WorldWideScience

Sample records for radioactivity transport

  1. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  2. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  3. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    2001-01-01

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  4. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  5. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  6. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  7. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Lenail, B.

    1984-01-01

    Transport of radioactive materials is dependent of transport regulations. In practice integrated doses for personnel during transport are very low but are more important during loading or unloading a facility (reactor, plant, laboratory, ...). Risks occur also if packagings are used outside specifications. Recommendations to avoid these risks are given [fr

  8. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  9. Transporting radioactive rock

    International Nuclear Information System (INIS)

    Pearce, G.

    1990-01-01

    The case is made for exempting geological specimens from the IAEA Regulations for Safer Transport of Radioactive Materials. It is pointed out that many mineral collectors in Devon and Cornwall may be unwittingly infringing these regulations by taking naturally radioactive rocks and specimens containing uranium ores. Even if these collectors are aware that these rocks are radioactive, and many are not, few have the necessary equipment to monitor the activity levels. If the transport regulations were to be enforced alarm could be generated and the regulations devalued in case of an accident. The danger from a spill of rock specimens is negligible compared with an accident involving industrial or medical radioactive substances yet would require similar special treatment. (UK)

  10. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  11. Transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    The increasing use of radioactive substances, not only in reactor operations but also in medicine, industry and other fields, is making the movement of these materials progressively wider, more frequent and larger in volume. Although regulations for the safe transport of radioactive materials have been in existence for many years, it has now become necessary to modify or supplement the existing provisions on an international basis. It is essential that the regulations should be applied uniformly by all countries. It is also desirable that the basic regulations should be uniform for all modes of transport so as to simplify the procedures to be complied with by shippers and carriers

  12. Transportation of radioactive elements

    International Nuclear Information System (INIS)

    Thubert, Francis; Rentien, Guy; Jacquet, Michel

    1981-01-01

    The production and marketing of artificial radioactive elements engaged in by the 'Office des Rayonnements Ionisants' requires the use of specially designed packagings and assorted means of transport. The authors begin by describing the different kinds of products involved and the forms of packagings needed, and go on to discuss the various means of transport used, underlining the fact that, in terms of number and gravity, the incidents that have occurred to date have indeed been few and far between [fr

  13. The transport of radioactive waste

    International Nuclear Information System (INIS)

    Appleton, P.R.; Poulter, D.R.

    1989-01-01

    Regulations have been developed to ensure the safe transport of all radioactive materials by all modes (road, rail, sea and air). There are no features of radioactive waste which set it aside from other radioactive materials for transport, and the same regulations control all radioactive material transport. These regulations and their underlying basis are described in this paper, and their application to waste transport is outlined. (author)

  14. Transport of radioactive material

    International Nuclear Information System (INIS)

    Lombard, J.

    1996-01-01

    This work deals with the transport of radioactive materials. The associated hazards and potential hazards are at first described and shows the necessity to define specific safety regulations. The basic principles of radiological protection and of the IAEA regulations are given. The different types of authorized packages and of package labelling are explained. The revision, updating and the monitoring of the regulations effectiveness is the subject of the last part of this conference. (O.M.)

  15. Radioactive material transport

    International Nuclear Information System (INIS)

    White, M.C.

    1979-10-01

    All movements of radioactive materials in Canada are governed by a comprehensive body of regqlations, both national and international. These regulations are designed to maximize shielding to the public and transport workers, allow for heat dissipation, and to prevent criticality accidents, by prescribing specific packaging arrangements, administrative controls, labelling and storage measures. This report describes in some detail specific requirements and summarizes some incidents that occurred between 1974 and 1978

  16. Transport regulation for radioactive materials

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    Taking into account the specific dangers associated with the transport of radioactive materials (contamination, irradiation, heat, criticality), IAEA regulations concerning technical specifications and administrative procedures to ward off these dangers are presented. The international agreements related to the land transport, maritime transport and air transport of radioactive materials are also briefly reviewed

  17. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Huck, W.

    1992-01-01

    The book presents a systematic survey of the legal provisions governing the transport of radioactive materials, placing emphasis on the nuclear licensing provisions of sections 4, 4b of the Atomic Energy, Act (AtG) and sections 8-10 of the Radiation Protection Ordinance (StrlSchV), also considering the provisions of the traffic law governing the carriage of hazardous goods. The author's goal is to establish a systematic basis by comparative analysis of the licensing regulations under atomic energy law, for the purpose of formulating a proposed amendment to the law, for the sake of clarity. The author furthermore looks for and develops criteria that can be of help in distinguishing the regulations governing the carriage of hazardous goods from the nuclear regulatory provisions. He also examines whether such a differentiation is detectable, particularly in those amendments to the StrlSchV which came after the Act on Carriage of Hazardous Goods. The regulations governing the transport of radioactive materials under the AtG meet with the problem of different classification systems being applied, to radioactive materials in the supervisory regulations on the one hand, and to nuclear materials in Annex 1 to the AtG on the other hand. A classification of natural, non-nuclear grade uranium e.g. by the financial security provisions is difficult as a result of these differences in the laws. The author shows that the transport regulations of the StrlSchV represent an isolated supervisory instrument that has no connecting factor to the sections 28 ff StrlSchV, as radiation protection is provided for by the regulations of the Act on Carriage of Hazardous Goods. The author suggests an amendment of existing law incorporating the legal intent of sections 8-10 StrlSchV and of sections 4, 4b AtG into two sections, and abolishing the supervisory provisions of the StrlSchV altogether. (orig./HP) [de

  18. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    Delivering radioactive material to where it is needed is a vital service to industry and medicine. Millions of packages are shipped all over the world by all modes of transport. The shipments pass through public places and must meet stringent safety requirements. This video explains how radioactive material is safely transported and describes the rules that carriers and handlers must follow

  19. Dossier: transport of radioactive materials

    International Nuclear Information System (INIS)

    Mignon, H.; Brachet, Y.; Turquet de Beauregard, G.; Mauny, G.; Robine, F.; Plantet, F.; Pestel Lefevre, O.; Hennenhofer, G.; Bonnemains, J.

    1997-01-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  20. Transport of radioactivity and radiation

    International Nuclear Information System (INIS)

    De Beer, G.P.

    1988-01-01

    The movement of radioactivity and radiation is of prime importance in a wide variety of fields and the present advanced degree of knowledge of transport mechanisms is due largely to the application of sophisticated computer techniques

  1. Transport of radioactive substances; Der Transport radioaktiver Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  2. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  3. Safe transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The film shows the widespread use of radioactive materials in industry, medicine and research and explains the need for transporting nuclear material from producer to user. It shows the way in which packages containing radioactive materials are handled during transport and explains the most important provisions of the IAEA transport regulations, safety series no. 6, such as packaging design criteria and testing requirements, illustrated by various tests carried out, specimen packages and package and freight container labelling. Also illustrated are practical measures to be taken in case of an accident

  4. Transports of radioactive materials

    International Nuclear Information System (INIS)

    Sousselier, Yves

    1982-01-01

    Transport safety depends on the packaging, and the degree of safety must be adapted to the potential hazards of the substance carried. The various kinds of packagings and their strength are examined and the transport of irradiated fuels from the safety angle is taken as example and a comparison is made with the transport of conventional dangerous substances [fr

  5. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Hamel, P.E.

    In Canada, large numbers of packages containing radioactive materials are shipped for industrial, medical and commercial purposes. The nature of the hazards and the associated risks are examined; the protection measures and regulatory requirements are indicated. The result of a survey on the number of packages being shipped is presented; a number of incidents are analyzed as a function of their consequences. Measures to be applied in the event of an emergency and the responsibility for the preparation of contingency plans are considered. (author) [fr

  6. Radioactive material transporting container

    International Nuclear Information System (INIS)

    Watabe, Yukio.

    1990-01-01

    As a supporting member of a sealing container for containing spent fuels, etc., a straight pipe or a cylinder has been used. However, upon dropping test, the supporting member is buckled toward the central axis of a transporting container and a shock absorber is crushed in the axial direction to prevent its pushing force to the outer side, which may possibly hinder normal shock moderating function. Then, at least more than one-half of the supporting member is protruded radially to the outer side of the sealing container beyond the fixed portion with the sealed container, so that the member has a portion extended in the radial outside of the transporting container with an angle greater than the angle formed between a line connecting the outer circumference at the bottom of an outer cylinder with the gravitational center of the transporting container and the central axis of the transporting container. As a result, buckling of the supporting member toward the central axis of the transporting container upon dropping test can be prevented and the deformation of the shock absorber is neither not prevented to exhibit normal shock absorbing effect. This can improve the reliability and reduce the amount of shock absorbers. (N.H.)

  7. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  8. Radioactive materials transport experience

    International Nuclear Information System (INIS)

    Langhaar, J.W.

    1976-01-01

    This paper presents a brief review of the kinds of packaging suitable for different types of waste, the roles of highway and rail transport, restrictions imposed by political entities and carriers, and safety. The U. S. accident record is described, with some statistics given

  9. Truck transportation of radioactive materials

    International Nuclear Information System (INIS)

    Madsen, M.M.; Wilmot, E.L.

    1983-01-01

    Analytical models in RADTRAN II are used to calculate risks to population subgroups such as people along transport routes, people at stops, and crewman. The stops model, which calculates the dose to persons adjacent to the transport vehicle while it is stopped, frequently provides the largest contribution to incident-free radiological impacts. Components such as distances from the vehicle containing radioactive material to nearby people at stops, stop duration, and number of crew members are required for the stops model as well as other incident-free models. To provide supporting data for RADTRAN II based on operational experience, selected truck shipments of radioactive material were observed from origin to destination. Other important aspects of this program were to correlate package size to effective shipment transport index (TI) using radiological surveys and to characterize population distributions and proximities of people to the shipment at a generic truck stop

  10. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  11. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1990-01-01

    Recently the Agency redefined its policy for education and training in radiation safety. The emphasis is now on long-term strategic planning of general education and training programmes. In line with this general policy the Agency's Standing Advisory Group for the Safe Transport of Radioactive Material (SAGSTRAM) in its 7th meeting (April 1989) agreed that increased training activity should be deployed in the area of transport. SAGSTRAM specifically recommended the development of a standard training programme on this subject area, including audio-visual aids, in order to assist Member States in the implementation of the Agency's Regulations for the Safe Transport of Radioactive Material. This training programme should be substantiated by a biennial training course which is thought to be held either as an Interregional or a Regional Course depending on demand. This training manual, issued as a first publication in the Training Course Series, represents the basic text material for future training courses in transport safety. The topic areas covered by this training manual and most of the texts have been developed from the course material used for the 1987 Bristol Interregional Course on Transport Safety. The training manual is intended to give guidance to the lecturers of a course and will be provided to the participants for retention. Refs, figs and tabs

  12. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Doroszlai, P.; Ferroni, F.

    1984-01-01

    A cylindrical container for the transportation of radioactive reactor elements includes a top end, a bottom end and a pair of removable outwardly curved shock absorbers, each including a double-shelled construction having an internal shell with a convex intrados configuration and an external shell with a convex extrados configuration, the shock absorbers being filled with a low density energy-absorbing material and mounted at the top end and the bottom end of the container, respectively, and each of the shock absorbers having a toroidal configuration, and deformable tubes disposed within the shock absorbers and extending in the axial direction of the container

  13. Accidents during transport of radioactive material

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Radioactive materials are a part of modern technology and life. They are used in medicine, industry, agriculture, research and electrical power generation. Tens of millions of packages containing radioactive materials are consigned for transport each year throughout the world. In India, about 80000 packages containing radioactive material are transported every year. The amount of radioactive material in these packages varies from negligible amounts used in consumer products to very large amounts in shipment of irradiator sources and spent nuclear fuel

  14. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  15. Transport of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Keese, H.

    1976-01-01

    A transport system for spent fuel elements and radioactive waste is reported on. The construction of appropriate transport containers, safety regulations, as well as future developments in transport systems and transport containers are discussed in detail. The volume of the spent fuel elements to be moved and the number of transport containers needed is gone into, too. (HR/LN) [de

  16. Transportation of radioactive materials. Safety and regulation

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe

    2013-01-01

    This engineering-oriented publication first presents fluxes and risks related to the transportation of radioactive materials: fluxes, risks, in-depth defence, and parcel typology. The author then describes the elaboration process for transportation regulations: IAEA recommendations for the transportation of radioactive materials and their review process, IAEA recommendations for modal regulations. He presents the French transportation regulation framework: evolutions of IAEA recommendations, case of aerial transport, and case of maritime transport. The next part addresses the specific case of the transportation of uranium hexafluoride. The last part addresses incidents and accidents occurring during transportation: declarations to be made, brief presentations of several examples of incidents and accidents

  17. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Messenger, W. de L.M.

    1979-02-01

    The hazards of radioactive materials in transport are surveyed. The system whereby they are safely transported between nuclear establishments in the United Kingdom and overseas is outlined. Several popular misconceptions are dealt with. (author)

  18. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  19. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items

  20. Radioactive material accidents in the transport

    International Nuclear Information System (INIS)

    Rodrigues, D.L.; Magalhaes, M.H.; Sanches, M.P.; Sordi, G.M.A.A.

    2008-01-01

    Transport is an important part of the worldwide nuclear industry and the safety record for nuclear transport across the world is excellent. The increase in the use of radioactive materials in our country requires that these materials be moved from production sites to the end user. Despite the number of packages transported, the number of incidents and accidents in which they are involved is low. In Brazil, do not be records of victims of the radiation as a result of the transport of radioactive materials and either due to the accidents happened during the transports. The absence of victims of the radiation as result of accidents during the transports is a highly significant fact, mainly to consider that annually approximately two hundred a thousand packages containing radioactive material are consigned for transport throughout the country, of which eighty a thousand are for a medical use. This is due to well-founded regulations developed by governmental and intergovernmental organizations and to the professionalism of those in the industry. In this paper, an overview is presented of the activities related to the transport of radioactive material in the state of Sao Paulo. The applicable legislation, the responsibilities and tasks of the competent authorities are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. It also presents the packages amounts of carried and the accidents occurred during the transport of radioactive materials, in the last five years. The main occurred events are argued, demonstrating that the demanded requirements of security for any transport of radioactive material are enough to guarantee the necessary control of ionizing radiation expositions to transport workers, members of general public and the environment. (author)

  1. The Safe Transportation of Radioactive Materials

    International Nuclear Information System (INIS)

    Megrahi, Abdulhafeed; Abu-Ali, Giuma; Enhaba; Ahmed

    2008-01-01

    In this paper, we present the essential conditions that should be required for transporting the radioactive materials. We demonstrate the procedure for transporting the radioactive iodine-131 from the Centre of Renewable Energies and Desalination of Water in Tajoura, Libya to Tripoli Medical Center. The safe measures were taken during the process of the transportation of the isotope produced in the centre including dosimetry analysis and the thickness of the container. (author)

  2. Safe and secure: transportation of radioactive materials

    International Nuclear Information System (INIS)

    Howe, D.

    2015-01-01

    Western Waste Management Facility is Central Transportation Facility for Low and Intermediate waste materials. Transportation support for Stations: Reactor inspection tools and heavy water between stations and reactor components and single bundles of irradiated fuel to AECL-Chalk River for examination. Safety Track Record: 3.2 million kilometres safely travelled and no transportation accident - resulting in a radioactive release.

  3. Ontario hydro radioactive material transportation field guide

    International Nuclear Information System (INIS)

    Howe, W.

    1987-01-01

    The recent introduction of both the AECB Transport Packaging of Radioactive Material Regulations and Transport Canada's Transportation of Dangerous Goods Regulations have significantly altered the requirements for transporting radioactive material in Canada. Extensive additional training as well as certification of several hundred Ontario Hydro employees has been necessary to ensure compliance with the additional and revised regulatory requirements. To assist in the training of personnel, an 'active' corporate Ontario Hydro Field Guide for Radioactive Material Transport document has been developed and published. The contents of this Field Guide identify current Ontario Hydro equipment and procedures as well as the updated relevant regulatory requirements within Canada. In addition, to satisfying Ontario Hydro requirements for this type of information over two thousand of these Field Guides have been provided to key emergency response personnel throughout the province of Ontario to assist in their transportation accident response training

  4. Radioactive wastes transport. A safety logic

    International Nuclear Information System (INIS)

    2005-01-01

    The safety principle which applies to transport operations of radioactive wastes obeys to a very strict regulation. For the conditioning of wastes in package, the organisation of shipments and the qualification of carriers, the ANDRA, the French national agency of radioactive wastes, has implemented a rigorous policy based on the respect of a quality procedure and on the mastery of delivery fluxes. This brochure presents in a simple, illustrated and detailed manner the different steps of these transports. (J.S.)

  5. Source, transport and dumping of radioactive waste

    International Nuclear Information System (INIS)

    1980-03-01

    The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described, including the physical and chemical, ecological, medical and legal aspects. The practical aspects of radioactive waste in the Netherlands are considered, including the sources, the packaging and transport and dumping in the Atlantic Ocean. The politics and policies involved in this process are outlined. (C.F.)

  6. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  7. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1975-01-01

    In the course of transport by road, rail, sea and air, consignments of radioactive material are in close proximity to ordinary members of the public and in most cases they are loaded and unloaded by transport workers who have no special training or experience in the handling of radioactive substances. The materials being transported cover a wide variety - ranging from small batches of short-lived radionuclides used in medical practice which can be transported in small sealed lead pots in cardboard boxes, to large, extremely radioactive consignments of irradiated nuclear fuel in flasks weighing many tons. With the growing development of nuclear power programmes the transport of irradiated fuel is likely to increase markedly. It is clear that unless adequate regulations concerning the design and assembly of the packages containing these materials are precisely set down and strictly carried out, there would be a high probability that some of the radioactive contents would be released, leading to contamination of other transported goods and the general environment, and to the delivery of a radiation dose to the transport workers and the public. An additional requirement is that the transport should proceed smoothly and without delay. This is particularly important for radioactive materials of short half-life, which would lose significant amounts of their total activity in unnecessary delays at international boundaries. Therefore, it is essential that the regulations are also enforced, to ensure that the radioactive material is contained and the surrounding radiation level reduced to a value which poses no threat to other sensitive goods such as photographic film, or to transport workers and other passengers. These regulations should be as uniform as possible on an international basis, so that consignments can move freely from one country to another with as little delay as possible at the frontiers. (author)

  8. Transportation of radioactive materials - a utility view

    International Nuclear Information System (INIS)

    Futter, J.L.

    1979-01-01

    Local restrictions to transportation of radioactive materials have proliferated, and the reasons for this are described. Some of the measures which could be undertaken to counteract this trend are discussed. People should speak out on the need for nuclear power in general and for transportation of nuclear materials in particular

  9. The safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Niel, J.Ch.

    1997-01-01

    Five accidents in radioactive materials transport have been studied; One transport accident by road, one by ship, one by rail, and the two last in handling materials from ships in Cherbourg port and Le Havre port. All these accidents were without any important consequences in term of radiation protection, but they were sources of lessons to improve the safety. (N.C.)

  10. Radioactive Material (Road Transport) Act 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This Act came into force on 27 August 1991. It replaces earlier legislation dating from 1948 and enables the United Kingdom to give effect to the International Atomic Energy Agency's (IAEA) latest recommended Regulations for the Safe Transport of Radioactive Material. The new Act clarifies and extends the power of the Secretary of State to make regulations regarding, among other things, the design, labelling, handling, transport and delivery of packages containing radioactive material and the placarding of vehicles transporting such packages. The Act gives the Secretary of State the power to appoint inspectors to assist him in enforcing the regulations. (NEA)

  11. Safe transport of radioactive material. 3. ed

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA

  12. Safe transport of radioactive material. 3. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA.

  13. Physical protection of radioactive material in transport

    International Nuclear Information System (INIS)

    1975-01-01

    Safety in the transport of radioactive material is ensured by enclosing the material, when necessary, in packaging which prevents its dispersal and which absorbs to any adequate extent any radiation emitted by the material. Transport workers, the general public and the environment are thus protected against the harmful effects of the radioactive material. The packaging also serves the purpose of protecting its contents against the effects of rough handling and mishaps under normal transport conditions, and against the severe stresses and high temperatures that could be encountered in accidents accompanied by fires. If the radioactive material is also fissile, special design features are incorporated to prevent any possibility of criticality under normal transport conditions and in accidents. The safe transport requirements are designed to afford protection against unintentional opening of packages in normal handling and transport conditions and against damage in severe accident conditions; whereas the physical protection requirements are designed to prevent intentional opening of packages and deliberate damage. This clearly illustrates the difference in philosophical approach underlying the requirements for safe transport and for physical protection during transport. This difference in approach is, perhaps, most easily seen in the differing requirements for marking of consignments. While safety considerations dictate that packages be clearly labelled, physical protection considerations urge restraint in the use of special labels. Careful consideration must be given to such differences in approach in any attempt to harmonize the safety and physical protection aspects of transport. (author)

  14. The transport of radioactive materials - Future challenges

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Materials, TS-R-1, set the standards for the packages used in the transport of radioactive materials under both normal and accident conditions. Transport organisations are also required to implement Radiation Protection Programmes to control radiation dose exposure to both workers and the public. The industry has now operated under this regulatory regime safely and efficiently for nearly 50 years. It is vital that this record be maintained in the future when the demands on the transport industry are increasing. Nuclear power is being called upon more and more to satisfy the world's growing need for sustainable, clean and affordable electricity and there will be a corresponding demand for nuclear fuel cycle services. There will also be a growing need for other radioactive materials, notably large sources such as Cobalt 60 sources for a range of important medical and industrial uses, as well as radio-pharmaceuticals. A reliable transport infrastructure is essential to support all these industry sectors and the challenge will be to ensure that this can be maintained safely and securely in a changing world where public and political concerns are increasing. This paper will discuss the main issues which need to be addressed. The demand for uranium has led to increased exploration and the development of mines in new locations far removed from the demand centres. This inevitably leads to more transport, sometimes from areas potentially lacking in transport infrastructure, service providers, and experience. The demand for sources for medical applications will also increase, particularly from the rapidly developing regions and this will also involve new transport routes and increased traffic. This raises a variety of issues concerning the ability of the transport infrastructure to meet the future challenge, particularly in an environment where there already exists reluctance on

  15. Safe transport of radioactive materials in Egypt

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    1994-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 and 1991 and their nationalities are also discussed. The protective measures are mentioned. A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes. (Author)

  16. Transport of radioactive materials by post

    International Nuclear Information System (INIS)

    1984-11-01

    The objective of the Seminar was to encourage safe and efficient carriage of radioactive material by post. Adequate, up-to-date regulations for international and domestic shipment of radioactive material by all modes of transport, including by mail, have been published by the IAEA. UPU, ICAO, IATA and other international organizations as well as a majority of the countries of the world have adopted most sections of the Agency's Regulations for the Safe Transport of Radioactive Material. Although there is an apparent need for shipping radioactive material by mail, some countries allow only domestic shipments and the postal regulations applied in these countries often differs from the international regulations. Only about 25 countries are known to allow international (as well as domestic) shipments. From the discussions and comments at the Seminar, it appears that the option of shipment by post would be advantageous to enhance both the safety and economy of transporting, as well as to increase availability of, radioactive materials. The Agency's Regulations for transport by post as adopted by the UPU and ICAO are considered to provide a high level of safety and ensure a negligible element of risk. A more uniform application of these regulations within UPU Member States should be encouraged. The competent authority for implementation of the other parts of the Agency's Regulations in each of the Member States should be invited to advise the Postal Administrators and assist in applying the requirements to national as well as international postal shipments

  17. The transport safety of radioactive matters

    International Nuclear Information System (INIS)

    Landier, D.; Louet, Ch.A.; Robert, Ch.; Binet, J.; Malesys, P.; Pourade, C.; Le Meur, A.; Robert, M.; Turquet de Beauregard, G.Y.; Hello, E.; Laumond, A.; Regnault, Ph.; Gourlay, M.; Bruhl, G.; Malvache, P.; Dumesnil, J.; Cohen, B.; Sert, G.; Pain, M.; Green, L.; Hartenstein, M.; Stewart, J.; Cottens, E.; Liebens, M.; Marignac, Y.

    2007-01-01

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  18. Transport of proximity nuclear radioactive materials

    International Nuclear Information System (INIS)

    2010-01-01

    This brief publication gives an overview of the international and national regulatory framework for the transport of radioactive substances, outlines progress orientations identified by the French Nuclear Safety Authority (ASN), indicates the parcel classification and shipment radiological criteria, and how to declare events occurring during the transport of radioactive substances, which number to phone in case of a radiological incident. Finally, the role of the ASN and its field of activity in matters of control are briefly presented with a table of its office addresses in France

  19. Radioactive materials transporting container and vehicles

    International Nuclear Information System (INIS)

    Reese, S.L.

    1980-01-01

    A container and vehicle therefor for transporting radioactive materials is provided. The container utilizes a removable system of heat conducting fins made of a light weight highly heat conductive metal, such as aluminum or aluminum alloys. This permits a substantial reduction in the weight of the container during transport, increases the heat dissipation capability of the container and substantially reduces the scrubbing operation after loading and before unloading the radioactive material from the container. The vehicle utilizes only a pair of horizontal side beams interconnecting a pair of yoke members to support the container and provide the necessary strength and safety with a minimum of weight

  20. Preparing regulations for radioactive waste transport

    International Nuclear Information System (INIS)

    Robles, Fernando

    2002-01-01

    The article describes the diferent stages in preparing the regulation on safe transport of radioactive materials. The first stage was the support given by the International Atomic Energy Agency in to provide expertise in drafting the national regulation on this matter. The draft is based on the publication from IAEA Regulation on the safe transport of radioactive materials. Also a description of activities made by the Radiation Protection Department of the Energy Directorate of Guatemala is made by the Chief of the Department Dr. Fernando Robles

  1. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  2. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Bibby, D.

    1978-01-01

    A transport container for transporting irradiated nuclear fuel is described comprising a steel flask with detachable cover and having external heat exchange fins. The flask contains a solid annular shield comprised of discrete bodies of Pb or Fe bonded together by a solid matrix, for attenuating gamma rays and neutron emission. This may comprise lead shot bonded together by concrete or polyethylene, or alternatively iron shot bonded by concrete. (UK)

  3. INES- French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After gaining control of radioactive material transport in June 1997, the French Nuclear Safety Authority (ASN) decided to apply the International Nuclear Event Scale (INES scale) to transport events. The Directorate General for Nuclear Safety and Radioprotection (DGSNR) requests that radioactive material package consignors declare any event occurring during transport, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. The INES scale is applicable to events arising in nuclear installations associated with the civil nuclear industry and events occurring during the transport of radioactive materials to and from them. The INES scale consists of seven levels. It is based on the successive application of three types of criterion (off-site impact, on-site impact and degradation of defence in depth) and uses the maximum level to determine the rating of an accident. As the transport in question takes place on public thoroughfares, only the off-site impact criteria and degradation of defence in-depth criteria apply. This paper deals with DGSNR's feedback during the past 7 years concerning the French application of the INES scale. Significant events that occurred during transport are presented. The French experience was used by the International Atomic Energy Agency (IAEA) to develop a draft guide in 2002 and the IAEA asked countries to use a new draft for a trial period in July 2004. (author)

  4. Radioactive waste and transport. Chapter 6

    International Nuclear Information System (INIS)

    1978-01-01

    A brief definition of the nature of radioactive waste is followed by a more detailed discussion of high level waste, its composition the amounts involved, storage in liquid and in solid form and the storage of non-reprocessed spent fuel. The final disposal of high level waste in deep geological structures is then described, based on the Swedish KBS study. The effectiveness of the artificial and natural barriers in preventing the radioactive substances from reaching the biosphere is discussed. American and Swedish risk analyses are briefly discussed, and practical experience presented. Low and medium level wastes are thereafter treated in a similar, though briefer manner. Transport of radioactive materials, fresh fuel, spent fuel and waste is then dealt with. Regulations for the containers and their tests are briefly presented and the risk of accidents, theft and sabotage during transport are discussed. (JIW)

  5. Transport of radioactive material in Canada

    International Nuclear Information System (INIS)

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material

  6. Transport of radioactive material in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material.

  7. Transport categories for radioactive waste

    International Nuclear Information System (INIS)

    Goldfinch, E.P.

    1993-01-01

    The paper makes proposals for materials which are intrinsically safe without packaging other than for administrative convenience, and for wastes to be transported to the same levels of safety as Type A packages. It is proposed that waste forms to be transported to the same level of safety as Type B packages cannot be prescribed in advance without the need for Competent Authority approval for each specific form or combination of waste form and packaging. Finally it is proposed to revert to simple packaging requirements, equivalent to the earlier industrial and strong industrial packaging. The former have no quantitative performance requirements and the latter have requirements identical to Type A packages. (author)

  8. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1991-01-01

    The transport of radioactive material embraces the carriage of radioisotopes for industrial, medical and research uses, and the movement of waste, in addition to consignments of nuclear fuel cycle material. It has been estimated that between eighteen and thirty-eight million package shipments take place each year. On the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), which enjoys wide representations from the Agency's Member States and international organizations, the Secretariat is preparing a training kit comprising this training manual and complementary visual aids. The kit is intended to be the basis for an extensive course on the subject and can be used in whole or in part for inter-regional, regional and even national training purposes. Member States can thus benefit from the material either through training courses sponsored by the Agency, or, alternatively, organized by themselves. As a step towards achieving that goal, the current training manual was compiled using material from the first Inter-Regional Training Course on the Safe Transport of Radioactive material that was held in co-operation with the Nuclear Power Training Centre of the then Central Electricity Generating Board at Bristol, United Kingdom. This Manual was initially published in 1990. On the recommendation of the Agency's Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), the Manual has since been expanded and updated in time for the second Inter-Regional Training Course, that will in 1991 similarly be held in Bristol. Refs, figs, tabs

  9. Radioactive material air transportation; Transporte aereo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Pader y Terry, Claudio Cosme [Varig Logistica (VARIGLOG), Sao Paulo, SP (Brazil)

    2002-07-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation.

  10. Basic facts about the transport of packaged radioactive products

    International Nuclear Information System (INIS)

    1987-09-01

    The pamphlet on the ''basic facts about the transport of packaged radioactive products'' was prepared by Amersham International for the Advisory Committee on the Safe Transport of Radioactive Material. Details of the regulations that apply to transport, the handling of radioactive materials and the precautions to be taken are all outlined, along with what should be done if a package of radioactive materials is damaged and how packages of radioactive materials can be recognised. (UK)

  11. Predicting transportation routes for radioactive wastes

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Clarke, D.B.; McGuire, S.C.

    1981-01-01

    Oak Ridge National Laboratory (ORNL) has been involved in transportation logistics of radioactive wastes as part of the overall waste transportation program. A Spent Fuel Logistics Model (SFLM), was developed to predict overall material balances representing the flow of spent fuel assemblies from reactors to away-from-reactor storage facilities and/or to federal repositories. The transportation requirements to make these shipments are also itemized. The next logical step in the overall transportation project was the development of a set of computer codes which would predict likely transportation routes for waste shipments. Two separate routing models are now operational at ORNL. Routes for truck transport can be estimated with the HIGHWAY program, and rail and barge routes can be predicted with the INTERLINE model. This paper discusses examples of the route estimates and applications of the routing models

  12. Regulations of safe transport of radioactive material

    International Nuclear Information System (INIS)

    Patel, R.J.; Sumathi, E.

    2017-01-01

    BARC is a multi-disciplinary nuclear research organisation with facilities located at various parts of the country. The nuclear and radiological facilities in BARC include fuel fabrication facilities, nuclear research reactors, radiological laboratories, nuclear recycle facilities, waste management facilities and other associated facilities. RAdioactive Material (RAM) such as fresh nuclear fuel, irradiated fuel, radioactive sources, vitrified high level wastes, special nuclear material etc., are transported between these facilities either within the controlled premises or in public domain. In BARC the regulatory approval for the packages used for transport of RAM is issued by BARC Safety Council (BSC). Competent Authority for issuing the design approval for the BARC packages in public domain is Director, BARC. In this aspect BSC is assisted by Safety Review Committee-Transport of Radioactive Material (SRC-TRM) constituted by BSC entrusted with the mandate to ensure the packages are designed, manufactured and transported in accordance with the current regulations. This article summarizes the regulatory requirements for transport of RAM and experience in BARC facilities

  13. Safe transport of radioactive material. 4. ed

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been publishing Regulations for the Safe Transport of Radioactive Material since 1961. Meeting its statutory obligation to foster the exchange and training of scientists and experts in the field of peaceful uses of atomic energy, the IAEA has developed a standardized approach to transport safety training. This training manual is an anchor of the standardized approach to training. It is a compendium of training modules for courses related to the different aspects of safety of transport of radioactive material. Keeping in view the specific needs of the potential users, the manual includes material that can be used for a variety of training programmes of duration ranging from half-a-day to ten days, for specific audiences such as competent authority personnel, public authorities, emergency response personnel and cargo handlers

  14. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  15. Instructions for safe transport of radioactive materials

    International Nuclear Information System (INIS)

    2005-01-01

    This entrance includes 5 chapters and tables and supplement. Chapter I contains the definitions and general provisions contained 5 materials. Chapter II contains radioactive materials packaging and permissible limits and it contains 8 materials. The provisions of Chapter III contains descriptions Missionaries. Chapter IV describes shipping instructions. As for the separation of V It contains Final provisions. The entrance contains number of tables speaks of the basic values of radioactive isotopes and radiation also limits activity and the requirements of industrial parcels and limits transactions to transport freight containers, as well as the International Classification of hazardous materials. This also includes entrance to the Supplement to some forms and Alohat

  16. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    1997-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (Author)

  17. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    2000-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and the regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  18. Transport of radioactive materials. 2. rev. ed.

    International Nuclear Information System (INIS)

    Vogt, H.W.; Falkhof, W.; Heibach, K.; Ungermann, N.; Hungenberg, H.

    1991-01-01

    With the last changes in the Ordinance Concerning the Transport of Hazardous Goods two regulations which are important for the carrying trade were introduced: 1. The conveyer must train the driver. He must only employ reliable drivers. 2. The driver must participate in a training course (as of July 1, 1991). These obligations, which already existed in the past in regard to the transport of nuclear fuel, have been extended to include the transport of other radioactive materials. In part I the book deals with basic training courses for parcelled goods, and part II goes into the special knowledge which is required of drivers of radioactive materials. The parts consist of the following sections: 1. General regulations, 2, Responsibility when transporting hazardous goods, 3. General danger features, 4. Information on dangers and their designation, 5. The vehicle's equipment and carrying out the transport, 6. Measures for avoiding accidents. At the end of each section the participant in the course finds a series of questions which pertain to the subject matter just treated so that he can test his own learning performance. So as to make things easier for the trainee, the corect answers are listed in the appendix. As a supplementary section on radioactive materials, part II offers additional detailed explanations by experts in the field on the features of radioactive materials and the dangers they pose. In the margin - next to the instructory text - the key words are given so that the right place in the text of the instruction manual can be readily found. These key words are compiled in the appendix to form an index. (orig./HP) [de

  19. Provision of transport packaging for radioactive materials

    International Nuclear Information System (INIS)

    1981-04-01

    The safe transport of radioactive materials is governed by various regulations based on International Atomic Energy Agency Regulations. This code of practice is a supplement to the regulations, its objects being (a) to advise designers of packaging on the technical features necessary to conform to the regulations, and (b) to outline the requirements for obtaining approval of package designs from the competent authority. (U.K.)

  20. Radioactive materials' transportation main routes in Brazil. Radiation protection aspects about radioactive materials transportation

    International Nuclear Information System (INIS)

    Vaz, Solange dos Reis e; Andrade, Fernando de Menezes; Aleixo, Luiz Claudio Martins

    2007-01-01

    The heavy transportation in Brazil is generally done by highways. The radioactive material transportation follow this same rule. Whenever a radioactive material is carried by the road, by the sea or by the air, in some cases, a kind of combination of those transportation ways, the transport manager has to create a Transportation Plan and submit it to CNEN. Only after CNEN's approval, the transportation can be done. The plan must have the main action on Radiation Protection, giving responsibilities and showing all the directing that will be take. Although, the Brazilian's highways are not in good conditions, one could say that some of them are not good enough for any kind of transportation. But we are facing radioactive material use increase but the hospitals and industries, that the reason it's much more common that kind of transportation nowadays. So, because of that, a special attention by the governments must be provide to those activities. This paper goal is to show the real conditions of some important highways in Brazil in a radioactive protection's perspective and give some suggestions to adjust some of those roads to this new reality. (author)

  1. RADTRAN3, Risk of Radioactive Material Transport

    International Nuclear Information System (INIS)

    Madsen, M.M.; Taylor, J.M.; Ostmeyer, R.M.; Reardon, P.C.

    2001-01-01

    1 - Description of program or function: RADTRAN3 is a flexible analytical tool for calculating both the incident-free and accident impacts of transporting radioactive materials. The consequences from incident-free shipments are apportioned among eight population sub- groups and can be calculated for several transport modes. The radiological accident risk (probability times consequence summed over all postulated accidents) is calculated in terms of early fatalities, early morbidities, latent cancer fatalities, genetic effects, and economic impacts. Ground-shine, ingestion, inhalation, direct exposure, resuspension, and cloud-shine dose pathways are modeled to calculate the radiological health risks from accidents. Economic impacts are evaluated based on costs for emergency response, cleanup, evacuation, income loss, and land use. RADTRAN3 can be applied to specific scenario evaluations (individual transport modes or specified combinations), to compare alternative modes or to evaluate generic radioactive material shipments. Unit-risk factors can easily be evaluated to aid in performing generic analyses when several options must be compared with the amount of travel as the only variable. RADTRAN4 offers advances in the handling of route-related data and in the treatment of multiple-isotope materials. 2 - Method of solution: There are several modes used in the transporting of radioactive material such as trucks, passenger vans, passenger airplanes, rail and others. With these modes of transport come several shipment scenarios. The RADTRAN4 methodology uses material, transportation, population distribution, and health effects models to treat the incident-free case. To handle the vehicle accident impacts, accident severity and package release, meteorological dispersion, and economic models are also employed. 3 - Restrictions on the complexity of the problem: There are no apparent limitations due to programming dimensions

  2. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  3. Packaging and transportation of radioactively contaminated lead

    International Nuclear Information System (INIS)

    Gleason, Eugene; Holden, Gerard

    2007-01-01

    Under the management of the Nuclear Decommissioning Authority (NDA) the government of the United Kingdom has launched an ambitious program to remediate the nation's nuclear waste legacy. Over a twenty-five year period NDA plans to decommission several first generation nuclear power plants and other radioactive facilities. The use innovative, safe 'fit for purpose' technologies will be a major part of this complex program. This paper will present a case study of a recently completed project undertaken in support of the nuclear decommissioning activities at the Sellafield site in the United Kingdom. The focus is on an innovative application of new packaging technology developed for the safe transportation of radioactively contaminated lead objects. Several companies collaborated on the project and contributed to its safe and successful conclusion. These companies include British Nuclear Group, Gravatom Engineering, W. F. Bowker Transport, Atlantic Container Lines, MHF Logistical Solutions and Energy Solutions. New containers and a new innovative inter-modal packaging system to transport the radioactive lead were developed and demonstrated during the project. The project also demonstrated the potential contribution of international nuclear recycling activities as a safe, economic and feasible technical option for nuclear decommissioning in the United Kingdom. (authors)

  4. Perception of risks in transporting radioactive materials

    International Nuclear Information System (INIS)

    Shepherd, E.W.; Reese, R.T.

