WorldWideScience

Sample records for radioactivity laboratories aqueous

  1. Stabilization of Savannah River National Laboratory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    International Nuclear Information System (INIS)

    Jantzen, C

    2004-01-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for ∼50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R and D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant

  2. Results of the Interlaboratory Exercise CNS/CIEMAT-04 Among Environmental Radioactivity Laboratories (Aqueous Solution)

    International Nuclear Information System (INIS)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.

    2004-01-01

    The document describes the outcome of the CSN/CIEMAT-04 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonised Protocol for the proficiency testing of analytical laboratories. Following the issue of the European Community Drinking Water Directive 98/83/EC concerning the quality of water for human consumption, the last inter-comparison exercise was organised by using a water sample, in an attempt to evaluate the performance of the laboratories analysing the required radioactivity parameters (H-3, gross alpha and beta activity and residual beta). The sample (a synthetic drinking water), was prepared at the National Laboratory for Ionising Radiation's Standards (CIEMAT), and contained the following radionuclides ''241 Am, ''239+240 Pu, ''90Sr, ''137 Cs, ''3 H y ''40 K. The results of the exercise were computed for 38 participating laboratories, and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, including suspected outliers. The exercise has revealed and homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. A raised percentage os satisfactory laboratory performance has been obtained for gross alpha, gross beta and residual beta: 85, 97 and 87% respectively. The study has shown that participant laboratories perform radioactive determinations in drinking water samples with satisfactory quality levels. (Author) 16 refs

  3. Radioactive sources in chemical laboratories

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2007-01-01

    Radioactive sources including all radioactive materials exceeding exemption levels have to be registered in national databases according to international standards based on the recommendations ICRP 60 and a proper licensing should take place as described for example in the 96/29/EURATOM. In spite of that, unregistered sources could be found, usually due to the fact that the owner is not aware of radiation characteristics of sources. The material inventories of chemical laboratories are typical and most frequent example where radioactive sources could be found. Five different types of sources could be identified. The most frequent type are chemicals, namely thorium and uranium compounds. They are used not due to their radioactivity but due to their chemical properties. As for all other sources a stringent control is necessary in order to assure their safe use. Around hundred of stored radioactive chemical items were found during inspections of such laboratories performed by the Slovenian Nuclear Safety Administration or qualified experts in a period December 2006 - July 2007. Users of such chemicals are usually not aware that thorium and uranium chemicals are radioactive and, as unsealed sources, they could be easily spilled out and produce contamination of persons, surfaces, equipment etc. The external exposure as well as the internal exposure including exposure due to inhalation could be present. No knowledge about special precautions is usually present in laboratories and leads to underestimating of a potential risk and unintentional exposure of the laboratory personnel, students etc. Due to the long decay times in decay series of Th -232, U-238 and U- 235 the materials are also radioactive today. Even more, in case of thorium chemicals the radioactivity increased substantially from the time of their production. The implementation of safety measures has been under way and includes a survey of the qualified experts, establishment of organizational structure in a

  4. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  5. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  6. A laboratory activity for teaching natural radioactivity

    Science.gov (United States)

    Pilakouta, M.; Savidou, A.; Vasileiadou, S.

    2017-01-01

    This paper presents an educational approach for teaching natural radioactivity using commercial granite samples. A laboratory activity focusing on the topic of natural radioactivity is designed to develop the knowledge and understanding of undergraduate university students on the topic of radioactivity, to appreciate the importance of environmental radioactivity and familiarize them with the basic technology used in radioactivity measurements. The laboratory activity is divided into three parts: (i) measurements of the count rate with a Geiger-Muller counter of some granite samples and the ambient background radiation rate, (ii) measurement of one of the samples using gamma ray spectrometry with a NaI detector and identification of the radioactive elements of the sample, (iii) using already recorded 24 h gamma ray spectra of the samples from the first part (from the Granite Gamma-Ray Spectrum Library (GGRSL) of our laboratory) and analyzing selected peaks in the spectrum, students estimate the contribution of each radioactive element to the total specific activity of each sample. A brief description of the activity as well as some results and their interpretation are presented.

  7. Solidification of radioactive aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Aikawa, Hideaki; Kato, Kiyoshi; Wadachi, Yoshiki

    1970-09-07

    A process for solidifying a radioactive waste solution is provided, using as a solidifying agent a mixture of calcined gypsum and burnt vermiculite. The quantity ratio of the mixture is preferred to be 1:1 by volume. The quantity of impregnation is 1/2 of the volume of the total quantity of the solidifying agent. In embodiments, 10 liters of plutonium waste solution was mixed with a mixture of 1:1 calcined gypsum and burnt vermiculite contained in a 20-liter cylindrical steel container lined with asphalt. The plutonium waste solution from the laboratory was neutralized with a caustic soda aqueous solution to prevent explosion due to the nitration of organic compounds. The neutralization is not always necessary. A market available dental gypsum was calcined at 400 to 500/sup 0/C and a vermiculite from Illinois was burnt at 1,100/sup 0/C to prepare the agents. The time required for the impregnation with 10 liters of plutonium solution was four minutes. After impregnation, the temperature rose to 40/sup 0/C within 30 minutes to one hour. Next, it was cooled to room temperature by standing for 3-4 hours. Solidification time was about 1 hour. The Japan Atomic Energy Research Insitute had treated and disposed about 1,000 tons of plutonium waste by this process as of August 19, 1970.

  8. Species removal from aqueous radioactive waste by deep-bed filtration.

    Science.gov (United States)

    Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta

    2018-05-26

    Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The treatment of radioactive aqueous wastes by reverse osmosis

    International Nuclear Information System (INIS)

    Hodgson, T.D.

    Experiments were carried out to determine the rejection factors for the more important radionuclides found in aqueous wastes, to study activity deposition within reverse osmosis modules, and to obtain experience in active operation of a reverse osmosis facility. It was found that reverse osmosis is likely to be useful in aqueous radioactive waste treatment when a wide range of contaminants rather than a specific radioactive species must be removed. There appeared to be no barrier to active operation, although greater confidence in the reliability of pumps and membranes is needed. The rejection of trace quantities of radioisotopes such as Cs + or Sr ++ could be predicted from the behaviour of similar inactive ions. Activity present as polyvalent ions or colloidal aggregates is highly rejected by the membrane. Activity may be deposited onto the membrane with insoluble or scaling compounds, and is greatest on areas of the membrane shielded from the sweeping action of the liquor flow

  10. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  11. Inter-laboratory exercise on steroid estrogens in aqueous samples

    International Nuclear Information System (INIS)

    Heath, E.; Kosjek, T.; Andersen, H.R.; Holten Luetzhoft, H.-C.; Adolfson Erici, M.; Coquery, M.; Duering, R.-A.; Gans, O.; Guignard, C.; Karlsson, P.; Manciot, F.; Moldovan, Z.; Patureau, D.; Cruceru, L.; Sacher, F.; Ledin, A.

    2010-01-01

    An inter-laboratory comparison exercise was organized among European laboratories, under the aegis of EU COST Action 636: 'Xenobiotics in Urban Water Cycle'. The objective was to evaluate the performance of testing laboratories determining 'Endocrine Disrupting Compounds' (EDC) in various aqueous matrices. As the main task three steroid estrogens: 17α-ethinylestradiol, 17β-estradiol and estrone were determined in four spiked aqueous matrices: tap water, river water and wastewater treatment plant influent and effluent using GC-MS and LC-MS/MS. Results were compared and discussed according to the analytical techniques applied, the accuracy and reproducibility of the analytical methods and the nature of the sample matrices. Overall, the results obtained in this inter-laboratory exercise reveal a high level of competence among the participating laboratories for the detection of steroid estrogens in water samples indicating that GC-MS as well as LC-MS/MS can equally be employed for the analysis of natural and synthetic hormones. - Herein are presented the results of the first international inter-laboratory study on determination of selected steroid hormones in environmental aqueous samples.

  12. The radioactive waste management at IAEA laboratories

    International Nuclear Information System (INIS)

    Deron, S.; Ouvrard, R.; Hartmann, R.; Klose, H.

    1992-10-01

    The report gives a brief description of the nature of the radioactive wastes generated at the IAEA Laboratories in Seibersdorf, their origin and composition, their management and monitoring. The management of the radioactive waste produced at IAEA Laboratories in Seibersdorf is governed by the Technical Agreements of 1985 between the IAEA and the Austrian Health Ministry. In the period of 1982 to 1991 waste containers of low activity and radiotoxicity generated at laboratories other than the Safeguards Analytical Laboratory (SAL) were transferred to the FZS waste treatment and storage plant: The total activity contained in these drums amounted to < 65 MBq alpha activity; < 1030 MBq beta activity; < 2900 MBq gamma activity. The radioactive waste generated at SAL and transferred to the FZs during the same period included. Uranium contaminated solid burnable waste in 200 1 drums, uranium contaminated solid unburnable waste in 200 1 drums, uranium contaminated liquid unburnable waste in 30 1 bottles, plutonium contaminated solid unburnable waste in 200 1 drums. In the same period SAL received a total of 146 Kg uranium and 812 g plutonium and exported out of Austria, unused residues of samples. The balance, i.e.: uranium 39 kg, plutonium 133 g constitutes the increase of the inventory of reference materials, and unused residues awaiting export, accumulated at SAL and SIL fissile store as a result of SAL operation during this 10 year period. The IAEA reexports all unused residues of samples of radioactive and fissile materials analyzed at his laboratories, so that the amount of radioactive materials ending in the wastes treated and stored at FZS is kept to a minimum. 5 refs, 7 figs, 3 tabs

  13. Radioactive waste management in sealed sources laboratory production

    International Nuclear Information System (INIS)

    Carvalho, Gilberto

    2001-01-01

    The laboratory of sealed sources production, of Instituto de Pesquisas Energeticas e Nucleares, was created in 1983 and since then, has produced radioactive sources for industry and engineering in general, having specialization in assembly of radiation sources for non destructive testings, by gammagraphy, with Iridium-192, that represents 98% of the production of laboratory and 2% with the Cobalt-60, used in nuclear gages. The aim of this work, is to quantify and qualify the radioactive wastes generated annually, taking into account, the average of radioactive sources produced, that are approximately 220 sources per year

  14. Inter-laboratory exercise on steroid estrogens in aqueous samples

    Energy Technology Data Exchange (ETDEWEB)

    Heath, E., E-mail: ester.heath@ijs.s [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Kosjek, T. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Andersen, H.R.; Holten Luetzhoft, H.-C. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, DK-2800 Kgs. Lyngby (Denmark); Adolfson Erici, M. [Stockholm University, ITM SE-106 91 Stockholm (Sweden); Coquery, M. [Cemagref, U.R. QELY, F-69336 Lyon (France); Duering, R.-A. [Giessen University, Institute of Soil Science and Soil Conservation, Giessen (Germany); Gans, O. [Umweltbundesamt GmbH, Unit Organic Analysis, Spittelauer Laende 5, 1090 Vienna (Austria); Guignard, C. [CRP Gabriel Lippmann, EVA, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Karlsson, P. [Lantmannen Analycen AB, Research and Development, Sjoehagsgatan 3 Box 905, 5319, Lidkoeping (Sweden); Manciot, F. [CAE VEOLIA ENVIRONMENT, 1 Place de Turenne, 94417 Saint Maurice Cedex (France); Moldovan, Z. [National Institute of Research and Development for Isotopic and Molecular Technology, Mass Spectrometry Department, Str. Donath 65-103, 400293 Cluj-Napoca (Romania); Patureau, D. [INRA, UR50, Laboratoire de Biotechnologie de l' Environnemet (LBE), Avenue des etangs, F-11100 Narbonne (France); Cruceru, L. [Pollution Control Department, National Research Institute for Industrial Ecology (ECOIND), Sos.Panduri 90-92, sector 5, Bucharest (Romania); Sacher, F. [DVGW-Technologiezentrum Wasser, Karlsruher Strasse 84, 76139 Karlsruhe (Germany); Ledin, A. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej 113, DK-2800 Kgs. Lyngby (Denmark)

    2010-03-15

    An inter-laboratory comparison exercise was organized among European laboratories, under the aegis of EU COST Action 636: 'Xenobiotics in Urban Water Cycle'. The objective was to evaluate the performance of testing laboratories determining 'Endocrine Disrupting Compounds' (EDC) in various aqueous matrices. As the main task three steroid estrogens: 17alpha-ethinylestradiol, 17beta-estradiol and estrone were determined in four spiked aqueous matrices: tap water, river water and wastewater treatment plant influent and effluent using GC-MS and LC-MS/MS. Results were compared and discussed according to the analytical techniques applied, the accuracy and reproducibility of the analytical methods and the nature of the sample matrices. Overall, the results obtained in this inter-laboratory exercise reveal a high level of competence among the participating laboratories for the detection of steroid estrogens in water samples indicating that GC-MS as well as LC-MS/MS can equally be employed for the analysis of natural and synthetic hormones. - Herein are presented the results of the first international inter-laboratory study on determination of selected steroid hormones in environmental aqueous samples.

  15. Process for disposal of aqueous solutions containing radioactive isotopes

    Science.gov (United States)

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  16. Process for disposal of aqueous solutions containing radioactive isotopes

    International Nuclear Information System (INIS)

    Colombo, P.; Neilson, R.M. Jr.; Becker, W.W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99 0 C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump

  17. The work of the International Laboratory of Marine Radioactivity

    International Nuclear Information System (INIS)

    Walton, A.

    1981-01-01

    It is only during the past three decades that international interest has focused on the need to manage and nurture one of our most valued resources - the oceans. In spite of this growing recognition, however, it is only during the past ten years that international agreement has been reached on the control of dumping of wastes (including nuclear wastes) at sea. The International Laboratory of Marine Radioactivity was established in 1961 well before the international agreement came into force. Indeed the Laboratory came into existence as a result of the foresight and appreciation by the International Atomic Energy Agency of the need to attack the problem of the behaviour of radioactive substances in the oceans - a subject about which little was known prior to the 1950s. With the co-operation of the Government of Monaco and the Institut Oceanographique, the Laboratory was established in 1961 in the Musee Oceanographique, Monaco. It is appropriate that the Laboratory was established in a building created by one of the most prominent pioneers in oceanography - Prince Albert 1sup(er) of Monaco. Since 1961 the programme and activities of the Monaco Laboratory have expanded and changed with the changing emphasis in pollution problems in the oceans. Throughout the many changes in emphasis which have occurred during the past 20 years, however, it is probably fair to say that the broad objectives have remained the same. The Laboratory exists therefore: to perform research on the occurrence and behaviour of radioactive substances and other forms of pollution in the marine environment; to ensure the quality of the performance and comparability of studies of radioactive substances and other forms of pollution in the marine environment by national laboratories through inter-laboratory comparisons, calibration and standardization of methodology; to assist Member States with regard to marine radioactivity and environmental problems by training personnel, establishing co

  18. Incident involving radioactive material at IAEA Safeguards Laboratory - No radioactivity released to environment

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: Pressure build-up in a small sealed sample bottle in a storage safe resulted in plutonium contamination of a storage room at about 02:30 today at the IAEA's Safeguards Analytical Laboratory in Seibersdorf. All indications are that there was no release of radioactivity to the environment. Further monitoring around the laboratory will be undertaken. No one was working in the laboratory at the time. The Laboratory's safety system detected plutonium contamination in the storage room where the safe was located and in two other rooms - subsequently confirmed by a team of IAEA radiation protection experts. The Laboratory is equipped with multiple safety systems, including an air-filtering system to prevent the release of radioactivity to the environment. There will be restricted access to the affected rooms until they are decontaminated. A full investigation of the incident will be conducted. The IAEA has informed the Austrian regulatory authority. The IAEA's Laboratory in Seibersdorf is located within the complex of the Austrian Research Centers Seibersdorf (ARC), about 35 km southeast of Vienna. The laboratory routinely analyses small samples of nuclear material (uranium or plutonium) as part of the IAEA's safeguards verification work. (IAEA)

  19. Radioactive target and source development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-01-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress

  20. Low-level radioactive waste management at Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Rock, C.M.; Shearer, T.L.; Nelson, R.A.

    1997-01-01

    This paper is an overview of the low-level radioactive waste management practices and treatment systems at Argonne National Laboratory - East (ANL-E). It addresses the systems, processes, types of waste treated, and the status and performance of the systems. ANL-E is a Department of Energy laboratory that is engaged in a variety of research projects, some of which generate radioactive waste, in addition a significant amount of radioactive waste remains from previous projects and decontamination and decommissioning of facilities where this work was performed

  1. RILARA: Ibero-American laboratories network of radioactivity analysis in food

    International Nuclear Information System (INIS)

    Romero, M. Lourdes; Fernandez, Isis M.; Aguirre, Jaime; Melo, Ana C. de; Flores, Yasmine; Igliki, Amanda; Osores, Jose M.; Vasquez, L. Ramiro

    2008-01-01

    The Ibero-American Laboratories Network of Radioactivity Analysis in Food (RILARA), is a thematic network that was established in the year 2007 with the financial support of the Ibero-American Program of Science and Technology for Development (CYTED). The network brings together laboratories from Argentina, Brazil, Cuba, Ecuador, Spain, Mexico, Peru and Venezuela. The main objective of thematic networks is the transfer of knowledge among the research groups and to foster the cooperation as a working method. Their mission is to create a collaboration framework that allows in the future developing new common actions. The main objective of RILARA is to guarantee the radioactive innocuousness in foodstuffs, to protect consumer's health. Besides, the network aims to facilitate the international trade among Ibero-American countries, by strengthening technical cooperation of radioactivity analysis laboratories in food and by maintaining a continuous exchange of information related to the topic. This paper presents how this network was conceived, its objectives and specific goals. Also actions taken to achieve a stable and continuous interaction among the Ibero-American laboratories controlling radioactivity in food are specified. The completion of these actions is expected to provide technological transfer among countries/Institutions and staff methodology training at developing laboratories. (author)

  2. Solidification of aqueous radioactive waste using insoluble compounds of magnesium oxide

    International Nuclear Information System (INIS)

    Carlson, J.E.

    1986-01-01

    A process is described for the treatment of radioactive waste which comprises: (a) first adding, under continuous agitation, a sufficient amount of a powdered magnesium oxide or magnesium hydroxide to an aqueous radioactive waste solution containing boric acid, the temperature of the water solution being 55-95 degrees C. to produce a magnesium borate derivative; (b) adding cement, under continuous agitation, to the magnesium borate derivative; and (c) then adding, under continuous agitation, after the cement has been dispersed, a sufficient amount of a compound selected from the group consisting of calcium oxide and calcium hydroxide to (b) to produce a gel matrix structure

  3. Inter-laboratory exercise on steroid estrogens in aqueous samples

    DEFF Research Database (Denmark)

    Heath, E.; Kosjek, T.; Andersen, Henrik Rasmus

    2010-01-01

    to the analytical techniques applied, the accuracy and reproducibility of the analytical methods and the nature of the sample matrices. Overall, the results obtained in this inter-laboratory exercise reveal a high level of competence among the participating laboratories for the detection of steroid estrogens......An inter-laboratory comparison exercise was organized among European laboratories, under the aegis of EU COST Action 636: "Xenobiotics in Urban Water Cycle" The objective was to evaluate the performance of testing laboratories determining "Endocrine Disrupting Compounds" (EDC) in various aqueous...

  4. Radioactive wastes: underground laboratories implantation

    International Nuclear Information System (INIS)

    Bataille, Ch.

    1997-01-01

    This article studies the situation of radioactive waste management, more especially the possible storage in deep laboratories. In front of the reaction of public opinion relative to the nuclear waste question, it was essential to begin by a study on the notions of liability, transparence and democracy. At the beginning, it was a matter of underground researches with a view to doing an eventual storage of high level radioactive wastes. The Parliament had to define, through the law, a behaviour able to come to the fore for anybody. A behaviour which won recognition from authorities, from scientists, from industrial people, which guarantees the rights of populations confronted to a problem whom they were not informed, on which they received only few explanations. (N.C.)

