.

    1974-01-01

    From ten normal subjects of both sexes, the quantitative regional blood flow of the pulmonary artery was evaluated using scanning with macroaggregated radio-iodinated ( 131 I) albumin. It was possible to conclude that: the digital recording of data (counts/cm 2 ), from any particular area of interest, is the best method for this evaluation; the lung, even being a thick organ, can be well studied by quantitative scanning, since its structure doesn't hinder the passage of radiations because it is covered only by the thoracic wall; scanning can be used to evaluate regional perfusion of the pulmonary artery, based on the proportionality between density of aggregates and blood flux in the different areas; the concentration of macroaggregates on the lung's superior section never reaches more than 40% of the radioactivity of the whole lung; there is no significant difference between left and right lungs, concerning the relationship between radioactivity on the superior section and the total area and quantitative analysis of pulmonary artery flow by means of scanning is a possible, reliable and safe technique, without distress for the patient [pt

  18. Weight preserving image registration for monitoring disease progression in lung CT.

    Science.gov (United States)

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  19. CT Scanning in Identification of Sheep Cystic Echinococcosis.

    Science.gov (United States)

    Mao, Rui; Qi, Hongzhi; Pei, Lei; Hao, Jie; Dong, Jian; Jiang, Tao; Ainiwaer, Abudula; Shang, Ge; Xu, Lin; Shou, Xi; Zhang, Songan; Wu, Ge; Lu, Pengfei; Bao, Yongxing; Li, Haitao

    2017-01-01

    We aim to determine the efficiency of CT in identification of cystic echinococcosis in sheep. Fifty-three sheep with liver cysts confirmed by ultrasonography were subject to CT scan to evaluate the number, size, and type of the cysts in liver and lung, confirmed using necropsy. The correlation of numbers between liver cysts and lung cysts was calculated using Pearson analysis. Necropsy indicated a 98% consensus on size, location, number, and activity compared with CT scan. The viable cysts were 53.1% and 50.6% in the liver and lung, respectively. Among the cysts in liver, 35.5%, 9.5%, 5.7%, 10.2%, and 39.1% were Types CE1, CE2, CE3, CE4, and CE5, respectively. The cysts in the lungs, 17.4%, 26.9%, 12.1%, 11.6%, and 32.1%, were Types CE1, CE2, CE3, CE4, and CE5, respectively. A significant correlation was noticed between the number of cysts in liver and those in lung ( R = 0.770, P < 0.001). CT scan is a suitable tool in determining the size and type of cystic hydatid cysts in both liver and lung of sheep. A significant correlation was noticed between the numbers in liver and lung, indicating that lung infection was likely due to the expansion of liver cyst burden pressure.

  20. Production of lyophilized macroaggregated albumin (MAA) kits to be labelled with sup(99m)Tc for lung scanning

    International Nuclear Information System (INIS)

    Hamada, E.S.; Muramoto, E.; Brito, R.H.; Sosa de Pereira, N.P.; Almeida, M.A.T. de.

    1991-06-01

    Among the various macroaggregation procedures described in the literature, we have developed a rapid and reliable method for the routine production of lyophilized Sn-Macroaggregated Albumin (Sn-MAA) kits to be labelled with 99m Tc for lung perfusion scanning. The reaction vial contains a lyophilized suspension having the following components: 1,0mg of Aggregated Human Serum Albumin (MAA), 0,12mg of hydrated stannous chloride (SnCl 2 .2H 2 O), 5,0mg of Normal Human Serum Albumin (HSA) and 1% of Tween 80 as emulsifying agent. In this method the Sn-MAA kits were performed in a single step process, and a consistent suitable range of particle size (10-80 mu) was obtained. The size of the particles and the effect of storage time on the stability for the lyophilized kits were also investigated. The radiochemical purity, higher than 98% in 99m Tc Macroaggregated was determined by using ascending paper chromatography (Whatman n.3 and 85% methanol): biodistribution studies in rats have shown the high uptake in the lungs 85%/D with low liver uptake 2%/d and lung-liver ratios 98 ± 1%. Excellent human lung images for clinical practice were obtained with these kits, which are prepared at IPEN-CNEN/SP for brazilian physicians. (author)

  1. Pulmonary suture abscess with false-positive 18F-fluorodeoxyglucose positron emission scan mimicking lung cancer recurrence.

    Science.gov (United States)

    Iwasaki, Teruo; Nakagawa, Katsuhiro; Katsura, Hiroshi; Nakane, Shigeru; Kawahara, Kunimitsu; Fukuda, Haruyuki

    2006-08-01

    We present the case of a 57-year-old woman with pulmonary suture abscess. She had undergone right S3 segmentectomy for early lung adenocarcinoma 7 years before and right breast-conserving surgery for invasive ductal carcinoma 5 months previously, followed by irradiation plus endocrine therapy. Chest radiography and computed tomography revealed an irregular mass (3.5 cm in diameter) between the residual S1 segment and the middle lobe, neighboring the staple line of the segmentectomy. 18F-fluorodeoxyglucose uptake into the mass increased, seen by positron emission scans. Therefore, we could not rule out the possibility of local recurrence of lung cancer and resected it. Pathologically and microbiologically, the mass was a suture abscess arising around the nylon suture of the previous segmentectomy. This lesion was the result of a foreign-body reaction, as confirmed by polarized microscopy. Moreover, titanium staples at the segmentectomy and breast-conserving surgery may also have contributed to this condition.

  2. F-18 FDG PET scan findings in patients with pulmonary involvement in the hypereosinophilic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon; Kim, Tae Hoon; Yun, Mi Jin [College of Medicine, Yonsei University, Seoul (Korea, Republic of)] (and others)

    2005-08-15

    Hypereosinophilic syndrome (HES) is an infiltrative disease of eosinophils affecting multiple organs including the lung. F-18 2-fluoro-2-deoxyglucose (F-18 FDG) may accumulate at sites of inflammation or infection, making interpretation of whole body PET scan difficult in patients with cancer. This study was to evaluate the PET findings of HES with lung involvement and to find out differential PET features between lung malignancy and HES with lung involvement. F-18 FDG PET and low dose chest CT scan was performed for screening of lung cancer. Eight patients who showed ground-glass attenuation (GGA) and consolidation on chest CT scan with peripheral blood eosinophilia were included in this study. The patients with history of parasite infection, allergy and collagen vascular disease were excluded. CT features and FDG PET findings were meticulously evaluated for the distribution of GGA and consolidation and nodules on CT scan and mean and maximal SUV of abnormalities depicted on F-18 FDG PET scan. In eight patients, follow-up chest CT scan and FDG PET scan were done one or two weeks after initial study. F-18 FDG PET scan identified metabolically active lesions in seven out of eight patients. Maximal SUV was ranged from 2.8 to 10.6 and mean SUV was ranged from 2.2 to 7.2. Remaining one patient had maximal SUV of 1.3. On follow-up FDG PET scan taken on from one to four weeks later showed decreased degree of initially noted FDG uptakes or migration of previously noted abnormal FDG uptakes. Lung involvement in the HES might be identified as abnormal uptake foci on FDG PET scan mimicking lung cancer. Follow-up FDG PET and CT scan for the identification of migration or resolution of abnormalities and decrement of SUV would be of help for the differentiation between lung cancer and HES with lung involvement.

  3. F-18 FDG PET scan findings in patients with pulmonary involvement in the hypereosinophilic syndrome

    International Nuclear Information System (INIS)

    Lee, Jae Hoon; Kim, Tae Hoon; Yun, Mi Jin

    2005-01-01

    Hypereosinophilic syndrome (HES) is an infiltrative disease of eosinophils affecting multiple organs including the lung. F-18 2-fluoro-2-deoxyglucose (F-18 FDG) may accumulate at sites of inflammation or infection, making interpretation of whole body PET scan difficult in patients with cancer. This study was to evaluate the PET findings of HES with lung involvement and to find out differential PET features between lung malignancy and HES with lung involvement. F-18 FDG PET and low dose chest CT scan was performed for screening of lung cancer. Eight patients who showed ground-glass attenuation (GGA) and consolidation on chest CT scan with peripheral blood eosinophilia were included in this study. The patients with history of parasite infection, allergy and collagen vascular disease were excluded. CT features and FDG PET findings were meticulously evaluated for the distribution of GGA and consolidation and nodules on CT scan and mean and maximal SUV of abnormalities depicted on F-18 FDG PET scan. In eight patients, follow-up chest CT scan and FDG PET scan were done one or two weeks after initial study. F-18 FDG PET scan identified metabolically active lesions in seven out of eight patients. Maximal SUV was ranged from 2.8 to 10.6 and mean SUV was ranged from 2.2 to 7.2. Remaining one patient had maximal SUV of 1.3. On follow-up FDG PET scan taken on from one to four weeks later showed decreased degree of initially noted FDG uptakes or migration of previously noted abnormal FDG uptakes. Lung involvement in the HES might be identified as abnormal uptake foci on FDG PET scan mimicking lung cancer. Follow-up FDG PET and CT scan for the identification of migration or resolution of abnormalities and decrement of SUV would be of help for the differentiation between lung cancer and HES with lung involvement

  4. Association of non-traumatic complex regional pain syndrome with adenocarcinoma lung on 99mTc-MDP bone scan

    International Nuclear Information System (INIS)

    Damle, Nishikant A.; Tripathi, Madhavi; Singhal, Abhinav; Bal, Chandrasekhar; Praveen Kumar; Kandasamy, Devasenathipathi; Jana, Manisha

    2012-01-01

    Complex regional pain syndrome (CRPS) is usually associated with trauma. Rarely, it may be seen in association with malignancies. We present here the bone scan and X-ray findings in the case of a 56-year-male-patient with adenocarcinoma lung who also had non-traumatic CRPS without involvement of the stellate ganglion. The case highlights the fact that spontaneous development of reflex sympathetic dystrophy may be associated with a neoplastic etiology. (author)

  5. Cystic Fibrosis: Are Volumetric Ultra-Low-Dose Expiratory CT Scans Sufficient for Monitoring Related Lung Disease?

    DEFF Research Database (Denmark)

    Loeve, Martine; Lequin, Maarten H; Bruijne, Marleen de

    2009-01-01

    Purpose: To assess whether chest computed tomography (CT) scores from ultra-low-dose end-expiratory scans alone could suffice for assessment of all cystic fibrosis (CF)-related structural lung abnormalities. Materials and Methods: In this institutional review board–approved study, 20 patients...... with CF aged 6–20 years (eight males, 12 females) underwent low-dose end-inspiratory CT and ultra-low-dose end-expiratory CT. Informed consent was obtained. Scans were randomized and scored by using the Brody-II CT scoring system to assess bronchiectasis, airway wall thickening, mucus plugging......-Altman plots. Results: Median age was 12.6 years (range, 6.3–20.3 years), median forced expiratory volume in 1 second was 100% (range, 46%–127%) of the predicted value, and median forced vital capacity was 99% (range, 61%–123%) of the predicted value. Very good agreement was observed between end...

  6. Radiopharmaceutical development

    International Nuclear Information System (INIS)

    Zielinski, F.W.; Robinson, G.D. Jr.; MacDonald, N.S.

    1976-01-01

    Progress is reported in the following areas of research: compact cyclotron production of 123 I iodide for radiopharmaceutical synthesis; synthesis of 123 I-labeled compounds for myocardial imaging and evaluation of kidney and liver functions; 62 Cu: a short-lived, generator-produced, positron emitting radionuclide for radiopharmaceuticals; dry radioaerosols for lung airway imaging; and improved particulate agents for perfusion imaging

  7. Lung Cancer Screening

    Science.gov (United States)

    ... detected on a lung CT scan. If your doctor finds another health problem, you may undergo further testing and, possibly, invasive treatments that wouldn't have been pursued if you hadn't had lung cancer ... need to: Inform your doctor if you have a respiratory tract infection. If ...

  8. Exclusion of pneumothorax by radionuclide lung scan

    International Nuclear Information System (INIS)

    Weiss, P.E.

    1986-01-01

    A case is reported in which ventilation lung imaging was useful in excluding a large pneumothorax. This technique may be helpful in patients with emphysema in whom exclusion of pneumothorax by radiographic criteria might be difficult

  9. On the interplay effects with proton scanning beams in stage III lung cancer.

    Science.gov (United States)

    Li, Yupeng; Kardar, Laleh; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong

    2014-02-01

    To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Despite the presence of interplay effect, the

  10. On the interplay effects with proton scanning beams in stage III lung cancer

    International Nuclear Information System (INIS)

    Li, Yupeng; Kardar, Laleh; Liao, Li; Lim, Gino; Li, Xiaoqiang; Li, Heng; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Zhang, Xiaodong; Cao, Wenhua; Chang, Joe Y.; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.

    2014-01-01

    Purpose: To assess the dosimetric impact of interplay between spot-scanning proton beam and respiratory motion in intensity-modulated proton therapy (IMPT) for stage III lung cancer. Methods: Eleven patients were sampled from 112 patients with stage III nonsmall cell lung cancer to well represent the distribution of 112 patients in terms of target size and motion. Clinical target volumes (CTVs) and planning target volumes (PTVs) were defined according to the authors' clinical protocol. Uniform and realistic breathing patterns were considered along with regular- and hypofractionation scenarios. The dose contributed by a spot was fully calculated on the computed tomography (CT) images corresponding to the respiratory phase that the spot is delivered, and then accumulated to the reference phase of the 4DCT to generate the dynamic dose that provides an estimation of what might be delivered under the influence of interplay effect. The dynamic dose distributions at different numbers of fractions were compared with the corresponding 4D composite dose which is the equally weighted average of the doses, respectively, computed on respiratory phases of a 4DCT image set. Results: Under regular fractionation, the average and maximum differences in CTV coverage between the 4D composite and dynamic doses after delivery of all 35 fractions were no more than 0.2% and 0.9%, respectively. The maximum differences between the two dose distributions for the maximum dose to the spinal cord, heart V40, esophagus V55, and lung V20 were 1.2 Gy, 0.1%, 0.8%, and 0.4%, respectively. Although relatively large differences in single fraction, correlated with small CTVs relative to motions, were observed, the authors' biological response calculations suggested that this interfractional dose variation may have limited biological impact. Assuming a hypofractionation scenario, the differences between the 4D composite and dynamic doses were well confined even for single fraction. Conclusions: Despite

  11. Clinical Significance of 99mTc-DPTA Ventilation Scan in Patient with Bronchiectasis

    International Nuclear Information System (INIS)

    Park, Choon Sik; Peak, Sung Ho; Uh, Soo Taek; Na, Hyun; Choi, Deuk Lin; Kim, Gi Jeong

    1985-01-01

    To evaluate the clinical significance of lung ventilation scan using 99m Tc-DTPA in patient with bronchiectasis, we compared the involvement area of bronchogram and lung ventilation scan according to lobar and segmental distribution. There were no correlation between impairment of pulmonary function test and the number of branchiectatic lobe and segment(p>0.5). Lung ventilation scan showed 66.7% of sensitivity, 100% of specificity, and 91.7 g of accuracy according to lobar distribution, and 51.9 of sensitivity, 96.9% of specificity, and 88.9% of accuracy according to segmental distribution. These results suggest that lung ventilation scan can be used as diagnostic tool in patient with bronchiectasis in whom bronchogram is not tolerable.

  12. Pseudo tumors of the lung after lung volume reduction surgery.

    Science.gov (United States)

    Oey, Inger F; Jeyapalan, Kanagaratnam; Entwisle, James J; Waller, David A

    2004-03-01

    We describe 2 patients who underwent lung volume reduction surgery, who postoperatively had computed tomographic scans that showed symptomatic mass lesions suggestive of malignancy and an inhaled foreign body. Investigations excluded these conditions with the remaining likely diagnosis of pseudotumor secondary to buttressing material. These potential sequelae of lung volume reduction surgery should be recognized in follow-up investigations.

  13. Parietal pleural invasion/adhesion of subpleural lung cancer: Quantitative 4-dimensional CT analysis using dynamic-ventilatory scanning

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Kotaro, E-mail: ksakuma@ohara-hp.or.jp [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan); Yamashiro, Tsuneo, E-mail: clatsune@yahoo.co.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Moriya, Hiroshi, E-mail: hrshmoriya@gmail.com [Department of Radiology, Ohara General Hospital, 6-11 Omachi, Fukushima City, Fukushima 960-8611 (Japan); Murayama, Sadayuki, E-mail: sadayuki@med.u-ryukyu.ac.jp [Department of Radiology, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215 (Japan); Ito, Hiroshi, E-mail: h-ito@fmu.ac.jp [Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima 960-1295 (Japan)

    2017-02-15

    Highlights: • 4DCT can be used for assessment of pleural invasion/adhesion by lung cancer. • Quantitative 4DCT indices of lung cancer and adjacent structures are described. • An automatic analysis of pleural invasion/adhesion would be developed in the future. - Abstract: Purpose: Using 4-dimensional dynamic-ventilatory scanning by a 320-row computed tomography (CT) scanner, we performed a quantitative assessment of parietal pleural invasion and adhesion by peripheral (subpleural) lung cancers. Methods: Sixteen patients with subpleural lung cancer underwent dynamic-ventilation CT during free breathing. Neither parietal pleural invasion nor adhesion was subsequently confirmed by surgery in 10 patients, whereas the other 6 patients were judged to have parietal pleural invasion or adhesion. Using research software, we tracked the movements of the cancer and of an adjacent structure such as the rib or aorta, and converted the data to 3-dimensional loci. The following quantitative indices were compared by the Mann-Whitney test: cross-correlation coefficient between time curves for the distances moved from the inspiratory frame by the cancer and the adjacent structure, the ratio of the total movement distances (cancer/adjacent structure), and the cosine similarities between the inspiratory and expiratory vectors (from the cancer to the adjacent structure) and between vectors of the cancer and of the adjacent structure (from inspiratory to expiratory frames). Results: Generally, the movements of the loci of the lung cancer and the adjacent structure were similar in patients with parietal pleural invasion/adhesion, while they were independent in patients without. There were significant differences in all the parameters between the two patient groups (cross-correlation coefficient and the movement distance ratio, P < 0.01; cosine similarities, P < 0.05). Conclusion: These observations suggest that quantitative indices by dynamic-ventilation CT can be utilized as a

  14. High-resolution CT of the lungs: Anatomic-pathologic correlation

    International Nuclear Information System (INIS)

    Stein, M.G.; Webb, W.R.; Finkbeiner, W.; Gamsu, G.

    1986-01-01

    The interpretation of thin-section (1.5-mm), high-resolution CT scans of the lungs has been limited by lack of direct radiologic and pathologic correlation. The author scanned fresh inflated isolated lungs from ten healthy and five diseased subjects using thin-section, high-resolution techniques. The lungs were then fixed by inflation with endobronchial Formalin. Gough sections (1 mm thick) were obtained at the same levels as the CT scans. In healthy subjects, secondary lobules were identified by the presence of visible interlobular septa and central arterioles. In some patients with disease, septal thickening was visible. In patients with honeycombing cystic areas of destroyed lung were seen, along with areas of fibrosis. Emphysema was well evaluated. Thin-section, high-resolution CT can define lung architecture and may resolve mild changes of the interstitium

  15. The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial.

    Science.gov (United States)

    Guldbrandt, Louise Mahncke

    2015-03-01

    This PhD thesis is based on the project "The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial", performed in Denmark in 2010-2013. The thesis includes four papers and focuses on early lung cancer diagnostics in general practice. A total of 4200 new cases of lung cancer are diagnosed in Denmark annually. The stage of the disease is an important prognostic factor; thus, the opportunity for curative treatment declines with more advanced tumour stage. Lung cancer patients in Denmark (like in the UK) have a poorer prognosis than lung cancer patients in other European countries. One explanation could be delayed diagnosis. A fast-track pathway was therefore introduced in an attempt to expedite the diagnosis of cancer. However, it seems that not all patients can be diagnosed through this pathway. In order to ensure fast and early lung cancer diagnosis, it is crucial to examine the initial diagnostic process in general and the role general practice plays in lung cancer diagnostics in particular. The specific areas of investigation include the pathways to diagnosis, the characteristics of patients who are at special risk of delayed diagnosis and the level of prediagnostic activity in general practice. A chest radiograph is often the first choice in the investigation of lung cancer. Unfortunately, radiographs are less suitable for central and small tumours. Low-dose computer tomography (LDCT), however, has a high sensitivity for lung cancer which implies that it can be used to detect patients with localised, potentially curable disease. The aim of this thesis was to increase our knowledge of the initial stages of lung cancer diagnostics in general practice. The thesis also examined the effect of a direct referral from general practice to an additional diagnostic test, the LDCT. The aims of this thesis were: 1) To describe Danish patients' pathways to the diagnosis of lung cancer in general and

  16. Production of Technegas and comparison of it with the other agents in ventilation studies

    International Nuclear Information System (INIS)

    Li Beilei; Chen Shaoliang

    2002-01-01

    Technegas is a suspension of ultrafine 99 Tc m labelled carbon particles produced in an atmosphere of high-quality argon. It is cheap, always available and easy to use, delivers a low radiation dose, and for the most parts, provides good quality lung images. In normal lungs, there was no difference radios in the lungs between Technegas and inhaled 81 Kr m , 133 Xe. Compared with ordinary radioaerosols, it causes fewer and less intense foci of parasitic bronchial activity, and assures good peripheral penetration and alveolar deposition. And Technegas ventilation imaging also has many advantages over other methods, such as X-ray examinations and bronchoscopy

  17. CT evaluation of cavitary lung lesions: focused on lung cancer, tuberculosis and abscess

    International Nuclear Information System (INIS)

    Lee, Young Rahn; Kim, Myung Gyu; Kang, Eun Young; Suh, Won Hyuck

    1992-01-01

    Differential diagnosis of cavitary lung lesions is frequently problematic. We studied 35 patients with cavitary lung lesions, consisting of lung cancer (17 patients), pulmonary tuberculosis (11 patients), and lung abscess (7 patients). We analysed CT scans in terms of irregularities of the cavity wall, maximum wall thickness, the presence of air-fluid level, location of the cavity within the mass, number of cavities within the mass, size of the cavity and the presence of calcification within the mass. Cancer cavity showed irregular inner (100%) and outer margins (100%), and thick wall (mean, 1.94 cm), eccentrical location (94%) and multiplicity within a mass (38%). Tuberculous cavity showed smooth inner (56%) and irregular outer margins (75%), thin wall (mean 0.96 cm), central location (62%), and multiplicity in one patient (36%). Abscess cavity showed irregular inner (57%) and outer margins (91%), relatively thin wall (mean 1.0 cm), central location (57%), and air-fluid level (86%). CT scan could differentiate malignant lesions from benign condition such as tuberculosis and lung abscess by observing characteristics of the cavities

  18. CT evaluation of cavitary lung lesions: focused on lung cancer, tuberculosis and abscess

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Rahn; Kim, Myung Gyu; Kang, Eun Young; Suh, Won Hyuck [College of Medicine, Korea University, Seoul (Korea, Republic of)

    1992-11-15

    Differential diagnosis of cavitary lung lesions is frequently problematic. We studied 35 patients with cavitary lung lesions, consisting of lung cancer (17 patients), pulmonary tuberculosis (11 patients), and lung abscess (7 patients). We analysed CT scans in terms of irregularities of the cavity wall, maximum wall thickness, the presence of air-fluid level, location of the cavity within the mass, number of cavities within the mass, size of the cavity and the presence of calcification within the mass. Cancer cavity showed irregular inner (100%) and outer margins (100%), and thick wall (mean, 1.94 cm), eccentrical location (94%) and multiplicity within a mass (38%). Tuberculous cavity showed smooth inner (56%) and irregular outer margins (75%), thin wall (mean 0.96 cm), central location (62%), and multiplicity in one patient (36%). Abscess cavity showed irregular inner (57%) and outer margins (91%), relatively thin wall (mean 1.0 cm), central location (57%), and air-fluid level (86%). CT scan could differentiate malignant lesions from benign condition such as tuberculosis and lung abscess by observing characteristics of the cavities.

  19. Computer aided detection system for lung cancer using computer tomography scans

    Science.gov (United States)

    Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.

    2018-04-01

    Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.

  20. Computer-assisted solid lung nodule 3D volumetry on CT. Influence of scan mode and iterative reconstruction. A CT phantom study

    International Nuclear Information System (INIS)

    Coenen, Adriaan; Honda, Osamu; Tomiyama, Noriyuki; Jagt, Eric J. van der

    2013-01-01

    The objective of this study was to evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution mode) and iterative reconstructions [0, 50 and 100% blending of adaptive statistical iterative reconstruction (ASiR) and filtered back projection]. The nodule volumes were calculated using semiautomatic software and compared with the assumed volume from the nodules. The mean absolute and relative percentage error improved when using iterative reconstruction especially when using the conventional scan mode; however, this effect was not significant. Significant reduction in volume overestimation was observed when using high-resolution scan mode (P=0.011). The high-resolution mode significantly reduces the volume overestimation of 3D volumetry. Iterative reconstruction shows a reduction in volume overestimation and error margin especially with the conventional scan mode; however, this effect was not significant. (author)

  1. Study of lung perfusion in colagenosis

    Energy Technology Data Exchange (ETDEWEB)

    Macedo de Carvalho, A C; Calegaro, J U.M. [Fundacao Hospitalar do Distrito Federal, Distrito Federal (Brazil). Unidade de Medicina Nuclear

    1982-07-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized.

  2. Study of lung perfusion in colagenosis

    International Nuclear Information System (INIS)

    Macedo de Carvalho, A.C.; Calegaro, J.U.M.

    1982-01-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized. (author) [es

  3. Clearance of technetium-99m-labeled DTPA in hyperthyroidism without clinical evidence of lung disease, and relation to pulmonary function

    International Nuclear Information System (INIS)

    Guldiken, S.; Tugrul, A.; Altiay, G.; Hacimahmutoglu, S.; Durmus-Altun, G.

    2005-01-01

    The mechanisms of dyspnea and exercise intolerance have not been fully elucidated. We aimed to investigate the clearance rate of technetium-99m diethyltriaminepentaaceticacid (Tc-99m DTPA) from lungs in hyperthyroid patients without clinical evidence of lung disease and to explore the interactions between their Tc-99m DTPA radioaerosol lung scintigraphy, spirometric measurements, and the levels of thyroid hormones. We studied 19 hyperthyroid patients and 16 sex- and age-matched controls. Thyroid hormone levels were assessed. Spirometric lung function tests, diffusing capacity of the lung for carbon monoxide (DLCO) and the clearance rate of Tc-99m DTPA were performed in all participants. Ratio of DLCO value to the alveolar ventilation (DLCO/VA) and the means of half-time (T 1/2 ) of Tc-99m DTPA clearance rate, which were used to evaluate alveolar-capillary membrane permeability, were calculated. There were no statistical differences between spirometric parameters (vital capacity (VC), force vital capacity (FVC), one second forced expiratory volume (FEV 1 )/FVC, mean forced expiratory flow during the middle of FVC (FEF 25-75)) of the two groups (p>0.05). Although the mean FEV 1 level was significantly lower in the hyperthyroid patients than the control subjects (p 1 was only less than 80 percent of the predicted value. No significant difference in the means of DLCO, DLCO/VA or T 1/2 values of Tc-99m DTPA clearance was observed between the two groups (p>0.05). In hyperthyroid patients, there was a positive relation between DLCO/VA, DLCO/VA% and T 1/2 values of Tc-99m DTPA clearance (p 1/2 values of Tc-99m DTPA clearance in hyperthyroid group (p>0.05). We conclude that increased thyroid hormones have no effect on permeability of alveolar-capillary membrane in hyperthyroid patients. (author)

  4. Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data.

    Science.gov (United States)

    Takahashi, Wataru; Mori, Shinichiro; Nakajima, Mio; Yamamoto, Naoyoshi; Inaniwa, Taku; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji; Nakagawa, Keiichi; Kamada, Tadashi

    2014-11-11

    To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared. For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.

  5. Clearance of technetium-99m-DTPA and HRCT findings in the evaluation of patients with Idiopathic Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Karkavitsas Nikolaos

    2006-02-01

    Full Text Available Abstract Background Clearance of inhaled technetium-labeled diethylenetriamine pentaacetate (99mTc-DTPA is a marker of epithelial damage and an index of lung epithelial permeability. The aim of this study was to investigate the role of 99mTc-DTPA scan in patients with Idiopathic Pulmonary Fibrosis (IPF. Our hypothesis is that the rate of pulmonary 99mTc-DTPA clearance could be associated with extent of High Resolution Computed Tomography (HRCT abnormalities, cell differential of bronchoalveolar lavage fluid (BALF and pulmonary function tests (PFTs in patients with IPF. Methods We studied prospectively 18 patients (14 male, 4 female of median age 67yr (range 55–81 with histologically proven IPF. HRCT scoring included the mean values of extent of disease. Mean values of these percentages represented the Total Interstitial Disease Score (TID. DTPA clearance was analyzed according to a dynamic study using a Venticis II radioaerosol delivery system. Results The mean (SD TID score was 36 ± 12%, 3 patients had mild, 11 moderate and 4 severe TID. Abnormal DTPA clearance half-time (t1/2 Conclusion Our data suggest that 99mTc-DTPA lung scan is not well associated with HRCT abnormalities, PFTs, and BALF cellularity in patients with IPF. Further studies in large scale of patients are needed to define the role of this technique in pulmonary fibrosis.

  6. Lung Cancer Screening (PDQ®)—Patient Version

    Science.gov (United States)

    Lung cancer screening with low-dose spiral CT scans has been shown to decrease the risk of dying from lung cancer in heavy smokers. Learn more about tests to detect lung cancer and their potential benefits and harms in this expert-reviewed summary.

  7. Method to characterize inorganic particulates in lung tissue biopsies using field emission scanning electron microscopy

    Science.gov (United States)

    Lowers, Heather; Breit, George N.; Strand, Matthew; Pillers, Renee M.; Meeker, Gregory P.; Todorov, Todor I.; Plumlee, Geoffrey S.; Wolf, Ruth E.; Robinson, Maura; Parr, Jane; Miller, Robert J.; Groshong, Steve; Green, Francis; Rose, Cecile

    2018-01-01

    Humans accumulate large numbers of inorganic particles in their lungs over a lifetime. Whether this causes or contributes to debilitating disease over a normal lifespan depends on the type and concentration of the particles. We developed and tested a protocol for in situ characterization of the types and distribution of inorganic particles in biopsied lung tissue from three human groups using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive spectroscopy (EDS). Many distinct particle types were recognized among the 13 000 particles analyzed. Silica, feldspars, clays, titanium dioxides, iron oxides and phosphates were the most common constituents in all samples. Particles were classified into three general groups: endogenous, which form naturally in the body; exogenic particles, natural earth materials; and anthropogenic particles, attributed to industrial sources. These in situ results were compared with those using conventional sodium hypochlorite tissue digestion and particle filtration. With the exception of clays and phosphates, the relative abundances of most common particle types were similar in both approaches. Nonetheless, the digestion/filtration method was determined to alter the texture and relative abundances of some particle types. SEM/EDS analysis of digestion filters could be automated in contrast to the more time intensive in situ analyses.

  8. Is a positive L-dimer result a sufficient indication for performing a V/Q lung scan?

    International Nuclear Information System (INIS)

    Salanitri, G.C.; Kelly, M.J.; O'Donnell, M.; Kalff, V.

    2002-01-01

    Full text: At our institution there has developed a practice of referring some patients for assessment of pulmonary embolism (PE) because of a positive L-dimer test but without standard clinical indications. Therefore this study aimed to determine whether a positive L-dimer test result by itself is a sufficient indication to perform a ventilation/perfusion V/Q study. V/Q lung scan results, L-dimer test results and appropriate radiology results of 949 consecutive patients from August 2000 to October 2001 were retrospectively reviewed. Prediction of V/Q results by L-dimer results was compared with that of clinical risk factors for PE (Risk factor + or -) These factors were dyspnoea, current deep vein thrombosis (DVT), recent orthopaedic procedure or a past history of PE/DVT, Of the 949 patients in the study population, 254 patients had an L-dimer study, with 206 positive and 48 negative L-dimer results. Helical CT was performed in 8 patients with an equivocal V/Q - 4 showed PE and 4 did not. In the 27 patients with a positive L-dimer result and PE on either V-Q scan or CT, 25 (92.6%) had additional recognised major risk factors for PE. A positive L-dimer test is a poor predictor of a positive V/Q scan compared to conventional clinical indications. Thus, a positive L-dimer test result in isolation does not constitute an appropriate indication to perform a V/Q scan. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  9. Radionuclide scanning

    International Nuclear Information System (INIS)

    Shapiro, B.

    1986-01-01

    Radionuclide scanning is the production of images of normal and diseased tissues and organs by means of the gamma-ray emissions from radiopharmaceutical agents having specific distributions in the body. The gamma rays are detected at the body surface by a variety of instruments that convert the invisible rays into visible patterns representing the distribution of the radionuclide in the body. The patterns, or images, obtained can be interpreted to provide or to aid diagnoses, to follow the course of disease, and to monitor the management of various illnesses. Scanning is a sensitive technique, but its specificity may be low when interpreted alone. To be used most successfully, radionuclide scanning must be interpreted in conjunction with other techniques, such as bone radiographs with bone scans, chest radiographs with lung scans, and ultrasonic studies with thyroid scans. Interpretation is also enhanced by providing pertinent clinical information because the distribution of radiopharmaceutical agents can be altered by drugs and by various procedures besides physiologic and pathologic conditions. Discussion of the patient with the radionuclide scanning specialist prior to the study and review of the results with that specialist after the study are beneficial

  10. Role of mediastinal and multi-organ CT scans in staging presumable surgical candidates with non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Hiroaki; Nakajima, Yasuo; Taira, Yasuhiko; Yokote, Kumio; Noguchi, Teruhiko

    1987-09-01

    In order to evaluate the role of CT scan and bone scan in staging patients with non-small-cell lung cancer presumably indicated for surgery, 70 consecutive patients who underwent thoracotomy were reviewed. Most of them received mediastinal and multi-organ (brain, liver and adrenal) CT scans and a bone scan. In the most recent 40 of the 70 patients, CT findings of the mediastinal lymph nodes were compared to the pathology following complete sampling. The overall accuracy of the mediastinal CT was 60.0 per cent (12 true positive and 12 true negative), but the negative predictable value was 12/(12 + 3) or 80.0 per cent, whereas 3 were false negatives though they showed an acceptable postoperative course. Sixteen out of 21 patients with one, or at the most, three enlarged nodes detected on CT also did well postoperatively and retrospectively, were considered not to have required mediastinoscopy. A group of patients showing no, or at the most, three enlarged mediastinal lymph nodes on CT may be considered as candidates for surgery even without mediastinoscopy. Multi-organ survey by means of CT was believed cost-ineffective and omittable. Bone scan however, retrospectively detected three true positives among 20 patients with a positive uptake, so that it cannot be omitted out of hand, though further examination of this point is required.

  11. Lung Cancer Screening (PDQ®)—Health Professional Version

    Science.gov (United States)

    Lung cancer screening with low-dose spiral CT scans has been shown to decrease the risk of dying from lung cancer in heavy smokers. Screening with chest x-ray or sputum cytology does not reduce lung cancer mortality. Get detailed information about lung cancer screening in this clinician summary.

  12. Lung structure and function relation in systemic sclerosis: Application of lung densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Ninaber, Maarten K., E-mail: m.k.ninaber@lumc.nl [Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Stolk, Jan; Smit, Jasper; Le Roy, Ernest J. [Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Kroft, Lucia J.M. [Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Els Bakker, M. [Division of Image Processing, Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Vries Bouwstra, Jeska K. de; Schouffoer, Anne A. [Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Staring, Marius; Stoel, Berend C. [Division of Image Processing, Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands)

    2015-05-15

    Highlights: • A quantitative CT parameter of lung parenchyma in systemic sclerosis is presented. • We examine the optimal percentage threshold for the percentile density. • The 85th percentile density threshold correlated significantly with lung function. • A lung structure–function relation is confirmed. • We report applicability of Perc85 in progression mapping of interstitial lung disease. - Abstract: Introduction: Interstitial lung disease occurs frequently in patients with systemic sclerosis (SSc). Quantitative computed tomography (CT) densitometry using the percentile density method may provide a sensitive assessment of lung structure for monitoring parenchymal damage. Therefore, we aimed to evaluate the optimal percentile density score in SSc by quantitative CT densitometry, against pulmonary function. Material and methods: We investigated 41 SSc patients by chest CT scan, spirometry and gas transfer tests. Lung volumes and the nth percentile density (between 1 and 99%) of the entire lungs were calculated from CT histograms. The nth percentile density is defined as the threshold value of densities expressed in Hounsfield units. A prerequisite for an optimal percentage was its correlation with baseline DLCO %predicted. Two patients showed distinct changes in lung function 2 years after baseline. We obtained CT scans from these patients and performed progression analysis. Results: Regression analysis for the relation between DLCO %predicted and the nth percentile density was optimal at 85% (Perc85). There was significant agreement between Perc85 and DLCO %predicted (R = −0.49, P = 0.001) and FVC %predicted (R = −0.64, P < 0.001). Two patients showed a marked change in Perc85 over a 2 year period, but the localization of change differed clearly. Conclusions: We identified Perc85 as optimal lung density parameter, which correlated significantly with DLCO and FVC, confirming a lung parenchymal structure–function relation in SSc. This provides

  13. Lung structure and function relation in systemic sclerosis: Application of lung densitometry

    International Nuclear Information System (INIS)

    Ninaber, Maarten K.; Stolk, Jan; Smit, Jasper; Le Roy, Ernest J.; Kroft, Lucia J.M.; Els Bakker, M.; Vries Bouwstra, Jeska K. de; Schouffoer, Anne A.; Staring, Marius; Stoel, Berend C.

    2015-01-01

    Highlights: • A quantitative CT parameter of lung parenchyma in systemic sclerosis is presented. • We examine the optimal percentage threshold for the percentile density. • The 85th percentile density threshold correlated significantly with lung function. • A lung structure–function relation is confirmed. • We report applicability of Perc85 in progression mapping of interstitial lung disease. - Abstract: Introduction: Interstitial lung disease occurs frequently in patients with systemic sclerosis (SSc). Quantitative computed tomography (CT) densitometry using the percentile density method may provide a sensitive assessment of lung structure for monitoring parenchymal damage. Therefore, we aimed to evaluate the optimal percentile density score in SSc by quantitative CT densitometry, against pulmonary function. Material and methods: We investigated 41 SSc patients by chest CT scan, spirometry and gas transfer tests. Lung volumes and the nth percentile density (between 1 and 99%) of the entire lungs were calculated from CT histograms. The nth percentile density is defined as the threshold value of densities expressed in Hounsfield units. A prerequisite for an optimal percentage was its correlation with baseline DLCO %predicted. Two patients showed distinct changes in lung function 2 years after baseline. We obtained CT scans from these patients and performed progression analysis. Results: Regression analysis for the relation between DLCO %predicted and the nth percentile density was optimal at 85% (Perc85). There was significant agreement between Perc85 and DLCO %predicted (R = −0.49, P = 0.001) and FVC %predicted (R = −0.64, P < 0.001). Two patients showed a marked change in Perc85 over a 2 year period, but the localization of change differed clearly. Conclusions: We identified Perc85 as optimal lung density parameter, which correlated significantly with DLCO and FVC, confirming a lung parenchymal structure–function relation in SSc. This provides

  14. Early appearance of SARS on chest CT scan

    International Nuclear Information System (INIS)

    Cheng Xiaoguang; Feng Suchen; Xia Guoguang; Zhao Tao; Gu Xiang; Qu Hui

    2003-01-01

    Objective: To evaluate the early appearance of SARS on chest CT scan and its role in the early diagnosis. Methods: Forty cases of SARS in keeping with the criteria of the Ministry of Health had chest CT scans within 7 days of onset of symptoms, and CR chest X-ray films were available as well. These chest X-rays and CT images were retrospectively reviewed to determine if there were any abnormalities on the images. The lesions on the chest CT images were then further analyzed in terms of the number, location, size, and density. Results: Positive abnormalities on chest CT scans were revealed in all 40 SARS cases. Positive findings on CR chest films were showed in only 25 cases, equivocal in 6, and normal in 9 cases. The main abnormalities seen on CT and X-rays were pulmonary infiltrations varied markedly in severity. 70 % cases had 1 or 2 lesions on chest CT scan, 30 % cases had 3 or more lesions. The lesions seen on chest CT scan tended to be ground-glass opacification, sometimes with consolidation which was very faint and inhomogeneous, easily missed on chest X-rays. Typically the lesions were located in the periphery of the lung, or both central and peripheral lung, but very rare in a pure central location. They were commonly in the shape of patch or ball. Conclusions: Chest CT scan is much more sensitive in detecting the lesions of the lung in SARS. The early appearance of SARS on chest CT scan is characteristic but non-specific, indicating that chest CT scan plays a very important role in the early diagnosis and differential diagnosis of SARS

  15. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

    Science.gov (United States)

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J; Schabath, Matthew B

    2017-11-10

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features.

  16. Quantitative evaluation of emphysematous changes in the lung by computed tomography (CT)

    International Nuclear Information System (INIS)

    Kitahara, Yoshinari; Hirayama, Takanobu; Hiratsuka, Toshihiko; Tanaka, Yasushi; Takamoto, Masahiro; Ishibashi, Tsuneo; Shinoda, Atsushi

    1987-01-01

    The present studies were undertaken to quantitatively evaluate emphysematous changes in the lung by CT scan. CT scans were made at inspiration and expiration at three levels (base, mid thorax and apex). Low density lesion ratio (LL %) was measured as the proportion of the area under -950 Housfield Unit in each lung field at expiration. Each value of LL % was determined in 6 lung fields (both lung fields at three levels). The LL % was calculated from the mean of these six values. The results suggest that LL % of the emphysematous lungs shows significant elevation of the values compared with those of normal lungs and lungs with bronchial asthma. (author)

  17. Nuclear scan of pulmonary hemorrhage in radiopathic pulmonary hemosiderosis

    International Nuclear Information System (INIS)

    Miller, T.; Tanaka, T.

    1979-01-01

    Idiopathic pulmonary hemosiderosis, a disease of unknown etiology most often occuring in children, is characterized by recurring episodes of alveolar consolidation. Exacerbations of pulmonary hemorrhage coincide with episodes of alveolar filling; repeated episodes lead to progressive interstitial fibrosis and eventually to corpulmonale. Serial nuclear scans of the lungs after injection of radiolabeled red blood cells should parallel the pathologic and radiographic findings. We observed the accumulation of radiolabeled red blood cells in the lungs on scan images, a finding not previously reported

  18. Carbon-11 in Bone and Lung Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W. G.; Hunter, Jr., W. W. [Ohio State University Health Center, Columbus, OH (United States)

    1969-05-15

    Radiocarbon-11 decays with 20.3-min half-life by emitting positrons with 1.0-MeV maximum energy. Two 511-keV {sup {+-}}{gamma}-photons almost always are emitted coincidentally with each disintegration, at 180 Degree-Sign to each other. This 'back-to-back' relationship makes it possible readily to locate small accumulations of {sup 11}C in vivo by opposed detectors connected by coincidence circuitry. The calculated narrow-beam half-thickness in water is more than 7 cm, to provide good penetration from deep organs, and with little scatter. Multimillicurie amounts of a mixture of {sup 11}CO and {sup 11}CO{sub 2} are generated readily in our small cyclotron when probe targets of B{sub 2}O{sub 3} are bombarded with protons, deuterons, or {sup 3}He{sup ++} ions. The {sup 11}CO is oxidized to {sup 11}CO{sub 2} by hopcalite placed in the vacuum line. Dogs with primary or metastatic bone tumours received {sup 11}CO{sub 2}, either by inhalation in a closed system, or in slightly basic solution in travenously. Scintigraphs, that were obtained within 10-20 min by means of a Nuclear-Chicago focused-collimator scanning machine, revealed significant accumulations of {sup 11}C at sites where bone erosion was demonstrable roentgenographically. Good pictures of dog lungs were obtained either with the mechanical scanner, or with our Nuclear-Chicago scintillation camera, after intravenous injection of 4-12 {mu}m diam. smoothly-rounded aggregates of SrCO{sub 3} that were formed in dextran-saline solution. These 'photon-carrier' aggregates have been made either with {sup 11}C; or with 2.8-h {sup 87m}Sr, which emits 388-keV gamma-rays. Alternatively, they might be made to 'carry' the 231-keV gamma-rays of 70-m in {sup 85m}Sr, that are advantageous for scintigraphy. The advent of Anger's positron camera, with choice of plane of prime interest, will provide opportunities to emphasize the maximum target/nontarget ratio in pictures of localized accumulations of {sup 11}C, as well as of {sup

  19. Hand ultrasound: a high-fidelity simulation of lung sliding.

    Science.gov (United States)

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  20. The value of lung scintigraphy in the diagnosis of pulmonary embolism

    NARCIS (Netherlands)

    van Beek, E. J.; Tiel-van Buul, M. M.; Büller, H. R.; van Royen, E. A.; ten Cate, J. W.

    1993-01-01

    The role of lung scintigraphy in the diagnostic management of patients with clinically suspected pulmonary embolism is reviewed. Evidence is provided that a normal perfusion scan excludes clinically relevant pulmonary embolism, and that a high probability lung scan, defined as a segmental perfusion

  1. Unilateral facial pain and lung cancer

    International Nuclear Information System (INIS)

    Shakespeare, T.P.; Stevens, M.J.

    1996-01-01

    Facial pain in lung cancer patients may be secondary to metastatic disease to the brain or skull base. Since 1983 there have been 19 published reports of hemi-facial pain as a non-metastatic complication of lung carcinoma. This report describes an additional case in whom unilateral face pain preceded the diagnosis of lung cancer by 9 months. A clinical diagnosis of trigeminal neuralgia was made after a normal brain CT scan. Later on the patient complained of global lethargy, weight loss and haemoptysis. A chest X-ray disclosed a 6 cm right hilar mass that was further defined with a whole body CT scan. The neural mechanism of the unilateral facial pain is discussed and the literature reviewed. 14 refs., 1 tab

  2. Unilateral facial pain and lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare, T.P.; Stevens, M.J. [Royal North Shore Hospital, Crows Nest, NSW (Australia)

    1996-02-01

    Facial pain in lung cancer patients may be secondary to metastatic disease to the brain or skull base. Since 1983 there have been 19 published reports of hemi-facial pain as a non-metastatic complication of lung carcinoma. This report describes an additional case in whom unilateral face pain preceded the diagnosis of lung cancer by 9 months. A clinical diagnosis of trigeminal neuralgia was made after a normal brain CT scan. Later on the patient complained of global lethargy, weight loss and haemoptysis. A chest X-ray disclosed a 6 cm right hilar mass that was further defined with a whole body CT scan. The neural mechanism of the unilateral facial pain is discussed and the literature reviewed. 14 refs., 1 tab.