    1983-01-01

    A framework for relating the variables involved in the public perception of hazardous materials transportation is presented in which perceived risk was described in six basic terms: technical feasibility, political palatability, social responsibility, benefit assessment, media interpretation, and familiarity as a function of time. Scientists, the media and public officials contribute to the discussion of risks but ultimately people will decide for themselves how they feel and what they think. It is not sufficient to consider the public of not being enlightened enough to participate in the formulation of radioactive material transport policy. The framework provides the technologist with an initial formulation to better inform the public and to understand public perception

  5. Regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Kgogo, Obonye

    2016-04-01

    The report provides insight and investigates whether Transport Regulations in Botswana follow international standards for transport of radioactive material. Radioactive materials are very useful in most of our activities and are manufactured in different countries, therefore end up traversing from one country to another and being transported in national roads .The IAEA regulation for the Transport of radioactive material is used as the reference guideline in this study. The current Regulations for Transport of radioactive material in Botswana do not cover all factors which need to be considered when transporting radioactive although they refer to IAEA regulations. Basing on an inadequacy of the regulations and category of radioactive materials in the country recommendations were made concerning security, packaging and worker training's. The regulations for the Transport of radioactive material in Botswana need to be reviewed and updated so that they can relate to international standard. (au)

  6. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  7. Transport of radioactive material in Bangladesh: a regulatory perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2004-01-01

    Radioactive material is transported in Bangladesh in various types of packages and by different modes of transport. The transport of radioactive materials involves a risk both for the workers and members of the public. The safe transport of radioactive material is ensured in Bangladesh by compliance with Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97. The Bangladesh Atomic Energy Commission (BAEC) is the competent authority for the enforcement of the NSRC act and rules. The competent authority has established regulatory control at each stage to ensure radiation safety to transport workers, members of general public and the environment. An overview is presented of the activities related to the transport of radioactive material in Bangladesh. In particular, the applicable legislation, the scope of authority and the regulatory functions of the competent authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  8. Device for the transport of radioactive waste

    International Nuclear Information System (INIS)

    Nolte, K.H.; Simmich, K.; Verhoeven, J.; Sondermann, W.; Frotscher, H.; Schuchardt, M.; Engelmann, H.J.; Kolditz, H.; Schwaegermann, H.F.

    1978-01-01

    The containers are transported purely by machine inside the loading cell of a cavern system and can be used for further overload transport after emptying and locking out of the loading cell. After unloading from the transport vehicle, the container passes through a radiation protection gate into the loading cell, where it is transported via rollers to a crane, whose rotating arm is provided with a pneumatically driven spindle screwdriver, which undoes all the screws on the container lid. After removing the lid, the electrically operated grab of a second rotating crane lifts the drum with the radioactive waste from the container and deposits them on rollers, from which they pass to a transport vessel, which transports the waste to the final storage position. The lid is then screwed back on to the empty container, the container is placed on some scales and is only transported through a window out of the loading cell if its weight agrees with the given tare weight. (HP) [de

  9. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  10. Radioactive material (road transport) bill. [Third reading

    International Nuclear Information System (INIS)

    Fishburn, D.; Walley, J.; Currie, E.

    1991-01-01

    This is a private members Bill which will enable new rules to be set out that will govern the way in the which nearly 500,000 shipments of radioactive and nuclear material go by road in the United Kingdom every year. It would give the Department of Transport, which would become the enforcing authority, the powers of entry and inspection and allows penalties to be exacted from those breaking the rules. The present regulations for transport by road are those set out in 1947 and these need to be updated to comply with International Atomic Energy Authority Standards. The debate which lasted over one and a half hours is reported verbatim. The main points raised were about which emergency services if any should be notified on the transport of nuclear materials, with particular reference to Derbyshire. Nuclear power in general was also discussed. (UK)

  11. Low-level radioactive waste involved in transportation events

    International Nuclear Information System (INIS)

    Cashwell, C.E.

    1990-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information about radioactive materials transportation accidents and incidents that have occurred in the United States from 1971 through 1989. Using data from RMIR, this paper will provide detailed information on transportation accidents and incidents that have occurred with low-level radioactive wastes. Additionally, overview data on the number of transport accidents and incidents that have occurred and by what transport mode will also be provided. 4 refs., 6 tabs

  12. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  13. The transport safety of radioactive matters; La surete des transports des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Landier, D.; Louet, Ch.A.; Robert, Ch. [Autorite de Surete Nucleaire, 75 - Paris (France); Binet, J. [Commission europeenne, DG Energie et transports, Bruxelles (Belgium); Malesys, P. [TN International, 75 - Paris (France); Pourade, C. [Societe Dangexpress, 78 - St Remy l' Honore (France); Le Meur, A.; Robert, M. [Societe Nationale des Chemins de fer Francais, 75 - Paris (France); Turquet de Beauregard, G.Y.; Hello, E. [CIS bio, 91 - Gif sur Yvette (France); Laumond, A. [Electricite de France (EDF), 75 - Paris (France); Regnault, Ph.; Gourlay, M. [AREVA NC, 78 - Velizy Villacoublay (France); Bruhl, G. [CEA Fontenay-aux-Roses, Dir. de la Protection et de la Surete Nucleaire, 92 (France); Malvache, P.; Dumesnil, J. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN), 91 - Gif sur Yvette (France); Cohen, B. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Sert, G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Pain, M. [Ministere de l' Interieur, et de l' Amenagement du Territoire, Dir. de la Defense et la Securite Civiles, 75 - Paris (France); Green, L.; Hartenstein, M. [World Nuclear Transport Institute, London (United Kingdom); Stewart, J. [Ministere des Transport, Royaume Uni (United Kingdom); Cottens, E.; Liebens, M. [Agence Federale de Controle Nucleaire (Belgium); Marignac, Y. [Wise, 75 - Paris (France)

    2007-02-15

    Since the control of transport of radioactive materials was given to A.S.N. 10 years ago, A.S.N. has strengthened the radioactive material transport inspections, in particular of the designers, manufacturers, carriers and consignors. A.S.N. has implemented INES scale for incidents during transport. It has participated as much as possible to IAEA working groups in order to improve the international regulatory framework. And, supported by I.R.S.N., A.S.N. has performed a periodic safety review of existing package models and has approved new models incorporating innovative design features. Finally, A.S.N. has tested its emergency responses to procedures to an accident involving the transport of radioactive materials. All these actions taken together have led to improvement in and reinforcement of the safety culture among the transport operators; this has been acknowledged by a recent audit T.R.A.N.S.A.S. performed by IAEA. In spite of all these actions, there are not approved by the competent authority. As A.S.N. is in charge of every field in radioprotection, this should help to intensify the control. In addition, the different kinds of transport are also tackled as rail transport with S.N.C.F. radiological risk training, air transport through nuclear medicine. Some experience feedback are given such radioactive waste transport to the storage facilities in the Aube or how to protect the population after a nuclear transport incident with the O.R.S.E.C.-T.M.S. plans. (N.C.)

  14. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  15. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1996-01-01

    In 1991, the International Atomic Energy Agency published Training Course Series No. 1 (TCS-1), a training manual that provides in 20 chapters a detailed discussion of the background, philosophy, technical bases and requirements and implementation aspects of the Regulations for the Safe Transport of Radioactive Material. The Transport Regulations are widely implemented by the IAEA's Member States and are also used as the bases for radioactive material transport requirements of modal organisations such as the International Maritime Organization and the International Civil Aviation Organization. This document is a supplement of TCS-1 to provide additional material in the form of learning aids and new exercises, that have been developed with the use of TCS-1 at succeeding IAEA training courses. The learning aids in the first part of the supplement are hitherto unpublished material that provide detailed guidance useful in solving the exercises presented in the second part. Solutions to the exercises are on field at the IAEA Secretariat and are available by arrangement to lectures presenting IAEA training courses. 4 refs, 1 fig., 6 tabs

  16. Radiological impact of radioactive materials transport in France

    International Nuclear Information System (INIS)

    Hamard, J.

    1987-01-01

    Radiation doses of personnel and populations are estimated between 1983 and 1985 during road transport of radiopharmaceuticals, spent fuels, wastes and other radioactive materials. Dose equivalent received by air transport and others are difficult to know. Results are summed up in 8 tables. Radioactive materials transport represents less than 1% of exposures related to the fuel cycle [fr

  17. Procedures for the Safe Transport of Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Lyul; Chung, K. K.; Lee, J. I.; Chang, S. Y.; Lee, T. Y

    2007-11-15

    This technical report describes the procedure and work responsibility along with the regulation and standard necessary for the safe transport of radioactive or contaminated materials. This report, therefore, can be effectively used to secure the public safety as well as to prevent the disastrous event which might be resulted from the transport process of radioactive materials by establishing a procedure and method on the safe packing, handling and transport of radioactive materials.

  18. Perceptions, perspectives, proportions: Radioactive material transport

    International Nuclear Information System (INIS)

    1985-01-01

    Nearly a hundred years ago in 1893 - when railroads still monopolized land transport, the first set of international rules governing shipments of hazardous materials were issued to cover their movement by rail. Since then, more than a dozen international bodies, and scores of national regulatory agencies, have published regulations directed at the carriage of dangerous goods by road, sea, air, as well as rail. The regulatory network today covers virtually all kinds of substances and commodities that are used for beneficial purposes, but that under certain conditions are potentially harmful to people and the environment. 'The Problems Encountered by International Road Transport in Multimodal Transport Operations', by M. Marmy, paper presented at the 8th International Symposium on the Transport and Handling of Dangerous Goods by Sea and Associated Modes, Havana, Cuba, 1984. These include the chemical fertilizers farmers spread on their fields, the nuclear fuel now powering electricity plants in some two dozen countries, the drugs physicians use to diagnose and treat illnesses, and the fossil fuels, such as gasoline, routinely used in transport vehicles. All told today, about 21 different international labels are required to identify separate classes of dangerous goods among them, explosives, corrosives, and flammables. Another separate class radioactive materials is the specific subject of feature articles in this issue of the IAEA Bulletin. The evolving regulatory system reflects at once the growth in traffic of hazardous materials, essentially a post-World War II trend. Since the mid-1940s, for example, the transport of all dangerous goods just on the seas has grown 1000%. based on reports at a recent international conference. Overall, years ahead will see further increases

  19. The regulation concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is established on the basis of The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Law for the prevention of radiation injuries due to radioisotopes.'' The prescriptions cover the transport of radioactive materials by railway, street rail way, ropeway, trolley buses, motorcars and light vehicles. Terms are explained, such as nuclear fuel materials, radioisotopes, radioactive substances, transported radioactive things, transported fissile things, vehicles, containers, exclusive loading, surrounding inspection area. Four types of transported radioactive things are specified, L and A types being less dangerous and BM and BU being more dangerous. Transported fissile things are classified to three kinds according to the safety to criticality of such things. Transported radioactive things except those of L type and containers with transported fissile things shall not be loaded or unloaded at the places where persons other than those concerned come in usually. Loading and unloading of such things shall be carried out so that the safety of such things is not injured. The maximum dose rate of radiation of the containers with transported radioactive things shall not be more than 200 millirem per hour on the surface and 10 millirem per hour at the distance of 1 meter. Specified transported radioactive things shall be particularly marked by the letter of ''radioactive'' or other signs indicating as such. (Okada, K.)

  20. Transportation of radioactive materials in Sweden

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1979-06-01

    This report is designed to calculate the total risk due to shipping radioactive materials in Sweden. The base case developed is the shipment model that is used now or the best estimate for expected shipments. The model for the calculations and the computer program used has been developed at the Sandia Laboratories, Albuquerque, N.M., USA and is the same that was used for the NUREG-0170 study. The results from the calculations show an annual expected population dose of 30 person-rem due to normal transport conditions. The annual expected dose from accidents were calculated to be between 2.3-20.8 person rem. The higher figure represents the case where plutonium is shipped back to Sweden from reprocessing plants abroad in the form of PuO2 and the lower figure represent the case when plutonium is shipped back in the form of mixed oxide fuel. The total additional population dose in Sweden due to both normal and accident conditions in the transportation of radioactive materials will be 30 - 50 person rem/year. Compared to the natural background radiation that is 8x10 5 person rem per year in Sweden, this figure is very low. If converted to latent cancer fatalities this population dose will add approximately 3.5x10 3 cancers each year. The consequences due to accidents have been calculated and are discussed separately from their probabilities. The most severe accident that was found was an accident involving PuO 2 . This accident would give 82 400 rem as a maximum individual dose and 8.1x10 5 person rem as a population dose. (Auth.)

  1. Transport of radioactive material in Sudan practice and regulations

    International Nuclear Information System (INIS)

    Abdalla, M. K. E.

    2010-12-01

    In the last couple of decades there has been an impressive increase in applications of radioactive material. Such an extensive and widely spread usage of radioactive materials demands safe transportation of radioactive material from the production site to the application location, as well as quick and effective response in a case of an unexpected transportation event according to Sudan Atomic Energy Commission (SAEC) regulation. The thesis described the local practice for transport of radioactive material as compared to the international standards for radiation protection, and also discussed the emergency procedures that must be follow in case of accident during transport of radioactive material. Furthermore, the objective of this study was also to set proposals for how to cope in the event of a radiological accident. The study methods included survey of current literature on safe transport of radioactive material, survey of national regulations on the subjects in additional to case studies aimed at investigating the practical issues pertinent to transport of radioactive materials in Sudan. A comprehensive review was presented on how to classification of radioactive packages and general requirement for all packaging and packages according to international standard. transport of number of radioactive sources from Khartoum airport to the field was evaluated with regard transport index, category of source, type of package, dose rate around the source, time to destination and means of transport of doses to public, worker are be made. All results were within the limit specified in the national as well as international regulation. The study has addressed for the first time the practice of transport of radioactive material in Sudan. It is anticipated that the results will encourage national organizational and professional bodies to enhance radiation protection and safety of radioactive sources. (Author)

  2. Lessons learned by southern states in transportation of radioactive materials

    International Nuclear Information System (INIS)

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE's Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board's Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns

  3. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  4. Framework for assessing the effects of radioactive materials transportation

    International Nuclear Information System (INIS)

    Zoller, J.N.

    1996-01-01

    Radioactive materials transport may result in environmental effects during both incident-free and accident conditions. These effects may be caused by radiation exposure, pollutants, or physical trauma. Recent environmental impact analyses involving the transportation of radioactive materials are cited to provide examples of the types of activities which may be involved as well as the environmental effects which can be estimated

  5. State summary of radioactive material transport sector in Brazil

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.; Xavier, A.M.

    1991-07-01

    The main aim of this work is the scientific cooperation with the CNEA (Argentina) in the area of safe transport of radioactive materials, intending to find solutions to some rural problems and, also, to standardize the transport of radioactive materials between Brazil and Argentina. (E.O.)

  6. Transport of radioactive materials: the need for radiation protection programmes

    International Nuclear Information System (INIS)

    Masinza, S.A.

    2004-01-01

    The increase in the use of radioactive materials worldwide requires that these materials be moved from production sites to the end user or in the case of radioactive waste, from the waste generator to the repository. Tens of millions of packages containing radioactive material are consigned for transport each year throughout the world. The amount of radioactive material in these packages varies from negligible quantities in shipments of consumer products to very large quantities of shipments of irradiated nuclear fuel. Transport is the main way in which the radioactive materials being moved get into the public domain. The public is generally unaware of the lurking danger when transporting these hazardous goods. Thus radiation protection programmes are important to assure the public of the certainty of their safety during conveyance of these materials. Radioactive material is transported by land (road and rail), inland waterways, sea/ocean and air. These modes of transport are regulated by international 'modal' regulations. The international community has formulated controls to reduce the number of accidents and mitigate their consequences should they happen. When accidents involving the transport of radioactive material occur, it could result in injury, loss of life and pollution of the environment. In order to ensure the safety of people, property and the environment, national and international transport regulations have been developed. The appropriate authorities in each state utilise them to control the transport of radioactive material. Stringent measures are required in these regulations to ensure adequate containment, shielding and the prevention of criticality in all spheres of transport, i.e. routine, minor incidents and accident conditions. Despite the extensive application of these stringent safety controls, transport accidents involving packages containing radioactive material have occurred and will continue to occur. When a transport accident occurs, it

  7. Regulations related to the transport of radioactive material in Brazil

    International Nuclear Information System (INIS)

    Sahyun, Adelia; Sordi, Gian-Maria A.A.; Sanches, Matias P.

    2001-01-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  8. Regulations related to the transport of radioactive material in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, Adelia; Sordi, Gian-Maria A.A. [ATOMO Radioprotecao e Seguranca Nuclear, Sao Paulo, SP (Brazil)]. E-mail: atomo@atomo.com.br; Sanches, Matias P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: msanches@net.ipen.br

    2001-07-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  9. Transportation of radioactive wastes from nuclear fuel cycles

    International Nuclear Information System (INIS)

    1979-09-01

    This paper discusses current and foreseen radioactive waste transportation systems as they apply to the INFCE Working Group 7 study. The types of wastes considered include spent fuel, which is treated as a waste in once-through fuel cycles; high-, medium-, and low-level waste; and gaseous waste. Regulatory classification of waste quantities and containers applicable to these classifications are discussed. Radioactive wastes are presently being transported in a safe and satisfactory manner. None of the INFCE candidate fuel cycles pose any extraordinary problems to future radioactive waste transportation and such transportation will not constitute a decisive factor in the choice of a preferred fuel cycle

  10. Some issues on environmental impact report of radioactive material transport

    International Nuclear Information System (INIS)

    Wang Jiaming

    2001-01-01

    The author puts forward some issues which should be paid attention to when compiling a environmental impact report of radioactive material transport. The main issues discussed are as follows: (1) Optimization analysis for transport routes. (2) Source terms under accident conditions in transport. (3) Precautions against accidents and emergency preparedness. (4) Quality assurance of transport, etc

  11. Radiation doses from the transport of radioactive materials

    International Nuclear Information System (INIS)

    Shaw, K.B.; Holyoak, B.

    1983-01-01

    A summary is given of a study on radiation exposure resulting from the transport of radioactive materials within the United Kingdom. It was concluded that the transport of technetium generators for hospital use accounts for about 49% of the occupational exposure for the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 38% of the occupational exposure and the remainder can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. The occupational collective dose for all modes of transport is estimated at 1 man Sv y -1 . (UK)

  12. Regulations relevant to the transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1996-01-01

    As is the case in many countries, the transport of radioactive materials in Switzerland is primarily regulated by the national regulations for the transport of dangerous goods. Currently these regulations, in the case of radioactive material, incorporate the 1985 IAEA Safety Series 6 Regulations for the Safe Transport of Radioactive Material (As amended 1990). However, as is also the case in some other countries, consignors, shippers and carriers of radioactive materials must also comply with additional laws when shipping radioactive materials. The most important of these other laws and their accompanying regulations are those concerned with radiation protection (import, export and carriers licences) and nuclear power (import, export, inland transport and transit licences). This paper sets out to describe the collective requirements resulting from all three of these sets of regulations. (Author)

  13. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the Enforcement Regulation for the Law on Aviation. Terms are explained, such as exclusive loading and containers. Spontaneously ignitable liquid radioactive materials and the radioactive substances required to be contained in special vessels and others particularly operated during the transport, are excluded from the radioactive materials permissible for transport. The radioactive substances required to be transported as radioactive loadings don't include empty vessels used to contain radioactive materials and other things contaminated by such materials, when they conform to the prescriptions. The technical standards on radioactive loadings are defined, such as maximum radiation dose rate of 0.5 millirem per hour on the surface of L type loadings, 200 millirem per hour for A, and 1000 millirem per hour at the distance of 1 m for BM and BU types, respectively. Confirmation of the safeness of radioactive loadings may be made through the written documents prepared by the competent persons acknowledged by the Minister of Transport. The requisite of fissile loadings is that such loadings shall not reach critical state during the transport in the specified cases. Radioactive loadings or the containers with such loadings shall be loaded so that the safeness of such loadings is not injured by movement, overturn and fall during the transport. The maximum radiation dose rate of the containers with radioactive loadings shall not be more than 200 millirem per hour on the surface. The written documents describing the handling method and other matters for attention and the measures to be taken on accidents shall be carried with for the transport of radioactive loadings. (Okada, K.)

  14. Draft of regulations for road transport of radioactive wastes

    International Nuclear Information System (INIS)

    Gese, J.; Zizka, B.

    1979-06-01

    A draft regulation is presented for the transport of solid and solidified radioactive wastes from nuclear power plants. The draft takes into consideration dosimetric, safety and fire-fighting directives, transport organization, anticipated amounts of radioactive wastes, characteristics of containers, maintenance of vehicles, and equipment of vehicles and personnel. The draft is based on the provisional regulations governing the transport on public roads issued in 1973, valid directives, decrees, acts and standards, and complies with 1973 IAEA requirements. (J.P.)

  15. The new context for transport of radioactive and nuclear material

    International Nuclear Information System (INIS)

    Anne, C.; Galtier, J.

    2002-01-01

    The transportation of radioactive and nuclear materials involves all modes of transportation with a predominance for road and for air. It is but a minute fraction dangerous good transportation. Around 10 millions of radioactive packages are shipped annually all over the world of which ninety percent total corresponds to shipments of radioisotopes. In spite of the small volume transported, experience, evolution of transport means and technologies, the trend to constantly improve security and safety and public acceptance have modified the transport environment. During the last few years, new evolutions have applied to the transport of radioactive and nuclear materials in various fields and especially: - Safety - Security - Logistics means - Public acceptance - Quality Assurance. We propose to examine the evolution of these different fields and their impact on transportation methods and means. (authors)

  16. Is radioactive mixed waste packaging and transportation really a problem

    International Nuclear Information System (INIS)

    McCall, D.L.; Calihan, T.W. III.

    1992-01-01

    Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ''low-level radioactive waste'' was in fact ''radioactive mixed waste'' and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations

  17. Public acceptance of radioactive waste transportation systems

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1978-01-01

    As the thoughts of the country concentrate on the problems of transportation of waste through high traffic urban areas, the problem of how to deal directly and honestly with the public takes on greater significance in the nuclear industry. Non-technical aspects of the methods of transportation, especially by railroad and highway, enter into the total scheme of moving radioactive waste from both weapon and nuclear power plant sources to final processing and disposal. Factors such as shape, color, size, familiarity, and industrial designing are necessary ingredients that take on equal or more significance that the designing of containers to survive the hypothetical accident conditions of the present, or even of the future. Protective Packaging, Inc. has been a leader in the presentation of containers to the private and public sector of the nuclear industry. The products have undergone very open testing, in public, with both invited and uninvited witnesses. In those experiences, dating back to 1969, the problems of public acceptance will be related between the technical problems and the associated social and political problems that relate to container acceptance by the public in today's world. Proven experience data, relative to the safety of the present day systems will be discussed, as well as methods of improving the image in the future. Review will also be given to the effort by industry to discuss the proven record with parties outside the nuclear industry, i.e., individuals and pressure groups that are diametrically opposed to review the facts relative to safety as opposed to other, but more traditional industries

  18. Safety of transport of radioactive material. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Radioactive material has been transported for decades within and between countries as the use of radioactive material to benefit mankind has expanded. The transport can involve many types of materials (radionuclides and radiation sources for applications in agriculture, energy production, industry, and medicine) and all modes of transport (road, rail, sea and waterways, and air). Among the organizations in the United Nations system, the International Atomic Energy Agency (IAEA) has the statutory function to establish or adopt standards of safety for protection of health against exposure to ionizing radiation. Within its statutory mandate and pursuant to this request, in 1961, the IAEA issued Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations). The Transport Regulations were periodically reviewed and, as appropriate, have been amended or revised. The latest version of the Transport Regulations was issued in 2000 by the IAEA as Publication TS-R-1 (ST-1, Revised). In addition, the IAEA is entrusted by its Statute to provide for the application of its standards at the request of States. The objective of the Conference is to foster the exchange of information on issues related to the safety of transport of radioactive material by providing an opportunity for representatives from sponsoring international organizations and their Member States and from other co-operating and participating organizations to discuss critical issues relating to the safety of transport of radioactive material by all modes and to formulate recommendations, as appropriate, regarding further international co-operation in this area. The following topics have been identified by the Technical Programme Committee as the subjects to be covered in the background briefing sessions: History and Status of the IAEA Transport Regulation Development; Experience in adoption of the IAEA Transport Regulations at the international level; Implementation of the IAEA Transport

  19. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  20. State statutes and regulations on radioactive materials transportation

    International Nuclear Information System (INIS)

    Foster, B.

    1981-11-01

    The transport of radioactive material is controlled by numerous legislative and regulatory actions at the federal, state, and local levels. This document is a compilation of the state level laws and regulations. The collected material is abstracted and indexed by states. Each state section contains three divisions: (1) abstracts of major statutes, (2) legislative rules, and (3) photocopies of relevant paragraphs from the law or regulation. This document was prepared for use by individuals who are involved in the radioactive material transportation process. This document will not be updated. The legislative rules section contains the name of the state agency primarily responsible for monitoring the transport of radioactive materials

  1. Transportation accidents/incidents involving radioactive materials (1971--1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions

  2. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  3. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  4. Development of an expert system for radioactive material transportation

    International Nuclear Information System (INIS)

    Tamanoi, K.; Ishitobi, M.; Shinohara, Y.

    1990-01-01

    An expert system to deal with radioactive material transportation was developed. This expert system is based on 'Regulations for the Safe Transport of Radioactive Material' by IAEA issued 1985. IAEA published the regulations under such environments that safety transportation has become increasingly being focused as uses of radioactive materials are more pervasive, not only in nuclear field but also in non-nuclear purposes. Attentions are payed for operators and environment to establish safety in handling radioactive materials. In the 1985 regulations, detailed categorization of radioactive materials and, correspondingly, new classification of packages are introduced. This categorization is more complicated than old regulations, leading us to develop an expert system to evaluate easily the packages categorization. (author)

  5. Regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1995-01-01

    Regulations and rules for the safe transport of radioactive materials by all kinds of conveyance are offered. Different types of packages and the conditions associated with the methods of safe packaging are given

  6. Packaging and transportation of radioactive materials: summary program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference. (DC)

  7. Transport of radioactive materials and equipment. Requirements. (Provisional)

    International Nuclear Information System (INIS)

    1983-01-01

    This standard is aimed at establishing the procedures that must be followed when transporting radioactive materials and equipment in Venezuelan Territory. The ''Consejo Nacional para el Desarrollo de la Industria Nuclear'' is responsible for their fulfillment and control

  8. Quality management in the regulation of radioactive material transport

    International Nuclear Information System (INIS)

    Barenghi, Leonardo; Capadona, Nancy M.; Lopez Vietri, Jorge R.; Panzino, Marina; Ceballos, Jorge

    2006-01-01

    The paper describes the quality management procedure used by the Argentine Nuclear Regulatory Authority to establish the regulations concerning the safe transport of radioactive materials. The quality management system is based on the family of the ISO 9000 norms [es

  9. Packaging requirements and procedures for the transport of radioactive materials

    International Nuclear Information System (INIS)

    White, M.C.

    1980-01-01

    Canadian regulations on the transportation of radioactive materials are based on those formulated by the IAEA. A synopsis of these regulations is presented, and the background to certain key provisions is explained. (LL)

  10. Handbook for structural analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-04-01

    This paper described structural analysis method of radioactive material transport casks for use of a handbook of safety analysis and evaluation. Safety analysis conditions, computer codes for analyses and stress evaluation method are also involved in the handbook. (author)

  11. Original jurisdiction in matters relating to transport of radioactive substances

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Decisions on actions for avoidance of government supervision in matters of transport of radioactive substances are placed under the original jurisdiction of administrative courts. (Kassel Administrative Court, decision of 20 December 1988 - 8 A 699/88). (orig.) [de

  12. Packaging and transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Smith, M.J.S.; Streatfield, R.E.

    1987-02-01

    The paper presents an overview of Nirex proposals for the packaging and transport of low and intermediate-level radioactive waste, as well as the regulatory requirements which must be met in such operations. (author)

  13. Packaging and transportation of radioactive materials: summary program

    International Nuclear Information System (INIS)

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference

  14. Considerations concerning the secure transport of radioactive materials in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    As UNO member and founding member of the IAEA, Romania has implemented national regulations concerning the transport of radioactive materials in complete safety, complying with recommendations by IAEA and other international organizations. Accordingly, the National Commission for Nuclear Activities Control, CNCAN, issued the Directive no. 374/October 2001 which provides the rules for secure radioactive material transport in Romania on roads, rail ways, sea/fluvial and air ways. The paper presents the main sources of producing radioactive materials focussing the following: mining of natural uranium ore, nuclear fuel fabrication plants, nuclear power plants operation, nuclear research reactors, industrial use of radioactive sources (as gamma radiography), use of radioisotope in scientific, educational or medical units. The paper pays attention to the special routes and containers adopted for most secure transport of radioactive waste. Finally, one presents specific issues relating to identification and evaluation of the risk factors occurring at the transport of radioactive waste, as well as the potential radiological consequences upon population and environment. Estimated are the collective risk doses for different categories of populations from areas adjacent to the routes of radioactive materials transportation. It is stressed that the annual collective dose which the population is exposed to in case of accident is comparable with the dose from the natural (cosmic radiation background)

  15. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  16. Transportation incidents involving Canadian shipments of radioactive material

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1979-06-01

    This paper gives a brief statement of the legislation governing the transportation of radioactive materials in Canada, reviews the types of shipments made in Canada in 1977, and surveys the transportation incidents that have been reported to the Atomic Energy Control Board over the period 1947-1978. Some of the more significant incidents are described in detail. A totAl of 135 incidents occurred from 1947 to 1978, during which time there were 644750 shipments of radioactive material in Canada

  17. Trasmar: automated vehicle for transport of radioactive materials

    International Nuclear Information System (INIS)

    Segovia R, J.A.; Martinez J, L.

    2001-01-01

    Traditionally robots have been used for industrial applications, even though area in which these devices had a deep impact is in the nuclear industry. The ININ is an Institute that must to manage and to work with radioactive substances. The ININ is also responsible of the storage and supervision of radioactive wastes in the country, therefore the applications of the automated systems in the Institute have as the main objective to reduce the exposure and the contact of personnel with the radioactive material. Here to, it has been proposed the project called Assisted Transportation of Radioactive Material (TRASMAR). (Author)

  18. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE's development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE's Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade

  19. Quality assurance for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    All activities related to the safe transport of radioactive material should be covered by a quality assurance programme. This publication recognizes that a single transport operation often involves several different organizations, each having specific responsibilities. Hence, it is unlikely that the operation will be covered by a single quality assurance programme. Each quality assurance programme should be tailored to the specific organizational structure for which the programme is prepared, with account taken of the particular transport activities of that organization and the interfaces with other organizations. The aim of this publication is to give a detailed interpretation of what must be done by whom to produce a quality assurance programme for radioactive material transport. This publication provides guidance on methods and practical examples to develop QA programmes for the safe transport of radioactive material. It provides information on how to develop the programme, the standards and the common features of a QA programme

  20. Specialized equipment needs for the transportation of radioactive material

    International Nuclear Information System (INIS)

    Condrey, D.; Lambert, M.

    1998-01-01

    To ensure the safe and reliable transportation of radioactive materials and components, from both the front and back-end of the nuclear fuel cycle, a transport management company needs three key elements: specialized knowledge, training and specialized equipment. These three elements result, in part, from national and international regulations which require specialized handling of all radioactive shipments. While the reasons behind the first two elements are readily apparent, the role of specialized equipment is often not considered until too late shipment process even though it plays an integral part of any radioactive material transport. This paper will describe the specialized equipment needed to transport three of the major commodities comprising the bulk of international nuclear transports: natural uranium (UF6), low enriched uranium (UF6) and fresh nuclear fuel. (authors)

  1. RADTRAN: a computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1977-04-01

    A computer code is presented which predicts the environmental impact of any specific scheme of radioactive material transportation. Results are presented in terms of annual latent cancer fatalities and annual early fatility probability resulting from exposure, during normal transportation or transport accidents. The code is developed in a generalized format to permit wide application including normal transportation analysis; consideration of alternatives; and detailed consideration of specific sectors of industry

  2. Legislative developments in radioactive materials transportation, September 1993--June 1994

    International Nuclear Information System (INIS)

    Worthley, J.A.; Reed, J.B.; Cummins, J.

    1994-07-01

    This is the eighth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the September 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period September 1, 1993--June 30, 1994. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Availability of on-line capability is anticipated by the end of August 1994. Users approved by DOE and NCSL will have access to the data base. This report contains the current status of legislation introduced in the 1993 and 1994 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices and changes in federal regulations pertinent to radioactive waste and hazardous materials transportation

  3. Legislative developments in radioactive materials transportation, April 1993--August 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-09-01

    This is the seventh report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the April 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period April 1, 1993--August 31, 1993. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of 1993. Users approved by DOE and NCSL will have access to the data base. A copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains the current status of legislation introduced in the 1993 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation

  4. The issue of safety in the transports of radioactive materials

    International Nuclear Information System (INIS)

    Pallier, Lucien

    1961-01-01

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel

  5. The basics in transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin

  6. Regulation of Transportation of Radioactive Material in Indonesia

    International Nuclear Information System (INIS)

    Nirwono, Muttaqin Margo; Choi, Kwang Sik

    2011-01-01

    1.1. Background Indonesia is a biggest archipelago country with 17,508 islands in 33 provinces. In transportation Indonesia has large number of airports, railways, roadways, waterways, and merchant marines. Since nuclear and radiation utilizations are expanding on whole country, the mobilization of these is usually placed outside of controlled facilities, in the public domain, and often entails movement between countries. The Indonesian Nuclear Energy Regulatory Agency (BAPETEN) is responsible for supervision and also authorization of the transport of radioactive material (TRM). TRM is the specific movement of a radioactive material consignment from origin to destination by public transportation (road or rail, water and air). This study aims to determine whether national regulation is harmonized with international practice in ensuring safety and security of TRM. The finding of this study will provide recommendation for enhancement of regulation on TRM. 1.2. Regulation of TRM in Indonesia Government Regulation (GR) No. 26, 2002 on the Safe Transport of Radioactive Material is implemented pursuant to Act 10, 1997 on Nuclear Energy. This GR was repealed GR 13, 1975 on TRM. The GR 26 consist of 16 chapters and 39 articles, included licensing: authority and responsibilities: packaging: radiation protection programme; training: quality assurance programme: type and activity limit of radioactive materials: radioactive materials with other dangerous properties: emergency preparedness: administrative sanction: and penal provisions. Principally, this GR adopted IAEA-TS-R-1, 'Regulations for the Safe Transport of Radioactive Material', 1996's Edition

  7. Transport of radioactive waste in Germany - a survey

    International Nuclear Information System (INIS)

    Alter, U.

    1995-01-01

    The transport of radioactive waste is centralised and coordinated by the German Railway Company (Deutsche Bahn AG, DB) in Germany. The conditioning of radioactive waste is now centralised and carried out by the Gesellschaft fuer Nucklear Service (GNS). The Germany Railway Company, DB, is totally and exclusively responsible for the transport, the GNS is totally and exclusively responsible for the conditioning of radioactive waste. The German Railway Company transports all radioactive waste from nuclear power plants, conditioning facilities and the existing intermediate storage facilities in Germany. In 1992 nearly 177 shipments of radioactive waste were carried out, in 1991 the total amount was 179 shipments. A brief description of the transport procedures, the use of different waste packages for radioactive waste with negligible heat generation and the transport routes within Germany will be given. For this purpose the inspection authorities in Germany have used a new documentation system, a special computer program for waste flow tracking and quality assurance and compliance assurance, developed by the electrical power companies in Germany. (Author)

  8. Transportation legislative data base : state radioactive materials transportation statute compilation, 1989-1993

    Science.gov (United States)

    1994-04-30

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United...

  9. Transport of radioactive sources-an environmental problem

    International Nuclear Information System (INIS)

    Merckaert, G.

    1996-01-01

    Full text: The transport of dangerous goods is submitted to various regulations. These can be international, national or regional and they can differ from country to country. The basis for the regulations for dangerous goods can be found in the recommendations on the transport of dangerous goods, issued by the United Nations committee of experts on the transport of dangerous goods (orange book). For radioactive material the regulations for the safe transport of radioactive material, issued by the International Atomic Energy Agency (IAEA), are applied. The UN recommendations provide for 9 classes of dangerous goods. With regard to class 7, specifically related to the transport of radioactive material special recommendation relating to class 70, the IAEA regulations are referred to. These IAEA regulations for their part provide for 13 schedules, varying between weakly and highly radioactive. The radioactive sources which are used for non-destructive testing or for medical purposes are mostly sealed sources, i.e. the radioactive material is contained in a metallic shell. According to the nature of the isotope and their activity, the sources are transported either in industrial packagings, type A or type B packagings. According to the mode of transport, either air, sea, rail or road, various specific rules are applied, which however, are fortunately nearly completely harmonized. Special attention is paid to radiation protection, heat removal and the testing and fabrication of packagings. As a general rule, the safety of transport is based on the safety of the packagings, i.e. their ability to maintain, even in accident conditions, their capacity of tightness, shielding against radiation and removing the heat generated by the transported material

  10. Transportation of radioactive materials: the legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico

  11. Transportation of radioactive materials: the legislative and regulatory information system

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico.

  12. Legislative developments in radioactive materials transportation, November 1992--March 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-04-01

    This is the sixth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the November 1992 Legislative and Legal Developments in Radioactive Materials Transportation report and describes activities for the period November 1, 1992--March 31, 1993. NCSL is working to bring on-line a data base that contains abstracts of state laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of July 1993. Users approved by DOE and NCSL will have access to the data base. Hard copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains summaries of legislation introduced in the 1993 state legislative sessions. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness and general nuclear waste issues are described. Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation. A recent court decision is also summarized

  13. Transporting radioactive materials: Q ampersand A to your questions

    International Nuclear Information System (INIS)

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet

  14. The new context for transport of radioactive nuclear material

    International Nuclear Information System (INIS)

    Anne, Catherine; Galtier, Jerome

    2001-01-01

    The transportation of radioactive and nuclear materials, involves all modes of transportation (road, air, sea, rail) with predominance for road and for air (air for radioisotopes). In this paper we examine the impact of new evolutions in the fields of safety, security, logistics means, public acceptance and quality assurance

  15. Radioactive materials transport: a story of steady technical improvement

    International Nuclear Information System (INIS)

    Price, M.

    1991-01-01

    The transport of radioactive material is a fundamental part of the nuclear industry and equally vital to the use of radioisotopes in medical diagnosis and therapy. The safety record is impressively good and this aids open discussion of the subject. An independent consultant formerly with Atomic Energy Authority Technology reports on the Second International Conference on Transportation for the Nuclear Industry. (Author)

  16. New basic safety regulations of radioactive material transport in Russia

    International Nuclear Information System (INIS)

    Ananiev, V.V.; Ershov, V.N.; Shvedov, M.O.

    2004-01-01

    In the paper the system of normative regulation of radioactive material transport in Russia, basic principles and provisions of the new Russian regulations, available deviations from rules IAEA regulations are briefly considered. The problems, connected with putting in force of the new regulations in practice of transport, including problems of usage earlier designed and manufactured packages are considered as well

  17. US perspective of transporting radioactive materials by sea

    International Nuclear Information System (INIS)

    Chitwood, R.B.