  5. International Laboratory of Marine Radioactivity. Biennial Report 1981-1982

    International Nuclear Information System (INIS)

    1983-12-01

    The Biennial Report covers the activities at the International Laboratory of Marine Radioactivity during the years 1981-82. It contains 34 short reports grouped under the headings: supporting activities - analytical methods development, intercalibration and maintenance services; studies for assessing the impacts of radionuclide releases into the marine environment; studies for obtaining scientific bases for evaluating deep-sea radioactive waste disposal; studies on processes affecting the fate of marine pollutants; and special missions. Details are also presented of the general aspects of the laboratory operations, staff list of the Monaco Laboratory, list of publications, meetings and conferences attended and reports and papers presented, oceanographic cruises and membership of regular committees, working groups and international programmes

  6. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  7. Results of the Interlaboratory Exercise CNS/CIEMAT-04 Among Environmental Radioactivity Laboratories (Aqueous Solution); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-04 (Solucion Acuosa)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.

    2004-07-01

    The document describes the outcome of the CSN/CIEMAT-04 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonised Protocol for the proficiency testing of analytical laboratories. Following the issue of the European Community Drinking Water Directive 98/83/EC concerning the quality of water for human consumption, the last inter-comparison exercise was organised by using a water sample, in an attempt to evaluate the performance of the laboratories analysing the required radioactivity parameters (H-3, gross alpha and beta activity and residual beta). The sample (a synthetic drinking water), was prepared at the National Laboratory for Ionising Radiation's Standards (CIEMAT), and contained the following radionuclides ''241 Am, ''239+240 Pu, ''90Sr, ''137 Cs, ''3 H y ''40 K. The results of the exercise were computed for 38 participating laboratories, and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, including suspected outliers. The exercise has revealed and homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. A raised percentage os satisfactory laboratory performance has been obtained for gross alpha, gross beta and residual beta: 85, 97 and 87% respectively. The study has shown that participant laboratories perform radioactive determinations in drinking water samples with satisfactory quality levels. (Author) 16 refs.

  8. Oak Ridge National Laboratory Melton Valley Storage Tanks Waste Filtration Process Evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.

    1998-01-01

    Cross-flow filtration is being evaluated as a pretreatment in the proposed treatment processes for aqueous high-level radioactive wastes at Oak Ridge National Laboratory (ORNL) to separate insoluble solids from aqueous waste from the Melton Valley Storage Tanks (MVST)

  9. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  10. Operating procedures for the manufacture of radioactive SYNROC in the actinide laboratory

    International Nuclear Information System (INIS)

    Western, K.F.

    1986-03-01

    The purpose of this manual is to acquaint the operator with the procedures required to manufacture SYNROC-containing radioactive materials in the SYNROC actinide laboratory, Lucas Heights Research Laboratories. The actinide-doped SYNROC production facility is a series of four interconnected glove boxes and one free-standing glove box. The samples of radioactive SYNROC produced in the actinide laboratory are used to carry out physical testing of the product at various laboratories on site, e.g. leach testing, auto-radiographic examination, electron-microscopc examination, atomic absorption spectrophotometry and analysis

  11. In-situ measurement of environment radioactivity by mobile nuclear field laboratory (MNFL)

    International Nuclear Information System (INIS)

    Gopalani, Deepak; Mathur, A.P.; Rawat, D.K.; Barala, S.S.; Singhal, K.P.; Singh, G.P.; Samant, R.P.

    2008-01-01

    In-situ measurement of environment radioactivity is useful tool for determine the unusual increase of radioactivity at any place due to any nuclear eventuality take place. A mobile nuclear field laboratory has been designed and developed for in-situ measurement of environment radioactivity at any desired location. This vehicle is equipped with different monitoring and analysis instruments. These equipment can be operated while vehicle is moving. The measured data can be stored in computer. This vehicle has the space for storage of various environmental matrices of affected area and these can analysis in laboratory. (author)

  12. Expansion design for a radioactive sources handling laboratory type II class B

    International Nuclear Information System (INIS)

    Sanchez S, P. S.; Monroy G, F.; Alanis, J.

    2013-10-01

    The Radioactive Wastes Research Laboratory (RWRL) of the Instituto Nacional de Investigaciones Nucleares (Mexico), at the moment has three sections: instrumental analysis, radioactive material processes, counting and a license type II class C, to manipulate radioactive material. This license limits the open sources handling to 300 kBq for radionuclides of very high radio-toxicity as the Ra-226, for what is being projected the license extension to type II class B, to be able to manage until 370 MBq of this radionuclides type, and the Laboratory, since the location where is the RWRL have unused area. This work presents a proposal of the RWRL expansion, taking into account the current laboratory sections, as well as the established specifications by the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The current planes of the RWRL and the expansion proposal of the laboratory are presented. (Author)

  13. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  14. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1998-01-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector. (author)

  15. Inductively coupled plasma mass spectrometer installation modifications in a radioactive contaminated laboratory for the analysis of DOE radioactive waste streams

    International Nuclear Information System (INIS)

    Giaquinto, J.M.; Keller, J.M.; Meeks, A.M.

    1997-04-01

    The operation and maintenance of a complex analytical instrument such as an inductively coupled plasma mass spectrometer in a radioactive contaminated environment presents unique problems and challenges that have to be considered in the purchasing and installation process. Considerations such as vendor experience, typical radiation levels, sample matrices encountered during sample analysis, instrument accessibility for maintenance, and upkeep must be incorporated into the decision process. The Radioactive Materials Analytical Laboratory (RMAL) at Oak Ridge National Laboratory (ORNL) recently purchased and installed an inductively coupled plasma mass spectrometer for the analysis of Department of Energy (DOE) radioactive waste streams. This presentation will outline the purchasing decision, installation of the instrument, and how the modifications needed to operate in a radioactive contaminated laboratory do not significantly impact the daily operation and maintenance requirements of the instrument. Also, a contamination survey of the system will be presented which demonstrates the contamination levels in the instrument from the sample introduction system to the detector

  16. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    Tronche, E.

    1994-10-01

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  17. Treatment and conditioning of radioactive organic liquids

    International Nuclear Information System (INIS)

    1992-07-01

    Liquid organic radioactive wastes are generated from the use of radioisotopes in nuclear research centres and in medical and industrial applications. The volume of these wastes is small by comparison with aqueous radioactive wastes, for example; nevertheless, a strategy for the effective management of these wastes is necessary in order to ensure their safe handling, processing, storage and disposal. A aqueous radioactive wastes may be discharged to the environment after the radioactivity has decayed or been removed. By contrast, organic radioactive wastes require management steps that not only take account of their radioactivity, but also of their chemical content. This is because both the radioactivity and the organic chemical nature can have detrimental effects on health and the environment. Liquid radioactive wastes from these applications typically include vacuum pump oil, lubricating oil and hydraulic fluids, scintillation cocktails from analytical laboratories, solvents from solvent extraction research and uranium refining, and miscellaneous organic solvents. The report describes the factors which should be considered in the development of appropriate strategies for managing this class of wastes from generation to final disposal. Waste sources and characterization, treatment and conditioning processes, packaging, interim storage and the required quality assurance are all discussed. The report is intended to provide guidance to developing Member States which do not have nuclear power generation. A range of processes and procedures is presented, though emphasis is given to simple, easy-to-operate processes requiring less sophisticated and relatively inexpensive equipment. 31 refs, 16 figs, 3 tabs

  18. Method of denitrification and stabilization of radioactive aqueous solutions of radioisotope nitrates

    International Nuclear Information System (INIS)

    Pecak, V.; Matous, V.

    1983-01-01

    The method is solved of denitrification and of the stabilization of aqueous solutions of radioactive isotopes produced during the reprocessing of nuclear fuel. The aqueous solution is first mixed with the vitreous component, most frequently phosphoric acid, ammonium phosphate or boric acid and if needed with the addition of alkalis, possibly with clarifying or anti-foam components, e.g., arsenic trioxide, antimony or cerium oxide. The mixture is further adjusted with ammonia to pH 5 - 9. The liquid mixture is then thermally and pyrolytically processed, e.g., by calcinator or fluid-bed reactor or by pot melting at temperatures of 3O0 to 900 degC while of a powder product or glass melt is formed in the presence of gaseous emissions composed of nitrous oxide - nitrogen. The resulting product is further processed by containerization or is sealed in a metal matrix. (B.S.)

  19. Neutrons from rock radioactivity in the new Canfranc underground laboratory

    International Nuclear Information System (INIS)

    Amare, J; Bauluz, B; Beltran, B; Carmona, J M; Cebrian, S; GarcIa, E; Gomez, H; Irastorza, I G; Luzon, G; MartInez, M; Morales, J; Solorzano, A Ortiz de; Pobes, C; Jpuimedon; RodrIguez, A; Ruz, J; Sarsa, M L; Torres, L; Villar, J A

    2006-01-01

    Measurements of radioactivity and composition of rock from the main hall of the new Canfranc underground laboratory are reported. Estimates of neutron production by spontaneous fission and (α, n) reactions are given

  20. Special from encapsulation for radioactive material shipments from Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1980-01-01

    Special Form encapsulation has been used at Oak Ridge National Laboratory to ship radioactive solids for the past fifteen years. A family of inexpensive stainless steel containers has been developed and tested to meet the USA Department of Transportation (DOT) and the International Atomic Energy Agency (IAEA) regulations concerning radioactive material shipments as Special Form

  1. Radon and environmental radioactivity in the Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Bandac, I.; Bettini, A.; Borjabad, S.; Nunez-Lagos, R.; Perez, C.; Rodriguez, S.; Sanchez, P.; Villar, J. A.

    2014-01-01

    The results of more than one year of measurements of Radon and environmental radioactivity in the Canfranc Underground Laboratory (LSC) are presented. Radon and atmospheric parameters have registered by an Alpha guard P30 equipment and the environmental radioactivity has been measured by means of UD-802A Panasonic thermoluminescent dosimeters (TLD) processed by an UD716 Panasonic unit. Series of results along with their possible correlations are presented. Both the Radon level and the ambient dose equivalent H (10) are much lower than the allowed ones so no radiological risk exists to persons working in the LSC. Also its excellent environmental radiological quality has been confirmed. (Author)

  2. Recirculating ventilation system for radioactive laboratories

    International Nuclear Information System (INIS)

    Kotrappa, P.; Menon, V.B.; Dingankar, M.V.; Chandramoleshwar, K.; Bhargava, B.L.

    1980-01-01

    Radioactive laboratories designed to handle toxic substances such as plutonium are required to have ''once through'' ventilation scheme. This is an expensive proposition particularly when conditioned air is required. A recent approach is to have recirculatory system with exhausted air passing through absolute (HEPA) filters. This scheme not only drastically reduces capital costs but also substantially cuts down maintenance and running costs. Experiments emplyoing aerosol clearance techniques were conducted to specifically establish that this new scheme meets all the health physics safety stipulations laid down for such installations. It is shown that the ''once through'' system is three times more expensive compared to the recirculation system adopted in Purnima Laboratories. Further a saving of 70% is also achieved in running and operating costs. Therefore the new approach deserves serious consideration in future planning of similar projects, particularly in view of the fact that the considerable savings achievable both in terms of money and energy are without in any way compromising on safety. (auth.)

  3. Radioactive waste management research at CEGB Berkeley nuclear laboratories

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The CEGB is the major electric utility in the United Kingdom. This paper discusses how, at the research laboratories at Berkeley (BNL), several programs of work are currently taking place in the radioactive waste management area. The theme running through all this work is the safe isolation of radionuclides from the environment. Normally this means disposal of waste in solid form, but it may also be desirable to segregate and release nonradioactive material from the waste to reduce volume or improve the solid waste characteristics (e.g., the release of liquid or gaseous effluents after treatment to convert the radioactivity to solid form). The fuel cycle and radioactive waste section at BNL has a research program into these aspects for wastes arising from the operation or decommissioning of power stations. The work is done both in-house and on contract, with primarily the UKAEA

  4. The Coordinating Laboratories for monitoring of environmental radioactivity. History, activities, perspectives

    International Nuclear Information System (INIS)

    Wiechen, A.; Bayer, A.

    2000-10-01

    The article reviews the development of the monitoring of environmental radioactivity in the former Federal Republic of Germany and from 1990 onwards in re-unified Germany. This monitoring originated in the need to investigate the radioactive fallout from the testing of atomic bombs in the atmosphere in the 1950's and 1960's. Monitoring was intensified and became increasingly regulated by law as a response to the large scale use of atomic power and in accordance with the Euratom Treaty of 1957. The necessity of evaluating the radiological effects in old mining regions in some of the new Laender was recognised in 1990. Since then legislation and official monitoring have been extended to include this source of radiation exposure. Also described is the way in which those institutions now termed Coordinating Laboratories were involved in all of the developments mentioned above. They tested and developed sampling, analysis and measurement techniques, carried out research projects on the various contamination pathways, reported regularly on environmental radioactivity and radiation exposure, organised and evaluated interlaboratory comparisons, assisted in the setting up of the Federal Integrated Measurement and Information System (IMIS), and advised the appropriate Federal and Laender Ministries. Some of the Coordinating Laboratories also manage Federal Monitoring Networks. The Precautionary Radiation Protection Act stipulates these tasks and names the institutions appointed as Coordinating Laboratories. (orig.) [de

  5. Introduction of a cation in aqueous solution by electrolytic dissolution of metal. Applications to the decontamination of radioactive effluents

    International Nuclear Information System (INIS)

    Gauchon, Jean-Paul

    1979-01-01

    This research thesis aims at comparing results obtained in chemical decontamination of radioactive effluents with a metallic cation introduced by metal electro-dissolution or by dose addition. After an overview of methods used for the purification of radioactive effluents and a more precise presentation of chemical co-precipitation, the author reports preliminary tests of the application of chemical co-precipitation to the decontamination of radioactive effluents, reports the analysis of iron, zinc and copper behaviour in aqueous environment by means of thermodynamic diagrams and current-voltage curves. He reports the design and use of two electro-dissolution sets, and the application of copper electrolytic dissolution to the elimination of ruthenium in radioactive effluents. He finally addresses the purification treatment of effluents of nuclear reactors

  6. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  7. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Energy Technology Data Exchange (ETDEWEB)

    Bacri, C.O., E-mail: bacri@ipno.in2p3.f [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France); Petitbon, V.; Pierre, S. [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France)

    2010-02-11

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  8. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Science.gov (United States)

    Bacri, C. O.; Petitbon, V.; Pierre, S.; Cacao Group

    2010-02-01

    CACAO, Chimie des Actinides et Cibles radioActives à Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  9. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    International Nuclear Information System (INIS)

    Bacri, C.O.; Petitbon, V.; Pierre, S.

    2010-01-01

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  10. Vertical distribution of radioactive particles in Ottawa River sediment near the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Lee, D.R.; Hartwig, D.S.

    2011-01-01

    Previously, we described an area of above-background levels of radioactivity in the bed of the Ottawa River near the Chalk River Laboratories. The area was about 200 m wide by 400 m long and in water 8 to 30 m deep. The source of the radioactivity was associated with the location of cooling-water discharge. Particles of radioactive material were later recovered from the upper 10-15 cm of sediment and were determined to be sand-sized grains of nuclear fuel and corrosion products. This report provides an examination of the vertical distribution of radioactive particles in the riverbed. Twenty-three dredge samples (representing 1.2 m 2 of riverbed) were collected near the Process Outfall. Each dredge sample was dissected in horizontal intervals 1-cm-thick. Each interval provided a 524 cm 3 sample of sediment that was carefully examined for particulate radioactivity. Approximately 80% of the radioactivity appeared to be associated with discrete particles. Although the natural sediment in the general area is cohesive, silty clay and contains less than 10% sand, the sediment near the Outfall was found to be rich in natural sand, presumably from sources such as winter sanding of roads at the laboratories. The radioactive particles were almost entirely contained in the top-most 10 cm of the river bed. The majority of the particles were found several centimetres beneath the sediment surface and the numbers of particles and the radioactivity of the particles peaked 3 to 7 cm below the sediment surface. Based on the sediment profile, there appeared to have been a marked decrease in the deposition of particulate radioactivity in recent decades. The vertical distribution of radioactive particles indicated that sedimentation is resulting in burial and that the deposition of most of the particulate radioactivity coincided with the operation of Chalk River's NRX reactor from 1947 to 1992. (author)

  11. International Laboratory of Marine Radioactivity. Biennial report 1983-1984

    International Nuclear Information System (INIS)

    1986-06-01

    The report contains the results of the scientific tasks carried out in 1983-1984 by the International Laboratory of Marine Radioactivity at Monaco. The methods development and analytical quality assurance for radionuclide measurements, studies for evaluating environmental impacts of radionuclide releases into the sea, contribution to international marine pollution monitoring and research including special missions are presented. The 47 papers are published in summary form

  12. Occupational doses involved in a radioactive waste management laboratory

    International Nuclear Information System (INIS)

    Lima, Raquel dos Santos; Silva, Amanda J. da; Fernandes, Ivani M.; Mitake, Malvina Boni; Suzuki, Fabio Fumio

    2008-01-01

    The Radioactive Waste Laboratory (RWL) of IPEN-CNEN/SP receives, treats, packs, characterizes and stores institutional radioactive wastes, in their physical forms solid, liquid or gaseous and sealed radioactive sources, with the objective to assure an adequate level of protection to the population and to future generations and the preservation of environment. Since its creation, RWL has already received and treated about one thousand cubic meter of solid waste, eight thousand spent sealed radioactive sources from practices in industry, medicine and research, totaling more than 100 TBq. In addition, fifteen thousand radioactive lightning rods and twenty two thousand radioactive smoke detectors were received. The activities accomplished in RWL, as dismantling of lightning rods, compaction of solid wastes, decontamination of objects, waste characterization, treated waste packages rearrangement, among others, cause risks of intake and/or external exposure of workers. Requirements of radiological safety established in the regulations of the nuclear authority and international recommendations are consolidated in the RWL radioprotection plan in order to ensure the safety and protection of workers. In this paper, it was evaluated if the procedures adopted were in accordance with the requirements established in the radioprotection plan. It was also studied which activities in the waste management had substantial contribution to the occupational doses of the RWL workers in the period from 2001 up to 2006. For that, the radioprotection plan, the operational and safety procedures, the records of workplace monitoring and the individual dose reports were analyzed. It was observed that the highest individual doses resulted from operations of treated waste packages rearrangement in the facility, and none of the workers received doses above the annual limit. (author)

  13. Code of practice for the design of laboratories using radioactive substances for medical purposes

    International Nuclear Information System (INIS)

    1981-01-01

    This Code has been prepared to supplement the radioactive substances acts and regulations implemented in Australia. It is intended as a guide to safe practices but is not legislation. Areas covered include siting, layout, surface finishes, laboratory furniture and fittings, ventilation, containment and release of airborne effluent and storage of radioactive substances

  14. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  15. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  16. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  17. Automatic procedure go keep updated the activity levels for each radionuclide existing in a radioactivity laboratory

    International Nuclear Information System (INIS)

    Los Arcos, J.M.

    1988-01-01

    An automatic procedure to keep updated the activity levels each radionuclide existing in a radioactivity laboratory, and its classification according to the Spanish Regulations on Nuclear and Radioactive Establishments is described. This procedure takes into account the mixed composition of each source and whether it is sealed or the activity and mass variation due to extraction or evaporation in non-sealed sources. For a given date and time, the procedure prints out a complete listing of the activity of each radioactive source, the accumulated activity for each radionuclide, for each kind of radionuclide and the actual classification of the laboratory according to the legal regulations above mentioned. (Author)

  18. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum)

    International Nuclear Information System (INIS)

    Romero, M. L.; Barrera, M.; Valino, F.