  3. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine

  4. Study on incidence of pulmonary embolism in patients with cardiac pacemakers using lung perfusion mapping and ventilation scanning

    International Nuclear Information System (INIS)

    Yamashina, Hideki; Higo, Masanori; Sueda, Takashi

    1990-01-01

    We investigated pulmonary perfusion mapping and ventilation scanning employing 99mTC-MMA and 81mKr-Gas in patients with DDD and VVI cardiac pacemaker implantation. In 51 cases among 175 patients we observed some defects which matched the results from lung perfusion scanning in the pulmonary segments and sub-segments. These were diagnosed as pulmonary embolism after the possibility of other pulmonary diseases was rejected. The incidence rate of pulmonary embolism in patients with VVI (Ventricular pacing/sensing, inhibited type) pacemakers was 47 out of 138, or 34.1%, especially for those who received a pulmonary scanning examination whithin 6 months after pacemaker implantation. In contrast, those who were examined after 6 months had lower rates as well as chronological factors. The incidence rate of pulmonary embolism in 37 patients with DDD (Double chamber pacing/sensing, double modes of response) pacemakers was 10.8%, considerably lower than that for patients with VVI pacemakers. Therefore, one main factor of pulmonary embolism in patients with pacemakers could be the non-physiological phase of the contractions of both atria and ventricles. Other factors, such as the presence of foreign bodies in the endocardium, aging, and hypertension, could also promote pulmonary embolism. (author)

  5. Canine chronic bronchitis: a pathophysiologic evaluation of 18 cases

    International Nuclear Information System (INIS)

    Padrid, P.A.; Hornof, W.J.; Kurpershoek, C.J.; Cross, C.E.

    1990-01-01

    Eighteen dogs with chronic bronchitis were studied using physiologic, radiologic, microbiologic, and pathologic techniques. Twelve of these dogs were evaluated before and after two weeks of oral bronchodilator administration. Thoracic radiographs, tidal breathing flow-volume loops, radioaerosol ventilation scans, airway appearance at bronchoscopy, and airway pathology were abnormal in the majority of dogs studied. There was a significant relationship between abnormal ventilation scans and abnormal results for PaO2 and end-tidal airflow. Bronchoscopy revealed excessive mucus and inflammation of airway mucosa in all 16 dogs undergoing this procedure. Endoscopically obtained aerobic bacterial cultures grew mixed bacterial flora in only three dogs. Increased numbers of neutrophils in 14 dogs were detected by airway lavage cytology. A large number of eosinophils were seen in airway lavages obtained from two dogs; these two dogs also had evidence for eosinophilic bronchitis on endobronchial biopsy. Oral bronchodilator administration resulted in clinical and expiratory airflow improvements in most dogs, but had no effect on PaO2 or on the radioaerosol-scan abnormalities. The presence of both the physiologic and pathologic airway abnormalities of chronic bronchitis in dogs presented to a veterinary hospital with chronic unexplained cough was confirmed, suggesting that aerobic bacteria do not play an etiologic role in most cases

  6. Computed tomography of the lungs in acquired immunodeficiency syndrome

    International Nuclear Information System (INIS)

    Hartelius, H.; Gaub, J.; Jensen, L.I.; Jensen, J.; Faber, V.; Rigshospitalet, Copenhagen

    1988-01-01

    Computed tomography of the chest was performed on 42 occasions as part of the diagnostic work-up in 26 homosexual men with, or suspected of the acquired immunodeficiency syndrome (AIDS). In 17 cases both the chest radiographs and the lung scans were abnormal, and bronchoscopy and/or lung biopsy established an etiologic diagnosis in the majority of these cases. In 9 cases CT of the lungs revealed unequivocal interstitial infiltration in the presence of a normal chest radiography, and subsequently and etiologic agent was demonstrated in all these cases. In 9 cases, patients with symptoms indicative of pulmonary infection had both a normal chest radiograph and a normal lung scan, and in none of these cases did the clinical course or additional diagnostic procedures indicate the presence of current opportunistic lung infection. CT of the lungs seems to identify accurately those patients with severe HIV-related diseases in whom invasive diagnostic procedures such as bronchoalveolar lavage and/or lung biopsy should be done. (orig.)

  7. Segmentation of Lung Structures in CT

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau

    This thesis proposes and evaluates new algorithms for segmenting various lung structures in computed tomography (CT) images, namely the lungs, airway trees and vessel trees. The main objective of these algorithms is to facilitate a better platform for studying Chronic Obstructive Pulmonary Disease......, 200 randomly selected CT scans were manually evaluated by medical experts, and only negligible or minor errors were found in nine scans. The proposed algorithm has been used to study how changes in smoking behavior affect CT based emphysema quantification. The algorithms for segmenting the airway...

  8. Lung perfusion scanning studies on pulmonary radiolesions after /sup 60/Co teletherapy of operated cancer of the breast and on polycythaemia vera following radiophosphorus therapy

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, M

    1973-01-01

    When X-ray and scintigraphic control examinations were carried out on 75 patients with cancer of the breast, the X-ray examinations showed pulmonary radiolesions in 37.3% (28 patients) at an average of 12 weeks after radiotherapy with tele /sup 60/Co. The scintigraphic examination, on the other hand, showed a reduced activity concentration - a sign of disturbed blood flow through the lungs - in only 13.0% (9 patients). A reactive increase in blood flow in the form of a higher particle concentration in the irradiated lobe of the lung immediately after irradiation was scintigraphically detected in 21.3% (16 patients). In 15 patients with polycythaemia vera who had been treated with /sup 32/P, the lung perfusion scan detected 4 cases of stopped blood supply without correlative X-ray findings or episodes of embolism in clinical anamnesis.

  9. A proposed new imaging pathway for patients with suspected lung cancer

    International Nuclear Information System (INIS)

    Macpherson, R.; Benamore, R.; Panakis, N.; Sayeed, R.; Breen, D.; Bradley, K.; Carter, R.; Baldwin, D.; Craig, J.; Gleeson, F.

    2012-01-01

    Aims: PET-CT scans are routinely performed in patients with lung cancer after investigation by chest x-ray (CXR) and CT scan, when these have demonstrated potentially curable disease. If the majority of patients with lung cancer potentially suitable for curative treatment could be identified earlier in the diagnostic pathway on the basis of CXR findings they could be referred for PET-CT imaging without a prior CT scan. We investigated the clinical and financial implications of adopting such a strategy. Materials and methods: The details of 1187 patients referred with suspected lung cancer between July 2006 and August 2009 were analysed. The initial CXR and subsequent imaging of patients fit for curative treatment (Performance Status 0/1, FEV1 > 1.0) were reviewed (n = 251). The clinical and financial implications of referring patients for first line PET-CT if deemed potentially curable based on CXR findings were assessed. Results: 107 of 1187 patients had potentially curable lung cancer on PS, lung function, CT and PET-CT. 96 of these 107 patients (90%) were correctly identified on CXR. 149 patients overall were diagnosed as potentially curable on CXR. Referring suitable patients for an immediate PET-CT scan resulted in a reduction in the time to complete staging investigations. Conclusions: Early PET-CT scanning for patients with suspected lung cancer, potentially suitable for curative therapy could result in more efficient staging with little additional cost.

  10. A proposed new imaging pathway for patients with suspected lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Macpherson, R.; Benamore, R. [Department of Radiology, Churchill Hospital, Oxford (United Kingdom); Panakis, N. [Department of Clinical Oncology, Churchill Hospital, Oxford (United Kingdom); Sayeed, R. [Department of Cardiothoracic Surgery, John Radcliffe Hospital, Oxford (United Kingdom); Breen, D. [Department of Respiratory Medicine, Churchill Hospital, Oxford (United Kingdom); Bradley, K.; Carter, R. [Department of Radiology, Churchill Hospital, Oxford (United Kingdom); Baldwin, D. [Department of Respiratory Medicine, Nottingham City Hospital, Nottingham (United Kingdom); Craig, J. [York Health Economics Consortium Ltd, University of York, York (United Kingdom); Gleeson, F., E-mail: fergus.gleeson@nds.ox.ac.uk [Department of Radiology, Churchill Hospital, Oxford (United Kingdom)

    2012-06-15

    Aims: PET-CT scans are routinely performed in patients with lung cancer after investigation by chest x-ray (CXR) and CT scan, when these have demonstrated potentially curable disease. If the majority of patients with lung cancer potentially suitable for curative treatment could be identified earlier in the diagnostic pathway on the basis of CXR findings they could be referred for PET-CT imaging without a prior CT scan. We investigated the clinical and financial implications of adopting such a strategy. Materials and methods: The details of 1187 patients referred with suspected lung cancer between July 2006 and August 2009 were analysed. The initial CXR and subsequent imaging of patients fit for curative treatment (Performance Status 0/1, FEV1 > 1.0) were reviewed (n = 251). The clinical and financial implications of referring patients for first line PET-CT if deemed potentially curable based on CXR findings were assessed. Results: 107 of 1187 patients had potentially curable lung cancer on PS, lung function, CT and PET-CT. 96 of these 107 patients (90%) were correctly identified on CXR. 149 patients overall were diagnosed as potentially curable on CXR. Referring suitable patients for an immediate PET-CT scan resulted in a reduction in the time to complete staging investigations. Conclusions: Early PET-CT scanning for patients with suspected lung cancer, potentially suitable for curative therapy could result in more efficient staging with little additional cost.

  11. Selenomethionine Se 75 thymus scans in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Toole, J.F.; Cowan, R.; Maynard, D.; Witcofski, R.L.; Janeway, R.

    1975-01-01

    In 1966, Toole and Witcofski introduced selenomethionine Se 75 mediastinal scanning as a diagnostic test for thymomas. Since then we have performed such scans on patients with myasthenic syndrome. Because the technique is atraumatic, safe, and accurate, it can be performed on critically ill myasthenics. Two hundred and fifty microcuries of selenomethionine Se 75 is injected intravenously. Within 1 hour the mediastinum from the suprasternal notch to the ziphoid process is scanned, using a 2 x 3 inch scanner. Delayed scans have been made in a few instances but they have not increased the number of positive cases. Selenomethionine Se 75 is incorporated into tissues undergoing rapid protein synthesis such as thyroid, pancreas, liver, and lymphomas. Of the 34 mediastinal scans performed on myasthenics between 1966 and December 31, 1974, 4 were positive for thymoma. In addition, there was a positive scan with uptake in an area of atelectasis of the lung adjacent to the mediastinum. Of interest is the fact that 1 patient with carcinoma of the lung had a positive scan over the lesion. In 13 patients with chronic lymphatic leukemia the mediastinal scans were negative. In another patient with a mediastinal mass noted on chest x-ray, a variety of differential diagnostic possibilities were considered, such as pericardial cyst, dermoid, and aneurysm. A selenomethionine scan was strongly positive, suggesting a thymoma which subsequent surgery confirmed.

  12. MRI features of meningeal metastasis from lung cancer

    International Nuclear Information System (INIS)

    Luo Xuemao; Long Wansheng; Jin Zhifa; Hu Maoqing; Mai Xuyu

    2009-01-01

    Objective: To investigate the pathway and MRI findings of meningeal metastasis original from lung cancer. Methods: 44 cases with cerebro-spinal meningeal metastasis original from lung cancer proven by clinical and pathology were retrospectively reviewed. All cases undergone plain MRI scan and Gd-DTPA enhanced MRI scan on brain and/or spine. Results: MRI plain scan indicated 28 cases with brain metastases, 3 cases with meningeal nodosity or irregularly patchy abnormal signal, 1 case with nodule in left cavernous sinus, 10 cases with abnormal signal in spine, 2 cases with abnormal signal in spinal dura mater. 34 cases with cerebro meningeal metastases were found in MRI enhancement scan. Among them, 11 cases displayed cerebral dura mater-arachnoid enhancement, 17 cases revealed cerebral pia mater-arachnoid enhancement and 6 cases with mixed typed enhancement. Osteoclasia in skull was found in 4 cases, spinal metastasis was revealed in 17 cases, and patchy abnormal enhancement in spinal dura mater was showed in 12 cases. Conclusion: Hematogenous metastasis is a main route of meningeal metastasis caused by lung cancer and enhanced MRI scan is of important diagnostic value. (authors)

  13. PEComa of the lung

    Directory of Open Access Journals (Sweden)

    Vijayabhaskar R

    2010-01-01

    Full Text Available Perivascular epithelioid cell tumor (PEComa, also called clear cell ′′sugar′′ tumor of the lung, is a rare benign tumor arising from perivascular epithelioid cells (PECs. We report a case of a 15-year-old boy who presented with right lower lobe lesion which turned out to be a clear cell tumor of the lung. An [18F]-fluoro-2-deoxy-D-glucose (FDG - positron emission tomography (PET scan revealed mild FDG uptake in the lung lesion (SUV< 1 with no active uptake elsewhere in the body. We discuss the clinical, radiologic and immunohistochemical features of clear cell ′′sugar′′ tumor of lung and compare them with published literature.

  14. Pre- and postoperative ventilation-perfusion scan findings in patients undergoing total hip replacement or knee arthroplasty

    International Nuclear Information System (INIS)

    Kim, S.M.; Park, C.H.; Intenzo, C.M.

    1988-01-01

    Venous thrombolembolism is one of the major postoperative complications in patients undergoing total hip replacement (THR) or knee anthroplasty (TKA). The reported incidence of pulmonary embolism in this group is as high as 20%. The purpose of this report was to evaluate the value of preoperative and 7th-day postpoperative ventilation-perfusion (V/Q) lung scans in the management of patients undergoing elective reconstructive surgery of the hips or knees. Routine preoperative and 7th-day postoperative V/Q lung scans were obtained in 34 patients who underwent THR (17 patients) or TKA (17 patients). There were 15 male and 19 female patients, with an age distribution ranging from 56 to 80 years. Chest radiographs were obtained within 1 day of the pre- or postoperative lungs scan. Lung scans were interpreted by two experienced nuclear physicians

  15. Quantative pre-surgical lung function estimation with SPECT/CT

    International Nuclear Information System (INIS)

    Bailey, Dale L.; Timmins, Sophi; Harris, Benjamin E.; Bailey, Elizabeth A.; Roach, Paul J.; Willowson, Kathy P.

    2009-01-01

    Full text: Objectives: To develop methodology to predict lobar lung function based on SPECT/CT ventilation 6 k perfusion (V/Q) scanning in candidates for lobectomy for lung cancer. This combines two development areas from our group: quantitative SPECT based on CT-derived corrections for scattering and attenuation of photons, and SPECT V/Q scanning with lobar segmentation from CT Six patients underwent baseline pulmonary function testing (PFT) including spirometry, measurement of DLCO and cardio-pulmonary exercise testing. A SPECT/CT V/Q scan was acquired at baseline. Using in-house software each lobe was anatomically defined using CT to provide lobar ROIs which could be applied to the SPECT data. From these, individual lobar contribution to overall function was calculated from counts within the lobe and post-operative FEVl, DLCO and V02 peak were predicted. This was compared with the quantitative planar scan method using 3 rectangular ROIs over each lung.

  16. Traumatic Lung Herniation following Skateboard Fall

    Directory of Open Access Journals (Sweden)

    Dafney L. Davare

    2016-01-01

    Full Text Available Lung herniation (LH is a rare clinical entity involving the protrusion of lung outside the thoracic cage. It has a variety of etiologies and clinical presentations, making diagnosis difficult. We present a case of a 20-year-old male who reported pleuritic pain after falling from a skateboard. Evaluation through computed tomography (CT scanning of the chest revealed an anterior lung hernia associated with rib fractures. This case emphasizes the need for clinicians to include lung herniation in the differential diagnosis of patients with trauma and inexplicable or persistent pulmonary issues.

  17. Missed lung cancer: when, where, and why?

    Science.gov (United States)

    del Ciello, Annemilia; Franchi, Paola; Contegiacomo, Andrea; Cicchetti, Giuseppe; Bonomo, Lorenzo; Larici, Anna Rita

    2017-01-01

    Missed lung cancer is a source of concern among radiologists and an important medicolegal challenge. In 90% of the cases, errors in diagnosis of lung cancer occur on chest radiographs. It may be challenging for radiologists to distinguish a lung lesion from bones, pulmonary vessels, mediastinal structures, and other complex anatomical structures on chest radiographs. Nevertheless, lung cancer can also be overlooked on computed tomography (CT) scans, regardless of the context, either if a clinical or radiologic suspect exists or for other reasons. Awareness of the possible causes of overlooking a pulmonary lesion can give radiologists a chance to reduce the occurrence of this eventuality. Various factors contribute to a misdiagnosis of lung cancer on chest radiographs and on CT, often very similar in nature to each other. Observer error is the most significant one and comprises scanning error, recognition error, decision-making error, and satisfaction of search. Tumor characteristics such as lesion size, conspicuity, and location are also crucial in this context. Even technical aspects can contribute to the probability of skipping lung cancer, including image quality and patient positioning and movement. Albeit it is hard to remove missed lung cancer completely, strategies to reduce observer error and methods to improve technique and automated detection may be valuable in reducing its likelihood. PMID:28206951

  18. Gambaran CT Scan Toraks Sesuai dengan Jenis Sitologi/Histologi pada Pasien Kanker Paru yang Merokok

    Directory of Open Access Journals (Sweden)

    Rosa Tatun

    2016-03-01

    Full Text Available Kanker paru merupakan  penyebab kematian paling banyak akibat keganasan. Kanker paru memberikan gambaran CT scan yang berbeda sesuai dengan jenis sitologi/histologinya. Pemeriksaan CT scan  toraksdengan teknik high resolution computed tomography (HRCT dapat memperlihatkan kelainan kanker parusecara rinci. Penelitian dilakukan di Instalasi Radiologi RSU Persahabatan, Jakarta bekerja sama denganDepartemen Pulmonologi dan Respirasi RSU Persahabatan terhadap 100 sampel yang diperoleh pada bulanNovember 2014 hingga Maret 2015. Berdasarkan jenis sitologi/histologi kanker paru (adenokarsinoma dankarsinoma sel skuamosa/KSS tidak ditemukan  variabel yang bermakna secara statistik  (bentuk, letak, tepispikulasi, tepi lobulasi, nodul satelit. Variabel yang paling banyak ditemukan pada adenokarsinoma maupunKSS adalah bentuk massa, lokasi di sentral dan paru sebelah kanan. Gambaran kanker paru adenokarsinomadan KSS pada pasien merokok paling banyak berupa massa, lokasi di sentral dan lobus kanan paru. Kata kunci: kanker paru, merokok, CT scan toraks   Lung Cancer CT Scan Findings in Smoker Patients Basedon Cytology/Histology Abstract Lung cancer is the leading cause of most deaths due to malignancy. Lung cancer CT scan provides an overview according to the type of cytology / histology. Thorax CT scan with high resolution technique (HRCT may revealdetail lung cancer abnormalities. This study was conducted between Department of Radiology and Departmentof Pulmonology Respiratory, Persahabatan Hospital Jakarta based on 100 samples, November 2014 until March2015. Based on cytological/histological type (adenocarcinoma and squamous cell carcinoma/KSS, it was not found significant meaningfull variables (shape, location, spiculate edge, lobulate edge, satellite nodules. Most commonly variables found in adenocarcinomas and KSS were mass forming, central location, right lung location.Most of adenocarcinoma and SCC in smoked patients were mass forming, central

  19. The relationship between the percentage of lung shunting on Tc-99m macroaggregated albumin (Tc-99m MAA scan and the grade of hepatocellular carcinoma vascularity

    Directory of Open Access Journals (Sweden)

    Rania Refaat

    2014-06-01

    Conclusion: Tc-99m MAA scan is fundamental prior to Y-90 microsphere SIRT as it minimizes the risk of post-radioembolization complications, hence, enhancing the safety of Y-90 microsphere subsequent administration. Moreover, the percentage of lung shunting varies considerably among patients with HCC relying on the grade of tumor vascularity.

  20. Nodule detection methods using autocorrelation features on 3D chest CT scans

    International Nuclear Information System (INIS)

    Hara, T.; Zhou, X.; Okura, S.; Fujita, H.; Kiryu, T.; Hoshi, H.

    2007-01-01

    Lung cancer screening using low dose X-ray CT scan has been an acceptable examination to detect cancers at early stage. We have been developing an automated detection scheme for lung nodules on CT scan by using second-order autocorrelation features and the initial performance for small nodules (< 10 mm) shows a high true-positive rate with less than four false-positive marks per case. In this study, an open database of lung images, LIDC (Lung Image Database Consortium), was employed to evaluate our detection scheme as an consistency test. The detection performance for solid and solitary nodules in LIDC, included in the first data set opened by the consortium, was 83% (10/12) true-positive rate with 3.3 false-positive marks per case. (orig.)

  1. Spleen-lung interface as diagnostic information

    International Nuclear Information System (INIS)

    DeLuca, S.A.; Kolodny, G.M.

    1975-01-01

    Left anterior, lateral, and posterior views on 50 consecutive /sup 99m/Tc-sulfur colloid lung scans were examined. Normal patients had continuity of activity between the left lung and the spleen on all three views. Patients with subphrenic abscess or large left pleural effusions showed no continuity between lung and spleen activity on any view, while other abnormalities, most commonly cardiomegaly, accounted for lack of lung-spleen continuity on the anterior view only. It is suggested that in all combined /sup 99m/Tc-sulfur colloid lung studies, the left side be examined as well as the right for abnormalities adjacent to the left diaphragm. (auth)

  2. Statistical lung model for microdosimetry

    International Nuclear Information System (INIS)

    Fisher, D.R.; Hadley, R.T.

    1984-03-01

    To calculate the microdosimetry of plutonium in the lung, a mathematical description is needed of lung tissue microstructure that defines source-site parameters. Beagle lungs were expanded using a glutaraldehyde fixative at 30 cm water pressure. Tissue specimens, five microns thick, were stained with hematoxylin and eosin then studied using an image analyzer. Measurements were made along horizontal lines through the magnified tissue image. The distribution of air space and tissue chord lengths and locations of epithelial cell nuclei were recorded from about 10,000 line scans. The distribution parameters constituted a model of lung microstructure for predicting the paths of random alpha particle tracks in the lung and the probability of traversing biologically sensitive sites. This lung model may be used in conjunction with established deposition and retention models for determining the microdosimetry in the pulmonary lung for a wide variety of inhaled radioactive materials

  3. SU-F-T-136: Breath Hold Lung Phantom Study in Using CT Density Versus Relative Stopping Power Ratio for Proton Pencil Beam Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2016-06-15

    Purpose: To evaluate mass density effects of CT conversion table and its variation in current treatment planning system of spot scanning proton beam using an IROC proton lung phantom for this study. Methods: A proton lung phantom study was acquired to Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. Inside the lung phantom, GAF Chromic films and couples of thermal luminescent dosimeter (TLD) capsules embedded in specified PTV and adjacent structures to monitor delivered dosage and 3D dose distribution profiles. Various material such as cork (Lung), blue water (heart), Techron HPV (ribs) and organic material of balsa wood and cork as dosimetry inserts within phantom of solid water (soft tissue). Relative stopping power (RLSP) values were provided. Our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water. However lung phantom was irradiated by planning with density override and the results were compared with IROC measurements. The second attempt was conducted without density override and compared with IROC’s. Results: The higher passing rate of imaging and measurement results of the lung phantom irradiation met the criteria by IROC without density override. The film at coronal plane was found to be shift due to inclined cylinder insertion. The converted CT density worked as expected to correlate relative stopping power. Conclusion: The proton lung phantom provided by IROC is a useful tool to qualify our commissioned proton pencil beam delivery with TPS within reliable confidence. The relative mass stopping power ratios of materials were converted from the relative physical density relative to water and the results were satisfied.

  4. Accurate identification of ALK positive lung carcinoma patients: novel FDA-cleared automated fluorescence in situ hybridization scanning system and ultrasensitive immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Esther Conde

    Full Text Available BACKGROUND: Based on the excellent results of the clinical trials with ALK-inhibitors, the importance of accurately identifying ALK positive lung cancer has never been greater. However, there are increasing number of recent publications addressing discordances between FISH and IHC. The controversy is further fuelled by the different regulatory approvals. This situation prompted us to investigate two ALK IHC antibodies (using a novel ultrasensitive detection-amplification kit and an automated ALK FISH scanning system (FDA-cleared in a series of non-small cell lung cancer tumor samples. METHODS: Forty-seven ALK FISH-positive and 56 ALK FISH-negative NSCLC samples were studied. All specimens were screened for ALK expression by two IHC antibodies (clone 5A4 from Novocastra and clone D5F3 from Ventana and for ALK rearrangement by FISH (Vysis ALK FISH break-apart kit, which was automatically captured and scored by using Bioview's automated scanning system. RESULTS: All positive cases with the IHC antibodies were FISH-positive. There was only one IHC-negative case with both antibodies which showed a FISH-positive result. The overall sensitivity and specificity of the IHC in comparison with FISH were 98% and 100%, respectively. CONCLUSIONS: The specificity of these ultrasensitive IHC assays may obviate the need for FISH confirmation in positive IHC cases. However, the likelihood of false negative IHC results strengthens the case for FISH testing, at least in some situations.

  5. Prediction of residual lung function after lung surgery, and examination of blood perfusion in the pre- and postoperative lung using three-dimensional SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Shimatani, Shinji [Toho Univ., Tokyo (Japan). School of Medicine

    2001-01-01

    In order to predict postoperative pulmonary function after lung surgery, preoperative {sup 99m}Tc-macroaggregated albumin (MAA) lung perfusion scans with single-photon emission computed tomography (SPECT) were performed. Spirometry was also performed before and 4-6 months after surgery in 40 patients. In addition, changes in blood perfusion in the pre- and postoperative lung were examined by postoperative lung perfusion scans in 18 of the 40 patients. We measured the three-dimensional (3-D) imaging volume of the operative and contralateral lungs using the volumes rendering method at blood perfusion thresholds of 20, 50 and 75%, utilizing {sup 99m}Tc-MAA lung perfusion, and predicted pulmonary function by means of the measured volumes. We examined the correlation between predicted and the measured values of postoperative pulmonary function, forced vital capacity (FVC) and forced expiratory volume in one second (FEV{sub 1.0}). The correlation between FEV{sub 1.0} predicted by SPECT (threshold 50%) and measured postoperative lung function resembled that between lung function predicted by the standard planar method and measured FEV{sub 1.0} in the lobectomy group. We then examined the ratios of both pre- and postoperative blood perfusion volumes obtained using 3-D imaging at lung perfusion threshold ranges of 10% each (PV20-29, PV30-39) to pre- and postoperative total perfusion (PV20-100). In the lobectomy group, the postoperative PV20-29/PV20-100 value was significantly higher for the operative side lung than the preoperative PV20-29/PV20-100 value, and the postoperative PV50-59, 60-69, 70-79, 80-89 and 90-100/PV20-100 values were significantly lower than the respective preoperative values. However, in the contralateral lung, the respective pre- and postoperative PV/PV20-100 values were almost identical. These findings suggest that the rate of low blood perfusion increased while the rate of middle to high perfusion decreased in the lobectomy group in the operative

  6. CASE STUDY – HIV AND LUNG DISEASE

    African Journals Online (AJOL)

    2011-04-02

    Apr 2, 2011 ... pathology deep to the paraseptal bullae. An intercostal drain tip is seen in the left lateral pleural space. Fig. 2. Axial computed tomography scan on lung windows. Large bilateral paraseptal bullae are demonstrated with residual antero-medial pneumothorax. 37. CASE STUDY – HIV AND LUNG DISEASE ...

  7. Observer agreement in the diagnosis of interstitial lung diseases based on HRCT scans

    International Nuclear Information System (INIS)

    Antunes, Viviane Baptista; Meirelles, Gustavo de Souza Portes; Jasinowodolinski, Dany; Verrastro, Carlos Gustavo Yuji; Torlai, Fabiola Goda

    2010-01-01

    Objective: to determine the interobserver and intraobserver agreement in the diagnosis of interstitial lung diseases (ILDs) based on HRCT scans and the impact of observer expertise, clinical data and confidence level on such agreement. Methods: two thoracic radiologists and two general radiologists independently reviewed the HRCT images of 58 patients with ILDs on two distinct occasions: prior to and after the clinical anamnesis. The radiologists selected up to three diagnostic hypotheses for each patient and defined the confidence level for these hypotheses. One of the thoracic and one of the general radiologists re-evaluated the same images up to three months after the first readings. In the coefficient analyses, the kappa statistic was used. Results: the thoracic and general radiologists, respectively, agreed on at least one diagnosis for each patient in 91.4% and 82.8% of the patients. The thoracic radiologists agreed on the most likely diagnosis in 48.3% (κ = 0.42) and 62.1% (κ = 0.58) of the cases, respectively, prior to and after the clinical anamnesis; likewise, the general radiologists agreed on the most likely diagnosis in 37.9% (κ 0.32) and 36.2% (κ = 0.30) of the cases. For the thoracic radiologist, the intraobserver agreement on the most likely diagnosis was 0.73 and 0.63 prior to and after the clinical anamnesis, respectively. That for the general radiologist was 0.38 and 0.42.The thoracic radiologists presented almost perfect agreement for the diagnostic hypotheses defined with the high confidence level. Conclusions: Interobserver and intraobserver agreement in the diagnosis of ILDs based on HRCT scans ranged from fair to almost perfect and was influenced by radiologist expertise, clinical history and confidence level. (author)

  8. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration

    International Nuclear Information System (INIS)

    Barnes, Elizabeth A.; Murray, Brad R.; Robinson, Donald M.; Underwood, Lori J.; Hanson, John; Roa, Wilson H.Y.

    2001-01-01

    Purpose:To examine the dosimetric benefit of self-gated radiotherapy at deep-inspiration breath hold (DIBH) in the treatment of patients with non-small-cell lung cancer (NSCLC). The relative contributions of tumor immobilization at breath hold (BH) and increased lung volume at deep inspiration (DI) in sparing high-dose lung irradiation (≥20 Gy) were examined. Methods and Materials:Ten consecutive patients undergoing radiotherapy for Stage I-IIIB NSCLC who met the screening criteria were entered on this study. Patients were instructed to BH at DI without the use of external monitors or breath-holding devices (self-gating). Computed tomography (CT) scans of the thorax were performed during free breathing (FB) and DIBH. Fluoroscopy screened for reproducible tumor position throughout DIBH, and determined the maximum superior-inferior (SI) tumor motion during both FB and DIBH. Margins used to define the planning target volume (PTV) from the clinical target volume included 1 cm for setup error and organ motion, plus an additional SI margin for tumor motion, as determined from fluoroscopy. Three conformal treatment plans were then generated for each patient, one from the FB scan with FB PTV margins, a second from the DIBH scan with FB PTV margins, and a third from the DIBH scan with DIBH PTV margins. The percent of total lung volume receiving ≥20 Gy (using a prescription dose of 70.9 Gy to isocenter) was determined for each plan. Results:Self-gating at DIBH was possible for 8 of the 10 patients; 2 patients were excluded, because they were not able to perform a reproducible DIBH. For these 8 patients, the median BH time was 23 (range, 19-52) s. The mean percent of total lung volume receiving ≥20 Gy under FB conditions (FB scan with FB PTV margins) was 12.8%. With increased lung volume alone (DIBH scan with FB PTV margins), this was reduced to 11.0%, tending toward a significant decrease in lung irradiation over FB (p=0.086). With both increased lung volume and tumor

  9. Vasculature surrounding a nodule: A novel lung cancer biomarker.

    Science.gov (United States)

    Wang, Xiaohua; Leader, Joseph K; Wang, Renwei; Wilson, David; Herman, James; Yuan, Jian-Min; Pu, Jiantao

    2017-12-01

    To investigate whether the vessels surrounding a nodule depicted on non-contrast, low-dose computed tomography (LDCT) can discriminate benign and malignant screen detected nodules. We collected a dataset consisting of LDCT scans acquired on 100 subjects from the Pittsburgh Lung Screening study (PLuSS). Fifty subjects were diagnosed with lung cancer and 50 subjects had suspicious nodules later proven benign. For the lung cancer cases, the location of the malignant nodule in the LDCT scans was known; while for the benign cases, the largest nodule in the LDCT scan was used in the analysis. A computer algorithm was developed to identify surrounding vessels and quantify the number and volume of vessels that were connected or near the nodule. A nonparametric receiver operating characteristic (ROC) analysis was performed based on a single nodule per subject to assess the discriminability of the surrounding vessels to provide a lung cancer diagnosis. Odds ratio (OR) were computed to determine the probability of a nodule being lung cancer based on the vessel features. The areas under the ROC curves (AUCs) for vessel count and vessel volume were 0.722 (95% CI=0.616-0.811, plung cancer group 9.7 (±9.6) compared to the non-lung cancer group 4.0 (±4.3) CONCLUSION: Our preliminary results showed that malignant nodules are often surrounded by more vessels compared to benign nodules, suggesting that the surrounding vessel characteristics could serve as lung cancer biomarker for indeterminate nodules detected during LDCT lung cancer screening using only the information collected during the initial visit. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. TH-CD-209-08: Quantification of the Interplay Effect in Proton Pencil Beam Scanning Treatment of Lung

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M; Huang, S; Solberg, T; Teo, B; McDonough, J; Simone, C; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Mayer, R; Thomas, A [Walter Reed Military Hospital, Bethesda, MD (United States)

    2016-06-15

    Purpose: To quantify the dose degradation caused by the interplay effect based on a beam specific motion analysis in proton pencil beam scanning (PBS) treatment of lung tumors Methods: PBS plans were optimized on average CT using a beam-specific PTV method for 10 consecutive patients with locally advanced non-small-cell-lung-cancer (NSCLC) treated with proton therapy to 6660/180 cGy. End inhalation (CT0) and end exhalation (CT50) were selected as the two extreme scenarios to acquire the relative stopping power ratio difference (Δrsp) for a respiration cycle. The water equivalent difference (ΔWET) per radiological path was calculated from the surface of patient to the iCTV by integrating the Δrsp of each voxel. The motion magnitude of each voxel within the target follows a quasi-Gaussian distribution. A motion index (MI (>5mm WET)), defined as the percentage of target voxels with an absolute integral ΔWET larger than 5 mm, was adopted as a metric to characterize interplay. To simulate the treatment process, 4D dose was calculated by accumulating the spot dose on the corresponding respiration phase to the reference phase CT50 by deformable image registration based on spot timing and patient breathing phase. Results: The study indicated that the magnitude of target underdose in a single fraction plan is proportional to the MI (p<0.001), with larger motion equating to greater dose degradation and standard deviations. The target homogeneity, minimum, maximum and mean dose in the 4D dose accumulations of 37 fractions varied as a function of MI. Conclusion: The MI quantification metric can predict the level of dose degradation in PBS lung cancer treatment, which potentially serves as a clinical decision tool to assess whether patients are suitable to receive PBS treatment.

  11. TH-CD-209-08: Quantification of the Interplay Effect in Proton Pencil Beam Scanning Treatment of Lung

    International Nuclear Information System (INIS)

    Kang, M; Huang, S; Solberg, T; Teo, B; McDonough, J; Simone, C; Lin, L; Mayer, R; Thomas, A

    2016-01-01

    Purpose: To quantify the dose degradation caused by the interplay effect based on a beam specific motion analysis in proton pencil beam scanning (PBS) treatment of lung tumors Methods: PBS plans were optimized on average CT using a beam-specific PTV method for 10 consecutive patients with locally advanced non-small-cell-lung-cancer (NSCLC) treated with proton therapy to 6660/180 cGy. End inhalation (CT0) and end exhalation (CT50) were selected as the two extreme scenarios to acquire the relative stopping power ratio difference (Δrsp) for a respiration cycle. The water equivalent difference (ΔWET) per radiological path was calculated from the surface of patient to the iCTV by integrating the Δrsp of each voxel. The motion magnitude of each voxel within the target follows a quasi-Gaussian distribution. A motion index (MI (>5mm WET)), defined as the percentage of target voxels with an absolute integral ΔWET larger than 5 mm, was adopted as a metric to characterize interplay. To simulate the treatment process, 4D dose was calculated by accumulating the spot dose on the corresponding respiration phase to the reference phase CT50 by deformable image registration based on spot timing and patient breathing phase. Results: The study indicated that the magnitude of target underdose in a single fraction plan is proportional to the MI (p<0.001), with larger motion equating to greater dose degradation and standard deviations. The target homogeneity, minimum, maximum and mean dose in the 4D dose accumulations of 37 fractions varied as a function of MI. Conclusion: The MI quantification metric can predict the level of dose degradation in PBS lung cancer treatment, which potentially serves as a clinical decision tool to assess whether patients are suitable to receive PBS treatment.

  12. The level of serum tumor makers and bone metastases of lung cancer correlation

    International Nuclear Information System (INIS)

    Li Li; Jin Jianhua

    2014-01-01

    Objective: To study the correlation between the level of serum tumor makers and bone metastases of lung cancer. Method: In 128 diagnosed patients with lung cancer, small cell lung cancer were 26 cases, non-small cell lung cancer were 102 cases which included 44 cases of adenocarcinoma, 50 cases of squamous cell carcinoma, 4 cases of large cell carcinoma, 4 cases of squamous adenocarcinoma. "9"9"mTc-MDP whole-body bone scanning was performed in 128 patients with lung cancer. over the same period, the serum samples were collected in these patients and 30 comparison controls. CEA, CA125, CA199, SCC, NSE, CA15-3, and AFP were measured by ELISA technique. Bone imaging findings analysis used t-test, and serum levels of tumor markers analysis used χ"2 test. Results: The diagnostic of 53 cases of lung cancer with bone metastasis was subject to clinical criteria of lung cancer with bone metastases. The positive ratio of patients with osseous metastasis was confirmed by "9"9"mTc-MDP whole-body bone scanning was 23.44% (30/128), including 16 cases of lung adenocarcinoma, 9 cases of squamous cell carcinoma, 3 cases of small cell lung cancer , 1 case of large cell lung cancer, 1 case of squamous adenocarcinoma and multiple bone metastases accounted for 66.67% (20/30). The levels of serum CEA, CA125, CA199, SCC, NSE and CA15-3 were higher than the control group (P < O.05). 29 cases of CEA positive and 21 cases of CA125 positive were included in 30 cases of lung cancer with bone metastasis. There was a significant difference between the levels of CEA, CA125, CA199, NSE in lung cancer with bone metastases and without bone metastases (P < 0.05). The sensitivity of "9"9"mTc-MDP whole-body bone scanning in diagnosis of lung cancer with bone metastasis was 84.91%. Conclusion: The average value of CEA, CA125, and CA199, SCC, NSE and CA15-3 in lung cancer patients were significantly higher than the control group. In addition, there is a significantly correlation between the occurrence

  13. Normal anatomy of lung perfusion SPECT scintigraphy

    International Nuclear Information System (INIS)

    Moskowitz, G.W.; Levy, L.M.

    1987-01-01

    Ten patients studies for possible pulmonary embolic disease had normal lung perfusion planar and SPECT scintigraphy. A computer program was developed to superimpose the CT scans on corresponding SPECT images. Superimposition of CT scans on corresponding SPECT transaxial cross-sectional images, when available, provides the needed definition and relationships of adjacent organs. SPECT transaxial sections provide clear anatomic definition of perfusion defects without foreground and background lung tissue superimposed. The location, shape, and size of the perfusion defects can be readily assessed by SPECT. An algorithm was developed for the differentiation of abnormal pulmonary perfusion patterns from normal structures on variation

  14. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Ellen De Langhe

    Full Text Available BACKGROUND: In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomography analysis algorithm for quantification of aerated lung volume in mice; an indicator of pulmonary fibrosis and emphysema severity. METHODOLOGY: Mice received an intratracheal instillation of bleomycin (n = 8, elastase (0.25 U elastase n = 9, 0.5 U elastase n = 8 or saline control (n = 6 for fibrosis, n = 5 for emphysema. A subset of mice was scanned without intervention, to evaluate potential radiation-induced toxicity (n = 4. Some bleomycin-instilled mice were treated with imatinib for proof of concept (n = 8. Mice were scanned weekly, until four weeks after induction, when they underwent pulmonary function testing, lung histology and collagen quantification. Aerated lung volumes were calculated with our automated algorithm. PRINCIPAL FINDINGS: Our automated image-based aerated lung volume quantification method is reproducible with low intra-subject variability. Bleomycin-treated mice had significantly lower scan-derived aerated lung volumes, compared to controls. Aerated lung volume correlated with the histopathological fibrosis score and total lung collagen content. Inversely, a dose-dependent increase in lung volume was observed in elastase-treated mice. Serial scanning of individual mice is feasible and visualized dynamic disease progression. No radiation-induced toxicity was observed. Three-dimensional images provided critical topographical information. CONCLUSIONS: We report on a high resolution in vivo micro-computed tomography image analysis algorithm that runs fully automated and allows quantification of aerated lung volume in mice. This

  15. Clinical assessment of a commercial delivery system for aerosol ventilation scanning by comparison with Krypton-81m

    International Nuclear Information System (INIS)

    Wollmer, P.; Eriksson, L.; Andersson, A.

    1985-01-01

    A commercial aerosol delivery system for ventilation scanning was evaluated in 23 patients with lung disease involving regional disturbances of ventilation. Ventilation scans obtained after inhalation of an aerosol labeled with In-113m were compared with Kr-81m ventilation scans. An indirect comparison was also made with a settling bag technique. There was close agreement between the aerosol and the Kr-81m ventilation scans in all of the patients. The aerosol outlined the ventilated parts of the lung adequately, and central deposition of particles was minimal. The penetration of the aerosol into the lung was higher with the delivery system that with a settling bag system. The aerosol delivery system appears suitable for clinical pulmonary ventilation scintigraphy

  16. 99mTc-MDP Bone Scan Findings in Various Clinical Stages of Malignancies

    International Nuclear Information System (INIS)

    Yoon, Hwi Joong; Lee, Myung Chul; Cho, Bo Yeon; Kim, Noe Kyeong; Koh, Chang Soon

    1981-01-01

    Bone scans with 99m Tc-MDP (methylene diphosphonate) were obtained and analysed in 574 from April, 1979 to June, 1931. Clinical staging was done in all patients without bone scan information and compared with bone scan to determine the predictive value of bone scanning. 1) Primary site of the malignancies were lung in 152, breast in 97, stomach in 43, colon in 15, esophagus in 9, liver and pancreas in 11, kidney in 14, bladder in 27, prostate in 22, thyroid in 20, skin in 11, bone in 9, head and neck in 36, ovary and uterus in 17, hematopoietic and lymphoretic ular system in 33, nervous system in 10, and others in 9 cases. Primary site was not defined in 39 cases. 2) Bone scans were positive in 186 cases (32.4%), which, included 48 cases (31.6%) of lung cancer, 27 cases (27.8%) of breast cancer, 12 cases (28%) of stomach cancer, 6 cases (40%) of colon cancer, 6 cases (43%) of kidney tumor, 4 cases (15%) of bladder cancer, 14 cases (64%) of prostate cancer, 3 cases (15%) of thyroid cancer and 66 other cases. 3) Bone scans were suspicious in 64 cases (11.2%) which included 29 cases (19.1%) of lung cancer, 10 cases (10.3%) of breast cancer, 4 cases (9.3%) of stomach cancer, one case (7%) of colon cancer, 3 cases (11%) of bladder cancer, 2 cases (10%) of thyroid cancer and 15 other cases. 4) Out of 121 cases with early stage of malignancy (which included 20 cases of lung cancer in stage I, II, 38 cases of breast cancer, 13 cases of stomach cancer, 8 cases of kidney tumor, 14 cases of thyroid cancer in stage I-III, and 6 cases of colon cancer, 14 cases of bladder cancer, 8 cases of prostate cancer in stage A-C, bone scans were positive in 5 cases (4.1%) which included 3 cases of lung cancer one case of breast cancer and one case of prostate cancer, and considered as further advanced stage, Out of 121 cases with early stage of malignancy, bone scans were suspicious in 21 cases (17.4%) which included 9 cases of lung cancer, 4 cases of breast cancer, 2 cases of stomach

  17. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  18. Ventilation-perfusion scans in neonatal regional pulmonary emphysema complicating ventilatory assistance

    International Nuclear Information System (INIS)

    Leonidas, J.C.; Moylan, F.M.B.; Kahn, P.C.; Ramenofsky, M.L.

    1978-01-01

    Two cases of ventilator-related neonatal lobar overexpansion with similar radiographic appearance, but probably different pathogenesis, are presented. In one infant, persistent interstitial lobar emphysema was confirmed by markedly decreased perfusion shown on scintigraphy; this information was of great value in predicting the beneficial effect of lobectomy. In the other case, ventilation and perfusion scans indicated functional value of the emphysematous lobe and correctly suggested conservative management. Radioisotope lung scans may provide valuable information regarding lung function in regional pulmonary emphysema associated with assisted ventilation in neonatal respiratory distress syndrome, and thus determine patient management

  19. [A lung abscess caused by bad teeth].

    Science.gov (United States)

    van Brummelen, S E; Melles, D; van der Eerden, M

    2017-01-01

    An odontogenic cause of a lung abscess can easily be overlooked. A 61-year-old man presented at the emergency department with a productive cough and dyspnoea. He was admitted to the pulmonary ward with a suspected odontogenic lung abscess. A thorax CT scan confirmed the diagnosis 'lung abscess', following which the dental surgeon confirmed that the lung abscess probably had an odontogenic cause. The patient made a full recovery following a 6-week course of antibiotics, and he received extensive dental treatment. Poor oral hygiene can be a cause of a lung abscess. A patient with a lung abscess can be treated successfully with a 6-week course of antibiotics; however, if the odontogenic cause is not recognised the abscess can recur.

  20. Triage of Limited Versus Extensive Disease on 18F-FDG PET/CT Scan in Small Cell lung Cancer

    Directory of Open Access Journals (Sweden)

    Saima Riaz

    2017-06-01

    Full Text Available Objective(s: Small cell lung cancer (SCLC is an aggressive neuroendocrine carcinoma, which accounts for 10-15% of pulmonary cancers and exhibits early metastatic spread. This study aimed to determine the added value of 18F-FDG PET/CT imaging in tumor, node, and metastasis (TNM staging of SCLC, compared to the conventional computed tomography (CT scan and its potential role as a prognosticator.Methods: This retrospective review was conducted on 23 patients, who were histopathologically diagnosed to have SCLC and referred for undergoing 18F-FDG PET/CT scanning during October 2009-December 2015. The rate of agreement between the CT and 18F-FDG PET/CT findings for TNM staging was calculated using the Cohen’s kappa (κ. The median follow-up time was eight months, ranging 27-3 months. The overall and disease-free survival rates were calculated based on the extent of disease.Results: 19 cases were male and four female with the mean age of 58±9 years. The 18F-FDG PET/CT identified limited and extensive diseases in 2 (8.7% and 21 (91.3% patients, respectively. In addition, the results of the Cohen’s kappa demonstrated a strong (κ=0.82, fair (κ=0.24, and poor (κ=0.12 agreement between the PET/CT and CT findings for determining tumor, node, and metastasis stages, respectively. The 18F-FDG PET/CT scans upstaged disease in 47% of the cases with visceral and osseous metastasis. The disease-free survival rates for the limited and extensive diseases were 100% and 23% within the 12-month follow-up. In addition, 8 (35% patients expired during the follow-up period.Conclusion: Improved nodal and metastatic disease identification highlights the role of 18F-FDG PET/CT scanning in initial staging of SCLC with prognostic implications.