    1978-01-01

    The reason for the US interest in transportation of radioactive materials by sea is discussed. The national and international institutional considerations related to this subject are covered. Some economic aspects in transporting these materials, particularly spent fuels, by sea are also presented

  18. International regulatory control of the transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1979-01-01

    The development of the IAEA regulations on the transport of radioactive materials and the background for the adoption of these regulations by the various international organizations responsible for regulating the different modes of international transport of hazardous materials is briefly discussed

  19. International Regulations for Transport of Radioactive Materials, History and Security

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2013-01-01

    International Regulations for the transport of radioactive materials have been published by International Atomic Energy Agency (IAEA) since 1961. These Regulations have been widely adopted into national Regulations. Also adopted into different modal Regulations such as International Air Transport Association (IATA) and International Martime Organization (IMO). These Regulations provide standards for insuring a high level of safety of general public, transport workers, property and environment against radiation, contamination, criticality hazard and thermal effects associated with the transport of radioactive wastes and materials. Several reviews conducted in consultation with Member States (MS) and concerned international organizations, resulted in comprehensive revisions till now. Radioactive materials are generally transported by specialized transport companies and experts. Shippers and carriers have designed their transport operations to comply with these international Regulations. About 20 million consignments of radioactive materials take place around the world each year. These materials were used in different fields such as medicine, industry, agriculture, research, consumer product and electric power generation. After September 11,2001, the IAEA and MS have worked together to develop a new guidance document concerning the security in the transport of radioactive materials. IAEA have initiated activities to assist MS in addressing the need for transport security in a comprehensive manner. The security guidance and measures were mentioned and discussed. The transport security becomes more developed and integrated into national Regulations of many countries beside the safety Regulations. IAEA and other International organizations are working with MS to implement transport security programs such as guidance, training, security assessments and upgrade assistance in these fields.

  20. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  1. Transportation accidents/incidents involving radioactive materials (1971-1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1993-01-01

    In 1981, Sandia National Laboratories developed the Radioactive Materials Incident Report (RMIR) database to support its research and development activities for the U.S. Department of Energy (DOE). The RMIR database contains information on transportation accidents/incidents with radioactive materials that have occurred since 1971. The RMIR classifies a transportation accident/incident in one of six ways: as a transportation accident, a handling accident, a reported incident, missing or stolen, cask weeping, or other. This paper will define these terms and provide detailed examples of each. (J.P.N.)

  2. Collection of ministerial circulars on the transport of radioactive substances

    International Nuclear Information System (INIS)

    1977-10-01

    This publication by the CNEN reproduces the full texts of Ministerial Circulars on the transport by road, rail, air and sea of radioactive substances, made in implementation of Act No. 1860 on the peaceful uses of nuclear energy of 1962, as amended by Decree No. 1704 of 1965, laying down that regulatory standards should be elaborated for such transport in accordance with the Euratom basic radiation protection standards and the IAEA Regulations on the Safe Transport of Radioactive Materials. These Circulars are set out in chronological order with reference to the national and international provisions under which they were made. (NEA) [fr

  3. Environmental effects associated with the transportation of radioactive material

    International Nuclear Information System (INIS)

    McClure, J.D.; Pope, R.B.; Yoshimura, H.R.

    1979-01-01

    The primary aim of this paper has been to describe some of the background information concerning nuclear materials transportation systems, accident statistics, accident severities, and test information - all of which when combined yield an environmental statement of the risks associated with the transportation of radioactive materials. The results of the ultimate risk analysis are expressed in terms of numbers of fatalities and, in that sense at least, tend to be an absolute measure of risk. When these risks are compared with other accepted societal risks, the relative risks associated with radioactive material transportation can be established. This information can be used to make decisions at the governmental level and to inform an interested public about these risks. It can be concluded that the risks associated with the transportation of radioactive material are low relative to the other risks that society has already accepted

  4. Regulations for the safe transport of radioactive material. 1996 ed.

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the revised version of the IAEA's Regulations for the Safe Transport of Radioactive Materials as approved by the Board of Governors in September 1996. It establishes standards of safety which provide an acceptable level of control of the radiation, criticality and thermal hazards to persons, property and the environment that are associated with the transport of radioactive material. After an introductory section, the publication is structured as follows: Section 2 defines the terms that are required for the purposes of the Regulations; Section 3 provides general provisions; Section 4 gives the activity limits and material restrictions used throughout these Regulations; Section 5 provides requirements and controls for transport; Section 6 provides requirements for radioactive materials and for packagings and packages; Section 7 provides requirements for test procedures; Section 8 provides approval and administrative requirements. The requirements for the transport of specified types of consignments are included in an abbreviated form as Schedules. Refs, figs, tabs

  5. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The following topics are discussed in this volume: shielding and criticality; transportation accidents; physical security in transit; transport forecasting and logistics; transportation experience, operations and planning; regulation; standards and quality assurance; risk analysis; and environmental impacts. Separate abstracts are prepared for individual items

  6. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The following topics are discussed in this volume: shielding and criticality; transportation accidents; physical security in transit; transport forecasting and logistics; transportation experience, operations and planning; regulation; standards and quality assurance; risk analysis; and environmental impacts. Separate abstracts are prepared for individual items. (DC)

  7. Emergency preparedness and response in transport of radioactive material

    International Nuclear Information System (INIS)

    Takani, Michio

    2008-01-01

    Nuclear power has been providing clean, affordable electricity in many parts of the world for nearly half a century. The national and international transport of nuclear fuel cycle materials is essential to support this activity. To sustain the nuclear power industry, fuel cycle materials have to be transported safely and efficiently. The nature of the industry is such that most countries with large-scale nuclear power industries cannot provide all the necessary fuel services themselves and consequently nuclear fuel cycle transport activities are international. The radioactive material transport industry has an outstanding safety record spanning over 45 years; however the transport of radioactive materials cannot and most not be taken for granted. Efficient emergency preparedness and response in the transport of radioactive material is an important element to ensure the maximum safety in accident conditions. The World Nuclear Transport Institute (WNTI), founded by International Nuclear Services (INS) of the United Kingdom, AREVA of France an the Federation of Electric Power Companies (FEPC) of Japan, represents the collective interest of the radioactive material transport sector, and those who rely on safe, effective and reliable transport. As part of its activities, WNTI has conducted two surveys through its members on emergency preparedness and response in the transport of radioactive material and emergency exercises. After recalling the International Atomic Energy Agency approach on emergency response, this paper will be discussing the main conclusion of surveys, in particular the national variations in emergency response and preparedness on the national and local levels of regulations, the emergency preparedness in place, the emergency response organisation (who and how), communication and exercises. (author)

  8. Assessment of Transportation Risk of Radioactive Materials in Uganda

    International Nuclear Information System (INIS)

    Richard, Menya; Kim, Jonghyun

    2014-01-01

    Radioactive materials refer to any materials that spontaneously emit ionizing radiation and of which the radioactivity per gram is greater than 0.002 micro-curie. They include: spent nuclear fuel, nuclear wastes, medical sources i.e. Co-60, industrial sources i.e. Cs-137, Am-241:Be, Ra-226, and sources for research. In view of the rising reported cancer cases in Uganda, which might be as a result of radiation exposure due to constant transportation of radioactive materials i.e. industrial sources, a risk analysis was thought of and undertaken for the country's safety evaluation and improvement. It was therefore important to undertake a risk assessment of the actual and potential radiation exposure during the transportation process. This paper explains a study undertaken for transport risk assessment of the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the industrial sources in Uganda. It provides estimates of radiological risks associated with visualized transport scenarios for the highway transport mode. This is done by calculating the human health impact and radiological risk from transportation of the sources along Busia transport route to Hoima. Busia is the entry port for the sources whilst Hoima, where various industrial practices that utilize sources like oil explorations are centered. During the study, a computer code RADTRAN-6 was used. The overall collective dose for population and package transport crew are 3.72E-4 and 1.69E-4 person-sievert respectively. These are less than the exemption value recommended by the IAEA and Uganda Regulatory Authority for public implying that no health effects like cancer are to be expected. Hence the rising cancer cases in the country are not as a result of increased transportation of radioactive materials in the Industrial sector

  9. Assessment of Transportation Risk of Radioactive Materials in Uganda

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Menya; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    Radioactive materials refer to any materials that spontaneously emit ionizing radiation and of which the radioactivity per gram is greater than 0.002 micro-curie. They include: spent nuclear fuel, nuclear wastes, medical sources i.e. Co-60, industrial sources i.e. Cs-137, Am-241:Be, Ra-226, and sources for research. In view of the rising reported cancer cases in Uganda, which might be as a result of radiation exposure due to constant transportation of radioactive materials i.e. industrial sources, a risk analysis was thought of and undertaken for the country's safety evaluation and improvement. It was therefore important to undertake a risk assessment of the actual and potential radiation exposure during the transportation process. This paper explains a study undertaken for transport risk assessment of the impact on the environment and the people living in it, from exposure to radioactivity during transportation of the industrial sources in Uganda. It provides estimates of radiological risks associated with visualized transport scenarios for the highway transport mode. This is done by calculating the human health impact and radiological risk from transportation of the sources along Busia transport route to Hoima. Busia is the entry port for the sources whilst Hoima, where various industrial practices that utilize sources like oil explorations are centered. During the study, a computer code RADTRAN-6 was used. The overall collective dose for population and package transport crew are 3.72E-4 and 1.69E-4 person-sievert respectively. These are less than the exemption value recommended by the IAEA and Uganda Regulatory Authority for public implying that no health effects like cancer are to be expected. Hence the rising cancer cases in the country are not as a result of increased transportation of radioactive materials in the Industrial sector.

  10. Quantification of risks at the transport of radioactive materials

    International Nuclear Information System (INIS)

    Hienen, J.F.A.; Jansma, R.

    1992-07-01

    Requirement of the risks which are coherent with the transport of hazardous elements are for the time being drawn up in a joint project by the Netherlands Ministries of SZW and VROM. In this project 'Requirements of risk for the transport of hazardous elements' (RNVGS) the transport of radioactive elements is not considered. To reach requirements for such a transport, the Directorate of Elements, Safety and Radiation of VROM has provided an assignment to ECN to make a quantitative analysis on the risks of transport of radioactive elements on the road. At the same time, they requested to examine in this performance study whether there are needed additional criteria specific for transport, along the criteria used for individual risk and group-risks. 55 refs., 1 fig., 16 refs

  11. Training of personnel in the field of radioactive materials transport

    International Nuclear Information System (INIS)

    Fasten, Ch.

    1997-01-01

    Training of personnel in the whole nuclear fuel cycle and also in the other fields of the use of radioactivity is one of the essentials with respect to compliance assurance. The transport of radioactive material is the only activity that takes place outside a facility: on roads, on railways, on the sea or in the air. A high level of safety is therefore an absolute requirement for all transport operations. To ensure this high level the training of the personnel involved in these activities plays an important role. Many studies show that most of the incidents in radioactive materials transport are caused by man-made errors: even so there have been no events with serious radiological consequences anywhere worldwide. There are many requirements in the various national and international regulations for the safe transport of radioactive material with regard to training. An overview is given of the special regulations, e.g. for road transport drivers, for safety advisers in the whole field of the transport of dangerous goods, for specially educated personnel in sea and air transports. In addition, the newest developments in the European Community in this field are discussed. An evaluation of the present regulations and proposals for further rules are also given. (Author)

  12. Transport of bundles and equipment which contain radioactive material

    International Nuclear Information System (INIS)

    1987-01-01

    This norm settles down: 1) The requirements that should be completed in relation to safety precautions and protection against ionizing radiations during the transport radioactive material and/or equipment containing it, in order to avoid risks to the collective and the environment. 2) The basic information on procedures that will be completed in the event of happening accidents during the transport or the transit storage of radioactive material and/or equipment that contain it. 3) The measures of security and physical protection during the transport of radioactive material and/or equipment containing it. This norm is applied: 1) To all the ways of transport (by air, by ground and by ship, fluvial and marine) of radioactive material and/or equipment that contain it. 2) To all natural or legal, public or private person, devoted to install, produce, trade, market, import or export radioactive materials and/or equipment containing it, and that needs to transport them as main or secondary activity [es

  13. Regulatory requirements for the transport of radioactive materials in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garg, R. [Canadian Nuclear Safety Commission, Ottawa (Canada)

    2004-07-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and

  14. Regulatory requirements for the transport of radioactive materials in Canada

    International Nuclear Information System (INIS)

    Garg, R.

    2004-01-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and efficiency

  15. First response to transportation emergencies involving radioactive materials

    International Nuclear Information System (INIS)

    1994-01-01

    This FEMA/DOE/DOT videocourse describes the basis for procedures to be used by emergency first responders for transportation accidents which involve radioactive materials. Various commercial and government sector radioactive materials shipment programs will be described and will include information about hazards and the elements of safety, proper first response actions, notification procedures, and state or federal assistance during emergencies. Primary audience: fire service and emergency management personnel

  16. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  17. Radioactive waste transport to a Nirex deep repository

    International Nuclear Information System (INIS)

    Bennett, D.; Appleton, P.R.; Eastman, C.R.

    1989-01-01

    Nirex is addressing the transport of radioactive wastes, repository construction materials, personnel and spoil as part of their development of a deep repository. An integrated transport system will be developed for wastes which may involve, road, rail and sea transport. The possible application and the scale of operation of the transport system is described. Environmental impact assessments will be carried out, and the proposed approach to these is described. A methodology for the assessment of transport safety has been established and the results of a preliminary assessment are given. (author)

  18. Technical regulations for road transport of radioactive materials

    International Nuclear Information System (INIS)

    Juul-Jensen, P.; Ulbak, K.

    1990-01-01

    The technical regulations for the transport of radioactive materials in Denmark are set down by the (Danish) National Board of Health in collaboration with the (Danish) National Institute for Radiation Hygiene in accordance with paragraph 3 of the Danish Ministry of Justice's Executive Order no. 2 of 2, January 1985 on the national road transport of dangerous goods by road, as amended by exutive order no. 251 of April 29th 1987 and no. 704 of November 1989. These regulations are presented here. They are almost identical, with only very few exceptions indicated in the publication, with the rules for Class 7 of the European convention on international transport of dangerous goods by road (ADR). In addition to the aforementioned regulations for national road transport of radioactive materials the general rules for the transport of radioactive materials found in the National Board of Health's executive order no. 721 of November 27th 1989 on the transport of radioactive materials are valid. The abovementioned executive orders, with the exception of certain supplements which are not part of the technical regulations, are also contained in this publication. (AB)

  19. Sea transport of radioactive materials in Egypt (invited paper)

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Gomaa, M.A.

    1998-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the experience gained. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the Canal from 1963 to 1996 and their nationalities are also discussed. The protective measures are mentioned. (author)

  20. INES scale: French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After getting the control of radioactive material transport in June 1997, the French safety Authority (ASN) decided to apply the INES scale to transport events. DGSNR (Directorate General for Nuclear Safety and Radioprotection) requests that radioactive material package consignors declare any event occurring during transportation, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. This paper deals with DGSNR's feedback during the past seven years concerning the french application of the INES scale. Significant events that occurred during transportation are presented. The French experience was used by IAEA to develop a draft guide in 2002 and IAEA asked countries to use a new draft for a trial period in July 2004

  1. Competent authority regulatory control of the transport of radioactive material

    International Nuclear Information System (INIS)

    1987-04-01

    The purpose of this guide is to assist competent authorities in regulating the transport of radioactive materials and to assist users of transport regulations in their interactions with competent authorities. The guide should assist specifically those countries which are establishing their regulatory framework and further assist countries with established procedures to harmonize their application and implementation of the IAEA Regulations. This guide specifically covers various aspects of the competent authority implementation of the IAEA Regulations for the Safe Transport of Radioactive Material. In addition, physical protection and safeguards control of the transport of nuclear materials as well as third party liability aspects are briefly discussed. This is because they have to be taken into account in overall transport regulatory activities, especially when establishing the regulatory framework

  2. Aspects of safety in the transport of radioactive materials

    International Nuclear Information System (INIS)

    Ruiz C, M.A.

    1991-01-01

    The transport of radioactive materials behaves to the equal that other chemical products, certain risks that its are necessary to know how to evaluate and to minimize, adopting all kinds of measures technician-administrative, with object of being able to guarantee that this risks stay in an acceptable level for the population potentially affected for the workers of the one sector and for the environment. To be able to evaluate the risk acceptable it is a difficult task, for that, national and international organizations have established a commitment to develop standards of radiological protection, to make every day but sure the transport of radioactive materials

  3. A Scenario Proposal For A Radioactive Waste Transport Accident

    International Nuclear Information System (INIS)

    Salama, M.A.; Rashad, S.M.

    1999-01-01

    In spite of all precautions that being taken during radioactive materials transport accidents to ensure safe transportation of these materials; there is still a probability for accidents to occur which, may be accompanied by injury or death of persons and damage of property So, in response to the increasing possibilities of accidents in Egypt, the government had prepared an emergency response plan for radiological accidents to coordinate the response efforts of all the national agencies. Trends for use of the radioactive materials and sources inside the country for the purpose of medical diagnosis and treatment as well as in industrial applications, are increasing. The radioactive waste resulted from these activities are transported from the centres where these materials being used to the waste management facility where they are treated and finally disposed safely at disposal site. The aim of the emergency exercise scenario is to test not only the main components of the emergency plan but also the level of emergency preparedness; that is the effectiveness with which the actions or combined actions of the different organizations involved in an emergency can be put into practice. The motivation of the present paper was undertaken to give a scenario proposal for the radiological emergency actions taken in case of a transport accident for a radioactive waste material (type A- package ) transported by a vehicle from one of the medical centers to a disposal site, 40 km northeast of cairo

  4. Safe Transport of Radioactive Material, Philosophy and Overview

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shinawy, R M.K. [Radiation Protection Dept., Nuclear Rasearch Center, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others.

  5. Safe Transport of Radioactive Material, Philosophy and Overview

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2008-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others

  6. Radioactive materials transportation; Pengangkutan bahan radioaktif

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The chapter briefly discussed the following subjects: packaging and it`s procedures and requirements, extra requirement for large sources, rules and guides of packaging and transportation, classification of packages before delivery.

  7. Atmospheric transport, diffusion, and deposition of radioactivity

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1969-01-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  8. Atmospheric transport, diffusion, and deposition of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T V [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    From a meteorological standpoint there are two types of initial sources for atmospheric diffusion from Plowshare applications. One is the continuous point-source plume - a slow, small leak from an underground engineering application. The other is the large cloud produced almost instantaneously from a cratering application. For the purposes of this paper the effluent from neither type has significant fall speed. Both are carried by the prevailing wind, but the statistics of diffusion for each type are different. The use of constant altitude, isobaric and isentropic techniques for predicting the mean path of the effluent is briefly discussed. Limited data are used to assess the accuracy of current trajectory forecast techniques. Diffusion of continuous point-source plumes has been widely studied; only a brief review is given of the technique used and the variability of their results with wind speed and atmospheric stability. A numerical model is presented for computing the diffusion of the 'instantaneously-produced' large clouds. This model accounts for vertical and diurnal changes in atmospheric turbulence, wet and dry deposition, and radioactivity decay. Airborne concentrations, cloud size, and deposition on the ground are calculated. Pre- and post-shot calculations of cloud center, ground level concentration of gross radioactivity, and dry and wet deposition of iodine-131 are compared with measurements on Cabriolet and Buggy. (author)

  9. Education and training in transport of radioactive material

    International Nuclear Information System (INIS)

    Carvalho, Bruno Natanael; Pastura, Valeria da Fonseca e Silva; Mattar, Patricia; Dias, Carlos R.

    2013-01-01

    This paper presents the approach adopted by the Department of Transportation of the Brazilian National Nuclear Energy Commission - CNEN, in the creation of the course of education and training distance for transport companies, as well as for national institutions directly involved with the theme transportation of radioactive materials. The course will consist of 20 modules containing exercises and further assessment of learning, and enable participants to understand the regulatory terminology, assimilating the philosophy of nuclear and radiation safety, prepare the shipment and identify and fill the complete documents required in an operation transport

  10. Calculations on safe storage and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)

    1997-12-31

    In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.

  11. Permissible state permit/fee systems for radioactive materials transportation

    International Nuclear Information System (INIS)

    Friel, L.

    1987-01-01

    Many state permit/fee systems for radioactive materials transportation have been ruled inconsistent with federal law invalidated by the courts. As the date for repository operation, and its associated transportation, draws near, more states can be expected to adopt permit/fee systems. Examination of the U.S. Department of Transportation's advisory rulings and federal court cases on previous permit/fee systems gives general guidance on the type of permit/fee systems most likely to withstand challenges. Such a system would: have a simplified permit application with minimal information requirements; address a federally-defined class of hazardous or radioactive materials; allow access to all shipments conducted in compliance with federal law; charge a fee reasonably related to the costs imposed on the state by the transportation; and minimize the potential for re-directing shipments to other jurisdictions

  12. The French nuclear safety authority's experience with radioactive transport inspection

    International Nuclear Information System (INIS)

    Jacob, E.; Aguilar, J.

    2004-01-01

    About 300,000 radioactive material packages are transported annually in France. Most consist of radioisotopes for medical, pharmaceutical or industrial use. On the other hand, the nuclear industry deals with the transport of fuel cycle materials (uranium, fuel assemblies, etc.) and waste from power plants, reprocessing plants and research centers. France is also a transit country for shipments such as spent fuel packages from Switzerland or Germany, which are bound for Sellafield in Great Britain. The French nuclear safety authority (DGSNR: Directorate General for Nuclear Safety and Radioprotection) has been responsible since 1997 for the safety of radioactive material transport. This paper presents DGNSR's experience with transport inspection: a feedback of key points based on 300 inspections achieved during the past five years is given

  13. Radioactivity transport following steam generator tube rupture

    International Nuclear Information System (INIS)

    Hopenfeld, J.

    1985-03-01

    A review of the capabilities of the CITADEL computer code as well as plant experience to project radioactivity releases following a steam generator tube rupture in PWR's shows that certain experimental data are needed for reliable off-site dose predictions. This article defines five parameters which are the key for such predictions and discusses the functional dependence of these parameters on various operational variables. The above parameters can be used in conjunction with CITADEL or they can be inserted in the appropriate equations which then conveniently can be programmed as a subroutine in thermal-hydraulic system codes. A joint Westinghouse, Electric Power Research Institute and Nuclear Regulatory Commission Program aimed at obtaining the five parameters empirically is described

  14. Radiological transport aspects of radioactive materials in Brazil

    International Nuclear Information System (INIS)

    Arrieta, C.M.A.; Guimaraes, C.A.; Meldonian, N.L.

    1986-01-01

    Many different types of radioactive materials are transported annually throughout the country, mainly those related with the nuclear fuel cycle and with the use in medicine, industry, agriculture and research fields. Considering the high number of packages that are transported by air and road a study is presented in order to assess their radiological aspects. For this purpose, data concerning the most significant radioisotopes are pointed out, including their activities and doses incurred by workers. (Author) [pt

  15. UK experience of managing a radioactive materials transport event database

    International Nuclear Information System (INIS)

    Barton, N.J.; Barrett, J.A.

    1999-01-01

    A description is given of the transport event database RAMTED and the related annual accident and incident reports. This database covers accidents and incidents involving the transport of radioactive material in the UK from 1958 to the present day. The paper discusses the history and content of the database, the origin of event data contained in it, the criteria for inclusion and future developments. (author)

  16. Revised legislation affecting the transport of radioactive materials

    International Nuclear Information System (INIS)

    Rowlands, R.P.

    1976-01-01

    The revised edition of the model Regulations for the safe transport of radioactive materials (1973, Vienna, International Atomic Energy Agency Safety Series no.6) has acted as the basis for the conditions of carriage and regulatory requirements in Great Britain. The changes introduced in this revised edition are discussed, and the current Regulations and Codes of Practice covering U.K. and international transport by road, sea, rail and air reviewed. (U.K.)

  17. Requirements applied in Cuba to the transport of radioactive materials

    International Nuclear Information System (INIS)

    Ouevedo Garcia, J.R.; Lopez Forteza, Y.

    1998-01-01

    The objective of this paper is to comment the supplementary requirements imposed by the Competent Authority to the operations of the main importing/delivering enterprise of unsealed sources for approvals and administration since the establishment, in 1987, of the legal framework on transport of radioactive materials. The paper summarizes the achieved results in this field in over 11 years operation. (author)

  18. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  19. Radioactive materials transportation by motorbike in entire Brazil territory

    International Nuclear Information System (INIS)

    2006-09-01

    This Regulation refers to the interpretation of the term vehicle in the Chapter 3 of the CNEN-NE.5.01 'Vehicle: road vehicle (including articulated vehicle, i.e., combination of tractor and semi-trailer), car or railway wagon. Each wagon should be considered a separate vehicle'. This definition does not include the possibility of radioactive material transportation by motorbike

  20. The Transport of Radioactive Materials under special arrangement

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Vietri, J.R.L.

    1993-01-01

    The Agency's Regulations for the Safe Transport of Radioactive Material rule the international transport of these materials and provide the basis of national and regional regulations. The Regulations establish the technical, operational and administrative requirements which shall be accomplished to carry out the transport of radioactive materials (RAM). They also allow the transport in different conditions of those currently applicable and, in such cases, establish that the transport shall be made under special arrangement. To approve a transport under special arrangement the involved Competent Authority shall be satisfied that the alternative provisions are adequate to ensure that the overall level of safety in transport and in-transit storage is at least equivalent to that which would be provided if all the applicable requirements had been met (para. 2ll of the International Atomic Energy Agency Safety Series No. 6). This paper explains some difficulties the Argentine Competent. Authority has experienced trying by comparing the equivalence between the level of safety resulting from the compliance with current requirements and the overall level of safety which is provided by the application of alternative provisions. As most of the experience gained come from the transport of RAM by road, only this mode of transport is considered. (J.P.N.)

  1. Low-level radioactive waste transportation safety history

    International Nuclear Information System (INIS)

    McClure, J.D.

    1997-01-01

    The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation's (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described

  2. Management system for regulating transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The objective of this paper is to describe the main characteristics and fundamentals of the Nuclear regulatory Authority's (Autoridad Regulatoria Nuclear, ARN) management system applied to the regulation of transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TRM process from now on. ARN's quality management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TRM process was split into five sub processes in order to facilitate the implementation of quality system. Such sub processes were defined taking account of the main functions developed by ARN in the branch of safe transport of radioactive materials and are listed below: 1) Development and updating of standards and regulatory guides; 2) Licensing of packages, special radioactive materials and consignments of radioactive materials; 3) Compliance assurance during the transport of radioactive materials, and 4) Training, advising and communications. For each of these sub processes were specified their objectives, inputs, activities and outputs, the clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. It was decided to develop a quality plan to organize and manage activities to meet quality requirements, to optimize the use of limited resources of the organization and to be used as a basis for monitoring and assessing compliance with the requirements, both internal and external. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to implement continuous improving. Simultaneously, some indexes were defined to monitor and measure the sub processes as a way to show

  3. Radiation doses arising from the air transport of radioactive materials

    International Nuclear Information System (INIS)

    Gelder, R.; Shaw, K.B.; Wilson, C.K.

    1989-01-01

    There is a compelling need for the transport of radioactive material by air because of the requirement by hospitals throughout the world for urgent delivery for medical purposes. Many countries have no radionuclide-producing capabilities and depend on imports: a range of such products is supplied from the United Kingdom. Many of these are short lived, which explains the need for urgent delivery. The only satisfactory method of delivery on a particular day to a particular destination is often by the use of scheduled passenger air service. The International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO 1987-1988), prescribe the detailed requirements applicable to the international transport of dangerous goods by air. Radioactive materials are required to be separated from persons and from undeveloped photographic films or plates: minimum distances as a function of the total sum of transport indexes are given in the Instructions. A study, which included the measurement and assessment of the radiation doses resulting from the transport of radioactive materials by air from the UK, has been performed by the National Radiological Protection Board (NRPB) on behalf of the Civil Aviation Authority (CAA) and the Department of Transport (DTp)

  4. Anticipated development in radioactive materials packaging and transport systems

    International Nuclear Information System (INIS)

    Williams, L.D.; Rhoads, R.E.; Hall, R.J.

    1976-07-01

    Closing the light water reactor fuel cycle and the use of mixed oxide fuels will produce materials such as solidified high level waste, cladding hulls and plutonium from Pu recycle fuel that have not been transported extensively in the past. Changes in allowable gaseous emissions from fuel cycle facilities may require the collection and transportation of radioactive noble gases and tritium. Although all of these materials could be transported in existing radioactive material packaging, economic considerations will make it desirable to develop new packaging specifically designed for each material. Conceptual package designs for these materials are reviewed. Special Nuclear Material transportation safeguards are expected to have a significant impact on future fuel cycle transportation. This subject is reviewed briefly. Other factors that could affect fuel cycle transportation are also discussed. Development of new packaging for radioactive materials is not believed to require the development of new technologies. New package designs will be primarily an adaptation of existing technology to fit the changing needs of a growing nuclear power industry. 23 references

  5. Transportation of radioactive materials: legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.; Heiskell, M.M.

    1980-01-01

    The transportation of radioactive materials, as well as hazardous materials in general, has been an issue of ever-increasing concern and an object of numerous regulations and legislative actions worldwide. The Transportation Technology Center of the US Department of Energy's Sandia Laboratories in Albuquerque, New Mexico, is currently involved in developing a national program to assure the safe shipment of radioactive materials. At Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, this overall effort is being supported in a specialized manner. As part of the Logistics Modeling program at ORNL, the Ecological Sciences Information Center has developed comprehensive data bases containing legislative and regulatory actions relevant to the transportation of hazardous materials. The data bases are separated according to status level of the legislation. The Current Legislation Data Base includes all new legislative actions introduced during the present year (1980) or those bills carried over from the previous year's sessions. The second data file, Historical Legislation Data Base, consists of all legislative actions since 1976 that have passed and become public laws, as well as those actions that were unsuccessful and were classified as denied by law. Currently the data bases include state-, local-, and federal, level legislation, with emphasis on the transportation of radioactive materials. Because of their relevance to the transportation issues, actions involving related subject areas such as, disposal and storage of radioactive wastes, moratoriums on power plant construction, and remedial actions studies, special agencies to regulate shipment of radioactive materials, and requirements of advanced notification, permits and escorts are also included in the data bases

  6. Application of radiation protection programmes to transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The principles for implementing radiation protection programmes (RPP) are detailed in the draft IAEA safety guide TS-G-1.5 'Radiation protection programmes for transport of radioactive material'. The document is described in this paper and analysis is made for typical applications to current operations carried out by consignors, carriers and consignees. Systematic establishment and application of RPPs is a way to control radiological protection during different steps of transport activity. The most widely transported packages in the world are radiopharmaceuticals by road. It is described an application of RPP for an organization involved in road transport of Type A packages containing radiopharmaceuticals. Considerations based on the radionuclides, quantities and activities transported are the basis to design and establish the scope of the RPP for the organizations involved in transport. Next stage is the determination of roles and responsibilities for each activity related to transport of radioactive materials. An approach to the dose received by workers is evaluated considering the type, category and quantity of packages, the radionuclides, the frequency of consignments and how long are the storages. The average of transports made in the last years must be taken into account and special measures intended to optimize the protection are evaluated. Tasks like monitoring, control of surface contamination and segregation measures, are designed based on the dose evaluation and optimization. The RPP also indicates main measures to follow in case of emergency during transport taking account of radionuclides, activities and category of packages for different accident scenarios. Basis for training personnel involved in handling of radioactive materials to insure they have appropriate knowledge about preparing packages, measuring dose rates, calculating transport index, labelling, marking and placarding, transport documents, etc, are considered. The RPP is a part

  7. Containers for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Bochard, C.

    1975-01-01

    The container for heat evolving radioactive materials has a metallic outer casing formed with outwardly projecting heat dissipating or cooling members, such as pins or fins, while each of its ends is formed with a flat flange which extends radially beyond the outer ends of the cooling members. A perforated wall extends between the flanges to define with same and with the periphery of the outer casing an annular space within which the cooling members are enclosed. This perforated wall is adapted to support a flexible covering sleeve the ends of which are clamped by inflatable seals between the periphery of the flanges and outer rings removably secured to the latter. Spraying means are provided within the aforesaid space to permit of projecting an uncontaminated liquid on the cooling members to cool the container before and/or while the latter is immersed in a loading and unloading pond with the sleeve mounted in position. The lower flange is provided with liquid collecting and evacuating means and compressed air may be injected into the said space to force the collected liquid outwardly. (auth)

  8. The recent international situation on the transport of radioactive material and IAEA 2003 transport conference

    International Nuclear Information System (INIS)

    Tani, Hiroshi

    2003-01-01

    Since the creation of the United Nations, the international community initiated efforts to harmonize international practices for the safe transport of hazardous goods, including radioactive material. And, IAEA is playing a key role in fostering the establishment of transport regulations on radioactive material. This current worldwide system of regulatory control has achieved an excellent safety record. However, some concerns still remain regarding the transport of radioactive material, as the discussion of this topic at IAEA General Conferences in the last few years. IAEA Transport conference planed as a forum in which to better understand these concerns, and to answer relevant underlying questions. At the same time, outside these technical areas, discussions also covered related issues such as liability resulting from an accident during the transport and communication between concerned governments, and between these governments and the public at large. The International Conference on the Safety of Transport of Radioactive Material took place in Vienna, Austria, from 7 to 11 July 2003. There were 534 nominated participants from 82 States, 9 intergovernmental organizations (IGOs), and 5 non-governmental organizations (NGOs), and there were 132 contributed and invited papers. By this report, I report the recent international situation on the transport of radioactive material and result of the IAEA 2003 Transport Conference. (author)

  9. Study on tracking system for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, F.; Igarashi, M.; Nomura, T. [Nuclear Emergency Assistance and Training Center, Japan Nuclear Cycle Development Inst., Ibaraki (Japan); Nakagome, Y. [Research Reactor Inst., Kyoto Univ., Osaka (Japan)

    2004-07-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on.

  10. Study on tracking system for radioactive material transport

    International Nuclear Information System (INIS)

    Watanabe, F.; Igarashi, M.; Nomura, T.; Nakagome, Y.

    2004-01-01

    When a transportation accident occurs, all entities including the shipper, the transportation organization, local governments, and emergency response organizations must have organized and planned for civil safety, property, and environmental protection. When a transportation accident occurs, many related organizations will be involved, and their cooperation determines the success or failure of the response. The point where the accident happens cannot be pinpointed in advance. Nuclear fuel transportation also requires a quick response from a viewpoint of security. A tracking system for radioactive material transport is being developed for use in Japan. The objective of this system is, in the rare event of an accident, for communication capabilities to share specific information among relevant organizations, the transporter, and so on

  11. Safety transport of radioactive waste in the nuclear power area

    Directory of Open Access Journals (Sweden)

    Tureková Ivana

    2017-01-01

    Full Text Available Radioactive wastes require strict rules for manipulation with them due to the hazards for the human health and environment, not excluding the hazards during their internal transport. The article deals with the transport of packing unit inside of the company and it proposes the possible alternatives so that meet the limit conditions and reduce the manipulation time with the radioactive material in the packing unit. The packing unite isolates fixated liquid waste from the environment while it also serves as protection. There are also important external radiation characteristics of package unit, which consist of measurable values of the scratch contamination surface and dose power on the surface of package unit. Thus, the paper is aimed to point out the necessity of the logistics during manipulation with the package unit in the process of internal transport so that the dose power of exposed employees would achieve the lowest possible level and meet the strict limits in a full extent.

  12. Development of alpha radioactivity monitor using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki

    2008-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'Clearance Level' for uranium and TRU radioactive waste. We carried out optimum design and realized two kinds of practical alpha activity monitor, combining with radiation detector technology, ionized air physics and computational fluid dynamics. The results will bring paradigm shift on the alpha-ray measurement such as converting 'closely contacting and scanning measurement' to 'remotely measurement in the block', and drastically improve the efficiency of measurement operation. We hope that this technology will be widely endorsed as the practical method for the alpha clearance measurement in future. (author)

  13. Transportation of radioactive materials routing analysis: The Nevada experience

    International Nuclear Information System (INIS)

    Ardila-Coulson, M.V.

    1991-01-01

    In 1987, the Nevada State Legislature passed a Bill requiring the Nevada Dept. of Transportation to develop and enforce a plan for highway routing of highway route controlled quantity shipments of radioactive materials and high-level radioactive waste. A large network with all the major highways in Nevada was created and used in a computer model developed by Sandia National Labs. Twenty-eight highway parameters that included geometrics, traffic characteristics, environment and special facilities were collected. Alternative routes were identified by minimizing primary parameters (population density and accident rates). An analysis using the US DOT Guidelines were performed to identify a preferred route from the alternative routes

  14. Development of alpha radioactivity measurement using ionized air transportation technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Naito, Susumu; Sano, Akira; Sato, Mitsuyoshi; Fukumoto, Masahiko; Miyamoto, Yasuaki; Nanbu, Kenichi; Takahashi, Hiroyuki

    2005-01-01

    Alpha radioactivity Measurement using ionized Air Transportation technology (AMAT) is developed to measure alpha contaminated wastes with large and complex surfaces. An outline of this project was described in this text. A major problem of AMAT technology is that the theoretical relation between alpha radioactivity and observed ion current is unclear because of the complicated behavior of ionized air molecules. An ion current prediction model covering from ionization of air molecules to ion detection was developed based on atmospheric electrodynamics. This model was described in this text, too. (author)

  15. Quality assurance in the transport and packaging of radioactive material

    International Nuclear Information System (INIS)

    Hale, J.

    1995-01-01

    Quality Assurance (QA) is a requirement of the International Atomic Energy Agency (IAEA) Safety Series No. 6 ''Regulations for Safe Transport of Radioactive Materials.'' It is also, increasingly, a customer requirement. British Nuclear Fuels plc (BNFL) Transport Division has established an integrated management system (including quality and safety) which is being extended to cover environmental aspects. The management system covers the design, procurement, manufacture, testing, documentation, use, maintenance, inspection and decommissioning of all packages used for the transport of radioactive materials and for interim storage. It also covers planning, programming and transport operations. These arrangements cover all modes of transport by road, rail, sea and air. The QA arrangements developed enable Transport Division to demonstrate to Competent Authorities, customers and the general public that the systems in place meet all regulatory requirements. This paper discusses what quality assurance is, why QA arrangements should be introduced and how they were established within Transport Division. Finally, the further developments in the Division's quality arrangements using the tools and techniques of Total Quality Management (TQM) and the European Foundation for Quality Management Model for Self Assessment are described

  16. Broad survey of radioactive waste transports and trends

    International Nuclear Information System (INIS)

    Blum, P.T.