    2010-01-01

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  19. Reducing the potential for migration of radioactive waste: Aqueous thermal degradation of the chelating agent disodium EDTA

    International Nuclear Information System (INIS)

    Boles, J.S.; Ritchie, K.; Crerar, D.A.

    1987-01-01

    Ethylenediaminetetraacetic acid (EDTA), a common component of cleaning solutions used for decontamination of radioactive equipment, has been associated with increased migration of radionuclides into local groundwaters at some radwaste disposal sites. It has been proposed that predisposal thermal degradation of EDTA-containing aqueous solutions may reduce the potential for chelate-enhanced mobilization of radionuclides at these sites. Aqueous thermal degradation experiments with disodium EDTA have shown that the compound degrades rapidly at 200 0 C with an activation energy of 114.3 +- 7.87 kJ/mol, and forms the decomposition product methyliminodiacetic acid (MIDA). A comparison of the values for stability constants of transition metal and actinide complexes with EDTA, MIDA, and two other reported degradation products, indicates that the chelating efficiency of the degradation products is 6 to 22 orders of magnitude lower than that of EDTA at 25 0 C. It is concluded that aqueous thermal degradation should significantly reduce the overall chelating efficiency of EDTA-containing solutions

  20. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish)

    International Nuclear Information System (INIS)

    Romero Gonzalez, M.L.

    2003-01-01

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs

  1. Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes

    International Nuclear Information System (INIS)

    1994-01-01

    In recent years the authorized maximum limits for radioactive discharges into the environment have been reduced considerably, and this, together with the requirement to minimize the volume of waste for storage or disposal and to declassify some wastes from intermediate to low level or to non-radioactive wastes, has initiated studies of ways in which improvements can be made to existing decontamination processes and also to the development of new processes. This work has led to the use of more specific precipitants and to the establishment of ion exchange treatment and evaporation techniques. Additionally, the use of combinations of some existing processes or of an existing process with a new technique such as membrane filtration is becoming current practice. New biotechnological, solvent extraction and electrochemical methods are being examined and have been proven at laboratory scale to be useful for radioactive liquid waste treatment. In this report an attempt has been made to review the current research and development of mature and advanced technologies for the treatment of low and intermediate level radioactive liquid wastes, both aqueous and non-aqueous. Non-aqueous radioactive liquid wastes or organic liquid wastes typically consist of oils, reprocessing solvents, scintillation liquids and organic cleaning products. A brief state of the art of existing processes and their application is followed by the review of advances in technologies, covering chemical, physical and biological processes. 213 refs, 33 figs, 3 tabs

  2. Final report on fabrication and study of SYNROC containing radioactive waste elements

    International Nuclear Information System (INIS)

    Reeve, K.D.; Levins, D.M.; Seatonberry, B.W.; Ryan, R.K.; Hart, K.P.; Stevens, G.T.

    1987-01-01

    Two facilities for the fabrication and testing of Synroc samples containing separate additions of the transuranic actinides americium, plutonium, curium and neptunium, a fission product solution, and two radioisotopes of caesium and strontium were designed, built and operated by the AAEC at the Lucas Heights Research Laboratories. Twenty-one 75 g batches of radioactive Synroc were made and representative samples were characterised by alpha track etching, scanning electron microscopy and aqueous leach testing, mostly at 70 deg C. Where comparisons were possible, radioactive fission products behaved as expected from non-radioactive tests. The leaching behaviour of the actinides was complex but as a group they were the least leachable of all the elements studied

  3. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  4. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1996-01-01

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given

  5. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  6. Ecology studies at the Idaho National Engineering Laboratory Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Arthur, W.J.; Markham, O.D.

    1978-01-01

    In September 1977 a radioecological research program was initiated at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex in the southcentral Idaho. The primary goals of the research are to: (1) determine floral and faunal composition in the area; (2) sample various ecosystem components for radionuclides; (3) determine impacts of small mammal burrowing and vegetation growth on movement of radioactive materials; (4) compare ambient radiation exposures to radiation doses received by animals inhabiting the area; and (5) understand the interrelationships between the organisms and their role in radionuclide transport

  7. Expansion design for a Laboratory of Radioactive Sources Handling type II, class B

    International Nuclear Information System (INIS)

    Sanchez S, P. S.

    2014-01-01

    This work presents the expansion design of the Radioactive Wastes Research Laboratory (RWRL) installation authorized by the Comision Nacional de Seguridad Nuclear y Salvaguardias (Mexico) as type II class C, to manage 40 different radionuclides, approximately. The RWRL has 4 areas at the present time: a laboratory of instrumental analysis, one of radioactive material processes, other of counting and a chemical reagents stock, which is not integrated to the operation license of the RWRL. With the purpose of expanding the operation license of the RWRL to an installation type II class B, to manage until 370 MBq of high radio toxicity radionuclides, is presented in this work an expansion proposal of the RWRL. The expansion proposal is based in: (1) the Mexican Nuclear Standard NOM-027-Nucl-1996 for installations type II class B, (2) the current distribution of water, light, electricity, extraction, gas, air and vacuum services of RWRL, and (3) the available areas inside the building that the RWRL occupies. The proposal contemplates the creation of additional new areas for RWRL: 3 laboratories, 2 dressing rooms, 2 bathrooms and 2 warehouses, one for radioactive materials and another for reagents chemical radiologically inactive. Architectural, electric, hydraulic, extraction and gas planes corresponding to the expansion of RWRL were realized. Inside the proposal the budget required to carry out the mentioned expansion is also presented. (Author)

  8. Mobile laboratory for near real-time measurements of very low-level radioactivity

    International Nuclear Information System (INIS)

    Sigg, R.A.

    1984-01-01

    The Tracking Radioactive Atmospheric Contaminants (TRAC) System is a mobile laboratory, developed by Savannah River Laboratory (SRL) to improve emergency response and environmental research capabilities at the Savannah River Plant (SRP). In the event of an atmospheric release, the TRAC laboratory can confirm the location and radionuclide composition of the downwind cloud by analyzing samples in near real-time in the field. Specialized monitoring systems were developed to analyze most radionuclides produced in SRP's diverse operations. Sensitivities are radionuclide dependent and can be below maximum permissible concentration (MPC) values by factors as large as one hundred thousand. 6 references, 6 figures

  9. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

    International Nuclear Information System (INIS)

    Sasaki, Takayuki; Rajib, Mohammad; Akiyoshi, Masafumi; Kobayashi, Taishi; Takagi, Ikuji; Fujii, Toshiyuki; Zaman, Md. Mashrur

    2015-01-01

    The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of 40 K. The maximum values of 232 Th and 238 U, estimated from the radioactivity of 208 Tl and 234 Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed

  10. Design and installation of a laboratory-scale system for radioactive waste treatment

    International Nuclear Information System (INIS)

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter

  11. Results of the Interlaboratory Exercise CNS/CIEMAT-05 among Environmental Radioactivity Laboratories (Vegetable Ash)

    International Nuclear Information System (INIS)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.; Valino Garcia, F.

    2006-01-01

    The document describes the outcome of the CSN/CIEMAT-05 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the IUPAC I nternational harmonised protocol for the proficiency testing of analytical chemistry laboratories . The exercise has been designed to evaluate the capability of national laboratories to determine environmental levels of radionuclides in vegetable ash samples. The sample has been prepared by the Environmental Radiation Laboratory, from the University of Barcelona, and it contains the following radionuclides: Sr-90, Pu-238, Am-241, Th-230, Pb-210, U-238, Ra-226, K-40, Ra-228, TI-208, Cs- 137 and Co-60. Reference values have been established TROUGH the kind collaboration of three international laboratories of recognized experience: IAEA MEL and IRSN-Orsay. The results of the exercise were computed for 35 participating laboratories and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, to achieve a more complete and objetiva study of the laboratories' performance. Some difficulties encountered to dissolve the test sample caused a lower response of analyses involving radiochemical separation, thus some laboratories couldn't apply their routine methods and no conclusions on PU-238, Am-241 and Th-230 performances have been obtained. The exercise has revealed an homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. The study has shown that participant laboratories perform radioactive determinations in vegetable ash samples with satisfactory quality levels. (Author) 6 refs

  12. Order No 485 on the use of unsealed radioactive sources in hospitals, laboratories, etc

    International Nuclear Information System (INIS)

    1985-11-01

    This Order, made in furtherance of an Order of 20 Novembre 1975 concerning safety precautions in the use of radioactive substances, implements in Directive 80/836/Euratom on radiation protection. It lays down a licensing system for the purchase and use of unsealed radioactive sources and also provides for their storage and disposal. The National Board of Health is the licensing authority. The Order also prescribes radiation protection measures for laboratory personnel [fr

  13. Laboratory Enrichment of Radioactive Assemblages and Estimation of Thorium and Uranium Radioactivity in Fractions Separated from Placer Sands in Southeast Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takayuki, E-mail: sasaki@nucleng.kyoto-u.ac.jp [Kyoto University, Department of Nuclear Engineering (Japan); Rajib, Mohammad [Bangladesh Atomic Energy Commission, Nuclear Minerals Unit, Atomic Energy Research Establishment (Bangladesh); Akiyoshi, Masafumi; Kobayashi, Taishi; Takagi, Ikuji [Kyoto University, Department of Nuclear Engineering (Japan); Fujii, Toshiyuki [Kyoto University, Research Reactor Institute (Japan); Zaman, Md. Mashrur [Bangladesh Atomic Energy Commission, Nuclear Minerals Unit, Atomic Energy Research Establishment (Bangladesh)

    2015-06-15

    The present study reports the likely first attempt of separating radioactive minerals for estimation of activity concentration in the beach placer sands of Bangladesh. Several sand samples from heavy mineral deposits located at the south-eastern coastal belt of Bangladesh were processed to physically upgrade their radioactivity concentrations using plant and laboratory equipment. Following some modified flow procedure, individual fractions were separated and investigated using gamma-ray spectrometry and powder-XRD analysis. The radioactivity measurements indicated contributions of the thorium and uranium radioactive series and of {sup 40}K. The maximum values of {sup 232}Th and {sup 238}U, estimated from the radioactivity of {sup 208}Tl and {sup 234}Th in secular equilibrium, were found to be 152,000 and 63,300 Bq/kg, respectively. The fraction of the moderately conductive part in electric separation contained thorium predominantly, while that of the non-conductive part was found to be uranium rich. The present arrangement of the pilot plant cascade and the fine tuning of setting parameters were found to be effective and economic separation process of the radioactive minerals from placer sands in Bangladesh. Probable radiological impacts and extraction potentiality of such radioactive materials are also discussed.

  14. The Gran Sasso underground laboratories (measurements of rock radioactivity and neutron fluxes)

    International Nuclear Information System (INIS)

    Bellotti, E.; Buraschi, M.; Fiorini, E.; Liguori, C.

    1985-01-01

    The authors report on measurements of rock radioactivity and neutron flux performed in the Gran Sasso underground laboratories of the INFN in Italy. The Gran Sasso' Laboratories of the INFN are located underground, in galleries which have been excavated under the Gran Sasso mountain range. The minimum rock thickness covering the laboratories is about 1400 m of rock of average density 2.8 g cm/sup -3/, corresponding to a thickness of some 4000 m of water equivalent. The laboratories are located at about 1000 m above sea level. The main destination of these laboratories is to shelter very huge particle detectors which shall detect extremely rare nuclear events of extraordinary interest for particle physics as well as for astrophysics and cosmology. In these laboratories, the radiation background is expected to be extremely low, which is the main condition for performing the proposed experiments

  15. Best practice guide for radioactivity measurement laboratories in a post-accident situation

    International Nuclear Information System (INIS)

    2011-01-01

    Published for laboratories likely to be asked to perform radioactivity measurements at the time of or after a radiological or nuclear accident in France or abroad, this guide aims at defining the best practices in terms of laboratory organisation (sample flow management, personnel radioprotection, sample identification and recording, sample cross-contamination risks, result transmission, archiving of data, results and samples, waste dismissal), and in terms of metrology (adaptation to needs in terms of detection limit and measurement uncertainty, preferred use of gamma spectrometry, analysis strategies)

  16. ICP/AES radioactive sample analyses at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Matsuzaki, C.L.; Hara, F.T.

    1986-03-01

    Inductively coupled argon plasma atomic emission spectroscopy (ICP/AES) analyses of radioactive materials at Pacific Northwest Laboratory (PNL) began about three years ago upon completion of the installation of a modified Applied Research Laboratory (ARL) 3560. Funding for the purchase and installation of the ICP/AES was provided by the Nuclear Waste Materials Characterization Center (MCC) established at PNL by the Department of Energy in 1979. MCC's objective is to ensure that qualified materials data are available on waste materials. This paper is divided into the following topics: (1) Instrument selection considerations; (2) initial installation of the simultaneous system with the source stand enclosed in a 1/2'' lead-shielded glove box; (3) retrofit installation of the sequential spectrometer; and (4) a brief discussion on several types of samples analyzed. 1 ref., 7 figs., 1 tab

  17. Importance of the Primary Radioactivity Standard Laboratory and Implementation of its Quality Management

    Science.gov (United States)

    Sahagia, Maria; Razdolescu, Anamaria Cristina; Luca, Aurelian; Ivan, Constantin

    2007-04-01

    The paper presents some specific aspects of the implementation of the quality management in the Radionuclide Metrology Laboratory, from IFIN-HH, the owner of the primary Romanian standard in radioactivity. The description of the accreditation, according to the EN ISO/IEC 17025:2005, is presented.

  18. Importance of the Primary Radioactivity Standard Laboratory and Implementation of its Quality Management

    International Nuclear Information System (INIS)

    Sahagia, Maria; Razdolescu, Anamaria Cristina; Luca, Aurelian; Ivan, Constantin

    2007-01-01

    The paper presents some specific aspects of the implementation of the quality management in the Radionuclide Metrology Laboratory, from IFIN-HH, the owner of the primary Romanian standard in radioactivity. The description of the accreditation, according to the EN ISO/IEC 17025:2005, is presented

  19. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  20. Derivation of uranium residual radioactive material guidelines for the former Alba Craft Laboratory site, Oxford, Ohio

    International Nuclear Information System (INIS)

    Nimmagadda, M.; Faillace, E.; Yu, C.

    1994-01-01

    Residual radioactive material guidelines for uranium were derived for the former Alba Craft Laboratory site in Oxford, Ohio. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). Single nuclide and total uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the former Alba Craft Laboratory site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios (Yu et al. 1993). The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation

  1. Radioactive material package testing capabilities at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-01-01

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia's facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns

  2. Implementation of ISO 28218 quality system in the laboratory of body radioactivity counter CIEMAT

    International Nuclear Information System (INIS)

    Navarro Amaro, J. F.; Perez Lopez, B.; Lopez Ponte, M. A.; Perez Jimenez, C.

    2011-01-01

    The laboratory of body radioactivity counter has implemented IS0 28218 standard Performance Criteria for Radio bioassay in all measured in vivo techniques of internal contamination in the human organism in monitoring programs defined by the Personal Dosimetry Service Internal CIEMAT. The application of this rule in the laboratory's quality system is essential to meet the technical requirements of the standard IS0/IEC 17025 with the purpose of obtaining ENAC accreditation as a testing laboratory and calibration within the framework of the accreditation of Service CIEMAT Radiation Dosimetry. (Author)

  3. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Christensen, B. D.

    1999-01-01

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization

  4. Automatic exposure system for radioactive source at teaching laboratory

    International Nuclear Information System (INIS)

    Seren, Maria Emilia G.; Gaal, Vladmir; Morais, Sergio Luiz de; Rodrigues, Varlei

    2013-01-01

    The development of Compton Scattering experiment, studied by undergraduate students of the Medical Physics course at the Universidade Estadual de Campinas (UNICAMP), takes place in the Medical Physics Teaching Laboratory, belonging to the Gleb Wataghin Physics Institute (IFGW/UNICAMP). The experiment consists of a fixed 137 Cs radioactive source, with current activity of 610.5 MBq and a scintillation detector that turns around the center of the system whose function is to detect the scattered photons spectrum by a scatter object (target). The 137 Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662 MeV. This source is exposed only when an attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver a radiation dose to users when done manually. Considering the stochastic harmful effects of ionizing radiation, the goal of this project was to develop an automatic exposure system of the radioactive source, in order to reduce the radiation dose received during the Compton Scattering experiment. The developed system is micro controlled and performs standard operating routines, responding to emergencies. Furthermore, an electromagnetic lock enables quick closing of the barrier by gravity, in case of interruption of the electrical current circuit. Besides reducing the total dose to lab users, the system adds more security to the routine, since it limits the access to the radioactive source and prevents accidental exposure. (author)

  5. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  6. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua

    2008-01-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  7. Radioactive effluent monitoring at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Simpson, O.D.

    1975-01-01

    The Effluent and Radiation Measurements Laboratory at the Idaho National Engineering Laboratory (INEL) has recently upgraded capabilities in the field of monitoring and analysis of radioactive airborne and liquid effluents using the techniques of gamma-ray spectrometry. The techniques and equipment used include remotely-operated, computer-based Ge(Li) spectrometers which obtain data on a real-time basis. Permanent record files are maintained of both the effluent release values and the gamma-ray data from which the release values are calculated. Should values for release levels ever be challenged, the gamma-ray spectral information for any measurement can be recalled and analyzed as needed. Daily effluent release reports are provided to operating personnel which contributes to prompt correction of any operational problems. Monthly, quarterly, and annual reports are compiled which provide inventories of the radionuclides released. A description of the effluent monitoring, reporting and records system developed at INEL for this application will be presented

  8. Influence of prilocaine in the interchange of 131I between aqueous humour and blood

    International Nuclear Information System (INIS)

    Arbex, S.T.; Neder, A.C.; Mattos Filho, T.R. de; Ramos, A.O.; Nascimento Filho, V.F. do

    1981-01-01

    The experiment had two groups: Group I - (six dogs) - 131 I was injected into the aqueous humour and the radioactivity was measured in the blood at 1,2,4,8,16,32,64 and 128 minutes after the administration. Group II - (eight animals) - 131 I was injected intravenously and the radioactivity was measured in the aqueous humour at 5 and 10 minutes after the administration. Each group was subdivided in two sub-groups, one of them besides the 131 I received 5 mg/Kg of prilocaine. 131 I in the iodite form was always injected in 0.1 ml volumes, corresponding to 312.5 μCi. The radioactivity was measured and the results were as follows: a) Group I - the prilocaine markedly decreased the radioactivity in the blood, suggesting a smaller passage of 131 I from the aqueous humour to the blood. b) Group II - the prilocaine increased the radioactivity in the aqueous humour, suggesting an accumulation of iodite in that compartment. (Author) [pt

  9. Uranium in aqueous solutions by colorimetry

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The method covers the quantitative determination of uranium in known volumes of aqueous solutions that contain radioactive nuclides. These solutions arise from processing of irradiated nuclear fuel and from laboratory studies on irradiated uranium. The method is applicable to solutions containing a minimum of 30 μg of uranium per sample although as little as 0.5 μg can be detected but with lower precision. Highest precision is obtained with 50 to 75 μg of uranium in the test sample. Dilutions must be made at concentrations above 750 μg/ml. The method includes a discussion of photometers and photometric practice, apparatus, reagents, cell matching, preparation of standard curves, calibration by the method of internal standards, procedure, calculation, and precision

  10. The radioactive organic wastewater treatment of INER

    International Nuclear Information System (INIS)

    Shen Chinchang; Chen Chaorui; Chung Jenchren

    2014-01-01

    The treatment strategy of radioactive organic wastewater was to separate it at first, then to treat it step by step by the characteristics of liquid layer. The waste liquid has separated into three layers, the organic layer, aqueous layer and the bottom gel mastic by natural sedimentation. The organic layer has occupied 23% of the total volume, the intermediate aqueous layer occupied 75% of the total volume, the bottom mastic was about 2% of the total. The aqueous layer of organic waste was with Total Organic Carbon (TOC) 20,000ppm. The combustion test shows good treatment performance and all samples can be decomposed completely by incineration. The experiment of incineration has passed the test more than 200 batches and 3000L low-level radioactive organic aqueous solution. The process goes smoothly and gas emission values far below the regulatory limit. Each kilogram of polymer absorber can absorb 45 kg aqueous solution to form a solid combustible material and can be decomposed by incineration. Organic waste solvents were diesel miscible and similar calorific value and small viscosity. It can be used as an incinerator auxiliary fuel of radioactive incinerator. The method testing has begun in this year. It has expected to save diesel fuel consumption of incineration, and well solved such kind waste liquid. (author)

  11. Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1994-01-01

    Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ''legacy'' wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL's strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies

  12. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  13. Data Processing and Programming Applied to an Environmental Radioactivity Laboratory

    International Nuclear Information System (INIS)

    Trinidad, J. A.; Gasco, C.; Palacios, M. A.