  1. Framework for radiation pneumonitis risk stratification based on anatomic and perfused lung dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Dhami, Gurleen; Zeng, Jing; Patel, Shilpen A.; Rengan, Ramesh [University of Washington School of Medicine, Department of Radiation Oncology, Seattle, WA (United States); Vesselle, Hubert J.; Kinahan, Paul E.; Miyaoka, Robert S. [University of Washington School of Medicine, Department of Radiology, Seattle, WA (United States); Bowen, Stephen R. [University of Washington School of Medicine, Department of Radiation Oncology, Seattle, WA (United States); University of Washington School of Medicine, Department of Radiology, Seattle, WA (United States)

    2017-05-15

    To design and apply a framework for predicting symptomatic radiation pneumonitis in patients undergoing thoracic radiation, using both pretreatment anatomic and perfused lung dose-volume parameters. Radiation treatment planning CT scans were coregistered with pretreatment [{sup 99m}Tc]MAA perfusion SPECT/CT scans of 20 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ≥ 2 (CTCAE v4 grading system). Anatomic lung dose-volume parameters were collected from the treatment planning scans. Perfusion dose-volume parameters were calculated from pretreatment SPECT/CT scans. Equivalent doses in 2 Gy per fraction were calculated in the lung to account for differences in treatment regimens and spatial variations in lung dose (EQD2{sub lung}). Anatomic lung dosimetric parameters (MLD) and functional lung dosimetric parameters (pMLD{sub 70%}) were identified as candidate predictors of grade ≥ 2 radiation pneumonitis (AUC > 0.93, p < 0.01). Pairing of an anatomic and functional dosimetric parameter (e.g., MLD and pMLD{sub 70%}) may further improve prediction accuracy. Not all individuals with high anatomic lung dose (MLD > 13.6 GyEQD2{sub lung}, 19.3 Gy for patients receiving 60 Gy in 30 fractions) developed radiation pneumonitis, but all individuals who also had high mean dose to perfused lung (pMLD{sub 70%} > 13.3 GyEQD2) developed radiation pneumonitis. The preliminary application of this framework revealed differences between anatomic and perfused lung dosimetry in this limited patient cohort. The addition of perfused lung parameters may help risk stratify patients for radiation pneumonitis, especially in treatment plans with high anatomic mean lung dose. Further investigations are warranted. (orig.) [German] Erstellung und Anwendung eines Rahmenwerks zur Vorhersage symptomatischer Strahlenpneumonitis bei Patienten mit einer Thorax-Bestrahlung anhand anatomischer und perfundierter Lungendosis-Volumen-Parameter in der

  2. Lung involvement quantification in chest radiographs

    International Nuclear Information System (INIS)

    Giacomini, Guilherme; Alvarez, Matheus; Oliveira, Marcela de; Miranda, Jose Ricardo A.; Pina, Diana R.; Pereira, Paulo C.M.; Ribeiro, Sergio M.

    2014-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis, is an infectious disease which remains a global health problem. The chest radiography is the commonly method employed to assess the TB's evolution. The methods for quantification of abnormalities of chest are usually performed on CT scans (CT). This quantification is important to assess the TB evolution and treatment and comparing different treatments. However, precise quantification is not feasible for the amount of CT scans required. The purpose of this work is to develop a methodology for quantification of lung damage caused by TB through chest radiographs. It was developed an algorithm for computational processing of exams in Matlab, which creates a lungs' 3D representation, with compromised dilated regions inside. The quantification of lung lesions was also made for the same patients through CT scans. The measurements from the two methods were compared and resulting in strong correlation. Applying statistical Bland and Altman, all samples were within the limits of agreement, with a confidence interval of 95%. The results showed an average variation of around 13% between the two quantification methods. The results suggest the effectiveness and applicability of the method developed, providing better risk-benefit to the patient and cost-benefit ratio for the institution. (author)

  3. Organ dose evaluation for CT scans based on in-phantom measurements

    International Nuclear Information System (INIS)

    Liu Haikuan; Zhuo Weihai; Chen Bo; Yi Yanling; Li Dehong

    2009-01-01

    Objective: To explore the organ doses and their distributions in different projections of CT scans. Methods: The CT values were measured and the linear absorption coefficients were derived for the main organs of the anthropomorphic phantom to compare with the normal values of human beings. The radiophotoluminescent glass dosimeters were set into various tissues or organs of the phantom for mimic measurements of the organ doses undergoing the head, chest, abdomen and pelvis CT scans, respectively. Results: The tissue equivalence of the phantom used in this study was good. The brain had the largest organ dose undergoing the head CT scan. The organ doses in thyroid, breast, lung and oesophagus were relatively large in performing the chest CT scan, while the liver, stomach, colon and lung had relatively hrge organ doses in abdomen CT practice. The doses in bone surface and colon exceeded by 50 mGy in a single pelvis CT scan. Conclusions: The organ doses and their distributions largely vary with different projections of CT scans. The organ doses of colon, bone marrow,gonads and bladder are fairly large in performing pelvis CT scan, which should be paid attention in the practice. (authors)

  4. Value of chest X-ray combined with perfusion scan versus ventilation/perfusion scan in acute pulmonary embolism

    NARCIS (Netherlands)

    de Groot, M. R.; Turkstra, F.; van Marwijk Kooy, M.; Oostdijk, A. H.; van Beek, E. J.; Büller, H. R.

    2000-01-01

    The main purpose of ventilation scanning, as adjunct to perfusion lung scintigraphy, in acute pulmonary embolism is to allow for the classification of segmental perfusion defects as mismatched, which is generally accepted as proof for the presence of pulmonary embolism. We examined whether this

  5. Evaluation of the severity of anterior myocardial infarction (single-vessel disease) by stress myocardial scanning

    International Nuclear Information System (INIS)

    Kobayashi, Mitsuru; Nishimura, Tsunehiko; Uehara, Toshiisa; Hayashida, Kohei; Hayashi, Makoto; Saito, Muneyasu; Sumiyoshi, Tetsuya

    1986-01-01

    Stress thallium-201 scanning was performed in 57 patients with ≥ 75 % stenosis in the left anterior descending artery. The ratio of lung uptake to heart uptake was defined as lung thallium uptake. For quantitative assessment of infarct size and the severity of ischemia, defect score and ischemic score were derived, respectively, from circumferential profile analysis. Lung thallium uptake at stress tended to increase with an increase in both defect and ischemic scores. The increase in lung thallium uptake also tended to be associated with a decrease in LVEF as determined by cardiac catheterization. The results indicate that stress thallium scanning is of value in the evaluation of the severity of myocardial infarction. (Namekawa, K.)

  6. Prediction of therapeutic response in steroid-treated pulmonary sarcoidosis. Evaluation of clinical parameters, bronchoalveolar lavage, gallium-67 lung scanning, and serum angiotensin-converting enzyme levels

    International Nuclear Information System (INIS)

    Hollinger, W.M.; Staton, G.W. Jr.; Fajman, W.A.; Gilman, M.J.; Pine, J.R.; Check, I.J.

    1985-01-01

    To find a pretreatment predictor of steroid responsiveness in pulmonary sarcoidosis the authors studied 21 patients before and after steroid treatment by clinical evaluation, pulmonary function tests, bronchoalveolar lavage (BAL), gallium-67 lung scan, and serum angiotensin-converting enzyme (SACE) level. Although clinical score, forced vital capacity (FVC), BAL percent lymphocytes (% lymphs), quantitated gallium-67 lung uptake, and SACE levels all improved with therapy, only the pretreatment BAL % lymphs correlated with the improvement in FVC (r = 0.47, p less than 0.05). Pretreatment BAL % lymphs of greater than or equal to 35% predicted improvement in FVC of 10/11 patients, whereas among 10 patients with BAL % lymphs less than 35%, 5 patients improved and 5 deteriorated. Clinical score, pulmonary function parameters, quantitated gallium-67 lung uptake, and SACE level used alone, in combination with BAL % lymphs or in combination with each other, did not improve this predictive value. The authors conclude that steroid therapy improves a number of clinical and laboratory parameters in sarcoidosis, but only the pretreatment BAL % lymphs are useful in predicting therapeutic responsiveness

  7. Usefulness of lung scanning in the evaluation of patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Powe, J.; McCarthy, K.; Palevsky, H.; Fishman, A.P.; Alavi, A.

    1986-01-01

    The ventilation-perfusion scans of 30 patients with pulmonary arterial hypertension and established final diagnoses were blindly classified as to the probability of showing pulmonary embolism. Eleven of 12 patients with primary pulmonary hypertension had normal or low-probability scans; one had an intermediate-probability scan. All six patients with thromboembolic pulmonary hypertension had high-probability scans. However, three of 12 patients with nonembolic secondary pulmonary hypetension also had high-probability scans. Although a normal or low-probability scan excludes the possibility of emboli as a cause, a high-probability scan may often be associated with nonembolic causes of secondary pulmonary hypertension

  8. A method for smoothing segmented lung boundary in chest CT images

    Science.gov (United States)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  9. Community-Based Multidisciplinary Computed Tomography Screening Program Improves Lung Cancer Survival.

    Science.gov (United States)

    Miller, Daniel L; Mayfield, William R; Luu, Theresa D; Helms, Gerald A; Muster, Alan R; Beckler, Vickie J; Cann, Aaron

    2016-05-01

    Lung cancer is the most common cause of cancer deaths in the United States. Overall survival is less than 20%, with the majority of patients presenting with advanced disease. The National Lung Screening Trial, performed mainly in academic medical centers, showed that cancer mortality can be reduced with computed tomography (CT) screening compared with chest radiography in high-risk patients. To determine whether this survival advantage can be duplicated in a community-based multidisciplinary thoracic oncology program, we initiated a CT scan screening program for lung cancer within an established health care system. In 2008, we launched a lung cancer CT screening program within the WellStar Health System (WHS) consisting of five hospitals, three health parks, 140 outpatient medical offices, and 12 imaging centers that provide care in a five-county area of approximately 1.4 million people in Metro-Atlanta. Screening criteria incorporated were the International Early Lung Cancer Action Program (2008 to 2010) and National Comprehensive Cancer Network guidelines (2011 to 2013) for moderate- and high-risk patients. A total of 1,267 persons underwent CT lung cancer screening in WHS from 2008 through 2013; 53% were men, 87% were 50 years of age or older, and 83% were current or former smokers. Noncalcified indeterminate pulmonary nodules were found in 518 patients (41%). Thirty-six patients (2.8%) underwent a diagnostic procedure for positive findings on their CT scan; 30 proved to have cancer, 28 (2.2%) primary lung cancer and 2 metastatic cancer, and 6 had benign disease. Fourteen patients (50%) had their lung cancer discovered on their initial CT scan, 11 on subsequent scans associated with indeterminate pulmonary nodules growth and 3 patients who had a new indeterminate pulmonary nodules. Only 15 (54%) of these 28 patients would have qualified as a National Lung Screening Trial high-risk patient; 75% had stage I or II disease. Overall 5-year survival was 64% and 5-year

  10. Neurologic, neuropsychologic, and computed cranial tomography scan abnormalities in 2- to 10-year survivors of small-cell lung cancer.

    Science.gov (United States)

    Johnson, B E; Becker, B; Goff, W B; Petronas, N; Krehbiel, M A; Makuch, R W; McKenna, G; Glatstein, E; Ihde, D C

    1985-12-01

    In order to evaluate the relationship between neurologic function and cranial irradiation, 20 patients treated on National Cancer Institute (NCI) small-cell lung cancer (SCLC) trials who were alive and free of cancer 2.4 to 10.6 years (median, 6.2) from the start of therapy were studied. All were tested with a neurologic history and examination, mental status examination, neuropsychologic testing, and review of serial computed cranial tomography (CCT) scans. Fifteen patients had been treated with prophylactic cranial irradiation (PCI), two patients with therapeutic cranial irradiation, and three received no cranial irradiation. All patients but one were ambulatory and none were institutionalized. Fifteen patients (75%) had neurologic complaints, 13 (65%) had abnormal neurologic examinations, 12 (60%) had abnormal mental status examinations, 13 (65%) had abnormal neuropsychologic testing, and 15 (75%) had abnormal CCT scans. Compared with those given low-dose maintenance chemotherapy during PCI using 200 to 300 rad per fraction, patients who were given high-dose induction chemotherapy during the time of cranial irradiation or large radiotherapy fractions (400 rad) were more likely to have abnormal mental status examinations (6/6 v 4/9) and abnormal neuropsychologic tests (6/6 v 4/9), but no major difference in CCT findings was present. CCT scans in the majority of cases (11/18) showed progressive ventricular dilatation or cerebral atrophy up to 8 years after stopping therapy. We conclude neurologic abnormalities are common in long-term survivors of SCLC, and may be more prominent in patients given high-dose chemotherapy during cranial irradiation or treated with large radiotherapy fractions. The CCT scan abnormalities are common and progressive years after prophylactic cranial irradiation and chemotherapy are stopped.

  11. Gallium scans of the thorax in patients with acquired immune deficiency syndrome (AIDS): Description and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Le, G.; Chen, D.C.P.; Siegel, M.E.

    1984-01-01

    The pattern of distribution of gallium uptake in the thorax was investigated in patients (pts) with AIDS. Eleven pts (ages 18-53), all active homosexual males suspected of having acute pulmonary infection were studied. Ga lung scans were performed at 24-48 and/or 72 hrs. post injection. The diagnosis of AIDS was based on appropriate clinical and laboratory findings. The Ga activity in the lung was graded from zero = background to 4+ which is > liver activity. Eight of eleven pts have positive Ga scan while seven of eleven pts had positive CXR. Six pts had both positive CXR and Ga scan. One pt had a positive Ga scan with negative CXR, and one with positive CXR and negative Ga scan. The positive Ga scans included 3 pts with 4+ diffuse uptake, two pts with 2+ diffuse uptake, two pts with 1+ diffuse uptake, and two with hilar node uptake. Three pts have focal increased uptake superimposed on diffuse uptake. Two pts with 4+ diffuse uptake had mild abnormality on their CXR. One pt with 4+ uptake in the initial scan shows decreased activity on follow-up with clinical improvement after therapy. Thus, all but two pts with positive Ga scans had diffuse lung uptake. These two patients alone had B cell immunoblastic sarcoma and oral candidiasis. The pattern of Ga lung uptake in pts with AIDS reveal that a majority of positive scans are diffuse (6/8) and the intensity may suggest more active disease than CXR (2 normal) and, thus, the study may be useful in detecting changes from atypical pulmonary infection in this population.

  12. Gallium scans of the thorax in patients with acquired immune deficiency syndrome (AIDS): Description and utilization

    International Nuclear Information System (INIS)

    Le, G.; Chen, D.C.P.; Siegel, M.E.

    1984-01-01

    The pattern of distribution of gallium uptake in the thorax was investigated in patients (pts) with AIDS. Eleven pts (ages 18-53), all active homosexual males suspected of having acute pulmonary infection were studied. Ga lung scans were performed at 24-48 and/or 72 hrs. post injection. The diagnosis of AIDS was based on appropriate clinical and laboratory findings. The Ga activity in the lung was graded from zero = background to 4+ which is > liver activity. Eight of eleven pts have positive Ga scan while seven of eleven pts had positive CXR. Six pts had both positive CXR and Ga scan. One pt had a positive Ga scan with negative CXR, and one with positive CXR and negative Ga scan. The positive Ga scans included 3 pts with 4+ diffuse uptake, two pts with 2+ diffuse uptake, two pts with 1+ diffuse uptake, and two with hilar node uptake. Three pts have focal increased uptake superimposed on diffuse uptake. Two pts with 4+ diffuse uptake had mild abnormality on their CXR. One pt with 4+ uptake in the initial scan shows decreased activity on follow-up with clinical improvement after therapy. Thus, all but two pts with positive Ga scans had diffuse lung uptake. These two patients alone had B cell immunoblastic sarcoma and oral candidiasis. The pattern of Ga lung uptake in pts with AIDS reveal that a majority of positive scans are diffuse (6/8) and the intensity may suggest more active disease than CXR (2 normal) and, thus, the study may be useful in detecting changes from atypical pulmonary infection in this population

  13. Predictive equations for lung volumes from computed tomography for size matching in pulmonary transplantation.

    Science.gov (United States)

    Konheim, Jeremy A; Kon, Zachary N; Pasrija, Chetan; Luo, Qingyang; Sanchez, Pablo G; Garcia, Jose P; Griffith, Bartley P; Jeudy, Jean

    2016-04-01

    Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes. Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients. Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82). We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  14. TH-CD-209-10: Scanning Proton Arc Therapy (SPArc) - The First Robust and Delivery-Efficient Spot Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, X; Li, X; Zhang, J; Kabolizadeh, P; Stevens, C; Yan, D

    2016-01-01

    Purpose: To develop a delivery-efficient proton spot-scanning arc therapy technique with robust plan quality. Methods: We developed a Scanning Proton Arc(SPArc) optimization algorithm integrated with (1)Control point re-sampling by splitting control point into adjacent sub-control points; (2)Energy layer re-distribution by assigning the original energy layers to the new sub-control points; (3)Energy layer filtration by deleting low MU weighting energy layers; (4)Energy layer re-sampling by sampling additional layers to ensure the optimal solution. A bilateral head and neck oropharynx case and a non-mobile lung target case were tested. Plan quality and total estimated delivery time were compared to original robust optimized multi-field step-and-shoot arc plan without SPArc optimization (Arcmulti-field) and standard robust optimized Intensity Modulated Proton Therapy(IMPT) plans. Dose-Volume-Histograms (DVH) of target and Organ-at-Risks (OARs) were analyzed along with all worst case scenarios. Total delivery time was calculated based on the assumption of a 360 degree gantry room with 1 RPM rotation speed, 2ms spot switching time, beam current 1nA, minimum spot weighting 0.01 MU, energy-layer-switching-time (ELST) from 0.5 to 4s. Results: Compared to IMPT, SPArc delivered less integral dose(−14% lung and −8% oropharynx). For lung case, SPArc reduced 60% of skin max dose, 35% of rib max dose and 15% of lung mean dose. Conformity Index is improved from 7.6(IMPT) to 4.0(SPArc). Compared to Arcmulti-field, SPArc reduced number of energy layers by 61%(276 layers in lung) and 80%(1008 layers in oropharynx) while kept the same robust plan quality. With ELST from 0.5s to 4s, it reduced 55%–60% of Arcmulti-field delivery time for the lung case and 56%–67% for the oropharynx case. Conclusion: SPArc is the first robust and delivery-efficient proton spot-scanning arc therapy technique which could be implemented in routine clinic. For modern proton machine with ELST close

  15. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    Science.gov (United States)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423

  16. Motion Interplay as a Function of Patient Parameters and Spot Size in Spot Scanning Proton Therapy for Lung Cancer

    International Nuclear Information System (INIS)

    Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald

    2013-01-01

    Purpose: To quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials: Four-dimensional Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3 cc) and motion amplitudes (3-30 mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity, and 2-year local control rate (2y-LC). Results: Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ ≈ 3 mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor 2.8 compared with a larger spot size (σ ≈ 13 mm). Using a smaller spot size to treat a tumor with 30-mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V 20 are <0.6 Gy(RBE) and <1.7%, respectively. Conclusions: For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments using smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the

  17. HRCT findings in the lungs of non-smokers with neurofibromatosis

    International Nuclear Information System (INIS)

    Oikonomou, Anastasia; Vadikolias, Konstantinos; Birbilis, Theodosios; Bouros, Demosthenes; Prassopoulos, Panos

    2011-01-01

    Purpose: Interstitial lung disease in neurofibromatosis (NF) has been disputed and attributed to smoking-related changes. The aim of this study was to describe HRCT findings in the lungs of non-smokers with NF. Materials and methods: Six never-smokers with NF underwent lung HRCT. Two radiologists evaluated the HRCT scans and a final decision was reached by consensus. The HRCT scans were analyzed with regard to the number, size, location (upper, middle or lower lung zone) and distribution (peripheral and central) of lung cysts and the presence of ground-glass density centrilobular micronodules. Results: All patients with NF had small (2–18 mm) thin wall cysts and upper-lobe predominant patchy areas of ground-glass density centrilobular micronodules. In five cases, there were 3–17 cysts and in one there were numerous (>100). Lung cysts were central (1), subpleural (1) and in both locations (4). Conclusion: Interstitial lung disease in NF is not associated with smoking and may be entirely asymptomatic. HRCT may reveal small cysts, with barely perceptible walls therefore not representing emphysema and occasionally a minimal micronodular pattern of ground glass opacity. There was no radiologic evidence of lung fibrosis, honeycombing or severe bullous disease.

  18. Accumulation of 99Tcm MDP in lung cancer of 84 patients

    International Nuclear Information System (INIS)

    Yang, Y.S.F.; Zeng, Z.J.; Shao, S.J.L.; Shi, S.M.P.; Zheng, Z.Z.C.

    2002-01-01

    Objective: To analyze the clinic mechanisms of technetium-99m-methyl-diphosphate ( 99 Tc m -MDP) uptake in lung cancer. Methods: 84 patients (63 men, 21 women; mean age 61.56 years) with lung cancer and no effusion underwent bone scan. Of 84, there were primary lung cancer in 63 cases and metastatic lung cancer in 21 cases. 28 adenocarcinomas, 32 squamous carcinomas, 9 adenosquamous carcinomas, 9 non-classified non-small cell lung cancers, 6 small cell lung carcinomas. Final diagnoses were established by histology in all patients. The bone scan was performed 3-8h after i.v. injection of 1295MBq 99 Tc m -MDP. The whole body scan was performed using a SPET camera (MULTISPECT2, Siemans) and the scan speed was 11cm/min. Tracer uptake was visual and semi-quantitative analyzed for each patient. The expression of 99 Tc m -MDP uptake in lung was determined the intensity and then took semi-quantitative analysis of 99 Tc m -MDP uptake, regions of interest (RIOs) placed on the lesions encompassed all pixels and horizontal copied to normal lung in anterior and posterior view, and the average count ratio (tumor to normal lung T/N) in each ROI was calculated. We analyzed the ratio by computing the standardized uptake measures (SUMs) to determine the tumor-positive value (T/N) greater than or equal to 1.2. All 99 Tc m -MDP images were carefully compared with their contemporaneous chest roentgenograms, CT and histopathology studies. Results: For statistics analysis of the 99 Tc m -MDP uptake in lung cancer, the men were 81% in 63 cases, women 19% in 21; the age of less than or equal to fifty years old is 12% in 10; poorly differentiated carcinoma was 48.8% in 41, med-differentiated carcinoma was 39.3% in 33 and differentiated was 11.9% in 10;the patients of chemotherapy were 32.1% in 27; the metastatic lymph nodules were 51.2% in 43; the diameter of tumor with larger than 5 cm was 72.4% in 60;pleura involvement was 83.7% in 36; necrosis was 76.8% in 33; abnormality of enzyme (GPT

  19. Selective Nodal Irradiation on Basis of 18FDG-PET Scans in Limited-Disease Small-Cell Lung Cancer: A Prospective Study

    International Nuclear Information System (INIS)

    Loon, Judith van; De Ruysscher, Dirk; Wanders, Rinus; Boersma, Liesbeth; Simons, Jean; Oellers, Michel; Dingemans, Anne-Marie C.; Hochstenbag, Monique; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Teule, Jaap; Rhami, Ali; Thimister, Willy; Snoep, Gabriel; Dehing-Oberije, Cary; Lambin, Philippe

    2010-01-01

    Purpose: To evaluate the results of selective nodal irradiation on basis of 18 F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. Methods and Materials: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. Results: A difference was seen in the involved nodal stations between the pretreatment 18 F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. Conclusion: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC.

  20. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L., E-mail: adamliss68@gmail.com [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kapadia, Nirav S. [Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (United States); McShan, Daniel L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Rogers, Virginia E. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Moran, Jean M.; Brock, Kristy K.; Schipper, Matt J.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Flaherty, Kevin R. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Frey, Kirk A. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2017-02-01

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanning before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of

  1. Reducing Radiation Doses in Female Breast and Lung during CT Examinations of Thorax: A new Technique in two Scanners

    Directory of Open Access Journals (Sweden)

    Mehnati P.

    2017-09-01

    Full Text Available Background: Chest CT is a commonly used examination for the diagnosis of lung diseases, but a breast within the scanned field is nearly never the organ of interest. Objective: The purpose of this study is to compare the female breast and lung doses using split and standard protocols in chest CT scanning. Materials and Methods: The sliced chest and breast female phantoms were used. CT exams were performed using a single-slice (SS- and a 16 multi-slice (MS- CT scanner at 100 kVp and 120 kVp. Two different protocols, including standard and split protocols, were selected for scanning. The breast and lung doses were measured using thermo-luminescence dosimeters which were inserted into different layers of the chest and breast phantoms. The differences in breast and lung radiation doses in two protocols were studied in two scanners, analyzed by SPSS software and compared by t-test. Results: Breast dose by split scanning technique reduced 11% and 31% in SS- and MS- CT. Also, the radiation dose of lung tissue in this method decreased 18% and 54% in SS- and MS- CT, respectively. Moreover, there was a significant difference (p< 0.0001 in the breast and lung radiation doses between standard and split scanning protocols. Conclusion: The application of a split scan technique instead of standard protocol has a considerable potential to reduce breast and lung doses in SS- and MS- CT scanners. If split scanning protocol is associated with an optimum kV and MSCT, the maximum dose decline will be provided.

  2. Inhalation scan using sup(81m)Kr-gas. Its application for the clinical diagnosis of the various pulmonary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H; Sasaki, T; Senda, K; Ohara, K; Kaii, O [Nagoya Univ. (Japan). Faculty of Medicine

    1979-09-01

    Inhalation scan using sup(81m) Kr-gas was performed in the various pulmonary diseases, in order to examine the ventilatory function of the lung after the measurement of ratio of expiratory ratio in the normal and diseased lung field. Inhalation scan is applied to the various pulmonary diseases such as lung cancer, radiation pulmonary fibrosis and chronic obstructive pulmonary disease. In cases of lung cancer, there is disturbance of respiratory function at the site of lesion when compared to the remainder of the normal lung fields. In cases of chronic obstructive pulmonary disease, the inhalation scan is performed at three states such as pre-, in- and post-attack of the disease. During the asthma attack the respiratory function is disturbed considerably when compared to the pre- and post-attack states. In each pulmonary disease, the ratio of expiratory ratio is measured from the histogram and pulmonary function is evaluated.

  3. Methods of in-vivo mouse lung micro-CT

    Science.gov (United States)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  4. Relationship between tuberculous scar and carcinomas of the lung

    International Nuclear Information System (INIS)

    Richardson, S.; Hirsch, A.; Bickel, M.

    1987-01-01

    Results of a transversal case-control study are reported which shows that there is a statistically significant association between tuberculous scars and carcinoma of the lung. Accordingly the possibility of malignancy has to be kept in mind when radiological or scintigraphic scanning reveal the presence of lung scars. (orig.)

  5. CT-quantified emphysema distribution is associated with lung function decline

    NARCIS (Netherlands)

    Hoesein, F.A.A.M.; Rikxoort, E.M. van; Ginneken, B. van; de Jong, P. A.; Prokop, M.; Lammers, J.W.; Zanen, P.

    2012-01-01

    Emphysema distribution is associated with COPD. It is however unknown whether CT-quantified emphysema distribution (upper/lower lobe) is associated with lung function decline in heavy (former) smokers.587 male participants underwent lung CT-scanning and pulmonary function testing at baseline and

  6. Potential for Interfraction Motion to Increase Esophageal Toxicity in Lung SBRT

    OpenAIRE

    Pham, Anthony Hoai-Nam; Yorke, Ellen; Rimner, Andreas; Wu, Abraham Jing-Ching

    2017-01-01

    Purpose: To characterize the effect of the relative motion of esophagus and tumor on radiation doses to the esophagus in patients treated with stereotactic body radiation therapy for central lung tumors. Methods and Materials: Fifty fractions of stereotactic body radiation therapy in 10 patients with lung tumors within 2.5 cm of the esophagus were reviewed. The esophagus was delineated on each treatment’s cone-beam computed tomography scan and compared to its position on the planning scan. Do...

  7. Plain radiographic findings of lung cancer with delayed diagnosis

    International Nuclear Information System (INIS)

    Choe, Kyu Ok; Chung, Jin Ill

    1994-01-01

    In Korea, Lung cancer is the Second most common prevailing malignancy among male population next to stomach cancer. Although CT scan and MRI is widely used in the staging of lung cancer, plain chest x-ray still plays an important role in screening and diagnosis. Our intention was to review the confusing radiographic features which result in delayed diagnosis of lung cancer. Of the 160 patients with lung cancer evaluated by us, 62 patients(39%) with delayed diagnosis and average diagnostic duration of 5.1 months compared with 2.1 months for those without delay. We reviewed the plain chest x-ray findings of those 62 patients. The diagnosis of lung cancer was delayed more than half of the cases under the impression of intrathoracic tuberculosis. Upon reviewing the roentgenologic findings in patients with diagnostic delay, central type appeared as a small hilar or mediastinal mass with or without obstructive pneumonia. Peripheral type appeared as an ill-defined pulmonary module, a nodule hidden by overlapping structures, or as a lung cancer associated with pulmonary tuberculosis. Some cases were misinterpreted as extranodal spread of malignancy. To solve above mentioned problems, we recommend proper understanding of natural history of lung cancer, incorporation of high kVp technique in chest radiographs, routine acquisition of lateral chest radiograph to increase diagnostic accuracy, and appropriate use of CT scan in cases of difficult diagnosis

  8. On the validity of density overrides for VMAT lung SBRT planning

    International Nuclear Information System (INIS)

    Wiant, David; Vanderstraeten, Caroline; Maurer, Jacqueline; Pursley, Jan; Terrell, Jonathon; Sintay, Benjamin J.

    2014-01-01

    Purpose: Modeling dose to a moving target in lung is a very difficult task. Current approaches to planning lung stereotactic body radiotherapy (SBRT) generally calculate dose on either free breathing or average computed tomography (CT) scans, which do not always accurately predict dose to parts of the target volume not occupied by tumor on the planning scan. In this work, the authors look at using density overrides of the target volumes to more accurately predict dose for lung SBRT using the analytic anisotropic algorithm (AAA). Methods: Volumetric modulated arc therapy plans were created on free breathing scans (FBP), time average scans (AVGP), free breathing scans with the internal target volume overridden to tumor density (ITVP), free breathing scans with the planning target volume overridden to tumor density (PTVP), and free breathing scan using a hybrid scheme with the internal target volume set to tumor density and the planning target volume minus the internal target volume set to a density intermediate between lung and tumor (HP) for the case of a 4D motion phantom and five patient cases. Radiochromic film measurements were made for the phantom plans, with gamma analysis used to compare the planned to delivered dose. The patient plans were recalculated on each of the phases of a 4DCT to evaluate tumor coverage and conformity index (CI). A modified modulation complexity score (MCSv) and average open area per control point (AA) metrics were used to evaluate multileaf collimator (MLC) modulation for each of the plans. Results: The HP plans showed significantly higher gamma passing rates (p < 0.05) than the FBP, AVGP, and ITVP for criteria of 2 mm/2% and 1 mm/1%. No significant correlation was observed between gamma values and AA or MCSv. The tumor volume was covered by the prescription dose on all phases of the 4DCT for all patient plans. The PTVP and HP yielded lower mean CI than the other plans for all five patients, with three of the cases showing

  9. On the validity of density overrides for VMAT lung SBRT planning

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, David, E-mail: david.wiant@conehealth.com; Vanderstraeten, Caroline; Maurer, Jacqueline; Pursley, Jan; Terrell, Jonathon; Sintay, Benjamin J. [Cone Health Cancer Center, Greensboro, North Carolina 27403 (United States)

    2014-08-15

    Purpose: Modeling dose to a moving target in lung is a very difficult task. Current approaches to planning lung stereotactic body radiotherapy (SBRT) generally calculate dose on either free breathing or average computed tomography (CT) scans, which do not always accurately predict dose to parts of the target volume not occupied by tumor on the planning scan. In this work, the authors look at using density overrides of the target volumes to more accurately predict dose for lung SBRT using the analytic anisotropic algorithm (AAA). Methods: Volumetric modulated arc therapy plans were created on free breathing scans (FBP), time average scans (AVGP), free breathing scans with the internal target volume overridden to tumor density (ITVP), free breathing scans with the planning target volume overridden to tumor density (PTVP), and free breathing scan using a hybrid scheme with the internal target volume set to tumor density and the planning target volume minus the internal target volume set to a density intermediate between lung and tumor (HP) for the case of a 4D motion phantom and five patient cases. Radiochromic film measurements were made for the phantom plans, with gamma analysis used to compare the planned to delivered dose. The patient plans were recalculated on each of the phases of a 4DCT to evaluate tumor coverage and conformity index (CI). A modified modulation complexity score (MCSv) and average open area per control point (AA) metrics were used to evaluate multileaf collimator (MLC) modulation for each of the plans. Results: The HP plans showed significantly higher gamma passing rates (p < 0.05) than the FBP, AVGP, and ITVP for criteria of 2 mm/2% and 1 mm/1%. No significant correlation was observed between gamma values and AA or MCSv. The tumor volume was covered by the prescription dose on all phases of the 4DCT for all patient plans. The PTVP and HP yielded lower mean CI than the other plans for all five patients, with three of the cases showing

  10. Automating the expert consensus paradigm for robust lung tissue classification

    Science.gov (United States)

    Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.

  11. Monitoring the radiation consequences due to the disaster at the Chernobyl nuclear facility from April 28 to June 12, 1986

    International Nuclear Information System (INIS)

    Andrasi, A.; Beleznay, E.; Deme, S.

    1986-07-01

    Environmental radiation measurements were carried out by the Health Physics Department of the Central Research Institute for Physics in cooperation with the Hungarian Civil Defence Organization in the title period in Hungary. The following data were measured: activity concentration of radioaerosols and radioactive iodine in air, fallout activity, in situ gamma spectroscopy to estimate ground surface contamination, gamma dose rate, activity concentration in milk, incorporated radionuclides, activities of 131 I in thyroid gland and of 103 Ru in lung, whole-body activities of 137 Cs and 134 Cs. (R.P.)

  12. Stochastic tracking of infection in a CF lung.

    Directory of Open Access Journals (Sweden)

    Sara Zarei

    Full Text Available Magnetic Resonance Imaging (MRI and Computed Tomography (CT scan are the two ubiquitous imaging sources that physicians use to diagnose patients with Cystic Fibrosis (CF or any other Chronic Obstructive Pulmonary Disease (COPD. Unfortunately the cost constraints limit the frequent usage of these medical imaging procedures. In addition, even though both CT scan and MRI provide mesoscopic details of a lung, in order to obtain microscopic information a very high resolution is required. Neither MRI nor CT scans provide micro level information about the location of infection in a binary tree structure the binary tree structure of the human lung. In this paper we present an algorithm that enhances the current imaging results by providing estimated micro level information concerning the location of the infection. The estimate is based on a calculation of the distribution of possible mucus blockages consistent with available information using an offline Metropolis-Hastings algorithm in combination with a real-time interpolation scheme. When supplemented with growth rates for the pockets of mucus, the algorithm can also be used to estimate how lung functionality as manifested in spirometric tests will change in patients with CF or COPD.

  13. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation

    International Nuclear Information System (INIS)

    Hanley, J.; Debois, M.M.; Raben, A.; Mageras, G.S.; Lutz, W.R.; Mychalczak, B.; Schwartz, L.H.; Gloeggler, P.J.; Leibel, S.A.; Fuks, Z.; Kutcher, G.J.

    1996-01-01

    Purpose/Objective: Lung tumors are subject to movement due to respiratory motion. Conventionally, a margin is applied to the clinical target volume (CTV) to account for this and other treatment uncertainties. The purpose of this study is to evaluate the dosimetric benefits of a deep inspiration breath-hold (DIBH) technique which has two distinct features - deep inspiration which reduces lung density and breath-hold which immobilizes lung tumors. Both properties can potentially reduce the mass of normal lung tissue in the high dose region, thus improving the possibility of dose escalation. Methods and Materials: To study the efficacy of the DIBH technique, CT scans are acquired for each patient under 4 respiration conditions: free-breathing; DIBH; shallow inspiration breath-hold; shallow expiration breath-hold. The free-breathing and DIBH scans are used to generate treatment plans for comparison of standard and DIBH techniques, while the shallow inspiration and expiration scans provide information on the maximum extent of tumor motion under free-breathing conditions. To acquire the breath-hold scans, the patients are brought to reproducible respiration levels using spirometry and slow vital capacity maneuvers. For the treatment plan comparison free-breathing and DIBH planning target volumes (PTVs) are constructed consisting of the CTV plus a margin for setup error and lung tumor motion. For both plans the margin for setup error is the same while the margin for lung tumor motion differs. The margin for organ motion in free-breathing is determined by the maximum tumor excursions in the shallow inspiration and expiration CT scans. For the DIBH, tumor motion is reduced to the extent to which DIBH can be maintained and the margin for any residual tumor motion is determined from repeat fluoroscopic movies, acquired with the patient monitored using spirometry. Three-dimensional treatment plans, generated using apertures based on the free-breathing and DIBH PTVs, are

  14. Evaluation of Pulmonary Perfusion Scan in Heart Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J T; Kim, C K; Park, C Y; Choi, B S [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1973-09-15

    Pulmonary perfusion scan with radioactive {sup 113m}In-iron hydroxide particle was performed in the 25 cases of heart disease which had been diagnosed by cardiac catheterization prior to surgery from July, 1972 to July, 1973 at the Department of Radiology and Nuclear Medicine, Yonsei Medical College. It consists of 7 mitral stenosis, 2 mitral insufficiency, 1 aortic insufficiency, 3 atrial septal defect, 5 ventricular septal defect, 2 patent ductus arteriosus, 1 transposition of great vessel and 4 Tetralogy of Fallot. Findings of pulmonary perfusion scan in relation to hemodynamic data of cardiac catheterization were examined. 1) Out of 10 cases of acquired valvular heart disease, In 6 cases of stenosis and 1 case of aortic insufficiency, radioactivity was increased at both upper lung. This finding is noted when pulmonary wedge or venous pressure was elevated above 22 mmHg and arterial systolic pressure above 33 mmHg. 2) Out of 15 cases of congenital heart disease. In almost all cases of artial septal defect and ventricular septal defect except 2 cases, radioactivity was even at both entire lung. In 2 cases of patent ductras arteriosus, radioactivity was decreased especially at the left lung. It is observed that in acyanotic congenital heart disease, radioactivity of lung is not related with pulmonary arterial pressure. In 3 cases of Tetralogy of Fallot, radioactivity was even at both entire lung and in 2 of them, extrapulmonary radioactivity of liver or kidney which depends on size of defect and volume of right to left shunt reversible, was noted.

  15. Evaluation of Pulmonary Perfusion Scan in Heart Disease

    International Nuclear Information System (INIS)

    Lee, J. T.; Kim, C. K.; Park, C. Y.; Choi, B. S.

    1973-01-01

    Pulmonary perfusion scan with radioactive 113m In-iron hydroxide particle was performed in the 25 cases of heart disease which had been diagnosed by cardiac catheterization prior to surgery from July, 1972 to July, 1973 at the Department of Radiology and Nuclear Medicine, Yonsei Medical College. It consists of 7 mitral stenosis, 2 mitral insufficiency, 1 aortic insufficiency, 3 atrial septal defect, 5 ventricular septal defect, 2 patent ductus arteriosus, 1 transposition of great vessel and 4 Tetralogy of Fallot. Findings of pulmonary perfusion scan in relation to hemodynamic data of cardiac catheterization were examined. 1) Out of 10 cases of acquired valvular heart disease, In 6 cases of stenosis and 1 case of aortic insufficiency, radioactivity was increased at both upper lung. This finding is noted when pulmonary wedge or venous pressure was elevated above 22 mmHg and arterial systolic pressure above 33 mmHg. 2) Out of 15 cases of congenital heart disease. In almost all cases of artial septal defect and ventricular septal defect except 2 cases, radioactivity was even at both entire lung. In 2 cases of patent ductras arteriosus, radioactivity was decreased especially at the left lung. It is observed that in acyanotic congenital heart disease, radioactivity of lung is not related with pulmonary arterial pressure. In 3 cases of Tetralogy of Fallot, radioactivity was even at both entire lung and in 2 of them, extrapulmonary radioactivity of liver or kidney which depends on size of defect and volume of right to left shunt reversible, was noted.

  16. Effective avoidance of a functional spect-perfused lung using intensity modulated radiotherapy (IMRT) for non-small cell lung cancer (NSCLC): An update of a planning study

    International Nuclear Information System (INIS)

    Lavrenkov, Konstantin; Singh, Shalini; Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; Bedford, James L.; Brada, Michael

    2009-01-01

    IMRT and 3-dimensional conformal radiotherapy (3-DCRT) plans of 25 patients with non-small cell lung (NSCLC) were compared in terms of planning target volume (PTV) coverage and sparing of functional lung (FL) defined by a SPECT perfusion scan. IMRT resulted in significant reduction of functional V 20 and mean lung dose in stage III patients with inhomogeneous hypoperfusion. If the dose to FL is shown to be the determinant of lung toxicity, IMRT would allow for effective dose escalation by specific avoidance of functional lung.

  17. Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cuaron, John [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Dunphy, Mark [Department of Nuclear Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rimner, Andreas, E-mail: rimnera@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2013-01-03

    The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated {sup 18}F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. {sup 18}F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. {sup 18}F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on {sup 18}F-FDG-PET scan when CT criteria for malignant involvement are not met. {sup 18}F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. {sup 18}F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. {sup 18}F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3–6 months, using {sup 18}F-FDG-PET to evaluate equivocal CT findings. As high {sup 18}F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions

  18. [A case of lung abscess during chemotherapy for testicular tumor].

    Science.gov (United States)

    Hayashi, Yujiro; Miyago, Naoki; Takeda, Ken; Yamaguchi, Yuichiro; Nakayama, Masashi; Arai, Yasuyuki; Kakimoto, Ken-ichi; Nishimura, Kazuo

    2014-05-01

    32-year-old man was seen in a clinic because of prolonged cough and slight-fever. Chest X-ray showed multiple pulmonary nodules, and multiple lung and mediastinal lymph node metastases from right testicular tumor was suspected by positron emission tomography/CT (PET/CT) scan. He was diagnosed with right testicular germ cell tumor (embryonal carcinoma + seminoma, pT2N1M1b), and classified into the intermediate risk group according to International Germ Cell Cancer Collaborative Group. He underwent 4 cycles of chemotherapy with bleomycin, etoposide and cisplatin (BEP therapy). During BEP therapy, sputum with foul odor appeared and chest CT scan revealed lung abscess with a necrotic lesion of metastatic tumor. The lung abscess was treated successfully with antibiotics.

  19. Scintiscanning of lung cancer with 67Ga-citrate

    International Nuclear Information System (INIS)

    Abe, Mitsunobu; Ohyama, Shiro; Ohtsuka, Hassau; Hoshina, Toshifumi; Takanashi, Shuko

    1982-01-01

    The clinical value of scintigram with 67 Ga-citrate in 58 patients with primary lung cancer was investigated and discussed. The results are as follows: 1) Positive 67 Ga-scintigram was obtained in 83% of patients with primary lung cancer. The histologically confirmed positive ratios were 74% in adenocarcinoma, 94% in squamous cell carcinoma, 80% in small cell carcinoma and 100% in large cell carcinoma. 2) The positive ratios according to T category of TNM classification was 0% (0/1) in T1, 83% (20/24) in T2 and 85% (28/33) in T3. 3) According to rules for classification of lung cancer (TNM UICC 1978,) T2 cases were divided into two groups. a) In patients with hilar involvements on chest X-ray, positive accumulation to the hilar region was 88% (7/8). b) In patients without the evidence of hilar involvements on chest X-ray, the positive accumulation to the hilar region was 81% (13/16). 4) All cases extending to the mediastinum showed abnormal 67 Ga-citrate accumulation regardless of histological type. 67 Ga-citrate scanning is useful in evaluating the extent of lung cancer, especially with hilar and mediastinal involvements. Therefore 67 Ga-citrate scanning seems to be very useful for planning the radiotherapy for lung cancer. (author)

  20. Interstitial lung abnormalities are associated with increased mortality in smokers

    DEFF Research Database (Denmark)

    Hoyer, Nils; Wille, Mathilde M W; Thomsen, Laura H

    2018-01-01

    OBJECTIVE: The aim of this study was to investigate whether smokers with incidental findings of interstitial lung abnormalities have an increased mortality during long-term follow-up, and review the contributing causes of death. METHODS: Baseline CT scans of 1990 participants from the Danish Lung...... in this lung cancer screening population of relatively healthy smokers and were associated with mortality regardless of the interstitial morphological phenotype. The increased mortality was partly due to an association with lung cancer and non-pulmonary malignancies....

  1. The result analysis of 18F-FDG imaging in suspected malignant pleural effusion or atelectasis on CT scanning

    International Nuclear Information System (INIS)

    Wang Huoqiang; Wu Jiyong; Pan Huizhong; Liu Jinjun; Zhao Xianguo

    2004-01-01

    Objective: To determine the ability of 18 F-fluorodeoxyglucose (FDG) dual-head tomography with coincidence (DHTC) imaging in detecting lung cancer in patients with suspected malignant pleural effusion or malignant atelectasis on CT scanning and to differentiate benign and malignant pleural effusions in patients with lung cancer. Methods: One hundred and ten patients with suspected malignant pleural effusion (n=84) or atelectasis (n=26) but without primary lesions in the lungs on CT scanning underwent 18 F-FDG DHTC. Results: Thirty-eight of 110 patients were proven with lung cancer. Among the 38 lung cancer patients, 30 of them had pleural effusion and 8 of them had atelectasis. Seventy-two of 110 patients were proven with benign lung diseases. The sensitivity, specificity and accuracy of 18 F-FDG DHTC for detecting lung cancer in patients with suspected malignant pleural effusion or atelectasis were 97%, 78% and 85%, respectively. In 30 patients with lung cancer plus pleural effusion, 18 F-FDG DHTC correctly detected the presence of malignant pleural effusion and malignant pleural metastatic involvement in 18 of 21 patients and excluded malignant pleural effusion or pleural metastatic involvement in 8 of 9 patients (sensitivity, specificity and accuracy of 86%, 8/9 and 87%, respectively). Conclusion: 18 F-FDG DHTC imaging is a highly accurate and reliable noninvasive test for detecting primary malignant lesions in lung in patients with pleural effusion or atelectasis findings on CT scanning and is useful to differentiate malignant from benign pleural effusion in patients with lung cancer. (authors)

  2. Lung Ultrasound for Diagnosing Pneumothorax in the Critically Ill Neonate.

    Science.gov (United States)

    Raimondi, Francesco; Rodriguez Fanjul, Javier; Aversa, Salvatore; Chirico, Gaetano; Yousef, Nadya; De Luca, Daniele; Corsini, Iuri; Dani, Carlo; Grappone, Lidia; Orfeo, Luigi; Migliaro, Fiorella; Vallone, Gianfranco; Capasso, Letizia

    2016-08-01

    To evaluate the accuracy of lung ultrasound for the diagnosis of pneumothorax in the sudden decompensating patient. In an international, prospective study, sudden decompensation was defined as a prolonged significant desaturation (oxygen saturation pneumothorax was detected in 26 (62%). Lung ultrasound accuracy in diagnosing pneumothorax was as follows: sensitivity 100%, specificity 100%, positive predictive value 100%, and negative predictive value 100%. Clinical evaluation of pneumothorax showed sensitivity 84%, specificity 56%, positive predictive value 76%, and negative predictive value 69%. After sudden decompensation, a lung ultrasound scan was performed in an average time of 5.3 ± 5.6 minutes vs 19 ± 11.7 minutes required for a chest radiography. Emergency drainage was performed after an ultrasound scan but before radiography in 9 cases. Lung ultrasound shows high accuracy in detecting pneumothorax in the critical infant, outperforming clinical evaluation and reducing time to imaging diagnosis and drainage. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A completed audit cycle of the lateral scan projection radiograph in CT pulmonary angiography (CTPA); the impact on scan length and radiation dose

    International Nuclear Information System (INIS)

    Rodrigues, J.C.L.; Negus, I.S.; Manghat, N.E.; Hamilton, M.C.K.