    1986-01-01

    This survey reviews Radioactive Waste (RW) transports in different countries, giving the origins, amounts, distances and modes of transport for the different RW categories currently moved. It appears that: present transport experience concerns mainly Low and Medium level Wastes (LMW) and Spent nuclear Fuel (SF); RW transports are implemented in compliance with IAEA recommendations which proved particularly helpful to gain public acceptance; the bulk of LMW is transported as Low Specific Activity (LSA) materials (i.e. with packaging requirements just equivalent to those needed for their disposal) and SF as well as liquid RW are transported in 'type B' packagings which withstand severe accident conditions; records indicate that transport worker irradiation is kept much below allowable limits and that accidents during RW transports did not cause significant release of activity to environment; and the cost of RW transports including insurances, is small compared to that of RW processing and disposal. Therefore, one may comment that RW movements are by no means slowed down by transport problems and just follow the demand which in some countries may be delayed by reasons linked to RW disposal strategy or its public acceptance. This survey presents also an assessment of RW transports until the end of this century

  17. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  18. Mobile crud and transportation of radioactivity in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H-P. [Studsvik Nuclear AB, Nykoping (Sweden); LTU, Div. of Chemical Engineering, Lulea (Sweden); Hagg, J. [Ringhals AB, Varobacka (Sweden)

    2010-07-01

    Mobile crud is here referred to as a generic term for all types of particles that occur in the reactor water in BWRs and that are able to carry radioactivity. Previous results in this on-going series of studies in Swedish BWRs suggest that there are particles of different origins and function. A share may come from fuel crud and others may come from detachment, precipitation and dissolution processes in different parts of the BWR primary system, as well as from other system parts, such as the turbine/condenser. In addition, crud particles in this sense may come from purely mechanical processes such as degradation of graphite containing parts of the control rod drives. Therefore, the overall aim was to evaluate which particles are responsible for the transportation and distribution of radioactivity and also to clarify the chemical conditions under which they are formed. Furthermore the aim was to draw conclusions about how the chemistry would be like in order to avoid or at least minimize the formation of radioactivity distributing particles. A specific objective has also been to look into the importance of particle size for spreading of radioactivity in the primary system. Different types of crud particles are likely to have different characteristics in terms of function associated with transportation of radioactivity. The fuel crud is radioactive from the source and other types of crud can via surface processes, co-precipitation and other chemical and mechanical processes potentially affect the distribution of radioactivity in the primary system. In order to predict how operating parameters (e.g. stable, full power operation and scram) and chemical parameters (NWC/HWC/Zn, etc.) will affect the activity build-up on the system surfaces, it is important to know how the different types of crud are affected by these and related parameters. Fuel crud fixed on cladding ring samples, as well as mobile crud from the reactor water captured on filters, were examined by

  19. Radionuclide transport behavior in a generic geological radioactive waste repository.

    Science.gov (United States)

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  20. Radioactive materials and nuclear fuel transport requirements in Poland in the light of international regulations

    International Nuclear Information System (INIS)

    Musialowicz, T.

    1977-01-01

    National regulations for the transport of radioactive materials and nuclear fuel in Poland are discussed. Basic transport requirements and regulations, transport experience including transport accidents and emergency service are described. The comparison with international regulations is given

  1. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  2. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials

  3. The international radioactive transportation regulations: A model for national regulations

    International Nuclear Information System (INIS)

    Pope, R.B.; Rawl, R.R.

    1990-06-01

    The International Atomic Energy Agency's (IAEA) Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6 (herein after denoted as the ''International Regulations'') serve as the model for the regulations for individual countries and international modal organizations controlling the packaging and transportation of radioactive materials. The purpose of this paper is to outline the background and history of the International Regulations, the general principles behind the requirements of the International Regulations, the structure and general contents of the latest edition of the International Regulations, and the roles of various international bodies in the development and implementation of the International Regulations and the current status of regulatory and supportive document development at both the international and domestic level. This review will provide a basis for users and potential users to better understand the source and application of the International Regulations. 1 tab

  4. Transport of radioactive ions in soil by electrokinetics

    International Nuclear Information System (INIS)

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-10-01

    An electrokinetic approach is being evaluated for in situ soil remediation at the Hanford Site in Richland, Washington. This approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The work discussed in this paper involves the development of a new method to monitor the movement of the radioactive ions within the soil during the electrokinetic process. A closed cell and a gamma counter were used to provide iii situ measurements of 137 Cs and 60 Co movement in Hanford soil. Preliminary results show that for an applied potential of 200 V over approximately 200 hr, 137 Cs and 60 60 were transported a distance of 4 to 5 in. The monitoring technique demonstrated the feasibility of using electrokinetics for soil separation applications

  5. Workplace characterizations in case of rail transport of radioactive materials

    International Nuclear Information System (INIS)

    Donadille, L.; Itie, C.; Lahaye, T.; Muller, H.; Bottolier-Depois, J.F.

    2005-01-01

    Full text: Radioactive fuel and wastes are frequently transported for storage and/or reprocessing purposes. The main part of this transport is generally done by train. Before, during and after the journey, operators and drivers, who work directly in contact with and in the vicinity of the wagons, are exposed to external irradiations due to the radioactive materials that are confined inside the containers. In order to evaluate the dose that its personnel is liable to receive during such transports, the French National Railway Company (SNCF) has requested to the Institute of Radiological Protection and Nuclear Safety (IRSN) a series of workplaces characterizations for convoys of different types, that are considered to be representative of all types of possible transports. Each one is associated to a given radioactive material (low and medium activity wastes, new and used fuel, MOX, uranium fluoride, etc... ), involving photon or mixed neutron-photon fields. This measurement campaign has started in May 2004 and by the end of 2004 at least four types of radioactive convoys will have been investigated (three have already been measured). By using survey meters and spectrometers, the study consists in measuring the external exposure for different stages of the work that is done beside the wagons (for example coupling / decoupling two wagons, or checking the brakes) and inside the locomotive (driving). For each one of these workplaces, the exposure is estimated in terms of the ambient dose equivalent H*(10) by summing the dose all along the different phases carried out by the operator. In addition, a dosimetric characterization of each convoy is made by performing measurements along the wagons and spectrometric information about the photon and/or neutron fields are collected. This study provides helpful data to predict the dose that the operators are liable to integrate over long periods, typically one year. (author)

  6. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    1982-03-01

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  7. Expert systems for the transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Luce, C.E.; Clover, J.C.; Ferrada, J.J.

    1994-01-01

    Under the supervision of the Transportation Technologies Group which is in the Chemical Technology Division at Oak Ridge National Laboratory, an expert system prototype for the transportation and packaging of hazardous and radioactive materials has been designed and developed. The development of the expert system prototype focused on using the combination of hypermedia elements and the Visual Basic trademark programming language. Hypermedia technology uses software that allows the user to interact with the computing environment through many formats: text, graphics, audio, and full-motion video. With the use of hypermedia, a user-friendly prototype has been developed to sort through numerous transportation regulations, thereby leading to the proper packaging for the materials. The expert system performs the analysis of regulations that an expert in shipping information would do; only the expert system performs the work more quickly. Currently, enhancements in a variety of categories are being made to the prototype. These include further expansion of non-radioactive materials, which includes any material that is hazardous but not radioactive; and the addition of full-motion video, which will depict regulations in terms that are easy to understand and which will show examples of how to handle the materials when packaging them

  8. Management System for Regulating Transport of Radioactive Material

    International Nuclear Information System (INIS)

    Lopez Vietri, J.R.; Capadona, N.M.; Barenghi, L.G.

    2011-01-01

    The objective of this paper is to describe the main characteristics of the Nuclear Regulatory Authority (Autoridad Regulatoria Nuclear - ARN) management system applied to the transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TMR from now on. ARN's management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TMR process was split into five sub processes in order to facilitate the implementation of the system. Such sub processes were defined taking into account of the main functions developed by ARN in the branch of safe transport of radioactive materials. For each of this processes were specified their objectives, inputs, activities and outputs, clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to achieve continuous improving. Simultaneously, some indexes were defined to monitor and measures sub processes as a way to show objective evidence of conformity with objectives. Finally, as conclusions of this paper, they will be showed the main obstacles and troubleshooting found in the design and implementation of management system as well as their solutions and state of advance. (authors)

  9. Specific equipment for the transfer and transport of radioactive liquids

    International Nuclear Information System (INIS)

    Leblais, R.

    1983-01-01

    Safety regulations impose a system of transport high-level radioactive liquids which excludes all risk of accidental projections. Ets. LEMER have collaborated with the A.E.C. for the industrial manufacture of more than 250 pieces of equipment for FRANCE and for 13 nuclear centres abroad. This equipment can be classified in two categories: - CENDRILLON containers which must be placed in special shock-proof and fire-proof shells for transport on public roads; - containers mounted on trailors provided with their own shock-proof and fire-proof protection

  10. Study of transport in unsaturated sands using radioactive tracers

    International Nuclear Information System (INIS)

    Merritt, W.F.; Pickens, J.F.; Allison, G.B.

    1979-01-01

    A laboratory experiment was conducted to investigate the mixing that occurs as a series of labelled pulses of water are transported by gravity drainage down through a sand filled column having a water table imposed at the bottom. It also demonstrated the utility of gamma-ray emitting radioactive tracers in studying transport in unsaturated or saturated porous media. The motivation for pursuing this topic was developed from observing that the content of oxygen-18, deuterium and tritium in rainwater shows marked temporal variations whereas their concentrations below the water table in shallow ground water flow systems are generally found to show much less variation. (auth)

  11. Emergency response arrangements for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Morgan-Warren, E.

    2004-01-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability

  12. Commercial low-level radioactive waste transportation liability and radiological risk

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  13. Commercial low-level radioactive waste transportation liability and radiological risk

    International Nuclear Information System (INIS)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers

  14. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    International Nuclear Information System (INIS)

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  15. United States experience in the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Platt, A.M.; Rhoads, R.E.; Hall, R.J.; Williams, L.D.; Brobst, W.A.; Shappert, L.B.; Jefferson, R.M.

    1977-01-01

    The transport of radioactive material forms a vital link in the nuclear fuel cycle in the United States. Actual U.S. experience and practice with such systems for the packaging and transport of uranium ore concentrates, uranium hexafluoride, fresh fuel, irradiated fuel, non-high-level waste, and plutonium with low heat generation rates are described. Specific shipping systems in current use for these services are illustrated. A comparison will be made of shipping requirements for nuclear parks versus dispersed facilities. Shipping systems for other fuel cycle materials (e.g., high-level waste and cladding hulls) have not been developed because there has been no need to transport these materials commercially. However, conceptual designs for packaging and transport of such materials have been developed. Selected systems are reviewed and summarized. Transport safety in the U.S. is regulated by the U.S. Department of Transportation and the Nuclear Regulatory Commission. Key regulations defining packaging requirements, allowable radiation dose rates, and handling procedures are reviewed. Although the radioactive material shipping industry has an outstanding safety record, opposition to nuclear fuel cycle shipments has surfaced in several areas. The U.S. congressional ban on the shipment of plutonium by air, the actions of New York City to prohibit certain shipments within the city limits, and the requirement of U.S. railroads to ship spent fuel casks only in dedicated trains are reviewed. In an attempt to provide information on the safety margins inherent in the design of radioactive materials packages, ERDA has undertaken a series of accident studies and full scale crash tests that stress the packages beyond the levels expected in severe accidents. In addition, the level of total risk associated with radioactive materials shipments is being evaluated. Current ERDA crash test and transportation risk assessment studies are reviewed. Concern about the possibility of

  16. Urban risks of truck transport of radioactive material

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1998-01-01

    Truck transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), normally maximizes use of Interstate highways, which are safer and more efficient for truck transport in general. In the estimation of transportation risks, population bordering a route is a direct factor in determining consequences and an indirect factor in determining exposure times, accident probabilities and severities, and other parameters. Proposals to transport RAM may draw intense resistance from stakeholders based on concern for population concentrations along urban segments but the length of a route segment is also a determinative factor in estimating the transport risks. To quantify the relative importance of these two factors, a potential route for transport of SNF (strict use of Interstate highways) was selected and compared with a modified version that bypassed urban areas. The RADTRAN 4 code for transportation risk assessment, which was developed at Sandia National Laboratories, was used in the present study to assess the relative risks of SNF transportation for alternative routes. The results suggest that emphasis on Interstate highways minimizes total route and urban segment risks

  17. The transport of radioactive matters. Situation of transport events occurred in France from 1999 to 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents transport events involving radioactive material, occurred on French territory from 1999 to 2007, listed in the I.R.S.N. database. 901 events have been recorded. For each of them, about 70 parameters have been collected from the analysis of the notifications and reports of the events (type of event, type of package, level on the INES scale). This synthesis informs about the annual evolution of transport events involving radioactive material and about their seriousness level. It also presents a short description of the incidents with radiological aspect and of the main events occurred in 2007. Then, an analysis of the most frequent types of events from 1999 to 2007 and of their evolution tendencies is presented. It gives a view of the elements that could be deduced from this feedback, in order to improve the safety of the radioactive material transports. (authors)

  18. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  19. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  20. Radiological impact assessment of the domestic on-road transportation of radioactive isotope wastes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Myung Hwan; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Technology Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Radioactive Waste Agency (KORAD) began to operate the low and intermediate level radioactive waste disposal facility in Gyeongju and to transport the radioactive waste containing radioactive isotopes from Daejeon to the disposal facility for the first time at 2015. For this radioactive waste transportation, in this study, radiological impact assessment is carried out for workers and public. The dose rate to workers and public during the transportation is estimated with consideration of the transportation scenarios and is compared with the Korean regulatory limit. The sensitivity analysis is carried out by considering both the variation of release ratios of the radioactive isotopes from the waste and the variation of the distances between the radioactive waste drum and worker during loading and unloading of radioactive waste. As for all the transportation scenarios, radiological impacts for workers and public have met the regulatory limits.

  1. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    1993-01-01

    On February 17,1989, the Midwestern Office of The Council of State Governments and the US Department of Energy entered into a cooperative agreement authorizing the initiation of the Midwestern High-Level Radioactive Waste Transportation Project. The transportation project continued to receive funding from DOE through amendments to the original cooperative agreement, with December 31, 1993, marking the end of the initial 5-year period. This progress report reflects the work completed by the Midwestern Office from February 17,1989, through December 31,1993. In accordance with the scopes of work governing the period covered by this report, the Midwestern Office of The Council of State Governments has worked closely with the Midwestern High-Level Radioactive Waste Committee. Project staff have facilitated all eight of the committee's meetings and have represented the committee at meetings of DOE's Transportation Coordination Group (TCG) and Transportation External Coordination Working Group (TEC/WG). Staff have also prepared and submitted comments on DOE activities on behalf of the committee. In addition to working with the committee, project staff have prepared and distributed 20 reports, including some revised reports (see Attachment 1). Staff have also developed a library of reference materials for the benefit of committee members, state officials, and other interested parties. To publicize the library, and to make it more accessible to potential users, project staff have prepared and distributed regular notices of resource availability

  2. Formation and transport of radioactive colloids in porous media

    International Nuclear Information System (INIS)

    Chung, J.Y.; Lee, K.J.

    1993-01-01

    This paper deals with the effect of the presence of colloids in natural groundwater on radionuclide transport. The system considered here treats groundwater as a dispersing medium and colloid or finely divided solid material resulting from several different repository sources as a dispersed phase. Evaluation of the radionuclides adsorption on colloid, concepts of effective transport velocity and migration distance, and mathematical formulation of the filtration equation were driven, along with the case studies using typical parameter values of a conceptual radioactive waste repository and concentration on the effect of poly dispersed colloid on radionuclide transport. This paper also introduces the three phase analysis to treat the radionuclide transport more practically. When compared with the previously published experimental data, the modified filtration equation gives a satisfactory result. Results of the case studies show that the reduction of colloidal size enhances the corresponding colloid concentration when colloidal transport is only affected by diffusion phenomena. However, the three phase analysis shows that this trend can be reversed if the colloidal filtration becomes a dominant mechanism in the colloidal transport. Consequently, these results show that colloid could play a very important role in radionuclide transport under a repository environment

  3. Quality assurance requirements for packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    Barker, R.F.; MacDonald, C.E.; Doda, R.J.

    1978-01-01

    This paper discusses the new quality assurance regulations of the Nuclear Regulatory Commission (NRC) for packaging and transportation of radioactive materials. These regulations became effective on October 18, 1977. Background information concerning these regulations and packaging and transportation history is included. The quality assurance program is described with indications of how it is composed of general (administrative) provisions which must meet the 18 quality assurance criteria and be approved by the NRC; specific provisions which appear in the DOT and NRC regulations and in the individual package design approval; and other specific procedures which are not required by regulations but which are necessary for the proper control of quality. The quality assurance program is to be developed using a graded approach for the application of pertinent criteria and optimizing the required degree of safety and control efforts involved in achieving this level of safety. The licensee-user is responsible for all phases of quality assurance for packaging activities including: design, manufacture, test, use, maintenance and repair. The package design phase is considered to be particularly important in producing adequate safety in operational activities concerning packaging and transportation of radioactive materials

  4. Transfer of radioactive materials in the fuel cycle. Transportation systems, transportation volume and radiation protection

    International Nuclear Information System (INIS)

    Schwarz, G.

    1997-01-01

    No other aspect of the carriage of hazardous goods has been provoking such long-lived concern in the general public and in the press during the last few years as the transport of spent nuclear fuels and high-level radioactive wastes to the storage facility at Gorleben. One reason for this controversy, besides clear-cut opposition in principal against such transfer activities, is the fact that there is an information gap, so that large parts of the population are not well informed about the relevant legal safety requirements and obligations governing such transports. The article therefore tries to fill this gap, presenting information on the number and necessity of transports of radioactive materials in the nuclear fuel cycle, the relevant scenarios, the transportation systems and packing and shielding requirements, as well as information on the radiological classification and hazardousness of waste forms. (Orig.) [de

  5. Relevant documents to IAEA regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Sabek, M.G.; Gomma, M.

    1998-01-01

    IAEA regulations for the safe transport of radioactive materials provide standards for insuring a high level of safety of people, property, and environment against radiation, contamination, and criticality hazards as well as thermal effects associated with the transport of radioactive materials. IAEA routinely publishes technical reports which are relevant to radioactive material transportation such as INTERTRAN, directory of transport packaging test facilities, and others. A case study was performed to assess the impact of transporting radioactive materials through the suez canal using the two computer codes namely INTERTRAN and RADTRAN-4 which are part of IAEA technical documents. A comparison of the results of these two codes is given

  6. Compliance assurance for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this book is to assist competent authorities in the development and maintenance of compliance assurance programmes in connection with the transport of radioactive material, and to assist applicants, licensees and organizations in their interactions, with competent authorities. In order to increase co-operation between competent authorities and to promote uniform application of international regulations and recommendations it is desirable to adopt a common approach to regulatory activities. This book is intended to assist in accomplishing such uniform application by laying down most of the actions that competent authorities need to provide for in their programmes for ensuring regulatory compliance. 23 refs, figs and tabs

  7. Risk assessment for transportation of radioactive materials and nuclear explosives

    International Nuclear Information System (INIS)

    Clauss, D.B.; Wilson, R.K.; Hartman, W.F.

    1991-01-01

    Sandia National Laboratories has the lead technical role for probabilistic risk assessments of transportation of nuclear weapons, components, and special nuclear material in support of the US Department of Energy. The emphasis of the risk assessments is on evaluating the probability of inadvertent disposal of radioactive material and the consequences of such a release. This paper will provide an overview of the methodology being developed for the risk assessment and will discuss the interpretation and use of the results. The advantages and disadvantages of using risk assessment as an alternative to performance-based criteria for packaging will be described. 2 refs., 1 fig

  8. Management and transport of radioactive wastes in Goiania, Brazil

    International Nuclear Information System (INIS)

    Xavier, A.M.; Mezrahi, A.

    1988-01-01

    The radiological accident occured in Goiania, which has led to the liberation to the environment of c.l.350 Ci of Cs-137, demanded the formulation of special procedures related to waste management and transport of radioactive materials to a provisory storage facility. The main objectives of the present article are to describe the work performed in the above mentioned fields and to point out the basic needs for Brazilian research and development in the areas of waste treatment and design and testing of packages. (author) [pt

  9. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  10. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Dantoin, T.S.

    1990-12-01

    For more than half a century, the Council of State Governments has served as a common ground for the states of the nation. The Council is a nonprofit, state-supported and -directed service organization that provides research and resources, identifies trends, supplies answers and creates a network for legislative, executive and judicial branch representatives. This List of Available Resources was prepared with the support of the US Department of Energy, Cooperative Agreement No. DE-FC02-89CH10402. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. The purpose of the agreement, and reports issued pursuant to it, is to identify and analyze regional issues pertaining to the transportation of high-level radioactive waste and to inform Midwestern state officials with respect to technical issues and regulatory concerns related to waste transportation

  11. Russian Containers for Transportation of Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

    2002-01-01

    The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified

  12. Risk assessment for the transportation of radioactive zeolite liners

    International Nuclear Information System (INIS)

    Gallucci, R.H.V.

    1982-01-01

    The accident risk is estimated for the shipment of two zeolite liners containing radioactive cesium and strontium. Each liner, assumed to hold 68,200 Ci and sealed inside a CNS 1 to 13C, type-B shipping cask, is transported by truck over a 4200-km route. The risk to the population along the route is calculated for potential transportation accidents involving fire, impact, and puncture forces. The total risk is 5.3E-7 man-rem (50-year inhalation dose) and the maximum dose (from the least-likely accident) is 0.7 man-rem. Both estimates are less than 0.1% of comparable risk measures for natural background radiation and spent fuel shipment accidents

  13. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who notifies tribes of the transport of radioactive waste... INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE) has...

  14. Determination of the radioactive aerosols transport coefficients generated in open pit uranium mining areas

    International Nuclear Information System (INIS)

    Azevedo Py Junior, D. de.

    1978-01-01

    The classical atmospheric transport model is applied to uranium mining operations. Among the transport parameters there is one concerned with radioactive decay, but it does not include the radioactive decay series which is the specific case for uranium. Therefore, an extension of the transport theory is developed and tested, giving results greater than the ones obtained with the classical model, as expected. (author)

  15. Spent Fuel and High-Level Radioactive Waste Transportation Report

    International Nuclear Information System (INIS)

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  16. Comparison of differences between ports for radioactive material transport

    International Nuclear Information System (INIS)

    Massey, C.D.; Wheeler, T.A.; Yoshimura, H.R.

    1994-01-01

    Recent controversy and litigation over the import/export of radioactive materials into and out of the United States via United States ports has centered on differences between ports, especially differences in surrounding population densities, and also whether reliance on one or a few ports poses unacceptable risks for these ports and the surrounding populations. This study examines the results of risk analyses from several recent environmental assessments dealing with import/export of various types of radioactive materials ranging from uranium hexafluoride to spent nuclear fuel. Since an intermodal transfer is always involved, the maritime and intermodal transportation is broken down into its component activities and segments; each is determined separately. The results indicate that most of the potential exposure occurs during routine handling of packages during intermodal transfer. Since handling of containerized cargo is highly standardized at ports around the world, differences between ports are of secondary importance. The risks associated with any overland transport from port to inland destination are primarily a function of distance for a given package type

  17. Spent fuel and high-level radioactive waste transportation report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  18. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  19. Spent fuel and high-level radioactive waste transportation report

    International Nuclear Information System (INIS)

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ''comprehensive overview of the issues.'' This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list

  20. State surveillance of radioactive material transportation. Final report

    International Nuclear Information System (INIS)

    Salomon, S.N.

    1984-02-01

    The main objective of this final report on the state surveillance of the transportation of radioactive material (RAM) is to suggest the most cost-effective inspection areas where enforcement actions might be taken by the states during their participation in the State Hazardous Materials Enforcement Development (SHMED) Program. On the basis of the lessons learned from the surveillance program, these actions are enforcement at low-level radioactive burial sites by means of civil penalties and site use suspension; enforcement at airports and at terminals that forward freight; and enforcement of courier companies. More effective and efficient enforcement can be achieved through instrumented police patrol cars and remote surveillance because they require the least amount of time of enforcement personnel. In addition, there is a strong relationship between effective emergency response and enforcement because the appropriate shipping papers, placarding and knowledge of appropriate emergency response procedures lead to improved emergency response. These lessons originate from a ten-state surveillance program from 1977 through 1981 jointly sponsored by the US Nuclear Regulatory Commission (NRC) and DOT. The states give recommendations in the categories of education, training, expanded surveillance, coordination and enforcement. The topics of special interest covered include low-level radioactive waste disposal sites, airports, cargo terminals, highways, ports, and accidents and incidents. The three most common problems in compliance with RAM transportation regulations reported by the states are incorrect package labeling; improper shipping papers; and incorrect or missing placards. Other common problems reported by the states are summarized. The relationship to other studies, the status of the SHMED Program, a synopsis of state RAM surveillance reports, and NRC/DOT expenditures are given

  1. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations

  2. Regulatory Framework and Current Practices of the Radioactive Material Safe and Secure Transport in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Grillo, B.; Telhaj, E.

    2016-01-01

    Attempts for the establishing of a safe and secure radioactive material transport in Albania began a decade ago with formulation of the different regulation in the field of safe and secure handling of the radioactive materials. In 2004 a special regulation for the safe transport of radioactive material was prepared and approved by the National Radiation Protection Commission). This regulation has been based in the IAEA standards for the radioactive material transport and was reviewed periodically. The last regulation of the radioactive material transport was approved by Albanian government through a governmental ordinance. The transport of the radioactive material in Albania is performed by licensed subjects, which fulfill all requirements of the mentioned governmental ordinance. Based in the existing regulation, for each transport of radioactive material, a special permission is issued by NRPC. The issuing of permission allows competent authority to provide necessary information on transport regularity and to have under survey all transports of the radioactive material carried out inside the country. Last year were issued more than 80 permissions for the transport of the different types and categories of the radioactive sources. (author)

  3. Doses to road transport workers from radioactive materials

    International Nuclear Information System (INIS)

    Lawrence, B.E.; van der Vooren, A.

    1988-12-01

    Each year approximately 750,000 packages of radioactive materials are shipped throughout Canada. Regulatory controls on these shipments are designed to keep radiation doses received by transport workers well within acceptable limits. Since many of these workers are not monitored for radiation exposure, however, little factual information has been available in Canada to support theoretical estimates. A study to document actual radiation doses received by a select group of transport workers that is actively involved in the shipment of radioactive materials, was carried out in 1987 and 1988. This study involved the monitoring of 31 candidates from nine transport companies from across the country that handle medical isotopes, industrial isotopes, uranium fuel cycle materials and associated radioactive wastes. Each of the candidates (consisting of driver, dock workers, sorters, and supervisors) was issued personal thermoluminescent dosimeter (TLD) badges that were worn each day during the six month monitoring period. Some of the candidates were also issued cab or area dosimeters that were left in the cabs of the vehicles or in work areas so that the dose received in these areas could be differentiated from total personal exposure. During the monitoring program, the candidates filled out reporting sheets at the end of each working day to document information such as the quantity of materials handled, handling times and vehicle size. This information and the dosimetry data were used in the development of correlations between materials handled and doses reported so that doses for other handling similar materials could be estimated. Based on the results of the study, it was learned that while most of the transport workers receive doses that are at or near background levels, other (particularly those handling medical isotopes) are exposed to levels of radiation that may result in their receiving doses above the 5 mSv per annum limit set for members of the general public. On

  4. A decade of successful domestic sea transports of radioactive waste in Sweden 1982-1992

    International Nuclear Information System (INIS)

    Dybeck, P.; Gustafsson, B.

    1993-01-01

    Today the transports of radioactive waste in Sweden are done on routine basis without any negative publicity. An important contribution to this fact is probably the very good performance of the transport system and the receiving facilities. Since the start of operation of the transport system no accidents have occurred. Almost 1600 tonnes of spent fuel and 10,000 m 3 of radioactive waste have been transported. The capacity and availability of the ship and of the transport system as a whole is large enough to cover all needs for transports of radioactive material in Sweden, at least up to the turn of this century. (J.P.N.)

  5. Route-specific analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    1986-01-01

    This report addresses a methodology for route-specific analysis, of which route-selection is one aspect. Identification and mitigation of specific hazards along a chosen route is another important facet of route-specific analysis. Route-selection and route-specific mitigation are two tools to be used in minimizing the risk of radioactive materials transportation and promoting public confidence. Other tools exist to improve the safety of transportation under the Nuclear Waste Policy Act. Selection of a transportation mode and other, non-route-specific measures, such as improved driver training and improved cask designs, are additional tools to minimize transportation risk and promote public confidence. This report addresses the route-specific analysis tool and does not attempt to evaluate its relative usefulness as compared to other available tools. This report represents a preliminary attempt to develop a route-specific analysis methodlogy. The Western Interstate Energy Board High-Level Waste Committee has formed a Route-Specific Analysis Task Force which will build upon the methodology proposed in this Staff Report. As western states continue to investigate route-specific analysis issues, it is expected that the methodology will evolve into a more refined product representing the views of a larger group of interested parties in the West

  6. Review of arrangements for the recent transportation of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Codd, M H

    1995-07-01

    The terms of reference of this review were: to examine the adequacy of the arrangements made for the transport of contaminated material from Lucas Heights and St Marys to Woomera, in terms of compliance with the Australian Code for the Safe Transport of Radioactive Substances 1990; to report to the Minister for Industry, Science and Technology on the quality of the planning and preparation for the move; the safety and effectiveness of the move itself; the adequacy of response to any `incidents` involved in the move, and of contingency arrangements; whether planning and transport arrangements might be improved for the future. Thus, the Review was focussed on movements of material in two specific cases - material owned by the CSIRO and stored at Lucas Heights and material owned by the Department of Defence and stored at St Marys. The report concludes that the movements of wastes were carried out consistent with the Transport Code, without any risk to public safety. Additional relevant information in support of the review is contained in 8 appendixes.

  7. Emergency response arrangements for the transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Morgan-Warren, E. [Radioactive Materials Transport Div., Dept. for Transport, London (United Kingdom)

    2004-07-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability.

  8. Review of arrangements for the recent transportation of radioactive waste

    International Nuclear Information System (INIS)

    Codd, M.H.

    1995-07-01

    The terms of reference of this review were: to examine the adequacy of the arrangements made for the transport of contaminated material from Lucas Heights and St Marys to Woomera, in terms of compliance with the Australian Code for the Safe Transport of Radioactive Substances 1990; to report to the Minister for Industry, Science and Technology on the quality of the planning and preparation for the move; the safety and effectiveness of the move itself; the adequacy of response to any 'incidents' involved in the move, and of contingency arrangements; whether planning and transport arrangements might be improved for the future. Thus, the Review was focussed on movements of material in two specific cases - material owned by the CSIRO and stored at Lucas Heights and material owned by the Department of Defence and stored at St Marys. The report concludes that the movements of wastes were carried out consistent with the Transport Code, without any risk to public safety. Additional relevant information in support of the review is contained in 8 appendixes

  9. Rapid Pneumatic Transport of Radioactive Samples - RaPToRS

    Science.gov (United States)

    Padalino, S.; Barrios, M.; Sangster, C.

    2005-10-01

    Some ICF neutron activation diagnostics require quick retrieval of the activated sample. Minimizing retrieval times is particularly important when the half-life of the activated material is on the order of the transport time or the degree of radioactivity is close to the background counting level. These restrictions exist in current experiments performed at the Laboratory for Laser Energetics, thus motivating the development of the RaPToRS system. The system has been designed to minimize transportation time while requiring no human intervention during transport or counting. These factors will be important if the system is to be used at the NIF where radiological hazards will be present during post activation. The sample carrier is pneumatically transported via a 4 inch ID PVC pipe to a remote location in excess of 100 meters from the activation site at a speed of approximately 7 m/s. It arrives at an end station where it is dismounted robotically from the carrier and removed from its hermetic package. The sample is then placed by the robot in a counting station. This system is currently being developed to measure back-to-back gamma rays produced by positron annihilation which were emitted by activated graphite. Funded in part by the U.S. DOE under sub contract with LLE at the University of Rochester.

  10. Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste

    International Nuclear Information System (INIS)

    Homola, J.

    2003-01-01

    This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia

  11. Dose control in road transport of radioactive material

    International Nuclear Information System (INIS)

    Gerulis, Eduardo

    2013-01-01

    The radiation doses to workers in the transport of radioactive material should be as low as reasonably achievable. The average doses of drivers and loaders, sampled in this thesis should be decreased. The demonstration of doses control in a road vehicle with radioactive material required by the current Brazilian regulation, CNEN NE 5.01 should be written in its own printed form with exposure values obtained in normally occupied positions from workers and members of the public, even when the consignment does not need 'exclusive use' (⅀IT ≤50). Through bibliographic research, modeling and field research, this research work shows that this demonstration of the control should be done by writing the registration accumulation of load, limited (⅀IT ≤50), also in the own printed form. It is for a better control method, in order to avoid the use of measuring equipment, to build standardization with foreign regulations, to the current occupational doses of radioprotection technicians, the costs and time, (important for consignment with radiopharmaceuticals short half-life) would be all smaller. Exposure values of the parameters used with this method are smaller than regulatory limits. The segregation distances between loads and the cabins of vehicles shall be showed by Brazilian regulation updated to contribute to these aims. (author)

  12. Risk assessment for the transportation of radioactive zeolite liners

    International Nuclear Information System (INIS)

    1982-01-01

    The risk is estimated for the shipment of radioactive zeolite liners in support of the Zeolite Vitrification Demonstration Program currently underway at Pacific Northwest Laboratory under the sponsorship of the US Department of Energy. This program will establish the feasibility of zeolite vitrification as an effective means of immobilizing high-specific-activity wastes. In this risk assessment, it is assumed that two zeolite liners, each loaded around July 1, 1981 to 60,000 Ci, will be shipped by truck around January 1, 1982. However, to provide a measure of conservatism, each liner is assumed to initially hole 70,000 Ci, with the major radioisotopes as follow: 90 Sr = 3000 Ci, 134 Cs = 7000 Ci, 137 Cs = 60,000 Ci. Should shipment take place with essentially no delay after initial loading (regardless of loading date), the shipment loading would be only 2.7% higher than that for the assumed six-month delay. This would negligibly affect the overall risk. As a result of this risk assessment, it is concluded that the transport of the radioactive zeolite liners from TMI to PNL by truck can be conducted at an insignificant level of risk to the public

  13. Transportation of Radioactive Material Cobalt-60 is one of the Experience

    International Nuclear Information System (INIS)

    Mohd Derus Ibrahim

    2015-01-01

    During transportation of radioactive material in progress, all the procedure (SOP) must have been followed by legally and the wrappers that have been used must be not contaminated, it ensure that safety and security during transportation. (author)

  14. State legislative developments in radioactive materials transportation, July 1, 1994--June 30, 1995

    International Nuclear Information System (INIS)

    Goehring, J.B.; Reed, J.B.

    1995-08-01

    Each year, the National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation. The 1995 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1994 and June 30, 1995. Forty-six bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste storage and emergency responsiveness. Also included are state legislative resolutions and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  15. State legislative developments in radioactive materials transportation, July 1, 1996--June 6, 1997

    International Nuclear Information System (INIS)

    Kim, M.H.; Reed, J.B.

    1997-06-01

    The National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation each year. The 1997 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1996 and June 6, 1997. Fifty bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste, storage and emergency response. Also summarized are state legislative resolutions and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  16. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  17. Gas generation phenomena in radioactive waste transportation packaging

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1998-01-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the building of gases during the storage of wastes, radiolysis and thermal decomposition appear to be main contributors during waste transport operations. (authors)

  18. Predicting transport requirements for radioactive-waste slurries

    International Nuclear Information System (INIS)

    Motyka, T.; Randall, C.T.

    1983-01-01

    A method for predicting the transport requirements of radioactive waste slurries was developed. This method involved preparing nonradioactive sludge slurries chemically similar to the actual high-level waste. The rheological and settling characteristics of these synthetic waste slurries were measured and found to compare favorably with data on actual defense waste slurries. Pressure drop versus flow rate data obtained fom a 2-in. slurry test loop confirmed the Bingham plastic behavior of the slurry observed during viscometry measurements. The pipeline tests, however, yielded friction factors 30 percent lower than those predicted from viscometry data. Differences between the sets of data were attributed to inherent problems in interpreting accurate yield-stress values of slurry suspensions with Couette-type viscometers. Equivalent lengths of fittings were also determined and found to be less than that of water at a specified flow rate

  19. Qualifications of and acceptance criteria for transporting special form radioactive material

    International Nuclear Information System (INIS)

    Hovingh, J.

    1991-01-01

    A special form radioactive material is a radioactive material that is in an inert, insoluble, indispersible form such that even in the event of an accident, it will not be dispersed into the environment in a way that could have an adverse impact on public health and safety. Methods of qualifying a special form radioactive material are discussed. Interpretation of acceptance criteria are proposed for the transportation of Type B quantities of a special form radioactive material. 11 refs

  20. Transportation legislative data base: State radioactive materials transportation statute compilation, 1989--1993

    International Nuclear Information System (INIS)

    1994-04-01

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United States. The TLDB has been operated by the National Conference of State Legislatures (NCSL) under cooperative agreement with the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management since 1992. The data base system serves the legislative and regulatory information needs of federal, state, tribal and local governments, the affected private sector and interested members of the general public. Users must be approved by DOE and NCSL. This report is a state statute compilation that updates the 1989 compilation produced by Battelle Memorial Institute, the previous manager of the data base. This compilation includes statutes not included in the prior compilation, as well as newly enacted laws. Statutes not included in the prior compilation show an enactment date prior to 1989. Statutes that deal with low-level radioactive waste transportation are included in the data base as are statutes from the states of Alaska and Hawaii. Over 155 new entries to the data base are summarized in this compilation

  1. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  2. The problems and suggestions on supervision of the radioactive material transport

    International Nuclear Information System (INIS)

    Cao Fangfang; Que Ji; Zhang Min; Pan Yuting

    2012-01-01

    The developing background and importance of the rules on supervision of the radioactive material transport are discussed in the paper. Based on the existing problems found in the process of implementing the rule 'Regulations for the safe transport of Radioactive Material', some countermeasures are proposed. (authors)

  3. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  4. Compendium of federal and state radioactive materials transportation laws and regulations: Transportation Legislative Database (TLDB)

    International Nuclear Information System (INIS)

    1989-10-01

    The Transportation Legislative Database (TLDB) is an on-line information service containing detailed information on legislation and regulations regarding the transportation of radioactive materials in the United States. The system is dedicated to serving the legislative and regulatory information needs of the US Department of Energy and other federal agencies; state, tribal, and local governments; the hazardous materials transportation industry; and interested members of the general public. In addition to the on-line information service, quarterly and annual Legal Developments Reports are produced using information from the TLDB. These reports summarize important changes in federal and state legislation, regulations, administrative agency rulings, and judicial decisions over the reporting period. Information on significant legal developments at the tribal and local levels is also included on an as-available basis. Battelle's Office of Transportation Systems and Planning (OTSP) will also perform customized searches of the TLDB and produce formatted printouts in response to specific information requests

  5. Transport of radioactive material in Romania -the assessment of the radiological consequences and the environmental impacts

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2008-01-01

    The transport of radioactive materials (RAM) is a very important problem considering the potential risks and radiological consequences in carrying-out this activity. Romania as a Member State of the International Atomic Energy Agency has implemented national regulations for a safe transport of RAM in accordance with the Agency's recommendations as well as other international specialized organizations. Based on the IAEA's Safety Standard-TS-R-1 (ST-1), Romanian National Nuclear Regulatory Body - CNCAN adopted and implemented, by Act no. 357/December 21, 2005, the safety regulations for the transport of radioactive materials in Romania under the title: 'Regulations for the Transport of Radioactive Materials'. The paper will present the main sources of radioactive materials in Romania their transportation routes with a particular interest paid to the radioactive wastes (low level radioactive materials), isotopes and radioactive sources, uranium ore. Starting from the fact that the safety in the transport of radioactive materials is dependent on appropriate packaging for the contents being shipped, rather than operational and/or administrative actions required for the package, the paper presents, briefly the main packages used for transport and storage of such RAM in Romania. There are presented hypothetical scenarios for specific problems related to the identification and evaluation of the risks and potential radiological consequences associated with the transport of radioactive materials in Romania, for all these three situations: routine transport (without incidents), normal transport (with minor incidents) and during possible accidents. As a conclusion, it is ascertained that the evaluated annual collective dose for the population due to RAM transport is less than that received by natural radiation sources. At the same time it is concluded that Romanian made packages are safe and prevent loss of their radioactive contents into the environment. (author)

  6. The impact of the new IAEA transport regulations for the safe transport of radioactive materials on package design and transport

    International Nuclear Information System (INIS)

    Schneider, K.