    2009-01-01

    This report is the original research work presented for the attainment of the author master degree and its main objective has been the resolution -by means of friendly programming- of some of the observed problems in the environmental radioactivity laboratory belonging to the Department of Radiological Surveillance and Environmental Radioactivity from CIEMAT. The software has been developed in Visual Basic for applications in Excel files and it solves by macro orders three of the detected problems: a) calculation of characteristic limits for the measurements of the beta total and beta rest activity concentrations according to standards MARLAP, ISO and UNE and the comparison of the three results b) Pb-210 and Po-210 decontamination factor determination in the ultra-low level Am-241 analysis in air samples by alpha spectrometry and c) comparison of two analytical techniques for measuring Pb-210 in air ( direct-by gamma spectrometry- and indirect -by radiochemical separation and alpha spectrometry). The organization processes of the different excel files implied in the subroutines, calculations and required formulae are explained graphically for its comprehension. The advantage of using this kind of programmes is based on their versatility and the ease for obtaining data that lately are required by tables that can be modified as time goes by and the laboratory gets more data with the special applications for describing a method (Pb-210 decontamination factors for americium analysis in air) or comparing temporal series of Pb-210 data analysed by different methods (Pb-210 in air). (Author)

  14. Activities of the International Laboratory of Marine Radioactivity. 1976 Report. Monaco, June 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The programme of the International Laboratory of Marine Radioactivity has continued largely along the research lines outlined in the last progress report (IAEA-163). In addition to the regular intercalibration programme of radionuclide measurements, the Laboratory has distributed a number of reference materials for the measurement of trace metals and organochlorine compounds. This latter effort was, and continues to be, supported by the United Nations Environment Programme (UNEP). The first results obtained from the participating laboratories indicate that while comparability for trace element measurements are encouraging, the same cannot be said for the determination of organochlorine compounds. The experience obtained to date in all of the intercalibration exercises attests to the desirability of maintaining such services for the benefit of the scientific community involved in environmental research

  15. Quality control for radionuclide determinations in the Saxon state laboratories for environmental radioactivity by intercomparison and comparative measurements

    International Nuclear Information System (INIS)

    Knobus, B.

    2001-01-01

    Quality control for radionuclide analysis is necessary and essential for the quality assurance of the measuring results executing the measuring programmes of surveillance of the radioactivity in the environment and from installations. Acts, ordinances and guidelines require the participation in intercomparisons for authorized institutions detecting the demanded quality of measurements (e.g. trueness, reproducibility) for Federal Authorities. These are mainly those intercomparisons which are prepared, practised and evaluated by the federal laboratories. Comparative measurements are generally organized and executed by the state laboratory itself with a few participants for special measuring tasks. In this paper are described and discussed extend and special results of those intercomparisons and comparative measurements of the Saxon state laboratories for environmental radioactivity from 1992 until 2000. If necessary, there are following improvements for quality assurance. (orig.) [de

  16. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  17. Results of the Interlaboratory Exercise CSN/CIEMAT-100 Among Environmental Radioactivity Laboratories (Soil)

    International Nuclear Information System (INIS)

    Romero Gonzalez, M. L.

    2002-01-01

    The document describes the outcome of the CSN/CIEMAT-00 interlaboratory test comparison among environmental radioactivity laboratories. the exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. the test sample was a soil containing environmental levels of K-40, Ra-226, Ac-228, Sr-90, Cs-137, Cs-134, Pu (239-240) y Am-241. the Universidad Autonoma de Barcelona prepared the material and reported adequate statistical studies of homogeneity. The results of the exercise were computed for 30 participating laboratories, and their analytical performance was assessed using the u-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The exercise has drawn that several laboratories have difficulties in the evaluation of combined uncertainty, mainly in analysis involving radiochemical steps. The study has shown an homogeneous inter-laboratory behaviour, and the improvement achieved through subsequent exercises in the quality of the data they are producing. (Author) 10 refs

  18. Management of liquid radioactive waste from research and training laboratories of radiochemistry and radioecology

    International Nuclear Information System (INIS)

    Krasnopyorova, A.P.; Yuhno, G.D.; Sytnik, O.Y.

    2001-01-01

    Full text: Liquid radioactive waste (LRW), that is formed in research and training cycle of radiochemistry and radioecology laboratories of Kharkov National University, corresponds to medium active one (10 5 -10 7 Bq/l). Since the great number of different radioactive isotopes is involved in research conducted by the laboratories, liquid waste contains various radioactive contaminations. As a rule these are the water solutions of salts with concentration of 0.8-1.0 gm/l, containing mixture of 45 Ca, 65 Zn, 90 Sr, 173 Cs radionuclides. Accumulation of liquid waste from the laboratories is comparatively small, approximately 20-30 I per month. A great while LRW from the laboratories had been accumulated in special protective containers and delivered to the central waste disposal. Numerous studies has shown that LRW storage in special containers may only be temporal, since durable holding of waste necessarily gives rise to corrosion of the facing materials, and therefore diffusion of radioactive substances into environment. In addition long-term LRW storage is disadvantageous from economic point of view. Only conversion of LWR into solid state provides safe protection of environment and decreases volumes of waste. At present LRW from the laboratories is necessarily decontaminated and concentrated before being disposed.To that end the sorption methods are used, in which radionuclides from solution are concentrated in solid phase. Since small volumes of LRW are accumulated in the laboratories, the simple scheme of LRW treatment and conversion into solid residual has been designed. It comprises two steps. At the first stage consists in combining of lime-soda-ash softening with the ion-exchange sorption on the finely divided solid sorbent. Natural zeolite, clinoptilolite from Sokimitsk deposit of Ukraine, is used as the sorbent. Usage of clinoptilolite is justified by its high selectivity and sorption power in regard to 90 Sr, 137 Cs, 65 Zn radionuclides. Both low cost and

  19. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  20. Radioactive wastes management in a radiochemistry laboratory

    International Nuclear Information System (INIS)

    Silva, Ana C.A.; Pereira, Wagner de S; Py Junior, Delcy de A.; Antunes, Ivan M.; Kelecom, Alphonse

    2009-01-01

    The Laboratorio de Monitoracao Ambiental (AMB) of the Unidade de Tratamento de Minerio (UTM) belonging to the Industrias Nucleares do Brasil is a chemical, radiochemical and radiometric laboratory, that analyses the natural radionuclides present in samples coming from the various installation of Industrias Nucleares do Brasil (INB). To minimize the radiological environmental impact, that laboratory has adopted a washing system of the chapel exhausting, that recirculate the washing water. These water can accumulate the radionuclides coming from the samples, that are liberated together the exhaustion gases from the chapels. Also, the water coming from the analyses and the sample releases (environmental and of the process) represent the liquid effluents of the AMB. The release of this effluent must pass by chemical and radiological criteria. From the radiological viewpoint, that release must be based on the Brazilian Nuclear Energy Commission (CNEN) regulations. This work try to establish the monitoring frequency, the radionuclides to be analysed, the form of liberation of those effluents, and the analytical techniques to be used. The radionuclides to be analysed will be U-nat, Ra-226 and Pb-210, of the uranium series, and the Th-232 and Ra-228, of the thorium series. The effluents must be monitored either before the release or, at least, twice a year. The effluents considered radioactive wastes, will be send to waste dam by the radioprotection service, or to the effluent treatment for controlled liberation for the environment

  1. Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, C.M.

    1994-03-01

    Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ``legacy`` wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL`s strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies.

  2. Properties of Formula 127 glass prepared with radioactive zirconia calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Pavlica, D.A.; Cole, H.S.

    1982-09-01

    Formula 127 glass has been developed to immobilize ICPP zirconia calcine. This glass has been prepared remotely on a laboratory scale basis with actual radioactive zirconia calcine retrieved after ten years of storage from Bin Set 2. The aqueous leachability of the glass produced was investigated and compared through application of the MCC-1, MCC-2 and Soxhlet leach tests with that of Formula 127 glass prepared with simulated calcine. The solid state properties of the glasses prepared with actual and simulated calcines were also measured by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy energy dispersive x-ray (SEM-EDX). Based on the application of these leaching tests and analysis techniques the properties measured in this study are similar for 127 glass prepared with either simulated or radioactive calcine. 13 figures, 16 tables

  3. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies.

    Science.gov (United States)

    Kaynar, Ümit H; Ayvacıklı, Mehmet; Hiçsönmez, Ümran; Kaynar, Sermin Çam

    2015-12-01

    The adsorption of thorium (IV) from aqueous solutions onto a novel nanoporous ZnO particles prepared by microwave assisted combustion was studied using batch methods under different experimental conditions. The effect of contact time, solution pH, initial concentration and temperature on adsorption process was studied. The ability of this material to remove Th (IV) from aqueous solution was characterises by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders in optimum conditions were 97% ± 1.02; 8080 L kg(-1)for Th (IV), respectively. Based on the Langmuir model, the maximum adsorption capacity of nanoporous ZnO for Th (IV) was found to be 1500 g kg(-1). Thermodynamic parameters were determined and discussed. The results indicated that nanoporous ZnO was suitable as sorbent material for recovery and adsorption of Th (IV) ions from aqueous solutions. The radioactive Th (VI) in surface water, sea water and waste waters from technologies producing nuclear fuels, mining (uranium and thorium) and laboratories working with radioactive materials (uranium and thorium) can be removed with this nanoporous ZnO. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Cross flow filtration of aqueous radioactive tank wastes

    International Nuclear Information System (INIS)

    McCabe, D.J.; Reynolds, B.A.; Todd, T.A.; Wilson, J.H.

    1997-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic

  5. Method of decomposing treatment for radioactive organic phosphate wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1985-01-01

    Purpose: To decompose the organic phosphoric-acid ester wastes containing radioactive material, which is produced from spent fuel reprocessing facilities, into inorganic materials using a simple device, under moderate conditions and at high decomposing ratio. Method: Radioactive organic phosphate wates are oxidatively decomposed by H 2 O 2 in an aqueous phosphoric-acid solution of metal phosphate salts. Copper phosphates are used as the metal phosphate salts and the decomposed solution of the radioactive organic phosphate wastes is used as the aqueous solution of the copper phosphate. The temperature used for the oxidizing decomposition ranges from 80 to 100 0 C. (Ikeda, J.)

  6. Method for aqueous radioactive waste treatment

    Science.gov (United States)

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  7. Environmental radioactive intercomparison program and radioactive standards program

    Energy Technology Data Exchange (ETDEWEB)

    Dilbeck, G. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  8. Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    1996-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites

  9. Process for selectively concentrating the radioactivity of thorium containing magnesium slag

    International Nuclear Information System (INIS)

    Wilson, D.A.; Christiansen, S.H.; Simon, J.; Morin, D.W.

    1993-01-01

    In a process for separating magnesium from a magnesium slag using water and carbon dioxide, the improvement described comprises: (a) forming an aqueous magnesium slurry from the magnesium slag, which slag contains radioactive thorium and its daughters, and water; (b) solubilizing magnesium from the magnesium slurry by reacting the aqueous magnesium slurry with carbon dioxide wherein the carbon dioxide is at a pressure from greater than ambient to about 1,000 psig (about 7,000 kPa); (c) selectively concentrating by filtering the radioactive thorium and its daughters such that the radioactive thorium and its daughters are separated from the solubilized magnesium filtrate; and (d) reducing volume and/or weight of radioactive solids for disposal as radioactive waste

  10. Development of radioactive sealed sources in epoxy matrix

    International Nuclear Information System (INIS)

    Benega, Marcos A.G.; Nagatomi, Helio R.; Rostelato, Maria Elisa C.M.; Karan Junior, Dib; Souza, Carla D.; Tiezzi, Rodrigo; Rodrigues, Bruna T.; Peleias Junior, Fernando S.

    2013-01-01

    The aim of the present work is to study and develop commercial resins for manufacturing solid sealed sources. The sources are produced with radionuclides of barium-133, cesium-137 and cobalt-57. They are used in radiation detectors verification. For the immobilization of the radionuclides in the epoxy matrix, it is made use of emulsifying agents that ensure the miscibility between resin and aqueous radioactive solution, as well as curing agents for controlling, curing and sealing the standard radioactive solution completely. As a result, it is expected to obtain standard sealed sources and equivalent to water. The equivalence to water is an important and necessary characteristic. The radioisotopes used in nuclear medicine are supplied in an aqueous form and the resin applied must have a very similar density comparing to the water. The sources must also be comparable in quality to sources produced internationally, but with low cost and wide available materials in the market. It is intended to create a national technology able to meet the demand of this product in the domestic market and achieve excellence in quality through accreditation and certification of the product by the appropriate agencies. The study of the necessary parameters used in the production of these sources, will bring technology for the manufacture of other categories of standard sealed sources, those used for nuclear medicine, image, laboratories and industry. (author)

  11. Multi-method characterization of low-level radioactive waste at two Sandia National Laboratories environmental restoration sites

    International Nuclear Information System (INIS)

    Johnson, C.E. Jr.; Galloway, R.B.; Dotson, P.W.

    1999-01-01

    This paper discusses the application of multiple characterization methods to radioactive wastes generated by the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) Project during the excavation of buried materials at the Classified Waste Landfill (CWLF) and the Radioactive Waste Landfill (RWL). These waste streams include nuclear weapon components and other refuse that are surface contaminated or contain sealed radioactive sources with unknown radioactivity content. Characterization of radioactive constituents in RWL and CWLF waste has been problematic, due primarily to the lack of documented characterization data prior to burial. A second difficulty derives from the limited information that ER project personnel have about weapons component design and testing that was conducted in the early days of the Cold War. To reduce the uncertainties and achieve the best possible waste characterization, the ER Project has applied both project-specific and industry-standard characterization methods that, in combination, serve to define the types and quantities of radionuclide constituents in the waste. The resulting characterization data have been used to develop waste profiles for meeting disposal site waste acceptance criteria

  12. Radioactive waste disposal areas and associated environmental surveillance data at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1979-12-01

    Environmental surveillance data have been collected around radioactive waste disposal areas for the past thirty years at Oak Ridge National Laboratory (ORNL). The wealth of data collected around the ORNL radioactive waste burial grounds is presented in this review. The purpose of this paper is to describe the solid waste burial grounds in detail along with the environmental monitoring data. The various monitoring systems are reviewed, and the liquid discharge trends are discussed. Monitoring at White Oak Dam, the last liquid control point for the Laboratory, was started in the late 1940's and is continuing. Presently, a network of five environmental monitoring stations is in operation to monitor the radionuclide content of surface waters in the White Oak Creek watershed. Facts observed during the lifetime of the disposal sites include: (1) a large amount of 106 Ru released during 1959 to 1964 due to the fact that Conasauga shale did not retain this element as well as it retained other radionuclides. (2) Large quantities of tritiated water have been released to the Clinch River in recent years, but, from a practical standpoint, little can be done to inhibit or control these releases. (3) A general downward trend in the number of curies released has been observed for all other radionuclides. A number of corrective measures that have been initiated at ORNL to reduce the radioactive liquid discharges are outlined in the paper

  13. Ventilation conditions and atmospheric characteristics of a laboratory uranium mine. Application to the distribution of radioactive particles in the respiratory tract

    International Nuclear Information System (INIS)

    Duport, Philippe.

    1978-09-01

    The CEA laboratory uranium mine and the characteristics of its ventilation are described. A method of measuring air flows based on the determination of a tracer gas was developed. Variations of radon concentrations and of its daughter products concentrations and radioactive equilibrium were observed as a function of the various ventilation rates. Particle size distribution of radioactive aerosols was studied in the laboratory mine when unoperated. Several methods of evaluation of the free fraction were compared, and the application of the laws of aerosol physics to the production of radioactive aerosols in a mine was investigated. A study of radioactive ions showed that the usual equations of atmospheric electricity could be applied to charged radioactive aerosols in a mine. Finally an experimental method was developed in order to directly examine the deposit of an aerosol labelled by radon daughter products in the respiratory tract of animals. The experimental results obtained with aerosols in the particle size range 5.10 -8 - 5.10 -6 were compared to the theoretical data derived from models published in the literature [fr

  14. Measurement comparisons of radioactivity among European monitoring laboratories for the environment and food stuff

    International Nuclear Information System (INIS)

    Waetjen, U.; Spasova, Y.; Altzitzoglou, T.