    2013-01-01

    Aim: To investigate the effect of incorporating a lateral scan projection radiograph (topogram) in addition to the standard frontal topogram on excess scan length in computed tomography pulmonary angiography (CTPA) and to quantify the impact on effective dose. Materials and methods: Fifty consecutive patients referred for exclusion of pulmonary embolism who had undergone a CTPA examination with conventional frontal topogram to plan scan length (protocol A) were compared with 50 consecutive patients who had undergone a CTPA study with frontal and additional lateral topogram for planning (protocol B) in a retrospective audit. Optimal scan length was defined from lung apex to lung base. Mean excess scan length beyond these landmarks was determined. The mean organ doses to the thyroid, liver, and stomach, as well as mean effective dose, were estimated using standard conversion factors. Results: The mean excess scan length was significantly lower in protocol B compared to the protocol A cohort (19.5 ± 17.4 mm [mean ± standard deviation] versus 39.1 ± 20.4 mm, p < 0.0001). The mean excess scan length below the lung bases was significantly lower in the protocol B cohort compared to the protocol A group (7.5 ± 12.7 mm versus 23 ± 16.6 mm, p < 0.0001), as were the mean organ doses to the stomach (4.24 ± 0.81 mGy versus 5.22 ± 1.06 mGy, p < 0.0001) and liver (5.60 ± 0.64 mGy versus 6.38 ± 0.81 mGy, p < 0.0001). A non-significant reduction in over-scanning above the apices in protocol B was observed compared with protocol A (12 ± 8.8 mm versus 16.2 ± 13.6 mm, p = 0.07), which equated to lower mean thyroid organ dose in (3.28 ± 1.76 mGy versus 4.11 ± 3.11 mGy, p = 0.104). Conclusion: The present audit indicates that incorporation of a lateral topogram into the CTPA protocol, together with radiographer education, reduces excess scan length, which significantly reduces the dose to the liver and stomach, and potentially lowers the dose to the thyroid. This simple

  4. Hazy increased density in diffuse lung disease

    International Nuclear Information System (INIS)

    Klein, J.S.; Webb, W.R.; Gamsu, G.; Warnock, M.; Park, C.K.

    1989-01-01

    In order to determine the significance of ground glass density on high-resolution CT scans of patients with idiopathic pulmonary fibrosis and other lung disorders, the authors have reviewed 200 high-resolution CT studies and found 50 cases demonstrating areas of hazy increased lung density. Disease entities most often associated with this finding included DIP, UIP, alveolar proteinosis, sarcoidosis, and bronchiolitis obliterans/ organizing pneumonia. Pathologic examination revealed either cellular or fluid material lining terminal air spaces, often associated with alveolar wall infiltration and an absence of fibrosis. Gallium scans and bronchoalveolar lavage in some cases showed active inflammation Follow-up high-resolution CT studies in 10 patients showed either change or resolution of the hazy densities, confirming the presence of a reversible parenchymal lesion

  5. Quantification of lung surface area using computed tomography

    Directory of Open Access Journals (Sweden)

    Xing Li

    2010-10-01

    Full Text Available Abstract Objective To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume. Methods The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures. Results The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p Conclusion Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.

  6. Lung Mass in Smokers.

    Science.gov (United States)

    Washko, George R; Kinney, Gregory L; Ross, James C; San José Estépar, Raúl; Han, MeiLan K; Dransfield, Mark T; Kim, Victor; Hatabu, Hiroto; Come, Carolyn E; Bowler, Russell P; Silverman, Edwin K; Crapo, James; Lynch, David A; Hokanson, John; Diaz, Alejandro A

    2017-04-01

    Emphysema is characterized by airspace dilation, inflammation, and irregular deposition of elastin and collagen in the interstitium. Computed tomographic studies have reported that lung mass (LM) may be increased in smokers, a finding attributed to inflammatory and parenchymal remodeling processes observed on histopathology. We sought to examine the epidemiologic and clinical associations of LM in smokers. Baseline epidemiologic, clinical, and computed tomography (CT) data (n = 8156) from smokers enrolled into the COPDGene Study were analyzed. LM was calculated from the CT scan. Changes in lung function at 5 years' follow-up were available from 1623 subjects. Regression analysis was performed to assess for associations of LM with forced expiratory volume in 1 second (FEV 1 ) and FEV 1 decline. Subjects with Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 chronic obstructive pulmonary disease had greater LM than either smokers with normal lung function or those with GOLD 2-4 chronic obstructive pulmonary disease (P smokers: the presence of such nonlinearity must be accounted for in longitudinal computed tomographic studies. Baseline LM predicts the decline in lung function. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. TH-CD-209-11: Simulation Study of Real-Time-Image Gating On Spot Scanning Proton Therapy for Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Inoue, T; Katoh, N [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Matsuzaki, Y; Fujii, Y; Fujii, T; Miyamoto, N [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Shimizu, S; Shirato, H [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To study the impact of a real-time-image gating on spot scanning proton therapy for lung tumors and to examine the suitable size of the gating window (GW). Methods: We investigated a real-time-image gated proton therapy (RGPT), in which two fluoroscopic units monitor a gold sphere fiducial in real-time, and the proton beam is irradiated only when the marker enters within the pre-assigned GW. We designed 5 treatment plans for 7 lung cancer patients: RGPT with a GW of ±1, 2, 5, and 8 mm and free-breathing proton therapy (FBPT) using the end-exhale and average images of 4-dimensional (4D) CT, respectively. 70 Gy(RBE)/10fr was prescribed to 99% of the targets. The time-series data of the three-dimensional marker positions (RTRT data) were grouped into 10 phases to associate with the phases of 4DCT. The 4D dose distributions were calculated using the plan information, RTRT Data, 4DCT, and modeled accelerator pattern. The dose distribution in each respiratory phase was deformed into the end-exhale CT. The D99 and D5-95 of CTV (with a criteria of D99>95% and D5-95<5%), V20 of Lung-GTV, and treatment times were evaluated. Results: GWs ≤ ±2 mm satisfied the criteria of CTV in all cases, whereas GWs ≥ ±5 mm did not satisfy the criteria in some cases. The V20 was reduced by more than 18.9% (relative to FBPT) for GW ≤ ±2 mm, but equaled or even surpassed the FBPT for GWs ≥ ±5 mm. The irradiation times for the ±1, 2, 5, and 8 mm GWs and FBPT were 372.4±208.3, 215.2±51.5, 180.9±31.6, 178.4±21.2, and 140.1±15.2 s, respectively. The GW of ±1 mm caused large variation in irradiation time among the patients. Conclusion: In RGPT for lung cancer, the most suitable GW, in terms of good dose preservation without prolonging the therapeutic beam delivery, is ±2 mm.

  8. Clinical value of CT-based preoperative software assisted lung lobe volumetry for predicting postoperative pulmonary function after lung surgery

    Science.gov (United States)

    Wormanns, Dag; Beyer, Florian; Hoffknecht, Petra; Dicken, Volker; Kuhnigk, Jan-Martin; Lange, Tobias; Thomas, Michael; Heindel, Walter

    2005-04-01

    This study was aimed to evaluate a morphology-based approach for prediction of postoperative forced expiratory volume in one second (FEV1) after lung resection from preoperative CT scans. Fifteen Patients with surgically treated (lobectomy or pneumonectomy) bronchogenic carcinoma were enrolled in the study. A preoperative chest CT and pulmonary function tests before and after surgery were performed. CT scans were analyzed by prototype software: automated segmentation and volumetry of lung lobes was performed with minimal user interaction. Determined volumes of different lung lobes were used to predict postoperative FEV1 as percentage of the preoperative values. Predicted FEV1 values were compared to the observed postoperative values as standard of reference. Patients underwent lobectomy in twelve cases (6 upper lobes; 1 middle lobe; 5 lower lobes; 6 right side; 6 left side) and pneumonectomy in three cases. Automated calculation of predicted postoperative lung function was successful in all cases. Predicted FEV1 ranged from 54% to 95% (mean 75% +/- 11%) of the preoperative values. Two cases with obviously erroneous LFT were excluded from analysis. Mean error of predicted FEV1 was 20 +/- 160 ml, indicating absence of systematic error; mean absolute error was 7.4 +/- 3.3% respective 137 +/- 77 ml/s. The 200 ml reproducibility criterion for FEV1 was met in 11 of 13 cases (85%). In conclusion, software-assisted prediction of postoperative lung function yielded a clinically acceptable agreement with the observed postoperative values. This method might add useful information for evaluation of functional operability of patients with lung cancer.

  9. INTEGRATED PET-CT SCAN IN THE STAGING OF NON SMALL CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    I Made Ngurah Agus Surya Negara S

    2013-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Lung cancer is a common disease and is a leading cause of death in many countries. The most kind of lung cancer was Non Small Cell Lung Cancer. The management of lung cancer is directed by an optimal staging of the tumour. On 1998, integrated positron emission tomography (PET-computed tomography (CT was published. PET-CT is an anatomo-metabolic imaging modality that has recently been introduced to clinical practice and combines two different techniques: CT, which provides very detailed anatomic information; and PET, which provides metabolic information. One of the advantages of PET/CT is the improved image interpretation. There wasbetter results for PET/CT in the staging of non small cell lung cancer in comparison with CT nor PET alone. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  10. Pulmonary scan in evaluating alveolar-interstitial syndrome in ER

    Directory of Open Access Journals (Sweden)

    Giovanni Volpicelli

    2006-10-01

    Full Text Available Diffuse comet-tail artifacts at lung ultrasound are due to thickened interlobular septa and extravascular lung water. This condition is typical of the alveolar-interstitial syndrome due to pulmonary edema, diffuse parenchymal lung disease or ARDS. Aim of our study is to assess the potential of bedside lung ultrasound to diagnose the alveolar-interstitial syndrome in patients admitted to our emergency medicine unit. The ultrasonic feature of multiple and diffuse comet-tail artifacts was investigated during 5 months, in 121 consecutive patients admitted to our unit. Each patient was studied bedside in a supine position, by 8 antero-lateral pulmonary intercostal scans. Ultrasonic results were compared with chest radiograph and clinical outcome. Lung ultrasound showed a sensitivity of 84% and a specificity of 98% in diagnosing the radiologic alveolar-interstitial syndrome. Corresponding figures in the identification of a disease involving lung interstitium were 83% and 96%. These preliminary data show that the study of comet-tail artifacts at lung ultrasound is a method reasonably accurate for diagnosing the alveolar-interstitial syndrome at bedside. This conclusion opens the hypothesis of the usefullness of bedside lung ultrasound in the evaluation of dyspnoeic patients in the emergency setting.

  11. Optimized treatment parameters to account for interfractional variability in scanned ion beam therapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Brevet, Romain

    2015-02-04

    Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay) as well as interfractional anatomic changes. To compensate for dose deterioration by intrafractional motion, motion mitigation techniques, such as gating have been developed. The latter confines the irradiation to a predetermined breathing state, usually the stable end-exhale phase. However, optimization of the treatment parameters is needed to further improve target dose coverage and normal tissue sparing. The aim of the study presented in this dissertation was to determine treatment planning parameters that permit to recover good target coverage and homogeneity during a full course of lung tumor treatments. For 9 lung tumor patients from MD Anderson Cancer Center (MDACC), a total of 70 weekly time-resolved computed tomography (4DCT) datasets were available, which depict the evolution of the patient anatomy over the several fractions of the treatment. Using the GSI in-house treatment planning system (TPS) TRiP4D, 4D simulations were performed on each weekly 4DCT for each patient using gating and optimization of a single treatment plan based on a planning CT acquired prior to treatment. It was found that using a large beam spot size, a short gating window (GW), additional margins and multiple fields permitted to obtain the best results, yielding an average target coverage (V95) of 96.5%. Two motion mitigation techniques, one approximating the rescanning process (multiple irradiations of the target with a fraction of the planned dose) and one combining the latter and gating, were then compared to gating. Both did neither show an improvement in target dose coverage nor in normal tissue sparing. Finally, the total dose delivered to each patient in a simulation of a fractioned treatment was calculated and clinical requirements in terms of target coverage and normal tissue sparing were

  12. Focal necrotizing pneumonia is a distinct entity from lung abscess.

    Science.gov (United States)

    Seo, Hyewon; Cha, Seung-Ick; Shin, Kyung-Min; Lim, Jaekwang; Yoo, Seung-Soo; Lee, Jaehee; Lee, Shin-Yup; Kim, Chang-Ho; Park, Jae-Yong

    2013-10-01

    'Focal necrotizing pneumonia' was defined as a localized type of necrotizing pneumonia characterized by a single or few cavities of low density without rim enhancement on computed tomography (CT) scan. The purpose of this study was to investigate the clinical features and course of patients with focal necrotizing pneumonia, thereby elucidating its clinical relevance. The present study was conducted retrospectively in patients who had been interpreted as having lung abscess or necrotizing pneumonia on CT scan. Clinical and radiological characteristics were compared between the focal necrotizing pneumonia and lung abscess groups. Overall, 68 patients with focal necrotizing pneumonia (n = 35) or lung abscess (n = 33) were included in the present study. The frequency of risk factors for aspiration was significantly lower in the focal necrotizing group, compared with the lung abscess group (14.3% vs 45.5%, P = 0.005). Compared with lung abscess, focal necrotizing pneumonia was observed more commonly in non-gravity-dependent segments (66% vs 36%, P lung abscess group (31% vs 12%, P = 0.08). However, in terms of treatment outcomes, a similar high rate of success was observed in both groups: 97%, respectively. Compared to lung abscess, focal necrotizing pneumonia occurs more commonly in non-gravity-dependent segments with lower incidence of risk factors for aspiration. Similar to lung abscess, the rate of success for treatment of focal necrotizing pneumonia was high. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  13. Late regional density changes of the lung after radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Vagane, Randi; Danielsen, Turi; Fossa, Sophie Dorothea; Lokkevik, Erik; Olsen, Dag Rune

    2009-01-01

    Background and purpose: To investigate density changes in lung tissue, 3-4 years after postoperative adjuvant radiotherapy for breast cancer, based on dose dependence and regional differences. Material and methods: Sixty-one breast cancer patients, who had received computed tomography (CT) based postoperative radiotherapy, were included. CT scans were performed 35-51 months after start of radiotherapy. Dose information and CT scans from before and after radiotherapy were geometrically aligned in order to analyse changes in air-filled fraction (derived from CT density) as a function of dose for different regions of the lung. Results: Dose-dependent reduction of the air-filled fraction was shown to vary between the different regions of the lung. For lung tissue receiving about 50 Gy, the largest reduction in air-filled fraction was found in the cranial part of the lung. An increased air-filled fraction was observed for lung tissue irradiated to doses below 20 Gy, indicating compensatory response. Conclusions: The treatment-induced change in whole-lung density is a weighted response, involving the different regions, the irradiated volumes, and dose levels to these volumes. Simplistic models may therefore not be appropriate for describing the whole-lung dose-volume-response relationship following inhomogeneous irradiation

  14. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans

    International Nuclear Information System (INIS)

    Mendonca, Bruna G.A.; Mourao, Arnaldo P.

    2013-01-01

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography

  15. Acquiring 4D thoracic CT scans using a multislice helical method

    International Nuclear Information System (INIS)

    Keall, P J; Starkschall, G; Shukla, H; Forster, K M; Ortiz, V; Stevens, C W; Vedam, S S; George, R; Guerrero, T; Mohan, R

    2004-01-01

    Respiratory motion degrades anatomic position reproducibility during imaging, necessitates larger margins during radiotherapy planning and causes errors during radiation delivery. Computed tomography (CT) scans acquired synchronously with the respiratory signal can be used to reconstruct 4D CT scans, which can be employed for 4D treatment planning to explicitly account for respiratory motion. The aim of this research was to develop, test and clinically implement a method to acquire 4D thoracic CT scans using a multislice helical method. A commercial position-monitoring system used for respiratory-gated radiotherapy was interfaced with a third generation multislice scanner. 4D cardiac reconstruction methods were modified to allow 4D thoracic CT acquisition. The technique was tested on a phantom under different conditions: stationary, periodic motion and non-periodic motion. 4D CT was also implemented for a lung cancer patient with audio-visual breathing coaching. For all cases, 4D CT images were successfully acquired from eight discrete breathing phases, however, some limitations of the system in terms of respiration reproducibility and breathing period relative to scanner settings were evident. Lung mass for the 4D CT patient scan was reproducible to within 2.1% over the eight phases, though the lung volume changed by 20% between end inspiration and end expiration (870 cm 3 ). 4D CT can be used for 4D radiotherapy, respiration-gated radiotherapy, 'slow' CT acquisition and tumour motion studies

  16. Lung scintigraphy evaluation in workers exposed to abrasive dusts

    International Nuclear Information System (INIS)

    Terra Filho, Mario

    1995-01-01

    The production process of abrasives use aluminium, or silicon carbide a synthetic material with a hardness only slightly less than that of a diamond. It is popularly known as carborundum since it was first manufactured as an abrasive in 1891, produced by the fusion of high grade silica and petroleum coke with sawdust. For many years silicon carbide was thought not to give rise to pulmonary lesions. Recently several researchers suggested the existence of a carborundum pneumoconiosis. The aim of this study was to evaluate the role of the pulmonary clearance of 99m Technetium chelated to diethylene-triamine penta-acetate ( 99m Tc DTPA), and 67 Gallium lung scanning in workers exposed to abrasive dusts. Thirty seven subjects, 13 smokers and 24 nonsmokers and ex smokers were studied. In 32 (86,48%) 67 Gallium lung scanning was positive including 13 (40,62%) retired workers. We conclude that non smoking workers of abrasives plants have a pulmonary alveolar epithelial permeability disturbance similar as observed in smoking workers and smoking controls. Most workers, ex-workers of these industries and in patients with carborundum pneumoconiosis there is an evidence of pulmonary inflammation measured with abnormal 67 Gallium lung scan. (author)

  17. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    International Nuclear Information System (INIS)

    Ding, Xuanfeng; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-01-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc_m_u_l_t_i_-_f_i_e_l_d) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc_m_u_l_t_i_-_f_i_e_l_d plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be

  18. Spot-Scanning Proton Arc (SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele; Kabolizadeh, Peyman; Stevens, Craig; Yan, Di

    2016-12-01

    Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulated proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented

  19. Interobserver delineation variation in lung tumour stereotacticbody radiotherapy

    DEFF Research Database (Denmark)

    Persson, G. F.; Nygaard, D. E.; Hollensen, Christian

    2012-01-01

    the interobserver delineation variation for stereotactic body radiotherapy (SBRT) of peripheral lung tumours using a cross-sectional study design. Methods 22 consecutive patients with 26 tumours were included. Positron emission tomography/CT scans were acquired for planning of SBRT. Three oncologists and three......-sectional analysis of delineation variation for peripheral lung tumours referred for SBRT, establishing the evidence that interobserver variation is very small for these tumours....

  20. A study on image diagnosis of lung impairment caused by aspiration

    International Nuclear Information System (INIS)

    Takata, Hidenao

    2000-01-01

    Purpose of the present study is to evaluate lung impairment in an acute aspiration model by using new CT method and to assess the application of the method for clinical cases. Subjects in experimental model were anesthetized and mechanically ventilated beagle dogs (n=5), and subjects in clinical cases were patients with aspiration in acute phase (n=5). For the preparation of the acute aspiration model, 2% Gastrografin (diatrizoate megulumine) aqueous solution was instilled cumulatively (0.1-3.0 ml/kg) into the right main bronchus through the endobronchial tube. Two methods of CT scan, Spirometric gating CT (SGCT) and Dynamic CT, were performed before and after instillation. SGCT can adjust the pulmonary volume at each scan by built-in spirometer. Three-dimensional reconstruction of the whole lung image was obtained with scan data by SGCT. Dynamic CT method was utilized for assessment of the ventilation dynamics. Continuous scan of the lung at the carina level was performed during ventilation and time-series image data were obtained at a rate of 5 frames/sec. The CT densitometry of the Dynamic CT images were carried out and time-attenuation curves with ventilation were analyzed. In experimental model, the whole lung images by SGCT after instillation showed invasion of Gastrografin into right lower lobe and the compensatory overinflation in the other lobes. The time-attenuation curves by Dynamic CT showed that both the mean and amplitude of the attenuation increased in the right lower lobe where the Gastrografin instilled. But the amplitude decreased when the mean value showed no apparent change at the first period of instillation. In acute phase of the aspiration, the amplitude will be the sensitive index of the ventilation impairment. In clinical case subjects were scanned during spontaneous breathing by Dynamic CT. Both the mean and amplitude of the attenuation of the time-increased when the aspiration occurred. After four days passed, the mean value increased

  1. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol.

    Science.gov (United States)

    Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-02-01

    Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p computer analysis is a useful approach for applications requiring regional information on deposition.

  2. Value of brain computed tomography in small cell lung cancers

    International Nuclear Information System (INIS)

    Fernet, M.; Breau, J.L.; Goldlust, D.; Israel, L.

    1988-01-01

    88 patients with small cell lung cancer were studied. Brain scans were performed first at initial staging and repeated at regular intervals during the survey. The results confirm the limited value of brain scans in the detection of metastases in neurologically asymptomatic patients [fr

  3. Dual-time point scanning of integrated FDG PET/CT for the evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT

    International Nuclear Information System (INIS)

    Kasai, Takami; Motoori, Ken; Horikoshi, Takuro; Uchiyama, Katsuhiro; Yasufuku, Kazuhiro; Takiguchi, Yuichi; Takahashi, Fumiaki; Kuniyasu, Yoshio; Ito, Hisao

    2010-01-01

    Purpose: To evaluate whether dual-time point scanning with integrated fluorine-18 fluorodeoxyglucose ( 18 F-FDG) positron emission tomography and computed tomography (PET/CT) is useful for evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT. Materials and methods: PET/CT data and pathological findings of 560 nodal stations in 129 patients with pathologically proven non-small cell lung cancer diagnosed as operable by contrast-enhanced CT were reviewed retrospectively. Standardized uptake values (SUVs) on early scans (SUVe) 1 h, and on delayed scans (SUVd) 2 h after FDG injection of each nodal station were measured. Retention index (RI) (%) was calculated by subtracting SUVe from SUVd and dividing by SUVe. Logistic regression analysis was performed with seven kinds of models, consisting of (1) SUVe, (2) SUVd, (3) RI, (4) SUVe and SUVd, (5) SUVe and RI, (6) SUVd and RI, and (7) SUVe, SUVd and RI. The seven derived models were compared by receiver-operating characteristic (ROC) analysis. k-Fold cross-validation was performed with k values of 5 and 10. p < 0.05 was considered statistically significant. Results: Model (1) including the term of SUVe showed the largest area under the ROC curve among the seven models. The cut-off probability of metastasis of 3.5% with SUVe of 2.5 revealed a sensitivity of 78% and a specificity of 81% on ROC analysis, and approximately 60% and 80% on k-fold cross-validation. Conclusion: Single scanning of PET/CT is sufficiently useful for evaluating mediastinal and hilar nodes for metastasis.

  4. Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects.

    Directory of Open Access Journals (Sweden)

    Jiwoong Choi

    Full Text Available Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells through interactions with host cells. We explored this with serial inspiratory computed tomography (CT and image matching to assess regional changes in lung expansion.We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05.Lung regions of metastatic sarcoma patients (but not the normal control group demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05. There was also evidence of increased lung "tissue" volume (non-air components in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions.This new quantitative CT (QCT method for linking

  5. CT staging of lung cancer: the role of artificial pneumothorax

    International Nuclear Information System (INIS)

    Lee, Jin Seong; Im, Jung Gi; Han, Man Chung

    1991-01-01

    To determine the role of artificially induced pneumothorax in the evaluation of the chest wall and mediastinal invasion in patients with peripheral bronchogenic carcinoma. CT scans of 22 patients obtained after induced pneumothorax were evaluated. All patients had peripheral lung mass abutting the pleura on a routine CT scan. Room air of 200-400ml was introduced through intrathoracic negative pressure initially, followed by pressure injection through the 18 gauge long bevelled needle under fluoroscopic control. Conclusively, CT with artificial pneumothorax added more information than conventional CT in the evaluation of the chest wall or mediastinal invasion by lung cancer without notable risk

  6. CT analysis of lung cancer and coexistent emphysema

    International Nuclear Information System (INIS)

    Noh, Kyung Hee; Chung, Myung Hee; Sung, Mi Sook; Yoo, Won Jong; Son, Kyung Myung; Son, Jung Min; Park, Seog Hee

    2004-01-01

    To evaluate the relation of the location and cell type of lung cancer to the location and degree in coexistent emphysema on high-resolution computed tomography (HRCT) scans. Ninety-eight of 209 lung cancer patients having HRCT scans were retrospectively analyzed to assess the total lung emphysema and peritumoral regional emphysema. Single and primary lung cancers were included. The clinical data, including sex, age, smoking history and the pathologic cancer subtype, were recorded to correlate with the HRCT findings. The lobar distribution, central-peripheral predominance, surrounding parenchymal abnormality for cancer, cephalocaudal predominance, and subtype for emphysema were analyzed on HRCT. Using a CT scoring method, we scored the whole lung emphysema and peritumoral emphysema, and correlated the grading of emphysema with pulmonary functional values. Sixty-nine of 98 patients with lung cancer (71%) had emphysema. Lung cancer with emphysema was significantly higher in men than in women, and was significantly related to smoking. The mean age of cancer patients without emphysema was significantly lower than that of cancer patients with emphysema (68 yrs vs. 61 yrs, p= 0.0006). Emphysema of grade I (0-25%) was found in 52 cases, grade II (25-50%) in 15, and grade III (50-75%) in 2. Total emphysema score was paralleled to peritumoral emphysema score in 64.3%, while the remaining patients had a higher peritumoral emphysema score (grade II or III) than total emphysema score (grade 0 or I). There was no statistical correlation in the developmental location between the emphysema and the lung cancer (significant correlation was only noted in grade II group of total emphysema score). The incidence of non-small cell carcinoma tended to be higher than that of small cell carcinoma in the two groups. The possibility of lung cancer in patients with pulmonary nodule, coexisting emphysema, and especially in elderly patients having a history of smoking must be clarified on HRCT

  7. Elevated levels of CXC chemokine connective tissue activating peptide (CTAP)-III in lung cancer patients.

    Science.gov (United States)

    Lee, Gina; Gardner, Brian K; Elashoff, David A; Purcell, Colleen M; Sandha, Harpavan S; Mao, Jenny T; Krysan, Kostyantyn; Lee, Jay M; Dubinett, Steven M

    2011-05-15

    Despite advances in treatments, lung cancer has been the leading cause of cancer-related deaths in the United States for the past several decades. Recent findings from the National Lung Screening Trial reveal that low-dose helical computed tomography (CT) scan screening of high-risk individuals reduces lung cancer mortality. This suggests that early detection is of key importance to improving patient outcome. However, of those screened with CT scans, 25% had positive scans that require further follow-up studies which often involve more radiation exposure and invasive tests to reduce false positive results. The purpose of this study was to identify candidate plasma biomarkers to aid in diagnosis of lung cancer in at-risk individuals. We found increased expression of the CXC chemokine connective tissue-activating peptide (CTAP)-III from plasma specimens of lung cancer patients compared to at-risk control subjects. Identification of the peptide was confirmed by the addition of an anti-NAP-2 antibody that recognizes CTAP-III and NAP-2. We also quantified and verified the increased levels of plasma CTAP-III with ELISA in patients with lung cancer (mean ± SD, 1859 ± 1219 ng/mL) compared to controls (698 ± 434 ng/mL; Pcancer patients. Further studies are required to determine if this chemokine could be utilized in a blood-based biomarker panel for the diagnosis of lung cancer.

  8. Automated detection of lung nodules in low-dose computed tomography

    International Nuclear Information System (INIS)

    Cascio, D.; Cheran, S.C.; Chincarini, A.; De Nunzio, G.; Delogu, P.; Fantacci, M.E.; Gargano, G.; Gori, I.; Retico, A.; Masala, G.L.; Preite Martinez, A.; Santoro, M.; Spinelli, C.; Tarantino, T.

    2007-01-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (∝300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan. (orig.)

  9. Definition of gross tumor volume in lung cancer: inter-observer variability

    NARCIS (Netherlands)

    van de Steene, Jan; Linthout, Nadine; de Mey, Johan; Vinh-Hung, Vincent; Claassens, Cornelia; Noppen, Marc; Bel, Arjan; Storme, Guy

    2002-01-01

    BACKGROUND AND PURPOSE: To determine the inter-observer variation in gross tumor volume (GTV) definition in lung cancer, and its clinical relevance. MATERIALS AND METHODS: Five clinicians involved in lung cancer were asked to define GTV on the planning CT scan of eight patients. Resulting GTVs were

  10. TU-H-CAMPUS-TeP2-01: A Comparison of Noninvasive Techniques to Assess Radiation-Induced Lung Damage in Mice

    International Nuclear Information System (INIS)

    Rubinstein, A; Kingsley, C; Melancon, A; Tailor, R; Pollard, J; Guindani, M; Followill, D; Hazle, J; Court, L

    2016-01-01

    Purpose: To evaluate the use of post-irradiation changes in respiratory rate and CBCT-based morphology as predictors of survival in mice. Methods: C57L/J mice underwent whole-thorax irradiation with a Co-60 beam to four different doses [0Gy (n=3), 9Gy (n=5), 11Gy (n=7), and 13Gy (n=5)] in order to induce varying levels of pneumonitis. Respiratory rate measurements, breath-hold CBCTs, and free-breathing CBCTs were acquired pre-irradiation and at six time points between two and seven months post-irradiation. For respiratory rate measurements, we developed a novel computer-vision-based technique. We recorded mice sleeping in standard laboratory cages with a 30 fps, 1080p webcam (Logitech C920). We calculated respiratory rate using corner detection and optical flow to track cyclical motion in the fur in the recorded video. Breath-hold and free-breathing CBCTs were acquired on the X-RAD225Cx system. For breathhold imaging, the mice were intubated and their breath was held at full-inhale for 20 seconds. Healthy lung tissue was delineated in the scans using auto-threshold contouring (0–0.7 g/cm"3). The volume of healthy lung was measured in each of the scans. Next, lung density was measured in a 6-mm"2 ROI in a fixed anatomic location in each of the scans. Results: Day-to-day variability in respiratory rate with our technique was 13%. All metrics except for breath-hold lung volume were correlated with survival: lung density on free-breathing (r=−0.7482,p<0.01) and breath-hold images (r=−0.5864,p<0.01), free-breathing lung volume (r=0.7179,p<0.01), and respiratory rate (r= 0.6953,p<0.01). Lung density on free-breathing scans was correlated with respiratory rate (r=0.7142,p<0.01) and lung density on breath-hold scans (r=0.5543,p<0.01). One significant practical hurdle in the CBCT measurements was that at least one lobe of the lung was collapsed in 36% of free-breathing scans and 45% of breath-hold scans. Conclusion: Lung density and lung volume on free-breathing CBCTs

  11. The role of lung imaging in pulmonary embolism

    Science.gov (United States)

    Mishkin, Fred S.; Johnson, Philip M.

    1973-01-01

    The advantages of lung scanning in suspected pulmonary embolism are its diagnostic sensitivity, simplicity and safety. The ability to delineate regional pulmonary ischaemia, to quantitate its extent and to follow its response to therapy provides valuable clinical data available by no other simple means. The negative scan effectively excludes pulmonary embolism but, although certain of its features favour the diagnosis of embolism, the positive scan inherently lacks specificity and requires angiographic confirmation when embolectomy, caval plication or infusion of a thrombolytic agent are contemplated. The addition of simple ventilation imaging techniques with radioxenon overcomes this limitation by providing accurate analog estimation or digital quantitation of regional ventilation: perfusion (V/Q) ratios fundamental to understanding the pathophysiologic consequences of embolism and other diseases of the lung. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7p495-bFig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13 PMID:4602128

  12. Noninvasive Computed Tomography-based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial.

    Science.gov (United States)

    Maldonado, Fabien; Duan, Fenghai; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Karwoski, Ronald A; Garg, Kavita; Greco, Erin; Nath, Hrudaya; Robb, Richard A; Bartholmai, Brian J; Peikert, Tobias

    2015-09-15

    Screening for lung cancer using low-dose computed tomography (CT) reduces lung cancer mortality. However, in addition to a high rate of benign nodules, lung cancer screening detects a large number of indolent cancers that generally belong to the adenocarcinoma spectrum. Individualized management of screen-detected adenocarcinomas would be facilitated by noninvasive risk stratification. To validate that Computer-Aided Nodule Assessment and Risk Yield (CANARY), a novel image analysis software, successfully risk stratifies screen-detected lung adenocarcinomas based on clinical disease outcomes. We identified retrospective 294 eligible patients diagnosed with lung adenocarcinoma spectrum lesions in the low-dose CT arm of the National Lung Screening Trial. The last low-dose CT scan before the diagnosis of lung adenocarcinoma was analyzed using CANARY blinded to clinical data. Based on their parametric CANARY signatures, all the lung adenocarcinoma nodules were risk stratified into three groups. CANARY risk groups were compared using survival analysis for progression-free survival. A total of 294 patients were included in the analysis. Kaplan-Meier analysis of all the 294 adenocarcinoma nodules stratified into the Good, Intermediate, and Poor CANARY risk groups yielded distinct progression-free survival curves (P < 0.0001). This observation was confirmed in the unadjusted and adjusted (age, sex, race, and smoking status) progression-free survival analysis of all stage I cases. CANARY allows the noninvasive risk stratification of lung adenocarcinomas into three groups with distinct post-treatment progression-free survival. Our results suggest that CANARY could ultimately facilitate individualized management of incidentally or screen-detected lung adenocarcinomas.

  13. Advances in lung ultrasound

    International Nuclear Information System (INIS)

    Francisco Neto, Miguel Jose; Rahal Junior, Antonio; Vieira, Fabio Augusto Cardillo; Silva, Paulo Savoia Dias da; Funari, Marcelo Buarque de Gusmao

    2016-01-01

    Ultrasound examination of the chest has advanced in recent decades. This imaging modality is currently used to diagnose several pathological conditions and provides qualitative and quantitative information. Acoustic barriers represented by the aerated lungs and the bony framework of the chest generate well-described sonographic artifacts that can be used as diagnostic aids. The normal pleural line and A, B, C, E and Z lines (also known as false B lines) are artifacts with specific characteristics. Lung consolidation and pneumothorax sonographic patterns are also well established. Some scanning protocols have been used in patient management. The Blue, FALLS and C.A.U.S.E. protocols are examples of algorithms using artifact combinations to achieve accurate diagnoses. Combined chest ultrasonography and radiography are often sufficient to diagnose and manage lung and chest wall conditions. Chest ultrasonography is a highly valuable diagnostic tool for radiologists, emergency and intensive care physicians. (author)

  14. Detection of lung nodules with low-dose spiral CT: comparison with conventional dose CT

    International Nuclear Information System (INIS)

    Zhu Tianzhao; Tang Guangjian; Jiang Xuexiang

    2004-01-01

    Objective: To investigate the effect of reducing scan dose on the lung nodules detection rate by scanning a lung nodule model at low dose and conventional dose. Methods: The lung and the thoracic cage were simulated by using a cyst filled with water surrounded by a roll bandage. Flour, butter, and paraffin wax were mixed together by a certain ratio to simulate lung nodules of 10 mm and 5 mm in diameter with the CT values ranging from -10 to 50 HU. Conventional-dose scan (240 mA, 140 kV) and low-dose scan of three different levels (43 mA, 140 kV; 50 mA, 120 kV; 75 mA, 80 kV) together with three different pitches (1.0, 1.5, and 2.0) were performed. The images of the simulated nodules were combined with the CT images of a normal adult's upper, middle, and inferior lung. Three radiologists read the images and the number of the nodules they detected including both the real ones and the false-positive ones was calculated to investigate weather there was any difference among different doses, pitch groups, and different locations. Results: The detection rate of the 10 mm and 5 mm nodules was 100% and 89.6% respectively by the low-dose scan. There was no difference between low-dose and conventional-dose CT (χ 2 =0.6907, P>0.70). The detection rate of 5 mm nodules declined when large pitch was used. Conclusion: The detection rates of 10 mm and 5 mm nodules had no difference between low-dose CT and conventional-dose CT. As the pitch augmented, the detection rate for the nodules declined

  15. Incidental apical disease at CT scanning

    International Nuclear Information System (INIS)

    McLoud, T.C.; Satoh, K.; Shepard, J.O.; Moore, E.H.; Kosiuk, J.P.

    1990-01-01

    Apical caps are commonly noted on standard radiographs. This paper determines how often abnormalities in the extreme apex of the lung could be identified on CT scans obtained for other reasons. A total of 158 consecutive CT scans were reviewed prospectively. Excluded were patients with obvious upper lobe pleural or parenchymal disease. Apical abnormalities were identified in 74 (46.8%) of the 158 cases. The prevalence increased with age (19% in the 8-39-year age group and 82% in patients older than 80 years). Opacities were unilateral in 44.5% and bilateral in 55.5%. The most common abnormality was linear opacities (95%)

  16. Detection of occult bone metastases of lung cancer with Fluorine-18 fluorodeoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Foo, S.S.; Ramdave, S.; Berlangieri, S.U.; Scott, A.M.

    2004-01-01

    Accurate staging of cancer has a critical role in optimal patient management. Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) is superior to CT in the detection of local and distant metastasesin patients with non-small cell lung cancer. Although Tc-99 m methylene diphosphonate (MDP) bone scanning is well established in the evaluation of bone metastases, there are conflicting reports on the use of FDG PET in the evaluation of skeletal metastases. We report on a patient with locally advanced lung carcinoma in whom FDG PET accurately identified previously unsuspected widespread asymptomatic bone metastases (bone scan and X-rays negative, confirmed on MRI). Assessment of glucose metabolism with FDG PET might represent a more powerful tool to detect bone metastases in lung cancer compared with conventional bone scans. Copyright (2004) Blackwell Science Pty Ltd

  17. Calcification in large cell neuroendocrine carcinoma of the lung

    International Nuclear Information System (INIS)

    Takamochi, Kazuya; Yokose, Tomoyuki; Ochiai, Atsushi; Yoshida, Junji; Nishimura, Mitsuyo; Ohmatsu, Hironobu; Nagai, Kanji; Nishiwaki, Yutaka

    2003-01-01

    The aim was to investigate the prevalence of intratumoral calcification in large cell neuroendocrine carcinoma (LCNEC) and to review computed tomography (CT) and histological findings. From August 1992 through March 2000, 35 out of 1183 surgically resected lung cancer patients were histologically diagnosed as having LCNEC at our institute. We reviewed the pain radiographs and CT scans of these 35 LCNEC patients. In LCNEC cases with intratumoral calcification, we examined the size, number, distribution and pattern of intratumoral calcifications visible on the CT scans and the histological features. Three cases (9%) exhibited calcification. The calcifications were recognized by CT scans alone. The CT scans showed punctate or eccentric intratumoral calcifications, which are considered to be a malignant feature, in all three cases. In two cases, the calcifications were histologically confirmed to be located within the necrotic areas of a tumor nest. We found three LCNEC cases with intratumoral calcification. The prevalence of LCNEC calcification was similar to that in previous reports on lung cancer. The mechanism of the intratumoral calcification in our LCNEC cases is speculated to be dystrophic calcification. (author)

  18. Lung density change after SABR: A comparative study between tri-Co-60 magnetic resonance-guided system and linear accelerator.

    Science.gov (United States)

    Kim, Eunji; Wu, Hong-Gyun; Park, Jong Min; Kim, Jung-In; Kim, Hak Jae; Kang, Hyun-Cheol

    2018-01-01

    Radiation-induced lung damage is an important treatment-related toxicity after lung stereotactic ablative radiotherapy (SABR). After implementing a tri-60Co magnetic-resonance image guided system, ViewRayTM, we compared the associated early radiological lung density changes to those associated with a linear accelerator (LINAC). Eight patients treated with the tri-60Co system were matched 1:1 with patients treated with LINAC. Prescription doses were 52 Gy or 60 Gy in four fractions, and lung dose-volumetric parameters were calculated from each planning system. The first two follow-up computed tomography (CT) were co-registered with the planning CT through deformable registration software, and lung density was measured by isodose levels. Tumor size was matched between the two groups, but the planning target volume of LINAC was larger than that of the tri-60Co system (p = 0.036). With regard to clinically relevant dose-volumetric parameters in the lungs, the ipsilateral lung mean dose, V10Gy and V20Gy were significantly poorer in tri-60Co plans compared to LINAC plans (p = 0.012, 0.036, and 0.017, respectively). Increased lung density was not observed in the first follow-up scan compared to the planning scan. A significant change of lung density was shown in the second follow-up scan and there was no meaningful difference between the tri-60Co system and LINAC for all dose regions. In addition, no patient developed clinical radiation pneumonitis until the second follow-up scan. Therefore, there was no significant difference in the early radiological lung damage between the tri-60Co system and LINAC for lung SABR despite of the inferior plan quality of the tri-60Co system compared to that of LINAC. Further studies with a longer follow-up period are needed to confirm our findings.

  19. New approach to the problem of increasing the environmental protection during a severe accident at a nuclear power plant

    International Nuclear Information System (INIS)

    Kulyukhin, S.A.; Mikheev, N.B.; Kamenskaya, A.N.; Rumer, I.A.; Kazakevich, M.Z.; Novichenko, V.L.

    1996-01-01

    Although the probability of severe accidents is very low (less than 10 -5 ), these accidents have very hazardous consequences and can lead to an extensive contamination of the territory with radioactive compounds (e.g., Chernobyl accident in 1986). To minimize the consequences of such accidents at nuclear power plants (NPP), much attention is being given to operational safety issues. Particular emphasis has been placed on the in-depth protection, i.e., a multilevel protection. In order to increase the efficiency of available systems of environmental protection in both operating and projected NPPs, we have developed a new concept based on the use of man-made hydrophilic aerosols that can form mixed aerosol particles with radio-aerosols. The fundamental investigations performed have shown that the resulting mixed aerosols incorporate radio-aerosols with particle size less that 0.1 μm. These radio-aerosols acquire the properties of the macro-aerosols; i.e., hydrophobic aerosols become hydrophilic. The use of hydrophilic macro-aerosols allows the scrubber efficiency to be increased with respect to hydrophobic cesium aerosols (with particle size less than 0.1μ) by a factor of more than 50. Simultaneously, for operating NPPs supplied with under-containment pressure-relief system, we suggest a decontamination setup of a new type. This setup can work both of the decontamination of the vapor-air flow cesium and iodine radio-aerosols is 10 5 - 10 7 . As to the NPP projects now under development, the use of man-made aerosols under the containment at the time of an accident will allow the sedimentation rate of radio-aerosols to be significantly increased, and this will ensure a rapid removal of radioactivity from under the containment. Our investigations have shown that ammonium chloride increases the sedimentation rate of nano-metric cesium radio-aerosol particles by a factor of more than 100. Thus, an almost complete trapping of radio-aerosols through the use of man

  20. Can simulation measurements be used to predict the irradiated lung volume in the tangential fields in patients treated for breast cancer

    International Nuclear Information System (INIS)

    Bornstein, B.A.; Cheng, C.W.; Rhodes, L.M.; Rashid, H.; Stomper, P.C.; Siddon, R.L.; Harris, J.R.

    1990-01-01

    A simple method of estimating the amount of lung irradiated in patients with breast cancer would be of use in minimizing lung complications. To determine whether simple measurements taken at the time of simulation can be used to predict the lung volume in the radiation field, we performed CT scans as part of treatment planning in 40 cases undergoing radiotherapy for breast cancer. Parameters measured from simulator films included: (a) the perpendicular distance from the posterior tangential field edge to the posterior part of the anterior chest wall at the center of the field (CLD); (b) the maximum perpendicular distance from the posterior tangential field edge to the posterior part of the anterior chest wall (MLD); and (c) the length of lung (L) as measured at the posterior tangential field edge on the simulator film. CT scans of the chest were performed with the patient in the treatment position with 1 cm slice intervals, covering lung apex to base. The ipsilateral total lung area and the lung area included within the treatment port were calculated for each CT scan slice, multiplied by the slice thickness, and then integrated over all CT scan slices to give the volumes. The best predictor of the percent of ipsilateral lung volume treated by the tangential fields was the CLD. Employing linear regression analysis, a coefficient of determination r2 = 0.799 was calculated between CLD and percent treated ipsilateral lung volume on CT scan. In comparison, the coefficients for the other parameters were r2 = 0.784 for the MLD, r2 = 0.071 for L, and r2 = 0.690 for CLD x L. A CLD of 1.5 cm predicted that about 6% of the ipsilateral lung would be included in the tangential field, a CLD of 2.5 cm about 16%, and a CLD of 3.5 cm about 26% of the ipsilateral lung, with a mean 90% prediction interval of +/- 7.1% of ipsilateral lung volume

  1. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  2. Mid-ventilation position planning: Optimal model for dose distribution in lung tumour

    International Nuclear Information System (INIS)

    Benchalal, M.; Leseur, J.; Chajon, E.; Cazoulat, G.; Haigron, P.; Simon, A.; Bellec, J.; Lena, H.; Crevoisier, R. de

    2012-01-01

    Purpose. - The dose distribution for lung tumour is estimated using a 3D-CT scan, and since a person breathes while the images are captured, the dose distribution doesn't reflect the reality. A 4D-CT scan integrates the motion of the tumour during breathing and, therefore, provides us with important information regarding tumour's motion in all directions, the motion volume (ITV) and the time-weighted average position (MVP). Patient and methods. - Based on these two concepts, we have estimated, for a lung carcinoma case a 3D dose distribution from a 3D-CT scan, and a 4D dose distribution from a 4-D CT scan. To this, we have applied a non-rigid registration to estimate the cumulative dose. Results. - Our study shows that the 4D dose estimation of the GTV is almost the same when made using MVP and ITV concepts, but sparring of the healthy lung is better done using the MPV model (MVP), as compared to the ITV model. This improvement of the therapeutic index allows, from a projection on the theoretical maximal dose to PTV (strictly restricted to doses for the lungs and the spinal cord), for an increase of about 11% on the total dose (maximal dose of 86 Gy for the ITV and 96 Gy for the MVP). Conclusion. - Further studies with more patients are needed to confirm our data. (authors)

  3. Mass Preserving Registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Loeve, Martin

    2009-01-01

    intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration...... and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger...