    1989-01-01

    In April 1985 the 1985 Edition of the IAEA Safety Series No. 6, Regulations for the Safe Transport of Radioactive Materials, was issued. This is a completely revised edition which shall come into force internationally in the late eighties. This edition will supersede the 1973 (As Amended, 1979) edition. A paragraph by paragraph comparison is carried through, followed by a consideration on the impact on general requirements for packaging and transport. A detailed estimate on packaging design and transport is performed for typical products of the nuclear fuel cycle. The major practical consequences likely to be encountered are presented

  7. The issue of safety in the transports of radioactive materials; Le probleme de la securite dans les transports de substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Pallier, Lucien

    1961-11-20

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel.

  8. Technique of stowing packages containing radioactive materials during maritime transportation

    International Nuclear Information System (INIS)

    Ringot, G.; Chevalier, G.; Tomachevsky, E.; Draulans, J.; Lafontaine, I.

    1989-01-01

    The Mont Louis accident (August 25, 1984 - North Sea), in which uraniumhexafluoride packages were involved, alarmed a large number of European competent authorities, including the Commission of European Communities. The latter sponsored in 1986-1987 a bibliographic data collection to obtain a first view on the problem. (C.E.C contracts n degree 86-B-7015-11-004-17 and 86-B-7015-11-005-17). The collected data supply the necessary basis for further work, aiming to increase the safety of transporting radioactive material by ship. The study collected the different deceleration values, used by the transport companies and defined the accident conditions to be considered. This work can serve as a basis for later research to end with the proposal of a code of good practice for stowing. The research-work has been carried out jointly by C.E.A.-France, I.P.S.N. at Fontenay-aux-Roses and by Transnubel S.A. Brussels Belgium. The preliminary research included two main tasks: a statistical analysis, a bibliographic study of ship accidents

  9. Radiation exposure resulting from the transport of radioactive materials within the United Kingdom

    International Nuclear Information System (INIS)

    Shaw, K.B.; Mairs, J.H.; Gelder, R.; Hughes, J.S.; Holyoak, B.

    1983-01-01

    The transport of technetium generators for hospital use accounts for some 50% of the occupational exposure from the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 35% of the occupational exposure and some 15% can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. 5 references, 6 tables

  10. Simplified model for radioactive contaminant transport: the TRANSS code

    International Nuclear Information System (INIS)

    Simmons, C.S.; Kincaid, C.T.; Reisenauer, A.E.

    1986-09-01

    A simplified ground-water transport model called TRANSS was devised to estimate the rate of migration of a decaying radionuclide that is subject to sorption governed by a linear isotherm. Transport is modeled as a contaminant mass transmitted along a collection of streamlines constituting a streamtube, which connects a source release zone with an environmental arrival zone. The probability-weighted contaminant arrival distribution along each streamline is represented by an analytical solution of the one-dimensional advection-dispersion equation with constant velocity and dispersion coefficient. The appropriate effective constant velocity for each streamline is based on the exact travel time required to traverse a streamline with a known length. An assumption used in the model to facilitate the mathematical simplification is that transverse dispersion within a streamtube is negligible. Release of contaminant from a source is described in terms of a fraction-remaining curve provided as input information. However, an option included in the code is the calculation of a fraction-remaining curve based on four specialized release models: (1) constant release rate, (2) solubility-controlled release, (3) adsorption-controlled release, and (4) diffusion-controlled release from beneath an infiltration barrier. To apply the code, a user supplies only a certain minimal number of parameters: a probability-weighted list of travel times for streamlines, a local-scale dispersion coefficient, a sorption distribution coefficient, total initial radionuclide inventory, radioactive half-life, a release model choice, and size dimensions of the source. The code is intended to provide scoping estimates of contaminant transport and does not predict the evolution of a concentration distribution in a ground-water flow field. Moreover, the required travel times along streamlines must be obtained from a prior ground-water flow simulation

  11. Current issues in the transport of radioactive waste and spent fuel: work by the World Nuclear Transport Institute

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H-J.; Bonnardel-Azzarelli, B. [World Nuclear Transport Inst., London (United Kingdom)

    2014-07-01

    Various kinds of radioactive waste are generated from nuclear power and fuel cycle facilities. These materials have to be treated, stored and eventually sent to a repository site. Transport of wastes between these various stages is crucial for the sustainable utilization of nuclear energy. The IAEA Regulations for the Safe Transport of Radioactive Material (SSR-6) have, for many decades, provided a safe and efficient framework for radioactive materials transport and continue to do so. However, some shippers have experienced that in the transport of certain specific radioactive wastes, difficulties can be encountered. For example, some materials produced in the decommissioning of nuclear facilities are unique in terms of composition or size and can be difficult to characterize as surface contaminated objects (SCO) or homogeneous. One way WNTI (World Nuclear Transport Institute) helps develop transport methodologies is through the use of Industry Working Groups, bringing together WNTI members with common interests, issues and experiences. The Back-End Transport Industry Working Group focuses on the following issues currently. - Characterization of Waste: techniques and methods to classify wastes - Large Objects: slightly contaminated large objects (ex. spent steam generators) transport - Dual Use Casks: transportable storage casks for spent nuclear fuels, including the very long term storage of spent fuel - Fissile Exceptions: new fissile exceptions provisions of revised TS-R-1 (SSR-6) The paper gives a broad overview of current issues for the packaging and transport of radioactive wastes and the associated work of the WNTI. (author)

  12. Transparency and dialogue: the keys of radioactive material transportation

    International Nuclear Information System (INIS)

    Neau, H.J.; Hartenstein, M.

    2004-01-01

    Today, public opinion, local actors, organizations and associations are expecting a transparent information on nuclear activities. The fact is, a great number already has daily instant access to information and is able to share it very quickly, thanks to new technologies. Public opinion's sensitiveness is a key element, as risk remains at the center of public concerns. The discrepancy between objectively assessed risks and perceived risks is a permanent challenge for acceptance of nuclear energy. The opponents are also using it, to build their misleading strategy. When anti-nuclear groups claim for an increasing involvement in the decision-making processes, they also get there the most efficient means to hamper our activities, namely operational information on the nuclear transport activities. In order to tackle this challenging issue, COGEMA and its parent company AREVA are engaged in improving their information policy. It has been extended to international and national transports commissioned by COGEMA LOGISTICS. Regarding the most recent transport operations, specific information policy has been implemented at the national and local level through media, information committees, trade unions. But, on the one hand, this policy is facing limits: transparency and openness stop where sensitivity and confidentiality start. On the other hand, opponents are building a challenging process, which is ''more and more''. Whatever the industry efforts are, opponents will remain unsatisfied as they cannot afford otherwise.Consequently, we need to assume a proactive policy in the field of the information on safety of radioactive material transportation. But above all, this policy must be dedicated to the public opinion. It must not be a way to answer to opponent's attacks. The industry's transparency and information must support public opinion's understanding of the important issues which are on progress: global access to the energy, preservation of the environment, providing

  13. Transparency and dialogue: the keys of radioactive material transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J.; Hartenstein, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    Today, public opinion, local actors, organizations and associations are expecting a transparent information on nuclear activities. The fact is, a great number already has daily instant access to information and is able to share it very quickly, thanks to new technologies. Public opinion's sensitiveness is a key element, as risk remains at the center of public concerns. The discrepancy between objectively assessed risks and perceived risks is a permanent challenge for acceptance of nuclear energy. The opponents are also using it, to build their misleading strategy. When anti-nuclear groups claim for an increasing involvement in the decision-making processes, they also get there the most efficient means to hamper our activities, namely operational information on the nuclear transport activities. In order to tackle this challenging issue, COGEMA and its parent company AREVA are engaged in improving their information policy. It has been extended to international and national transports commissioned by COGEMA LOGISTICS. Regarding the most recent transport operations, specific information policy has been implemented at the national and local level through media, information committees, trade unions. But, on the one hand, this policy is facing limits: transparency and openness stop where sensitivity and confidentiality start. On the other hand, opponents are building a challenging process, which is ''more and more''. Whatever the industry efforts are, opponents will remain unsatisfied as they cannot afford otherwise.Consequently, we need to assume a proactive policy in the field of the information on safety of radioactive material transportation. But above all, this policy must be dedicated to the public opinion. It must not be a way to answer to opponent's attacks. The industry's transparency and information must support public opinion's understanding of the important issues which are on progress: global access to the energy

  14. Design and tests of a package for the transport of radioactive sources

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira

    2011-01-01

    The Type A package was designed for transportation of seven cobalt-60 sources with total activity of 1 GBq. The shield thickness to accomplish the dose rate and the transport index established by the radioactive transport regulation was calculated by the code MCNP (Monte Carlo N-Particle Transport Code Version 5). The sealed cobalt-60 sources were tested for leakages. according to the regulation ISO 9978:1992 (E). The package was tested according to regulation Radioactive Material Transport CNEN. The leakage tests results pf the sources, and the package tests demonstrate that the transport can be safe performed from the CDTN to the steelmaking industries

  15. The application of dangerous goods regulations to the transport of radioactive wastes

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Darby, W.P.; Heywood, J.D.; Wikinson, H.L.; Carrington, C.K.; Murray, M.A.

    1998-01-01

    Some radioactive materials to be transported, including certain radioactive wastes, contain materials that qualify as dangerous goods as defined by the United Nations Recommendations on the Transport of Dangerous Goods (United Nations 1997). The regulations governing the transport of radioactive and dangerous goods in the UK are largely based on the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA 1990) and the UN Recommendations (United Nations 1993). Additional legislation will also apply including the Carriage of Dangerous Goods by Road (Driver Training) Regulations 1996 (UK 1996). The IAEA Transport Regulations are clear that where radioactive materials have other dangerous properties the requirements of other relevant transport regulations for dangerous goods must also be met. They require that consignments are appropriately segregated from other dangerous goods, in accordance with relevant legislation, and that dangerous properties such as explosiveness, flammability etc. are taken into account in packing, labelling, marking, placarding, storage and transport. In practice, however, it requires a clear understanding of the relationship between the IAEA Transport Regulations and other dangerous goods legislation in order to avoid a number of problems in the approval of package design. This paper discusses the regulations applying to the transport of dangerous goods and explores practical problems associated with implementing them. It highlights a number of opportunities for developing the regulations, to make them easier to apply to radioactive materials that also have other potentially dangerous properties. (authors)

  16. Safe and Secure Transportation of Radioactive Materials in Pakistan and Future Challenges

    International Nuclear Information System (INIS)

    Muneer, Muhammad; Ejaz, Asad

    2016-01-01

    PNRA is the sole organization in the country responsible to regulate all matters pertaining to ionizing radiations. For the safety of transport of radioactive material in the country, PNRA has adopted IAEA TS-R-1 as a national regulation. To cover the security aspects and emergency situations, if any, during the transportation of radioactive material, PNRA has issued the regulatory guide on ‘Transportation of Radioactive Material by Road in Pakistan’. In Pakistan, low to medium activity radioactive sources are transported from one place to another by road for the purpose of industrial radiography, well logging, medical application, etc. According to national policy, sealed radioactive sources of half life greater than 1 year and with initial activity of 100 GBq or more imported in the country are required to be returned to country of origin (exported) after its use. Although the activities related to transport of radioactive material remained safe and secure and no major accident/incident has been reported so far, however, the improvement/enhancement in the regulatory infrastructure is a continuous process. In future, more challenges are expected to be faced in the safety of transport packages. This paper will describe the steps taken by PNRA for the safety and security of transport of radioactive material in the country and future challenges. (author)

  17. Status of the Regulation for safe and secure transport of radioactive materials in Madagascar

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Zafimanjato, J.L.R.; Solofoarisina, W.C.; Randriantseheno, H.F.

    2011-01-01

    Radioactive sources are widely used in medicine, in industrial exploration and development, as well as in basic scientific research and education in Madagascar. The ability to use such radioactive materials in these sectors depends on their safe and secure transport both within and between countries. Transport safety of radioactive materials within the country is regulated. The law No. 97-041 on radiation protection and radioactive waste management in Madagascar promulgated in January 1998 and the decree No.2735/94 dealing the transport of radioactive materials promulgated in June 1994 govern all activities related to the transport of radioactive material. This law was established to meet the requirements of the International Basic Safety Standards (BSS, IAEA Safety Series 115). It is not fully consistent with current international standards (GS-R-1). Indeed, in order to enhance the security of radioactive sources, Madagascar has implemented the Code of Conduct and the Guidance on the Import and Export of Radioactive Sources. Faced with delays and denials of shipment of radioactive materials issues, the National Focal Point has been appointed to work with ISC members and the regional networks on the global basis.

  18. Status of the regulation for safe and secure transport of radioactive materials in Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, Raoelina; Zafimanjato, J.L.R.; Solofoarisina, W.C.; Randriantseheno, H.F.

    2016-01-01

    Radioactive sources are widely used in medicine, in industrial exploration and development, as well as in basic scientific research and education in Madagascar. The ability to use such radioactive materials in these sectors depends on their safe and secure transport both within and between countries. Transport safety of radioactive materials within the country is regulated. The law n° 97-041 on radiation protection and radioactive waste management in Madagascar promulgated in January 1998 and the decree n° 2735/94 dealing the transport of radioactive materials promulgated in June 1994 govern all activities related to the transport of radioactive material. This law was established to meet the requirements of the International Basic Safety Standards (BSS, IAEA Safety Series 115). It is not fully consistent with current international standards (GS-R-1). Indeed, in order to enhance the security of radioactive sources, Madagascar has implemented the Code of Conduct and the Guidance on the Import and Export of Radioactive Sources. Faced with delays and denials of shipment of radioactive materials issues, the National Focal Point has been appointed to work with ISC members and the regional networks on the global basis. (author)

  19. Thermal testing of packages for transport of radioactive wastes

    International Nuclear Information System (INIS)

    Koski, J.A.

    1994-01-01

    Shipping containers for radioactive materials must be shown capable of surviving tests specified by regulations such as Title 10, Code of Federal Regulations, Part 71 (called 10CFR71 in this paper) within the United States. Equivalent regulations hold for other countries such as Safety Series 6 issued by the International Atomic Energy Agency. The containers must be shown to be capable of surviving, in order, drop tests, puncture tests, and thermal tests. Immersion testing in water is also required, but must be demonstrated for undamaged packages. The thermal test is intended to simulate a 30 minute exposure to a fully engulfing pool fire that could occur if a transport accident involved the spill of large quantities of hydrocarbon fuels. Various qualification methods ranging from pure analysis to actual pool fire tests have been used to prove regulatory compliance. The purpose of this paper is to consider the alternatives for thermal testing, point out the strengths and weaknesses of each approach, and to provide the designer with the information necessary to make informed decisions on the proper test program for the particular shipping container under consideration. While thermal analysis is an alternative to physical testing, actual testing is often emphasized by regulators, and this report concentrates on these testing alternatives

  20. Inelastic analysis acceptance criteria for radioactive material transportation containers

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Ludwigsen, J.S.

    1993-01-01

    The design criteria currently used in the design of radioactive material (RAM) transportation containers are taken from the ASME Boiler and Pressure Vessel Code (ASME, 1992). These load-based criteria are ideally suited for pressure vessels where the loading is quasistatic and all stresses are in equilibrium with externally applied loads. For impact events, the use of load-based criteria is less supportable. Impact events tend to be energy controlled, and thus, energy-based acceptance criteria would appear to be more appropriate. Determination of an ideal design criteria depends on what behavior is desired. Currently there is not a design criteria for inelastic analysis for RAM nation packages that is accepted by the regulatory agencies. This lack of acceptance criteria is one of the major factors in limiting the use of inelastic analysis. In this paper inelastic analysis acceptance criteria based on stress and strain-energy density will be compared for two stainless steel test units subjected to impacts onto an unyielding target. Two different material models are considered for the inelastic analysis, a bilinear fit of the stress-strain curve and a power law hardening model that very closely follows the stress-strain curve. It is the purpose of this paper to stimulate discussion and research into the area of strain-energy density based inelastic analysis acceptance criteria

  1. Layered packaging: A synergistic method of transporting radioactive material

    International Nuclear Information System (INIS)

    Hohmann, G.L.

    1989-01-01

    The DOE certification for a transportation cask used to ship radioactive Krypton 85 from the Idaho Chemical Processing Plant (ICPP) to Oak Ridge National Laboratory (ORNL), was allowed to expire in 1987. The Westinghouse Idaho Nuclear Company (WINCO) was charged by DOE with modifying this cask to meet all current NRC requirements and preparing an updated Safety Analysis Report for Packaging, which would be submitted by DOE to the NRC for certification. However, an urgent need arose for ORNL to receive Krypton 85 which was in storage at the ICPP, which would not allow time to obtain certification of the modified shipping cask. WINCO elected to use a layered shipping configuration in which the gaseous Krypton 85 was placed in the uncertified, modified shipping cask to make use of its shielding and thermal insulation properties. This cask was then inserted into the Model No. 6400 (Super Tiger) packaging using a specially constructed plywood box and polyurethane foam dunnage. Structural evaluations were completed to assure the Super Tiger would provide the necessary impact, puncture, and thermal protection during maximum credible accidents. Analyses were also completed to determine the uncertified Krypton shipping cask would provide the necessary containment and shielding for up to 3.7 E+14 Bq of Krypton 85 when packaged inside the Super Tiger. The resulting reports, based upon this layered packaging concept, were adequate to first obtain DOE certification for several restricted shipments of Krypton 85 and then NRC certification for unrestricted shipments

  2. Storage and transport containers for radioactive medical materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1989-01-01

    This patent describes a storage and transport container for small-diameter ribbon-like lengths of material including radioactive substances for use in medical treatments, comprising: an exterior shell for radiation shielding metal having top and bottom members of radiation shielding metal integral therewith; radiation shielding metal extending downward from the top of the container and forming a central cavity, the central cavity being separate from the exterior shell material of the container and extending downwardly a distance less than the height of the container; a plurality of small diameter carrier tubes located within the interior of the container and having one end of each tube opening through one side of the container and the other end of such tube opening through the opposite lateral side of the container with the central portion of each tube passing under the central cavity; and a plug of radiation shielding metal removably located in the top the central cavity for shielding the radiation from radiation sources located within the container

  3. The projected relative index of consequence equivalence of transport of radioactive materials

    International Nuclear Information System (INIS)

    Nandakumar, A.N.

    1999-01-01

    The need exists for defining a unit risk factor to enable analysis to make a proper decision when faced with many options relating to the transport of radioactive materials between sites. A method is discussed for deriving such a factor with reference to the collective dose receivable due to the transport of radioactive material incidental to the production of one GWe.a of nuclear power. This quantity would enable the analyst to determine the projected relative index of consequence equivalence (PRICE) for the transport of various types of radioactive materials. (author)

  4. Raising students and educators awareness of radioactive materials transport through creative classroom materials and exhibits

    International Nuclear Information System (INIS)

    Holm, J.; Sandoz, C.; Dickenson, J.; Lee, J.C.; Smith, A.M.

    1994-01-01

    The public is concerned about how the shipping and handling of radioactive materials affects them and their environment. Through exhibit showings doing professional education conferences and smaller, focussed workshops, the United States Department of Energy (DOE) has found teachers and students to be an especially interested audience for hazardous and radioactive materials transportation information. DOE recognizes the importance of presenting educational opportunities to students about scientific and societal issues associated with planning for and safely transporting these types of materials. Raising students' and educators' awareness of hazardous and radioactive materials transport through creative classroom materials and exhibits may help them make informed decisions as adults about this often controversial and difficult issue

  5. The contribution of human factors to risks from radioactive material transport

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Ridsdale, E.; Wilkinson, H.L.

    1998-01-01

    The use of probabilistic risk assessment to assess the safety of radioactive material transport operations is well accepted. However, quantitative risk assessment of radioactive material transport operations have generally not explicitly considered human factors in estimating risks. Given the high profile of human factors as the root cause of many serious transport incidents omission of an explicit consideration of human factors in a risk assessment could lead to assessments losing credibility. In addition, scrutiny of radioactive material transport incident databases reveals a large number of operational incidents and minor accidents that would have been avoided if more attention had been paid to human factors aspects, and provides examples of instances where improvements have been achieved. This paper examines the areas of radioactive material transport risk assessments (both qualitative and quantitative) which could be strengthened by further examination of the impact of human errors. It is concluded that a more complete and detailed understanding of the effects of human factors on the risks from radioactive material transport operations has been obtained. Quality assurance has a key part to play in ensuring that packages are correctly manufactured and prepared for transport. Risk assessments of radioactive material transport operations can be strengthened by concentrating on the key human factors effects. (authors)

  6. ASN: regional day of information and exchange on transport of radioactive materials - 4 February 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document gathers Power Point presentations made during a meeting on the transport of radioactive materials. The contributions addressed the following topics: results of a survey based on questionnaires sent to actors of this sector, regulatory framework and radioprotection plan, case of parcels not submitted to the authority concerned, declaration of transport interesting or significant events, ASN inspections, the transport of radioactive products by the IBt Bebig company in France, the activities of the Institut de Soudure Industrie (industry welding institute), the activities of the ISO Life company specialized in health product transportation, the activities of the Securidis company (a consulting company for activities related to hazardous materials transportation, and notably radioactive materials), the activities a the ACE Environnement company (specialized in building diagnosis), the point of view of an academic research unit on radioactive material transportation, the experience of the hospital sector in radioactive source transportation, the experience of the Advanced Accelerator Applications company in radioactive material transportation, and a discussion on regulation application

  7. The amended regulations for the safe transport of radioactive materials in Japan

    International Nuclear Information System (INIS)

    Takemura, Yoshio

    1978-01-01

    To cope with the inadequacies of the laws and regulations including the Law Concerning Prevention of Radiation Injuries Due to Radioisotopes, Etc., the Amended Regulations for the Safe Transport of Radioactive Materials in Japan has been issued. It is based on the Regulations of IAEA for the Safe Transport of Radioactive Materials and the Technical Standards for the Transport of Radioactive Materials decided by the AEC of Japan. In the amended regulations, emphasis is placed on the safety design of transporting goods. They are classified in Types L, A and B according to shock resistance and fire resistance, and the quantities of radioisotopes allowed to be contained in respective types are specified. The following matters are described: basic ideas concerning the types of transporting goods, test standards for the goods, transport standards for the goods, and nondestructive test apparatuses in transport. (Mori, K.)

  8. Risk assessment for the transportation of radioactive materials in the U.S.A

    International Nuclear Information System (INIS)

    Smith, D.R.; Luna, R.E.; Taylor, J.M.; DuCharme, A.R.

    1976-01-01

    The radiological risk of transporting radioactive materials in the United States was evaluated in terms of expected additional latent cancer fatalities (LCF). Two risks were estimated: that resulting from normal (accident-free) transport and that resulting from transportation accidents involving radioactive shipments. A standard shipments model was devised to represent the radioactive material shipping industry. The calculation of the normal transport risk included estimates of exposures to aircraft passengers and crew, truck drivers, cargo handlers, and population along the transport link. The accident risk calculation incorporated accident probabilities and package release fraction estimates. Dispersible materials were assumed to be aerosolized in severe accidents and the aerosol cloud transported downwind according to a Gaussian diffusion model. An annual normal transport risk of 9600 person-rem, or 1.2 LCF, resulted primarily from radiopharmaceutical shipments. The annual risk due to accidents was 5.6 x 10 -4 LCF, resulting almost entirely from PuO 2 shipments

  9. Structural analysis in support of the waterborne transport of radioactive materials

    International Nuclear Information System (INIS)

    Ammerman, D.J.

    1996-01-01

    The safety of the transportation of radioactive materials by road and rail has been well studied and documented. However, the safety of waterborne transportation has received much less attention. Recent highly visible waterborne transportation campaigns have led to DOE and IAEA to focus attention on the safety of this transportation mode. In response, Sandia National Laboratories is conducting a program to establish a method to determine the safety of these shipments. As part of that program the mechanics involved in ship-to-ship collisions are being evaluated to determine the loadings imparted to radioactive material transportation packages during these collisions. This paper will report on the results of these evaluations

  10. Role IAEA implementation of ICRP-60 on regulations the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Elshinawy, R.K.M.; Gomaa, M.A.

    1994-01-01

    In november 1990, the (ICRP) adopted its 1990 recommendations (ICRP-60) ( 1). These recommendations will significantly influence not only IAEA's basic safety standards (safety series 9) ( 2), but also the IAEA regulations for the safe transport of radioactive material ( 3) and its supporting documents ( 4-6). IAEA experts are currently engaged in the revision of the transport regulations. This revision process led to the publication of the revised transport regulations of 1966. The transport regulations are developed to ensure safety during movement of radioactive materials, and to provide reasonable assurance that the transport activities comply with the basic safety standards for radiation protection

  11. Discussion of and guidance on the optimization of radiation protection in the transport of radioactive material

    International Nuclear Information System (INIS)

    1986-05-01

    The document provides guidance on one of the components of the system of dose limitation as it applies to the transport of radioactive material, namely the optimization of radiation protection. It focuses on the following parts of the transport system: design, maintenance, preparation for transport, transport, storage-in-transit and handling and it considers occupational and public exposures. The application is intended mainly for those transport situations within the regulatory requirements where potential radiation exposures could be beneficially reduced

  12. Romanian experience in a assessment of the risk and environmental consequences due to radioactive materials transportation

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2006-01-01

    Full text: The transport of radioactive materials (RAM) is a very important problem taking into consideration its potential risks over the environment and the radiological consequences of this activity. Romania as a Member State of the International Atomic Energy Agency has implemented national regulations for a safe transport of RAM in complying with the Agency's recommendations as well as other international specialized organizations. The paper will present the main sources of radioactive materials in Romania, and their transportation routes with a particular focus on the radioactive wastes (very low level and mixed low-level radioactive materials), radioactive isotopes and sources, and natural uranium ore. Starting from the fact that the safety in the transport of radioactive materials is dependent on packaging appropriate for the contents being shipped, rather than operational and/or administrative actions required for the package, the paper presents, very briefly, the qualification tests for the main packages used for transport and storage of RAM in Romania. There are presented also specific problems related to the identification and evaluation of the environmental risks and impacts as well as the potential radiological consequences associated with the transport of radioactive materials, for all those three possible situations: routine transport (without incidents), normal transport (with minor incidents) and during potential accidents. As a conclusion, it is stated that the evaluated annual collective dose for the population due to RAM transport is less than those received by natural radiation sources. At the same time it is concluded that Romanian made packages are safe and prevent loss of its radioactive contents into environment. (author)

  13. SOR/89-426, Transport Packaging of Radioactive Materials Regulations, amendment

    International Nuclear Information System (INIS)

    1989-01-01

    These Regulations of 24 August 1989 amend the Transport Packaging of Radioactive Materials Regulations by clarifying the text and specifying certain requirements. In particular certain definitions have been replaced, namely those of ''Fissile Class III package'' and ''Special form radioactive material''. Also, this latter material may not be carried without a certificate attesting that it meets the requirements of the Regulations. (NEA)

  14. New safety and security requirements for the transport of nuclear and other radioactive materials in Hungary

    International Nuclear Information System (INIS)

    Katona, T.; Horvath, K.; Safar, J.

    2016-01-01

    In addition to the promulgation of mode-specific regulations of international transport of dangerous goods, some Hungarian governmental and ministerial decrees impose further conditions upon the transport of nuclear and other radioactive materials. One of these ministerial decrees on the transport, carriage and packaging of radioactive materials is under revision and it will require • approval of emergency response plan (including security and safety contingency plan); • report on transport incidents and accidents for classifying them in accordance with the INES scale; • the competent authority to request experts’ support for the approval of package designs, radioactive material designs and shipments. Regarding the security of the transport of nuclear and other radioactive materials a new Hungarian governmental decree and a related guidance are about to be published which will supply additional requirements in the field of the transport security especially concerning radioactive materials, implementing - among others - IAEA recommendations of the NSS No9 and No14. The main and relevant features of the Hungarian nuclear regulatory system and the details of both new decrees regarding the safety and security issues of transport of nuclear and other radioactive materials will be discussed. (author)

  15. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  16. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium.

  17. Capabilities of U.S. domestic transportation systems for the shipment of radioactive wastes

    International Nuclear Information System (INIS)

    Best, R.E.; Allen, J.H.; Aucoin, P.A.; Ball, G.D.; Hoffman, C.C.; Mason, M.E.; Propes, W.A.; Vizzini, T.A.

    1977-09-01

    This document is a compilation of data and reports that provide an overview of the capabilities of U.S. domestic transportation systems for the shipment of materials that are or may be classified as radioactive wastes

  18. PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately

  19. Review of the bases for regulations governing the transport of fissile and other radioactive material

    International Nuclear Information System (INIS)

    Smith, D.R.; Thomas, J.T.

    1978-01-01

    The outstanding record of transport of radioactive materials prompted this brief review of the history of the regulations. IAEA as well as DOT regulations are discussed, as are all classes of shipments and materials (Class I, II, III)

  20. Struggle against violations of the rules for radioactive materials storage, utilization, accounting and transport

    International Nuclear Information System (INIS)

    Iojrysh, A.I.

    1986-01-01

    Criminal punishments for violation of the rules of radioactive materials accounting, storage, utilization and transport or those for illegimate sending of these materials presupposed by the RSFSR criminal code are considered

  1. Forecasting of the radioactive material transport demand for the Brazilian Nuclear Program and the security aspects

    International Nuclear Information System (INIS)

    Meldonian, Nelson Leon

    1979-01-01

    In the nuclear fuel cycle, a lot of radioactive materials are produced. These radioactive materials must be transported in order to promote the integration of the fuel cycle units. Considerations about the transport characteristics of radioactive material were made for each section of the fuel cycle. These considerations were based on the experience of several countries and in accordance with the International Atomic Energy Agency regulations. A prediction of transport demands for the Brazilian Nuclear Program until year 2.010 was made. The prediction refers mainly to the quantity of radioactive material produced in each section of the cycle the quantity of vehicles needed for the transport of these materials. Several safety aspects were considered specially, the accidents predictions for years 2.000 and 2.010. The accident probability in Brazilian railroads and highways was compared with that of the USA. (author)

  2. RADTRAN II: revised computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1982-10-01

    A revised and updated version of the RADTRAN computer code is presented. This code has the capability to predict the radiological impacts associated with specific schemes of radioactive material shipments and mode specific transport variables

  3. Different training programs for the transport of radioactive goods proposed by the INSTN

    International Nuclear Information System (INIS)

    Kimmel, O.

    2004-01-01

    To meet the statutory requirements of the ADR pertaining to training, the INSTN (National Institute for Nuclear Sciences and Technology) proposes different courses on the transport of radioactive materials

  4. Need to increase public awareness of the safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Bishop, R.W.

    1983-01-01

    There are two aspects to the problem of the public perception of radioactive materials transport: the first is a lack of knowledge on the part of the public about the facts, and the second is the distorted presentation by the media. These two problems are obviously interrelated - the more unaware the public is of the actual safety of radioactive materials transport, the more it is likely to be influenced, and frightened, by inaccurate reporting. The obvious question is, what can we as an industry do to educate the public and to facilitate more neutral reporting about the facts involving radioactive materials transport. This question is answered by describing an excellent example of a situation where the industry acted cohesively and effectively to respond to fallacious allegations concerning the safety of the transportation of radioactive materials

  5. Radioactive Ores and Concentrates (Packaging and Transport) Act 1980. No 26 of 1980

    International Nuclear Information System (INIS)

    1980-01-01

    This Act, which regulates the packaging, storage and transport of radioactive ores and concentrates lays down a detailed licensing system for such materials and prescribes the duties of the Chief Inspector responsible for implementation of the Act. (NEA) [fr

  6. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  7. Development of a National System to Regulate Safe Transport of Radioactive Materials in Ukraine

    International Nuclear Information System (INIS)

    Gashev, M.; Kutuzova, T.; Sakalo, V.

    2016-01-01

    The paper provides brief information on development of the legislative framework and regulatory requirements in transport of radioactive materials in Ukraine. The application of IAEA documents is demonstrated and their contribution to the improvement of the national regulatory control system and processes of its harmonization with international safety requirements is underlined. Proposals for coordination and interaction enhancement in order to improve safety in safe transport of radioactive materials are defined in the conclusion. (author)

  8. Compliance assurance in the field of radioactive material transport in Russia

    International Nuclear Information System (INIS)

    Ershov, V.; Syssoev, M.

    1999-01-01

    The main provisions of the system of compliance assurance, as understood in the IAEA Safety Regulations, are presented in this article as they are applied in Russia in the field of transport of radioactive materials. The urgency of the development and enactment of the uniform programme of compliance assurance in this area is underlined since it is foreseen by the new national regulations for the safety of radioactive material transport in Russia. (author)

  9. Survey of radiation protection programmes for transport; Etude des programmes de radioprotection pour les transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Lizot, M.T.; Perrin, M.L.; Sert, G. [CEA Fontenay-aux-Roses, Inst. de Protection et de Surete Nucleaire, Dept. de Protection et de Surete Nucleaire, 92 (France); Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R. [Gesellschaft fur Anlagen-und Reaktorsicherheit, GRS, mbH, Cologne (Germany); Shaw, K.B.; Hughes, J.S.; Gelder, R. [National Radiological Protection Board (NRPB), Oxon, OX (United Kingdom)

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  10. Regulatory requirements on management of radioactive material safe transport in China

    International Nuclear Information System (INIS)

    Chu, C.

    2016-01-01

    Since 1980s, the IAEA Regulation for safe transport of radioactive material was introduced into China; the regulatory system of China began with international standards, and walked towards the institutionalized. In 2003 the National People’s Congress (NPC) promulgated “the Act on the Prevention of Radioactive Pollution of the People's Republic of China”. In 2009 “Regulation for the Safe Transport of Radioactive Material” (Referred to “Regulation”) was promulgated by the State Council. Subsequently, the National Nuclear Safety Administration (NNSA) began to formulate executive detailed department rules, regulations guidelines and standards. The present system of acts, regulations and standards on management of safe transport of radioactive material in China and future planning were introduced in this paper. Meanwhile, the paper described the specific administration requirements of the Regulation on classification management of radioactive materials, license management of transport packaging including design, manufacture and use, licensing management of transport activities and the provisions of illegal behaviors arising in safe transport of radioactive material. (author)

  11. A survey of the transport of radioactive materials by air to, from and within the UK

    International Nuclear Information System (INIS)

    Hughes, J.S.; Watson, S.J.

    2004-01-01

    Radioactive materials are frequently transported overseas by air for medical and industrial purposes. Among the advantages of this mode of transport is that urgent delivery is often required because some radionuclides are short lived. There are also a limited number of shipments by air within the UK. Scheduled passenger services or freight only aircraft may be used. Packages of radioactive materials are transported in aircraft holds at recommended segregation distances from areas occupied by passengers and crew. Many workers are involved in air transport and it is necessary to have procedures in place to minimise their exposure to ionising radiation

  12. Development of expert system for transport of radioactive materials with the KEE tools

    International Nuclear Information System (INIS)

    Kimura, Yoshitaka; Hasegawa, Keisuke; Ikezawa, Yoshio

    1990-01-01

    This paper presents the prototype of the expert system for the transport of radioactive material developed in the first step to the AI application to build an advanced radiation monitoring system. The system is composed of three subsystems on 'Judgment on the packages and the packagings', 'Diagnosis of confirmity of the packagings' and 'Judgment of transportable activities' and it will judge the type of the packages and the packagings and transportable activities, etc.. The system has brought the improvements on the rationalization and the reliability for our interpretations and judgments on the preparation of the transport of radioactive material. (author)

  13. Regulations for the safe transport of radioactive materials. 1973 rev. ed

    International Nuclear Information System (INIS)

    1973-01-01

    The purpose of these Regulations is to establish standards of safety which provide an acceptable level of control of the radiation hazards to persons, property and the environment that are associated with the transport of radioactive material. These Regulations shall apply to the transport by land, water or air, including transport on own account, of radioactive material other than that which is an integral part of the means of transport. Transport shall be deemed to include any operation incidental to the whole course of carriage, such as loading, unloading and storage in transit. The term includes both normal transport and that under accident conditions. These Regulations do not apply within establishments where the radioactive material is produced, used or stored, other than in the course of transport, and in respect of which other appropriate safety regulations are in force. In the transport of radioactive materials, any other hazardous characteristics of these materials such as explosiveness, inflammability, pyrophoricity, chemical toxicity, and corrosiveness must be taken into account in such a manner as to be in compliance with the relevant transport regulations for dangerous goods of each of the countries through or into which the materials will be transported, as well as in compliance with these Regulations.

  14. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  15. Ecological vectors of radionuclide transport at a solid radioactive waste disposal facility in southeastern Idaho

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1983-01-01

    Radioecological research conducted at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA) has estimated the quantity of radionuclides transported by various ecosystem components and evaluated the impact of subsurface disposal of radioactive waste on biotic species inhabiting the area. Radiation dose rates received by small mammals ranged from 0.4 to 41790 mrad/day. Small mammal soil burrowing was an upward transport mechanism for transuranic radionuclides. Seventy-seven uCi of radioactivity occurred in SDA vegetation annually. None of these ecological vectors contributed appreciable quantities of radioactive contamination to the environment surrounding the SDA

  16. Planning and preparing for emergency response to transport accidents involving radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to provide guidance to the public authorities and others (including consignors, carriers and emergency response authorities) who are responsible for developing and establishing emergency arrangements for dealing effectively and safely with transport accidents involving radioactive material. It may assist those concerned with establishing the capability to respond to such transport emergencies. It provides guidance for those Member States whose involvement with radioactive material is just beginning. It also provides guidance for those Member States that have already developed their radioactive material industries and the attendant emergency plans but that may need to review and improve these plans

  17. Transport of radioactive materials of the C. A. E. [CEA (France)]. Le transport des matieres radioactives au C.E.A.

    Energy Technology Data Exchange (ETDEWEB)

    Labrousse, M.

    1974-03-15

    Since the publication, in 1967, of the two issues of the Bull. Inform. Sci. Tech. devoted to the transport of radioactive materials, an important evolution has taken place, bearing both on the nature of the transports--where natural uranium hexafluoride, irradiated fuel, and wastes are becoming comparatively more important than miscellaneous small packages--and the construction of packagings, which are becoming more and more elaborate. This evolution appears in the reports selected for the BIST that are briefly introduced. (8 fig.)

  18. The planning and management system of the low level radioactive waste transportation

    International Nuclear Information System (INIS)

    Tanaka, K.; Yoshida, K.; Miyamoto, J.; Sanui, T.; Noura, T.; Kitanishi, K.; Nara, S.

    1993-01-01

    Nuclear Fuel Transport Co, Ltd. (hereafter called NFT) was the first in Japan to transport low-level radioactive waste (LLW). It is now engaged in preparatory operations with the slogan 'Improved Safety and Reliability' and is introducing advanced mechanization systems to provide safety and reliability in software management such as transportation planning and transportation information management. The following is an introduction of these systems, which provide overall support in transportation planning determination and transportation management operations related to the LLW transportation cycle. (J.P.N.)