    2008-01-01

    For more than 15 years, European Union (EU) laboratories monitoring environmental radioactivity have been obliged to participate in measurement comparisons organised by the European Commission. After a short review of comparisons conducted during the 1990s, the approach of IRMM organising these comparisons since 2003 is presented. It relies on the provision of comparison samples with reference values traceable to the International Reference System for radionuclides (SIR). The results of the most recent comparison, the determination of 40 K, 90 Sr and 137 Cs in milk powder, are presented. The influence of repetitive participation in measurement comparisons on laboratory performance is studied on the basis of data from more than 20 laboratories having participated in several exercises during the last 15 years

  15. Development of closure criteria for inactive radioactive waste disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, specifies that cleanup of inactive waste disposal sites at Department of Energy (DOE) facilities shall at least attain legally applicable or relevant and appropriate requirements (ARARs) for cleanup or control of environmental contamination. This paper discusses potential ARARs for cleanup of inactive radioactive waste disposal sites and proposes a set of closure criteria for such sites at Oak Ridge National Laboratory (ORNL). The most important potential ARARs include Federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. On the basis of these standards, we propose that cleanup and closure of inactive radioactive waste disposal sites at ORNL shall achieve (1) limits on annual effective dose equivalent for off-site individuals and inadvertent intruders that conform to the DOE's performance objectives for new low-level waste disposal facilities and (2) to the extent reasonably achievable, limits on radionuclide concentrations in ground water and surface waters in accordance with Federal drinking water standards and ground-water protection requirements

  16. Radioactivity decontamination of materials commonly used as surfaces in general-purpose radioisotope laboratories.

    Science.gov (United States)

    Leonardi, Natalia M; Tesán, Fiorella C; Zubillaga, Marcela B; Salgueiro, María J

    2014-12-01

    In accord with as-low-as-reasonably-achievable and good-manufacturing-practice concepts, the present study evaluated the efficiency of radioactivity decontamination of materials commonly used in laboratory surfaces and whether solvent spills on these materials affect the findings. Four materials were evaluated: stainless steel, a surface comprising one-third acrylic resin and two-thirds natural minerals, an epoxy cover, and vinyl-based multipurpose flooring. Radioactive material was eluted from a (99)Mo/(99m)Tc generator, and samples of the surfaces were control-contaminated with 37 MBq (100 μL) of this eluate. The same procedure was repeated with samples of surfaces previously treated with 4 solvents: methanol, methyl ethyl ketone, acetone, and ethanol. The wet radioactive contamination was allowed to dry and then was removed with cotton swabs soaked in soapy water. The effectiveness of decontamination was defined as the percentage of activity removed per cotton swab, and the efficacy of decontamination was defined as the total percentage of activity removed, which was obtained by summing the percentages of activity in all the swabs required to complete the decontamination. Decontamination using our protocol was most effective and most efficacious for stainless steel and multipurpose flooring. Moreover, treatment with common organic solvents seemed not to affect the decontamination of these surfaces. Decontamination of the other two materials was less efficient and was interfered with by the organic solvents; there was also great variability in the overall results obtained for these other two materials. In expanding our laboratory, it is possible for us to select those surface materials on which our decontamination protocol works best. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Construction and equipment requirements for installations and laboratories handling unsealed radioactive materials in low and medium activity - Proposal of an Israeli standard

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shlomo, A; Schlesinger, T; Barshad, M [Soreq Nuclear Research Center, Yavne (Israel)

    1993-10-01

    Working with unsealed radioactive materials involves risks of internal or external exposure to ionizing radiation. Exposure of human beings to ionizing radiation involves adverse health effects and must be prevented or at least reduced to reasonable levels. Radiation sources in this work are unsealed radioactive materials, that may be solids, liquid or in gaseous states, and in varying toxic levels. Various works and actions that are performed on the unsealed radioactive materials have varying potentials of dispersion, contamination and exposure, so that the combination of the type of work activity, isotope characteristics and physical state dictate the internal and external exposure risks. In order to limit the exposure of the personnel of installations and laboratories which deals with unsealed radioactive materials, national and international authorities and organizations standards and procedures for the requirements of construction and equipment of such installations and laboratories. This document means to be a proposal for an Israeli standard requirements for equipment and construction of installations working with low and medium activity unsealed radioactive materials. The targets for defining the, construction and equipment, requirements are: a. Safety and proper protection of personnel and public from external and internal exposure while the work is done properly. Proper protection against the risk of contaminating the environment. c. Standardization of requirements. d. Proper design of installations and laboratories. e. Supply means for evaluation and reduction of construction costs.The equipment detailed here refers to fixed (none movable) equipment which is a part of the construction of the laboratory or installation, unless specified otherwise. The document starts with a review of the recommendations of some international organizations (WHO, IAEA, NRPB) for construction and equipment requirements for these laboratories and installations. Then the

  18. IAEA Laboratory activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Sixth report

    International Nuclear Information System (INIS)

    1969-01-01

    This sixth 'IAEA Laboratory Activities' report describes development and work during the year 1968. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. (author)

  19. IAEA Laboratory activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Fourth report

    International Nuclear Information System (INIS)

    1967-01-01

    This fourth 'IAEA Laboratory Activities' report describes development and work during the year 1966. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. (author)

  20. Removal of radioruthenium from alkaline intermediate level radioactive waste solution : a laboratory investigation

    International Nuclear Information System (INIS)

    Samanta, S.K.; Theyyunni, T.K.

    1994-01-01

    Various methods were investigated in the laboratory for the removal of radioruthenium from alkaline intermediate level radioactive waste solutions of reprocessing plant origin. The methods included batch equilibration with different ion exchangers and sorbents, column testing and chemical precipitation. A column method using zinc-activated carbon mixture and a chemical precipitation method using ferrous salt along with sodium sulphite were found to be promising for plant scale application. (author). 10 refs., 3 figs., 7 tabs

  1. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico; Proyeccion de generacion de desechos radiactivos solidos, liquidos y fuentes radiactivas gastadas en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E. [Universidad Politecnica del Valle de Toluca, Km 5.7 Carretera Almoloya de Juarez, Estado de Mexico (Mexico); Monroy G, F.; Lizcano C, D., E-mail: fabiola.monroy@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  2. The management of low-level radioactive and mixed wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1991-01-01

    The management of low-level radioactive wastes at Oak Ridge National Laboratory (ORNL) is complicated because of several factors: (1) some of the waste that had been disposed previously does not meet current acceptance criteria; (2) waste is presently being generated both because of ongoing operations as well as the remediation of former disposal sites; and (3) low-level radioactive waste streams that also contain chemically toxic species (mixed wastes) are involved. As a consequence, the waste management activities at ORNL range from the application of standard practices to the development of new technologies to address the various waste management problems. Considerable quantities of low-level radioactive wastes had been disposed in trenches at the ORNL site, and the trenches subsequently covered with landfill. Because the vadose zone is not very extensive in the waste burial area, many of these trenches were located partially or totally within the saturated zone. As a result, considerable amounts of radioactive cesium have been leached from the wastes and have entered the groundwater system. Efforts are currently underway to remediate the problem by excluding groundwater transport through the burial site. A number of waste streams have also been generated that not only contain low levels of radioactive species, but chemically noxious species as well. These ''mixed wastes'' are currently subject to storage and disposal restrictions imposed on both low-level radioactive materials and on substances subject to the Resource Conservation and Recovery Act (RCRA). Technologies currently under development at ORNL to treat these mixed wastes are directed toward separating the RCRA components from the radioactive species, either through destruction of the organic component using chemical or biochemical processes, or the application of solvent extraction or precipitation techniques to effect separation into dependent waste forms. 8 refs., 3 figs

  3. Condition assessment of the Los Alamos National Laboratory radioactive liquid waste collection system

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Moss, W.D.; Worland, V.P.

    2004-01-01

    The radioactive liquid waste collection system (RLWCS) at Los Alamos National Laboratory (LANE) is a site-wide double-encased piping system installed in 1982 that allows radioactive liquid waste (RLW) producing facilities to gravity drain their waste to the radioactive liquid waste treatment facility (RLWTF) through a system of underground high-density polyethylene (HDPE) pipes and vaults. The RLWCS stretches approximately four miles and typically receives approximately 10,000 gallons of RLW per day for treatment at the RLWTF. Uncertainty of the current condition of the RLWCS was recently identified as a potential risk to the future continued availability of the RLW treatment function. A condition assessment was performed in April 2004 to evaluate the risks and estimate the remaining useful life of the existing RLWCS. Several representative and 'worst-case' RLWCS primary piping sections and their associated inspection vaults were selected for direct visual assessment, remote borescopic examination, and in-situ durometer testing. This field investigation combined with an RLWCS materials compatibility review showed that the primary piping of the RLWCS is in relatively good condition, with only a few noteworthy areas of degradation.

  4. IAEA laboratory activities. The IAEA laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. 3rd report

    International Nuclear Information System (INIS)

    1966-01-01

    This third 'IAEA Laboratory Activities' report describes development and work during the year 1965. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo

  5. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    International Nuclear Information System (INIS)

    Cotten, G.B.; Eldredge, H.B.; Navratil, J.D.

    1999-01-01

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics

  6. Argonne National Laboratory's photo-oxidation organic mixed waste treatment system - installation and startup testing

    International Nuclear Information System (INIS)

    Shearer, T.L.; Nelson, R.A.; Torres, T.; Conner, C.; Wygmans, D.

    1997-01-01

    This paper describes the installation and startup testing of the Argonne National Laboratory (ANL-E) Photo-Oxidation Organic Mixed Waste Treatment System. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the Waste Management Facility at the ANL-E site in Argonne, Illinois. 1 fig

  7. Assessing inventories of past radioactive waste arisings at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; TerHuurne, M.A.; Miller, M.T.; Edwards, N.W.; Hulley, V.R.; McCann, D.J.

    1998-01-01

    Internationally, a great deal of progress has been made in improving the management of currently accumulating and anticipated future radioactive wastes. Progress includes improved waste collection, segregation, characterization and documentation in support of disposal facility licensing and operation. These improvements are not often very helpful for assessing the hazards of wastes collected prior to their implementation, since, internationally, historic radioactive wastes were not managed and documented according to today's methods. This paper provides an overview of Atomic Energy of Canada Limited's (AECL) unique approach to managing its currently accumulating, low-level radioactive wastes at Chalk River Laboratories (CRL) and it describes the novel method AECL-CRL has developed to assess its historic radioactive wastes. Instead of estimating the characteristics of current radioactive wastes on a package-by-package basis, process knowledge is used to infer the average characteristics of most wastes. This approach defers, and potentially avoids, the use of expensive analytical technologies to characterize wastes until a reasonable certainty is gained about their ultimate disposition (Canada does not yet have a licensed radioactive waste disposal facility). Once the ultimate disposition is decided, performance assessments determine if inference characterization is adequate or if additional characterization is required. This process should result in significant cost savings to AECL since expensive, resource-intensive, up-front characterization may not be required for low-impact wastes. In addition, as technological improvements take place, the unit cost of characterization usually declines, making it less expensive to perform any additional characterization for current radioactive wastes. The WIP-III data management system is used at CRL to 'warehouse' the average characteristics of current radioactive wastes. This paper describes how this 'warehouse of information

  8. Radioactivity in the sea. Scientific publications of the IAEA Marine Environment Laboratory (1991-1996)

    International Nuclear Information System (INIS)

    1998-01-01

    This document provides list of scientific publications of the IAEA Marine Environmental Laboratory (IAEA-MEL). The studies cover a broad spectrum of environmental issues of behaviour of radioactive substances as well as fate of non-nuclear pollutants in the marine environment. Studies of the Gulf war aftermath, the carbon cycle and the Greenhouse Effect, Chernobyl radioactivity in the oceans, the consequences of nuclear testing on the South Pacific and of nuclear dumping in the Arctic Seas and in the East Sea (Sea of Japan) and of pesticide tun-off and toxicity to coastal fisheries are just a few areas in which the IAEA-MEL has recently been active. Increasingly, the emphasis is placed on the use of nuclear and isotopic techniques to improve understanding of the marine environment and of pollutant behaviour

  9. Radioactively labelled vitamin B12

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, J C; Lewis, A

    1976-12-01

    A method is described for preparing radioactively labelled vitamin B 12 (cyanocobalamin) by reacting ..cap alpha..-(5,6-dimethylbenzimidazolyl) hydrogenobamide with active (sup(57,58)Co) cobaltous ion. The latter may be in the form of cobaltous chloride or sulphate in aqueous or aqueous alcoholic medium. The reaction is effected by heating the reactants in darkness at pH 4 to 8. An excess of cyanide is added to convert the hydroxocobalamin formed to cyanocobalamin.

  10. Treatment of low and intermediate aqueous waste containing Cs-137 by chemical precipitation

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Alamares, A.L.; Junio, J.B.; Dela Cruz, J.M.

    1996-01-01

    The use of radioactive materials in various applications has been increasing since its introduction in the early sixties. The Philippine Nuclear Research Institute has established a centralized facility for treating radioactive wastes i.e. aqueous wastes with assistance from the International Atomic Energy Agency - Technical Cooperation Programme. Liquid wastes containing Cs-137 are generated from aqueous wastes containing Cs-137 by nickel ferrocyanide precipitation will be presented. The aim of this study is to investigate the efficiency treatment in removing Cs-137 from an aqueous effluent. Actual aqueous wastes known to contain Cs-137 were used in the experiments. Low cost and simple nickel ferrocyanide precipitation method with the aid of a flocculant has been selected for the separation of Cs-137 from low and intermediate aqueous waste. By varying the chemical dosage added into the aqueous waste, different decontamination factors were obtained. Hence, the optimum dosage of the chemicals that give the highest decontamination factor can be determined. (author)

  11. A Low Level Radioactivity Monitor for Aqueous Waste

    International Nuclear Information System (INIS)

    Quirk, E.J.M.

    1968-04-01

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For β radioactivity the minimum values of specific activity measurable extend from 1 x 10 -6 Ci/m 3 to 6 x 10 -8 Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10 -8 Ci/m 3

  12. A Low Level Radioactivity Monitor for Aqueous Waste

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, E J.M.

    1968-04-15

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For {beta} radioactivity the minimum values of specific activity measurable extend from 1 x 10{sup -6} Ci/m{sup 3} to 6 x 10{sup -8} Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10{sup -8} Ci/m{sup 3}.

  13. Proposal of implementation of Environmental Management System at the Laboratory of Radioactive Waste In IPEN-SP

    International Nuclear Information System (INIS)

    Moura, Luiz Antonio Abdalla

    2008-01-01

    An increasing use of nuclear technology in the form of its several applications (electricity generation, medical, industrial, agricultural, environment and radiosterilization) is currently being observed in Brazil. Radioactive waste of high, medium or lower activity is produced in all fuel cycle and other research activities, industrial activities of fuel production and electricity generation. Appropriate and safe technologies are available for the treatment and storage of radioactive waste and, when applied, contribute for the acceptance of nuclear energy by the Society. With the increasing importance of demands related to environmental issues, the International Organization for Standardization issued the Standard ISO 14.001 - Environmental Management System, applied to all types and size of organizations, helping them to increase their environment performance. In this research, the standard requirements were commented in detail, being particularized to the Laboratory of Radioactive Waste from IPEN, as a case study. (author)

  14. IAEA Laboratory Activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics, Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Fifth Report

    International Nuclear Information System (INIS)

    1968-01-01

    This fifth report describes development and work during the year 1967. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. Contents: The IAEA Laboratories at Vienna and Seibersdorf: Introduction; Standardization of measurement and of analytical methods related to peaceful applications of nuclear energy; Services to Member States and International Organizations; Chemical and physico-chemical investigations relevant to the Agency's programme; Nuclear techniques in hydrology; Nuclear techniques in medicine; Nuclear techniques in agriculture; Nuclear electronics service and development; Administrative matters. — The International Laboratory of Marine Radioactivity at Monaco: Introduction; Research; Administrative matters. — The International Centre for Theoretical Physics, Trieste: Assistance to developing countries; Research activities; Administrative matters; Annexes. — The Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo: Introduction; The scientific programme of the Centre; Publications on work done at the Centre; Finance; Annex. Entirely in English. (author)

  15. Study and survey of assembling parameters to a radioactive source production laboratory used to verify equipment

    International Nuclear Information System (INIS)

    Gauglitz, Erica; Nagatomy, Helio Rissei; Moura, Eduardo S.; Zeituni, Carlos Alberto; Hilario, Katia A. Fonseca; Rostelato, Maria Elisa C.M.; Karam Junior, Dib

    2009-01-01

    This paper presents the survey of parameters for the installation and implementation of a laboratory for radioactive sources production at immobilized resin. These sources are used in nuclear medicine for verification of dose calibrators, as the standard guidelines of the National Commission of Nuclear CNEN-NE-3.05 'Radioprotection and safety requirements for nuclear medicine services.' The radioisotopes used for this purpose are: Co-57, Cs-137 and Ba-133, with activities of 185 MBq, 9.3 MBq and 5.4 MBq, respectively. The parameters for the assembly of the laboratory shall be defined according to guidelines that guide the deployment of radiochemical laboratories and standards of the National Commission of Nuclear Energy. (author)

  16. Study and survey of assembling parameters to a radioactive source production laboratory used to verify equipment

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Erica; Nagatomy, Helio Rissei; Moura, Eduardo S.; Zeituni, Carlos Alberto; Hilario, Katia A. Fonseca; Rostelato, Maria Elisa C.M., E-mail: egauglitz@ipen.b, E-mail: elisaros@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karam Junior, Dib, E-mail: dib.karan@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades

    2009-07-01

    This paper presents the survey of parameters for the installation and implementation of a laboratory for radioactive sources production at immobilized resin. These sources are used in nuclear medicine for verification of dose calibrators, as the standard guidelines of the National Commission of Nuclear CNEN-NE-3.05 'Radioprotection and safety requirements for nuclear medicine services.' The radioisotopes used for this purpose are: Co-57, Cs-137 and Ba-133, with activities of 185 MBq, 9.3 MBq and 5.4 MBq, respectively. The parameters for the assembly of the laboratory shall be defined according to guidelines that guide the deployment of radiochemical laboratories and standards of the National Commission of Nuclear Energy. (author)

  17. Interlaboratory test comparison among Environmental Radioactivity Laboratories using the ISO/IUPAC/AOAC Protocol

    International Nuclear Information System (INIS)

    Romero, L.; Ramos, L.; Salas, R.

    1998-01-01

    World-wide acceptance of results from radiochemical analyses requires reliable, traceable and comparable measurements to SI units, particularly when data sets generated by laboratories are to contribute to evaluation of data from environmental pollution research and monitoring programmes. The Spanish Nuclear Safety Council (CSN) organizes in collaboration with CIEMAT periodical interlaboratory test comparisons for environmental radioactivity laboratories aiming to provide them with the necessary means to asses the quality of their results. This paper presents data from the most recent exercise which, for the first time, was evaluated following the procedure recommended in the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories (1). The test sample was a Reference Material provided by the IAEA-AQCS, a lake sediment containing the following radionuclides: k-40, Ra-226, Ac-228, Cs-137, Sr-90, Pu-(239+240). The results of the proficiency test were computed for the 28 participating laboratories using the z-score approach, the evaluation of the exercises is presented in the paper. The use of a z-score classification has demonstrated to provide laboratories with a more objective means of assessing and demonstrating the reliability of the data they are producing. Analytical proficiency of the participating laboratories has been found to be satisfactory in 57 to 100 percent of cases. (1)- The International harmonized protocol for the proficiency testing of (chemical) analytical laboratories. Pure and Appl. Chem. Vol. 65, n 9, pp. 2123-2144, 1993 IUPAC. GB (Author) 3 refs

  18. Radioactive Solid Waste Storage and Disposal at Oak Ridge National Laboratory, Description and Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bates, L.D.

    2001-01-30

    Oak Ridge National Laboratory (ORNL) is a principle Department of Energy (DOE) Research Institution operated by the Union Carbide Corporation - Nuclear Division (UCC-ND) under direction of the DOE Oak Ridge Operations Office (DOE-ORO). The Laboratory was established in east Tennessee, near what is now the city of Oak Ridge, in the mid 1940s as a part of the World War II effort to develop a nuclear weapon. Since its inception, disposal of radioactively contaminated materials, both solid and liquid, has been an integral part of Laboratory operations. The purpose of this document is to provide a detailed description of the ORNL Solid Waste Storage Areas, to describe the practice and procedure of their operation, and to address the health and safety impacts and concerns of that operation.

  19. Automatic opening system for radioactive source in teaching laboratory

    International Nuclear Information System (INIS)

    Seren, Maria Emilia Gibin; Gaal, Vladimir; Rodrigues, Varlei; Morais, Sergio Luiz de

    2013-01-01

    Compton scattering phenomenon is experimentally studied during the medical physics laboratory course at the University of Campinas (UNICAMP). The Teaching Laboratory of Medical Physics from IFGW/UNICAMP has a structure for its development: a fixed 137 Cs sealed source with activity 610.5MBq, whose emitted radiation collides on a target, and a scintillation detector that turns around the target and detects scattered photons spectrum. 137 Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662MeV. This source is exposed only when attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver radiation dose to users when done manually. Taking into account the stochastic harmful effects of ionizing radiation, the objective of this project was to develop an automatic exposure system of the radioactive source in order to reduce the dose during the Compton scattering experiment. The developed system is micro controlled and performs standard operating routines and responds to emergencies. Electromagnetic lock enables quick closing barrier by gravity in case of interruption of electrical current circuit. Besides reducing the total dose of lab users, the system adds more security in the routine since it limits access to the source and prevents accidental exposure. (author)

  20. Proposal for radioactive liquid waste management in a brachytherapy sealed sources development laboratory

    International Nuclear Information System (INIS)

    Souza, C.D.; Peleias Jr, F.S.; Rostelato, M.E.C.M.; Zeituni, C.A.; Benega, M.A.G.; Tiezzi, R.; Mattos, F.R.; Rodrigues, B.T.; Oliveira, T.B.; Feher, A.; Moura, J.A.; Costa, O.L.