  4. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine.

    Science.gov (United States)

    Madero Orozco, Hiram; Vergara Villegas, Osslan Osiris; Cruz Sánchez, Vianey Guadalupe; Ochoa Domínguez, Humberto de Jesús; Nandayapa Alfaro, Manuel de Jesús

    2015-02-12

    Lung cancer is a leading cause of death worldwide; it refers to the uncontrolled growth of abnormal cells in the lung. A computed tomography (CT) scan of the thorax is the most sensitive method for detecting cancerous lung nodules. A lung nodule is a round lesion which can be either non-cancerous or cancerous. In the CT, the lung cancer is observed as round white shadow nodules. The possibility to obtain a manually accurate interpretation from CT scans demands a big effort by the radiologist and might be a fatiguing process. Therefore, the design of a computer-aided diagnosis (CADx) system would be helpful as a second opinion tool. The stages of the proposed CADx are: a supervised extraction of the region of interest to eliminate the shape differences among CT images. The Daubechies db1, db2, and db4 wavelet transforms are computed with one and two levels of decomposition. After that, 19 features are computed from each wavelet sub-band. Then, the sub-band and attribute selection is performed. As a result, 11 features are selected and combined in pairs as inputs to the support vector machine (SVM), which is used to distinguish CT images containing cancerous nodules from those not containing nodules. The clinical data set used for experiments consists of 45 CT scans from ELCAP and LIDC. For the training stage 61 CT images were used (36 with cancerous lung nodules and 25 without lung nodules). The system performance was tested with 45 CT scans (23 CT scans with lung nodules and 22 without nodules), different from that used for training. The results obtained show that the methodology successfully classifies cancerous nodules with a diameter from 2 mm to 30 mm. The total preciseness obtained was 82%; the sensitivity was 90.90%, whereas the specificity was 73.91%. The CADx system presented is competitive with other literature systems in terms of sensitivity. The system reduces the complexity of classification by not performing the typical segmentation stage of most CADx

  5. Impact of 18F-FDG PET scan on the prevalence of benign thoracic lesions at surgical resection

    Directory of Open Access Journals (Sweden)

    Kamlesh Mohan

    2011-10-01

    Full Text Available OBJECTIVE: The main utility of 18-fluorodeoxyglucose positron emission tomography (FDG-PET lies in the staging of lung cancer. However, it can also be used to differentiate indeterminate pulmonary lesions, but its impact on the resection of benign lesions at surgery is unknown. The aim of this study was to compare the prevalence of benign lesions at thoracotomy carried out for suspected lung cancer, before and after the introduction of PET scanning in a large thoracic surgical centre. MATERIALS AND METHODS: We reviewed our prospectively recorded surgical database for all consecutive patients undergoing thoracotomy for suspected or proven lung cancer and compared the prevalence of benign lesions in 2 consecutive 2-year groups, before (group I and after (group II the introduction of FDG-PET scan respectively. RESULTS: Surgical resection was performed on 1233 patients during the study period. The prevalence of benign lesions at surgery in groups I and II was similar (44/626 and 41/607, both 7%, and also in group II between those who underwent FDG-PET scan and the remainder (21/301 and 20/306 respectively, both 7%. In group II, of the 21 patients with benign lesions, who underwent FDG-PET, 19 had a false positive scan (mean standardised uptake value 5.3 [range 2.6-12.7]. Of these, 13 and 4 patients respectively had non-diagnostic bronchoscopy and percutaneous transthoracic lung biopsy pre thoracotomy. There was no difference in the proportion of different benign lesions resected between group I and those with FDG-PET in group II. CONCLUSION: The introduction of FDG-PET scanning has not altered the proportion of patients undergoing thoracotomy for ultimately benign lesions, mainly due to the avidity for the isotope of some non-malignant lesions. Such false positive results need to be considered when patients with unconfirmed lung cancer are contemplated for surgical resection.

  6. Impact of 18F-FDG PET scan on the prevalence of benign thoracic lesions at surgical resection

    International Nuclear Information System (INIS)

    Mohan, Kamlesh; Ledson, Martin J.; Walshaw, Martin J.; McShane, James; Page, Richard; Irion, Klaus

    2011-01-01

    Objective: the main utility of 18-fluorodeoxyglucose positron emission tomography (FDG-PET) lies in the staging of lung cancer. However, it can also be used to differentiate indeterminate pulmonary lesions, but its impact on the resection of benign lesions at surgery is unknown. The aim of this study was to compare the prevalence of benign lesions at thoracotomy carried out for suspected lung cancer, before and after the introduction of PET scanning in a large thoracic surgical centre. Materials and methods: we reviewed our prospectively recorded surgical database for all consecutive patients undergoing thoracotomy for suspected or proven lung cancer and compared the prevalence of benign lesions in 2 consecutive 2-year groups, before (group I) and after (group II) the introduction of FDG-PET scan respectively. Results: Surgical resection was performed on 1233 patients during the study period. The prevalence of benign lesions at surgery in groups I and II was similar (44/626 and 41/607, both 7%), and also in group II between those who underwent FDG-PET scan and the remainder (21/301 and 20/306 respectively, both 7%). In group II, of the 21 patients with benign lesions, who underwent FDG-PET, 19 had a false positive scan (mean standardised uptake value 5.3 [range 2.6-12.7]). Of these, 13 and 4 patients respectively had non-diagnostic bronchoscopy and percutaneous transthoracic lung biopsy pre thoracotomy. There was no difference in the proportion of different benign lesions resected between group I and those with FDG-PET in group II. Conclusion: the introduction of FDG-PET scanning has not altered the proportion of patients undergoing thoracotomy for ultimately benign lesions, mainly due to the avidity for the isotope of some non-malignant lesions. Such false positive results need to be considered when patients with unconfirmed lung cancer are contemplated for surgical resection. (author)

  7. Normal expiratory flow rate and lung volumes in patients with combined emphysema and interstitial lung disease: a case series and literature review.

    Science.gov (United States)

    Heathcote, Karen L; Cockcroft, Donald W; Fladeland, Derek A; Fenton, Mark E

    2011-01-01

    Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  8. Dual-time point scanning of integrated FDG PET/CT for the evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takami, E-mail: takaby@hotmail.co [Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba-ken 260-8677 (Japan); Motoori, Ken, E-mail: motoorik@faculty.chiba-u.j [Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba-ken 260-8677 (Japan); Horikoshi, Takuro, E-mail: taku_steelfish@yahoo.co.j [Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba-ken 260-8677 (Japan); Uchiyama, Katsuhiro, E-mail: ka-uchiyama@nifty.co [Diagnostic PET Imaging Center, Department of Radiology, Sannoh Medical Center, 166-2 Sannohcho, Inage-ku, Chiba City, Chiba-ken 263-0002 (Japan); Yasufuku, Kazuhiro, E-mail: kyasufuku@faculty.chiba-u.j [Department of Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba-ken 260-8670 (Japan); Takiguchi, Yuichi, E-mail: takiguchi@faculty.chiba-u.j [Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba-ken 260-8670 (Japan); Takahashi, Fumiaki, E-mail: takahashifu@pharm.kitasato-u.ac.j [Division of Biostatistics, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641 (Japan); Kuniyasu, Yoshio, E-mail: kuniyasu@ace.ocn.ne.j [Diagnostic PET Imaging Center, Department of Radiology, Sannoh Medical Center, 166-2 Sannohcho, Inage-ku, Chiba City, Chiba-ken 263-0002 (Japan); Ito, Hisao, E-mail: hisao@faculty.chiba-u.j [Department of Radiology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba-ken 260-8677 (Japan)

    2010-08-15

    Purpose: To evaluate whether dual-time point scanning with integrated fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography and computed tomography (PET/CT) is useful for evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT. Materials and methods: PET/CT data and pathological findings of 560 nodal stations in 129 patients with pathologically proven non-small cell lung cancer diagnosed as operable by contrast-enhanced CT were reviewed retrospectively. Standardized uptake values (SUVs) on early scans (SUVe) 1 h, and on delayed scans (SUVd) 2 h after FDG injection of each nodal station were measured. Retention index (RI) (%) was calculated by subtracting SUVe from SUVd and dividing by SUVe. Logistic regression analysis was performed with seven kinds of models, consisting of (1) SUVe, (2) SUVd, (3) RI, (4) SUVe and SUVd, (5) SUVe and RI, (6) SUVd and RI, and (7) SUVe, SUVd and RI. The seven derived models were compared by receiver-operating characteristic (ROC) analysis. k-Fold cross-validation was performed with k values of 5 and 10. p < 0.05 was considered statistically significant. Results: Model (1) including the term of SUVe showed the largest area under the ROC curve among the seven models. The cut-off probability of metastasis of 3.5% with SUVe of 2.5 revealed a sensitivity of 78% and a specificity of 81% on ROC analysis, and approximately 60% and 80% on k-fold cross-validation. Conclusion: Single scanning of PET/CT is sufficiently useful for evaluating mediastinal and hilar nodes for metastasis.

  9. TU-A-12A-04: Quantitative Texture Features Calculated in Lung Tissue From CT Scans Demonstrate Consistency Between Two Databases From Different Institutions

    International Nuclear Information System (INIS)

    Cunliffe, A; Armato, S; Castillo, R; Pham, N; Guerrero, T; Al-Hallaq, H

    2014-01-01

    Purpose: To evaluate the consistency of computed tomography (CT) scan texture features, previously identified as stable in a healthy patient cohort, in esophageal cancer patient CT scans. Methods: 116 patients receiving radiation therapy (median dose: 50.4Gy) for esophageal cancer were retrospectively identified. For each patient, diagnostic-quality pre-therapy (0-183 days) and post-therapy (5-120 days) scans (mean voxel size: 0.8mm×0.8mm×2.5mm) and a treatment planning scan and associated dose map were collected. An average of 501 32x32-pixel ROIs were placed randomly in the lungs of each pre-therapy scan. ROI centers were mapped to corresponding locations in post-therapy and planning scans using the displacement vector field output by demons deformable registration. Only ROIs with mean dose <5Gy were analyzed, as these were expected to contain minimal post-treatment damage. 140 texture features were calculated in pre-therapy and post-therapy scan ROIs and compared using Bland-Altman analysis. For each feature, the mean feature value change and the distance spanned by the 95% limits of agreement were normalized to the mean feature value, yielding normalized range of agreement (nRoA) and normalized bias (nBias). Using Wilcoxon signed rank tests, nRoA and nBias were compared with values computed previously in 27 healthy patient scans (mean voxel size: 0.67mm×0.67mm×1mm) acquired at a different institution. Results: nRoA was significantly (p<0.001) larger in cancer patients than healthy patients. Differences in nBias were not significant (p=0.23). The 20 features identified previously as having nRoA<20% for healthy patients had the lowest nRoA values in the current database, with an average increase of 5.6%. Conclusion: Despite differences in CT scanner type, scan resolution, and patient health status, the same 20 features remained stable (i.e., low variability and bias) in the absence of disease changes for databases from two institutions. Identification of

  10. Perfusion lung scintigraphy in primary pulmonary hypertension

    International Nuclear Information System (INIS)

    Ogawa, Yoji; Nishimura, Tsunehiko; Kumita, Shin-ichirou; Hayashida, Kohei; Uehara, Toshiisa; Shimonagata, Tsuyoshi; Ohno, Akira

    1991-01-01

    Fifteen cases with primary pulmonary hypertension (PPH) were classified into two groups by using the perfusion lung scan pattern. Eight cases had multiple, small, ill-defined defects (mottled pattern), and remaining seven cases had no mottled pattern. These two groups were compared with mean pulmonary arterial pressure (mean PAP), right ventricular ejection fraction (RVEF), blood gas at room air (PaO 2 ), and alveolar-arterial O 2 difference (A-aDo 2 ). The cases with mottled pattern showed a significant increase in mean PAP. There were no significant differences in RVEF, PaO 2 , and A-aDo 2 , between the groups. The survival rate of the patients with mottled pattern was significantly lower than that without mottled pattern (p<0.05). We concluded that perfusion lung scan is very useful for evaluation of the prognosis in primary pulmonary hypertension. (author)

  11. Lung abscess-etiology, diagnostic and treatment options.

    Science.gov (United States)

    Kuhajda, Ivan; Zarogoulidis, Konstantinos; Tsirgogianni, Katerina; Tsavlis, Drosos; Kioumis, Ioannis; Kosmidis, Christoforos; Tsakiridis, Kosmas; Mpakas, Andrew; Zarogoulidis, Paul; Zissimopoulos, Athanasios; Baloukas, Dimitris; Kuhajda, Danijela

    2015-08-01

    Lung abscess is a type of liquefactive necrosis of the lung tissue and formation of cavities (more than 2 cm) containing necrotic debris or fluid caused by microbial infection. It can be caused by aspiration, which may occur during altered consciousness and it usually causes a pus-filled cavity. Moreover, alcoholism is the most common condition predisposing to lung abscesses. Lung abscess is considered primary (60%) when it results from existing lung parenchymal process and is termed secondary when it complicates another process, e.g., vascular emboli or follows rupture of extrapulmonary abscess into lung. There are several imaging techniques which can identify the material inside the thorax such as computerized tomography (CT) scan of the thorax and ultrasound of the thorax. Broad spectrum antibiotic to cover mixed flora is the mainstay of treatment. Pulmonary physiotherapy and postural drainage are also important. Surgical procedures are required in selective patients for drainage or pulmonary resection. In the current review we will present all current information from diagnosis to treatment.

  12. Tricuspid valve dysplasia with severe tricuspid regurgitation: fetal pulmonary artery size predicts lung viability in the presence of small lung volumes.

    Science.gov (United States)

    Nathan, A T; Marino, B S; Dominguez, T; Tabbutt, S; Nicolson, S; Donaghue, D D; Spray, T L; Rychik, J

    2010-01-01

    Congenital tricuspid valve disease (Ebstein's anomaly, tricuspid valve dysplasia) with severe tricuspid regurgitation and cardiomegaly is associated with poor prognosis. Fetal echocardiography can accurately measure right atrial enlargement, which is associated with a poor prognosis in the fetus with tricuspid valve disease. Fetal lung volumetric assessments have been used in an attempt to predict viability of fetuses using ultrasonogram and prenatal MRI. We describe a fetus with tricuspid dysplasia, severe tricuspid regurgitation, right atrial enlargement and markedly reduced lung volumes. The early gestational onset of cardiomegaly with bilateral lung compression raised the possibility of severe lung hypoplasia with decreased broncho-alveolar development. Use of fetal echocardiography with measurement of pulmonary artery size combined with prenatal MRI scanning of lung volumes resulted in an improved understanding of this anomaly and directed the management strategy towards a successful Fontan circulation. 2010 S. Karger AG, Basel.

  13. The UK Lung Cancer Screening Trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer.

    Science.gov (United States)

    Field, John K; Duffy, Stephen W; Baldwin, David R; Brain, Kate E; Devaraj, Anand; Eisen, Tim; Green, Beverley A; Holemans, John A; Kavanagh, Terry; Kerr, Keith M; Ledson, Martin; Lifford, Kate J; McRonald, Fiona E; Nair, Arjun; Page, Richard D; Parmar, Mahesh Kb; Rintoul, Robert C; Screaton, Nicholas; Wald, Nicholas J; Weller, David; Whynes, David K; Williamson, Paula R; Yadegarfar, Ghasem; Hansell, David M

    2016-05-01

    Lung cancer kills more people than any other cancer in the UK (5-year survival high-risk UK population, determine optimum recruitment, screening, reading and care pathway strategies; and (2) assess the psychological consequences and the health-economic implications of screening. A pilot randomised controlled trial comparing intervention with usual care. A population-based risk questionnaire identified individuals who were at high risk of developing lung cancer (≥ 5% over 5 years). Thoracic centres with expertise in lung cancer imaging, respiratory medicine, pathology and surgery: Liverpool Heart & Chest Hospital, Merseyside, and Papworth Hospital, Cambridgeshire. Individuals aged 50-75 years, at high risk of lung cancer, in the primary care trusts adjacent to the centres. A thoracic LDCT scan. Follow-up computed tomography (CT) scans as per protocol. Referral to multidisciplinary team clinics was determined by nodule size criteria. Population-based recruitment based on risk stratification; management of the trial through web-based database; optimal characteristics of CT scan readers (radiologists vs. radiographers); characterisation of CT-detected nodules utilising volumetric analysis; prevalence of lung cancer at baseline; sociodemographic factors affecting participation; psychosocial measures (cancer distress, anxiety, depression, decision satisfaction); and cost-effectiveness modelling. A total of 247,354 individuals were approached to take part in the trial; 30.7% responded positively to the screening invitation. Recruitment of participants resulted in 2028 in the CT arm and 2027 in the control arm. A total of 1994 participants underwent CT scanning: 42 participants (2.1%) were diagnosed with lung cancer; 36 out of 42 (85.7%) of the screen-detected cancers were identified as stage 1 or 2, and 35 (83.3%) underwent surgical resection as their primary treatment. Lung cancer was more common in the lowest socioeconomic group. Short-term adverse psychosocial

  14. Lung Nodule Detection via Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Issa Ali

    2018-04-01

    Full Text Available Lung cancer is the most common cause of cancer-related death globally. As a preventive measure, the United States Preventive Services Task Force (USPSTF recommends annual screening of high risk individuals with low-dose computed tomography (CT. The resulting volume of CT scans from millions of people will pose a significant challenge for radiologists to interpret. To fill this gap, computer-aided detection (CAD algorithms may prove to be the most promising solution. A crucial first step in the analysis of lung cancer screening results using CAD is the detection of pulmonary nodules, which may represent early-stage lung cancer. The objective of this work is to develop and validate a reinforcement learning model based on deep artificial neural networks for early detection of lung nodules in thoracic CT images. Inspired by the AlphaGo system, our deep learning algorithm takes a raw CT image as input and views it as a collection of states, and output a classification of whether a nodule is present or not. The dataset used to train our model is the LIDC/IDRI database hosted by the lung nodule analysis (LUNA challenge. In total, there are 888 CT scans with annotations based on agreement from at least three out of four radiologists. As a result, there are 590 individuals having one or more nodules, and 298 having none. Our training results yielded an overall accuracy of 99.1% [sensitivity 99.2%, specificity 99.1%, positive predictive value (PPV 99.1%, negative predictive value (NPV 99.2%]. In our test, the results yielded an overall accuracy of 64.4% (sensitivity 58.9%, specificity 55.3%, PPV 54.2%, and NPV 60.0%. These early results show promise in solving the major issue of false positives in CT screening of lung nodules, and may help to save unnecessary follow-up tests and expenditures.

  15. Noninvasive Computed Tomography–based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial

    Science.gov (United States)

    Maldonado, Fabien; Duan, Fenghai; Raghunath, Sushravya M.; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Garg, Kavita; Greco, Erin; Nath, Hrudaya; Robb, Richard A.; Bartholmai, Brian J.

    2015-01-01

    Rationale: Screening for lung cancer using low-dose computed tomography (CT) reduces lung cancer mortality. However, in addition to a high rate of benign nodules, lung cancer screening detects a large number of indolent cancers that generally belong to the adenocarcinoma spectrum. Individualized management of screen-detected adenocarcinomas would be facilitated by noninvasive risk stratification. Objectives: To validate that Computer-Aided Nodule Assessment and Risk Yield (CANARY), a novel image analysis software, successfully risk stratifies screen-detected lung adenocarcinomas based on clinical disease outcomes. Methods: We identified retrospective 294 eligible patients diagnosed with lung adenocarcinoma spectrum lesions in the low-dose CT arm of the National Lung Screening Trial. The last low-dose CT scan before the diagnosis of lung adenocarcinoma was analyzed using CANARY blinded to clinical data. Based on their parametric CANARY signatures, all the lung adenocarcinoma nodules were risk stratified into three groups. CANARY risk groups were compared using survival analysis for progression-free survival. Measurements and Main Results: A total of 294 patients were included in the analysis. Kaplan-Meier analysis of all the 294 adenocarcinoma nodules stratified into the Good, Intermediate, and Poor CANARY risk groups yielded distinct progression-free survival curves (P < 0.0001). This observation was confirmed in the unadjusted and adjusted (age, sex, race, and smoking status) progression-free survival analysis of all stage I cases. Conclusions: CANARY allows the noninvasive risk stratification of lung adenocarcinomas into three groups with distinct post-treatment progression-free survival. Our results suggest that CANARY could ultimately facilitate individualized management of incidentally or screen-detected lung adenocarcinomas. PMID:26052977

  16. The effect of irradiation on lung function and perfusion in patients with lung cancer

    International Nuclear Information System (INIS)

    Abratt, Raymond P.; Willcox, Paul A.

    1995-01-01

    Purpose: To prospectively study the changes in lung function in patients with lung carcinoma treated with relatively high doses of irradiation. Methods and Materials: Lung function was assessed prior to and at 6 and 12 months following radiation therapy by a clinical dyspnea score, formal pulmonary function tests (lung volume spirometry and diffusion capacity) as well as an ipsilateral hemithorax lung perfusion scan. Changes in dyspnea score were evaluated by the chi-square and the Fishers exact test. Changes in formal lung function tests were compared with the t-test for dependent data and correlations with the t-test for independent data. Fifty-one patients were entered into the study. There were 42 evaluable patients at 6 months after irradiation and 22 evaluable patients at 12 months after irradiation. Results: A worsening of dyspnea score from 1 to 2, which is clinically acceptable, occurred in 50% or more of patients. However, a dyspnea score of 3, which is a serious complication, developed in only 5% of patients. The diffusion capacity (DLCO) decreased by 14% at 6 months and 12% at 12 months) (p < 0.0001). The forced vital capacity and total lung capacity decreased between 6% and 8% at 6 month and 12 months, which was statistically significant. The forced expiratory volume in 1 s decreased between 2 and 3% at 6 month and 12 months, which was not statistically significant. The ipsilateral hemithorax perfusion decreased by 17 and 20% at 6 and 12 months (p < 0.0001). There was no correlation between the initial hemithorax perfusion, or its decrease at follow up and the decrease in DLCO. Conclusion: Lung irradiation results in some loss of lung function in patients with lung cancer with a projected survival of 6 months or more. The pretreatment DLCO assessment should be useful in predicting clinical tolerance to irradiation

  17. A case of lung abscess successfully treated by transbronchial drainage using a guide sheath

    OpenAIRE

    Izumi, Hiroki; Kodani, Masahiro; Matsumoto, Shingo; Kawasaki, Yuji; Igishi, Tadashi; Shimizu, Eiji

    2017-01-01

    A 51?year?old man was diagnosed with colon cancer in September 2011, and a solitary pulmonary nodule was detected by computed tomography (CT) scan. We performed a transbronchial biopsy with endobronchial ultrasonography using a guide sheath (GS) and diagnosed lung metastasis of colon cancer. The patient experienced remittent fever after the biopsy in spite of intravenous antibiotic therapies. Moreover, his CT scan showed a large lung abscess at the biopsy site. We performed transbronchial dra...

  18. Detection of occult bone metastases of lung cancer with fluorine-18 fluorodeoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Ramdave, Shankar; Berlangieri, Salvatore U.

    2004-01-01

    Accurate staging of cancer has a critical role in optimal patient management. Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) is superior to CT in the detection of local and distant metastases in patients with non-small cell lung cancer. Although Tc-99 m methylene diphosphonate (MDP) bone scanning is well established in the evaluation of bone metastases, there are conflicting reports on the use of FDG PET in the evaluation of skeletal metastases. We report on a patient with locally advanced lung carcinoma in whom FDG PET accurately identified previously unsuspected widespread asymptomatic bone metastases (bone scan and X-rays negative, confirmed on MRI). Assessment of glucose metabolism with FDG PET might represent a more powerful tool to detect bone metastases in lung cancer compared with conventional bone scans Copyright (2004) Blackwell Publishing Asia Pty Ltd

  19. Technetium-99m DTPA aerosol and gallium scanning in acquired immune deficiency syndrome

    International Nuclear Information System (INIS)

    Picard, C.; Meignan, M.; Rosso, J.; Cinotti, L.; Mayaud, C.; Revuz, J.

    1987-01-01

    In 11 non-smoking AIDS patients suspected of pneumocystis carinii pneumonia (PCP), the results of Tc-99m DTPA aerosol clearances, gallium scans, and arterial blood gases were compared with those of bronchoalveolar lavage (BAL). Nine patients had PCP. All had increased clearances five times higher than the normal (5.6 +/- 2.3% X min-1 vs 1.1 +/- 0.34% X min-1, N = 10, P less than 0.001), suggesting an increased alveolar permeability. Gallium scans were abnormal in six patients but normal or slightly abnormal in the three others. Four of these nine patients had normal chest x-rays. In two of these the gallium scan was abnormal, but in the two others, only the increased Tc-99m DTPA clearances showed evidence of lung disease. Two patients had normal BAL, with normal clearances and gallium scans. Four out of the nine patients with PCP were studied after treatment. Three recovered and had normal clearance and gallium scans. One still had PCP with increased clearance but normal gallium scan. Gallium scanning and Tc-99m DTPA clearance are useful for detecting lung disease in AIDS patients with suspected PCP and for prompting BAL when chest x-rays and PaO 2 levels are normal. Due to its high sensitivity, a normal Tc-99m DTPA clearance could avoid BAL

  20. Experimental studies of the reimplantation of irradiated lung in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, T; Fujimura, S; Sohara, Y; Kawakami, M; Okaniwa, G [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer

    1978-02-01

    In order to treat the patients with lung cancer who have impaired cardiopulmonary function, a new method is designed, which includes the following steps; 1) pneumonectomy, 2) resection of tumor-bearing lobe, 3) /sup 60/Co irradiation to the remaining lobe, and 4) orthotopic reimplantation of the irradiated lung. The purpose of present study is to clarify the feasibility to use this method clinically. Using adult mongreal dogs, left lung was excised, irradiated and reimplanted. Radiation was carried out from 2,000 rad to 4,000 rad. Viability and function of reimplanted lungs were evaluated by their survival time, serial chest x-ray films, sup(99m)Tc-MAA perfusion scanning, unilateral pulmonary artery occlusion test and histologic examinations. Of 17 animals, 12 survived postoperative period and following results were obtained; 1) no dogs developed pulmonary edema, 2) only one dog was considered to die from acute radiation pneumonitis, 3) serial perfusion scanning showed a gradual decrease in flow distribution to the transplanted lung, 4) the right pulmonary occlusion test done in the dog irradiated with 2,000 rad revealed well reserved pulmonary function 2 months after the operation, and 5) histologically, most irradiated lungs revealed so-called ''late reaction'' of lung fibrosis, but there was the case with nearly normal findings after 6 months from the operation. Although many reports concerning to the radiation pneumonitis are published, there have not been any such reports as the present study. From our experiment, it may be indicated that there is a feasibility to use this new method clinically.

  1. Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients

    Energy Technology Data Exchange (ETDEWEB)

    Palma, David A., E-mail: david.palma@uwo.ca [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Soernsen de Koste, John van; Verbakel, Wilko F.A.R. [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Vincent, Andrew [Department of Biometrics, Netherlands Cancer Institute, Amsterdam (Netherlands); Senan, Suresh [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands)

    2011-11-15

    Purpose: Radiologic lung density changes are observed in more than 50% of patients after stereotactic body radiotherapy (SBRT) for lung cancer. We studied the relationship between SBRT dose and posttreatment computed tomography (CT) density changes, a surrogate for lung injury. Methods and Materials: The SBRT fractionation schemes used to treat Stage I lung cancer with RapidArc were three fractions of 18 Gy, five fractions of 11 Gy, or eight fractions of 7.5 Gy, prescribed at the 80% isodose. Follow-up CT scans performed at less than 6 months (n = 50) and between 6 and 9 months (n = 30) after SBRT were reviewed. Posttreatment scans were coregistered with baseline scans using a B-spline deformable registration algorithm. Voxel-Hounsfield unit histograms were created for doses between 0.5 and 50 Gy. Linear mixed effects models were used to assess the effects of SBRT dose on CT density, and the influence of possible confounders was tested. Results: Increased CT density was associated with higher dose, increasing planning target volume size, and increasing time after SBRT (all p < 0.0001). Density increases were apparent in areas receiving >6 Gy, were most prominent in areas receiving >20 Gy, and seemed to plateau above 40 Gy. In regions receiving >36 Gy, the reduction in air-filled fraction of lung after treatment was up to 18%. No increase in CT density was observed in the contralateral lung receiving {>=}3 Gy. Conclusions: A dose-response relationship exists for quantitative CT density changes after SBRT. A threshold of effect is seen at low doses, and a plateau at highest doses.

  2. Proton beam therapy in non-small cell lung cancer: state of the art

    Directory of Open Access Journals (Sweden)

    Harada H

    2017-08-01

    Full Text Available Hideyuki Harada, Shigeyuki Murayama Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan Abstract: This review summarizes the past and present status of proton beam therapy (PBT for lung cancer. PBT has a unique characteristic called the Bragg peak that enables a reduction in the dose of normal tissue around the tumor, but is sensitive to the uncertainties of density changes. The heterogeneity in electron density for thoracic lesions, such as those in the lung and mediastinum, and tumor movement according to respiration necessitates respiratory management for PBT to be applied in lung cancer patients. There are two types of PBT – a passively scattered approach and a scanning approach. Typically, a passively scattered approach is more robust for respiratory movement and a scanning approach could result in a more conformal dose distribution even when the tumor shape is complex. Large tumors of centrally located lung cancer may be more suitably irradiated than with intensity-modulated radiotherapy (IMRT or stereotactic body radiotherapy (SBRT. For a locally advanced lung cancer, PBT can spare the lung and heart more than photon IMRT. However, no randomized controlled trial has reported differences between PBT and IMRT or SBRT for early-stage and locally advanced lung cancers. Therefore, a well-designed controlled trial is warranted. Keywords: proton beam therapy, non-small cell lung cancer, survival, SBRT, IMRT

  3. Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.

    Science.gov (United States)

    Hasan, Naveed; Kumar, Rohit; Kavuru, Mani S

    2014-10-01

    Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.

  4. Impact of {sup 18}F-FDG PET scan on the prevalence of benign thoracic lesions at surgical resection

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Kamlesh; Ledson, Martin J.; Walshaw, Martin J., E-mail: mwalshaw@doctors.org.u [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Respiratory Medicine; McShane, James [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Audit and Research; Page, Richard [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Thoracic Surgery; Irion, Klaus [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Radiology

    2011-09-15

    Objective: the main utility of 18-fluorodeoxyglucose positron emission tomography (FDG-PET) lies in the staging of lung cancer. However, it can also be used to differentiate indeterminate pulmonary lesions, but its impact on the resection of benign lesions at surgery is unknown. The aim of this study was to compare the prevalence of benign lesions at thoracotomy carried out for suspected lung cancer, before and after the introduction of PET scanning in a large thoracic surgical centre. Materials and methods: we reviewed our prospectively recorded surgical database for all consecutive patients undergoing thoracotomy for suspected or proven lung cancer and compared the prevalence of benign lesions in 2 consecutive 2-year groups, before (group I) and after (group II) the introduction of FDG-PET scan respectively. Results: Surgical resection was performed on 1233 patients during the study period. The prevalence of benign lesions at surgery in groups I and II was similar (44/626 and 41/607, both 7%), and also in group II between those who underwent FDG-PET scan and the remainder (21/301 and 20/306 respectively, both 7%). In group II, of the 21 patients with benign lesions, who underwent FDG-PET, 19 had a false positive scan (mean standardised uptake value 5.3 [range 2.6-12.7]). Of these, 13 and 4 patients respectively had non-diagnostic bronchoscopy and percutaneous transthoracic lung biopsy pre thoracotomy. There was no difference in the proportion of different benign lesions resected between group I and those with FDG-PET in group II. Conclusion: the introduction of FDG-PET scanning has not altered the proportion of patients undergoing thoracotomy for ultimately benign lesions, mainly due to the avidity for the isotope of some non-malignant lesions. Such false positive results need to be considered when patients with unconfirmed lung cancer are contemplated for surgical resection. (author)

  5. Autofluorescence Imaging and Spectroscopy of Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2016-12-01

    Full Text Available Lung cancer is one of the most common cancers, with high mortality rate worldwide. Autofluorescence imaging and spectroscopy is a non-invasive, label-free, real-time technique for cancer detection. In this study, lung tissue sections excised from patients were detected by laser scan confocal microscopy and spectroscopy. The autofluorescence images demonstrated the cellular morphology and tissue structure, as well as the pathology of stained images. Based on the spectra study, it was found that the majority of the patients showed discriminating fluorescence in tumor tissues from normal tissues. Therefore, autofluorescence imaging and spectroscopy may be a potential method for aiding the diagnosis of lung cancer.

  6. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    NARCIS (Netherlands)

    Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.C.; Chatterjee, N.; Hu, W.; Wong, M.P.; Zheng, W.; Caporaso, N.; Park, J.Y.; Chen, C.J.; Kim, Y.H.; Kim, Y.T.; Landi, M.T.; Shen, H.; Lawrence, C.; Burdett, L.; Yeager, M.; Yuenger, J.; Jacobs, K.B.; Chang, I.S.; Mitsudomi, T.; Kim, H.N.; Chang, G.C.; Bassig, B.A.; Tucker, M.; Wei, F.; Yin, Y.; Wu, C.; An, S.J.; Qian, B.; Lee, V.H.; Lu, D.; Liu, J.; Jeon, H.S.; Hsiao, C.F.; Sung, J.S.; Kim, J.H.; Gao, Y.T.; Tsai, Y.H.; Jung, Y.J.; Guo, H.; Hu, Z.; Hutchinson, A.; Wang, W.C.; Klein, R.; Chung, C.C.; Oh, I.J.; Chen, K.Y.; Berndt, S.I.; He, X.; Wu, W.; Chang, J.; Zhang, X.C.; Huang, M.S.; Zheng, H.; Wang, J.; Zhao, X.|info:eu-repo/dai/nl/413577805; Li, Y.; Choi, J.E.; Su, W.C.; Park, K.H.; Sung, S.W.; Shu, X.O.; Chen, Y.M.; Liu, L.; Kang, C.H.; Hu, L.; Chen, C.H.; Pao, W.; Kim, Y.C.; Yang, T.Y.; Xu, J.; Guan, P.; Tan, W.; Su, J.; Wang, C.L.; Li, H.; Sihoe, A.D.; Zhao, Z.|info:eu-repo/dai/nl/304120995; Chen, Y.; Choi, Y.Y.; Hung, J.Y.; Kim, J.S.; Yoon, H.I.; Cai, Q.; Lin, C.C.; Park, I.K.; Xu, P.; Dong, J.; Kim, C.; He, Q; Perng, R.P.; Kohno, T.; Kweon, S.S.; Chen, C.Y.; Vermeulen, R.|info:eu-repo/dai/nl/216532620; Wu, J.; Lim, W.Y.; Chen, K.C.; Chow, W.H.; Ji, B.T.; Chan, J.K.; Chu, M.; Li, Y.J.; Yokota, J.; Li, J.; Chen, H.; Xiang, Y.B.; Yu, C.J.; Kunitoh, H.; Wu, G.; Jin, L.; Lo, Y.L.; Shiraishi, K.; Chen, Y.H.; Lin, H.C.; Wu, T.; WU, Y.; Yang, P.C.; Zhou, B.; Shin, M.H.; Fraumeni, J.F.; Lin, D.; Chanock, S.J.; Rothman, N.

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland

  7. Clinical value of the alveolar epithelial permeability in various pulmonary diseases

    International Nuclear Information System (INIS)

    Todisco, T.; Dottorini, M.; Rossi, F.; Polidori, A.; Bruni, B.; Iannacci, L.; Palumbo, R.; Fedeli, L.

    1984-01-01

    The authors have measured the pulmonary epithelial permeability in normals, smokers, ex-smokers and in various pulmonary diseases, using the sup(99m)Tc-DTPA monodisperse radioaerosol delivered by a newly designed nebulizer. Reference values for alveolar epithelial permeability were those of their own laboratory. Accelerated clearance of small idrophylic solutes from the lungs to the blood was found in smokers and in all the patients with idiopathic diffuse pulmonary fibrosis, chronic obstructive lung disease, congestive heart failure, acute viral pneumonia and adult respiratory distress syndrome. The greatest increase of alveolar epithelial clearance was found in the lung zone affected by the viral infection. The normal upper-lover lobe gradient of epithelial clearance was lost only in some patients. The increased permeability of the alveolar wall, although not specific, is characteristic and early feature of many acute and chronic pulmonary disease. For practical purposes, this parameter, rather than diagnostic, should be considered as a sensitive index of alveolar damage and repair, especially suitable for the follow-up of patients with spontaneous or therapeutic reversibility of parenchimal lung diseases. (orig.)

  8. Real-time images of tidal recruitment using lung ultrasound.

    Science.gov (United States)

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  9. "Bong lung" in cystic fibrosis: a case report

    Directory of Open Access Journals (Sweden)

    Hauser Jenny

    2010-11-01

    Full Text Available Abstract Introduction Marijuana or "bong" lung has been recently described. Subjects typically develop large peripheral paraseptal lung bullae and are predisposed to spontaneous pneumothoraces. The underlying mechanism for bullae formation is uncertain, but probably relates to direct lung toxicity and repeated barotrauma as the smoker performs frequent valsalva manoeuvres in an attempt to derive a greater drug effect. Case presentation We describe a case of probable "bong lung" occurring in a 23-year-old Caucasian man with cystic fibrosis who had a history of recurrent pneumothoraces and unusual findings on sputum cytology. Conclusion Our case highlights the importance of questioning young adult cystic fibrosis patients about illicit drug use and the utility of sputum cytology and computed tomography scanning when patients present with pneumothoraces and deteriorations in clinical status.

  10. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?

    Science.gov (United States)

    Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara

    2018-01-01

    Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.

  11. The distribution of lung damage in children with cystic fibrosis and its relationship to colonisation with Pseudomonas aeroginosa

    International Nuclear Information System (INIS)

    Evans, I.; Hambleton, G.; Mann, N.; Brown, J.

    1987-01-01

    Ventilation-perfusion lung scans were performed with 81m Kr inhalation and 99m Tc-albumin injection in 33 children with cystic fibrosis. It was found that both ventilation and perfusion scans yielded more information than radiographs of the chest in assessing lung damage. Using a scoring system, it was demonstrated by statistical methods that in the worst affected patients the disease was worse in the upper zones of the lungs, where changes were not detectable on chest radiographs. Pseudomonas was present in the sputum of these patients. (orig.)

  12. Lung Ultrasound Findings in Congenital Pulmonary Airway Malformation.

    Science.gov (United States)

    Yousef, Nadya; Mokhtari, Mostafa; Durand, Philippe; Raimondi, Francesco; Migliaro, Fiorella; Letourneau, Alexandra; Tissières, Pierre; De Luca, Daniele

    2018-05-01

     Congenital pulmonary airway malformation (CPAM) is a group of rare congenital malformations of the lung and airways. Lung ultrasound (LU) is increasingly used to diagnose neonatal respiratory diseases since it is quick, easy to learn, and radiation-free, but no formal data exist for congenital lung malformations. We aimed to describe LU findings in CPAM neonates needing neonatal intensive care unit (NICU) admission and to compare them with a control population.  A retrospective review of CPAM cases from three tertiary academic NICUs over 3 years (2014-2016) identified five patients with CPAM who had undergone LU examination. LU was compared with chest radiograms and computed tomography (CT) scans that were used as references.  CPAM lesions were easily identified and corresponded well with CT scans; they varied from a single large cystic lesion, multiple hypoechoic lesions, and/or consolidation. The first two LU findings have not been described in other respiratory conditions and were not found in controls.  We provide the first description of LU findings in neonates with CPAM. LU may be used to confirm antenatally diagnosed CPAM and to suspect CPAM in infants with respiratory distress if cystic lung lesions are revealed. Further studies are necessary to define the place of LU in the management of CPAM. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Dependent lung opacity at thin-section CT: evaluation by spirometrically-gated CT of the influence of lung volume

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W. Richard

    2002-01-01

    To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter

  14. Prediction of lung density changes after radiotherapy by cone beam computed tomography response markers and pre-treatment factors for non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Bernchou, Uffe; Hansen, Olfred; Schytte, Tine

    2015-01-01

    BACKGROUND AND PURPOSE: This study investigates the ability of pre-treatment factors and response markers extracted from standard cone-beam computed tomography (CBCT) images to predict the lung density changes induced by radiotherapy for non-small cell lung cancer (NSCLC) patients. METHODS...... AND MATERIALS: Density changes in follow-up computed tomography scans were evaluated for 135 NSCLC patients treated with radiotherapy. Early response markers were obtained by analysing changes in lung density in CBCT images acquired during the treatment course. The ability of pre-treatment factors and CBCT...

  15. Normal Expiratory Flow Rate and Lung Volumes in Patients with Combined Emphysema and Interstitial Lung Disease: A Case Series and Literature Review

    Directory of Open Access Journals (Sweden)

    Karen L Heathcote

    2011-01-01

    Full Text Available Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  16. Recent developments in NMR imaging of lung

    International Nuclear Information System (INIS)

    Ailion, D.C.

    1989-01-01

    This presentation describes the phenomenon of tissue-induced inhomogeneous broadening due to the air/water interfaces in lung and includes a description of its physical basis, imaging and nonimaging techniques for its observation, recent theoretical development of the present stage of understanding of the mechanisms underlying the relaxation times T 1 and T 2 will also be given. Finally, a description of the rapid line scan (RLS) technique for obtaining rapid, artifactfree images of moving objects, such as the lungs of spontaneously breathing animals, is presented. (author). 19 refs.; 13 figs

  17. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters

    International Nuclear Information System (INIS)

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-01-01

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4–167.1 cc) and motion amplitude (2.9–30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τ es ), time required for magnet settling (τ ss ), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior–inferior motion amplitude alone. Larger spot sizes (σ ∼ 9–16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ∼ 2–4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes

  18. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters.

    Science.gov (United States)

    Dowdell, S; Grassberger, C; Sharp, G C; Paganetti, H

    2013-06-21

    Relative motion between a tumor and a scanning proton beam results in a degradation of the dose distribution (interplay effect). This study investigates the relationship between beam scanning parameters and the interplay effect, with the goal of finding parameters that minimize interplay. 4D Monte Carlo simulations of pencil beam scanning proton therapy treatments were performed using the 4DCT geometry of five lung cancer patients of varying tumor size (50.4-167.1 cc) and motion amplitude (2.9-30.1 mm). Treatments were planned assuming delivery in 35 × 2.5 Gy(RBE) fractions. The spot size, time to change the beam energy (τes), time required for magnet settling (τss), initial breathing phase, spot spacing, scanning direction, scanning speed, beam current and patient breathing period were varied for each of the five patients. Simulations were performed for a single fraction and an approximation of conventional fractionation. For the patients considered, the interplay effect could not be predicted using the superior-inferior motion amplitude alone. Larger spot sizes (σ ~ 9-16 mm) were less susceptible to interplay, giving an equivalent uniform dose (EUD) of 99.0 ± 4.4% (1 standard deviation) in a single fraction compared to 86.1 ± 13.1% for smaller spots (σ ~ 2-4 mm). The smaller spot sizes gave EUD values as low as 65.3% of the prescription dose in a single fraction. Reducing the spot spacing improved the target dose homogeneity. The initial breathing phase can have a significant effect on the interplay, particularly for shorter delivery times. No clear benefit was evident when scanning either parallel or perpendicular to the predominant axis of motion. Longer breathing periods decreased the EUD. In general, longer delivery times led to lower interplay effects. Conventional fractionation showed significant improvement in terms of interplay, giving a EUD of at least 84.7% and 100.0% of the prescription dose for the small and larger spot sizes respectively. The

  19. Congenital lung malformations: correlation between prenatal and ...

    African Journals Online (AJOL)

    Aim: Congenital lung malformations are a common finding during prenatal ultrasonography (US). Investigations were completed by means of prenatal MRI and postnatal computed tomographic (CT) scan. The purpose of this study was to compare these prenatal findings with postnatal findings and pathological findings after ...

  20. Preliminary studies of pulmonary perfusion scanning in patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Shi Rongfang; Liu Xiujie; Wang Yanqun

    1986-01-01

    A comparative analysis of pulmonary perfusion scanning through cardiac catheterization of 57 patients including 32 patients with congenital heart disease, 8 patients with chronic pulmonary thromboembolism and 7 patients with primary pulmonary hypertension is reported. The lung scintigram obtained with In-113m or Tc-99m-MAA represents the distribution of pulmonary blood. It has been found that the lung scintigram was abnormal in patients of congenital heart disease with pulmonary hypertension (i. e. pulmonary artery pressure between 41-80 mmHg) and the extent of radoiactive regional defects is proportional to the level of pulmonary hypertension. The results of the analysis indicated that pulmonary perfusion scanning being a noninvasive technique would be a useful method in evaluating the level of pulmonary hypertension in patients with left to right shunt before and after surgical operation

  1. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing

    International Nuclear Information System (INIS)

    Low, Daniel A.; Nystrom, Michelle; Kalinin, Eugene; Parikh, Parag; Dempsey, James F.; Bradley, Jeffrey D.; Mutic, Sasa; Wahab, Sasha H.; Islam, Tareque; Christensen, Gary; Politte, David G.; Whiting, Bruce R.

    2003-01-01

    Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity-modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath-hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four-dimensional (4-D) image set, where tidal lung volume is the additional dimension. An analysis of this 4-D data leads to methods for digital-spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4-D image set is generated by sorting free-breathing multislice CT scans according to user-defined tidal-volume bins. A multislice CT scanner is operated in the cine mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital-spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 cm 3 . An analysis of sagittal and

  2. The role of three dimensional functional lung imaging in radiation treatment planning: the functional dose-volume histogram

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Spencer, David P.; Sherouse, George W.; Bentel, Gunilla; Clough, Robert; Vann, Karen; Jaszczak, Ronald; Coleman, R. Edward; Prosnitz, Leonard R.