  19. Implementation vigenere algorithm using microcontroller for sending SMS in monitoring radioactive substances transport system

    International Nuclear Information System (INIS)

    Adi Abimanyu; Nurhidayat; Jumari

    2013-01-01

    Aspects of safety and security of radioactive substances from the sender to the receiver is to be secured for not to harm humans. In general, monitoring the transport of radioactive materials is done by communication with a telephone conversation to determine the location and rate of exposure radioactive substances. From the aspect of safety, communication through telephone conversations easily interpreted by others, in addition the possibility of human-error is quite high. SMS service is known for its ease in terms of use so that SMS can be used as a substitute for communication through telephone conversations to monitor the rate of radiation exposure and the position of radioactive substances in the transport of radioactive substances. The system monitors the transport of radioactive materials developed by implement vigenere algorithms using a microcontroller for sending SMS (Short Message Service) to communicate. Tests was conducted to testing encryption and description and computation time required. From the test results obtained they have been successfully implemented vigenere algorithm to encrypt and decrypt the messages on the transport of radioactive monitoring system and the computational time required to encrypt and decrypt the data is 13.05 ms for 36 characters and 13.61 for 37 characters. So for every single character require computing time 0.56 ms. (author)

  20. State legislative developments in radioactive materials transportation, July 1, 1995--June 30, 1996

    International Nuclear Information System (INIS)

    Goehring, J.B.; Reed, J.B.

    1996-09-01

    The National Conference of State Legislatures (NCSL) prepares an update on state developments in radioactive materials transportation each year. The 1996 Report on State Legislative Developments in Radioactive Materials Transportation describes activities between July 1, 1995, and June 30, 1996. Thirteen bills were introduced and are arranged in this report by state according to their status--enacted, pending or failed. The report also includes 10 New York bills introduced in 1995 that remained pending during this review period. The bills address nuclear materials transportation as well as the broader areas of hazardous materials transportation, waste storage and emergency response. Also summarized are a state legislative resolution and Federal Register notices and rule changes related to radioactive waste and hazardous materials transportation that affect states

  1. Regulations for the Safe Transport of Radioactive Materials. Vietnam Standard (TCVN 4985-89)

    International Nuclear Information System (INIS)

    1989-01-01

    The regulations were prepared in line with the Safety Regulation for Ionizing Radiations 1988 of Vietnam. Its purpose is to provide requirements in transport of radioactive materials. The exposure levels of transport personnel are determined. The package for different types of materials is regulated. The orders and procedures in transport are defined. In addition, specific requirements for each mean of transport are given. (N.H.A)

  2. Present situation and influence of new ICRP recommendations on radioactive material transport regulations

    International Nuclear Information System (INIS)

    Hamard, J.; Ringot, C.

    1991-01-01

    The publication of new ICRP recommendations will involve the revision of IAEA standards and consequently the revision of transport regulations for radioactive materials. Transport regulations are briefly reviewed and application for radiation protection of workers and public is examined. Influence of new recommendations on transport regulations and eventual modifications on classification and transport of materials, packaging design and permissible exposure for workers and public in the prospect of regulation revision forecasted for 1995

  3. Safety aspects of radioactive waste transportation and storage in the Republic of Moldova

    International Nuclear Information System (INIS)

    Gasca, Iu.

    2009-01-01

    A special attention continues to be given to the management of radioactive wastes. The National Department of Radioactive Waste Management is a unique institute in Moldova that deals with reception, transportation and storage of radioactive wastes. It collaborates with International Atomic Energy Agency. The management of low- and intermediate-level waste has remained permanently focused at the IAEA work. In 2003 IAEA supported the construction and technique of low-level and intermediate-level radioactive waste repository in Moldova. During 2003-2005 the US Department of Energy supported financing of planning and building of the underground storage for keeping the installations with high-level radioactive sources with all safety systems (signalization, video-monitoring). In 2008 the construction of radioactive wastes conditioning station was initiated with support of the US Embassy's Bureau for military cooperation

  4. Radioactive contamination level of vehicles resulted from transporting fine rare-earth minerals by rail

    International Nuclear Information System (INIS)

    Han Kaichun; Yu Boyong; Gao Shengwei

    1997-01-01

    This paper presents monitoring results of radioactive contamination level of steel open wagon surface resulted from transporting fine rare-earth minerals. Under promising transport conditions (the packaging consists of two layers of plastic bags and two layers of plastic net sacks, each package contains 50 kg of minerals, each vehicle carries 60 t), the surface radioactivity (total α and total β) of 16 vehicles on two lines from Baotou to Wujiachuan (924 km) and from Baotou to Sankeshu (2236 km) was measured before loading, after unloading and washing, using α and β surface contamination detector. The results showed that the radioactive contamination level of the vehicle surface after unloading appeared significantly different. The contamination level of vehicle bases was higher than that of both sides, long distance vehicles was higher than that of short distance vehicles. The radioactive contamination level of vehicles surface after washing was below the standard limits, these vehicles can be used for ordinary goods transport

  5. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1993-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. Few technical issues remain in determining the shape of the IAEA's revision of its regulations to accommodate air transport of large quantities of radioactive material. In the next two years the detailed wording of the regulations will be fully worked out and proposed for inclusion in SS6. Considering the breadth of the member state participation in the process, it seems likely that the approved version of the 1995 revision of SS6 will contain air mode revisions that move away from the predominantly mode independent character that characterized their first 30 years. (J.P.N.)

  6. Research on risk assessment for maritime transport of radioactive materials. Preparation of maritime accident data for risk assessment

    International Nuclear Information System (INIS)

    Odano, Naoteru; Sawada, Ken-ichi; Mochiduki, Hiromitsu; Hirao, Yoshihiro; Asami, Mitsufumi

    2010-01-01

    Maritime transport of radioactive materials has been playing an important role in the nuclear fuel cycle in Japan. Due to recent increase of transported radioactive materials and diversification of transport packages with enlargement of nuclear research, development and utilization, safety securement for maritime transport of radioactive materials is one of important issues in the nuclear fuel cycle. Based squarely on the current circumstances, this paper summarizes discussion on importance of utilization of results of risk assessment for maritime transport of radioactive materials. A plan for development of comprehensive methodology to assess risks in maritime transport of radioactive materials is also described. Preparations of database of maritime accident to be necessary for risk assessment are also summarized. The prepared data could be utilized for future quantitative risk assessment, such as the event trees and fault trees analyses, for maritime transport of radioactive materials. The frequency of severe accident that the package might be damaged is also estimated using prepared data. (author)

  7. Developments in the transport of radioactive waste. Proceedings of a seminar held in Vienna, 21-25 February 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This document is proceeding of the seminar on development in the transport of low and intermediate level radioactive wastes. The papers presented in this seminar covered the following areas: IAEA activities in radioactive waste transport; Member State experience and recommendations for international transport regulations; Member State experience with national transport regulations; waste transport and handling; waste generation volumes, characteristics, and disposal requirements; risk assessment; and transport and waste packages. Refs, figs and tabs.

  8. Developments in the transport of radioactive waste. Proceedings of a seminar held in Vienna, 21-25 February 1994

    International Nuclear Information System (INIS)

    1995-06-01

    This document is proceeding of the seminar on development in the transport of low and intermediate level radioactive wastes. The papers presented in this seminar covered the following areas: IAEA activities in radioactive waste transport; Member State experience and recommendations for international transport regulations; Member State experience with national transport regulations; waste transport and handling; waste generation volumes, characteristics, and disposal requirements; risk assessment; and transport and waste packages. Refs, figs and tabs

  9. Low-level radioactive waste transportation plan for the State of Maryland

    International Nuclear Information System (INIS)

    Chaparala, P.N.

    1985-01-01

    The purpose of this document is to prepare a recommended transportation plan that will outline specific procedures for monitoring and regulating low-level radioactive waste transport in Maryland and which is consistent with federal law and party-state requirements under the Appalachian Compact

  10. 75 FR 38168 - Hazardous Materials: International Regulations for the Safe Transport of Radioactive Material (TS...

    Science.gov (United States)

    2010-07-01

    ... may also provide contact information, such as a telephone number and/or e-mail address. PHMSA and the.... PHMSA-2010-0130 (Notice No.10-2)] Hazardous Materials: International Regulations for the Safe Transport... (IAEA) ``Regulations for the Safe Transport of Radioactive Material'' (TS-R-1), which is scheduled for...

  11. Model to predict the radiological consequences of transportation of radioactive material through an urban environment

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.; DuCharme, A.R.; Finley, N.N.

    1977-01-01

    A model has been developed which predicts the radiological consequences of the transportation of radioactive material in and around urban environments. This discussion of the model includes discussion of the following general topics: health effects from radiation exposure, urban area characterization, computation of dose resulting from normal transportation, computation of dose resulting from vehicular accidents or sabotage, and preliminary results and conclusions

  12. Guide relative to the regulatory requirements applicable to the radioactive materials transport in airport area

    International Nuclear Information System (INIS)

    2006-02-01

    This guide makes an inventory of all the points necessary for the correct functioning of the transport of radioactive materials in airport zone. Stowage of the parcels, program of radiological protection (P.R.P.), operation of transport, quality assurance, radiation dose evaluation, radiation monitoring, dose optimization, storage management, are the principal points of this guide. (N.C.)

  13. Regulations for the safe transport of radioactive materials. 1973 revised edition (as amended).

    International Nuclear Information System (INIS)

    1979-01-01

    On the basis of a comprehensive review carried out by a panel of experts, a revised version of the International Atomic Energy Agency's Regulations for the Safe Transport of Radioactive Materials was approved by the Board of Governors in September 1972 and published in April 1973 as Safety Series No.6 - 1973 Revised Edition. Minor amendments, together with a number of changes of detail were promulgated by the Director General in 1975 and 1977. In October 1978, the Standing Advisory Group on the Safe Transport of Radioactive Materials, established by the Director General in 1977, reviewed and recommended a small number of additional amendments. The recommendations of SAGSTRAM were subsequently accepted by the Director General. All these minor amendments and changes of detail are incorporated in the present text of the Regulations. The purpose of these Regulations is to establish standards of safety which provide an acceptable level of control of the radiation hazards to persons, property and the environment that are associated with the transport of radioactive material. They apply to the transport by land, water or air, including transport on own account, of radioactive material other than that which is an integral part of the means of transport. Transport includes any operation incidental to the whole course of carriage, such as loading, unloading and storage in transit. The term includes both normal transport and that under accident conditions

  14. Transporad version 2.0 a software about the regulation of radioactive materials transports

    International Nuclear Information System (INIS)

    Bourgois, L.; Lelache, H.

    1998-01-01

    The software Transporad, version 2.0, founded on the decree on the fifth of December 1996 allows to know the regulations to apply, for the transport by road of the radioactive material. More-over, it allows to supply the transport documents. The computerized management allows to manage the traffic, the packaging stock, to edit accounting. (N.C.)

  15. Environmental impact of accident-free transportation of radioactive material in the United States

    International Nuclear Information System (INIS)

    Taylor, J.M.; Smith, D.R.; Luna, R.E.

    1978-01-01

    A recent study performed for the Nuclear Regulatory Commission (NRC) by Sandia Laboratories which considered transportation of radioactive materials in the United States suggests that a significant portion of the radiological impact results from accident-free transport. This paper explores the basis for that conclusion

  16. A historical summary of transportation accidents and incidents involving radioactive materials (1971-1988)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1989-01-01

    The Radioactive Materials Incident Report (RMIR) Database is a compilation of transportation events that have occurred during the shipment of radioactive materials. The database was developed in 1971 at the Transportation Technology Center (TTC) at Sandia National Laboratories (SNL) to support its research and development efforts for the US Department of Energy (DOE). Currently, RMIR resides on TRANSNET, an interactive computer network that allows an outside user to access transportation risk and systems analysis models and their associated databases. Within the last few months, the RMIR database has been modified so that the menu-driven format expedites database searches, particularly for the infrequent user

  17. Safety and security in transportation of radioactive material- the perception of risk

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, A.M.; Jaernry, C. [AMC Konsult AB, Bromma (Sweden)

    2004-07-01

    Since the event of September 11, 2001, the way most people look at transportation risk has changed. There is now a lot more focusing on the security concerns related to the transportation of radioactive material. Most people are now more concerned about the risk of terrorist actions or sabotage than of accidents. This is probably due to the fact that the safety record for transportation of radioactive material has so far been very good and that most people experience terrorism and sabotage more scaring and less controllable than general accidents. This paper will compare the safety and the security regulations and discuss synergies and contradictions between the sets of regulations.

  18. An historical summary of transportation accidents and incidents involving radioactive materials (1971--1988)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1989-01-01

    The Radioactive Materials Incident Report (RMIR) Database is a compilation of transportation events that have occurred during the shipment of radioactive materials. The database was developed in 1971 at the Transportation Technology Center (TTC) AT Sandia National Laboratories (SNL) to support its research and development efforts for the US Department of Energy (DOE). Currently RMIR resides on TRANSNET, an interactive computer network that allows an outside user to access transportation risk and systems analysis models and their associated databases. Within the last few months, the RMIR database has been modified so that the menu-driven format expedites database searches, particularly for the infrequent user. 2 refs

  19. Safety and security in transportation of radioactive material- the perception of risk

    International Nuclear Information System (INIS)

    Ericsson, A.M.; Jaernry, C.

    2004-01-01

    Since the event of September 11, 2001, the way most people look at transportation risk has changed. There is now a lot more focusing on the security concerns related to the transportation of radioactive material. Most people are now more concerned about the risk of terrorist actions or sabotage than of accidents. This is probably due to the fact that the safety record for transportation of radioactive material has so far been very good and that most people experience terrorism and sabotage more scaring and less controllable than general accidents. This paper will compare the safety and the security regulations and discuss synergies and contradictions between the sets of regulations

  20. Regulations for the Safe Transport of Radioactive Material, 2009 ed. Safety Requirements

    International Nuclear Information System (INIS)

    2009-01-01

    This publication establishes the regulations that are applied to the transport of radioactive material by all modes of transport on land, water or in the air, including transport that is incidental to the use of the radioactive material. The objective and scope of the regulations are described in detail as well as the range of their application. The publication provides requirements useful to governments, regulators, operators of nuclear and radiation facilities, carriers, users of radiation sources and cargo handling personnel. Contents: 1. Introduction; 2. Definitions; 3. General provisions; 4. Activity limits and classification; 5. Requirements and controls for transport; 6. Requirements for radioactive materials and for packagings and packages; 7. Test procedures; 8. Approval and administrative requirements; Annex I: Summary of approval and prior notification requirements; Annex II: Conversion factors and prefixes.

  1. Aspects of safety in the transport of radioactive materials; Aspectos de seguridad en el transporte de materiales radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz C, M A [ININ, Salazar, Estado de Mexico (Mexico)

    1991-07-01

    The transport of radioactive materials behaves to the equal that other chemical products, certain risks that its are necessary to know how to evaluate and to minimize, adopting all kinds of measures technician-administrative, with object of being able to guarantee that this risks stay in an acceptable level for the population potentially affected for the workers of the one sector and for the environment. To be able to evaluate the risk acceptable it is a difficult task, for that, national and international organizations have established a commitment to develop standards of radiological protection, to make every day but sure the transport of radioactive materials.

  2. Transport system for low level radioactive wastes in Japan

    International Nuclear Information System (INIS)

    Tanaka, K.; Yoshida, K.; Sanui, T.

    1993-01-01

    Nuclear Fuel Transport Co. (NFT) is to take charge of LLW transportation from each nuclear power plants to the final repository consigned by 10 electric power companies in Japan. In order to transport LLW safely and efficiently, NFT has developed and prepared various hardware, such as special packaging, an exclusive use vessel, automatic cranes and so forth together with software to use them. The procedure of transport is also described. (J.P.N.)

  3. Onsite transportation of radioactive materials at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  4. Konrad transport study: Safety analysis of the transportation of radioactive waste to the Konrad waste disposal site

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1992-05-01

    For the purpose of the study the anticipated waste transport volume and the waste properties were analysed in detail. This included information on the transport containers, waste product properties, activity inventories and local dose rates of the waste packages being transported. The envisaged practical implementation, i.e. the transport arrangements including shunting operations at the Braunschweig marshalling yard and the Beddingen interchange station, were also included. The two shipping scenarios 100% transportation by rail and 80% transportation by rail, 20% by road, which could be considered to bound the real conditions, were analysed. The relevant transport regulations contain the requirements to be met by the transport of shipping units carrying radioactive waste. In addition, the ''Konrad preliminary waste acceptance criteria'' contain activity limits for waste packages being disposed of in conjunction with further requirements relating to the properties of waste products and waste containers. (orig./DG)

  5. Waste Management Facilities Cost Information for transportation of radioactive and hazardous materials. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1994-09-01

    This report contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, greater-than-Class C (GTCC) LLW and DOE equivalent waste, transuranic waste (TRU), spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste have been estimated previously, and a summary has been included in earlier WMFCI reports. In order to have a single source for obtaining transportation cost for all radioactive waste, the transportation costs for the contact- and remote-handled wastes are repeated in this report. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the US Department of Transportation (DOT), the US Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations. It should be noted that the trend is toward greater restrictions on transportation of radioactive waste (e.g., truck or rail car speed, shipping route, security escort, and personnel training requirements), which may have a significant impact on future costs

  6. Status of Philippine regulatory infrastructure for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Parami, V.K.; De Jesus, T.G.

    2004-01-01

    This paper presents some regulatory practices and experiences of the Philippine Nuclear Research Institute (PNRI) in ensuring safe transport of radioactive materials. The regulation and licensing the use of radioactive materials started in 1958. The number of packages containing radioactive materials transported into and within the country has increased with the increase number of licensees. During the period 2000-2002, the total number of licensees is 293, 311 and 311 respectively. The PNRI issues certificates of release and certificate of transport/authority to transport. Based on the data of certificates, the topmost sealed source shipments from abroad, mostly in type A package, are 192 Ir and 125 I for brachytherapy. For unsealed sources, also mostly in type A package, the topmost radioactive materials are 99m Tc (generators), 131 I, 201 Tl mainly for medical diagnosis. From the data on certificates of transport, the total number of packages inspected for the period 2000-2002 is 464, 577 and 747 respectively. The experiences in the enforcement of the transport regulations and the implication of issuing certificates of release and transport are discussed and recommendations are presented. (Authors)

  7. Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Smith, R.J.

    1995-02-01

    Beginning in the 1940's, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments

  8. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  9. Transports of radioactive materials. Legal regulations, safety and security concepts, experience

    International Nuclear Information System (INIS)

    Schwarz, Guenther

    2012-01-01

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  10. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    International Nuclear Information System (INIS)

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement

  11. Apparatus for the storage of transport- and storage-containers containing radioactive fuel elements

    International Nuclear Information System (INIS)

    Vox, A.

    1983-01-01

    The invention concerns an apparatus for the storage of transport and storage containers containing radioactive fuel elements. For each transport or storage container there is a separate silo-type container of steel, concrete, prestressed concrete or suchlike breakproof and fireproof material, to be placed in the open, that can be opened for removal and placing of the transport or storage container respectively. (orig.) [de

  12. The CVSA pilot study of highway vehicle inspection procedures for the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Holm, J.; Curtis, G.E.; Branch, K.M.; Coburn, N.L.; Hauth, J.T.

    1991-01-01

    To further the goal of enhancing the safe and efficient transportation of radioactive materials, the US DOE and the Commercial Vehicle Safety Alliance have entered into a cooperative agreement to conduct a pilot study to test draft procedures for state inspections of highway route controlled quantity radioactive shipments. To succeed, this five-year study requires close collaboration between federal and state agencies and non-government organizations. Significant institutional relationships have been established for this study

  13. Sor/89-426, 24 August 1989, transport packaging of radioactive materials regulations, amendment

    International Nuclear Information System (INIS)

    1989-09-01

    These Regulations of 24 September 1983 were amended mainly to clarify the original text and further specify certain requirements. In particular, the definitions of A 1 , A 2 , Fissile Class III package and special Form Radioactive Material have been revoked and replaced by new definitions. Also, a new condition has been added regarding Special Form Radioactive Material. Henceforth, no such material may be transported without a certificate attesting that the material meets the requirements set out in Schedule XII of the Regulations [fr

  14. Transport of radioactive source of cobalt-60 for the steel industry

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira

    2009-01-01

    Radioactive materials are used in the fields of medicine, industry, research and nuclear power production. The use of radioactive material may involve transportation and this implies in the application of safety measures to the workers, public and the environment. Many types of radioactive material are produced all over the world and some modes of transport are involved. The IAEA regulations are based on the philosophy that radioactive material being transported should be adequately packaged to provide protection against the hazards of the material under all conditions of transport. Some Brazilian steel industries control the levels of liquid steel in continuous casting systems by means of sealed sources of cobalt-60. The Center for Development of Nuclear Technology-CDNT produces several of these sources to meet these industries and these sources must be transported in packages designed and tested as requirements of the rules of carriage of radioactive materials. For the transportation of seven sources of cobalt-60 with total activity of 1 GBq since CDNT to the applicant industries was designed, built and tested a Type A package. The thickness of the shield to meet the surface dose rate and the index of transport was calculated by MCNP (Monte Carlo N-Particle Transport Code-Version 5) and practical values were compatible. The sealed sources of cobalt-60 were tested as to leak through the tightness test conducted according to ISO 9978:1992 (E) and the tests to demonstrate the capability of resistance of packaged under normal conditions of transport were made on the facilities of CDNT. (author)

  15. Safety analysis of the transportation of radioactive waste to the Konrad final repository

    International Nuclear Information System (INIS)

    Sentuc, F.N.; Bruecher, W.

    2010-01-01

    A transport risk assessment study has been conducted for transport of radioactive waste with negligible heat-generation to the German final repository Konrad. This study is a revision of the former Konrad Transport Study performed by GRS in 1991 implementing updated waste data among other improved methods and assumptions for the purpose of a more realistic approach to risk assessment. The first part of the transport risk assessment study concerns the radiological consequences from normal (accident-free) transportation of radioactive material, i.e. the radiation exposure of transport personnel and the public. Based on the assessed detailed information on transport arrangements and on the average number and radiological characteristics of waste packages the maximum annual effective doses for the representative persons were estimated. The risk associated with transport incidents and accidents has been quantified for the area within a radius of 25 km around the repository site. The probabilistic method adopted in this study considers parameters as the frequency and severity of railway or road accidents, characteristics of radioactive waste and transport packagings and the frequency of atmospheric dispersion conditions. From a large set of parameter combinations the spectrum of potential radiological consequences and of the associated probability of occurrence was assessed. (orig.)

  16. Equipment of high sensitivity to detect smuggled radioactive materials transported across the ''east-west'' border

    International Nuclear Information System (INIS)

    Antonovski, A.; Kagan, L.; Stavrov, A.

    1998-01-01

    An equipment specially developed for the customs radiation control is described. Its sensitivity is higher than requirements of western countries. The equipment ensures an alarm when a radioactive source (both shielded or not) is found in the controlled area, localizes and identifies the source detected, and provides the radiation protection of customs personnel. Most of devices have a non-volatile memory where the radiation situation history is stored and then transferred to PC. The equipment may be used by personnel of special services for secret detection of radioactive materials. Some Belarussian and Russian documents specifying measures to prevent an unauthorized transportation of radioactive materials are discussed. (author)

  17. HA and MAVL technical dialogue - Seminar - Transports of radioactive materials

    International Nuclear Information System (INIS)

    Charron, Sylvie; Eckert, Benoit; Lizot, Marie-Therese; Moutarde, Marianne; Mermaz, Frederic; Brisson, Nicolas; Sene, Monique; Demet, Michel; Jacquet, Benoit; Tran-Thien, Vivien; Ferran, Ghislain; Michel, Maurice; Barbey, Pierre; Miquel, Thierry-Paul; Monot, Bernard; Syren, Julien; Quintin, Christophe; Gilbert, Alain; Lhuillier, Daniel; Domeneghetti, Bertrand; LOURTIE, Guy; Manessier, Joffray

    2016-03-01

    This document gathers the content of a debate and Power Point presentations as contributions to this seminar on transports of nuclear materials. After an introduction, the different sessions addressed the actors of the transport of nuclear materials (regulation, parcel design, organisation on the shipper side and on the transporter side), transport safety and radiation protection (returns on experience by different actors and on event follow-up), the follow-up and safety of transports of nuclear materials (protection against malevolent acts, operational follow-up, case of rail transport), and issues related to crisis management (organisation in case of crisis, means of intervention implemented by the IRSN, return on experience for two accidents)

  18. Determination of detailed standards for transportation of radioactive materials by ships

    International Nuclear Information System (INIS)

    1979-01-01

    The notification is defined under the regulations concerning marine transport and storage of dangerous things. Radioactive materials include hereunder uranium 233 and 235, plutonium 238, 239 and 241, their compounds and those materials which contain one or more than two of such materials. Materials whose quantities or quantities of components are less than 15 grams, and natural or depleted uranium are excluded. Permissible surface concentrations are 1/100,000 micro-curie per centi-meter 2 for radioactive materials emitting alpha rays, and 1/10,000 micro-curie per centi-meter 2 for radioactive materials not emitting alpha rays. Radioactive materials to be transported as L loads shall be not dispersing solid substances or those tightly enclosed in capsules, one of whose exterior sides at least is more than 0.5 centi-meter, having other several specified features. Other kinds of liquid and gas L loads are stipulated. Limits of radioactivity of L and A loads are provided for with tables attached. Transport conditions of A, BM and BU loads are fixed with bylaws. Leakages of BM and BU loads are also prescribed. Radioactive loads shall be marked by particular signals. Measures shall be taken to control exposures, which involve measurement of doses and exposure doses on board and appointment of exposure controllers. (Okada, K.)

  19. Determination of detailed standards for transportation of radioactive materials by ships

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations on the transport and storage of dangerous things by ships''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials, etc., include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding such materials of not more than 15 grams. The permissible surface density of radioactive materials is 1/100,000 of one microcurie per cm 2 for the radioactive materials emitting alpha-ray and 1/10,000 of one microcurie per cm 2 for the radioactive materials not emitting alpha-ray. For the radioactive materials which can be transported as L type cargo, their quantity of radioactivity is defined in their solid, liquid and gaseous forms. The limit of quantity of such cargo is described in detail in the lists attached. Transporting conditions of A, BM and BU type cargos are specified respectively in the particular sections. (Okada, K.)

  20. Radioactive waste transportation systems analysis and program plan

    International Nuclear Information System (INIS)

    Shappert, L.B.; Joy, D.S.; Heiskell, M.M.

    1978-03-01

    The objective of the Transportation/Logistics Study is to ensure the availability of a viable system for transporting the wastes to a federal repository in 1985. In order to accomplish this objective, a systems analysis of waste transportation has been directed by ORNL to determine the problems that must be solved and to develop a program plan that identifies which problems must first be pursued. To facilitate this overall approach and to provide for short- and long-range waste management, logistics models have been developed to determine the transportation fleet requirements and costs. Results of the study are described in this report

  1. Compliance assurance in the safe transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1994-01-01

    Quality Assurance in the transport of radioactive materials (RAM) has been a legal requirement in Switzerland since 1 January 1990. Some four years later, Switzerland is well on the way to having a comprehensive system of Compliance Assurance covering the transport of RAM. By the end of 1994 Compliance Assurance will be fully operational with regard to nuclear fuel cycle shipments which account for over 90% of all radioactivity transported in Switzerland. Compliance Assurance has been delayed in Switzerland for non-fuel-cycle radioactive material shipments. This has been due to the need to modify the legal infrastructure for the relevant supervisory authorities. Nevertheless, it is hoped to have Compliance Assurance related to Radiation Units (large sources in Type B packages) operational before the end of 1994. Systematic progress is being made regarding Compliance Assurance relating to the movement of smaller sources. This involves a very large number of smaller organisations and will take some time to become routine. (author)

  2. Training and improvement of professional person: multimedia training for radioactive material transport

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.M.; Ghobril, C.N.

    2013-01-01

    The international transport of radioactive materials depends on national regulations of different countries, through which they pass. Therefore, it is necessary to learn the international recommendations in order to avoid contradictions among each country own regulations that can make radioactive materials transport impracticable. Information Technology and Communication has grown in Brazil and abroad, increasing demand for long distance learning, since it allows simultaneous training and education of a large number of geographically distant people in short time. The development of this first web-based course of transport for radioactive materials considered many advantages when compared to traditional courses, such as: agility in developing, translating and updating courses; facility of access and compatibility with various educational platforms all over the world. The course covers five topics. It presents regulations for transportation of dangerous materials and categorizes radioactive materials; it discusses the requirements and classification of radioactive material packing; ir discusses different risk labels and when they should be used; it presents responsibility and administrative requirements. Furthermore, considering the increasing use of mobile computing, the content is supposed to be automatically adjusted to different devices, allowing the user to make use of multiple access points without losing the sequence of the course. Initially developed in Portuguese and Spanish, this technology allows the dissemination of knowledge in Portuguese and Spanish spoken countries. It is our target to expand this Project, translating the course to other languages. The monitoring of access profiles and users feedback will guide the development of the next courses for the sector. (author)

  3. Environmental effects of transporting radioactive materials in nuclear waste management systems

    International Nuclear Information System (INIS)

    Pope, R.B.; Yoshimura, H.R.; McClure, J.D.; Huerta, M.

    1978-01-01

    This paper discusses the environmental effects of radioactive materials transportation. The systems used or being designed for use in spent fuel and waste transportation are described. Accident rate and severity data are used to quantify risk. A test program in which subscale and full scale transportation systems were exposed to accident environments far in excess of those used in package design is used to relate package damage to accident severity levels. Analytical results and subscale and full scale test results are correlated to demonstrate that computational methods or scale modeling, or both, can be used to predict accident behavior of transportation systems. This work is used to show that the risks to the public from radioactive material transportation are low relative to other risks commonly accepted by the public

  4. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    International Nuclear Information System (INIS)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species

  5. Changes in the regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge R.; Vidal, Dora N.; Piumetti, Elsa H.; Capadona, Nancy M.

    2000-01-01

    The objective of this paper is to describe and to analyze the relevant changes, dealing with the design, operation and administrative requirements, to be introduced in the Revision 1 of the AR 10.16.1 standard 'Transport of radioactive material' that will be put into force on July, 1st 2001 by the Nuclear Regulatory Authority (competent authority of Argentina). In that way, the Revision 1 of the mentioned standard will be coincident with the 1996 edition (revised) of the 'Regulations for the safe transport of radioactive material', Safety Standards Series No. TS-R-1 (ST-1, revised) issued by the International Atomic Energy Agency (IAEA). (author)

  6. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.; Wang, Z.

    1992-01-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material

  7. Denials and delays of shipments in the transport of radioactive materials in Brazil

    International Nuclear Information System (INIS)

    Sobreira, Ana Celia F.; Bemelmans, Denise

    2007-01-01

    REM Industria e Comercio is a Brazilian private company which has been performing transport of radioactive material in Brazil for more than 15 years and is also experiencing this situation. In Brazil, over 50,000 shipments of radioactive materials are carried out every year, mostly for medical purposes. There are 4 airlines companies operating the domestic routes and only is currently accepting material of Class 7 (radioactive) for transport. When transporting by road, REM uses its own vehicles or hires associated cargo companies. For the sea transport, there is not a certified vessel for this kind of material in Brazil which increases the prices and makes the transport by this mode very expensive and more difficult. Reasons for denials have been identified as misinterpretation of the regulations, lack of harmonization between regulations, fear of indemnity costs for accidents, restrictive rules at ports not allowing storage of radioactive material in transit, frequent changes in modal regulations, lack of education and training of cargo handlers and the misconception of public perception concerning radiation risks. Seeking for local solutions, REM has organized meetings involving medical societies, competent authorities and carriers and has taken part on commissions for revising standards and regulations and trained cargo handling personnel as well. This paper addresses causes for delays and denials and reports identified domestic solutions. (author)

  8. Final environmental statement on the transportation of radioactive material by air and other modes

    International Nuclear Information System (INIS)

    1977-12-01

    An assessment is presented of the environmental impact from transportation of shipments of radioactive material into, within, and out of the United States. It is intended to serve as background material for a review by the United States Nuclear Regulatory Commission (NRC) of regulations dealing with transportation of radioactive materials. The impetus for such a review results not only from a general need to examine regulations to ensure their continuing consistency with the goal of limiting radiological impact to a level that is as low as reasonably achievable, but also from a need to respond to current national discussions of the safety and security aspects of nuclear fuel cycle materials. Chapters are included on regulations governing the transportation of radioactive materials, radiological effects, transport impact under normal conditions, impacts of transportation accidents, alternatives, and security and safeguards. A standard shipments model is also included along with a demographic model, excerpts from federal regulations, data on Pu, Population dose formulas, a list of radioactive material incidents, accident analysis methodology, and an analysis of risk assessment sensitivity

  9. Safe Transport of Radioactive Material, International Regulations and its Supporting Documents

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    2005-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1 ( ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series No 7 and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series No 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS=113), compliance assurance (SS=112), the training manual and other

  10. Safe Transport of Radioactive Material, International Regulations and its Supporting Documents

    Energy Technology Data Exchange (ETDEWEB)

    El-Shinawy, R M.K. [Radiation Protection Dept., NRC, Atomic Energy Authority, Cairo (Egypt)

    2005-04-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1 ( ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series No 7 and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series No 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS=113), compliance assurance (SS=112), the training manual and other.

  11. Security in the transport of radioactive material - interim guidance for comment

    International Nuclear Information System (INIS)

    Legoux, P.; Wangler, M.

    2004-01-01

    While the IAEA has provided specific guidance for physical protection in the transport of nuclear material, its previous publications have only provided some general guidelines for security of non-nuclear radioactive material in transport. Some basic practical advice has been provided in the requirements of the International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources (BSS) [1]. These guidelines were primarily directed toward such issues as unintentional exposure to radiation, negligence and inadvertent loss. Recently, the IAEA published a document on the security of sources, which included some general guidance on providing security during transport of the sources. However, it is clear that more guidance is needed for security during the transport of radioactive material in addition to those already existing for nuclear material. Member States have requested guidance on the type and nature of security measures that might be put in place for radioactive material in general during its transport and on the methodology to be used in choosing and implementing such measures. The purpose of the TECDOC on Security in the Transport of Radioactive Material being developed by the IAEA is to provide an initial response to that request. This interim guidance is being developed with a view to harmonizing the security guidance - as much as possible - with existing guidance from the IAEA for the transport of radioactive sources and nuclear material. It is also intended to harmonize with model requirements developed in 2002-2003 by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonised System of Classification and Labelling of Chemicals which was issued as general security guidelines for all dangerous goods, including radioactive material, and that will shortly be implemented as binding regulations by the international modal authorities

  12. Security in the transport of radioactive material - interim guidance for comment

    Energy Technology Data Exchange (ETDEWEB)

    Legoux, P.; Wangler, M. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    While the IAEA has provided specific guidance for physical protection in the transport of nuclear material, its previous publications have only provided some general guidelines for security of non-nuclear radioactive material in transport. Some basic practical advice has been provided in the requirements of the International Basic Safety Standards for Protection against Ionising Radiation and for the Safety of Radiation Sources (BSS) [1]. These guidelines were primarily directed toward such issues as unintentional exposure to radiation, negligence and inadvertent loss. Recently, the IAEA published a document on the security of sources, which included some general guidance on providing security during transport of the sources. However, it is clear that more guidance is needed for security during the transport of radioactive material in addition to those already existing for nuclear material. Member States have requested guidance on the type and nature of security measures that might be put in place for radioactive material in general during its transport and on the methodology to be used in choosing and implementing such measures. The purpose of the TECDOC on Security in the Transport of Radioactive Material being developed by the IAEA is to provide an initial response to that request. This interim guidance is being developed with a view to harmonizing the security guidance - as much as possible - with existing guidance from the IAEA for the transport of radioactive sources and nuclear material. It is also intended to harmonize with model requirements developed in 2002-2003 by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonised System of Classification and Labelling of Chemicals which was issued as general security guidelines for all dangerous goods, including radioactive material, and that will shortly be implemented as binding regulations by the international modal

  13. Development of hotcell transportation system technology for high radioactive material

    International Nuclear Information System (INIS)

    Seo, K. S.; Seo, C. S.; Lee, J. C.

    2012-04-01

    In the first stage of the research, the transportation and storage characteristics analysis of the pyroprocess materials, the development of horizontal type hot cell transportation system, and the design of interim storage system for the pyroprocess material are conducted. The optimized capacity, transportation frequency and operation period of pyroprocess facility are found using the logistics analysis program developed in this project. A new hot cell transportation system was designed. Through the safety analysis and test for the hot cell transportation system, the design license has been approved. A new type hot cell docking system with superior performance has been developed with a patented rotating lid system. We have reached to a unique concept of interim storage of pyroprocess materials and selected a system through a comparative evaluation of existing ones. In the second stage of the research, transportation/storage/sealing devices for PRIDE recovered material/wastes were developed. And test model for the devices in engineering scale facility were also developed. The design requirements for a vertical docking system were evaluated and the performance assessment using a scaled mock-up was conducted. Integrated storage management technology was evaluated for an efficient management of process materials. A heat transfer simulation and characteristics analysis for the storage system were conducted. The derivation of design requirements, design and fabrication of a canister test model, and preliminary safety assessment were conducted

  14. Risk analysis methodologies for the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Geffen, C.A.

    1983-05-01

    Different methodologies have evolved for consideration of each of the many steps required in performing a transportation risk analysis. Although there are techniques that attempt to consider the entire scope of the analysis in depth, most applications of risk assessment to the transportation of nuclear fuel cycle materials develop specific methodologies for only one or two parts of the analysis. The remaining steps are simplified for the analyst by narrowing the scope of the effort (such as evaluating risks for only one material, or a particular set of accident scenarios, or movement over a specific route); performing a qualitative rather than a quantitative analysis (probabilities may be simply ranked as high, medium or low, for instance); or assuming some generic, conservative conditions for potential release fractions and consequences. This paper presents a discussion of the history and present state-of-the-art of transportation risk analysis methodologies. Many reports in this area were reviewed as background for this presentation. The literature review, while not exhaustive, did result in a complete representation of the major methods used today in transportation risk analysis. These methodologies primarily include the use of severity categories based on historical accident data, the analysis of specifically assumed accident sequences for the transportation activity of interest, and the use of fault or event tree analysis. Although the focus of this work has generally been on potential impacts to public groups, some effort has been expended in the estimation of risks to occupational groups in transportation activities

  15. IAEA mode-related research in the safe transport of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Blalock, L.G.; Rawl, R.R. [International Atomic Energy Agency, IAEA, Vienna (Austria)

    1998-07-01

    The International Atomic Energy Agency sponsors Co-ordinated Research Programmes (CRP) in the safe transport of radioactive material. The CRPs are intended to encourage research by Member States in identified areas and to facilitate co-ordination of exchange of information and resources to reach a common understanding of the problem and alternative solutions. Two of these programmes are: Accident Severity at Sea During the Transport of Radioactive Material and Accident Severity During the Air Transport of Radioactive Material. This paper will discuss these two programmes and their relationship to the continuing regulatory revision process and interfaces with the International Maritime Organization (IMO) and the International Civil Aviation Organization (ICAO). Some Member States and non-governmental organizations in IMO meetings expressed concerns that accidents on board ships may be more severe than the IAEA regulatory tests account for, and that package failure with subsequent release of radioactive material may occur. The CRP on accident severity at sea was established to develop further quantitative information on potential accident severities during the transport of radioactive material by ships. The primary objective of this programme is to collect and evaluate statistical data of marine accidents, perform analyses of potential accident conditions and evaluate the risks resulting from such shipments. The CRP on air transport was established to make a major international effort to collect relevant frequency and severity data and to analyze it so the accident forces to which a packages of radioactive material might be subjected to in a severe air accident can be more confidently quantified. Several countries have ongoing data collection activities related to aircraft accidents and severity and other sources of statistics for in-flight aircraft accidents will be explored. The International Civil Aviation Organization informed the IAEA of their plans to improve

  16. IAEA mode-related research in the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Blalock, L.G.; Rawl, R.R.

    1998-01-01

    The International Atomic Energy Agency sponsors Co-ordinated Research Programmes (CRP) in the safe transport of radioactive material. The CRPs are intended to encourage research by Member States in identified areas and to facilitate co-ordination of exchange of information and resources to reach a common understanding of the problem and alternative solutions. Two of these programmes are: Accident Severity at Sea During the Transport of Radioactive Material and Accident Severity During the Air Transport of Radioactive Material. This paper will discuss these two programmes and their relationship to the continuing regulatory revision process and interfaces with the International Maritime Organization (IMO) and the International Civil Aviation Organization (ICAO). Some Member States and non-governmental organizations in IMO meetings expressed concerns that accidents on board ships may be more severe than the IAEA regulatory tests account for, and that package failure with subsequent release of radioactive material may occur. The CRP on accident severity at sea was established to develop further quantitative information on potential accident severities during the transport of radioactive material by ships. The primary objective of this programme is to collect and evaluate statistical data of marine accidents, perform analyses of potential accident conditions and evaluate the risks resulting from such shipments. The CRP on air transport was established to make a major international effort to collect relevant frequency and severity data and to analyze it so the accident forces to which a packages of radioactive material might be subjected to in a severe air accident can be more confidently quantified. Several countries have ongoing data collection activities related to aircraft accidents and severity and other sources of statistics for in-flight aircraft accidents will be explored. The International Civil Aviation Organization informed the IAEA of their plans to improve

  17. Stb 342 - Decree of 4 June 1987 amending the Decree on the transport of fissionable materials, ores and radioactive substances

    International Nuclear Information System (INIS)

    1987-01-01

    The 1969 transport Decree governs all modes of transport of fissile and radioactive materials as well as ores in and to and from the Netherlands. The 1987 Decree amends it, in particular, for modernization purposes. (NEA) [fr

  18. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  19. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  20. Regional training course on safe transport of radioactive material. Folder documentation

    International Nuclear Information System (INIS)

    1999-01-01

    Folder including documentation distributed to the participants to the International Atomic Energy Agency (IAEA) Regional Training Course on Safe Transport of Radioactive Material organised by the IAEA in co-operation with the Government of Argentina through the Nuclear Regulatory Authority, held in Buenos Aires, Argentina, 13 September -1 October 1999. The course was intended to people from IAEA Member States in the Latin American and Caribbean region. The instruction language was spanish and some lectures was delivered in english. The documentation was Spanish and some lectures was delivered in English. The documentation was in Spanish and included: copies of transparencies used during lectures, exercises of application, main training document (introduction; shipments of radioactive material; applicable regulations; basic principles; scope and objective of the IAEA Transport Regulations; package design requirements; type of packages and their contents limits; Q system; special form radioactive material requirements; radiation protection requirements; fissile material transport requirements; controls, contamination, radiation level, transport index; operational and administrative requirements; consignors' responsibilities; approval certificates, transport under special arrangements; emergency planning and procedures; physical protection aspects during transport. Guidelines for consignors, radiation detectors, complement to the training manual on main changes included in the 1996 Edition of IAEA Transport Regulations

  1. Legal Framework and Best Practice for Improving Transport Security of Radioactive and Nuclear Materials in Croatia

    International Nuclear Information System (INIS)

    Ilijas, B.; Medakovic, S.