    2014-01-01

    The radioactive waste management is addressed in several regulations. Literature survey indicates limited guidance on liquid waste management in Brachytherapy I-125 seeds production. Laboratories for those seeds are under implementation not only in Brazil but in several countries such as Poland, South Korea, Iran, China, and others. This paper may be used as reference to these other groups. For the correct implementation, a plan for radiological protection that has the management of radioactive waste fully specified is necessary. The proposal is that the waste will be deposited in a 20 L and 60 L containers which will take 2 years to fill. For glove box 1, the final activity of this container is 1.91 x 10 10 Bq (3.19 years to safe release in the environment). For glove box 3, the final activity of this container is 1.28 x 10 10 Bq (2.85 years to safe release in the environment). (authors)

  1. Radioactively labelled vitamin B12

    International Nuclear Information System (INIS)

    Charlton, J.C.; Lewis, A.

    1976-01-01

    A method is described for preparing radioactively labelled vitamin B 12 (cyanocobalamin) by reacting α-(5,6-dimethylbenzimidazolyl) hydrogenobamide with active (sup(57,58)Co) cobaltous ion. The latter may be in the form of cobaltous chloride or sulphate in aqueous or aqueous alcoholic medium. The reaction is effected by heating the reactants in darkness at pH 4 to 8. An excess of cyanide is added to convert the hydroxocobalamin formed to cyanocobalamin. (U.K.)

  2. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  3. Operational and engineering developments in the management of low-level radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Kendall, E.W.; McKinney, J.D.; Wehmann, G.

    1979-01-01

    The Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory is a site for shallow land disposal and storage of solid radioactive waste. It is currently operated for ERDA by EG and G Idaho, Inc. The facility has accepted radioactive waste since July 1952. Both transuranic and non-transuranic wastes are handled at the complex. This document describes the operational and engineering developments in waste handling and storage practices that have been developed during the 25 years of waste handling operations. Emphasis is placed on above-ground transuranic waste storage, subsurface transuranic waste retrieval, and beta/gamma compaction disposal. The proposed future programs for the RWMC including a Molten Salt Combustion Facility and Production Scale Retrieval Project are described

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  5. Aqueous solutions/nuclear glasses interactions

    International Nuclear Information System (INIS)

    Delage, F.; Advocat, T.; Vernaz, E.; Crovisier, J.L.

    1991-01-01

    Interactions results of the borosilicate glass used in radioactive wastes confinement and aqueous solutions at various temperature and PH show that for the glass components: - the release rate evolution follows an Arrhenius law, - in acid PH, there is a selective dissolution, - in basic PH, there is a stoechiometric dissolution [fr

  6. Tests of the use of cation exchange organic resins for the decontamination of radioactive aqueous effluents

    International Nuclear Information System (INIS)

    Bourdrez, Jean; Girault, Jacques; Wormser, Gerald

    1962-01-01

    The authors report tests performed in laboratory and results obtained during an investigation of the use of synthetic ion exchangers for the decontamination of radioactive effluents of moderate activity level and with a non neglectable salt loading. Resins are used under sodium form and regenerated after each fixing operation. Once decontaminated and free of its disturbing ions, the regenerating agent (NaCl) is used for several operations. The authors present the used resins, the treated effluents, describe the tests, and discuss the obtained results [fr

  7. Expansion design for a radioactive sources handling laboratory type II class B; Diseno de ampliacion para un laboratorio de manejo de fuentes radiactivas tipo II clase B

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, P. S. [Universidad Mexiquense del Bicentenario, Av. Industria Poniente s/n, Parque Industrial Dona Rosa, 52000 Lerma, Estado de Mexico (Mexico); Monroy G, F.; Alanis, J., E-mail: salvador-21@live.com.mx [ININ, Carretera Mexico-Touca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The Radioactive Wastes Research Laboratory (RWRL) of the Instituto Nacional de Investigaciones Nucleares (Mexico), at the moment has three sections: instrumental analysis, radioactive material processes, counting and a license type II class C, to manipulate radioactive material. This license limits the open sources handling to 300 kBq for radionuclides of very high radio-toxicity as the Ra-226, for what is being projected the license extension to type II class B, to be able to manage until 370 MBq of this radionuclides type, and the Laboratory, since the location where is the RWRL have unused area. This work presents a proposal of the RWRL expansion, taking into account the current laboratory sections, as well as the established specifications by the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The current planes of the RWRL and the expansion proposal of the laboratory are presented. (Author)

  8. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki; Kageyama, Hisashi; Kobori, Junzo.

    1984-01-01

    Purpose: To perform the curing sufficiently even when copper hydroxide that interferes the curing reaction is contained in radioactive wastes. Method: Solidification of radioactive wastes containing copper hydroxide using thermoset resins is carried out under the presence of an alkaline material. The thermoset resin used herein is an polyester resin comprising unsaturated polyester and a polymerizable monomer. The alkaline substance usable herein can include powder or an aqueous solution of hydroxides or oxides of sodium, magnesium, calcium or the like. (Yoshino, Y.)

  9. Development of closure criteria for inactive radioactive waste-disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) specifies that the U.S. Department of Energy shall comply with the procedural and substantive requirements of CERCLA regarding cleanup of inactive waste-disposal sites. Remedial actions require a level of control for hazardous substances that at least attains legally applicable or relevant and appropriate requirements (ARAR). This requirement may be waived if compliance with ARAR results in greater risk to human health and the environment than alternatives or is technically impractical. It will review potential ARAR for cleanup of inactive radioactive waste-disposal sites and propose a set of closure criteria for such sites at Oak Ridge National Laboratory. Important potential ARAR include federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. Proposed criteria for cleanup of inactive radioactive waste-disposal sites are: (1) a limit of 0.25 mSv on annual effective dose equivalent for offsite individuals; (2) limits of 1 mSv for continuous exposures and 5 mSv for occasional exposures on annual effective dose equivalent for inadvertent intruders, following loss of institutional controls over disposal sites; and (3) limits on concentrations of radionuclides in potable ground and surface waters in accordance with federal drinking-water standards, to the extent reasonably achievable

  10. Aerial spraying to capture released radioactivity from NPP in a severe accident

    International Nuclear Information System (INIS)

    Younus, Irfan; Yim, Man Sung; Medard, Thiphaine

    2016-01-01

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na_2S_2O_3) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  11. A laboratory study of washing of SRS high-level waste radioactive sludge-evidence for insoluble sodium and cesium-137

    International Nuclear Information System (INIS)

    Hay, M.S.; Bibler, N.E.

    1994-01-01

    Experiments in the Shielded Cells at the Savannah River Technology Center were undertaken to simulate the full-scale sludge washing process and thereby identify potential problems, wash water requirements, sludge settling rates and the fate of various radioactive and non-radioactive species present in the sludge. The laboratory sludge washing experiments were conducted on a radioactive sludge sample taken from one of three processing tanks in Extended Sludge Processing. The sample of Tank 42H sludge was extensively characterized for both soluble and insoluble species (radioactive and non-radioactive) before beginning the washing study. The results of the washing experiments using inhibited water (0.01 M NaOH) indicate there is essentially no dissolution of species from the insoluble phase of the sludge during the washing. The addition of wash water to the sludge merely dilutes the salt dissolved in the interstitial supernate of the sludge. Another result from the experiments is that approximately 30% of the sodium and 86% of the Cs-137 in the original unwashed sludge is present in an insoluble form and does not wash out of the sludge

  12. Health and Safety Laboratory environmental quarterly, September 1, 1976--December 1, 1976. [Monitoring of environment for radioactivity and chemical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1977-01-01

    This report presents current data from the HASL environmental programs, The Swedish Defense Research Establishment, The Woods Hole Oceanographic Institution, Argonne National Laboratory and The New Zealand National Radiation Laboratory. The initial section consists of interpretive reports and notes on ground level air radioactivity in Sweden from nuclear explosions, plutonium in air near the Rocky Flats Plant, nitrous oxide concentrations in the stratosphere, lake sediment sampling, plutonium and americium in marine and fresh water biological systems, radium in cat litter, and quality control analyses. Subsequent sections include tabulations of radionuclide and stable lead concentrations in surface air; strontium-90 in deposition, milk, diet, and tapwater; cesium-137 in Chicago foods in October 1976 and environmental radioactivity measurements in New Zealand in 1975. A bibliography of recent publications related to environmental studies is also presented.

  13. Recovery of uranium (VI) from low level aqueous radioactive waste

    International Nuclear Information System (INIS)

    Kulshrestha, Mukul

    1996-01-01

    Investigation was undertaken to evaluate the uranium (VI) removal and recovery potential of a naturally occurring, nonviable macrofungus, Ganoderma Lucidum from the simulated low level aqueous nuclear waste. These low level waste waters discharged from nuclear mine tailings and nuclear power reactors have a typical U(VI) concentration of 10-100 mg/L. It is possible to recover this uranium economically with the advent of biosorption as a viable technology. Extensive laboratory studies have revealed Ganoderma Lucidum to be a potential biosorbent with a specific uptake of 2.75 mg/g at an equilibrium U(VI) concentration of 10 mg/L at pH 4.5. To recover the sorbed U(VI), the studies indicated 0.2N Na 2 CO 3 to be an effective elutant. The kinetics of U(VI) desorption from loaded Ganoderma Lucidum with 0.2N Na 2 CO 3 as elutant, was found to be rapid with more than 75% recovery occurring in the first five minutes, the specific metal release rate being 0.102 mg/g/min. The equilibrium data fitted to a linearised Freundlich plot and exhibited a near 100% recovery of sorbed U(VI), clearly revealing a cost-effective method of recovery of precious uranium from low level wastewater. (author). 7 refs., 3 figs., 1 tab

  14. Storage of solid and liquid radioactive material

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-01-01

    Solid radioactive waste collected during 1961 from the laboratories of the Institute amounted to 22.5 m 3 . This report contains data about activity of the waste collected from january to November 1961. About 70% of the waste are short lived radioactive material. Material was packed in metal barrels and stored in the radioactive storage in the Institute. There was no contamination of the personnel involved in these actions. Liquid radioactive wastes come from the Isotope production laboratory, laboratories using tracer techniques, reactor cooling; decontamination of the equipment. Liquid wastes from isotope production were collected in plastic bottles and stored. Waste water from the RA reactor were collected in special containers. After activity measurements this water was released into the sewage system since no activity was found. Table containing data on quantities and activity of radioactive effluents is included in this report

  15. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1994-01-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH) 2 and, for some metals, Na 2 S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW

  16. Use of synthetic zeolites and other inorganic sorbents for the removal of radionuclides from aqueous wastes

    International Nuclear Information System (INIS)

    Samantha, S.K.; Singh, I.J.; Jain, S.; Sathi, S.; Venkatesan, K.; Ramaswamy, M.; Theyyunni, T.K.; Siddiqui, H.R.

    1997-01-01

    Several synthetic zeolites and inorganic sorbents were tested in the laboratory for the sorption of various radionuclides present in radioactive aqueous waste streams originating from nuclear installations. The sorption of the critical radionuclides like 137 Cs, 90 Sr and 60 Co from level waste solutions was studied using the synthetic zeolites 4A, 13X and AR1 of Indian origin. Granulated forms of ammonium molybdophosphate and CaSO 4 -BaSO 4 eutectoid were tested for the sorption of cesium and strontium respectively, from acidic solutions. The removal of radiostrontium from alkaline salt-loaded intermediate level reprocessing wastes was studied using hydrous ferric oxide-activated carbon composite sorbent, hydrous titania and hydrous manganese dioxide.. The results of these investigations are expected to be of value in formulating radioactive waste treatment schemes for achieving high decontamination and volume reduction factors. (author). 12 refs, 5 figs, 18 tabs

  17. Induced structural radioactivity inventory analysis of the base case aqueous ATW reactor concept

    International Nuclear Information System (INIS)

    Bezdecny, J.A.; Henderson, D.L.; Sailor, W.C.

    1993-01-01

    The purpose of the Los Alamos National Laboratory Accelerator Transmutation of Nuclear Waste (ATW) project is the substantial reduction in volume of this country's long-lived high-level radioactive waste in a safe and energy efficient manner. An evaluation of the Accelerator Transmutation of Nuclear Waste concept has four aspects; material balance, energy balance, performance and cost. An evaluation of the material balance compares the amount of long-lived high-level waste transmuted with the amount and type of waste created in the process. One component of the material balance is the activation of structural materials over the lifetime of the transmutation reactor. An activation analysis has been performed on four structure regions of the reaction vessel: the tungsten target; the lead target and annulus; the Zircalloy and aluminum tubing carrying the actinide slurry and; the stainless steel tank

  18. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2011 among Spanish National Laboratories of Environmental Radioactivity (Water)

    International Nuclear Information System (INIS)

    Gascó, C.; Trinidad, J. A.; Llauradó, M.

    2015-01-01

    This report describes the results assessment of the intercomparsion exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2011) was deionized water, simulating drinking water, that was enriched with artificial radionuclides (Cs-137, Co-60, Fe-55, Ni-63, Sr-90, Am-241 and Pu-238) and contained natural radionuclides (U-234, U-238, U-natural, Pb-210, Po-210, Th-230, Ra-226 and K-40) at environmental level of activity concentration. A second matrix of deionized water was prepared with I-129 and C-14. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The study has showed a homogeneous behaviour of the laboratories.

  19. Final report on the proficiency test of the Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Radecki, Z.; Trinkl, A.; Sansone, U.; Benesch, T.

    2005-08-01

    This report presents the statistical evaluation of results from the analysis of 12 radionuclides in 8 samples within the frame of the First Proficiency Test of Analytical Laboratories for the Measurement Environmental RAdioactivity (ALMERA) organized in 2001-2002 by the Chemistry Unit, Agency's Laboratory in Seibersdorf. The results were evaluated by using appropriate statistical means to assess laboratory analytical performance and to estimate the overall performance for the determination of each radionuclide. Evaluation of the analytical data for gamma emitting radionuclides showed that 68% of data obtained a 'Passed' final score for both the trueness and precision criteria applied to this exercise. However, transuranic radionuclides obtained only 58% for the same criteria. (author)

  20. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  1. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  2. Process of transformation of radioactive waste of metal sodium into soda solution by reaction with an alcohol followed by hydrolysis

    International Nuclear Information System (INIS)

    Chevalier, Gerard; Mathurin, Rene.

    1981-09-01

    Reviews of the literature and of the laboratory tests are followed by a presentation of the results obtained during experiments carried out on a model with some ten grams of sodium contaminated by radioactive materials and on an industrial pre-pilot with several kilograms of non-contaminated sodium. Sodium is converted into alcoholate through the action of ethylcarbitol (CH 3 CH 2 OCH 2 CH 2 OCH 2 OH) on liquid sodium in suspension in xylene at 110 deg C. Once the reaction is complete, xylene is distillated and the alcoholate is in solution in an axcess of alcohol. Hydrolysis by water gives out the initial alcohol which is then extracted from the aqueous phase by toluene. All these operations are carried out in inert atmosphere (nitrogen). Sodium is thus converted into a sodium hydroxide aqueous solution with emission of hydrogen, the intermediate products (alcohol, xylene, toluene) being recyled. The process is reliable and recycling of organic products is favourable economically. The advantage of the method is to concentrate nearly all the radioactivity of the contaminated sodium in the aqueous phase, thus avoiding the dispersion of activity especially with the gaseous effluents. Finally, data are given allowing to consider the realization of a pilot with a weekly capacity of 100 kg of sodium, in semi-continuous operation [fr

  3. The Meuse-Haute Marne underground research laboratory. A scientific research tool for the study of deep geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The Meuse-Haute Marne underground research laboratory, is an essential scientific tool for the achievement of one of the ANDRA's mission defined in the framework of the law from December 30, 1991 about the long-term management of high-level and long-living radioactive wastes. This document presents this laboratory: site characterization, characteristics of the Callovo-Oxfordian clay, and laboratory creation, coordinated experiments carried out at the surface and in depth, and the results obtained (published in an exhaustive way in the 'Clay 2005' dossier). (J.S.)

  4. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    DOTSON, PATRICK WELLS; GALLOWAY, ROBERT B.; JOHNSON JR, CARL EDWARD

    1999-01-01

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  5. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  6. Radioactive waste processing container

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    A radioactive waste processing container used for processing radioactive wastes into solidification products suitable to disposal such as underground burying or ocean discarding is constituted by using cements. As the cements, calcium sulfoaluminate clinker mainly comprising calcium sulfoaluminate compound; 3CaO 3Al 2 O 3 CaSO 4 , Portland cement and aqueous blast furnace slug is used for instance. Calciumhydroxide formed from the Portland cement is consumed for hydration of the calcium sulfoaluminate clinker. According, calcium hydroxide is substantially eliminated in the cement constituent layer of the container. With such a constitution, damages such as crackings and peelings are less caused, to improve durability and safety. (I.N.)

  7. Geochemistry of actinides. Application to the storage of high level radioactive wastes. Under the supervision of Mr Michel Treuil

    International Nuclear Information System (INIS)

    Bouabdallah, Noureddine; Cunault, Jean-Baptiste; Houtin, Gwenaelle; Leborgne, Francois; Lemaire, Celine; Lemarchand, Damien; Quitte, Ghylaine

    1997-06-01

    This collective research report first addresses the chemistry of actinides with a description of their atomic orbitals and the study of their behaviour in solution. The author addresses several aspects: historical overview on actinides, radioactivity, chemical reactions in aqueous solution, redox chemistry, speciation in solution with respect to water characteristics in deep storage conditions. The second part gathers several studies performed on a natural laboratory (the Oklo site in which nuclear reactions occurred about 2 billions years ago) and reports the modelling of radionuclide transfer within a geological system (the model is applied to the Oklo site). The third part addresses issues related to the nuclear fuel cycle, and the storage modes and materials envisaged and involved regarding the storage of high level radioactive wastes, notably in France

  8. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  9. Safety in the management of radioactive substances

    International Nuclear Information System (INIS)

    Balter, Henia; Rey, Ana; Leon, Alba; Jelen, Miguel

    1994-01-01

    A brief explanation of radiation protection,external irradiation,internal contamination,risk factors, active laboratory design,localization,ventilation,working surfaces,area distribution,classification of active laboratory.Radiopharmacy laboratory,shielding, area monitoring,personal dosimetry,rules for management of open sources,maximum admitted limits for radionuclides currently used in radiopharmacy.Decontamination of active areas and materials,surfaces,equipment s.Decontamination of hands.Waste disposal.Radioactive materials transportation.Reception of radioactive materials.Bibliography

  10. Management of nontritium radioactive wastes from fusion power plants

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-09-01

    This report identifies nontritium radioactive waste sources for current conceptual fusion reactor designs. Quantities and compositions of the radwaste are estimated for the tokamaks of the University of Wisconsin (UWMAK-I), the Princeton Plasma Physics Laboratory (PPPL), and the Oak Ridge National Laboratory (ORNL); the Reference Theta Pinch Reactor of the Los Alamos Scientific Laboratory (LASL); and the Minimum Activation Blanket of the Brookhaven National Laboratory (BNL). Disposal of large amounts of radioactive waste appears necessary for fusion reactors. Although the curie (Ci) level of the wastes is comparable to that of fission products in fission reactors, the isotopes are less hazardous, and have shorter half-lives. Therefore radioactivity from fusion power production should pose a smaller risk than radioactivity from fission reactors. Radioactive waste sources identified for the five reference plants are summarized. Specific radwaste treatments or systems had to be assumed to estimate these waste quantities. Future fusion power plant conceptual designs should include radwaste treatment system designs so that assumed designs do not have to be used to assess the environmental effects of the radioactive waste

  11. Method for treating radioactive liquids

    International Nuclear Information System (INIS)

    Komrow, R.R.; Pritchard, J.F.