    1995-01-01

    Purpose: During thoracic irradiation (XRT), treatment fields are usually designed to minimize the volume of nontumor-containing lung included. Generally, functional heterogeneities within the lung are not considered. The three dimensional (3D) functional information provided by single photon emission computed tomography (SPECT) lung perfusion scans might be useful in designing beams that minimize incidental irradiation of functioning lung tissue. We herein review the pretreatment SPECT scans in 86 patients (56 with lung cancer) to determine which are likely to benefit from this technology. Methods and Materials: Prior to thoracic XRT, SPECT lung perfusion scans were obtained following the intravenous injection of ∼4 mCi of 99m Tc-labeled macro-aggregated albumin. The presence of areas of decreased perfusion, their location relative to the tumor, and the potential clinical usefulness of their recognition, were scored. Patients were grouped and compared (two-tailed chi-square) based on clinical factors. Conventional dose-volume histograms (DVHs) and functional DVHs (DV F Hs) are calculated based on the dose distribution throughout the computed tomography (CT)-defined lung and SPECT-defined perfused lung, respectively. Results: Among 56 lung cancer patients, decreases in perfusion were observed at the tumor, adjacent to the tumor, and separate from the tumor in 94%, 74%, and 42% of patients, respectively. Perfusion defects adjacent to the tumor were often large with centrally placed tumors. Hypoperfusion in regions separate from the tumor were statistically most common in patients with relatively poor pulmonary function and chronic obstructive pulmonary disease (COPD). Considering all SPECT defects adjacent to and separate from the tumor, corresponding CT abnormalities were seen in only ∼50% and 20% of patients, respectively, and were generally not as impressive. Following XRT, hypoperfusion at and separate from the tumor persisted, while defects adjacent to the

  3. Rounded atelectasis of the lung: A pictorial review

    International Nuclear Information System (INIS)

    Sobocińska, Magdalena; Sobociński, Bartosz; Jarzemska, Agnieszka; Serafin, Zbigniew

    2014-01-01

    Rounded atelectasis of the lung is well described in medical literature, but still difficult to diagnose. Since lesions give no clinical symptoms in patients, radiologists are often the first to recognize the round lesion in an X-ray picture or a CT scan. Rounded atelectasis is an atypical form of lung collapse that usually occurs adjacent to scarred pleura and can be mistaken for lung cancer. Patients with rounded atelectasis have a history of asbestos exposure or pleural effusion due to various causes. When characteristic imaging findings are present, the diagnosis is rarely dubious and no further investigation is necessary. However, differential diagnosis of rounded atelectasis poses a challenge to pulmonary specialists and radiologists

  4. Rounded atelectasis of the lung: A pictorial review.

    Science.gov (United States)

    Sobocińska, Magdalena; Sobociński, Bartosz; Jarzemska, Agnieszka; Serafin, Zbigniew

    2014-01-01

    Rounded atelectasis of the lung is well described in medical literature, but still difficult to diagnose. Since lesions give no clinical symptoms in patients, radiologists are often the first to recognize the round lesion in an X-ray picture or a CT scan. Rounded atelectasis is an atypical form of lung collapse that usually occurs adjacent to scarred pleura and can be mistaken for lung cancer. Patients with rounded atelectasis have a history of asbestos exposure or pleural effusion due to various causes. When characteristic imaging findings are present, the diagnosis is rarely dubious and no further investigation is necessary. However, differential diagnosis of rounded atelectasis poses a challenge to pulmonary specialists and radiologists.

  5. The utility of the macro-aggregated albumin lung perfusion scan in the diagnosis and prognosis of hepatopulmonary syndrome in cirrhotic patients candidates for liver transplantation

    Directory of Open Access Journals (Sweden)

    Israel Grilo

    Full Text Available Background: The macro-aggregated albumin lung perfusion scan (99mTc-MAA is a diagnostic method for hepatopulmonary syndrome (HPS. Aim: To determine the sensitivity of 99mTc-MAA in diagnosing HPS, to establish the utility of 99mTc-MAA in determining the influence of HPS on hypoxemia in patients with concomitant pulmonary disease and to determine the correlation between 99mTc-MAA values and other respiratory parameters. Methods: Data from 115 cirrhotic patients who were eligible for liver transplantation (LT were prospectively analyzed. A transthoracic contrast echocardiography and 99mTc-MAA were performed in 85 patients, and 74 patients were diagnosed with HPS. Results: The overall sensitivity of 99mTc-MAA for the diagnosis of HPS was 18.9% (14/74 in all of the HPS cases and 66.7% (4/6 in the severe to very severe cases. In HPS patients who did not have lung disease, the degree of brain uptake of 99mTc-MAA was correlated with the alveolar-arterial oxygen gradient (A-a PO2 (r = 0.32, p < 0.05 and estimated oxygen shunt (r = 0.41, p < 0.05 and inversely correlated with partial pressure of arterial oxygen (PaO2 while breathing 100% O2 (r = -0.43, p < 0.05. The 99mTc-MAA was positive in 20.6% (7/36 of the patients with HPS and lung disease. The brain uptake of 99mTc-MAA was not associated with mortality and normalized in all cases six months after LT. Conclusions: The 99mTc-MAA is a low sensitivity test for the diagnosis of HPS that can be useful in patients who have concomitant lung disease and in severe to very severe cases of HPS. It was not related to mortality, and brain uptake normalized after LT.

  6. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  7. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo; Yang, Cungeng [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Wu, Hui [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou (China); Tai, An [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Dalah, Entesar [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah (United Arab Emirates); Zheng, Cheng [Biostatistics, Joseph. J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (United States); Johnstone, Candice [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Kong, Feng-Ming [Department of Radiation Oncology, Indiana University, Indianapolis, Indiana (United States); Gore, Elizabeth [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2017-06-01

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from the daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.

  8. Lung adenocarcinoma mimicking pulmonary fibrosis-a case report

    International Nuclear Information System (INIS)

    Mehić, Bakir; Duranović Rayan, Lina; Bilalović, Nurija; Dohranović Tafro, Danina; Pilav, Ilijaz

    2016-01-01

    Lung cancer is usually presented with cough, dyspnea, pain and weight loss, which is overlapping with symptoms of other lung diseases such as pulmonary fibrosis. Pulmonary fibrosis shows characteristic reticular and nodular pattern, while lung cancers are mostly presented with infiltrative mass, thick-walled cavitations or a solitary nodule with spiculated borders. If the diagnosis is established based on clinical symptoms and CT findings, it would be a misapprehension. We report a case of lung adenocarcinoma whose symptoms as well as clinical images overlapped strongly with pulmonary fibrosis. The patient’s non-productive cough, progressive dyspnea, restrictive pattern of pulmonary function test and CT scans (showing reticular interstitial opacities) were all indicative of pulmonary fibrosis. The patient underwent a treatment consisting of corticosteroids and antibiotics, to no avail. Histopathology of the lung showed that the patient suffered from mucinous adenocarcinoma. Albeit the immunohistochemical staining was not consistent with lung adenocarcinoma, tumor’s morphological characteristics were consistent, and were used to make the definitive diagnosis. Given the fact that radiography cannot always make a clear-cut difference between pulmonary fibrosis and lung adenocarcinomas, and that clinical symptoms often overlap, histological examination should be considered as gold standard for diagnosis of lung adenocarcinoma

  9. Quantitative pre-surgical lung function estimation with SPECT/CT

    International Nuclear Information System (INIS)

    Bailey, D. L.; Willowson, K. P.; Timmins, S.; Harris, B. E.; Bailey, E. A.; Roach, P. J.

    2009-01-01

    Full text:Objectives: To develop methodology to predict lobar lung function based on SPECT/CT ventilation and perfusion (V/Q) scanning in candidates for lobectomy for lung cancer. Methods: This combines two development areas from our group: quantitative SPECT based on CT-derived corrections for scattering and attenuation of photons, and SPECT V/Q scanning with lobar segmentation from CT. Eight patients underwent baseline pulmonary function testing (PFT) including spirometry, measure of DLCO and cario-pulmonary exercise testing. A SPECT/CT V/Q scan was acquired at baseline. Using in-house software each lobe was anatomically defined using CT to provide lobar ROIs which could be applied to the SPECT data. From these, individual lobar contribution to overall function was calculated from counts within the lobe and post-operative FEV1, DLCO and VO2 peak were predicted. This was compared with the quantitative planar scan method using 3 rectangular ROIs over each lung. Results: Post-operative FEV1 most closely matched that predicted by the planar quantification method, with SPECT V/Q over-estimating the loss of function by 8% (range - 7 - +23%). However, post-operative DLCO and VO2 peak were both accurately predicted by SPECT V/Q (average error of 0 and 2% respectively) compared with planar. Conclusions: More accurate anatomical definition of lobar anatomy provides better estimates of post-operative loss of function for DLCO and VO2 peak than traditional planar methods. SPECT/CT provides the tools for accurate anatomical defintions of the surgical target as well as being useful in producing quantitative 3D functional images for ventilation and perfusion.

  10. Pulmonary uptake of 198Au during liver scanning in two patients with amyloidosis

    International Nuclear Information System (INIS)

    Goebel, R.

    1976-01-01

    Lung uptake of 198 Au-colloid, injected for a liver scan, is demonstrated in two patients with systemic amyloidosis. The incidence, importance and mechanism of this phenomenon is discussed. (orig.) [de

  11. More than lung cancer: Automated analysis of low-dose screening CT scans

    NARCIS (Netherlands)

    Mets, O.M.

    2012-01-01

    Smoking is a major health care problem and is projected to cause over 8 million deaths per year worldwide in the coming decades. To reduce lung cancer mortality in heavy smokers, several randomized screening trials were initiated in the past years using screening with low-dose Computed Tomography

  12. Evaluation of radioactive seeds implantation under PET-CT guidance for the treatment of central lung cancer with obstructive atelectasis

    International Nuclear Information System (INIS)

    Zhou Yi; Jiang Zhongpu; Wang Haiting; Zhang Yanjun; Jiang Qiang; Wang Jun; Ren Lijun; Xie Bin

    2010-01-01

    Objective: To evaluate percutaneous puncturing 125 I seed implantation by using PET-CT guided target localization technique in treating central lung cancer complicated by obstructive pulmonary atelectasis. Methods: A total of 30 patients with suspected central lung cancer complicated by obstructive pulmonary atelectasis on preoperative chest films were enrolled in this study. As no clear distinction existed between the tumor and the atelectatic consolidation shadow on plain chest films, CT scanning was carried out in all patients. If CT scan was still not able to determine the margin of the tumor, an additional PET-CT scanning was adopted. After ascertaining the location of the lung cancer, percutaneous puncturing implantation of 125 I seeds under PET-CT guidance was performed. The clinical data and the therapeutic results were evaluated. Results: A sharp distinction between the tumor and the atelectatic consolidation shadow was demonstrated on PET-CT scans in 21 cases. The mean volume of the targeted lesion reckoned from PET-CT scans was 26 cm 3 , and the 125 I seeds were implanted. The mean volume of the targeted lesion calculated on CT scans was 37 cm 3 . Six months after the treatment, the follow-up CT exam showed that the effective rate was 93% (28/30). The one-year survival rate was 100% . The complications included pneumothorax (n = 8), small amount of hemoptysis (n = 12) and fever (n = 2). No displacement or immigration of the implanted seeds occurred. Conclusion: PET-CT scanning is far superior to conventional CT scanning in determining the target area of the tumor in patients with central lung cancer complicated by obstructive pulmonary atelectasis. (authors)

  13. A new positive pressure ventilation delivery system: its impact on lung ventilation studies that are technically inadequate or non diagnostic

    International Nuclear Information System (INIS)

    Bui, C.; Leiper, C.; Lee, K.; Saunders, C.; Dixson, H.; Elison, B.; Bennett, G.; Gibian, T.; Rutland, J.; Tse, V.; Elzein, H.; Babicheva, R.

    2000-01-01

    Full text: The objective of this study was to evaluate the efficacy and safety of an improved Positive Pressure Ventilation Delivery System (PVDS) in the investigation of Pulmonary Embolism (PE). The major component of PVDS is a commercially available, self-inflating 1.6L Hudson Resuscitator Bag, filled with either oxygen or air (if the patient has CO 2 retention), which is squeezed by the operator to push Technegas from the Technegas Generator Chamber to the patient via the Patient Administration Set synchronously with patient inspiration. 27 spontaneously breathing in-patients (12 males, 15 females, age range 64-89, 21 with chronic airflow limitation), whose conventional lung ventilation images were technically inadequate or non diagnostic, were re-scanned using PVDS within four days after the conventional ventilation study. Randomised blinded visual interpretation of conventional ventilation/perfusion scan vs. PVDS-assisted ventilation/perfusion scan was performed by consensus reading with two experienced observers. In conclusion PVDS was safe and well tolerated. PVDS improved the image quality of the lung ventilation scans in this cohort of patients. This technique has the potential to improve the accuracy of lung scanning in patients with severe lung disease. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  14. Validation study of an interpolation method for calculating whole lung volumes and masses from reduced numbers of CT-images in ponies.

    Science.gov (United States)

    Reich, H; Moens, Y; Braun, C; Kneissl, S; Noreikat, K; Reske, A

    2014-12-01

    Quantitative computer tomographic analysis (qCTA) is an accurate but time intensive method used to quantify volume, mass and aeration of the lungs. The aim of this study was to validate a time efficient interpolation technique for application of qCTA in ponies. Forty-one thoracic computer tomographic (CT) scans obtained from eight anaesthetised ponies positioned in dorsal recumbency were included. Total lung volume and mass and their distribution into four compartments (non-aerated, poorly aerated, normally aerated and hyperaerated; defined based on the attenuation in Hounsfield Units) were determined for the entire lung from all 5 mm thick CT-images, 59 (55-66) per animal. An interpolation technique validated for use in humans was then applied to calculate qCTA results for lung volumes and masses from only 10, 12, and 14 selected CT-images per scan. The time required for both procedures was recorded. Results were compared statistically using the Bland-Altman approach. The bias ± 2 SD for total lung volume calculated from interpolation of 10, 12, and 14 CT-images was -1.2 ± 5.8%, 0.1 ± 3.5%, and 0.0 ± 2.5%, respectively. The corresponding results for total lung mass were -1.1 ± 5.9%, 0.0 ± 3.5%, and 0.0 ± 3.0%. The average time for analysis of one thoracic CT-scan using the interpolation method was 1.5-2 h compared to 8 h for analysis of all images of one complete thoracic CT-scan. The calculation of pulmonary qCTA data by interpolation from 12 CT-images was applicable for equine lung CT-scans and reduced the time required for analysis by 75%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Individualized margins in 3D conformal radiotherapy planning for lung cancer: analysis of physiological movements and their dosimetric impacts.

    Science.gov (United States)

    Germain, François; Beaulieu, Luc; Fortin, André

    2008-01-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.

  16. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    International Nuclear Information System (INIS)

    Germain, Francois; Beaulieu, Luc; Fortin, Andre

    2008-01-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage

  17. Computed tomography lung iodine contrast mapping by image registration and subtraction

    Science.gov (United States)

    Goatman, Keith; Plakas, Costas; Schuijf, Joanne; Beveridge, Erin; Prokop, Mathias

    2014-03-01

    Pulmonary embolism (PE) is a relatively common and potentially life threatening disease, affecting around 600,000 people annually in the United States alone. Prompt treatment using anticoagulants is effective and saves lives, but unnecessary treatment risks life threatening haemorrhage. The specificity of any diagnostic test for PE is therefore as important as its sensitivity. Computed tomography (CT) angiography is routinely used to diagnose PE. However, there are concerns it may over-report the condition. Additional information about the severity of an occlusion can be obtained from an iodine contrast map that represents tissue perfusion. Such maps tend to be derived from dual-energy CT acquisitions. However, they may also be calculated by subtracting pre- and post-contrast CT scans. Indeed, there are technical advantages to such a subtraction approach, including better contrast-to-noise ratio for the same radiation dose, and bone suppression. However, subtraction relies on accurate image registration. This paper presents a framework for the automatic alignment of pre- and post-contrast lung volumes prior to subtraction. The registration accuracy is evaluated for seven subjects for whom pre- and post-contrast helical CT scans were acquired using a Toshiba Aquilion ONE scanner. One hundred corresponding points were annotated on the pre- and post-contrast scans, distributed throughout the lung volume. Surface-to-surface error distances were also calculated from lung segmentations. Prior to registration the mean Euclidean landmark alignment error was 2.57mm (range 1.43-4.34 mm), and following registration the mean error was 0.54mm (range 0.44-0.64 mm). The mean surface error distance was 1.89mm before registration and 0.47mm after registration. There was a commensurate reduction in visual artefacts following registration. In conclusion, a framework for pre- and post-contrast lung registration has been developed that is sufficiently accurate for lung subtraction

  18. The initial appearance of lung adenocarcinoma on computed tomography

    International Nuclear Information System (INIS)

    Saito, Haruhiro; Yamada, Kozo; Suzuki, Rie; Oshita, Fumihiro; Nakayama, Haruhiko; Mitsuda, Aki; Kameda, Youichi; Noda, Kazumasa

    2002-01-01

    The purpose of this study was to determine the initial appearance of lung adenocarcinoma on computed tomography and the appropriate follow-up duration. Retrospective review of 17 cases in which computed tomography (CT) of the chest was performed about 2 years prior to the diagnosis of lung cancer. The diagnosis was confirmed by surgical resection in all cases. The lung cancers were divided into four types based on their appearance on the initial CT: ground-glass opacity (GGO)-like images in which the lesion appeared as a faint opacity, BLA (bubble-like appearance) image, in which the lesion resembled a focal collection of air, a small solitary nodule, and a scar-like image. Vascular involvement, air-bronchogram, and pleural indentation were all more prominent during a serial scan obtained just prior to surgery than on the initial scan. An increase in vascular involvement occurred prior to the other changes. High attenuation areas appeared in the GGO-like lesions prior to an increase in the size of the lesion. The growth pattern was classified as slow growing, rapidly growing, and initially slow growing with accelerated growth. The doubling time was similar in lesions with the same appearance. This information can be used to guide follow-up of images suspected of lung cancer. The appropriate follow-up duration is estimated from 6 to 12 months for GGO and BLA-like images, and from 2 to 3 months for small solitary nodules. The biological behavior of lung cancer is reflected in their initial appearance on CT. (author)

  19. Pediatric Lung Abscess: Immediate Diagnosis by Point-of-Care Ultrasound.

    Science.gov (United States)

    Kraft, Clara; Lasure, Benjamin; Sharon, Melinda; Patel, Paulina; Minardi, Joseph

    2018-06-01

    The diagnosis of lung abscess can be difficult to make and often requires imaging beyond plain chest x-ray. The decision to further image with computed tomography should be weighed against the risks of radiation exposure, especially in pediatric patients. In addition, the cost and potential impact on length of stay from obtaining computed tomography scans should be considered. In this report, we describe a case of lung abscess made immediately using point-of-care ultrasound in the emergency department. To our knowledge, there are no previous cases describing lung abscess diagnosed by point-of-care ultrasound. This case report aims to describe a case of pediatric lung abscess, review the ultrasound findings, and discuss relevant literature on the topic.

  20. Relation between radiation-induced whole lung functional loss and regional structural changes in partial irradiated rat lung

    International Nuclear Information System (INIS)

    Luijk, Peter van; Novakova-Jiresova, Alena; Faber, Hette; Steneker, Marloes N.J.; Kampinga, Harm H.; Meertens, Haarm; Coppes, Robert P.

    2006-01-01

    Purpose: Radiation-induced pulmonary toxicity is characterized by dose, region, and time-dependent severe changes in lung morphology and function. This study sought to determine the relation between the structural and functional changes in the irradiated rat lung at three different phases after irradiation. Materials and Methods: Six groups of animals were irradiated to 16-22 Gy to six different lung regions, each containing 50% of the total lung volume. Before and every 2 weeks after irradiation, the breathing rate (BR) was measured, and at Weeks 8, 26, and 38 CT was performed. From the computed tomography scans, the irradiated lung tissue was delineated using a computerized algorithm. A single quantitative measure for structural change was derived from changes of the mean and standard deviation of the density within the delineated lung. Subsequently, this was correlated with the BR in the corresponding phase. Results: In the mediastinal and apex region, the BR and computed tomography density changes did not correlate in any phase. After lateral irradiation, the density changes always correlated with the BR; however, in all other regions, the density changes only correlated significantly (r 2 = 0.46-0.85, p < 0.05) with the BR in Week 26. Conclusion: Changes in pulmonary function correlated with the structural changes in the absence of confounding heart irradiation

  1. Comparison of distribution of lung aeration measured with EIT and CT in spontaneously breathing, awake patients1.

    Science.gov (United States)

    Radke, Oliver C; Schneider, Thomas; Braune, Anja; Pirracchio, Romain; Fischer, Felix; Koch, Thea

    2016-09-28

    Both Electrical Impedance Tomography (EIT) and Computed Tomography (CT) allow the estimation of the lung area. We compared two algorithms for the detection of the lung area per quadrant from the EIT images with the lung areas derived from the CT images. 39 outpatients who were scheduled for an elective CT scan of the thorax were included in the study. For each patient we recorded EIT images immediately before the CT scan. The lung area per quadrant was estimated from both CT and EIT data using two different algorithms for the EIT data. Data showed considerable variation during spontaneous breathing of the patients. Overall correlation between EIT and CT was poor (0.58-0.77), the correlation between the two EIT algorithms was better (0.90-0.92). Bland-Altmann analysis revealed absence of bias, but wide limits of agreement. Lung area estimation from CT and EIT differs significantly, most probably because of the fundamental difference in image generation.

  2. Large scale validation of the M5L lung CAD on heterogeneous CT datasets

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Torres, E., E-mail: Ernesto.Lopez.Torres@cern.ch, E-mail: cerello@to.infn.it [CEADEN, Havana 11300, Cuba and INFN, Sezione di Torino, Torino 10125 (Italy); Fiorina, E.; Pennazio, F.; Peroni, C. [Department of Physics, University of Torino, Torino 10125, Italy and INFN, Sezione di Torino, Torino 10125 (Italy); Saletta, M.; Cerello, P., E-mail: Ernesto.Lopez.Torres@cern.ch, E-mail: cerello@to.infn.it [INFN, Sezione di Torino, Torino 10125 (Italy); Camarlinghi, N.; Fantacci, M. E. [Department of Physics, University of Pisa, Pisa 56127, Italy and INFN, Sezione di Pisa, Pisa 56127 (Italy)

    2015-04-15

    Purpose: M5L, a fully automated computer-aided detection (CAD) system for the detection and segmentation of lung nodules in thoracic computed tomography (CT), is presented and validated on several image datasets. Methods: M5L is the combination of two independent subsystems, based on the Channeler Ant Model as a segmentation tool [lung channeler ant model (lungCAM)] and on the voxel-based neural approach. The lungCAM was upgraded with a scan equalization module and a new procedure to recover the nodules connected to other lung structures; its classification module, which makes use of a feed-forward neural network, is based of a small number of features (13), so as to minimize the risk of lacking generalization, which could be possible given the large difference between the size of the training and testing datasets, which contain 94 and 1019 CTs, respectively. The lungCAM (standalone) and M5L (combined) performance was extensively tested on 1043 CT scans from three independent datasets, including a detailed analysis of the full Lung Image Database Consortium/Image Database Resource Initiative database, which is not yet found in literature. Results: The lungCAM and M5L performance is consistent across the databases, with a sensitivity of about 70% and 80%, respectively, at eight false positive findings per scan, despite the variable annotation criteria and acquisition and reconstruction conditions. A reduced sensitivity is found for subtle nodules and ground glass opacities (GGO) structures. A comparison with other CAD systems is also presented. Conclusions: The M5L performance on a large and heterogeneous dataset is stable and satisfactory, although the development of a dedicated module for GGOs detection could further improve it, as well as an iterative optimization of the training procedure. The main aim of the present study was accomplished: M5L results do not deteriorate when increasing the dataset size, making it a candidate for supporting radiologists on large

  3. Clinical value of CARE dose 4D technique in decreasing CT scanning dose of adult chest

    International Nuclear Information System (INIS)

    Wu Aiqin; Zheng Wenlong; Xu Chongyong; Fang Bidong; Ge Wen

    2011-01-01

    Objective: To investigate the value of CARE Dose 4D technique in decreasing radiation dose and improving image quality of multi-slice spiral CT in adult chest scanning. Methods: 100 patients of chest CT scanning were equally divided into study group and control group randomly. CARE Dose 4D Technique was used in study group. Effective mAs value, volume CT dose index (CTDI vol ) and dose length product (DLP) were displayed automatically in machine while chest scanning; those values and actual mAs value of every image were recorded respectively. The image quality at apex of lung, lower edge of aorta arch, middle area of left atrium and base of lung on every image of 400 images was judged and classified as three level (excellent, good, poor) by two deputy chief physicians with double blind method, the image noise at corresponding parts was measured. Results: While setting 80 mAs for quality reference mAs, the effective mAs value in study group most decreased 44 mAs than control group with an average decrease of 9.60 (12.0%), CTDI vol with 4.75 mGy with an average decrease of 0.95 mCy (11.0%), DLP 99.50% in study group, with 98.0% in control group. But it was higher at apex of lung and base of lung, lower at middle area of left atrium, and similar at lower edge of aorta arch in study group than contrast group. The image noise were lower at apex of lung and base of lung in study group than control group (t =6.299 and 2.332, all P<0.05), higher at middle area of left atrium in study group than control group (t=3.078, P<0.05) and similar at lower edge of aorta arch in study group than control group (t=1.191, P>0.05). Conclusions: CARE Dose 4D technique provides a function regulated mAs real-time on line, it not only raises utilization rate of radiation and decreases radiation dose, but also promises and increases image quality in chest CT scanning, and has some clinical significance. (authors)

  4. U-bearing particles in miners' and millers' lungs

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Singh, N.P.; Miller, S.C.; Jones, K.W.; Cholewa, M.; Hanson, A.L.; Saccomanno, G.

    1984-01-01

    The size distribution of uranium-bearing particles in air particulates in occupational areas of active uranium mines and mills is largely uninvestigated. Investigation of the size of residual uranium-bearing particles in uranium miners' and millers' lungs is warranted because significant inhalation of uranium can occur in certain occupational areas. Average uranium concentrations of about 0.3 ppM U in uranium miners' and millers' lungs have been reported. Local uranium concentrations in uranium-bearing particles inhaled and regionally deposited in the lungs of uranium miners and millers are orders of magnitude larger than the average uranium concentrations reported. The feasibility of using microPIXE (particle induced x-ray emission) techniques to search for such uranium-bearing particles embedded in lung tissues has been demonstrated. Proton microbeams 20 μm in diameter, scanning in 5 μm steps, were used to irradiate sections of lung tissues 10 to 40 μm thick. The paper will briefly describe the method, and present and discuss the results obtained in an extensive search for uranium-bearing particles embedded in lung tissues, collected at autopsy, of former uranium miners and millers. 13 references, 1 table

  5. Basic principles of pulmonary anatomy and physiology for CT interpretation of lung diseases

    International Nuclear Information System (INIS)

    Remy-Jardin, M.; Beigelman, C.; Desfontaines, C.; Dupont, S.; Remy, J.

    1989-01-01

    High resolution CT is now the method of choice in the diagnosis of lung diseases, especially in their early recognition. However, the radiologist must be aware of precise anatomic, pathologic and physiologic data which are observed when the patient is supine. This concept leads to a transversal analysis of lung diseases by CT, as previously proposed in the coronal and sagittal planes for conventional chest X Ray interpretation. The aim of the study is to demonstrate that these regional differences in the lung must be included in the method of chest scanning but also in the interpretation of lung diseases [fr

  6. Measuring irradiated lung and heart area in breast tangential fields using a simulator-based computerized tomography device

    International Nuclear Information System (INIS)

    Mallik, Raj; Fowler, Allan; Hunt, Peter

    1995-01-01

    Purpose: To illustrate the use of a simulator based computerized tomography system (SIMCT) in the simulation and planning of tangential breast fields. Methods and Materials: Forty-five consecutive patients underwent treatment planning using a radiotherapy simulator with computerized tomography attachment. One to three scans were obtained for each patient, calculations were made on the central axis scan. Due to the wide aperture of this system all patients were able to be scanned in the desired treatment position with arm abducted 90 deg. . Using available software tools the area of lung and/or heart included within the tangential fields was calculated. The greatest perpendicular distance (GPD) from the chest wall to posterior field edge was also measured. Results: The mean GPD for the group was 25.40 mm with 71% of patients having GPDs of ≤ 30 mm. The mean area of irradiated lung was 1780 sq mm which represented 18.0% of the total ipsilateral lung area seen in the central axis. Seven of the patients with left sided tumors had an average 1314 sq mm heart irradiated in the central axis. This represented 11.9% of total heart area in these patients. Conclusion: Measurements of irradiated lung and heart area can be easily and accurately made using a SIMCT device. Such measurements may help identify those patients potentially at risk for lung or heart toxicity as a consequence of their treatment. A major advantage of this device is the ability to scan patients in the actual treatment position

  7. Measuring irradiated lung and heart area in breast tangential fields using a simulator-based computerized tomography device

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, Raj; Fowler, Allan; Hunt, Peter

    1995-01-15

    Purpose: To illustrate the use of a simulator based computerized tomography system (SIMCT) in the simulation and planning of tangential breast fields. Methods and Materials: Forty-five consecutive patients underwent treatment planning using a radiotherapy simulator with computerized tomography attachment. One to three scans were obtained for each patient, calculations were made on the central axis scan. Due to the wide aperture of this system all patients were able to be scanned in the desired treatment position with arm abducted 90 deg. . Using available software tools the area of lung and/or heart included within the tangential fields was calculated. The greatest perpendicular distance (GPD) from the chest wall to posterior field edge was also measured. Results: The mean GPD for the group was 25.40 mm with 71% of patients having GPDs of {<=} 30 mm. The mean area of irradiated lung was 1780 sq mm which represented 18.0% of the total ipsilateral lung area seen in the central axis. Seven of the patients with left sided tumors had an average 1314 sq mm heart irradiated in the central axis. This represented 11.9% of total heart area in these patients. Conclusion: Measurements of irradiated lung and heart area can be easily and accurately made using a SIMCT device. Such measurements may help identify those patients potentially at risk for lung or heart toxicity as a consequence of their treatment. A major advantage of this device is the ability to scan patients in the actual treatment position.

  8. Automated lung nodule classification following automated nodule detection on CT: A serial approach

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Altman, Michael B.; Wilkie, Joel; Sone, Shusuke; Li, Feng; Doi, Kunio; Roy, Arunabha S.

    2003-01-01

    We have evaluated the performance of an automated classifier applied to the task of differentiating malignant and benign lung nodules in low-dose helical computed tomography (CT) scans acquired as part of a lung cancer screening program. The nodules classified in this manner were initially identified by our automated lung nodule detection method, so that the output of automated lung nodule detection was used as input to automated lung nodule classification. This study begins to narrow the distinction between the 'detection task' and the 'classification task'. Automated lung nodule detection is based on two- and three-dimensional analyses of the CT image data. Gray-level-thresholding techniques are used to identify initial lung nodule candidates, for which morphological and gray-level features are computed. A rule-based approach is applied to reduce the number of nodule candidates that correspond to non-nodules, and the features of remaining candidates are merged through linear discriminant analysis to obtain final detection results. Automated lung nodule classification merges the features of the lung nodule candidates identified by the detection algorithm that correspond to actual nodules through another linear discriminant classifier to distinguish between malignant and benign nodules. The automated classification method was applied to the computerized detection results obtained from a database of 393 low-dose thoracic CT scans containing 470 confirmed lung nodules (69 malignant and 401 benign nodules). Receiver operating characteristic (ROC) analysis was used to evaluate the ability of the classifier to differentiate between nodule candidates that correspond to malignant nodules and nodule candidates that correspond to benign lesions. The area under the ROC curve for this classification task attained a value of 0.79 during a leave-one-out evaluation

  9. Evaluation of right ventricular function for lung transplantation. Role of electron flow scan

    International Nuclear Information System (INIS)

    Stern, M.; Joint-Lambert, O.; Tainturier, C.; Seigneur, F.; Caubarrere, I.; Hernigou, A.

    1994-01-01

    Several invasive or not invasive technics were used to evaluate right ventricular insufficiency associated to severe chronic pulmonary insufficiency. But none of them were very accurate and now the use of EBT appears as a real improvement. We performed a prospective study with 50 patients waiting for a lung transplantation and we compared the values of right ventricular function obtained by EBT to those obtained by nuclear medicine and catheterism. Accuracy of EBT for left ventricle evaluation has already been proved. Stroke volumes calculated by EBT in right and left ventricles are similar and this constitutes a good validation of the method for right ventricle evaluation. Correlations with hemodynamic measurements are poor and nuclear medicine technics underestimate the ejection fraction. So, EBT is recommended for right ventricular study before and after lung transplantation. (authors). 11 refs., 4 figs

  10. A case of lung abscess successfully treated by transbronchial drainage using a guide sheath.

    Science.gov (United States)

    Izumi, Hiroki; Kodani, Masahiro; Matsumoto, Shingo; Kawasaki, Yuji; Igishi, Tadashi; Shimizu, Eiji

    2017-05-01

    A 51-year-old man was diagnosed with colon cancer in September 2011, and a solitary pulmonary nodule was detected by computed tomography (CT) scan. We performed a transbronchial biopsy with endobronchial ultrasonography using a guide sheath (GS) and diagnosed lung metastasis of colon cancer. The patient experienced remittent fever after the biopsy in spite of intravenous antibiotic therapies. Moreover, his CT scan showed a large lung abscess at the biopsy site. We performed transbronchial drainage using a GS as salvage therapy. The bloody pus was successfully aspirated, and chest X-ray following the procedure showed dramatic shrinkage of the abscess.

  11. The findings of bronchial artery change in lung cancer with 16-slice CT

    International Nuclear Information System (INIS)

    Zeng Qingsi; Wu Xiaomei; Cen Renli; Zhang Chaoliang; Chen Yongfu

    2007-01-01

    Objective: To evaluate the difference of internal diameter of bronchial artery in big lung cancer, small lung cancer, and normal lung with multiple slice CT. Methods: MSCT angiographies of 44 patients with lung cancer confirmed by pathology were retrospectively analyzed, and 29 patients were with big lung cancer (≥3 cm) and 15 patients with small lung cancer (<3 cm). Contrast enhanced helical thin slice CT scan was performed in all patients. Three dimensional images of bronchial artery were processed on workstation. The internal diameter of bronchial artery was measured. Results: The diameter of bronchial artery was (1.9±0.4) mm in 15 small lung cancer and (2.5±0.5) mm in 29 big lung cancer, respectively. There was a significant difference in internal diameter of bronchial artery between big and small lung cancer (P<0.05). Conclusion: Bronchial artery in lung cancer is dilated, and the dilation of bronchial artery in big lung cancer is more prominent than in small lung cancer. (authors)

  12. Shallow and deep breath lung tumor volume as estimated by spiral volumetric CT in comparison to standard axial CT using virtual simulation

    International Nuclear Information System (INIS)

    Quader, M.A.; Kalend, A.M.; Deutsch, M.; Greenberger, J.S.

    1995-01-01

    Purpose/Objective: In order to assess an individual patient tumor volume (TV) margins that are sufficient to design a beam-eye-view (BEW) conformal portal, the radiographic extent of gross tumor volume (GTV) dimensions and its fluctuation with breathing are measured by fast spiral CT scanning of patients treated for Stage II, III lung cancers using 5-6 field multi-collimated conformal beams. Materials and Methods: Over the course of conformal radiotherapy for lung cancer, a full thorax CT scans of the patient were taken by conventional axial CT scanning with patients immobilized in the treatment position and breathing normally. Patient(s) with good pulmonary function test (PFT) status were selected to perform deep breathing and re-scanned by fast spiral techniques in order to re-acquire the tomographic variation in the (GTV) with breathing. A Picker spiral ZAP-100 software running on the AQSim-PQ-2000 was used with a variable helical pitch of 1.0, 1.5 and 2.0. The variable pitch spirals were limited to tumor bed, diaphragm and lung apex area for measurements. Effect of breathing motion along x,y,z direction were then assessed for each beam-eye-view portal as seen in digitally reconstructed radiography (DRR) at the treated gantry angle. Results: Comparison of axial and spiral scans shows the progression of lung and diaphram motion with breathing can be gauged better in spiral scans. The movement of the diaphragm during shallow breathing has been found to be 2-3cm by measuring the distance between the most inferior and superior slices where diaphragm is present. The variation of the tumor dimensions along AP/PA and lateral direction seems to be less sensitive to breathing than those along inferior-superior direction. Conclusion: The fast spiral CT scanning is sensitive to patient lung motion and can be used to determine the fluctuations of the gross tumor volume with breathing. The extent of the fluctuation is location dependent and increases as one moves from the

  13. Using radioaerosols to monitor physiotherapy-enhanced mucus clearance at different levels of the bronchial tree

    International Nuclear Information System (INIS)

    Hasani, A.; Pavia, D.; Clarke, S.W.; Agnew, J.E.

    1993-01-01

    Patients with airways obstruction often find it difficult to clear excess lung secretions. Frequent coughing can clear the larger airways but may itself further damage the airways ciliated epithelium. Various physiotherapy regimes have been proposed yet objective evidence of their efficacy is sparse. Deposited aerosol particles - with an appropriate label for gamma imaging - can track clearance from different lung regions. Published reports have however tended to be equivocal in respect of clearance from the more distal conducting airways. Questions also arise as to coordination of transport rates at different levels of the bronchial tree. We therefore sought to re-assess requirements for effective analysis of physiotherapy-enhanced clearance to yield data on both peripheral and central airways clearance. (author)

  14. Using radioaerosols to monitor physiotherapy-enhanced mucus clearance at different levels of the bronchial tree

    Energy Technology Data Exchange (ETDEWEB)

    Hasani, A.; Pavia, D.; Clarke, S.W.; Agnew, J.E. (Royal Free Hospital, London (United Kingdom))

    1993-01-01

    Patients with airways obstruction often find it difficult to clear excess lung secretions. Frequent coughing can clear the larger airways but may itself further damage the airways ciliated epithelium. Various physiotherapy regimes have been proposed yet objective evidence of their efficacy is sparse. Deposited aerosol particles - with an appropriate label for gamma imaging - can track clearance from different lung regions. Published reports have however tended to be equivocal in respect of clearance from the more distal conducting airways. Questions also arise as to coordination of transport rates at different levels of the bronchial tree. We therefore sought to re-assess requirements for effective analysis of physiotherapy-enhanced clearance to yield data on both peripheral and central airways clearance. (author).

  15. Contribution of computed tomography (CT) in affections of the lung parenchyma in HIV positive patients

    International Nuclear Information System (INIS)

    Neuwirth, J.; Stankova, M.; Spala, J.; Strof, J.

    1996-01-01

    CT findings in HIV positive patients with respiratory complaints were analyzed. The predominant morphological type of changes is a 'ground glass' increased density. Minimal changes of the lung parenchyma were recorded on high resolution computed tomography (HRCT) even in patients with a negative or doubtful finding on plain chest radiographs. Also the range of affections on HRCT scans was wider than on simple scans. The morphological changes on HRCT scans alone, however, are not an adequate basis for differentiation of various infectious agents in inflammatory changes of the lung parenchyma, and frequently mixed infections are involved. When at the same time clinical symptoms are considered, it frequently is possible to considerably reduce the number of possible pathogenic organisms and to start treatment. (author) 4 figs., 11 refs

  16. Heterotopic pancreatic tissue presenting as a solid and cystic lung lesion : A very unusual bronchopulmonary foregut malformation

    NARCIS (Netherlands)

    De Kruger, RR; Albers, MJIJ; Mooi, WJ; Bogers, J.J.C.

    2004-01-01

    We describe the history and lung pathology of a premature female infant, who presented with respiratory distress immediately after birth. A thoracic computerized tomography scan showed abnormalities suggestive of congenital cystic adenomatoid malformation of the left lung. In addition,

  17. [CT-Screening for Lung Cancer - what is the Evidence?

    Science.gov (United States)

    Watermann, Iris; Reck, Martin

    2018-04-01

    In patients with lung cancer treatment opportunities and prognosis are correlated to the stage of disease with a chance for curative treatment in patients with early stage disease. Therefore, early detection of lung cancer is of paramount importance for improving the prognosis of lung cancer patients.The National Lung Screening Trial (NLST) has already shown that low-dose CT increases the number of identified early stage lung cancer patients and reduces lung cancer related mortality. Critically considered in terms of CT-screening are false-positive results, overdiagnosis and unessential invasive clarification. Preliminary results of relatively small European trials haven´t yet confirmed the results of the NLST-study.Until now Lung Cancer Screening by low dose CT-scan or other methods is neither approved nor available in Germany.To improve the efficacy of CT-Screening and to introduce early detection of lung cancer in standard practice, additional, complementing methods should be further evaluated. One option might be the supplementary analysis of biomarkers in liquid biopsies or exhaled breath condensates. In addition, defining the high-risk population is of great relevance to identify candidates who might benefit of early detection programs. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Automated quantification of emphysema in CT studies of the lung

    International Nuclear Information System (INIS)

    Archer, D.C.; deKemp, R.A.; Coblentz, C.L.; Nahmias, C.

    1991-01-01

    Emphysema by definition is a pathologic diagnosis. Recently, in vivo quantification of emphysema from CT with point counting and with a GE 9800 CT scanner program called Density Mask has been described. These methods are laborious and time-consuming, making them unsuitable for screening. The propose of this paper is to create a screening test for emphysema. The authors developed a computer program that quantifies the amount of emphysema from standard CT-scans. The computer was programmed to recognize the lung edges on each section by identifying abrupt changes in CT numbers; grow regions within each lung to identify and separate the lungs from other structures; count regions of lung containing CT numbers measuring <-900 HU corresponding to areas of emphysema; and calculation the percentage of emphysema present from the volume of normal emphysematous lung. The programs were written in C and urn on a Sun 4/100 workstation

  19. Computed tomography of cystic lung lesions

    International Nuclear Information System (INIS)

    Grgic, A.; Heinrich, M.; Girmann, M.; Kramann, B.; Wilkens, H.; Uder, M.

    2004-01-01

    A cystic lesion in the lung is defined as a well-demarcated epithel-lined cavity, that can be mostly filled with air, water, as well as solid material content. This definition includes a wide variety of diseases such as bronchogenic cyst, abscess formation, lymphangioleiomyomatosis, Langerhans cell histiocytosis, emphysema, bronchiectasis, and pneumatoceles. Despite the difficulties in differential diagnosis, there are some diagnostic criteria for CT-scanning helping the radiologist to differentiate between these cystic entities. Moreover, clinical informations are extremely important. The most important clinical parameters include age, sex, clinical history and symptoms. Thus, a better understanding of classic CT appearance of cystic lung disease will allow more definitive diagnosis and could, in some cases, avoid biopsy. (orig.)

  20. Quantification of Tumor Volume Changes During Radiotherapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Fox, Jana; Ford, Eric; Redmond, Kristin; Zhou, Jessica; Wong, John; Song, Danny Y.

    2009-01-01

    Purpose: Dose escalation for lung cancer is limited by normal tissue toxicity. We evaluated sequential computed tomography (CT) scans to assess the possibility of adaptively reducing treatment volumes by quantifying the tumor volume reduction occurring during a course of radiotherapy (RT). Methods and Materials: A total of 22 patients underwent RT for Stage I-III non-small-cell lung cancer with conventional fractionation; 15 received concurrent chemotherapy. Two repeat CT scans were performed at a nominal dose of 30 Gy and 50 Gy. Respiration-correlated four-dimensional CT scans were used for evaluation of respiratory effects in 17 patients. The gross tumor volume (GTV) was delineated on simulation and all individual phases of the repeat CT scans. Parenchymal tumor was evaluated unless the nodal volume was larger or was the primary. Subsequent image sets were spatially co-registered with the simulation data for evaluation. Results: The median GTV reduction was 24.7% (range, -0.3% to 61.7%; p 100 cm 3 vs. 3 , and hilar and/or mediastinal involvement vs. purely parenchymal or pleural lesions. A tendency toward a greater volume reduction with increasing dose was seen, although this did not reach statistical significance. Conclusion: The results of this study have demonstrated significant alterations in the GTV seen on repeat CT scans during RT. These observations raise the possibility of using an adaptive approach toward RT of non-small-cell lung cancer to minimize the dose to normal structures and more safely increase the dose directed at the target tissues.

  1. A potential to reduce pulmonary toxicity: The use of perfusion SPECT with IMRT for functional lung avoidance in radiotherapy of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lavrenkov, Konstantin; Christian, Judith A.; Partridge, Mike; Niotsikou, Elena; Cook, Gary; Parker, Michelle; Bedford, James L.; Brada, Michael

    2007-01-01

    Background and purpose: The study aimed to examine specific avoidance of functional lung (FL) defined by a single photon emission computerized tomography (SPECT) lung perfusion scan, using intensity modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3-DCRT) in patients with non-small cell lung cancer (NSCLC). Materials and methods: Patients with NSCLC underwent planning computerized tomography (CT) and lung perfusion SPECT scan in the treatment position using fiducial markers to allow co-registration in the treatment planning system. Radiotherapy (RT) volumes were delineated on the CT scan. FL was defined using co-registered SPECT images. Two inverse coplanar RT plans were generated for each patient: 4-field 3-DCRT and 5-field step-and-shoot IMRT. 3-DCRT plans were created using automated AutoPlan optimisation software, and IMRT plans were generated employing Pinnacle 3 treatment planning system (Philips Radiation Oncology Systems). All plans were prescribed to 64 Gy in 32 fractions using data for the 6 MV beam from an Elekta linear accelerator. The objectives for both plans were to minimize the volume of FL irradiated to 20 Gy (fV 20 ) and dose variation within the planning target volume (PTV). A spinal cord dose was constrained to 46 Gy. Volume of PTV receiving 90% of the prescribed dose (PTV 90 ), fV 20 , and functional mean lung dose (fMLD) were recorded. The PTV 90 /fV 20 ratio was used to account for variations in both measures, where a higher value represented a better plan. Results: Thirty-four RT plans of 17 patients with stage I-IIIB NSCLC suitable for radical RT were analysed. In 6 patients with stage I-II disease there was no improvement in PTV 90 , fV 20 , PTV/fV 20 ratio and fMLD using IMRT compared to 3-DCRT. In 11 patients with stage IIIA-B disease, the PTV was equally well covered with IMRT and 3-DCRT plans, with IMRT producing better PTV 90 /fV 20 ratio (mean ratio - 7.2 vs. 5.3, respectively, p = 0.001) and reduced f

  2. [Management of Lung Abscess].

    Science.gov (United States)

    Marra, A; Hillejan, L; Ukena, D

    2015-10-01

    A lung abscess is an infectious pulmonary disease characterised by the presence of a pus-filled cavity within the lung parenchyma. The content of an abscess often drains into the airways spontaneously, leading to an air-fluid level visible on chest X-rays and CT scans. Primary lung abscesses occur in patients who are prone to aspiration or in otherwise healthy individuals; secondary lung abscesses typically develop in association with a stenosing lung neoplasm or a systemic disease that compromises immune defences, such as AIDS, or after organ transplantation. The organisms found in abscesses caused by aspiration pneumonia reflect the resident flora of the oropharynx. The most commonly isolated organisms are anaerobic bacteria (Prevotella, Bacteroides, Fusobacterium, Peptostreptococcus) or streptococci; in alcoholics with poor oral hygiene, the spectrum of pathogens includes Staphylococcus aureus, Streptococcus pyogenes and Actinomyces. Chest radiography and computed tomography (CT) are mandatory procedures in the diagnostic algorithm. Standard treatment for a lung abscess consists of systemic antibiotic therapy, which is based on the anticipated or proven bacterial spectrum of the abscess. In most cases, primary abscesses are successfully treated by calculated empiric antibiotic therapy, with an estimated lethality rate of less than 10 %. Secondary abscesses, despite targeted antimicrobial therapy, are associated with a poor prognosis, which depends on the patient's general condition and underlying disease; lethality is as high as 75 %. Negative prognostic factors are old age, severe comorbidities, immunosuppression, bronchial obstruction, and neoplasms. Surgical intervention due to failure of conservative treatment is required in only 10 % of patients, with a success rate of up to 90 % and postoperative mortality rates ranging between 0 and 33 %. Treatment success after endoscopic or percutaneous drainage is achieved in 73 to 100 % of cases, with an

  3. The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression

    DEFF Research Database (Denmark)

    Coxson, Harvey O; Dirksen, Asger; Edwards, Lisa D

    2013-01-01

    Emphysema is a key contributor to airflow limitation in chronic obstructive pulmonary disease (COPD) and can be quantified using CT scanning. We investigated the change in CT lung density in a longitudinal, international cohort of patients with COPD. We also explored the potential relation between...... emphysema and patient characteristics, and investigated if certain circulating biomarkers were associated with decline in CT lung density....