    2012-01-01

    Security of transporting radioactive and nuclear materials always poses a demanding task to the holder of the authorization or beneficiary, and especially transporter. Very strict and precise legal framework must be done for this purpose, yet it has not be too complicated to create a great problems in practice. The best balance between efficiency and simplicity should be achieved. In Croatia on power is 'The Dangerous Goods Transport Act' which stipulates the conditions for the carriage of dangerous goods in individual transport modes, obligations of persons participating in the carriage, requirements for packaging and vehicles, conditions for the appointment of safety advisers and safety adviser's rights and duties, competence and conditions for the implementation of training programs for persons participating in transport, competence of the state authorities related to such carriage and supervision of the implementation of the Act. Besides this Act, which regulates the issue in more general way, in preparation is a new 'Ordinance on Physical Security Measures for Radioactive Sources, Nuclear Material and Nuclear Facilities'. The intention of this Ordinance, in the part dealing with transport, is to bring specific approach, in accordance with IAEA guides, forwarding the most of obligations to the holder of the authorization or beneficiary and transporter, leaving state regulatory bodies mostly supervising role. In practice this can create some problems in the beginning, but with rising security awareness and after some experience collected, this can be the best way to achieve satisfactory security, yet not slowing down and complicating regular jobs with radioactive and nuclear materials.(author).

  2. Utilising the emergency planning cycle for the transport of radioactive material

    International Nuclear Information System (INIS)

    Fox, M.

    2004-01-01

    As a world leader in the transport of radioactive material (RAM) British Nuclear Fuels plc (BNFL) and its subsidiary Pacific Nuclear Transport Limited (PNTL) recognise the importance of adopting the emergency planning cycle. The emergency response arrangements prepared and maintained in support of the International Transport business have been developed through this cycle to ensure that their emergency response section may achieve its aim and that the business unit is able to respond to any International Transport related incident in a swift, combined and co-ordinated manner. This paper outlines the eight key stages of the planning cycle and the experience that BNFL has gained in respect of its emergency response activities

  3. The approach of risk and safety evaluation in radioactive waste transport

    International Nuclear Information System (INIS)

    Vieru, G.

    1996-01-01

    Within Institute for Nuclear Research (INR) Pitesti, qualification tests were performed on packages, designed for transport and storage of low activity radioactive waste. Risk assessment activities aiming the evaluation of risk categories that many arise either during accident free transport or during accident conditions of waste transportation to the disposal center, in Romania, have been approached. The accident rates calculation, the distribution within accident scenarios and overall effective collective dose (man.Sv/year),for routine road transportation and the accidental Risk (man.Sv/Year) were determined

  4. Determination of detailed regulations concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations concerning transportation of radioactive materials by vehicles''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding the radioactive materials with not more than 15 grams of such uranium and plutonium. The permissible surface density is 1/100,000 microcurie per cm 2 for radioactive materials emitting alpha-ray and 1/10,000 microcurie per cm 2 for such materials which does not emit alpha-ray. For the radioactive materials which can be transported as L type loads, their kinds and quantities are specified in the forms of solid, liquid and gas, respectively. Transporting conditions including the quantity and leakage in A, BM and BU type loads are provided for, respectively, in the lists attached and in the particular sections. (Okada, K.)

  5. A reliable technique for transfer of radioactivity filled vial from transport container to the processing station

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Dey, A.C.

    2005-01-01

    In Technetium Column Generator Production Facility (TCGPF project) of BRIT, a facility for unloading vial containing radioactive liquid sodium molybdate- 99 Mo solution from the transport cask into the processing station and unsealing the vial to transfer the liquid to a storage bottle has been developed. This is specifically conceptualized for safe handling of radioactivity and minimizing the radiation dose exposure to the personnel working at the time of transferring the radioactivity from the transport cask to a place for further processing. The facility, designed to handle around 1850 GBq activity, has two cells enclosed in 102mm thick lead wall and connected by a gravity actuated trolley conveyor. The first cell handles the transport cask carrying the vial-containing radioactivity, which houses two types of vial lifting gadgets assisted by manually operatable tongs. Gadgets use compressed air. In an experiment, it is found that the HDPE vial lifting gadget using suction cup continue to function up to 30-40 minutes after power failure. The experience shows that gadget using 3-point radial gripper to lift the glass vial will remain in grab position, even if the compressed air supply stops. In this facility the dose receivable, while handling radioactivity by the operator, is likely to be negligibly small (approx. 3.15 x 10 -4 mSv per year at the rate four glass vials/week and 2.25 x 10 -4 mSv per year considering at the rate 1 vial/week for HOPE vial transfer). (author)

  6. Numerical modelling of suspended radioactive sediment transport in a stream using matlab

    International Nuclear Information System (INIS)

    Sarpong, Linda

    2017-07-01

    The use of materials that contain radioactive substances has gained grounds in Ghana due to numerous benefits derived from them. These radioactive materials can be found in the areas of medicine, agriculture and industries such as mining. Though there are strict measures to ensure such material do not find its way into the environment, improper management of the waste poses a threat to the environment. To be able to understand the impact the radioactive material has on the environment, mathematical models play a very relevant role in tracking the level of pollution in any medium. This thesis was concerned with the numerical modelling for the transport of the radioactive solute material that suspends in a stream using Matlab at different velocities as a result of flooding or an accident for research purposes. The modelling was done by using partial differential equations describing relevant physical processes evolution which includes water level, dissolved and suspended substances concentration and velocities. The equation system basis are the mass conservation and momentum laws, state equation and state transport equations. The implicit finite difference scheme was used to evaluate the transport equation, Advection-Dispersion Equation (ADE) with respect to time and space. Solution algorithms for Matlab programming were developed and implemented for generating results for analysis. The results obtained showed that the model was able to simulate accurately the various levels of suspended radioactive sediment concentration changes in the flowing stream longitudinally. (au)

  7. Emergency response planning and preparedness for transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this Guide is to provide assistance to public authorities and others (including consignors and carriers of radioactive materials) who are responsible for ensuring safety in establishing and developing emergency response arrangements for responding effectively to transport accidents involving radioactive materials. This Guide is concerned mainly with the preparation of emergency response plans. It provides information which will assist those countries whose involvement with radioactive materials is just beginning and those which have already developed their industries involving radioactive materials and attendant emergency plans, but may need to review and improve these plans. The need for emergency response plans and the ways in which they are implemented vary from country to country. In each country, the responsible authorities must decide how best to apply this Guide, taking into account the actual shipments and associated hazards. In this Guide the emergency response planning and response philosophy are outlined, including identification of emergency response organizations and emergency services that would be required during a transport accident. General consequences which could prevail during an accident are described taking into account the IAEA Regulations for the Safe Transport of Radioactive Material. 43 refs, figs and tabs

  8. The ATB-8K packaging for transport of radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Michels, L.; Dybeck, P.

    1998-01-01

    The ATB-8K container has been developed on behalf of SKB, the Swedish nuclear fuel and waste management organization, to transport large volumes of radioactive waste conditioned in moulds and drums, or large size scrap components, from nuclear facilities to the Swedish Final Repository for radioactive waste (SFR). In most cases the waste is under LSA form, but when the dose rate at 3 meters from the unshielded object exceeds 10 mSv/h, the transport packaging must been the regulatory requirements applicable to type B(U) packages, with no fissile content. Considering the dose rate around the package, it will be transported under exclusive use. The ATB-8k packaging is therefore a type B(U) packaging, specially designed for the transportation of high activity conditioned waste. (authors)

  9. Effect of truck and rail economic deregulation on radioactive material transportation

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1984-01-01

    An evaluation of the effect of truck and rail economic deregulation on radioactive material transportation is presented in this document. The evaluation is based on expected market performance that would be consistent with fundamental economic theories. The issues of transport safety, commodity discrimination and rates are addressed. Relative to transport safety, deregulation should not have any significant impact. While deregulation should not change commodity acceptance and may lower rates for motor carriage, it may allow increased discrimination by rail carriers in addition to raising rates. Consequently, it is likely that the radioactive material transportation industry will continue to place greater reliance on the competitive motor carrier industry. Positive steps that shippers can take are to maintain credible options to ship by alternate modes, to address issues that result in the perceived need for special risk premiums, and to reduce the cost of handling truck shipments by improvements in technology or procedures. 28 references, 3 figures, 6 tables

  10. Fleet servicing facilities for testing and maintaining rail and truck radioactive waste transport systems

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Preston, M.K.; Keith, D.A.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-01-01

    This paper examines feasibility design concepts and feasibility studies of Fleet Servicing Facilities (FSF). Such facilities are intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the waste handling plants in the United States presently receiving radioactive wastes have an onsite FSF, nor is there an existing third party facility providing all of these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the transport system is placed into service. Thus a need is indicated for FSFs or their equivalent at various radioactive materials receiving sites. This paper also compares the respective capital costs and operating characteristics of the following three concepts of a spent fuel cask transportation FSF; integrated FSF, colocated FSF, and independent FSF

  11. Transportation of radioactive material in Michigan. Final report, September 1980-August 1981

    International Nuclear Information System (INIS)

    McCarty, M.J.; Hennigan, J.M.; Bruchmann, G.W.

    1982-05-01

    Most of the radioactive material transported into and through the State of Michigan is comprised of radiopharmaceuticals. The remainder includes radioactive waste from nuclear power plants and hospitals, uranium ore concentrate (yellowcake) from Ontario, Canada, and periodic spent fuel shipments from a university research reactor. Investigations carried out under contract with the US Department of Transportation and the US Nuclear Regulatory Commission have revealed that minor violations of packaging and shipping paper regulations persist but to a lesser degree than in previous years. Major operational problems associated with two courier companies have substantially improved but still require improvement. Several minor transportation accidents are reported, none of which resulted in significant radiation exposure. Joint investigations with federal agencies were made, and some resulted in legal action against shippers. Future work performed will be under a contract with the US Department of Transportation

  12. Safety in transport of radioactive materials - the next 10 years

    International Nuclear Information System (INIS)

    Barker, R.

    1981-01-01

    The number of shipments of radioactive material is increasing steadily - some estimates indicate by about 10 per cent a year. Several million packages are already shipped about the world each year and this number will increase at least for the next 10 years. Part of this increase will come from the expected growth in the number of nuclear power plants which will be shipping irradiated fuel that had previously been stored on-site or in use, and from the associated shipments of nuclear waste. The increase in production and use of nuclear fuel requires increased production (and hence increased shipments) or uranium and thorium ores; and of concentrates, nitrates, fluorides and fresh fuel. Shipments of highly active waste from reprocessing nuclear fuels, already occurring to some extent in Europe, will increase and may begin again in the USA in the next few years. Also in the next 10 years, decommissioning of some reactors will take place requiring special types of shipments. A new type of shipment that may arise within the next 10 years is that of several kilograms (millions of curies) of tritium. A few of these large, easily controlled shipments will be required for the operation of the prototype fusion reactor, a joint project supported through the IAEA by the USSR, USA, and others. The technology for designing such packaging is well established, but it does not appear that any of the existing designs are capable of handling such large amounts of tritium and so new designs will be needed. The medical, industrial, and research uses of radioactivity are expected to continue to grow and the associated shipments of radioactive material to become even more frequent. The Agency is collecting data on shipments in all Member States and will issue an analysis of that data in 1981. For several years to come, however, we can expect the largest number of packages to be exempt shipments (e.g. smoke detectors and luminous watches) and medical isotopes; the greatest volume to be

  13. Transport of radioactive wastes to the planned final waste repository Konrad: Radiation exposure resulting from normal transport and radiological risks from transport accidents

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.

    1993-01-01

    Radiation exposures of members of critical groups of the general population and of transport personnel resulting from normal transport of radioactive wastes to the planned final waste repository Konrad have been evaluated in detail. By applying probabilistic safety assessment techniques radiological risks from transport accidents have been analysed by quantifying potential radiation exposures and contaminations of the biosphere in connection with their expected frequencies of occurrence. The Konrad transport study concentrates on the local region of the waste repository, where all transports converge. (orig.) [de

  14. Method for decreasing radiation hazard in transporting radioactive material

    International Nuclear Information System (INIS)

    Wodrich, D.D.

    1975-01-01

    At the end of their useful life, fuel rods are removed from a nuclear reactor and transferred underwater into a shipping cask. The water in the pool of the nuclear reactor system (or fuels reprocessing plant) may contain troublesome amounts of radioactive isotopes, creating biological hazards for any shipping cask unless adequately cleaned after contacting pool water. Potential contamination of substantially all of the entire exterior of the shipping cask is avoided because such shipping cask is at least predominantly immersed in fresh water within a vertically shiftable container which can be, for example, shifted between the bottom and the surface of the pool. Fresh water is supplied to the interior of the shiftable container whereby substantially all of the exterior of the shipping cask is immersed in fresh water, maintained at a pressure and/or flow velocity preventing the pool water from contacting the exterior of the shipping cask

  15. Hanford groundwater transport estimates for hypothetical radioactive waste incidents

    International Nuclear Information System (INIS)

    Arnett, R.C.; Brown, D.J.; Baca, R.G.

    1977-06-01

    This report presents an analysis of the impact of subsurface contamination resulting from a series of hypothetical leaks or accidents involving Hanford high-level radioactive defense waste. Estimates of the amounts and concentrations of radionuclides reaching the Columbia River through the Hanford unconfined aquifer flow path were obtained by means of predictive models. The results of the study showed that the spatially averaged concentrations of 99 Tc, 3 H, and 106 Ru in the ground water as it discharges into the Columbia River are at all times far below the respective ERDA Manual Chapter 0524 Concentration Guides for uncontrolled areas. Upon entering the Columbia River, additional large dilutions of the water containing trace quantities of contaminants will occur

  16. Transporting large volumes of residual radioactive material: FUSRAP solutions

    International Nuclear Information System (INIS)

    Pressnell, T.; McDaniel, P.; Darby, J.

    1997-01-01

    During the 1940s, 1950s and 1960s, many sites in the United States were used by the Manhattan Engineer District and the Atomic Energy Commission for processing and storing uranium and thorium ores and metals. Some of the sites were owned by the federal government; others were owned by universities or other institutions; and still others, such as chemical plants, were privately owned. The Formerly Utilized Sites Remedial Action Program (FUSRAP) is one of several U.S. Department of Energy programs created to address radioactive contamination in excess of guidelines at these sites. FUSRAP currently includes 46 sites in 14 states. This article includes the following topics in describing FUSRAP work: Logistics challenges; engineering challenges (package inspection, equipment compatability, moisture content requirements, waste volume estimation); Traffic management

  17. Transport of radioactive wastes arising from the decontamination work performed in Goiania-Brazil

    International Nuclear Information System (INIS)

    Mezrahi, A.; Heilbron, P.F.L.; Xavier, A.M.

    1989-01-01

    The present article describes the major aspects related to the packaging and transport operations performed in Goiania, Brazil, following the violation of a Cs-137 teletherapy source, in September 1987, which led to the generation of about 3,500 m 3 of radioactive wastes. The violation of a teletherapy source in the city of Goiania, State of Goias, Brazil, in the month of September 1987, and the subsequent spread of most of its radioactive contents over a large urban area, brought about the need for the establishment of specific provisions to ensure an adequate packaging and transportation of the radioactive wastes to an interim storage. The purpose of this article is to describe the main aspects related to the above mentioned operations, which were performed, as far as possible, according to the IAEA requirements, as well as to discuss the difficulties that were faced by the technical staff of CNEN

  18. Security in the transport of radioactive material: Implementing guide. Spanish edition

    International Nuclear Information System (INIS)

    2013-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks

  19. Security in the Transport of Radioactive Material. Implementing Guide (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks.

  20. Security in the Transport of Radioactive Material. Implementing Guide (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks.

  1. Transport of radioactive droplet moisture from a source in a nuclear power plant spray pond

    International Nuclear Information System (INIS)

    Elokhin, A.P.

    1995-01-01

    In addition to a change in the microclimate in the region surrounding a nuclear power plant resulting from the emission of vapor form a cooling tower, evaporation of water from the water surface of a cooling pond or a spray pond, in the latter case direct radioactive contamination of the underlying surface around the nuclear power plant can also occur due to discharge of process water (radioactive) into the pond and its transport in the air over a certain distance in the form of droplet moisture. A typical example may be the situation at the Zaporozhe nuclear power plant in 1986 when accidental discharge of process water into the cooling pond occurred. Below we present a solution for the problem of transport of droplet moisture taking into account its evaporation, which may be used to estimate the scale of radioactive contamination of the locality

  2. The radiological impact of the normal rail transport of radioactive materials in the United Kingdom

    International Nuclear Information System (INIS)

    Mairs, J.H.

    1983-01-01

    Recently the NRPB, under contract to the Health and Safety Executive, and in association with the British Railways Board, has assessed the radiological impact of consignments transported on the British Rail system. The work has shown the radiation exposure of British Rail staff and of the public to be low. This paper identifies the types of radioactive materials transported by rail, outlines the methods used to assess the doses to persons exposed and presents the results of these assessments. (author)

  3. Compliance assurance for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2009-01-01

    The objectives of this Safety Guide are to assist competent authorities in the development and maintenance of compliance assurance programmes in connection with the transport of radioactive material, and to assist applicants, licensees and organizations in their interactions with competent authorities. In order to increase cooperation between competent authorities and to promote the uniform application of international regulations and recommendations, it is desirable to adopt a common approach to regulatory activities. This Safety Guide is intended to assist in accomplishing such a uniform application by recommending most of the actions for which competent authorities need to provide in their programmes for ensuring compliance with the Transport Regulations. This Safety Guide addresses radiation safety aspects of the transport of radioactive material; that is, the subjects that are covered by the Transport Regulations. Radioactive material may have other dangerous properties, however, such as explosiveness, flammability, pyrophoricity, chemical toxicity and corrosiveness; these properties are required to be taken into account in the regulatory control of the design and transport of packages. Physical protection and systems for accounting for and control of nuclear material are also discussed in this Safety Guide. These subjects are not within the scope of the Transport Regulations, but information on them is included here because they must be taken into account in the overall regulatory control of transport, especially when the regulatory framework is being established. Section 1 informs about the background, the objective, the scope and the structure of this publication. Section 2 provides recommendations on the responsibilities and functions of the competent authority. Section 3 provides information on the various national and international regulations and guides for the transport of radioactive material. Section 4 provides recommendations on carrying out

  4. Application of the INES scale to the transport of radioactive materials

    International Nuclear Information System (INIS)

    2001-01-01

    This decision from the French authority of nuclear safety (ASN) concerns the application of the international nuclear event scale (INES) to the incidents and accidents occurring during the transport of radioactive materials. Only the off-site impacts and defense-in-depth degradation aspects are taken into account in the INES-transportation scale. A proposal of classification grid is given for both aspects. (J.S.)

  5. The transport of radioactive materials - a BNFL viewpoint

    International Nuclear Information System (INIS)

    Miller, M.L.

    1993-01-01

    Following a brief review of the international regulatory framework and its historical development, the principal priorities for the design and operation of a reliable transport system are defined and commented upon. The paper examines the reasons for the increased pressures upon international nuclear transport. It is argued that a key factor is the gap between 'actual' and 'publicly perceived' safety. BNFL's approach to achieving and demonstrating acceptable safety standards is described and proposals for broader international initiatives, with regard both to internal industry issues and external responses, are presented. (Author)

  6. Radioactive Ores and Concentrates (Packaging and Transport) Regulations 1980 (Northern Territory) No. 30 of 21 July 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations were issued pursuant to the provisions of the 1980 Radioactive Ores and Concentrates (Packaging and Transport) Act. The primary purpose of the Regulations is to lay down specific record-keeping practices for persons licensed to transport and store radioactive material. (NEA) [fr

  7. Perceived risks of radioactive waste transport through Oregon: Results of a statewide survey

    International Nuclear Information System (INIS)

    MacGregor, D.; Slovic, P.; Mason, R.G.; Detweiler, J.; Binney, S.E.; Dodd, B.

    1994-01-01

    Transportation of hazardous materials, and particularly radioactive wastes, on public highways has become an important risk management issue. The unfavorability of public attitudes regarding hazardous and nuclear waste signals the potential for strong public opposition to programs for transporting these materials. This paper presents the results of a survey conducted to assess public reactions to a long-term nuclear waste transport program planned to follow a route through a portion of rural Oregon. The survey assessed a number of key risk perception issues, including perceived health and safety risks of nuclear waste transport, relative risks of transport vs. storage at an existing site, trust in state officials, and satisfaction with life in communities along the transport route. The survey identified a number of attitudes and concerns that need to be understood and considered by those in charge of designing and implementing the waste-transportation program. 22 refs., 1 fig., 5 tabs

  8. Comparison between different regulations for transport of radioactive materials; Comparaison de differents reglements de transports des substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Pallier, Lucien

    1961-11-20

    This comparison is based on the study of several regulations and conventions: French regulations for transports (by rail, road, river, sea, air, and mail), international regulations applicable in France for transports (by rail, road, air, sea, and mail), the general regulation for transport of the International Atomic Energy Agency, and the convention on civil responsibility of the European Agency for Nuclear Energy. The author notices that IAEA regulation will probably prevail. He outlines the objectives and the necessity of regulations, identifies the risk factors (nature of radio-elements, physical condition of the material, type of packaging), discusses additional safety measures, outlines that risks must not be overestimated, and the importance of labelling, and then discusses the comparison of the different considered regulations. He addresses the determination of the risk associated with a transport, the issue of responsibility. The content of regulations is presented in several tables.

  9. Concept and measures relating to transport accidents and fire when radioactivity is involved

    International Nuclear Information System (INIS)

    Spiess, R.

    1976-01-01

    Different ways of intervention and possible operational details for the behaviour of police and firemen are discussed which could take place during incidents (transport accidents and fire) where radioactivity is involvend. The importance of ways and means are pointed out which would be employed in Switzerland to overcome such a situation. (orig.) [de

  10. Transport of radioactive material. 1994-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-10-01

    This document lists all sales publications, IAEA-TECDOC Series, Training Course Series and National Competent Authorities Lists of the International Atomic Energy Agency dealing with the transport of radioactive materials during the period 1994-2002. It gives a short abstract and contents of these issues along with their costs in EURO

  11. Advisory material for the IAEA regulations for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    Since the first edition in 1961, the Regulations for the Safe Transport of Radioactive Material of the IAEA (IAEA Regulations) have served as the basis of safety for the transport of radioactive material worldwide. In the discussions leading to the first edition of the IAEA Regulations, it was realized that there was need for a publication to supplement the Regulations which could give information of individual provisions as to their purpose, their scientific background and how to apply them in practice. In response, the Agency published Safety Series No. 7, entitled, in its first edition in 1961, 'Notes on Certain Aspects of the Regulations'. An additional source of information on the Regulations, providing advice on 'how' the user should comply with them which could be augmented from time to time in the light of latest experience, was provided by the Agency, initially in relation to the 1973 edition of the Regulations. This was entitled 'Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material' and designated Safety Series No. 37. This document is the result of combining the two Safety Series in a single publication. Thus the primary purpose of this publication is to provide guidance to users on proven and acceptable ways of complying with the Regulations. This Advisory Material is not a stand-alone text and it only has significance when used as a companion to the IAEA Safety Standards Series No. ST-1, Regulations for the Safe Transport of Radioactive Material (1996 edition)

  12. The application of probabilistic safety techniques to the safe transport of radioactive material

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1997-01-01

    Information is presented about the various parts which make up the computer code system for the assessment of the radiological consequences and risks involved in the transport of radioactive materials and which is known as the INTERTRAN 2 package. The INTERTRAN 2 package has been developed over the past seven years under a Coordinated Research Programme of the International Atomic Energy Agency (IAEA). (Author)

  13. Transport of radioactive material by air, proposal for a revision of the regulation

    International Nuclear Information System (INIS)

    Devillers, C.; Ringot, C.

    1989-01-01

    The regulation should be modified in such a way that the packages used for the air transport of radioactive material presenting a high level of potential danger be designed to fulfill their safety functions for a large fraction of the conditions likely to be encountered in an aircraft accident

  14. Leaktightness definitions for and leakage tests on packages for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Tanguy, L.

    1989-07-01

    In 1986, the International Organization for Standardization asked a group of experts representing some fifteen countries to draft a standard for the leaktightness of packagings used for the transport of radioactive materials. Progress of work and test before shipping of packages are reviewed

  15. Transport of radioactive materials in the Federal Republic of Germany (FRG) since 3. October 1990

    International Nuclear Information System (INIS)

    Alter, U.; Collin, F.W.; Fasten, C.

    1993-01-01

    The paper presents a survey on the transport of radioactive materials in the FRG. For shipments of nuclear material and large sources in the FRG - and also in the former German Democratic Republic - a license from the Federal Office for Radiation Protection (the competent authority in the FRG) due to the Atomic law and Radiological Protection Requirements are necessary. (J.P.N.)

  16. Legal aspects of the maritime transport of radioactive materials: its regulation in Mexico

    International Nuclear Information System (INIS)

    Aguilar M, S.

    2001-01-01

    This work has the object to analyse the International as much as National legal frameworks, the scopes and limits of the instruments which form it as well as the congruous that exist between them and the situation which actually prevails in the maritime transport field of radioactive materials in worldwide level and in Mexico taking into account the technical advances, the operational experience and radiological protection principles. In the chapter 1, the background on the uses of nuclear energy are described and its development by more of fifty years. The chapter 2 analyses about the establishment of nuclear technologies in Mexico as well as their evolution in medicine, agriculture, research and electric power generation areas. In chapter 3 it was analysed the role what the International Organizations have been playing for the establish of an International legal framework in the maritime transport of radioactive materials field. In the chapter 4, the International legal framework was analysed which is applied to the transport of radioactive materials. Finally, the chapter 5 analyses and poses the requirements and necessities which lead Mexico to legislate broadly the transport of radioactive materials taking as basis International instruments from which the state is part also from some other agreements is analysed its adhesion to them. (Author)

  17. Worker safety for occupations affected by the use, transportation and storage of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    1994-07-01

    A study group under the auspices of the National Conference of State Legislatures (NCSL) Labor Committee and the High-level Radioactive Waste/Hazardous Materials Transportation Task Force examined worker protection and safety programs for occupations affected by the use, transportation and storage of radioactive and hazardous materials. Concern about the risks posed to people who live along spent nuclear fuel transportation routes has led to demands for redundant inspections of the transported spent fuel. It would also be prudent to examine the radiological risk to the inspectors themselves before state of federal regulations are promulgated which require redundant inspections. Other workers may also come close to a spent fuel cask during normal operations. The dose rate to which these inspectors and handlers are exposed is higher than the dose rate to which any other group is exposed during incident-free truck transportation and higher than the dose rate to the drivers when they are in the truck cab. This report consists of miscellaneous papers covering topics related to determining radiation doses to workers involved in the transport of radioactive materials

  18. Fifth international symposium on the packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.; Kent, D.C.; Pope, R.B.

    1980-01-01

    This article is a brief review of the Fifth Interantional Symposium on the Packaging and Transportation of Radioactive Materials held at Las Vegas, Nev., May 7-12, 1978. This symposium was sponsored by Sandia Laboratories under the auspices of the Department of Energy. Highlighting the meeting were papers on regulations, legal issues, logistics and planning, risk assessment, ad various technology- and systems-related topics. It is apparent that, although transportation of radioactive materials has received much attention in the past, even more attention will be required in the future or transportation may become a limiting factor in the nuclear power option. Areas requiring special attention include: (1) the continued evaluation and updating of regulations and the coordination of this effort on an international level; (2) the use of risk analysis not only to establish, modify, or verify regulations but also to lend credence to the regulations in the public view; (3) the development of technology to provide cost-effective and more easily used packaging and transportation systems; (4) the expansion of effort to provide accurate information to legislative and other rule-making bodies and to the public to aid in making rational decisions relative to transportation; (5) the evaluation of large-scale international transfer of spent fuel; and (6) the commitment to, and fabrication of, the large fleets of shipping systems that will soon be required to transport the growing quantities of spent fuel, nuclear waste, and other radioactive materials

  19. The IAEA regulations for the safe transport of radioactive material; new strategies for the future

    International Nuclear Information System (INIS)

    Selling, H.A.; Brittinger, M.T.M.

    1993-01-01

    This paper presents a historic review of 30 years experience with the IAEA's Regulations for the Safe Transport of Radioactive Material as the basis for regulatory control of those materials worldwide. It is demonstrated that the underlying principles and fundamental philosophy have proven their validity and have been the main reason for the excellent safety record of transport operations. The IAEA Regulations are currently halfway a comprehensive revision process aiming at the publication of a new edition by 1996. Although the main principles are likely to be maintained in the next edition of the Regulations, some developments in this area will undoubtedly have an effect on their structure. The main new developments are: the air transport of large quantities of radioactive material, requiring that a risk basis be established which is comparable with other modes of transport, transport of uranium hexafluoride requiring provisions which include the associated chemical hazards, the transport of large volumes of radioactive waste originating from decommissioning of nuclear power stations, and the influence of the new risk estimates for exposure to ionizing radiation and consequently the lower dose limits as recommended by ICRP. This paper will make an attempt to identify the problems associated with those developments, to outline its programme of activities intended to address the problems and to suggest possible solutions as recommended by the IAEA senior advisory group in this subject area. (J.P.N.)

  20. General Approaches and Requirements on Safety and Security of Radioactive Materials Transport in Russian Federation

    International Nuclear Information System (INIS)

    Ershov, V.N.; Buchel'nikov, A.E.; Komarov, S.V.

    2016-01-01

    Development and implementation of safety and security requirements for transport of radioactive materials in the Russian Federation are addressed. At the outset it is worth noting that the transport safety requirements implemented are in full accordance with the IAEA's ''Regulations for the Safe Transport of Radioactive Material (2009 Edition)''. However, with respect to security requirements for radioactive material transport in some cases the Russian Federation requirements for nuclear material are more stringent compared to IAEA recommendations. The fundamental principles of safety and security of RM managements, recommended by IAEA documents (publications No. SF-1 and GOV/41/2001) are compared. Its correlation and differences concerning transport matters, the current level and the possibility of harmonization are analysed. In addition a reflection of the general approaches and concrete transport requirements is being evaluated. Problems of compliance assessment, including administrative and state control problems for safety and security provided at internal and international shipments are considered and compared. (author)

  1. Assembly for transport and storage of radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1978-01-01

    The invention concerns the self-control of coolant deficiencies on the transport of spent fuel elements from nuclear reactors. It guarantees that drying out of the fuel elements is prevented in case of a change of volume of the fluid contained in storage tanks and accumulators and serving as coolant and shielding medium. (TK) [de

  2. Chapter 7: Transport and load of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    Related to the topic, the chapter 7 presents: 1) import License; 2) transport; 3) loading the irradiator. The information presented in this chapter is based on the Brazilian legislation, but said legislation is based on international guidelines; therefore there will be several common and different points from country to country.

  3. Regulatory philosophy and intent of radioactive material transport

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.; Chou, C.K.

    1990-01-01

    This book contains papers presented at the 1990 Pressure Vessels and Piping Conference. Included are the following papers: Thermal testing of solid neutron shielding materials, Collapse analysis of toroidal shell, Decision process involved in preparing the Shippingport reactor pressure vessel for transport

  4. Radioactive Waste Transport: Managing Risk Perception and Communication

    International Nuclear Information System (INIS)

    Murray, Ch.

    2009-01-01

    The implementation of a national transportation system for spent nuclear fuel and high-level waste that merits public trust and confidence will require the delivery of consistent, accurate and timely transportation messages; stakeholder and public understanding of the need for, and safety of, shipments; and effective two-way communication to address stakeholder concerns in its decision-making processes. Building the trust and consent of stakeholders and the public is complex and challenging. In order to accomplish this goal, it is imperative to understand how and why members of society develop various perceptions of risks and assessments of benefits with regard to the nuclear energy cycle. Understanding the basis and reasons for the public's beliefs concerning the nuclear energy cycle will allow OCRWM to more effectively address concerns regarding the national transportation program. This paper will examine how a person's gender, sources of information, world-view, culture, emotion, cognition, and other factors affect their beliefs and perceptions of risk. It will also explore the reasons why nuclear energy and nuclear waste are viewed with such a distinctly different attitude than other hazardous materials that pose a comparable or greater hazard. Drawing on research from prominent experts in risk perception and communication methods, this study will conduct a unique investigation into the perspectives of a diverse set of key stakeholders and experts involved in the transportation process. This paper will present several hypotheses on why there are unique challenges involved in communicating about transportation of spent nuclear fuel and other nuclear fuel cycle activities, and also present recommendations for remediating such challenges. (authors)

  5. Radioactivity

    International Nuclear Information System (INIS)

    Chelet, Y.

    2006-01-01

    The beginning of this book explains the why and how of the radioactivity, with a presentation of the different modes of disintegration. Are tackled the reports between radioactivity and time before explaining how the mass-energy equivalence appears during disintegrations. Two chapters treat natural radioisotopes and artificial ones. This book makes an important part to the use of radioisotopes in medicine (scintigraphy, radiotherapy), in archaeology and earth sciences (dating) before giving an inventory of radioactive products that form in the nuclear power plants. (N.C.)

  6. Radioactivity

    International Nuclear Information System (INIS)

    2002-01-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  7. Konrad transport study: safety analysis of the transport of radioactive waste to the Konrad waste disposal site

    International Nuclear Information System (INIS)

    Lange, F.; Gruendler, D.; Schwarz, G.

    1992-01-01

    A safety analysis has been conducted for the transport of non-heat-generating (low- to medium level) radioactive waste to the planned Konrad final repository in Germany. The results of the risk analysis show that it is unlikely that transport accidents with a release of radioactive substances will occur in the region of the final repository during the operating period of approximately 40 years. Because of the lower accident risk of transport by rail as compared with road, the envisaged high fraction of rail transport of the entire transport volume has a beneficial effect. In the case of an accident with a release of radioactive substances, the potential radiological consequences, in general, decrease rapidly with distance; starting from around 250 m by a factor of 10 up to about 1200 m and a further factor of 10 at a distance of about 6200 m. The releases associated with accidents are frequently so small that the potential radiation exposure, even without countermeasures, is below the natural radiation exposure for one year, at a distance of about 250 m from the accident location: this is true for 9 out of 10 accidents with goods trains and 19 out of 20 accidents with trucks. With the hypothetical assumption of continuous operation of the repository, a potential effective dose of 50 mSv without countermeasures would result, on average, once every 500,000 years at a distance of 250 m in the direction of atmospheric dispersion for the scenario 100% rail transport and once every 400,000 years for the scenario 80% rail/20% road. 50 mSv corresponds to the design guideline exposure of 28 Para. 3 of the German Radiological Protection Ordinance and the annual dose limit for persons occupationally exposed to radiation. The expected frequencies of corresponding accident consequences are considerably lower for the Braunschweig marshalling yard. It can thus be concluded that waste transport does not pose any major additional risk to the region of the repository. (author)

  8. Regulatory focussing of the relevant aspects related to the transport of radioactive materials in Argentina

    International Nuclear Information System (INIS)

    Lopez Vietri, J.R.; Novo, R.G.; Bianchi, A.J.

    1998-01-01

    Full text: This paper points out a summary of the relevant aspects related to the transport of radioactive material in Argentina treated only from a regulatory focussing, it is to say from the point of view of its competent authority of application the Nuclear Regulatory Authority (in Spanish, the Autoridad Regulatoria Nuclear, ARN). Firstly, it is introduced the legal and regulatory framework applicable to the transport of radioactive material and the corresponding authorities involved (ARN, Secretary of Transport, and the Argentine Air Force, Naval Prefecture and Navy). Then, it is presented a schedule of the main characteristics of the shipments of radioactive material used in both the nuclear cycle and in medicine, industry and research, and an average of the shipments annually transported in Argentina. Further on the paper briefly analyses the ARN sources and the way in which it performs the compliance assurance with the in-force transport regulations in the country. Particularly, it is explained certain main tools used by the compliance system, as for example, transport notice, data base, licensing of certain design packages, shipments and materials, inspection and audits, and fees and sanctions regimes. On the other hand, it is mentioned the Argentine experience in the development, licensing, manufacture and use of domestic designs of Type B(U) packages and special form radioactive material (cobalt 60 and iridium 192 sealed sources). Moreover, it is concisely described test facilities available in the country necessary to perform the mentioned designs. Finally, the paper shortly describes the ARN main transport activities exclusively concerning the relationship with other national organisations (Federal Police, Gendarmerie, Naval Prefecture and Argentine Institute of Material Rationalisation, in Spanish Instituto Argentino de Racionalizacion de Materiales - IRAM) and with regional and inter regional organisations (South American Common Market, in Spanish

  9. Assessment of the application of the IAEA regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1986-12-01

    The IAEA, working with the individual Member States, undertook to examine the manner in which domestic, import, export and through-country shipments of radioactive materials are controlled and regulated worldwide. The information to be examined was collected by a questionnaire, which was sent to Member States in July 1984. Copies of the letter and the questionnaire are in Appendix I of this document. The follow-up letters, repeating the request to provide the IAEA with data and asking authorization to publish the data obtained through the questionnaire, were sent in February 1985 (Appendix II and III). By the end of June 1986 completed questionnaires had been received from 53 Member States. These Member States are listed in Appendix IV. The results of the examination are summarized in this report. The results indicate the important role the international organizations play in the transport of radioactive material. All the Member States involved in this examination regulate the transport of radioactive material within their country on the basis of international agreements, regulations and recommendations. The IAEA Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6, is the ultimately controlling document since it serves as the basis for the radioactive material portions of other international transport documents (Appendix V) and since it is made directly binding in the regulations of many countries. In addition to the questions concerning the adoption of the regulations, some questions on the implementation of the transport regulations, e.g. on competent authorities and other regulatory bodies as well as quality assurance, were presented in the questionnaire. This report concerns only the adoption of the regulations

  10. Dispersion of radioactive tracers (Energy transport in geological media)

    International Nuclear Information System (INIS)

    Moltyaner, G.L.; Wills, A.