    1980-01-01

    A process for treating and handling radioactive liquids and rendering such liquids safe for handling is disclosed. Transportation and disposal, the process comprises adding thereto a small amount of a water-insoluble alkali salt of an aqueous alkali saponified gelatinized-starch-polyacrylonitrile graft polymer, to form a solid, semi-solid or gel product

  12. Cigeo. The French deep geological repository for radioactive waste. Excavation techniques and technologies tested in underground laboratory and forecasted for the future construction of the project

    International Nuclear Information System (INIS)

    Chauvet, Francois; Bosgiraud, Jean-Michel

    2015-01-01

    Cigeo is the French project for the repository of the high activity and intermediate long-lived radioactive waste. It will be situated at a depth of 500 m, In a clayish rock formation. An underground laboratory was built in the year 2000 and numerous tests are performed since 15 years, in order to know in detail the behavior of the rock and its ability to confine radioactive elements. In addition, this underground laboratory has brought and will continue to bring many lessons on the excavation methods to be chosen for the construction of Cigeo.

  13. CACAO facility. Radioactive targets at Orsay

    International Nuclear Information System (INIS)

    Bacri, C.O.; Petitbon-Thevenet, V.; Mottier, J.; Lefort, H.; Durnez, A.; Fortuna, F.

    2014-01-01

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a new laboratory dedicated to the fabrication and characterization of radioactive targets. It is supported by the radiochemistry group and the stable target service of the IPNO. The recurring needs of physicists working in the nuclear fuel cycle physics and the growing difficulties to obtain radioactive targets elsewhere were the main motivating factors behind the construction of this new laboratory. The first targets of 235,238 U and 232 Th have already been prepared although the full operating licenses still need to be obtained. In this paper, the installation and the equipment of CACAO will be described. An extensive study of a U test target fabricated by the CACAO laboratory has been performed and results are reported here. The different techniques used to characterize the deposit are presented and the outcome is discussed. (author)

  14. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Nishi, Takashi; Baba, Tsutomu; Fukazawa, Tetsuo; Matsuda, Masami; Chino, Koichi; Ikeda, Takashi.

    1993-01-01

    As an adsorbent used for removing radioactive nuclides such as cesium and strontium from radioactive liquid wastes generated from a reprocessing plant, a silicon compound having siloxane bonds constituted by silicon and oxygen and having silanol groups constituted by silicon, oxygen and hydrogen, or an inorganic material mainly comprising aluminosilicate constituted with silicon, oxygen and aluminum is used. In the adsorbent of the present invention, since silica main skeletons are partially decomposed in an aqueous alkaline solution to newly form silanol groups having a cation adsorbing property, pretreatment such as pH adjustment is not necessary. (T.M.)

  15. Method of processing low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsunaga, Ichiro; Sugai, Hiroshi.

    1984-01-01

    Purpose: To effectively reduce the radioactivity density of low-level radioactive liquid wastes discharged from enriched uranium conversion processing steps or the likes. Method: Hydrazin is added to low-level radioactive liquid wastes, which are in contact with iron hydroxide-cation exchange resins prepared by processing strongly acidic-cation exchange resins with ferric chloride and aqueous ammonia to form hydrorizates of ferric ions in the resin. Hydrazine added herein may be any of hydrazine hydrate, hydrazine hydrochloride and hydranine sulfate. The preferred addition amount is more than 100 mg per one liter of the liquid wastes. If it is less than 100 mg, the reduction rate for the radioactivety density (procession liquid density/original liquid density) is decreased. This method enables to effectively reduce the radioactivity density of the low-level radioactive liquid wastes containing a trace amount of radioactive nucleides. (Yoshihara, H.)

  16. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2013 among Spanish National Laboratories of Environmental Radioactivity (Air)

    International Nuclear Information System (INIS)

    Trinidad, J. A.; Gascó, C.; Llauradó, M.

    2015-01-01

    This report describes the results assessment of the intercomparsion exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2013) was filters, which was enriched with artificial radionuclides (137Cs, 60Co and 57Co) and contained natural radionuclides (234U, 238U, U-natural 230Th, 226Ra, 210Pb, 234Th, 214Bi and 214Pb) at environmental level of activity concentration. Three commonly used filters (47 mm diameter, 44x44 cm2 and 20x25 cm2) were prepared. Two 47 mm diameter filter were prepared to separate 226Ra and 210Pb analysis. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The study has showed a homogeneous behaviour of the laboratories

  17. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2012 among Spanish National Laboratories of Environmental Radioactivity (Soil)

    International Nuclear Information System (INIS)

    Trinidad, J. A.; Gascó, C.; Llauradó, M.

    2015-01-01

    This report describes the results assessment of the intercomparsion exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2012) was soil, that was enriched with artificial radionuclides (137Cs, 60Co, 55Fe, 63Ni, 90Sr, 241Am, 239+240Pu and 238Pu) and contained natural radionuclides (234U, 238U, U-natural 230Th, 226Ra, 210Pb, 228Ra, 228Ac, 234Th, 214Bi, 214Pb, 212Pb, 208Tl and 40K) at environmental level of activity concentration. Two soil matrixes were prepared in order to separate 55Fe and 63Ni analysis. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The study has showed a homogeneous behaviour of the laboratories.

  18. 30 years of environmental radioactivity monitoring in Romania

    International Nuclear Information System (INIS)

    Sonoc, S.; Alexandrescu, M.; Dovlete, C.; Halasz, A.; Sonoc, N.

    1993-01-01

    A short history of environmental radioactivity monitoring in Romania is presented. Started in 1962 in a few number of sites this activity is performed now by the National Environmental Radioactivity Surveillance Network (NERSN) consisting in 44 local laboratories in each county of the country and a central laboratory, Environmental Radioactivity Laboratory (ERL). The measured values of fallout samples in six points of the network during the period 1962-1992 and the average values of the Cs-137 deposits on Romanian territory from 1977 to 1992 are also presented. The main scientific results of the staff of the central laboratory during the years are mentioned. All these results were possible only due to a persuasive work done during the years by all the staff of the local and central laboratories. (author). 7 figs., 14 refs

  19. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated.

  20. History of disposal of radioactive wastes into the ground at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Coobs, J.H.; Gissel, J.R.

    1986-10-01

    Since the beginning of operations at the Oak Ridge National Laboratory (ORNL) in 1943, shallow land burial has been used for the disposal of solid low-level radioactive waste. These wastes have originated from nearly every operating facility, and from 1955 to 1963, ORNL's solid waste storage areas were designated by the Atomic Energy Commission (AEC) as the Southern Regional Burial Ground. During this period, about one million cubic feet of solid waste from various off-site installations were buried in solid waste storage areas (SWSAs) 4 and 5. Six SWSAs have been used since land burial operations began at ORNL in early 1944. ORNL has generated liquid radioactive waste since the separation of plutonium began in 1944. The majority of these wastes are classified as process (low-level) waste and are derived from evaporator condensate and cooling water from process vessels, and from building drains and surface drainage from contaminated areas. Process wastes are monitored at sampling stations located strategicially throughout the plant, and for nearly 15 years (1944 to 1957) they were discharged directly into White Oak Creek without being treated chemically to remove radionuclides. A smaller quantity of intermediate-level wastes (ILW) originate from the radiochemical separation process and from test reactors. The collection, treatment, and methods of disposal of ILW from the years 1943 to 1981 are described. Over this period of time there was a great deal of variation in the amounts and types of radioactive liquid wastes generated

  1. Aerial spraying to capture released radioactivity from NPP in a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Younus, Irfan; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of); Medard, Thiphaine [Ecole des Mines de Saint-Etienne, Daejeon (Korea, Republic of)

    2016-05-15

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na{sub 2}S{sub 2}O{sub 3}) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  2. Optimum method to determine radioactivity in large tracts of land. In-situ gamma spectroscopy or sampling followed by laboratory measurement

    International Nuclear Information System (INIS)

    Bronson, Frazier

    2008-01-01

    In the process of decommissioning contaminated facilities, and in the conduct of normal operations involving radioactive material, it is frequently required to show that large areas of land are not contaminated, or if contaminated that the amount is below an acceptable level. However, it is quite rare for the radioactivity in the soil to be uniformly distributed. Rather it is generally in a few isolated and probably unknown locations. One way to ascertain the status of the land concentration is to take soil samples for subsequent measurement in the laboratory. Another way is to use in-situ gamma spectroscopy. In both cases, the non-uniform distribution of radioactivity can greatly compromise the accuracy of the assay, and makes uncertainty estimates much more complicated than simple propagation of counting statistics. This paper examines the process of determining the best way to estimate the activity on the tract of land, and gives quantitative estimates of measurement uncertainty for various conditions of radioactivity. When the distribution of radioactivity in the soil is not homogeneous, the sampling uncertainty is likely to be larger than the in-situ measurement uncertainty. (author)

  3. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing; Biodegradacao de rejeitos radioativos liquidos organicos provenientes do reprocessamento do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua

    2008-07-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  4. Sorption of radioactive cobalt with sepiolite and erionite

    International Nuclear Information System (INIS)

    Bonifacio M, G.

    1994-01-01

    60 Co present in aqueous solutions may be sorbed in clays or zeolites. If the solids are suspended in aqueous solutions, the cations of the solids may be exchanged with 60 Co 2+ ions present in the solutions. Natural aluminosilicate are used for separation of radioactive cations which are present in waste liquids from radiochemical laboratories. The natural sepiolite lattice is almost neutral, having a cation exchange capacity in the order of 0.05 meg/g. It is shown that mild treatment with NaOH solution (2M) results in partial substitution by cations present in the natural sepiolite, in the other hand, during treatment with NaAlO 2 in a 6N NaOH solution at 90 Centigrade degrees it has been produced an aluminated sepiolite resulting in partial Mg-by-Al substitution in the octahedral layer. The crystallinity of the samples before and after the ion exchange was studied by X-ray diffraction. The aim of this paper is to study the Co 2+ ion exchange behavior in this aluminosilicate and to compare it with natural mexican erionite. The natural sepiolite from Vallecas, Spain is recommended as 60 Co adsorbent. This clay is directly obtained from the mineral field without any treatment. (Author)

  5. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  6. International laboratory of marine radioactivity

    International Nuclear Information System (INIS)

    1981-08-01

    The director's report presents the overall aims and objectives of the laboratory, and some of the significant findings to date. Among these is the different behaviour in oceans of Pu and Am. Thus, fallout Pu, in contrast to Am, tends to remain in the soluble form. The vertical downward transport of Am is much quicker than for Pu. Since 1980, uptake and depuration studies of sup(95m)Tc have been carried out on key marine species. Marine environmental behaviour of Tc is being evaluated carefully in view of its being a significant constituent of nuclear wastes. Growing demands are being made on the laboratory for providing intercalibration and instrument maintenance services, and for providing training for scientists from developing countries. The body of the report is divided into 5 sections dealing with marine biology, marine chemistry, marine geochemistry/sedimentation, environmental studies, and engineering services, respectively. Appendices list laboratory staff, publications by staff members, papers and reports presented at meetings or conferences, consultants to the laboratory from 1967-1980, fellowships, trainees and membership of committees, task forces and working groups

  7. Vadose zone monitoring at the radioactive waste management complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McElroy, D.L.; Hubbell, J.M.

    1989-01-01

    A network of vadose zone instruments was installed in surficial sediments and sedimentary interbeds beneath the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory. The network of instruments monitor moisture movement in a heterogeneous geologic system comprised of sediments which overlie and are intercalated with basalt flows. The general range of matric potentials in the surficial sediments (0 to 9.1 m) was from saturation to -3 bars. The basalt layer beneath the surficial sediments impedes downward water movement. The general range of matric potentials in the 9-, 34- and 73-m interbeds was from -0.3 to 1.7 bars. Preliminary results indicated downward moisture movement through the interbeds. 8 refs., 9 figs., 1 tab

  8. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  9. Radioactive sealed sources production process for industrial radiography

    International Nuclear Information System (INIS)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S.

    2017-01-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  10. Radioactive sealed sources production process for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: hobeddaniel@gmail.com, E-mail: jrcamara@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  11. A Remote Radioactivity Experiment

    Science.gov (United States)

    Jona, Kemi; Vondracek, Mark

    2013-01-01

    Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one…

  12. Process for the encapsulation of radioactive wastes

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.; Hill, M.L.

    1980-01-01

    Radioactive waste material, particularly radioactive ion exchange resin in the wet condition, is encapsulated in a polyurethane by dispersing the waste in an aqueous emulsion of an organic polyol, a polyisocyanate and an hydraulic cement and allowing the emulsion to set to form a monolithic block. If desired the emulsion may also contain additional filler e.g. sand or aggregate to increase the density of the final product. Preferred polyurethanes are those made from a polyester polyol and an organic diisocyanate, particularly hexamethylene diisocyanate. (author)

  13. The preparation of radioactive sources with radioactivities of less than 110 kilobecquerels

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1989-03-01

    A description is given of the various radioactive sources prepared in the ANSTO Radioisotope Standards Laboratory and the procedures associated with their preparation. ANSTO is authorised by CSIRO to maintain the Commonwealth standard of activity of radionuclides. Counting sources are required for the standardisation of solutions of radionuclides. Calibration sources are required for equipment used to detect radioactivity, such as gamma-ray spectrometers, and can be supplied to clients in other organisations. The maximum radioactivity supplied is 110 kBq. 7 refs., 65 figs

  14. Preliminary analysis of the induced structural radioactivity inventory of the base-case aqueous accelerator transmutation of waste reactor concept

    International Nuclear Information System (INIS)

    Bezdecny, J.A.; Vance, K.M.; Henderson, D.L.

    1995-01-01

    The purpose of the Los Alamos National Laboratory Accelerator Transmutation of (Nuclear) Waste (ATW) project is the substantial reduction in volume of long-lived high-level radioactive waste of the US in a safe and energy-efficient manner. An evaluation of the ATW concept has four aspects: material balance, energy balance, performance, and cost. An evaluation of the material balance compares the amount of long-lived high-level waste transmuted with the amount and type, of waste created in the process. One component of the material balance is the activation of structural materials over the lifetime of the transmutation reactor. A preliminary radioactivity and radioactive mass balance analysis has been performed on four structure regions of the reaction chamber: the tungsten target, the lead annulus, six tubing materials carrying the actinide slurry, and five reaction vessel structural materials. The amount of radioactive material remaining after a 100-yr cooling period for the base-case ATW was found to be 338 kg of radionuclides. The bulk of this material (313 kg) was generated in the zirconium-niobium (Zr-Nb) actinide tubing material. Replacement of the Zr-Nb tubing material with one of the alternative tubing materials analyzed would significantly reduce the short- and long-term radioactive mass produced. The alternative vessel material Al-6061 alloys, Tenelon, HT-9, and 2 1/4 Cr-1 Mo and the alternative actinide tubing materials Al-6061 alloy, carbon-carbon matrix, silicon carbide, and Ti-6 Al-4 V qualify for shallow land burial. Alternative disposal options for the base-case structural material Type 304L stainless steel and the actinide tubing material Zr-Nb will need to be considered as neither qualifies for shallow land burial

  15. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-02 (Fauna Marina)

    Energy Technology Data Exchange (ETDEWEB)

    Romero gonzalez, M. L.

    2003-07-01

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs.

  16. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Kira, Satoshi; Watanabe, Naotoshi; Nagaoka, Takeshi; Akane, Junta.

    1982-01-01

    Purpose: To obtain solidification products of radioactive wastes having sufficient monoaxial compression strength and excellent in water durability upon ocean disposal of the wastes. Method: Solidification products having sufficient strength and filled with a great amount of radioactive wastes are obtained by filling and solidifying 100 parts by weight of chlorinated polyethylene resin and 100 - 500 parts by weight of particular or powderous spent ion exchange resin as radioactive wastes. The chlorinated polyethylene resin preferably used herein is prepared by chlorinating powderous or particulate polyethylene resin in an aqueous suspending medium or by chlorinating polyethylene resin dissolved in an organic solvent capable of dissolving the polyethylene resin, and it is crystalline or non-crystalline chlorinated polyethylene resin comprising 20 - 50% by weight of chlorine, non-crystalline resin with 25 - 40% by weight of chlorine being particularly preferred. (Horiuchi, T.)

  17. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  18. Radioactivity in the Romanian sector of the Black Sea

    International Nuclear Information System (INIS)

    Osvath, I.; Dovlete, C.; Bologa, A.

    2004-01-01

    The study of marine radioactivity in Romanian waters has been performed jointly by the Romanian marine research institute (RMRI) and the environmental radioactivity research laboratory of the Institute of meteorology and hydrology, presently the environmental radioactivity laboratory (ERL) of the Institute of environmental research and engineering, along two directions: 1. Marine radioactivity monitoring, 2. Studied on the distribution of radionuclides among the components of the marine environment and its time evolution. Assessment of distribution coefficients and concentration factors for radionuclides in the marine environment. Identification and study of the bioindicator species

  19. Annual radioactive waste tank inspection program: 1995

    International Nuclear Information System (INIS)

    McNatt, F.G. Sr.

    1996-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  20. Annual radioactive waste tank inspection program - 1992

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1992-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report

  1. Annual radioactive waste tank inspection program - 1991

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1992-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1991 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report

  2. Surveillance of the environmental radioactivity

    International Nuclear Information System (INIS)

    Schneider, Th.; Gitzinger, C.; Jaunet, P.; Eberbach, F.; Clavel, B.; Hemidy, P.Y.; Perrier, G.; Kiper, Ch.; Peres, J.M.; Josset, M.; Calvez, M.; Leclerc, M.; Leclerc, E.; Aubert, C.; Levelut, M.N.; Debayle, Ch.; Mayer, St.; Renaud, Ph.; Leprieur, F.; Petitfrere, M.; Catelinois, O.; Monfort, M.; Baron, Y.; Target, A.

    2008-01-01

    The objective of these days was to present the organisation of the surveillance of the environmental radioactivity and to allow an experience sharing and a dialog on this subject between the different actors of the radiation protection in france. The different presentations were as follow: evolution and stakes of the surveillance of radioactivity in environment; the part of the European commission, regulatory aspects; the implementation of the surveillance: the case of Germany; Strategy and logic of environmental surveillance around the EDF national centers of energy production; environmental surveillance: F.B.F.C. site of Romans on Isere; steps of the implementation 'analysis for release decree at the F.B.F.C./C.E.R.C.A. laboratory of Romans; I.R.S.N. and the environmental surveillance: situation and perspectives; the part of a non institutional actor, the citizenship surveillance done by A.C.R.O.; harmonization of sampling methods: the results of inter operators G.T. sampling; sustainable observatory of environment: data traceability and samples conservation; inter laboratories tests of radioactivity measurements; national network of environmental radioactivity measurement: laboratories agreements; the networks of environmental radioactivity telemetry: modernization positioning; programme of observation and surveillance of surface environment and installations of the H.A.-M.A.V.L. project (high activity and long life medium activity); Evolution of radionuclides concentration in environment and adaptation of measurements techniques to the surveillance needs; the national network of radioactivity measurement in environment; modes of data restoration of surveillance: the results of the Loire environment pilot action; method of sanitary impacts estimation in the area of ionizing radiations; the radiological impact of atmospheric nuclear tests in French Polynesia; validation of models by the measure; network of measurement and alert management of the atmospheric

  3. Ligand-Free Suzuki-Miyaura Coupling Reactions Using an Inexpensive Aqueous Palladium Source: A Synthetic and Computational Exercise for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hill, Nicholas J.; Bowman, Matthew D.; Esselman, Brian J.; Byron, Stephen D.; Kreitinger, Jordan; Leadbeater, Nicholas E.