  4. The measurement of 99mTc-DTPA pulmonary clearance in normals, asymptomatic smokers and diabetic patients

    International Nuclear Information System (INIS)

    Kim, In Ju; Kim, Seong Jang; Kim, Yong Ki; Kim, Yun Seong; Lee, Min Ki; Park, Soon Kew

    1998-01-01

    We measured pulmonary epithelial permeability by 99m Tc-DTPA radioaerosol clearance in patients with diabetes and correlated with the presence of microangiopathy to understand the pathophysiology of pulmonary microangiopathy and evaluate 99m Tc-DTPA radioaerosol clearance as a diagnostic test to assess pulmonary microangiopathy. We performed 99m Tc-DTPA radioaerosol scan in 10 normal subjects, 10 asymptomatic smokers, 20 diabetic patients without history of smoking (10 with microangiopathy, 10 without microangiopathy). 99m Tc-DTPA clearance half-time (T 1/2 ) was calculated, then compared with the result of chest radiography and pulmonary function test. Chest radiography and pulmonary function test were normal in all subjects. There were no significant difference of clinical or laboratory characteristics between these groups except age. The diabetic patients with microangiophaty were significantly older (p 1/2 of normal subjects and asymptomatic smokers were significantly different (65.2±23.7 min vs 39.6±9.8 min, p 1/2 was 90.5±46.5 min and significantly delayed when compared with those of normals and asymptomatic smokers (p 1/2 of diabetic patients without microangiopathy, 70.0±12.7 min, was not significantly different from those of normals or asymptomatic smokers (p>0.05). No significant correlation was found between the T 1/2 and spirometric parameters including DLco, FVC, FEV 1 , FEV 1 /FVC (%) and FEF 25-75% in all subjects, and between the T 1/2 and duration of diabetes in diabetic patients. Eventhough the influence of age can't be excluded, delayed 99m Tc-DTPA clearance half-time (T 1/2 ) in diabetic patients with microangiopathy indicates decreased pulmonary capillary permeability as one of the pathophysiologic results of pulmonary microangiopaththy. Further studies are needed in larger number of age matched control and diabetic patients to evaluate the diagnostic efficacy

  5. High lung volume increases stress failure in pulmonary capillaries

    Science.gov (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  6. Evaluation of changes in central airway dimensions, lung area and mean lung density at paired inspiratory/expiratory high-resolution computed tomography

    International Nuclear Information System (INIS)

    Ederle, J.R.; Heussel, C.P.; Hast, J.; Ley, S.; Thelen, M.; Kauczor, H.U.; Fischer, B.; Beek, E.J.R. van

    2003-01-01

    The aim of this study was to improve the understanding of interdependencies of dynamic changes in central airway dimensions, lung area and lung density on HRCT. The HRCT scans of 156 patients obtained at full inspiratory and expiratory position were evaluated retrospectively. Patients were divided into four groups according to lung function tests: normal subjects (n=47); obstructive (n=74); restrictive (n=19); or mixed ventilatory impairment (n=16). Mean lung density (MLD) was correlated with cross-sectional area of the lung (CSA L ), cross-sectional area of the trachea (CSA T ) and diameter of main-stem bronchi (D B ). The CSA L was correlated with CSA T and D B . MLD correlated with CSA L in normal subjects (r=-0.66, p T in the control group (r=-0.50, p B was found (r=-0.52, p L and CSA T correlated in the control group (r=0.67, p L and D B correlated in the control group (r=0.42, p<0.0001) and in patients with obstructive lung disease (r=0.24, p<0.05). Correlations for patients with restrictive and mixed lung disease were constantly lower. Dependencies between central and peripheral airway dimensions and lung parenchyma are demonstrated by HRCT. Best correlations are observed in normal subjects and patients with obstructive lung disease. Based on these findings we postulate that the dependencies are the result of air-flow and pressure patterns. (orig.)

  7. The effect of inspiration on airway dimensions measured in CT images from the Danish Lung Cancer Screening Trial

    DEFF Research Database (Denmark)

    Petersen, Jens; Wille, Mathilde; Thomsen, Laura

    2013-01-01

    of the same subject using image registration. Mixed effect models were used to predict the relative change in lumen diameter (LD) and wall thickness (WT) in airways of generation 0 (trachea) to 6 based on relative changes in the segmented total lung volume (TLV). Results: On average, 1.0, 2.0, 3.9, 7.6, 15...... and Materials: We selected from the Danish Lung Cancer Screening Trial 978 subjects without COPD who were scanned annually for 5 years with low-dose multi-slice CT. Using in-house developed software, the lungs and airways were automatically segmented and corresponding airway branches were found in all scans......Purpose: Airway dimensions measured from CT are increasingly being used to investigate diseases such as chronic obstructive pulmonary disease (COPD). In this study, we investigate the effect of differences in inspiration level on such measurements in voluntary inspiration breathhold scans. Methods...

  8. Quantitation of the reconstruction quality of a four-dimensional computed tomography process for lung cancer patients

    International Nuclear Information System (INIS)

    Lu Wei; Parikh, Parag J.; El Naqa, Issam M.; Nystrom, Michelle M.; Hubenschmidt, James P.; Wahab, Sasha H.; Mutic, Sasa; Singh, Anurag K.; Christensen, Gary E.; Bradley, Jeffrey D.; Low, Daniel A.

    2005-01-01

    We have developed a four-dimensional computed tomography (4D CT) technique for mapping breathing motion in radiotherapy treatment planning. A multislice CT scanner (1.5 mm slices) operated in cine mode was used to acquire 12 contiguous slices in each couch position for 15 consecutive scans (0.5 s rotation, 0.25 s between scans) while the patient underwent simultaneous quantitative spirometry measurements to provide a sorting metric. The spirometry-sorted scans were used to reconstruct a 4D data set. A critical factor for 4D CT is quantifying the reconstructed data set quality which we measure by correlating the metric used relative to internal-object motion. For this study, the internal air content within the lung was used as a surrogate for internal motion measurements. Thresholding and image morphological operations were applied to delineate the air-containing tissues (lungs, trachea) from each CT slice. The Hounsfield values were converted to the internal air content (V). The relationship between the air content and spirometer-measured tidal volume (ν) was found to be quite linear throughout the lungs and was used to estimate the overall accuracy and precision of tidal volume-sorted 4D CT. Inspection of the CT-scan air content as a function of tidal volume showed excellent correlations (typically r>0.99) throughout the lung volume. Because of the discovered linear relationship, the ratio of internal air content to tidal volume was indicative of the fraction of air change in each couch position. Theoretically, due to air density differences within the lung and in room, the sum of these ratios would equal 1.11. For 12 patients, the mean value was 1.08±0.06, indicating the high quality of spirometry-based image sorting. The residual of a first-order fit between ν and V was used to estimate the process precision. For all patients, the precision was better than 8%, with a mean value of 5.1%±1.9%. This quantitative analysis highlights the value of using spirometry

  9. Lung cancer detection with digital chest tomosynthesis: first round results from the SOS observational study.

    Science.gov (United States)

    Bertolaccini, Luca; Viti, Andrea; Tavella, Chiara; Priotto, Roberto; Ghirardo, Donatella; Grosso, Maurizio; Terzi, Alberto

    2015-04-01

    Baseline results of the Studio OSservazionale (SOS), observational study, a single-arm observational study of digital chest tomosynthesis for lung cancer detection in an at-risk population demonstrated a detection rate of lung cancer comparable to that of studies that used low dose CT scan (LDCT). We present the results of the first round. Totally 1,703 out of 1,843 (92%) subjects who had a baseline digital chest tomosynthesis underwent a first round reevaluation after 1 year. At first round chest digital tomosynthesis, 13 (0.7%) subjects had an indeterminate nodule larger than 5 mm and underwent low-dose CT scan for nodule confirmation. PET/CT study was obtained in 10 (0.5%) subjects and 2 subjects had a low-dose CT follow up. Surgery, either video-assisted thoracoscopic or open surgery for indeterminate pulmonary nodules was performed in 10 (0.2%) subjects. A lung cancer was diagnosed and resected in five patients. The lung cancer detection rate at first round was 0.3% (5/1,703). The detection rate of lung cancer at first round for tomosynthesis is comparable to rates reported for CT. In addition, results of first round digital chest tomosynthesis confirm chest tomosynthesis as a possible first-line lung cancer-screening tool.

  10. Lung disease associated with progressive systemic sclerosis. Assessment of interlobar variation by bronchoalveolar lavage and comparison with noninvasive evaluation of disease activity

    International Nuclear Information System (INIS)

    Miller, K.S.; Smith, E.A.; Kinsella, M.; Schabel, S.I.; Silver, R.M.

    1990-01-01

    Progressive systemic sclerosis (PSS), or scleroderma, is a disease of unknown etiology that involves many organ systems, including the lungs. The interstitial lung disease of systemic sclerosis is becoming an increasing cause of morbidity and mortality. This process has been previously evaluated with single-site bronchoalveolar lavage (BAL), gallium scanning, pulmonary function testing, and, occasionally, by open lung biopsy. As BAL has been shown to correlate well with open lung biopsy in systemic sclerosis, we sought to determine if single-site BAL accurately reflects alveolitis in a second site in the lung, and if BAL results correlate with other noninvasive tests of lung inflammation: gallium uptake, chest radiography, or arterial blood gas analysis. We performed 17 studies in 13 patients with scleroderma and found no significant lobar differences in lavage results or gallium scanning. By our criteria for normal versus active alveolitis, only two of 17 patient lavages would have been classified as normal by one side and abnormal by the other side. Although percent gallium uptake was equal bilaterally and supported the concept of alveolitis uniformity, gallium uptake intensity did not correlate with activity as measured by BAL. Furthermore, chest radiograph and arterial blood gas analysis did not correlate with BAL results or gallium scanning. We believe these data support the suitability of single-site lavage in the investigation of systemic-sclerosis-associated alveolitis and diminish the importance of gallium scanning in the investigation of systemic sclerosis pulmonary disease

  11. Gallium-67 scintiscanning of the lungs of AIDS patients

    International Nuclear Information System (INIS)

    Tatsch, K.; Knesewitsch, P.; Kirsch, C.M.; Kueffer, G.; Doerner, G.; Goebel, F.D.

    1988-01-01

    Thirty patients suffering from AIDS have been examined in this study. The stage of infection of the patients was defined according to the criteria of the Center for Disease Control, so that the study covered 22 patients with manifest AIDS, and 8 patients with AIDS-related complex. The lung scans have been made in all patients 48 and 72 hours after i.v. injection of 185 MBq of 67 Ga citrate, taking ventral and dorsal images with the gamma camera. In the scans recorded after 72 hours, ROI technique has been used to quantify the lung uptake and to put it in relation to uptake data of the soft neck tissue. The results show that gallium scintiscanning is far more sensitive in detecting opportunistic pneumonia in AIDS patients than is conventional chest radiography. If the latter detected any signs at all, the gallium scan did so about one to two weeks earlier in about one third of the patients. Pathologic accumulation in the scintiscan exceeding the range shown by the correlated radiograph indicate that in single cases extension of pneumonia can be underestimated when assessed by the radiograph alone. (orig./MG) [de

  12. A comprehensive computational model of sound transmission through the porcine lung.

    Science.gov (United States)

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.

  13. Image quality of high-resolution CT with 16-channel multidetector-row CT. Comparison between helical scan and conventional step-shoot scan

    International Nuclear Information System (INIS)

    Sumikawa, Hiromitsu; Johkoh, Takeshi; Koyama, Mitsuhiro

    2005-01-01

    The aim of this study was to evaluate the image quality of high-resolution CT (HRCT) reconstructed from volumetric data with 16-channel multidetector-row CT (MDCT). Eleven autopsy lungs that were diagnosed histopathologically were scanned by 16-channel MDCT with the step-and-shoot scan mode and three helical scan modes. Each helical mode had each size of focal spot, pitch, and time of gantry rotation. HRCT images were reconstructed from the volumetric data with each helical mode and axial sequence data. Two observers evaluated the image quality and noted the most appropriate diagnosis for each imaging. Visualization of abnormal structures with one helical mode was equal to those with axial mode, whereas those with the other two helical modes were inferior to those with axial mode (Wilcoxon signed rank test; p<0.0001). There was no significant difference in diagnostic efficacy between modes. The image quality of HRCT with appropriate helical mode is equal to that with axial mode and diagnostic efficacy is equal among all modes. These results may indicate that sufficient HRCT images can be obtained by only one helical scan without the addition of conventional axial scans. (author)

  14. Glycosaminoglycan, computed tomography and gallium-67 scanning in malignant pleural mesothelioma

    International Nuclear Information System (INIS)

    Nakano, Takashi; Fujii, Junji; Yamakawa, Kiyohiro; Tamura, Shinsuke; Amuro, Yoshiki; Nabeshima, Kenji; Hada, Toshikazu; Higashino, Kazuya; Horai, Takeshi.

    1985-01-01

    Malignant pleural mesothelioma is an unusual disease, often difficult to diagnose. This paper describes the results of quantitative studies on glycosaminoglycan (GAG) in tumor tissues and the findings of chest computed tomography (CT) and gallium-67 scanning in 5 malignant pleural mesotheliomas. The total amount of GAG in tumor tissue was 2.3 to 17.0 times as high as that in adenocarcinoma of the lung. The amount of hyaluronic acid was 3.5 to 170 times higher than that in adenocarcinoma. Also, the amount of chondroitin sulfate increased 2.6 to 10.0 times, but there were no changes in dermatan sulfate and heparan sulfate contents in this neoplasm when compared with adenocarcinoma. The present study suggests that a marked increase of the total amount of GAG and elevation of either hyaluronic acid and chondroitin sulfate content or both is a characteristic abnormality in this neoplasm. In most cases, CT scan of the chest showed pleural effusion, irregular pleural tumorous thickening surrounding the whole lung surface and extension into the fissure. In 3 cases, tumorous lesions extending into the chest wall at the site of pleural biopsy could be visualized on CT. In the terminal stage, the thoracic cavity was occupied by tumor tissues. Gallium-67 scanning showed a diffusely increased radionuclide accumulation over the involved hemithorax with or without particular intensity in the periphery. Conversely, identification of these characteristic findings of CT and gallium-67 scanning indicates the possibility of malignant pleural mesothelioma. (author)

  15. Evidence for chronic inflammation as a component of the interstitial lung disease associated with progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Rossi, G.A.; Bitterman, P.B.; Rennard, S.I.; Ferrans, V.J.; Crystal, R.G.

    1985-01-01

    Progressive systemic sclerosis (PSS) is a generalized disorder characterized by fibrosis of many organs including the lung parenchyma. Unlike most other interstitial disorders, traditional concepts of the interstitial lung disease associated with PSS have held it to be a ''pure'' fibrotic disorder without a significant inflammatory component. To directly evaluate whether an active alveolitis is associated with this disorder, patients with chronic interstitial lung disease and PSS were studied by open lung biopsy, gallium-67 scanning, and bronchoalveolar lavage. Histologic evaluation of the biopsies demonstrated that the interstitial fibrosis of PSS is clearly associated with the presence of macrophages, lymphocytes, and polymorphonuclear leukocytes, both in the interstitium and on the alveolar epithelial surface. Gallium-67 scans were positive in 77% of the patients, showing diffuse, primarily lower zone uptake, suggestive of active inflammation. Consistent with the histologic findings, bronchoalveolar lavage studies demonstrated a mild increase in the proportions of neutrophils and eosinophils with occasional increased numbers of lymphocytes. Importantly, alveolar macrophages from patients with PSS showed increased release of fibronectin and alveolar-macrophage-derived growth factor, mediators that together stimulate lung fibroblasts to proliferate, thus suggesting at least one mechanism modulating the lung fibrosis of these patients

  16. SU-E-T-401: Feasibility Study of Using ABC to Gate Lung SBRT Treatment

    International Nuclear Information System (INIS)

    Cao, D; Xie, X; Shepard, D

    2014-01-01

    Purpose: The current SBRT treatment techniques include free breathing (FB) SBRT and gated FB SBRT. Gated FB SBRT has smaller target and less lung toxicity with longer treatment time. The recent development of direct connectivity between the ABC and linac allowing for automated beam gating. In this study, we have examined the feasibility of using ABC system to gate the lung SBRT treatment. Methods: A CIRS lung phantom with a 3cm sphere-insert and a moving chest plate was used in this study. Sinusoidal motion was used for the FB pattern. An ABC signal was imported to simulate breath holds. 4D-CT was taken in FB mode and average-intensity-projection (AIP) was used to create FB and 50% gated FB SBRT planning CT. A manually gated 3D CT scan was acquired for ABC gated SBRT planning.An SBRT plan was created for each treatment option. A surface-mapping system was used for 50% gating and ABC system was used for ABC gating. A manually gated CBCT scan was also performed to verify setup. Results: Among three options, the ABC gated plan has the smallest PTV of 35.94cc, which is 35% smaller comparing to that of the FB plan. Consequently, the V20 of the left lung reduced by 15% and 23% comparing to the 50% gated FB and FB plans, respectively. The FB plan took 4.7 minutes to deliver, while the 50% gated FB plan took 18.5 minutes. The ABC gated plan delivery took only 10.6 minutes. A stationary target with 3cm diameter was also obtained from the manually gated CBCT scan. Conclusion: A strategy for ABC gated lung SBRT was developed. ABC gating can significantly reduce the lung toxicity while maintaining the target coverage. Comparing to the 50% gated FB SBRT, ABC gated treatment can also provide less lung toxicity as well as improved delivery efficiency. This research is funded by Elekta

  17. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning

    International Nuclear Information System (INIS)

    Bria, W.F.; Kanarek, D.J.; Kazemi, H.

    1983-01-01

    Surgical resection of lung cancer is frequently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease. Twenty patients with obstructive lung disease and cancer (mean preoperative forced expiratory volume in 1 second [FEV1] . 1.73 L) were studied preoperatively and postoperatively by spirometry and radionuclide perfusion, single-breath ventilation, and washout techniques to test the ability of these methods to predict preoperatively the partial loss of lung function by the resection. Postoperative FEV1 and forced vital capacity (FVC) were accurately predicted by the formula: postoperative FEV1 (or FVC) . preoperative FEV1 X percent function of regions of lung not to be resected (r . 0.88 and 0.95, respectively). Ventilation and perfusion scans are equally effective in prediction. Washout data add to the sophistication of the method by permitting the qualitative evaluation of ventilation during tidal breathing. Criteria for patients requiring the study are suggested

  18. 18FDG uptake associated with CT density on PET/CT in lungs with and without chronic interstitial lung diseases

    International Nuclear Information System (INIS)

    Inoue, Kentaro; Okada, Ken; Taki, Yasuyuki; Goto, Ryoi; Kinomura, Shigeo; Fukuda, Hiroshi

    2009-01-01

    The dependent-density of computed tomography (CT) images of positron emission tomography (PET)/CT is sometimes difficult to distinguish from chronic interstitial lung disease (ILD) when it accompanies increased 18 F-fluorodeoxy-D-glucose ( 18 FDG) uptake. Though the possible utility of 18 FDG-PET for the diagnosis of active ILD has been reported, the clinical relevance of mild lung 18 FDG uptake in ILD cases without signs and symptoms suggesting acute progression has not been described. This study aimed to test relationships between 18 FDG uptake and lung density on CT using PET/CT in patients with normal lung as well as clinically stable chronic ILD. Thirty-six patients with normal lungs (controls) and 28 patients with chronic ILD (ILD cases) without acute exacerbation were retrospectively selected from 18 FDG PET/CT scans performed in examination of malignant neoplasms. Elliptical regions of interest (ROIs) were placed on the lung. The relationships between CT density and 18 FDG uptake between the control and ILD cases were tested. The CT density and 18 FDG uptake had a linear correlation in both the controls and the ILD cases without a difference in their regression slopes, and they were overlapped between the controls and the ILD cases with higher mean values in the ILD cases. Lung 18 FDG uptake was considered to reflect a gravity-dependent tissue density in the normal lung. Though the lung 18 FDG uptake as well as the CT density tended to be higher in chronic ILD patients, it may be difficult to distinguish them in normal dependent regions from those related to chronic ILD in some cases. (author)

  19. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina [Proton and Advanced RadioTherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London (United Kingdom); Janssens, Guillaume [Ion Beam Applications SA, Louvain-la-Neuve (Belgium); Teng, Ching-Ling [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Baudier, Thomas; Hotoiu, Lucian [iMagX Project, ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve (Belgium); McClelland, Jamie R. [Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London (United Kingdom); Royle, Gary [Proton and Advanced RadioTherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London (United Kingdom); Lin, Liyong; Yin, Lingshu; Metz, James; Solberg, Timothy D.; Tochner, Zelig; Simone, Charles B.; McDonough, James [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Kevin Teo, Boon-Keng, E-mail: teok@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2016-05-01

    Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account for anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.

  20. Commentary: research on the mechanisms of the occupational lung diseases

    International Nuclear Information System (INIS)

    Rom, W.N.

    1984-01-01

    In this commentary, the pathogenesis of alveolitis is examined and elucidated by animal models. The use of broncho alveolar lavage (BAL) and Ga-67 citrate whole-body scanning as a measure of the activity of alveolar inflammation in workers is discussed. Gallium scan indices have been reported to be elevated in asbestosis, silicosis, and coal workers' pneumoconiosis; diseases which may now be evaluated at earlier, potentially reversible stages. Research in emphysema and other lung diseases associated with α 1 antitrypsin deficiency may help explain why coal miners develop focal emphysema. Furthermore, investigation of genetic factors may reveal why workers with similar exposures have a different susceptibility for the development of pneumoconiosis or lung cancer. Occupational asthma may not respond to removal of the worker from exposure because reactive airways may be a predisposing factor for chronic ashthma and chronic obstructive lung disease. A continuing challenge will be disease risk in new industries such as electronics and alternate energy industries and new diseases in worker groups not previously studied, such as the variety of pneumoconioses among dental laboratory technicians who work with exotic metal alloys. 52 references

  1. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    Science.gov (United States)

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, pinflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  2. The mean lung dose (MLD). Predictive criterion for lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, Peter; Appold, Steffen [Dresden University of Technology (TU Dresden), Clinic and Polyclinic for Radiotherapy and Radiation Oncology, Carl Gustav Carus Medical Faculty, Dresden (Germany); Herrmann, Thomas

    2015-07-15

    The purpose of this work was to prove the validity of the mean lung dose (MLD), widely used in clinical practice to estimate the lung toxicity of a treatment plan, by reevaluating experimental data from mini pigs. A total of 43 mini pigs were irradiated in one of four dose groups (25, 29, 33, and 37 Gy). Two regimens were applied: homogeneous irradiation of the right lung or partial irradiation of both lungs - including parts with lower dose - but with similar mean lung doses. The animals were treated with five fractions with a linear accelerator applying a CT-based treatment plan. The clinical lung reaction (breathing frequency) and morphological changes in CT scans were examined frequently during the 48 weeks after irradiation. A clear dose-effect relationship was found for both regimens of the trial. However, a straightforward relationship between the MLD and the relative number of responders with respect to different grades of increased breathing frequency for both regimens was not found. A morphologically based parameter NTCP{sub lung} was found to be more suitable for this purpose. The dependence of this parameter on the MLD is markedly different for the two regimens. In clinical practice, the MLD can be used to predict lung toxicity of a treatment plan, except for dose values that could lead to severe side effects. In the latter mentioned case, limitations to the predictive value of the MLD are possible. Such severe developments of a radiation-induced pneumopathy are better predicted by the NTCP{sub lung} formalism. The predictive advantage of this parameter compared to the MLD seems to remain in the evaluation and comparison of widely differing dose distributions, like in the investigated trial. (orig.) [German] Es soll unter Reevaluation von Tierversuchsdaten am Minischwein geprueft werden, ob die in der klinischen Praxis zur Beurteilung der Lungentoxizitaet eines Bestrahlungsregims regelhaft verwendete mittlere Lungendosis (MLD) eine zuverlaessige

  3. Clinical significance of ventilation/perfusion scans in collagen disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kenzo; Kobayashi, Takeshi [Tokyo Metropolitan Hiro-o Hospital (Japan); Kamata, Noriko; Inokuma, Shigeko; Terada, Hitoshi; Yokoyama, Yoshiaki; Abe, Katsumi; Mochizuki, Takao

    2000-12-01

    The purpose of this study was to detect disturbances in pulmonary circulation in collagen disease patients by means of a non-invasive technique. Ventilation/perfusion scans with {sup 133}Xe gas and {sup 99m}Tc-macroaggregated albumin (MAA) were performed in 109 patients with various collagen diseases. Functional images of V, Vol, Q and V/Q ratio were obtained at total lung capacity. Wash-out time was calculated from the wash-out curve. Whole body scans were performed in 65 patients to evaluate intra-pulmonary shunts. Increased V/Q areas were observed in 74 patients (67.9%), suggesting some impairment of pulmonary perfusion. Decreased perfusion, probably due to vasculitis or intravascular microcoagulation, was observed often, even in patients without pulmonary fibrosis. Shunt ratios over 10% were observed in 8 of the 65 patients (12.3%), indicating formation of PA-PV shunts secondary to peripheral vascular impairment. Wash-out time was prolonged in 37 patients (33.9%), shortened in 18 (16.5%), and within the normal range in 54 (49.6%). The prolonged and normal wash-out times in the patients with pulmonary fibrosis may represent obstructive changes in the small airways superimposed on the fibrosis. Ventilation/perfusion scans are a very useful tool for evaluating collagen lung diseases, and they might contribute to treatment decisions for the patients. (author)

  4. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    International Nuclear Information System (INIS)

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-01-01

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  5. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    Science.gov (United States)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  6. Helical CT for secondary screening of lung cancer

    International Nuclear Information System (INIS)

    Mori, Kiyoshi; Onishi, Tsukasa; Tominaga, Keigo; Kishiro, Izumi; Yokoyama, Kohki.

    1995-01-01

    Helical CT was used on a trial basis for secondary screening of lung cancer, and its clinical usefulness is discussed in this report. The subjects of 157 patients with abnormal shadows on plain chest X-ray images were chosen between November 1993 and August 1994. Imaging parameters used for screening CT were as follows: 50 mA, 120 kV, a couch-top movement speed of 20 mm/s, and a beam width of 10 mm. The entire lung field was scanned during a single breath-hold. Reconstructed images were generated at 10-mm intervals by the 180deg interpolation method, and films were produced. Images of the entire lung field were made during a single breath-hold in all patients. Abnormal shadows were detected in 73 of 157 patients by screening CT. These 73 patients included 14 with lung cancer, 53 with benign lesions, one under observation, and five others. The average diameter of the tumors was 11.1 mm. The lung cancers detected all arose in the periphery, and were classified into stage I (10 patients), stage IIIA (3 patients), and stage IV with bone metastases (1 patient). Lung cancers in clinical stage I (3 patients) and stage IV (1 patient) were difficult to see on plain chest X-ray films. We conclude that screening CT is useful for early diagnosis of lung cancer because the entire lung field can be imaged during a single breath-hold. Therefore, helical CT can be expected to be useful in screening for lung cancer. (author)

  7. Noninvasive staging of lung cancer. Indications and limitations of gallium-67 citrate imaging

    International Nuclear Information System (INIS)

    Bekerman, C.; Caride, V.J.; Hoffer, P.B.; Boles, C.A.

    1990-01-01

    The results of evaluation of the hila and mediastinum with 67Ga scans are contradictory, as are the recommendations by different investigators on the use of 67Ga scintigraphy in the clinical evaluation of patients with primary lung carcinoma. Nevertheless, the economy and logistic simplicity of evaluating local and distant metastases with a single imaging procedure are attractive, especially because the symptoms may not enable the physician to make a correct identification of the organ systems affected by metastases. Neumann and Hoffer state that at present conventional Ga-67 scanning techniques cannot be recommended for preoperative staging of mediastinal lymph node metastases in lung cancer patients. According to Waxman, 67Ga scintigraphy, relative to other imaging modalities, is a sensitive indicator of hilar spread of a tumor. However, because of the normally high background activity within the sternum and spine, mediastinal abnormalities may be poorly detected. Since most pulmonary tumors metastasize via regional nodes to the pulmonary hilum and then to the mediastinum, the high sensitivity for the detection of pulmonary hilar abnormalities and the high specificity for detection of mediastinal lesions suggest that gallium scintigraphy is a valuable adjunctive test when used appropriately. The results obtained locally are probably the best guide for individual physicians in the selection of diagnostic tests for their patients. Gallium scans may thus be helpful in the clinical evaluation of patients with lung cancer. Although gallium scans identify mediastinal node involvement, there is considerable controversy over the relationship between the sensitivity and specificity of the method. By detecting distant extrathoracic metastases, the 67Ga scan may identify a small group of patients who can be spared a needless operation. 92 references

  8. Performance of long-term CT monitoring in diagnosing bronchiolitis obliterans after lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Berstad, Audun E. [Department of Radiology, Rikshospitalet University Hospital, Sognsvannsveien 20, N-0027 Oslo (Norway)]. E-mail: a.e.berstad@medisin.uio.no; Aalokken, Trond Mogens [Department of Radiology, Rikshospitalet University Hospital, Sognsvannsveien 20, N-0027 Oslo (Norway); Kolbenstvedt, Alf [Department of Radiology, Rikshospitalet University Hospital, Sognsvannsveien 20, N-0027 Oslo (Norway); Bjortuft, Oystein [Department of Thoracic Medicine, Rikshospitalet University Hospital, Sognsvannsveien 20, N-0027 Oslo (Norway)

    2006-04-15

    Aim: The purpose of the study was to evaluate the ability of CT, including expiratory scans with minimum intensity projection in predicting the development of bronchiolitis obliterans syndrome after lung transplantation. Materials and methods: Forty consecutive patients, 29 bilateral and 11 single lung transplanted, were followed-up with regular scans for a median of 36 months. Air trapping was evaluated on expiratory scans constructed from two short spiral scans with minimum intensity projection-technique, one at the level of the carina and the other midway between the right diaphragm and the carina. Air trapping was scored on a 16-point scale. Bronchiolitis obliterans syndrome was diagnosed according to established clinical criteria and quantified spirometrically. Results: Bronchiolitis obliterans syndrome developed in 17 patients (43%) after a median of 12 months. Air trapping and bronchiectasis was seen before the diagnosis of bronchiolitis obliterans syndrome in only two and one patient, respectively. Interobserver agreement for air trapping score was good (kappa = 0.65). Air trapping scores performed significantly better than that achieved by chance alone in determining the presence of bronchiolitis obliterans syndrome (P = 0.0025). An air trapping score of 4 or more provided the best results with regard to sensitivity and specificity in diagnosing bronchiolitis obliterans syndrome. The sensitivity, specificity, positive and negative predictive values of an air trapping of 4 or more in the diagnosis of bronchiolitis obliterans syndrome were 77, 74, 68 and 81%, respectively. Conclusion: Expiratory CT scans with minimum intensity projection-reconstruction did not predict the development of bronchiolitis obliterans syndrome in most patients. The findings seriously limit the clinical usefulness of long-term CT monitoring for diagnosing bronchiolitis obliterans syndrome after lung transplantation.

  9. Lung abscess predicts the surgical outcome in patients with pleural empyema.

    Science.gov (United States)

    Huang, Hung-Che; Chen, Heng-Chung; Fang, Hsin-Yuan; Lin, Yi-Chieh; Wu, Chin-Yen; Cheng, Ching-Yuan

    2010-10-20

    Most cases of pleural empyema are caused by pulmonary infections, which are usually combined with pneumonia or lung abscess. The mortality of patients with pleural empyema remains high (up to 20%). It also contributes to higher hospital costs and longer hospital stays. We studied pleural empyema with combined lung abscess to determine if abscess was associated with mortality. From January 2004 to December 2006, we retrospectively reviewed 259 patients diagnosed with pleural empyema who received thoracscopic decortications of the pleura in a single medical center. We evaluated their clinical data and analyzed their chest computed tomography scans. Outcomes of pleural empyema were compared between groups with and without lung abscess. Twenty-two pleural empyema patients had lung abscesses. Clinical data showed significantly higher incidences in the lung abscess group of pre-operative leukocytosis, need for an intensive care unit stay and mortality. Patients with pleural empyema and lung abscess have higher intensive care unit admission rate, higher mortality during 30 days and overall mortality than patients with pleural empyema. The odds ratio of lung abscess is 4.685. Physician shall pay more attention on high risk patient of lung abscess for early detection and management.

  10. Ultrasound lung comets: new echographic sign of lung interstitial fibrosis in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    C. Giacomelli

    2011-09-01

    Full Text Available Objective: Interstitial lung disease (ILD and pulmonary arterial hypertension (PAH are common complications of systemic sclerosis (SSc. Echocardiography evaluates PAH, and chest sonography detects even mild ILC as ultrasound lung comets (ULC, i.e. multiple comet-tails fanning out from the lung surface and originating from subpleural interlobular septa thickened by fibrosis. Aim: to assess ILaD and PAH by integrated cardiac and chest ultrasound in SSc. Methods: We enrolled 30 consecutive SSc patients (age= 54±13 years, 23 females in the Rheumatology Clinic of Pisa University. In all, we assessed systolic pulmonary arterial pressure (SPAP, from maximal velocity of tricuspid regurgitation flow, and ULC score with chest sonography (summing the number of ULC from each scanning space of anterior and posterior right and left chest, from second to fifth intercostal space. All patients underwent plasma assay for anti-topoisomerase antibodies (anti-Scl70, and antiicentromere associated with development of pulmonary involvement. Twenty-eight patients also underwent high resolution computed tomography, HRCT (from 0= no fibrosis to 3= honey combing. Results: ULC number - but not SPAP - was correlated to HRCT fibrosis and presence Scl-70 antibodies. ULC number was similar in localized or diffuse forms (16±20 vs 21±19, p=ns and was unrelated to SPAP (r=0.216, p=ns. Conclusions: Chest sonography assessment and ULC allow a complete, simple, radiation-free characterization of interstitial lung involvement in SSc - all in one setting and with the same instrument, same transducer and the same sonographer. In particular, ULC number is associated with HRCT evidence of lung fibrosis and presence of Scl-70 antibodies.

  11. Lung perfusion scintigraphy in the diagnosis of peripheral pulmonary stenosis in patients after repair of Fallot tetralogy

    International Nuclear Information System (INIS)

    Sabiniewicz, R.; Chojnicki, M.; Alszewicz-Baranowska, J.; Erecinski, J.; Romanowicz, G.; Lass, P.; Bandurski, T.

    2002-01-01

    The frequency of peripheral pulmonary artery stenosis in patients after surgical repair of tetralogy of Fallot (TOF) ranges from 20 to 40%. This can be either primary or secondary to the surgical intervention. The influence of resulting lung perfusion alterations on the life quality of patients is difficult to predict. The aim of this study was to compare the utility of the diagnostic procedures in this group of patients, with particular focus on lung perfusion scintigraphy. This study comprised 104 patients who underwent repair of TOF at ages from 5 months to 25 years. The patients have been followed up for from 4.2 to 25 years. On the basis of chest X-ray peripheral pulmonary artery stenosis was suspected in 11 patients, in 12 on the basis of echocardiography examination. Lung perfusion scintigraphy has been performed on 87 patients. The disturbances in lung perfusion (mostly in the left lung) were show by means of lung perfusion scintigraphy in 43 (49%) of patients. In 27 of them heart catheterisation has been performed. Angiography revealed stenosis of the lung artery branch in 15/43 (34.9%) patients with abnormal perfusion lung scan and in 4/44 (9%) in patients with normal perfusion lung scan. Intervention procedures were carried out on 10 patients. Lung perfusion scintigraphy may prove a valuable, non-invasive screening tool in the assessment of patients after TOF repair, although both false-negative and false positive results may happen. Therefore, it should play an auxiliary role together with other diagnostic modalities. (author)

  12. Lung inflammation in sarcoidosis: comparison of serum angiotensin-converting enzyme levels with bronchoalveolar lavage and gallium-67 scanning assessment of the T lymphocyte alveolitis

    International Nuclear Information System (INIS)

    Schoenberger, C.I.; Line, B.R.; Keogh, B.A.; Hunninghake, G.W.; Crystal, R.G.

    1982-01-01

    Serum angiotensin-converting enzyme (ACE) is elevated in many patients with pulmonary sarcoidosis and has been proposed as a measure of disease activity. The present study was designed to evaluate the possible relationship between serum ACE and direct measures of the intensity of the alveolitis of pulmonary sarcoidosis as measured by bronchoalveolar lavage and gallium-67 ( 67 Ga) scans. To accomplish this, 64 measurements of serum ACE, lavage T lymphocytes, and lung uptake of 67 Ga were performed in 41 patients with biopsy-proven sarcoidosis. Elevations of serum ACE were found on at least one occasion in 17 patients (41%). However, serum ACE was found to be a poor predictor of the intensity of alveolitis in sarcoidosis as assessed by the quantitation of bronchoalveolar lavage cells that were T lymphocytes and by 67 Ga scanning. Elevated serum ACE did not predict which patients would have elevated proportions of lavage T lymphocytes, which patients would demonstrate increased pulmonary uptake of 67 Ga, or which patients would have high-intensity alveolitis as defined by a combination of these criteria. These observations suggest that while serum ACE may be useful in diagnosing sarcoidosis, it does not reflect accurately the intensity of the alveolitis of the pulmonary component of this disease. (author)

  13. Lung uptake of /sup 99m/Tc--sulfur colloid in falciparum malaria: case report

    International Nuclear Information System (INIS)

    Ziessman, H.A.

    1976-01-01

    Increased lung uptake of /sup 99m/Tc-sulfur colloid was seen during liver scanning in a patient with falciparum malaria. This finding was due to the enhanced activity of the phagocytic cells of the reticuloendothelial system in the liver, spleen, and lung found in human and experimental malaria. Similar findings in other clinical situations and the relevant literature are reviewed

  14. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    International Nuclear Information System (INIS)

    Westberg, Jonas; Jensen, Henrik R.; Bertelsen, Anders; Brink, Carsten

    2010-01-01

    Background. In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose of this study is to minimise the scan time of the CBCT without compromising the accuracy of the image registration in IGRT. Material and methods. Fast scans were simulated by reducing the number of acquired projection images, i.e. new reconstructions based on a subset of the original projections were made. The deviation between the registrations of these new reconstructions and the original registration was measured as function of the amount of reduction. Results and Discussion. Twenty nine head and neck (HandN) and 11 stereotactic lung patients were included in the study. The mean of the registration deviation did not differ significantly from zero independently of the number of projections included in the reconstruction. Except for the smallest subset of reconstructions (10% and 25% of the original projection for the lung and HandN patients, respectively) the standard deviation of the registration differences was constant. The standard deviations were approximately 0.1 mm and 0.2 mm for the HandN and lung group, respectively. Based on these results an in-house developed solution, able to reduce the Cone-Beam CT scan time, has been implemented clinically

  15. Lung lobar volume in patients with chronic interstitial pneumonia

    International Nuclear Information System (INIS)

    Harada, Hisao; Koba, Hiroyuki; Saitoh, Tsukasa; Abe, Shosaku.

    1997-01-01

    We measured lung lobar volume by using helical computed tomography (HCT) in 23 patients with idiopathic interstitial pneumonia (IIP), 7 patients with chronic interstitial pneumonia associated with collagen vascular disease (CVD-IP), and 5 healthy volunteers HCT scanning was done at the maximal inspiratory level and the resting end-expiratory level. To measure lung lobar volume, we traced the lobar margin on HCT images with a digitizer and calculated the lobar volume with a personal computer. The lower lobar volume and several factors influencing it in chronic interstitial pneumonia were studied. At the maximal inspiratory level, the lower lobar volume as a percent of the whole lung volume was 46.8±4.13% (mean ± SD) in the volunteers, 39.5±6.19% in the patients with IIP, and 27.7±7. 86% in the patients with CVD-IP. The lower lobar volumes in the patients were significantly lower than in the volunteers. Patients with IIP in whom autoantibody tests were positive had lower lobar volumes that were very low and were similar to those of patients with CVD-IP. These data suggest that collagen vascular disease may develop in patients with interstitial pneumonia. The patients with IIP who had emphysematous changes on the CT scans had smaller decreases in total lung capacity and lower ratios of forced expiratory volume in one second to forced vital capacity than did those who had no emphysematous changes, those two groups did not differ in the ratio of lower lobar volume to whole lung volume. This suggests that emphysematous change is not factor influencing lower lobar volume in patients with chronic interstitial pneumonia. We conclude that chronic interstitial pneumonia together with very low values for lower lobar volume may be a pulmonary manifestation of collagen vascular disease. (author)

  16. CT diagnosis of pleural dissemination without pleural effusion in primary lung cancer

    International Nuclear Information System (INIS)

    Murayama, Sadayuki; Murakami, Junji; Yoshimitsu, Kengo; Torii, Yoshikuni; Masuda, Kouji; Ishida, Teruyoshi.

    1996-01-01

    We retrospectively reviewed the CT scans of 25 primary lung cancers with disseminated pleural nodules or minimal malignant pleural effusion that were not recognized preparatively. Special attention was devoted to abutting interlobar fissures, thick major fissures, and disseminated nodules on the chest wall, the diaphragm, and in the interlobar fissures. Among 10 primary tumors abutting interlobar fissures, nine (90%) had at least one of these findings. Among 15 primary lung tumors which did not abut interlobar fissures, four (27%) had at least one of these findings. We conclude that CT is a useful modality for detecting the pleural dissemination of primary lung cancers when primary lung cancers abut interlobar fissures even if no pleural effusion is detectable on CT. (author)

  17. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  18. Fuzzy modeling of electrical impedance tomography images of the lungs

    International Nuclear Information System (INIS)

    Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione; Borges, Joao Batista; Amato, Marcelo Britto Passos

    2008-01-01

    Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)

  19. Paraquat induced lung injury: long-term follow-up of HRCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Tong; Kim, Hyun Cheol; Bae, Won Kyung; Kim, Il Young; Im, Han Hyek [Soonchunhyang Univ., Chunan (Korea, Republic of)

    2004-03-01

    To determine the long-term follow-up CT findings of paraquat-induced lung injury. Six patients who ingested paraquat underwent sequential follow-up CT scanning during a period of at least six months, and the results were analysed. Scans were obtained 1-6 (mean, 3.3) time during a 7-84 (mean, 25.7) months period, and the findings at 1-2 months, 3-12 months, 1-2 years, 2-3 years and more than above 7 years after poisoning were analyzed. We observed irregular-shaped areas of consolidation with traction bronchiectasis at 1-2 months (5/5), irregular-shaped consolidation and ground-glass opacity (5/5) at 3-12 months, and irregular-shaped consolidations/ground-glass opacity (4/5) and focal honeycombing (1/5) one year later. In the same patients, follow-up CT scans showed that some areas of focal consolidation could not be visualized and the radio-opacity of the lesions had decreased. The HRCT findings of paraquat-induced lung injury were irregular shaped areas of consolidation 1-2 months after ingestion, and irregular-shaped consolidation and ground-glass opacity or focal honeycombing 3-12 months later. At this thim slight improvement was observed.

  20. Lung scintigraphy with Tc-99m-MIBI in diagnosis of active tuberculosis

    International Nuclear Information System (INIS)

    Raziei, G.; Fotouhi, F.; Masjedi, M.R.; Neshandar, E.

    2002-01-01

    Tuberculosis is highly contagious infection and one of the most important health problems in the world today, particularly in our country. Routine diagnostic procedures are sometimes unable to differentiated active from inactive cases particularly in elderly. Children, immunomedics patients, Chronic cases with recurrent actuate infection and in the patients unable to provide sputum for microbiological studies. Several radiopharmaceuticals have been used in the evaluation of active pulmonary TB. In this study Tc 99 m-MIBI lung scan was performed using a single head ADAC gamma camera. 62 patients including 34 APTB 915 male and 19 female) and 28 IPTB 99 male and 19 female) underwent six minutes anterior and posterior chest images 20 and minutes after injection of 10 mCi (370 MBq) of Tc 99 m-MIBI. Visual grading was generated by comparing uptake of lesion with neck soft tissue (sternoleidomastoid muscle) and myocardium. For semiquantitative analysis, regions of interest were draw over the lesion (L), non lesion (NL) and neck soft tissue (SCM) and mean count value of ROIs as well as L/NL, L/SCM values were obtained. Results: From 34 patients with APTB, 4 PTS had normal lung uptake (11.7%), 14 PTs+(41, 2%), 14 PTs++41.2%) and 2 PTS +++ (5.9%), therefore 30 PTs of APTB were positive in scintigraphy (88.2%). From 28 patients with IPTB 21 PTs had normal lung uptake (75%), 6 PTs+ (21.4%) and one PT ++ (3.5%). In the semi quantitative study L/NL ratio is calculated for + about 1.35 +/-0.15 and below from this range is considered with normal limit. The sensitivity, specificity, accuracy, PPV and NPV were 88.2% 75%, 82.2%, 81.1% and 84% respectively. From 100 CXR lesion in APTB, 60 had compatible positive scan and from 86 CXR lesions in IPTB 9 had compatible positive scan, where as incompatible positive findings were 12 and 2 respectively. This study indicates Tc 99 m - MIBI lung scan can be used as a reliable complementary study in diagnosis of APTB and differentiating from

  1. Differentiating lung abscess and empyema: radiography and computed tomography

    International Nuclear Information System (INIS)

    Stark, D.D.; Federle, M.P.; Goodman, P.C.; Podrasky, A.E.; Webb, W.R.

    1983-01-01

    Conventional chest radiographs and computed tomographic (CT) scans of 70 inflammatory thoracic lesions in 63 patients were reviewed and scored for diagnostic features. Pathologic confirmation of the final diagnosis was available in 42% (5/12) of lung abscesses and 31% (18/58) of empyemas. CT alone was sufficient to correctly diagnose 100% (70/70) of cases. Diagnostic information not available from conventional chest radiographs was obtained in 47% (33/70) of cases; in an additional 34% of patients, CT more accurately defined the extent of disease. The most reliable CT features for the differential diagnosis of lung abscess and empyema were wall characteristics, pleural separation, and lung compression. Conventional radiographic features such as size, shape, and the angle of the lesion with the chest wall were less helpful, though also best assessed by CT

  2. Influence of perfusion and ventilation scans on therapeutic decision making and outcome in cases of possible embolism

    International Nuclear Information System (INIS)

    Mercandetti, A.J.; Kipper, M.S.; Moser, K.M.