    1991-01-01

    The idea of adding a gamma-emitting tracer like radioiodine to groundwater to measure its velocity offers a new approach to contaminant transport studies. In fact, the groundwater velocity is acquired by measuring, in situ, changes that the flowing water and sedimentary matrix jointly impose on the electromagnetic field generated by radioiodine. The information is encoded in the measured field intensity and it is transmitted continuously from the source to a radiation detector by electromagnetic energy photons. In situ sensed data acquired by scanning dry boreholes provide information on joint variations of static (sedimentary matrix) and dynamic (flowing water) elements of the aquifer over its depth. The spatial structure of the aquifer heterogeneities may be modelled in terms of the space-correlation coefficient between two velocities at two points a specified distance apart. This gives a new method for defining aquifer heterogeneities by the introduction of kinematically significant length scales of velocity variation without invoking Darcy's law and the concept of hydraulic conductivity. The dimensions of aquifer heterogeneities are defined in a longitudinal sense, along the mean flow direction, and in a transverse sense, in the transverse to flow direction. Two hierarchical scales of motion, local and integral, are introduced to characterize the mixing process caused by aquifer heterogeneity and depositional heterogeneity, respectively. At the microscopic and local scales, transport processes are characterized by the three-dimensional diffusion equation with, generally speaking, variable coefficients. At the integral scale, aquifer heterogeneities impose conditions on the transport such that for shallow aquifers the transport may be modelled by the dispersion equation with constant coefficients in one longitudinal dimension. 3 figs., 25 refs

  11. Subsurface migration of radioactive waste materials by particulate transport

    International Nuclear Information System (INIS)

    Eichholz, G.G.; Craft, T.F.; Powell, G.F.; Wahlig, B.G.

    1982-01-01

    The role of suspended particles as carriers of dissolved nuclides from high-level radioactive waste repositories has been investigated. Depending on the concentrations of suspended particles and the nature of the invading water, it has been found that cationic nuclides may be competitively adsorbed on suspended clay particles, the partitioning being largely determined by pH, temperature, and comparative surface areas of particulates and surrounding rocks. Column tests with activated particles have been conducted and showed that the clay particles pass readily through porous mineral columns and are increasingly retained if salinity is increased. Retention in basalt columns is stronger in the presence of high concentrations of sodium and calcium ions and has been explained in terms of van der Waals forces. The range of particulate migration then depends on the condition of the rock surfaces, the persistence of a clay coating, and the total dissolved ion concentration. For adsorbable waste ions, this may represent a pathway comparable in significance to ion-exchange-controlled migration. For some bed materials, the particulate movement displayed a prompt and a delayed component; the nature of the delay mechanism is not fully understood at present

  12. Establishment and utilization of radiological protection programs for the transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez V, J.; Capadona, N.

    2006-01-01

    The present work has by objective to indicate rules for the establishment and the use of the Radiological Protection Programs (PPR) that are of application to the transport of radioactive materials according to that required by the Transport Regulation of the International Atomic Energy Agency (IAEA). The PPR are established and applied in systematic form for remittent, transport and addressees, to consider the measures of radiological protection and its appropriately control during the transport stages of radioactive material. In particular, in the work it is analyzed the PPR applied to the operative stage, in the one that can be considered as one of the more important documents to use since it summarizes the evaluations and the necessary controls of radiological protection. Also it is analyzed the importance that this document gets ready on the base that it converges in the the analyses, evaluations and data that have been kept in mind during the previous stages of design of bundles and production of packings, the types and quantities of involved bundles, as well as of considering the quantities of expeditions and its frequencies, the ways of transport, etc. It is included a brief description of the parts that the PPR conforms on the base of that suggested in the advanced draft of the TS-G-1.5 Guide 'Radiation Protection Programmes for Transport of Radioactive Material', of October, 2005, of the IAEA: objectives. necessity, scope, basic elements of a PPR in function of the occupational dose. assignment of functions and responsibilities for the establishment of a PPR, evaluation and dose optimization, surface contamination, segregation and other protection measures, responses in emergencies. training and administration systems for baled and transport of radioactive material. Next an example of PPR for the transport of bundles of the A Type by lorry with content of radiopharmaceuticals that are the bundles more used worldwide in the expeditions of radioactive

  13. Generation, transport and conduct of radioactive wastes of low and intermediate level

    International Nuclear Information System (INIS)

    Lizcano, D.; Jimenez, J.

    2005-01-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  14. A mathematical model of transport and regional uptake of radioactive gases in the human respiratory system

    Science.gov (United States)

    Baek, Inseok

    The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.

  15. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport requirements for low specific activity... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.427 Transport requirements for low specific... must be transported in accordance with the following conditions: (1) The external dose rate may not...

  16. Radiation exposures of workers and the public associated with the transport of radioactive material in Germany

    International Nuclear Information System (INIS)

    Schwarz, G.; Fett, H.J.; Lange, F.

    2004-01-01

    Most radioactive material packages transported emit penetrating ionising radiation and radiation exposures of transport workers and the public may occur during their transport. The radiation exposures incurred by transport workers and members of the public can vary significantly depending on a number of factors: most important is the type of radiation emitted (primarily gamma and neutron radiation), the radiation field intensity in the surrounding of a package and conveyance and the duration of exposure to ionising radiation. The information and guidance material on occupational exposures has primarily been derived from a survey and analysis of personal monitoring data provided by a number of commercial transport operators in Germany known as major carrier and handler organisations of fuel cycle and non-fuel cycle material (in terms of the number of pack-ages and the activity carriaged). To some extent advantage was taken of compilations of statistical transport and exposure data collated within other transport safety analysis studies including research projects funded by the European Commission. The exposure data collected cover the time period of the last 4 - 8 years and are most representative for routine transport operations closely related to the movement phase of packaged radioactive material, i.e. receipt, vehicle loading, carriage, in-transit storage, intra-/intermodal transfer, vehicle unloading and delivery at the final destination of loads of radioactive material and packages and the related supervisory and health physics functions. Radiation dose monitoring of members of the public, however, is generally impracticable and, consequently, the information available relies on employing dose assessment models and reflects radiation exposures incurred by hypothetical or critical group individuals of members of the public under normal conditions of transport

  17. Experience in the analysis of accidents and incidents involving the transport of radioactive materials

    International Nuclear Information System (INIS)

    Warner-Jones, S.M.; Hughes, J.S.; Shaw, K.B.

    2002-01-01

    Some half a million packages containing radioactive materials are transported to, from and within the UK annually. Accidents and incidents involving these shipments are rare. However, there is always the potential for such an event, which could lead to a release of the contents of a package or an increase in radiation level caused by damaged shielding. These events could result in radiological consequences for transport workers. As transport occurs in the public environment, such events could also lead to radiation exposures of members of the public. The UK Department for Transport (DfT), together with the Health and Safety Executive (HSE) have supported, for almost 20 years, work to compile, analyse and report on accidents and incidents that occur during the transport of radioactive materials. Annual reports on these events have been produced for twelve years. The details of these events are recorded in the Radioactive Materials Transport Event Database (RAMTED) maintained by the National Radiological Protection Board on behalf of the DfT and HSE. Information on accidents and incidents dates back to 1958. RAMTED currently includes information of 708 accidents and incidents, covering the period 1958 to 2000. This paper presents a summary of the data covering this period, identifying trends and lessons learned together with a discussion of some examples. It was found that, historically, the most significant exposures were received as a result of accidents involving the transport of industrial radiography sources. However, the frequency and severity of these events has decreased considerably in the later years of this study due to improvements in training, awareness and equipment. The International Atomic Energy Agency and the Nuclear Energy Agency, have established the international nuclear event scale (INES), which is described in detail in a users' guide. The INES has been revised to fully include transport events, and the information in RAMTED has been reviewed

  18. A model for radiological risk assessment from transportation of radioactive material

    International Nuclear Information System (INIS)

    Mancioppi, S.; Piermattei, S.

    1985-01-01

    The transport of radioactive materials is an important step in every practice involving the use of nuclear energy. The record of safety until now attained is undoubtedly satisfactory; however being large quantities of radioactive substances transported every day throughout the world, it was deemed worthwhile to evaluate the radiological impact connected with the transport of radioactive materials. The International Atomic Energy Agency, as the Agency issuing the Regulations applied by almost all the national and international transport organizations, sponsored a study aimed to develop a model for the evaluation of the risk connected with the transport activity. A code INTERTRAN (International Transport) has been developed by a Swedish research group (1) and is mainly based on a code (Radtran) developed at Sandia Labs. Other research groups like US and Italy offered their cooperation in the preparation of the code. It appears that the collective dose equivalents involved in the shipments of all wastes to their hypothetical final destination are rather low (40 person-rem in the worst case) and do not depend strongly from the transport mode. Handlers and crew are the most exposed group as it was expected, while the dose contribution to the general public is negligible. The situation could change in case of accident as accident dynamic and accident rate strongly depend on the mode of transport; it might happen that in this case one transport mode could be preferred to another. It is therefore deemed very important to deserve great attention to accident analysis, taking into account also the fact that there exists a category of flammable waste. Our future studies are oriented in this direction

  19. Results from an official inspection on the transportation of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Thomas [TUEV SUED Energietechnik GmbH, Filderstadt (Germany); Kosbadt, Oliver [Ministerium fuer Umwelt, Naturschutz und Verkehr Baden-Wuerttemberg, Stuttgart (Germany)

    2011-07-01

    The German legislation for dangerous goods includes general regulations as well as specific requirements for the real transport processes. Thus an enterprise which is involved in the transportation of dangerous goods has to appoint at least one safety adviser (SA) for the transport of dangerous goods. This is included in Segment 1.8.3 of the European arrangement concerning the international carriage of dangerous goods by road (ADR) as well as in paragraph 1 of the 'Verordnung ueber die Bestellung von Gefahrgutbeauftragten und die Schulung der beauftragten Personen in Unternehmen und Betrieben (Gefahrgutbeauftragtenverordnung, GbV)' (ordinance concerning the safety adviser for the transport of dangerous goods). After 1.7.2 ADR the transportation of radioactive materials is to be subjected to a radiation protection program (RPP). After 1.7.3 ADR quality assurance programs (QAP) are to be established and implemented for all aspects of transportation. (orig.)

  20. Results from an official inspection on the transportation of radioactive material

    International Nuclear Information System (INIS)

    Wilhelm, Thomas; Kosbadt, Oliver

    2011-01-01

    The German legislation for dangerous goods includes general regulations as well as specific requirements for the real transport processes. Thus an enterprise which is involved in the transportation of dangerous goods has to appoint at least one safety adviser (SA) for the transport of dangerous goods. This is included in Segment 1.8.3 of the European arrangement concerning the international carriage of dangerous goods by road (ADR) as well as in paragraph 1 of the 'Verordnung ueber die Bestellung von Gefahrgutbeauftragten und die Schulung der beauftragten Personen in Unternehmen und Betrieben (Gefahrgutbeauftragtenverordnung, GbV)' (ordinance concerning the safety adviser for the transport of dangerous goods). After 1.7.2 ADR the transportation of radioactive materials is to be subjected to a radiation protection program (RPP). After 1.7.3 ADR quality assurance programs (QAP) are to be established and implemented for all aspects of transportation. (orig.)

  1. Assessment of the radiological impact of the transport of radioactive materials

    International Nuclear Information System (INIS)

    1986-12-01

    In order to facilitate the assessment of the radiological impact of transport, and to guide the collection of data for future assessments, the IAEA convened a technical committee (The Technical Committee on the Assessment of the Radiological Impact from the Transport of Radioactive Materials; TC-556) in Vienna, Austria on 21-25 October 1985. The Terms of Reference called for this committee ''to collect and assess data on the radiation exposure of workers and the public during the transport of radioactive material, and to develop a summary statement, reflecting current practice and current state of knowledge, on the radiological impact of transport.'' This technical document provides the summary statement developed by TC-556. The statement should be viewed as an interim assessment since it utilized only data then available, or made available, to the committee. This document consists of three Sections: Section I - Background Information to the Summary Statement (prepared by the Secretariat); Section II - The Summary Statement on the Radiological Impact of the Transport of Radioactive Materials (developed by TC-556); and Section III - Recommendations for Future Assessments (a summary of statements and conclusions provided in the TC-556 Chairman's Report)

  2. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  3. Environmental impacts of the transportation of radioactive materials in urban areas

    International Nuclear Information System (INIS)

    Finley, N.C.; Taylor, J.M.; Daniel, S.L.; Ericson, D.M. Jr.

    1980-01-01

    Radioactive material transport in urban areas is investigated and the specific urban features which influence environmental impacts are addressed. These features include the geographic and demographic make-up, and vehicular population and transportation patterns in the area. Previous efforts have not identified a most important population exposure pathway or group. This assessment examines several pathways and a number of urban specific population groups to evaluate their relative significance. In addition, because different causative events contribute to the overall environmental impacts, this assessment addresses four of these: incident free transport, vehicular accidents, human errors, and sabotage or malevolent acts. Not only does radioactive material transport produce radiological and economic consequences but also it can have social impacts. The objective of this study is to examine both the quantitative environmental impacts of radioactive material transport in urban areas and the more subjective social effects of this process. The social impacts assessment was performed by Battelle Human Affairs Research Centers, Seattle, Washington and their conclusions are only summarized here

  4. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  5. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    International Nuclear Information System (INIS)

    George J. Moridis

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity

  6. Waste management practices to control biological transport of radioactivity at the Hanford Site

    International Nuclear Information System (INIS)

    Conklin, A.W.

    1985-01-01

    One of the goals of waste management in the Hanford Site 200 Areas is to prevent biological intrusion into, and transport from, waste storage and disposal sites. Practices established to achieve these goals include the elimination of deep-rooted vegetation on waste sites to prevent plant root intrusion into radioactivity, selective herbicide application to prevent regrowth of these plants, planting of shallow-rooted plants to successfully compete with deep-rooted plants for moisture, surface stabilization, and environmental surveillance. Past biological transport incidents have included transport by Russian thistle by way of physiological plant processes, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating source terms, thus preventing or inhibiting problems from recurring. Approximately 60% of source term acreage requiring stabilization or decontamination has been completed

  7. Status of transport events involving radioactive materials which occurred in France between 1999 and 2011

    International Nuclear Information System (INIS)

    2013-01-01

    This report presents transport events involving radioactive materials, occurred on French territory from 1999 to 2011, listed in the IRSN's database. 1,304 events have been recorded. For each of them, many parameters have been collected and analysed from information listed in the notifications and reports of the events sent by users (type of event, purpose, package design, level on the INES scale...). The numbers of events notified in 2010 and 2011 are slightly higher than the average of 100 events per year. The two main causes of notification concern documentation errors (in transport documents or labeling) and handling mishaps. The downward trend of frequency of package or conveyance contaminations has been confirmed. A short description of the outstanding events occurred in 2010 and 2011 is proposed. This synthesis also gives an outline of the actions recommended by IRSN to avoid recurrence of the notified events and improve the safety of the transports of radioactive materials

  8. Economics of radioactive material transportation in the light-water reactor nuclear fuel cycle

    International Nuclear Information System (INIS)

    Dupree, S.A.; O'Malley, L.C.

    1980-10-01

    This report presents estimates of certain transportation costs, in 1979 dollars, associated with Light-Water Reactor (LWR) once-through and recycle fuel cycles. Shipment of fuel, high-level waste and low-level waste was considered. Costs were estimated for existing or planned transportation systems and for recommended alternate systems, based on the assumption of mature fuel cycles. The annual radioactive material transportation costs required to support a nominal 1000-MW(e) LWR in a once-through cycle in which spent fuel is shipped to terminal storage or disposal were found to be approx. $490,000. Analogous costs for an average reactor operating in a fuel cycle with uranium and plutonim recycle were determined to be approx. $770,000. These results assume that certain recommended design changes will occur in radioactive material shipping systems as a mature fuel cycle evolves

  9. Assessment of events involving transport of radioactive materials in France, 1999-2011

    International Nuclear Information System (INIS)

    2013-01-01

    This report presents transport events involving radioactive materials that occurred in France from 1999 to 2011 and entered in the IRSN's database. For each of the 1,304 events recorded, many parameters have been collected and analysed from information listed in the declarations and reports of events sent by users (type of event, purpose, package design, INES level, etc.). The number of events declared in 2010 and 2011 is slightly higher than the average of 100 events per year. The two main reasons for declaration concern errors in transport documentation or labelling and handling mishaps. The new data confirm the downward trend in frequency of package and vehicle contaminations. A short description of outstanding events in 2010 and 2011 is included. This assessment also gives an outline of the actions recommended by IRSN to avoid recurrence of declared events and improve the safety of radioactive material transport. (authors)

  10. Evaluation of doses during the handling and transport of radioactive wastes containers

    International Nuclear Information System (INIS)

    Kubik, I.; Kusovska, Z.; Hanusik, V.; Mrskova, A.; Kapisovsky, V.

    2000-01-01

    Radioactive waste products from the nuclear power plants (NPPs) must be isolated from contact with people for very long period of time. Low and intermediate-level waste will be disposed of in Slovakia in specially licensed Regional disposal facility which is located near the NPP Mochovce site. Radioactive waste accumulated in the Jaslovsk. Bohunice site, during the decommissioning process of the NPP A-1 and arising from the NPP V-1 and NPP V-2 operation, will be processed and shipped in standard concrete containers to the Mochovce Regional disposal facility. The treatment centre was build at the NPP Jaslovsk? Bohunice site which is in the trial operation now. It is supposed that radioactive waste containers will be transported by train from the treatment centre Jaslovsk? Bohunice to the site of Radioactive Waste Repository at Mochovce and by truck in the area of repository. To estimate the occupational radiation exposure during the transport the calculations of dose rates from the containers are necessary. The national regulations allow low level of radiation to emanate from the casks and containers. The maximum permissible volume radioactivity of wastes inside the container is limited in such a way that irradiation level should not exceed 2 mGy/h for the contact irradiation level and 0,1 mGy/h at 2-meter distance. MicroShield code was used to analyse shielding and assessing exposure from gamma radiation of containers to people. A radioactive source was conservatively modelled by homogenous mixture of radionuclides with concrete. Standard rectangular volume source and shield geometry is used in model calculations. The activities of the personnel during the transport and storage of containers are analysed and results of the evaluation of external dose rates and effective doses are described. (author)

  11. The application of radioactive tracers for determination of bed-load transport in alluvial rivers

    International Nuclear Information System (INIS)

    Thomsen, T.

    1980-01-01

    Radioactive isotopes have been applied for determining the transport rate of bed load in an alluvial river on the basis of: centroid velocity of the tracer particles, size and material-transporting width of mobile layer. These parameters were found by detailed measurements in the field. Computed values were produced on the basis of Engelund and Fredsoee's model on sediment transport and on the propagation of bed forms. When comparing measured and computed values, the difference was about 25%. Finally, the applicability of tracer methods for solving practical problem is discussed. (author)

  12. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels

    International Nuclear Information System (INIS)

    Miller Julianne J.; Mizell Steve A.; Nikolich George; Campbell Scott A.

    2012-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

  13. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  14. The management system for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this Safety Guide is to provide information to organizations that are developing, implementing or assessing a management system for activities relating to the transport of radioactive material. Such activities include, but are not limited to, design, fabrication, inspection and testing, maintenance, transport and disposal of radioactive material packaging. This publication is intended to assist those establishing or improving a management system to integrate safety, health, environmental, security, quality and economic elements to ensure that safety is properly taken into account in all activities of the organization. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix: Graded approach for management systems for the safe transport of radioactive materials; Annex I: Two examples of management systems; Annex II: Examples of management system standards; Annex III: Example of a documented management system (or quality assurance programme) for an infrequent consignor; Annex IV: Example of a documented management system (or quality assurance programme) description for an infrequent carrier; Annex V: Example of a procedure for control of records; Annex VI: Example of a procedure for handling packages containing radioactive materials, including receipt and dispatch; Annex VII: Example of a packaging maintenance procedure in a complex organization; Annex VIII: Example of an internal audit procedure in a small organization; Annex IX: Example of a corrective and preventive action procedure

  15. The regulatory framework concerning the safe transport of radioactive material in the European Union

    International Nuclear Information System (INIS)

    Schwarz, G.; Ridder, K.

    2002-01-01

    Radioactive materials of natural and manmade origins are employed worldwide in many areas, such as medicine, research, energy generation, and industry. As a consequence of the special nature and the properties of radioactive substances, irregular handling and use of such materials entails hazards. This is why special safety and protection provisions have been made in the interest of protecting health, life, property, and the environment from such hazards. The development and use of harmonized goals of protection and standards of safety is essential to free trade and the exchange of goods and services within the European Union and worldwide. The national and international institutions and organizations responsible for the protection and safety of transports of radioactive materials, including the European Union and its member countries, early on recognized the need for harmonized safety standards and criteria for transports of dangerous goods and developed an appropriate system of standards of safety and protection and a comprehensive set of tools for monitoring and checking observance of these standards. These tools have been laid down in a system of legally binding agreements, regulations, directives etc., or in recommendations, for the fifteen EU member states. The article presents this system of legally binding agreements, regulations, and recommendations, respectively, which covers the protection and safety of national and international transports of radioactive materials. (orig.) [de

  16. Design and tests of a package for the transport of radioactive sources; Projeto e testes de uma embalagem para o transporte de fontes radioativas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de Oliveira, E-mail: pos@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    The Type A package was designed for transportation of seven cobalt-60 sources with total activity of 1 GBq. The shield thickness to accomplish the dose rate and the transport index established by the radioactive transport regulation was calculated by the code MCNP (Monte Carlo N-Particle Transport Code Version 5). The sealed cobalt-60 sources were tested for leakages. according to the regulation ISO 9978:1992 (E). The package was tested according to regulation Radioactive Material Transport CNEN. The leakage tests results pf the sources, and the package tests demonstrate that the transport can be safe performed from the CDTN to the steelmaking industries

  17. Risk associated with the transport of radioactive materials in the fuel cycle

    International Nuclear Information System (INIS)

    Lange, F.; Mairs, J.; Niel, C.

    1997-01-01

    This paper sets out the regulatory framework within which nuclear fuel cycle materials are transported. It establishes the basic principles of those safety regulations and explains the graded approach to satisfying those requirements depending on the hazard of the radioactive contents. The paper outlines the minimum performance standards required by the Regulations. It covers the performance standards for Type C packages in a little more detail because these are new to the 1996 Edition of the IAEA's Regulations for the Safe Transport of Radioactive Material and are less well reported elsewhere at present. The paper then gives approximate data on the number of shipments of radioactive materials that service the nuclear fuel cycles in France, Germany and the UK. The quantities are expressed as average annual quantities per GW el installed capacity. There is also a short discussion of the general performance standards required of Type B packages in comparison with tests that have simulated specific accident conditions involving particular packages. There follows a discussion on the probability of packages experiencing accident conditions that are comparable with the tests that Type B packages are required to withstand. Finally there is a summary of the implementation of the Regulations for sea and air transport and a description of ongoing work that may have a bearing on the future development of mode related Regulations. Nuclear fuel cycle materials are transported in accordance with strict and internationally agreed safety regulations which are the result of a permanent and progressive process based on social concern and on the advancement of knowledge provided by research and development. Transport operations take place in the public domain and some become high profile events in the management of these materials, attracting a lot of public, political and media attention. The risks associated with the transport of radioactive materials are low and it is important

  18. Environmental impact assessment of radioactive material transport in the nuclear industry in China over the past 30 years

    International Nuclear Information System (INIS)

    Wang, J.M.; Wang, X.X.

    1999-01-01

    An outline is given of the transport of radioactive material in the nuclear industry in China over the past 30 years (1955-1985) (excluding Taiwan). During 1955-1985, the freight volume of packages of radioactive material was some 4.50x10 6 items. The total activity was about 4.64x10 5 TBq. The total transport distance was 2.10x10 8 km. The available results show that annual individual doses to transport workers are rather low. Much attention has been paid to the safe transport of the radioactive material. Hence, no accident with serious radiological effects on transport workers and the public has ever happened during the past 30 years. The paper also discusses how to strengthen the surveillance and administration, and the radiation protection of radioactive material transport, etc. (author)

  19. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  20. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  1. Summary report of the state surveillance program on the transportation of radioactive materials

    International Nuclear Information System (INIS)

    1977-11-01

    From 1973 to 1976, a surveillance program was conducted in New Jersey, Oregon, Missouri, New York, Illinois, Texas, Louisiana, South Carolina, Minnesota, and New York City to provide training support for State radiation personnel and to determine actual radiation exposure conditions and radioactive material package handling practices through the terminals of air carriers and freight forwarders. NRC and DOT along with the participating States, developed the surveillance program. In general, the results did not indicate a public health or safety problem due to the transportation of radioactive materials. Some employees of several freight forwarders, are, however, receiving annual exposures in excess of 500 mrem. Recommendations are given

  2. TRASMAR 2: improved tele operated mobile robot for the radioactive material transport

    International Nuclear Information System (INIS)

    Segovia de los Rios, A.; Zamora S, C.A.; Garduno G, M.

    2007-01-01

    In the National Institute of Nuclear Research of Mexico (ININ), a new robot version for the radioactive material transport was developed trying to diminish the radiation quantity to which the ININ personnel is exposed taking it away by this way of the radioactive substance. The robot is operated by means of a remote control, for that which two data transmission modules by radiofrequency are used. As much the remote control as the vehicle control system were implemented with the help of micro controllers. Presently document the main characteristics of this mobile robot are explained, which is a more economic and functional version that it predecessor. (Author)

  3. Methods for estimating costs of transporting spent fuel and defense high-level radioactive waste for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Darrough, M.E.; Lilly, M.J.

    1989-01-01

    The US Department of Energy (DOE), through the Office of Civilian Radioactive Waste Management, is planning and developing a transportation program for the shipment of spent fuel and defense high-level waste from current storage locations to the site of the mined geologic repository. In addition to its responsibility for providing a safe transportation system, the DOE will assure that the transportation program will function with the other system components to create an integrated waste management system. In meeting these objectives, the DOE will use private industry to the maximum extent practicable and in a manner that is cost effective. This paper discusses various methodologies used for estimating costs for the national radioactive waste transportation system. Estimating these transportation costs is a complex effort, as the high-level radioactive waste transportation system, itself, will be complex. Spent fuel and high-level waste will be transported from more than 100 nuclear power plants and defense sites across the continental US, using multiple transport modes (truck, rail, and barge/rail) and varying sizes and types of casks. Advance notification to corridor states will be given and scheduling will need to be coordinated with utilities, carriers, state and local officials, and the DOE waste acceptance facilities. Additionally, the waste forms will vary in terms of reactor type, size, weight, age, radioactivity, and temperature

  4. City of New York v. United States Dep't of Transportation: urban radioactive waste transportation gets another green light

    International Nuclear Information System (INIS)

    Rainey, K.C.

    1986-01-01

    The author examines the background of this suit, which invalidated a municipal law prohibiting the transportation of large quantities of radioactive waste through city streets. The analysis focuses on two major issues: (1) whether the Hazardous Materials Transportation Act gives the Department of Transportation (DOT) the rulemaking power to preempt local law, and (2) whether DOT should have prepared an environmental impact statement before rulemaking. It concludes that DOT's action was arbitrary, and suggests some intermediate actions that would aid DOT in making a more informed decision. This could include a verification of DOT environmental assessment data and a more complete analysis of human error. The case illustrates the need for a lesser degree of judicial deference to federal agency action with respect to the volatile and unpredictable area of hazardous waste transportation

  5. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate

    International Nuclear Information System (INIS)

    Rousselet, J.

    1966-06-01

    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [fr

  6. Evaluation of transport safety analysis processes of radioactive material performed by a regulatory body

    International Nuclear Information System (INIS)

    Mattar, Patricia Morais

    2017-01-01

    Radioactive substances have many beneficial applications, ranging from power generation to uses in medicine, industry and agriculture. As a rule, they are produced in different places from where they are used, needing to be transported. In order for transport to take place safely and efficiently, national and international standards must be complied with. This research aims to assess the safety analysis processes for the transport of radioactive material carried out by the regulatory body in Brazil, from the point of view of their compliance with the International Atomic Energy Agency (IAEA) standards. The self-assessment methodology named SARIS, developed by the AIEA, was used. The following steps were carried out: evaluation of the Diagnosis and Processes Mapping; responses to the SARIS Question Set and complementary questions; SWOT analysis; interviews with stakeholders and evaluation of a TranSAS mission conducted by the IAEA in 2002. Considering only SARIS questions, processes are 100% adherent. The deepening of the research, however, led to the development of twenty-two improvement proposals and the identification of nine good practices. The results showed that the safety analysis processes of the transport of radioactive material are being carried out in a structured, safe and reliable way but also that there is much opportunity for improvement. The formulation of an action plan, based on the presented proposals, can bring to the regulatory body many benefits. This would be an important step towards convening an external evaluation, providing greater reliability and transparency to the regulatory body´s processes. (author)

  7. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. The impetus for this effort was spawned in part by the decision of the Japanese government to move large quantities of reprocessed plutonium by air from France to Japan. The exploration of options for overflights of United States and Canadian airspace (among others) and landings in Anchorage, Alaska, generated intense debate in the US and countries that might have been overflown. The debate centered on general questions of the need to air transport plutonium in large quantities, package survival in an accident, prenotification, emergency response, routing, safeguards and other facets of the proposed operations. In the US, which already had the most stringent regulations for packaging of plutonium shipped by air (NUREG-0360), there was immediate additional legislative action to increase the stringency by requiring demonstration that an aircraft carrying plutonium in certified packagings could undergo a severe crash without release of plutonium (the Murkowski amendment). In the United Kingdom there was an official inquiry that resulted in a high visibility report (ACTRAM 88) and a conclusion that the IAEA should examine regulatory needs in the general area of air transport

  8. World-wide risk assessment of the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Ericsson, A.M.; Elert, M.

    1983-01-01

    The aim of the project reported in this paper is to develop the means and methods for a risk analysis of the transportation of radioactive materials throughout the world. The project was initiated by the Standing Advisory Group on the Safe Transport of Radioactive Materials (SAGSTRAM) of the IAEA. In 1979 the Swedish Nuclear Power Inspectorate and the IAEA signed an agreement on the development of a model for calculation of the transport risk. Member States of the IAEA are invited to use the model for a risk assessment of the transportation of radioactive materials in their own country. These assessments will be collected and analyzed and a world-wide risk assessment performed. The IAEA has the overall responsibility for the project and administers it. Sweden manages the project and has performed the applied research with the assistance of research support groups which have supplied data and analyses and performed some other parts of the project. An Oversight Committee with participants from eight Member States has reviewed the progress and has given valuable recommendations. It was important that the model had the sophistication and flexibility required for its use by all Member States but still was easy to handle. The risk calculations are performed by the computer code INTERTRAN which is based on the American computer code RADTRAN II developed by Sandia National Laboratories, Albuquerque, NM. The methodology of the RADTRAN II as well as data and format of the input and output was changed to make the code more internationally oriented. 2 references

  9. Measurement and evaluation of alpha radioactivity using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Yamaguchi, Hiromi

    2009-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'clearance level' for uranium and TRU radioactive waste. This technology will bring paradigm shift on alpha-ray measurement, such as converting 'closely contacting and scanning measurement' to 'remotely contacting measurement in the block', and drastically improve the efficiency of measurement operation. In this article, the origin and chronicle of this technology were simply explained and our newest accomplishment was described. Furthermore, using measurement data obtained in our development process, measurement and evaluation examples of alpha radioactivity were shown for practical operations as informative guides. We hope that this technology will be widely endorsed as a practical method for alpha clearance measurement in the near future. (author)

  10. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  11. Study of casks shielded with heavy metal to transport highly radioactive substances

    International Nuclear Information System (INIS)

    Lucchesi, R.F.; Hara, D.H.S.; Martinez, L.G.; Mucsi, C.S.; Rossi, J.L.

    2014-01-01

    Nowadays, Brazil relies on casks produced abroad for transportation in its territory of substances that are sources of high radioactivity, especially the Mo-99. The product of the radioactive decay of the Mo-99 is the Tc-99m, which is used in nuclear medicine for administration to humans in the form of injectable radioactive drugs for the image diagnosis of numerous pathologies. This paper aims to study the existing casks in order to propose materials for the construction of the core part as shielding against gamma radiation. To this purpose, the existing literature on the subject was studied, as well as evaluation of existing and available casks. The study was focused on the core of which is made of heavy metals, especially depleted uranium for shielding the emitted radiation. (author)

  12. Regulatory compliance in the design of packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.

    1993-01-01

    Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed

  13. Radiological Risk Assessment and Cask Materials Qualification for Disposed Sealed Radioactive Sources Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Olteanu, G.; Bujoreanu, D.

    2009-01-01

    The hazardous waste problem imposes to respect national and international agreed regulations regarding their transport, taking into account both for maintaining humans, goods and environment exposure under specified limits, during transport and specific additional operations, and also to reduce impact on the environment. The paper follows to estimate the radiological risk and cask materials qualification according to the design specifications for disposed sealed radioactive sources normal transport situation. The shielding analysis has been performed by using Oak Ridge National Laboratory's SCALE 5 programs package. For thermal analysis and cask materials qualification ANSYS computer code has been used. Results have been obtained under the framework of Advanced system for monitoring of hazardous waste transport on the Romanian territory Research Project which main objective consists in implementation of a complex dual system for on-line monitoring both for transport special vehicle and hazardous waste packages, with data automatic transmission to a national monitoring center

  14. A methodology for assessing social considerations in transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Allsop, R.E.; Banister, D.J.; Holden, D.J.; Bird, J.; Downe, H.E.

    1986-05-01

    A methodology is proposed for taking into account non-radiological social aspects of the transport of low and intermediate level radioactive waste when considering the location of disposal facilities and the transport of waste to such facilities from the sites where it arises. As part of a data acquisition programme, an attitudinal survey of a sample of people unconnected with any suggested site or transport route is proposed in order to estimate levels of concern felt by people of different kinds about waste transport. Probabilities of accident occurrence during transport by road and rail are also discussed, and the limited extent of quantified information about consequences of accidents is reviewed. The scope for malicious interference with consignments of waste in transit is considered. (author)

  15. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  16. Packaging, Transportation, and Disposal Logistics for Large Radioactively Contaminated Reactor Decommissioning Components

    International Nuclear Information System (INIS)

    Lewis, Mark S.

    2008-01-01

    The packaging, transportation and disposal of large, retired reactor components from operating or decommissioning nuclear plants pose unique challenges from a technical as well as regulatory compliance standpoint. In addition to the routine considerations associated with any radioactive waste disposition activity, such as characterization, ALARA, and manifesting, the technical challenges for large radioactively contaminated components, such as access, segmentation, removal, packaging, rigging, lifting, mode of transportation, conveyance compatibility, and load securing require significant planning and execution. In addition, the current regulatory framework, domestically in Titles 49 and 10 and internationally in TS-R-1, does not lend itself to the transport of these large radioactively contaminated components, such as reactor vessels, steam generators, reactor pressure vessel heads, and pressurizers, without application for a special permit or arrangement. This paper addresses the methods of overcoming the technical and regulatory challenges. The challenges and disposition decisions do differ during decommissioning versus component replacement during an outage at an operating plant. During decommissioning, there is less concern about critical path for restart and more concern about volume reduction and waste minimization. Segmentation on-site is an available option during decommissioning, since labor and equipment will be readily available and decontamination activities are routine. The reactor building removal path is also of less concern and there are more rigging/lifting options available. Radionuclide assessment is necessary for transportation and disposal characterization. Characterization will dictate the packaging methodology, transportation mode, need for intermediate processing, and the disposal location or availability. Characterization will also assist in determining if the large component can be transported in full compliance with the transportation

  17. Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.C.; Tyacke, M.J.

    1995-01-01

    This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

  18. Operational and regulatory impacts of regional management on transportation of commercial low-level radioactive waste

    International Nuclear Information System (INIS)

    Shirley, C.G.; Wilmot, E.L.; Shepherd, E.W.

    1981-09-01

    The 96th Congress of the United States, as part of the Low-level Radioactive Waste Policy Act of 1980 (Public Law 96-573), instructed the Secretary of the Department of Energy (DOE) to prepare a report on the current US low-level waste management situation and the conditions and requirements for management on a regional basis. The Transportation Technology Center has compared the transportation requirement and regional management scenarios for commercial low-level radioactive waste in support of the DOE response to this instruction. Using 1979 low-level waste volumes shipped to commercial burial grounds and six management regions postulated by DOE, transportation requirements were estimated and compared for the two management scenarios in terms of cumulative shipping distance and transportation cost. Effects of these results on the demand for transportation services and equipment and on population risks were considered. Finally, current regulatory issues and the potential effects of regional management on regulation of low-level waste transportation were reviewed

  19. Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Tyacke, M.J.

    1995-01-01

    This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign

  20. Promulgation order no. 546 of the 23rd June 1993. Executive order on transport of radioactive materials

    International Nuclear Information System (INIS)

    1993-01-01

    The Danish executive order no. 546 of June 23rd, 1993, concerning the transport of radioactive materials in pursuance of paragraph 2, section 1 of Law no. 94 of March 21, 1953 on the use etc. of radioactive materials are stipulated by order in accordance with paragraph 4 of the executive order no. 574 of November 20th, 1975, on precautionary measures related to the use etc. of radioactive materials. The 6 paragraphs comprising order no. 546 concern the transport of radioactive materials within Danish boundaries, transport of radioactive materials into Denmark from a country which is not a member of the European Community, transport of radioactive materials within the European Communities, the regulation that complaints with regard to decisions made by the (Danish) National Board of Health may be referred to the Ministry of the Interior within a period of four weeks and the regulation that violation of these regulations will be subject to punishment by fining in accordance with paragraph 5 of the law on use etc. of radioactive materials. The transport of radioactive materials into Denmark from a non-EC country can only take place as far as the National Board of Health (National Institute for Radiation Hygiene) has given authorization in each individual case, and transport of radioactive materials between the countries which are members of the European Community takes place under the regulatives of the Council of the European Communities' statutory order no. 93/1493 Euratom of June 8th, 1993 on transport of radioactive materials between member states. A supplementary text on the Council's statutory order (Euratom) no. 1493/93 is included. (AB)