    1985-01-01

    The authors examined the influence of perfusion (Q) and ventilation (V) scans on therapeutic decision making and outcome among 229 patients referred for lung scans because embolism was suggested and found that specific V/Q scan patterns strongly influenced postscan decisions regarding initiation, maintenance or cessation of heparin therapy. These therapeutic decisions bore a relationship to outcome (recurrences and death) and disclosed decision-making deficits that need remedy by future investigational and educational efforts. 25 references, 5 tables

  3. Characterization of free breathing patterns with 5D lung motion model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Tianyu; Lu Wei; Yang Deshan; Mutic, Sasa; Noel, Camille E.; Parikh, Parag J.; Bradley, Jeffrey D.; Low, Daniel A. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

    2009-11-15

    Purpose: To determine the quiet respiration breathing motion model parameters for lung cancer and nonlung cancer patients. Methods: 49 free breathing patient 4DCT image datasets (25 scans, cine mode) were collected with simultaneous quantitative spirometry. A cross-correlation registration technique was employed to track the lung tissue motion between scans. The registration results were applied to a lung motion model: X-vector=X-vector{sub 0}+{alpha}-vector{beta}-vector f, where X-vector is the position of a piece of tissue located at reference position X-vector{sub 0} during a reference breathing phase (zero tidal volume v, zero airflow f). {alpha}-vector is a parameter that characterizes the motion due to air filling (motion as a function of tidal volume v) and {beta}-vector is the parameter that accounts for the motion due to the imbalance of dynamical stress distributions during inspiration and exhalation that causes lung motion hysteresis (motion as a function of airflow f). The parameters {alpha}-vector and {beta}-vector together provide a quantitative characterization of breathing motion that inherently includes the complex hysteresis interplay. The {alpha}-vector and {beta}-vector distributions were examined for each patient to determine overall general patterns and interpatient pattern variations. Results: For 44 patients, the greatest values of |{alpha}-vector| were observed in the inferior and posterior lungs. For the rest of the patients, |{alpha}-vector| reached its maximum in the anterior lung in three patients and the lateral lung in two patients. The hysteresis motion {beta}-vector had greater variability, but for the majority of patients, |{beta}-vector| was largest in the lateral lungs. Conclusions: This is the first report of the three-dimensional breathing motion model parameters for a large cohort of patients. The model has the potential for noninvasively predicting lung motion. The majority of patients exhibited similar |{alpha}-vector| maps

  4. Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ciet, Pierluigi; Tiddens, Harm A.W.M. [Erasmus Medical Center, Department of Radiology, Sophia Children' s Hospital, Rotterdam (Netherlands); Erasmus Medical Center, Department of Pediatric Pulmonology and Allergology, Sophia Children' s Hospital, Rotterdam (Netherlands); Wielopolski, Piotr A. [Erasmus Medical Center, Department of Radiology, Sophia Children' s Hospital, Rotterdam (Netherlands); Wild, Jim M. [University of Sheffield, Academic Radiology, Sheffield (United Kingdom); Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Departments of Radiology and Medicine, Pulmonary Divisions, Boston, MA (United States); Morana, Giovanni [Ca' Foncello Regional Hospital, Department of Radiology, Treviso (Italy); Lequin, Maarten H. [University Medical Center, Department of Radiology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2015-12-15

    Pediatric chest MRI is challenging. High-resolution scans of the lungs and airways are compromised by long imaging times, low lung proton density and motion. Low signal is a problem of normal lung. Lung abnormalities commonly cause increased signal intensities. Among the most important factors for a successful MRI is patient cooperation, so the long acquisition times make patient preparation crucial. Children usually have problems with long breath-holds and with the concept of quiet breathing. Young children are even more challenging because of higher cardiac and respiratory rates giving motion blurring. For these reasons, CT has often been preferred over MRI for chest pediatric imaging. Despite its drawbacks, MRI also has advantages over CT, which justifies its further development and clinical use. The most important advantage is the absence of ionizing radiation, which allows frequent scanning for short- and long-term follow-up studies of chronic diseases. Moreover, MRI allows assessment of functional aspects of the chest, such as lung perfusion and ventilation, or airways and diaphragm mechanics. In this review, we describe the most common MRI acquisition techniques on the verge of clinical translation, their problems and the possible solutions to make chest MRI feasible in children. (orig.)

  5. CT screening for lung cancer: Importance of emphysema for never smokers and smokers.

    Science.gov (United States)

    Henschke, Claudia I; Yip, Rowena; Boffetta, Paolo; Markowitz, Steven; Miller, Albert; Hanaoka, Takaomi; Wu, Ning; Zulueta, Javier J; Yankelevitz, David F

    2015-04-01

    To address the prevalence of lung cancer in high and low-risk people according to their smoking history, age, and CT findings of emphysema. We reviewed the baseline low-dose CT scans of 62,124 current, former and never smokers, aged 40-90 to determine the prevalence of lung cancer. We performed logistic regression analysis of the prevalence of lung cancer to determine the odds ratio (OR) for emphysema, conditionally on age, female gender, and ethnicity. The prevalence of lung cancer was 1.4% (95% CI: 1.3-1.6) for current smokers, 1.1% (95% CI: 1.0-1.2) for former smokers, and 0.4% (95% CI: 0.3-0.6) for never smokers. Emphysema was identified in 28.5% (6,684), 20.6% (5,422), and 1.6% (194) of current, former, and never smokers, respectively. The prevalence of lung cancer among current smokers was 1.1% for those without emphysema vs. 2.3% for those with emphysema (odds ratio [OR] 1.8; 95% confidence interval [CI]: 1.4-2.2) and the corresponding difference for former smokers was 0.9% vs. 1.8% (OR: 1.7; 95% CI: 1.3-2.2), and for never smokers, it was 0.4% vs. 2.6% (OR: 6.3; 95% CI: 2.4-16.9). Identification of emphysema in low-dose CT scans increases the risk of lung cancer and is important in determining follow-up of current, former, and never smokers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Analysis the findings of chest radiograph and CT scan in 217 acute thoracic trauma

    International Nuclear Information System (INIS)

    Huang Shaoying

    2005-01-01

    Objective: To evaluate chest radiograph and CT scan in assessing acute thoracic trauma. Methods: Retrospectively analyzed the findings of chest radiograph and CT scan in 217 cases of acute thoracic trauma and positive rate of each modality was compared. Results: The positive rate of rib and clavicle fracture was higher in chest radiograph than these in CT scan. But the positive rate of chest wall hematoma, mediastinum and subcutaneous emphysema, pneumothorax, hydropneumothorax, damage of lung parenchyma and traumatic pulmonary atelectasis was higher in CT scan than those in chest radiograph. Conclusion: The application of the combined imaging modalities improves assessing of acute thoracic trauma, because the imaging manifestation of the lesion is various. (authors)

  7. [Lung perfusion studies after percutaneous closure of patent ductus arteriosus using the Amplatzer Duct Occluder in children].

    Science.gov (United States)

    Parra-Bravo, José Rafael; Apolonio-Martínez, Adriana; Estrada-Loza, María de Jesús; Beirana-Palencia, Luisa Gracia; Ramírez-Portillo, César Iván

    2015-01-01

    The closure of patent ductus arteriosus with multiple devices has been associated with a reduction in lung perfusion. We evaluated the pulmonary perfusion after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder device using perfusion lung scan. Thirty patients underwent successful percutaneous patent ductus arteriosus occlusions using the Amplatzer Duct Occluder device were included in this study. Lung perfusion scans were preformed 6 months after the procedure. Peak flow velocities and protrusion of the device were analyzed by Doppler echocardiography. A left lung perfusionductus arteriosus and the minimum and maximum diameter/length of the ductus arteriosus ratio were statistically significant in patients with abnormalities of lung perfusion. It was observed protrusion the device in 6 patients with a higher maximum flow rate in the left pulmonary artery. The left lung perfusion may be compromised after percutaneous closure of patent ductus arteriosus with the Amplatzer Duct Occluder. The increased flow velocity in the origin of the left pulmonary artery can be a poor indicator of reduction in pulmonary perfusion and can occur in the absence of protrusion of the device. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  8. A Study for Reappearance According to the Scan Type, the CT Scanning by a Moving Phantom

    International Nuclear Information System (INIS)

    Choi, Jae Hyock; Jeong, Do Hyeong; Choi, Gye Suk; Jang, Yo Jong; Kim, Jae Weon; Lee, Hui Seok

    2007-01-01

    CT scan shows that significant tumor movement occurs in lesions located in the proximity of the heart, diaphragm, and lung hilus. There are differences concerning three kinds of type to get images following the Scan type called Axial, Helical, Cine (4D-CT) mode, when the scanning by CT. To know how each protocol describe accurately, this paper is going to give you reappearance using the moving phantom. To reconstruct the movement of superior-inferior and anterior-posterior, the manufactured moving phantom and the motor following breathing were used. To distinguish movement from captured images by CT scanning, a localizer adhered to the marker on the motor. The moving phantom fixed the movement of superior-inferior upon 1.3 cm /1 min. The motor following breathing fixed the movement of anterior-posterior upon 0.2 cm /1 min. After fixing each movement, CT scanning was taken by following the CT protocols. The movement of A localizer and volume-reappearance analyzed by RTP machine. Total volume of a marker was 88.2 cm 3 considering movement of superior-inferior. Total volume was 184.3 cm 3 . Total volume according to each CT scan protocol were 135 cm 3 by axial mode, 164.9 cm 3 by helical mode, 181.7 cm 3 by cine (4D-CT) mode. The most closely describable protocol about moving reappearance was cine mode, the marker attached localizer as well. CT scan should reappear concerning a exact organ-description and target, when the moving organ is being scanned by three kinds of CT protocols. The cine (4D-CT) mode has the advantage of the most highly reconstructible ability of the three protocols in reappearance of the marker using a moving phantom. The marker on the phantom has always regular motion but breathing patients don't move like a phantom. Breathing education and devices setting patients were needed so that images reconstruct breathing as exactly as possible. Users should also consider that an amount of radiation to patients is being bombed.

  9. Intravascular Large B-Cell Lymphoma Presenting as Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Elham Vali Khojeini

    2014-01-01

    Full Text Available Intravascular large B-cell lymphoma (IVLBL is a rare subtype of diffuse large B-cell lymphoma that resides in the lumen of blood vessels. Patients typically present with nonspecific findings, particularly bizarre neurologic symptoms, fever, and skin lesions. A woman presented with shortness of breath and a chest CT scan showed diffuse interstitial thickening and ground glass opacities suggestive of an interstitial lung disease. On physical exam she was noted to have splenomegaly. The patient died and at autopsy was found to have an IVLBL in her lungs as well as nearly all her organs that were sampled. Although rare, IVLBL should be included in the differential diagnosis of interstitial lung disease and this case underscores the importance of the continuation of autopsies.

  10. Lung involvement quantification in chest radiographs; Quantificacao de comprometimento pulmonar em radiografias de torax

    Energy Technology Data Exchange (ETDEWEB)

    Giacomini, Guilherme; Alvarez, Matheus; Oliveira, Marcela de; Miranda, Jose Ricardo A. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Instituto de Biociencias. Departamento de Fisica e Biofisica; Pina, Diana R.; Pereira, Paulo C.M.; Ribeiro, Sergio M., E-mail: giacomini@ibb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina. Departamento de Doencas Tropicais e Diagnostico por Imagem

    2014-12-15

    Tuberculosis (TB) caused by Mycobacterium tuberculosis, is an infectious disease which remains a global health problem. The chest radiography is the commonly method employed to assess the TB's evolution. The methods for quantification of abnormalities of chest are usually performed on CT scans (CT). This quantification is important to assess the TB evolution and treatment and comparing different treatments. However, precise quantification is not feasible for the amount of CT scans required. The purpose of this work is to develop a methodology for quantification of lung damage caused by TB through chest radiographs. It was developed an algorithm for computational processing of exams in Matlab, which creates a lungs' 3D representation, with compromised dilated regions inside. The quantification of lung lesions was also made for the same patients through CT scans. The measurements from the two methods were compared and resulting in strong correlation. Applying statistical Bland and Altman, all samples were within the limits of agreement, with a confidence interval of 95%. The results showed an average variation of around 13% between the two quantification methods. The results suggest the effectiveness and applicability of the method developed, providing better risk-benefit to the patient and cost-benefit ratio for the institution. (author)

  11. Long term radiological features of radiation-induced lung damage.

    Science.gov (United States)

    Veiga, Catarina; Landau, David; McClelland, Jamie R; Ledermann, Jonathan A; Hawkes, David; Janes, Sam M; Devaraj, Anand

    2018-02-01

    To describe the radiological findings of radiation-induced lung damage (RILD) present on CT imaging of lung cancer patients 12 months after radical chemoradiation. Baseline and 12-month CT scans of 33 patients were reviewed from a phase I/II clinical trial of isotoxic chemoradiation (IDEAL CRT). CT findings were scored in three categories derived from eleven sub-categories: (1) parenchymal change, defined as the presence of consolidation, ground-glass opacities (GGOs), traction bronchiectasis and/or reticulation; (2) lung volume reduction, identified through reduction in lung height and/or distortions in fissures, diaphragm, anterior junction line and major airways anatomy, and (3) pleural changes, either thickening and/or effusion. Six patients were excluded from the analysis due to anatomical changes caused by partial lung collapse and abscess. All remaining 27 patients had radiological evidence of lung damage. The three categories, parenchymal change, shrinkage and pleural change were present in 100%, 96% and 82% respectively. All patients had at least two categories of change present and 72% all three. GGOs, reticulation and traction bronchiectasis were present in 44%, 52% and 37% of patients. Parenchymal change, lung shrinkage and pleural change are present in a high proportion of patients and are frequently identified in RILD. GGOs, reticulation and traction bronchiectasis are common at 12 months but not diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    International Nuclear Information System (INIS)

    Berman, Abigail T.; James, Sara St.; Rengan, Ramesh

    2015-01-01

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning

  13. Comparison of clinical efficacy of second look operation and FDG-PET scan in patients with ovarian cancer

    International Nuclear Information System (INIS)

    Ryu, Sang Young

    1999-12-01

    This study is to investigate whether FDG-PET scan can substitute for second look operation in patients with ovarian cancer showing complete response with chemotherapy. From Jan. 1999 to Oct. 1999, 10 patients with advanced ovarian cancer who showed clinical complete response with 6 cycles of combination chemotherapy were registered in KCCH. These patients showed no residual tumors in conventional radiologic imaging studies (CT or MRI), normal tumor marker, no evidence of disease by physical examination. PET scans and second look operation were performed in 10 patients with advanced ovarian cancer (3 patients with stage IIc, 2 patients with stage IIIb, 5 patients with IIIc), who showed complete response with cytoreductive surgery and 6 cycles of post-operative adjuvant cisplatin-based combination chemotherapy. Median age of patients was 45 years, and serous cystadenocarcinoma was most common histologic type. None showed active lesion in pelvis and abdomen with FDG-PET scan (SUV; > 3.5 kg/ml), and I patient showed active lesion in lung field. On second look operations, 5 patients (50%) showed positive result on multiple blind biopsy. The patient with active lesion on FDG-PET scan in lung field confirmed to have metastatic lesions by chest CT scan. In conclusion, FDG-PET scan is not useful for detection of small ovarian cancer lesions in pelvis and abdomen, and cannot substitute for second look operation to determine pathologic complete response

  14. Comparison of clinical efficacy of second look operation and FDG-PET scan in patients with ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sang Young

    1999-12-01

    This study is to investigate whether FDG-PET scan can substitute for second look operation in patients with ovarian cancer showing complete response with chemotherapy. From Jan. 1999 to Oct. 1999, 10 patients with advanced ovarian cancer who showed clinical complete response with 6 cycles of combination chemotherapy were registered in KCCH. These patients showed no residual tumors in conventional radiologic imaging studies (CT or MRI), normal tumor marker, no evidence of disease by physical examination. PET scans and second look operation were performed in 10 patients with advanced ovarian cancer (3 patients with stage IIc, 2 patients with stage IIIb, 5 patients with IIIc), who showed complete response with cytoreductive surgery and 6 cycles of post-operative adjuvant cisplatin-based combination chemotherapy. Median age of patients was 45 years, and serous cystadenocarcinoma was most common histologic type. None showed active lesion in pelvis and abdomen with FDG-PET scan (SUV; > 3.5 kg/ml), and I patient showed active lesion in lung field. On second look operations, 5 patients (50%) showed positive result on multiple blind biopsy. The patient with active lesion on FDG-PET scan in lung field confirmed to have metastatic lesions by chest CT scan. In conclusion, FDG-PET scan is not useful for detection of small ovarian cancer lesions in pelvis and abdomen, and cannot substitute for second look operation to determine pathologic complete response.

  15. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    International Nuclear Information System (INIS)

    Shieh, C; Huang, C; Keall, P; Feain, I

    2015-01-01

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used to select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance

  16. Advances in lung ultrasound; Avancos na ultrassonografia pulmonar

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Neto, Miguel Jose; Rahal Junior, Antonio; Vieira, Fabio Augusto Cardillo; Silva, Paulo Savoia Dias da; Funari, Marcelo Buarque de Gusmao, E-mail: miguelneto@einstein.br [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)

    2016-11-01

    Ultrasound examination of the chest has advanced in recent decades. This imaging modality is currently used to diagnose several pathological conditions and provides qualitative and quantitative information. Acoustic barriers represented by the aerated lungs and the bony framework of the chest generate well-described sonographic artifacts that can be used as diagnostic aids. The normal pleural line and A, B, C, E and Z lines (also known as false B lines) are artifacts with specific characteristics. Lung consolidation and pneumothorax sonographic patterns are also well established. Some scanning protocols have been used in patient management. The Blue, FALLS and C.A.U.S.E. protocols are examples of algorithms using artifact combinations to achieve accurate diagnoses. Combined chest ultrasonography and radiography are often sufficient to diagnose and manage lung and chest wall conditions. Chest ultrasonography is a highly valuable diagnostic tool for radiologists, emergency and intensive care physicians. (author)

  17. Prediction of lung density changes after radiotherapy by cone beam computed tomography response markers and pre-treatment factors for non-small cell lung cancer patients.

    Science.gov (United States)

    Bernchou, Uffe; Hansen, Olfred; Schytte, Tine; Bertelsen, Anders; Hope, Andrew; Moseley, Douglas; Brink, Carsten

    2015-10-01

    This study investigates the ability of pre-treatment factors and response markers extracted from standard cone-beam computed tomography (CBCT) images to predict the lung density changes induced by radiotherapy for non-small cell lung cancer (NSCLC) patients. Density changes in follow-up computed tomography scans were evaluated for 135 NSCLC patients treated with radiotherapy. Early response markers were obtained by analysing changes in lung density in CBCT images acquired during the treatment course. The ability of pre-treatment factors and CBCT markers to predict lung density changes induced by radiotherapy was investigated. Age and CBCT markers extracted at 10th, 20th, and 30th treatment fraction significantly predicted lung density changes in a multivariable analysis, and a set of response models based on these parameters were established. The correlation coefficient for the models was 0.35, 0.35, and 0.39, when based on the markers obtained at the 10th, 20th, and 30th fraction, respectively. The study indicates that younger patients without lung tissue reactions early into their treatment course may have minimal radiation induced lung density increase at follow-up. Further investigations are needed to examine the ability of the models to identify patients with low risk of symptomatic toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The management of tumor motions in the stereotactic irradiation to lung cancer under the use of Abches to control active breathing

    Energy Technology Data Exchange (ETDEWEB)

    Tarohda, Tohru I.; Ishiguro, Mitsuru; Hasegawa, Kouhei; Kohda, Yukihiko; Onishi, Hiroaki; Aoki, Tetsuya; Takanaka, Tsuyoshi [Department of Radiology, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Department of Neurosurgery, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Naruwa Clinic, 1-16-6 Naruwa, Kanazawa 920-0818 (Japan); Department of Radiation Therapy, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641 (Japan)

    2011-07-15

    Purpose: Breathing control is crucial to ensuring the accuracy of stereotactic irradiation for lung cancer. This study monitored respiration in patients with inoperable nonsmall-cell lung cancer using a respiration-monitoring apparatus, Abches, and investigated the reproducibility of tumor position in these patients. Methods: Subjects comprised 32 patients with nonsmall-cell lung cancer who were administered stereotactic radiotherapy under breath-holding conditions monitored by Abches. Computed tomography (CT) was performed under breath-holding conditions using Abches (Abches scan) for treatment planning. A free-breathing scan was performed to determine the range of tumor motions in a given position. After the free-breathing scan, Abches scan was repeated and the tumor position thus defined was taken as the intrafraction tumor position. Abches scan was also performed just before treatment, and the tumor position thus defined was taken as the interfraction tumor position. To calculate the errors, tumor positions were compared based on Abches scan for the initial treatment plan. The error in tumor position was measured using the BrainSCAN treatment-planning device, then compared for each lung lobe. Results: Displacements in tumor position were calculated in three dimensions (i.e., superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) dimensions) and recorded as absolute values. For the whole lung, average intrafraction tumor displacement was 1.1 mm (L-R), 1.9 mm (A-P), and 2.0 mm (S-I); the average interfraction tumor displacement was 1.1 mm (L-R), 2.1 mm (A-P), and 2.0 mm (S-I); and the average free-breathing tumor displacement was 2.3 mm (L-R), 3.5 mm (A-P), and 7.9 mm (S-I). The difference between using Abches and free breathing could be reduced from approximately 20 mm at the maximum to approximately 3 mm in the S-I direction for both intrafraction and interfraction positions in the lower lobe. In addition, maximum intrafraction tumor

  19. The value of the abnormalities of bronchovascular bundles in the diagnosis of diffused lung diseases

    International Nuclear Information System (INIS)

    Li Tieyi; Ji Jingling

    1997-01-01

    To evaluate the abnormalities of bronchovascular bundles in the differential diagnosis of the diffuse lung disease, seventy-two patients with diffuse lung diseases were evaluated, 15 of 72 patients were pathologically proven and the others clinically proven. Of these 72 patients, there were 33 patients with diffuse pulmonary interstitial disease, 5 patients with pulmonary parenchymal disease, 14 patients with bronchial disease, and 20 patients with disseminated disease. All patients had conventional CT scan of the chest, some also had HRCT scan. All CT images were jointly reviewed by two radiologists. The features of the abnormalities of bronchovascular bundles included: (1) Thinning of bronchovascular bundles, predominantly seen in diffuse interstitial disease of lung and chronic bronchitis; (2) thickening of bronchovascular bundles, predominantly seen in interstitial diseases and disseminated lung diseases such as sarcoidosis and lymphangitis carcinomatosis with beaded appearance of bronchovascular bundles; (3) Increased visibility of bronchovascular bundles, predominantly seen in bronchiolitis and disseminated lung diseases. CT features of the abnormalities of bronchovascular bundles are present in 80% of diffuse lung diseases. The features are not specific, but the beaded bronchovascular bundles are always seen in sarcoidosis and lymphangitis carcinomatosis. In making a distinction between idiopathic pulmonary fibrosis and chronic bronchitis complicated with interstitial fibrosis, the position of diaphragm is of value in differential diagnosis, normal or elevated diaphragm is usually seen in the former, while low and flattened diaphragm in the latter. Change of the appearance of bronchovascular bundles from normality to abnormality reflects the process of development of the lung disease

  20. Regional Lung Density Changes After Radiation Therapy for Tumors in and Around Thorax

    International Nuclear Information System (INIS)

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2010-01-01

    Purpose: To study the temporal nature of regional lung density changes and to assess whether the dose-dependent nature of these changes is associated with patient- and treatment-associated factors. Methods and Materials: Between 1991 and 2004, 118 patients with interpretable pre- and post-radiation therapy (RT) chest computed tomography (CT) scans were evaluated. Changes in regional lung density were related to regional dose to define a dose-response curve (DRC) for RT-induced lung injury using three-dimensional planning tools and image fusion. Multiple post-RT follow-up CT scans were evaluated by fitting linear-quadratic models of density changes on dose with time as the covariate. Various patient- and treatment-related factors were examined as well. Results: There was a dose-dependent increase in regional lung density at nearly all post-RT follow-up intervals. The population volume-weighted changes evolved over the initial 6-month period after RT and reached a plateau thereafter (p < 0.001). On univariate analysis, patient age greater than 65 years (p = 0.003) and/or the use of pre-RT surgery (p < 0.001) were associated with significantly greater changes in CT density at both 6 and 12 months after RT, but the magnitude of this effect was modest. Conclusions: There appears to be a temporal nature for the dose-dependent increases in lung density. Nondosimetric clinical factors tend to have no, or a modest, impact on these changes.

  1. Intersections of lung progenitor cells, lung disease and lung cancer.

    Science.gov (United States)

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  2. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  3. CT findings of small bowel metastases from primary lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook; Ha, Hyun Kwon; Kim, Ah Young; Kim, Gab Choul; Kim, Tae Kyoung; Kim, Pyo Nyun; Lee, Moon Gyu [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2002-11-01

    To evaluate the CT findings of small bowel metastases from primary lung cancer. Of the 1468 patients with primary lung cancer between 1990 and 2000, 13 patients who had metastasis to the small intestine were collected. Of these 13 patients, nine who underwent CT scan were included for analysis. The pathologic diagnoses of primary lung cancer in these nine patients were squamous cell carcinoma in six, adenocarcinoma in two, and large cell carcinoma in one. CT scans were analyzed with regard to the site and patterns (intraluminal mass/bowel wall thickening/bowel implants) of metastatic masses, and the presence or absence of complication such as intussusception, obstruction, or perforation of the small bowel. The medical records of the patients were also reviewed retrospectively for evaluation of presenting abdominal symptom and time interval of metastases from initial diagnosis of lung cancer. Metastatic lesions were distributed throughout the small intestine: the duodenum in five, the jejunum in four, the ileum in six, and both jejunum and ileum in one patient. The size of metastatic masses of small bowel ranged from 1.3 cm to 5.0 cm (mean size, 2.6 cm) On CT, the small bowel was involved with intraluminal masses (mean size, 3.4 cm) in eight patients, diffuse wall thickening (mean thickness, 1.6 cm) in five, and bowel implants (mean size, 2.2 cm) in two. Complications occurred in seven patients, including intussusceptions without obstruction in two patients and with obstruction in two, obstruction without intussusceptions in two, and bowel perforation in one. Of 9 patients, 6 had at least one symptom referable to the small bowel including abdominal pain in 4, anemia in 3, vomiting in 1, and jaundice in 1. Lung cancer and small bowel lesions were detected simultaneously in four patients and the time interval of metastases from initial diagnosis of lung cancer ranged from 10 days to 30 months (median interval, 54 days) in patients. CT helps in defining the extent and

  4. CT findings of small bowel metastases from primary lung cancer

    International Nuclear Information System (INIS)

    Kim, Jae Wook; Ha, Hyun Kwon; Kim, Ah Young; Kim, Gab Choul; Kim, Tae Kyoung; Kim, Pyo Nyun; Lee, Moon Gyu

    2002-01-01

    To evaluate the CT findings of small bowel metastases from primary lung cancer. Of the 1468 patients with primary lung cancer between 1990 and 2000, 13 patients who had metastasis to the small intestine were collected. Of these 13 patients, nine who underwent CT scan were included for analysis. The pathologic diagnoses of primary lung cancer in these nine patients were squamous cell carcinoma in six, adenocarcinoma in two, and large cell carcinoma in one. CT scans were analyzed with regard to the site and patterns (intraluminal mass/bowel wall thickening/bowel implants) of metastatic masses, and the presence or absence of complication such as intussusception, obstruction, or perforation of the small bowel. The medical records of the patients were also reviewed retrospectively for evaluation of presenting abdominal symptom and time interval of metastases from initial diagnosis of lung cancer. Metastatic lesions were distributed throughout the small intestine: the duodenum in five, the jejunum in four, the ileum in six, and both jejunum and ileum in one patient. The size of metastatic masses of small bowel ranged from 1.3 cm to 5.0 cm (mean size, 2.6 cm) On CT, the small bowel was involved with intraluminal masses (mean size, 3.4 cm) in eight patients, diffuse wall thickening (mean thickness, 1.6 cm) in five, and bowel implants (mean size, 2.2 cm) in two. Complications occurred in seven patients, including intussusceptions without obstruction in two patients and with obstruction in two, obstruction without intussusceptions in two, and bowel perforation in one. Of 9 patients, 6 had at least one symptom referable to the small bowel including abdominal pain in 4, anemia in 3, vomiting in 1, and jaundice in 1. Lung cancer and small bowel lesions were detected simultaneously in four patients and the time interval of metastases from initial diagnosis of lung cancer ranged from 10 days to 30 months (median interval, 54 days) in patients. CT helps in defining the extent and

  5. Plasma pro-surfactant protein B and lung function decline in smokers.

    Science.gov (United States)

    Leung, Janice M; Mayo, John; Tan, Wan; Tammemagi, C Martin; Liu, Geoffrey; Peacock, Stuart; Shepherd, Frances A; Goffin, John; Goss, Glenwood; Nicholas, Garth; Tremblay, Alain; Johnston, Michael; Martel, Simon; Laberge, Francis; Bhatia, Rick; Roberts, Heidi; Burrowes, Paul; Manos, Daria; Stewart, Lori; Seely, Jean M; Gingras, Michel; Pasian, Sergio; Tsao, Ming-Sound; Lam, Stephen; Sin, Don D

    2015-04-01

    Plasma pro-surfactant protein B (pro-SFTPB) levels have recently been shown to predict the development of lung cancer in current and ex-smokers, but the ability of pro-SFTPB to predict measures of chronic obstructive pulmonary disease (COPD) severity is unknown. We evaluated the performance characteristics of pro-SFTPB as a biomarker of lung function decline in a population of current and ex-smokers. Plasma pro-SFTPB levels were measured in 2503 current and ex-smokers enrolled in the Pan-Canadian Early Detection of Lung Cancer Study. Linear regression was performed to determine the relationship of pro-SFTPB levels to changes in forced expiratory volume in 1 s (FEV1) over a 2-year period as well as to baseline FEV1 and the burden of emphysema observed in computed tomography (CT) scans. Plasma pro-SFTPB levels were inversely related to both FEV1 % predicted (p=0.024) and FEV1/forced vital capacity (FVC) (p<0.001), and were positively related to the burden of emphysema on CT scans (p<0.001). Higher plasma pro-SFTPB levels were also associated with a more rapid decline in FEV1 at 1 year (p=0.024) and over 2 years of follow-up (p=0.004). Higher plasma pro-SFTPB levels are associated with increased severity of airflow limitation and accelerated decline in lung function. Pro-SFTPB is a promising biomarker for COPD severity and progression. Copyright ©ERS 2015.

  6. TU-A-12A-01: Consistency of Lung Expansion and Contraction During Respiration: Implications for Quantitative Imaging

    International Nuclear Information System (INIS)

    Patton, T; Du, K; Bayouth, J; Christensen, G; Reinhardt, J

    2014-01-01

    Purpose: Four-dimensional computed tomography (4DCT) can be used to evaluate longitudinal changes in pulmonary function. The sensitivity of such measurements to identify function change may be improved with reproducible breathing patterns. The purpose of this study was to determine if inhale was more consistent than exhale, i.e., lung expansion during inhalation compared to lung contraction during exhalation. Methods: Repeat 4DCT image data acquired within a short time interval from 8 patients. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. Equivalent lung volumes (ELV) were used for 5 subjects and equivalent title volumes (ETV) for the 3 subjects who experienced a baseline shift between scans. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2mm distance-to-agreement and 5% ventilation difference. The gamma pass rates were then compared using paired t-test to determine if there was a significant difference. Results: Inhalation was more reproducible than exhalation. In the 5 ELV subjects 78.5% of the lung voxels met the gamma criteria for expansion during inhalation when comparing the two scans, while significantly fewer (70.9% of the lung voxels) met the gamma criteria for contraction during exhalation (p = .027). In the 8 total subjects analyzed the average gamma pass rate for expansion during inhalation was 75.2% while for contraction during exhalation it was 70.3%; which trended towards significant (p = .064). Conclusion: This work implies inhalation is more reproducible than exhalation, when equivalent respiratory volumes are considered. The reason for this difference is unknown. Longitudinal investigation of pulmonary function change based on inhalation images appears appropriate for Jacobian-based measure of

  7. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation.

    Science.gov (United States)

    Gharehaghaji, Nahideh; Dadgar, Habib Alah

    2018-01-01

    The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  8. Is sweat chloride predictive of severity of cystic fibrosis lung disease assessed by chest computed tomography?

    Science.gov (United States)

    Caudri, Daan; Zitter, David; Bronsveld, Inez; Tiddens, Harm

    2017-09-01

    Cystic Fibrosis (CF) lung disease is characterized by a marked heterogeneity. Sweat chloride-level is a functional marker of the CF Transmembrane Regulator (CFTR) protein and could be an important predictor of later disease severity. In this retrospective analysis children from the Rotterdam CF clinic with available sweat chloride level at diagnosis and at least one routine spirometry-controlled volumetric chest CT scan in follow-up were included. CT scans were scored using the CF-CT scoring system (% of maximum). Associations between sweat chloride-levels and CF-CT scores were calculated using linear regression models, adjusting for age at sweat test and age at follow-up. Because structural lung damage develops over the course of many years, effect modification by the age at follow-up CT-scan was tested for by age-stratification. In 59 children (30 male) sweat chloride was measured at diagnosis (median age 0.5 years, range 0-13) and later chest CT performed (median age 14 years, range 6-18). Sweat chloride was associated with significantly higher CT-CT total score, bronchiectasis score, and mucus plugging score. Stratification for age at follow-up in tertiles showed this association remained only in the oldest age group (range 15-18 years). In that subgroup associations were found with all but one of the CF-CT subscores, as well as with all tested lung functions parameters. Sweat chloride-level is a significant predictor of CF lung disease severity as determined by chest CT and lung function. This association could only be demonstrated in children with follow-up to age 15 years and above. © 2017 Wiley Periodicals, Inc.

  9. The Importance of Bronchoscopy in Early Lung Cancer (LC Diagnosis

    Directory of Open Access Journals (Sweden)

    Tofolean Doina-Ecaterina

    2016-11-01

    Full Text Available Lung cancer is a leading cause of death worldwide, due to the fact that most patients are diagnosed in a fairly advanced stage. Screening tests such as sputum citology, chest x-rays or CT scans have their limitations and need further histological confirmation of the diagnosis.

  10. Research Progress of Lung Cancer with Leptomeningeal Metastasis

    Directory of Open Access Journals (Sweden)

    Chunhua MA

    2014-09-01

    Full Text Available Leptomeningeal metastases is one of the most serious complications of lung cancer, the patients with poor prognosis. Leptomeningeal metastasis in patients with lack specificity of clinical manifestations. The main clinical performance are the damage of cerebral symptoms, cranial nerve and spinal nerve. The diagnosis primarily based on the history of tumor, clinical symptoms, enhance magnetic resnance image (MRI scan and cerebrospinal fluid cytology. In recent years, new ways of detecting clinically, significantly increase the rate of early detection of leptomeningeal metastases. The effect of comprehensive treatments are still sad. The paper make a review of research progress in pathologic physiology, clinical manifestations, diagnosis methods and treatments of lung cancer with leptomeningeal metastases.

  11. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  12. Lung cancer in patients with idiopathic pulmonary fibrosis: frequency and CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hak Jong; Im, Jung Gi; Ahn, Joong Mo; Yeon, Kyung Mo [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1994-12-15

    The incidence of lung cancer in patients with idiopathic pulmonary fibrosis(lPF) is higher than that of general population. To evaluate the frequency and CT findings of lung cancer associated with idiopathic pulmonary fibrosis, we analyzed 19 patients with lung cancer associated with idiopathic pulmonary fibrosis. We analyzed retrospectively 19 patients with histologically confirmed lung cancer out of 208 patients diagnosed as IPF either by CT and clinical findings(n=188) or histologically(n=20). All 19 patients were male, aged 40-85 years (mean 66 years). Scanning techniques were conventional CT in 12 patients, HRCT in 1 patient and both conventional CT and HRCT in 6 patients. We analyzed the CT patterns of lung cancer and IPF, locations of the tumor and histologic types of lung cancer. The incidence of lung cancer in patients with idiopathic pulmonary fibrosis was 9.1%(19/208). In 11 of 19 patients, CT findings of lung cancer were ill-defined consolidation-like mass. Lung cancer was located mainly in lower lobes(right lower lobe; 10/19, left lower lobe; 5/19) and at the periphery(12/19). Histologically, squamous cell carcinoma was the most common cell type (11/19). The incidence of lung cancer in patients with idiopathic pulmonary fibrosis was much higher than that of general population. Typical CT findings of lung cancer were predominantly ill-defined consolidation like mass at the peripheral lung portion which is the location where the most advanced fibrosis occur.

  13. Lung cancer in patients with idiopathic pulmonary fibrosis: frequency and CT findings

    International Nuclear Information System (INIS)

    Lee, Hak Jong; Im, Jung Gi; Ahn, Joong Mo; Yeon, Kyung Mo

    1994-01-01

    The incidence of lung cancer in patients with idiopathic pulmonary fibrosis(lPF) is higher than that of general population. To evaluate the frequency and CT findings of lung cancer associated with idiopathic pulmonary fibrosis, we analyzed 19 patients with lung cancer associated with idiopathic pulmonary fibrosis. We analyzed retrospectively 19 patients with histologically confirmed lung cancer out of 208 patients diagnosed as IPF either by CT and clinical findings(n=188) or histologically(n=20). All 19 patients were male, aged 40-85 years (mean 66 years). Scanning techniques were conventional CT in 12 patients, HRCT in 1 patient and both conventional CT and HRCT in 6 patients. We analyzed the CT patterns of lung cancer and IPF, locations of the tumor and histologic types of lung cancer. The incidence of lung cancer in patients with idiopathic pulmonary fibrosis was 9.1%(19/208). In 11 of 19 patients, CT findings of lung cancer were ill-defined consolidation-like mass. Lung cancer was located mainly in lower lobes(right lower lobe; 10/19, left lower lobe; 5/19) and at the periphery(12/19). Histologically, squamous cell carcinoma was the most common cell type (11/19). The incidence of lung cancer in patients with idiopathic pulmonary fibrosis was much higher than that of general population. Typical CT findings of lung cancer were predominantly ill-defined consolidation like mass at the peripheral lung portion which is the location where the most advanced fibrosis occur

  14. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    Science.gov (United States)

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  15. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    Science.gov (United States)

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.

  16. Discordant Findings of Skeletal Metastasis Between Tc99m MDP Bone Scans and F18 FDG PET/CT Imaging for Advanced Breast and Lung Cancers—Two Case Reports and Literature Review

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chen

    2007-12-01

    Full Text Available Traditionally, Tc99m methyl diphosphate (MDP bone scintigraphy provides high-sensitivity detection of skeletal metastasis from breast and lung cancers in regular follow-up. Fluorodeoxyglucose (FDG positron emission tomography/computed tomography (PET/CT, based on the glucose metabolism of malignant cells, plays a role in describing rumor growth, proliferation of neoplasm and the extent of metastasis. In general, concordant findings of skeletal metastasis are seen on both types of image, especially in cases of breast and lung cancer. However, there were extremely discordant findings of skeletal metastasis between bone scans and F18 FDG PET/CT imaging in two cases among 300 consecutive F18 FDG PET/CT follow-up exams of patients with malignancies, during the past year, in our center. Both cases, one of breast cancer and one of lung cancer, had negative bone scintigraphic findings, but a diffusely high grade of F18 FDG avid marrow infiltration in the axial spine, leading to the diagnosis of stage IV disease in both cases. Owing to variant genetic aberrance of malignance, F18 FDG PET/CT reveals direct evidence of diffuse, rapid neoplasm metabolism in the bone marrow of the spine, but not of secondary osteoblastic reactions in vivo. F18 FDG PET/CT should always be employed in the follow-up of patients with malignancies.

  17. Single breath study for lung scan with krypton-81m: proposition of a mathematical model

    International Nuclear Information System (INIS)

    Pommet, R.; Mathieu, E.

    1981-01-01

    A single breath study with sup(81m)Kr was proceeded in patients, and we studied a theorical model. Based on experimental datas, the model was extrapolated by simple compartimental hypothesis, permitting a study per area of the instant alveolar lung flow by a deconvolution operation. An other approach to present the local ventilation is proposed too. Based on the average flow of ventilation index, calculation is obtained easier than by deconvolution method, and this method fully agree with the proposed model. This index allows the realisation of functionnal views of the local ventilation flow, made possible by the use of a computer for the study of each elementary area of the lung and the realisation of the activity curve recorded during the sup(81m)Kr first breath [fr

  18. 18F-Fluoromisonidazole (FMISO) as a molecular marker of hypoxia in non small cell lung carcinoma (NSCLC)

    International Nuclear Information System (INIS)

    Pathmaraj, K.; Foo, S.; Sachinidis, J.; Scott, A.M.

    2002-01-01

    Full text: FMISO is a hypoxic marker with the potential ability to predict tumour resistance to chemoradiation. We present preliminary findings from pilot studies to determine the significance of FMISO Positron Emission Tomography (PET) in NSCLC. We are currently studying 2 cohorts of patients with NSCLC and a case study will be presented from each cohort. Patients in the first cohort have surgically resectable tumours: we aim to evaluate the extent of intratumoural hypoxia preoperatively and then validate and correlate this at a molecular level. Patients in the second cohort have locally advanced disease being treated with radiotherapy and will have pretreatment and sequential FMISO-PET scans. Mr GH, a 51 year old man presented with a suspicious lesion in the right upper lobe of the lung. Biopsy was non diagnostic and a FDG-PET scan showed a hypermetabolic focus in the right upper lobe highly indicative of malignancy. The FMISO-PET scan showed a small hypoxic area in the right upper lobe of the lung. The FDG-PET and FMISO-PET images were coregistered and the hypoxic focus correlated well with the hypermetabolic FDG focus. Wedge resection demonstrated moderately differentiated adenocarcinoma. Mr JS was a 61-year-old male with stage III inoperable NSCLC. CT scan showed extensive disease around the left lung hilum with mediastinal lymphadenopathy. The FDG-PET scan showed metabolic findings consistent with a large necrotic malignancy in the left lung with left hilar and mediastinal nodal involvement. FMISO uptake was observed in the left lung hilum corresponding to the areas of FDG uptake. A subsequent FMISO-PET study midway through his radiotherapy showed decreased tracer concentration in the left hilar region with a suggestion of cystic changes inferiorly to the hilum. To our knowledge, there has been no correlation of FMISO-PET studies with molecular markers of hypoxia. This pilot study will be important in confirming FMISO-PET studies as a feasible non invasive

  19. Occupational Exposures and Subclinical Interstitial Lung Disease. The MESA (Multi-Ethnic Study of Atherosclerosis) Air and Lung Studies.

    Science.gov (United States)

    Sack, Coralynn S; Doney, Brent C; Podolanczuk, Anna J; Hooper, Laura G; Seixas, Noah S; Hoffman, Eric A; Kawut, Steven M; Vedal, Sverre; Raghu, Ganesh; Barr, R Graham; Lederer, David J; Kaufman, Joel D

    2017-10-15

    The impact of a broad range of occupational exposures on subclinical interstitial lung disease (ILD) has not been studied. To determine whether occupational exposures to vapors, gas, dust, and fumes (VGDF) are associated with high-attenuation areas (HAA) and interstitial lung abnormalities (ILA), which are quantitative and qualitative computed tomography (CT)-based measurements of subclinical ILD, respectively. We performed analyses of participants enrolled in MESA (Multi-Ethnic Study of Atherosclerosis), a population-based cohort aged 45-84 years at recruitment. HAA was measured at baseline and on serial cardiac CT scans in 5,702 participants. ILA was ascertained in a subset of 2,312 participants who underwent full-lung CT scanning at 10-year follow-up. Occupational exposures were assessed by self-reported VGDF exposure and by job-exposure matrix (JEM). Linear mixed models and logistic regression were used to determine whether occupational exposures were associated with log-transformed HAA and ILA. Models were adjusted for age, sex, race/ethnicity, education, employment status, tobacco use, and scanner technology. Each JEM score increment in VGDF exposure was associated with 2.64% greater HAA (95% confidence interval [CI], 1.23-4.19%). Self-reported vapors/gas exposure was associated with an increased odds of ILA among those currently employed (1.76-fold; 95% CI, 1.09-2.84) and those less than 65 years old (1.97-fold; 95% CI, 1.16-3.35). There was no consistent evidence that occupational exposures were associated with progression of HAA over the follow-up period. JEM-assigned and self-reported exposures to VGDF were associated with measurements of subclinical ILD in community-dwelling adults.

  20. Lung scintigraphy in the diagnosis of pulmonary embolism: current methods and interpretation criteria in clinical practice

    International Nuclear Information System (INIS)

    Skarlovnik, Ajda; Hrastnik, Damjana; Fettich, Jure; Grmek, Marko

    2014-01-01

    In current clinical practice lung scintigraphy is mainly used to exclude pulmonary embolism (PE). Modified diagnostic criteria for planar lung scintigraphy are considered, as newer scitigraphic methods, especially single photon emission computed tomography (SPECT) are becoming more popular. Data of 98 outpatients who underwent planar ventilation/perfusion (V/Q) scintigraphy and 49 outpatients who underwent V/Q SPECT from the emergency department (ED) were retrospectively collected. Planar V/Q images were interpreted according to 0.5 segment mismatch criteria and revised PIOPED II criteria and perfusion scans according to PISA-PED criteria. V/Q SPECT images were interpreted according to the criteria suggested in EANM guidelines. Final diagnosis of PE was based on the clinical decision of an attending physician and evaluation of a 12 months follow-up period. Using 0.5 segment mismatch criteria and revised PIOPED II, planar V/Q scans were diagnostic in 93% and 84% of cases, respectively. Among the diagnostic planar scans readings specificity for 0.5 segment mismatch criteria was 98%, and 99% for revised PIOPED II criteria. V/Q SPECT showed a sensitivity of 100% and a specificity of 98%, without any non-diagnostic cases. In patients with low pretest probability for PE, planar V/Q scans assessed by 0.5 segment mismatch criteria were diagnostic in 92%, and in 85% using revised PIOPED II criteria, while perfusion scintigraphy without ventilation scans was diagnostic in 80%. Lung scintigraphy yielded diagnostically definitive results and is reliable in ruling out PE in patients from ED. V/Q SPECT has excellent specificity and sensitivity without any non-diagnostic results. Percentage of non-diagnostic results in planar lung scintigraphy is considerably smaller when 0.5 segment mismatch criteria instead of revised PIOPED II criteria are used. Diagnostic value of perfusion scintigraphy according to PISA-PED criteria is inferior to combined V/Q scintigraphy; the difference is