    2014-01-01

    An inexpensive procedure for introducing the Suzuki-Miyaura coupling reaction into a high-enrollment undergraduate organic chemistry laboratory course is described. The procedure employs an aqueous palladium solution as the catalyst and a range of para-substituted aryl bromides and arylboronic acids as substrates. The coupling reactions proceed…

  4. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  5. Radioactivity standardization in South Africa

    CSIR Research Space (South Africa)

    Simpson, BRS

    2002-01-01

    Full Text Available South Africa's national radioactivity measurement standard is maintained at a satellite laboratory in Cape Town by the National Metrology Laboratory (NML) of the Council-for Scientific and Industrial Research. Standardizations are undertaken by a...

  6. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  7. Mobility of radioactive colloidal particles in groundwater

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Long, R.L.

    1993-01-01

    Radiocolloids are a major factor in the rapid migration of radioactive waste in groundwater. For at least two Los Alamos National Laboratory (LANL) sites, researchers have shown that groundwater colloidal particles were responsible for the rapid transport of radioactive waste material in groundwater. On an international scale, a review of reported field observations, laboratory column studies, and carefully collected field samples provides compelling evidence that colloidal particles enhance both radioactive and toxic waste migration. The objective of this project is to understand and predict colloid-contaminant migration through fundamental mathematical models, water sampling, and laboratory experiments and use this information to develop an effective and scientifically based colloid immobilization strategy. The article focuses on solving the suspected radiocolloid transport problems at LANL's Mortandad Canyon site. (author) 6 figs., 5 tabs., 18 refs

  8. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  9. Preliminary shielding estimates for the proposed Oak Ridge National Laboratory (ORNL) Radioactive Ion Beam Facility (RIBF)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Gabriel, T.A.; Lillie, R.A.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has proposed designing and implementing a new target-ion source for production and injection of negative radioactive ion beams into the Hollifield tandem accelerator. This new facility, referred to as the Radioactive Ion Beam Facility (RIBF), will primarily be used to advance the scientific communities' capabilities for performing state-of-the-art cross-section measurements. Beams of protons or other light, stable ions from the Oak Ridge Isochronous Cyclotron (ORIC) will be stopped in the RIBF target ion source and the resulting radioactive atoms will be ionized, charge exchanged, accelerated, and injected into the tandem accelerator. The ORIC currently operates with proton energies up to 60 MeV and beam currents up to 100 microamps with a maximum beam power less than 2.0 kW. The proposed RIBF will require upgrading the ORIC to generate proton energies up to 200 MeV and beam currents up to 200 microamps for optimum performance. This report summarizes the results of a preliminary one-dimensional shielding analysis of the proposed upgrade to the ORIC and design of the RIBF. The principal objective of the shielding analysis was to determine the feasibility of such an upgrade with respect to existing shielding from the facility structure, and additional shielding requirements for the 200 MeV ORIC machine and RIBF target room

  10. Annual radioactive waste tank inspection program - 1999

    International Nuclear Information System (INIS)

    Moore, C.J.

    2000-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  11. Separation of tritium from aqueous effluents

    International Nuclear Information System (INIS)

    Geens, L.; Bruggeman, A.; Meynendonckx, L.; Parmentier, C.; Belien, H.; Ooms, E.; Smets, D.; Stevens, J.; van Vlerken, J.

    1988-01-01

    From 1975 until 1982 - within the framework of the CEC indirect action programme on management and storage of radioactive waste - the SCK/CEN has developed the ELEX process from laboratory scale experiments up to the construction of an integrated pilot installation. The ELEX process combines water electrolysis and catalytical isotope exchange for the separation of tritium from aqueous reprocessing effluents by isotope enrichment. Consequently, the pilot installation consists of two main parts: an 80 kW water electrolyser and a 10 cm diameter trickle bed exchange column. The feed rate of tritiated water amounts to 5 dm 3 .h -1 , containing up to 3.7 GBq.dm -3 of tritium. This report describes the further development of the process during the second phase of the second programme. Three main items are reported: (i) research work in the field of pretreatment of real reprocessing effluents, before feeding them to an ELEX installation; (ii) demonstration of the technical feasibility of the ELEX process with simulated active effluent streams in the pilot installation; (iii) a cost estimation for the ELEX installation, comprising the required investments and the annual operation costs

  12. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world's experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  13. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [ed.

    1992-12-31

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Innovative environmental restoration and waste management technologies at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Helt, J.E.

    1993-01-01

    Cleanup of contaminated sites and management of wastes have become major efforts of the US Department of Energy. Argonne National Laboratory (ANL) is developing several new technologies to meet the needs of this national effort. Some of these efforts are being done in collaboration with private sector firms. An overview of the ANL and private sector efforts will be presented. The following four specific technologies will be discussed in detail: (1) a minimum additive waste stabilization (MAWS) system for treating actinide-contaminated soil and groundwater; (2) a magnetic separation system, also for cleanup of actinide-contaminated soil and groundwater; (3) a mobile evaporator/concentrator system for processing aqueous radioactive and mixed waste; and (4) a continuous emission monitor for ensuring that waste incineration meets environmental goals

  15. The waste management at research laboratories - problems and solutions

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto

    2011-01-01

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  16. Quality Assurance In Radioactivity Measurements

    International Nuclear Information System (INIS)

    Riekstina, D.; Veveris, O.; Smilskalne, G.

    2007-01-01

    The credibility of obtained results is ensured by the quality assurance and control. The main requisitions involved in the quality assurance of the laboratory according to the requirements of LVS EN ISO/IEC 17025:2005 are: 1) the use of calibrated equipment only; 2) the regular and long-time use of reference materials in the control of equipment; 3) the estimation of uncertainty sources and determination of uncertainties within the given interval of credibility; 4) the validation and verification. The very important requirement is regular participation in the interlaboratory intercomparison exercises that makes it possible to estimate and find possible error sources and carry out the corrective actions. The measurements of the radioactivity of Cs-137, Co-60, H-3, the natural radioactive nuclides as well as other radionuclides in different environmental (soil, precipitation, different types of water, needles, et al.) samples, and in various radioactive polluted objects are carried out in the Laboratory of Radiation physics. The quality assurance system was implemented in our laboratory in 2000. Since 1999 laboratory is regular participant in the interlaboratory intercomparison exercises, organized by the RISO National Laboratory (Denmark) and IAEA (Vienna). The paper shows the laboratory's system of quality assurance and its implementation. We have the internal quality audit program that takes into account the requirements of LVS EN ISO/IEC 17025: 2005, but the main attention is paid to the intercomparison of the results of analyses of laboratories, their evaluation and interpretation. Only credible and justified results can be the basis for further use in any field, thus making it possible to make legitimate decisions. (Authors)

  17. Reduction of radioactivity produced by nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.

  18. Derivation of residual radioactive material guidelines for the Laboratory for Energy-Related Health Research site

    International Nuclear Information System (INIS)

    Chapman, T.E.

    1993-11-01

    Residual radioactive material guidelines were derived for the Laboratory for Energy-Related Health Research (LEHR) Environmental Restoration (ER) site in Davis, California. The guideline derivation was based on a dose limit of 100 mrem/yr. The US Department of Energy (DOE) residual radioactive material guideline computer code was used in this evaluation. This code implements the methodology described in the DOE manual for implementing residual radioactive material guidelines. Three potential site utilization scenarios were considered with the assumption that following ER action, the site will be used without radiological restrictions. The defined scenarios vary with regard to use of the site, time spent at the site, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded, provided that the soil concentrations of these radionuclides at the LEHR site do not exceed the scenario-specific values calculated by this study. Except for the extent of the contaminated zone (which is very conservative), assumptions used are as site-specific as possible, given available information. The derived guidelines are single- radionuclide guidelines and are linearly proportional to the dose limit used in the calculations. In setting the actual residual soil contamination guides for the LEHR site, DOE will apply the as low as reasonably achievable policy to the decision-making process, along with other factors such as whether a particular scenario is reasonable and appropriate, as well as using site-specific inputs to computer models based on data not yet fully determined

  19. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. Setting up the photoluminescence laboratory at ISOLDE & Perturbed Angular Correlation spectroscopy for BIO physics experiments using radioactive ions

    CERN Document Server

    Savva, Giannis

    2016-01-01

    The proposed project I was assigned was to set up the photoluminescence (PL) laboratory at ISOLDE, under the supervision of Karl Johnston. My first week at CERN coincided with the run of a BIO physics experiment using radioactive Hg(II) ions in which I also participated under the supervision of Stavroula Pallada. This gave me the opportunity to work in two projects during my stay at CERN and in the present report I describe briefly my contribution to them.

  1. The potential of coconut fibers in raw and treated forms to remove 241Am from aqueous solutions

    International Nuclear Information System (INIS)

    Fonseca, Heverton C.O.; Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar; Sakata, Solange K.

    2013-01-01

    In the Radioactive Waste Management (GRR) at the Nuclear and Energy Research Institute (IPEN/CNEN-SP) vegetal biomass has been studied as adsorbent to remove radioisotopes from radioactive liquid wastes as part of the radioactive waste treatment program. In this work coconuts fiber was evaluate as biosorbent to remove 241 Am from aqueous solutions and many different parameters were studied such as particle size (35 and 80 mesh) and contact time (between 5 and 60 minutes). In order to evaluate if the treated biomass could remove more 241 Am the experiments were also performed using raw biomass and treated with H 2 O 2 in basic conditions. When the experiment was carried out using raw coconuts fiber with 80 mesh, neutral conditions after 5 minutes of contact time 99% of the radionuclide was removed from the aqueous solution. This result shows the potential of this biomass to remove 241 Am from radioactive liquid wastes. (author)

  2. Characterization of surrogate radioactive cemented waste: a laboratory study

    International Nuclear Information System (INIS)

    Fiset, J.F.; Lastra, R.; Bilodeau, A.; Bouzoubaa

    2011-01-01

    Portland cement is commonly used to stabilize intermediate and low level of radioactive wastes. The stabilization/solidification process needs to be well understood as waste constituents can retard or activate cement hydration. The objectives of this project were to prepare surrogate radioactive cemented waste (SRCW), develop a comminution strategy for SRCW, determine its chemical characteristics, and develop processes for long term storage. This paper emphasizes on the characterization of surrogate radioactive cemented waste. The SRCW produced showed a high degree of heterogeneity mainly due to the method used to add the solution to the host cement. Heavy metals such as uranium and mercury were not distributed uniformly in the pail. Mineralogical characterization (SEM, EDS) showed that uranium is located around the rims of hydrated cement particles. In the SRCW, uranium occurs possibly in the form of a hydrated calcium uranate.The SEM-EDS results also suggest that mercury occurs mainly in the form of HgO although some metallic mercury may be also present as a result of partial decomposition of the HgO. (author)

  3. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  4. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  5. Mechanisms of leaching and corrosions of vitrified radioactive waste forms

    International Nuclear Information System (INIS)

    Lanza, F.; Conradt, R.; Hall, A.R.; Malow, G.; Trocellier, P.; Van Iseghem, P.

    1985-01-01

    The estimation of the risk connected with the storage of radioactive waste in geological formations asks for reliable extrapolation of the data for leaching and corrosion of glasses to very long times. As a consequence the knowledge of the physico-chemical mechanisms which dominate the leaching phenomena can be very useful. In the corrosion due to aqueous solution three main mechanisms can be identified: ion exchange, matrix dissolution and formation of a surface layer. The work performed in the different laboratories has allowed to evaluate the relative importance of the various mechanism. The alkali ion exchange does not seems to be predominant in defining the release of the various elements, the matrix dissolution being the most important. The surface composition is important as the compounds present could dominate the matrix dissolution kinetic. Besides the surface layer could form an impervious layer, which, if stable in time, could protect effectively the glass

  6. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Robert

    2012-01-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  7. Estimation of {sup 60}Co activity in trace levels from aqueous medium using Ocimum basilicum seeds

    Energy Technology Data Exchange (ETDEWEB)

    Sangurdekar, P R [Radiation Safety System Div., Bhabha Atomic Research Centre, Mumbai (India); Melo, J S; D' Souza, S F [Nuclear Agriculture and Biotechnology Div., Bhabha Atomic Research Centre, Mumbai (India)

    2006-07-01

    In the field of pollution control besides the need for devising techniques for remediation, it is equally essential to develop alternative techniques for monitoring pollution levels including radioactivity. In this perspective, a simple technique is described for determining radioactivity in aqueous samples using O. basilicum seeds based on its property to adsorb radionuclides

  8. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2010 among Spanish National Laboratories of Environmental Radioactivity (Diet Ashes)

    International Nuclear Information System (INIS)

    Gasco, C.; Trinidad, J. A.; Llaurado, M.; Suarez, J. A.

    2012-01-01

    This report describes the results assessment of the intercomparison exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2010) was a diet ash obtained from the ashing of a whole fresh diet (breakfast, lunch and dinner), that was enriched with artificial radionuclides (Cs-137, Co-60,Fe-55,Ni-63,Sr-90,Am-241,Pu-238,Pu-239,240 y C-14) and contained natural radionuclides (U-234, U-238, U-natural Th-230, Th-234, Ra-226, Ra-228, Pb-210, Pb-212, Pb-214, Bi-214, Ac-228, Tl-208, K-40) at environmental level of activity concentration. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The reference values obtained through the medians show a negative bias for Pb-210 and Th-234 when comparing to the given values of external qualified laboratories from ENEA and IRSN and positive one for K-40. (Author)

  9. Environmental surveillance for the EG and G Idaho Radioactive Waste Management areas at the Idaho National Engineering Laboratory. Annual report 1985

    International Nuclear Information System (INIS)

    Reyes, B.D.; Case, M.J.; Wilhelmsen, R.N.

    1986-08-01

    The 1985 environmental surveillance report for the EG and G Idaho, Inc., radioactive waste management areas at the Idaho National Engineering Laboratory describes the environmental monitoring activities at the Radioactive Waste Management Complex (RWMC), the Waste Experimental Reduction Facility (WERF), the Process Experimental Pilot Plant (PREPP), and two surplus facilities. The purpose of these monitoring activities is to provide for continuous evaluation and awareness of environmental conditions resulting from current operations, to detect significant trends, and to project possible future conditions. This report provides a public record comparing RWMC, WERF, PREPP, and surplus facility environmental data with past results and radiation protection standards or concentration guides established for operation of Department of Energy facilities

  10. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  11. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum); Evaluacion de la Intercomparacion CSN/CIEMAT-2008 entre Laboratorios Nacionales de Radiactividad Ambiental (Fosfoyeso)

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M L; Barrera, M; Valino, F

    2010-05-27

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  12. The radiological services laboratory

    International Nuclear Information System (INIS)

    Hardt, T.L.; Schutt, S.M.; Doran, K.S.; Dihel, D.L.; Lucas, R.O. II; Eifert, T.K.

    1992-01-01

    A new state of the art radiochemistry laboratory incorporating advanced design and environmental control elements has been constructed in Atlanta, Georgia. The design of the facility is oriented to the efficient production of analytical sample results which meet regulatory requirements while at the same time provides an atmosphere that is pleasurable for analysts and visitors alike. The laboratory building contains two separate and distinct laboratories under one roof. This allows the facility to handle samples with low levels of radioactivity on one side of the lab without fear of contamination of environmental work on the other side. Unlike most laboratories, this facility utilizes a scrubber system and liquid waste holdup system to prevent accidental releases to the environment. The potential spread of radioactive contamination is controlled through the use of negative pressure ventillation zones. Construction techniques, laboratory systems, instrumentation and ergonomic considerations will also be discussed. (author) 1 fig

  13. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  14. The potential of coconut fibers in raw and treated forms to remove {sup 241}Am from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Heverton C.O.; Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In the Radioactive Waste Management (GRR) at the Nuclear and Energy Research Institute (IPEN/CNEN-SP) vegetal biomass has been studied as adsorbent to remove radioisotopes from radioactive liquid wastes as part of the radioactive waste treatment program. In this work coconuts fiber was evaluate as biosorbent to remove {sup 241}Am from aqueous solutions and many different parameters were studied such as particle size (35 and 80 mesh) and contact time (between 5 and 60 minutes). In order to evaluate if the treated biomass could remove more {sup 241}Am the experiments were also performed using raw biomass and treated with H{sub 2}O{sub 2} in basic conditions. When the experiment was carried out using raw coconuts fiber with 80 mesh, neutral conditions after 5 minutes of contact time 99% of the radionuclide was removed from the aqueous solution. This result shows the potential of this biomass to remove {sup 241}Am from radioactive liquid wastes. (author)

  15. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  16. Quality assurance in the measurement of internal radioactive contamination and dose assessment and the United States Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Bhatt, Anita

    2016-01-01

    The Quality Assurance for analytical measurement of internal radioactive contamination and dose assessment in the United States (US) is achieved through the US Department of Energy (DOE) Laboratory Accreditation Program (DOELAP) for both Dosimetry and Radio bioassay laboratories for approximately 150,000 radiation workers. This presentation will explain the link between Quality Assurance and the DOELAP Accreditation process. DOELAP is a DOE complex-wide safety program that ensures the quality of worker radiation protection programs. DOELAP tests the ability of laboratories to accurately measure and quantify radiation dose to workers and assures the laboratories quality systems are capable of defending and sustaining their measurement results. The United States Law in Title 10 of the Code of Federal Regulations 835 requires that personnel Dosimetry and Radio bioassay programs be tested and accredited

  17. Radioactive air emissions 1992 summary

    International Nuclear Information System (INIS)

    Wahl, L.

    1993-10-01

    This report summarizes, by radionuclide or product and by emitting facility, the Laboratory's 1992 radioactive air emissions. In 1992, the total activity of radionuclides emitted into the air from Laboratory stacks was approximately 73,500 Ci. This was an increase over the activity of the total 1991 radioactive air emissions, which was approximately 62,400 Ci. Total 1992 Laboratory emissions of each radionuclide or product are summarized by tables and graphs in the first section of this report. Compared to 1991 radioactive air emissions, total tritium activity was decreased, total plutonium activity was decreased, total uranium activity was decreased, total mixed fission product activity was increased, total 41 Ar activity was decreased, total gaseous/mixed activation product (except 41 Ar) activity was increased, total particulate/vapor activation product activity was increased, and total 32 P activity was decreased. Radioactive emissions from specific facilities are detailed in this report. Each section provides 1992 data on a single radionuclide or product and is further divided by emitting facility. For each facility from which a particular radionuclide or product was emitted, a bar chart displays the air emissions of each radionuclide or product from each facility over the 12 reporting periods of 1992, a line chart shows the trend in total emissions of that radionuclide or product from that facility for the past three years, the greatest activity during the 1990--1992 period is discussed, and unexpected or unusual results are noted

  18. Implementation of a laboratory apparatus based on a NaI(Tl) spectrometer: application to the characterization of soil radioactivity

    International Nuclear Information System (INIS)

    Andrianjafitrimo

    2001-01-01

    A laboratory apparatus based on a NaI(Tl) γ-ray spectrometer for the assessment of radionuclides naturally occurring in environmental samples was established. This detection system is devoted to the quantitative determination of uranium, thorium and potassium in soils and rocks samples.The IAEA reference materials, RG S ET was used for calibration of the spectrometer. The photopics at 1460, 1765 and 2614 keV due to 40 K, 238 U and 232 Th, respectively, were used for the corresponding activity measurements. The radioactivity characterization of soils was performed on primordial radionuclides distribution and radon emanation according to the grain-size. Because of social and economical interest that present the collected samples (mineralized sands and soils rich in uranium), their radiation protection aspects was considered in this work. Discussions was made on factors restricting the approach based on scintillation spectrometry, such as radioactive equilibrium and radon encapsulation in the one hand, and in the other hand, on the assessment of soils characterization, among other things, grain-size effects. The present work has also shown that radioactivity levels of building and fabrication materials can be reduced by the removal of fines or fraction having higher concentrations by sieving. [fr

  19. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  20. [Current status on storage, processing and risk communication of medical radioactive waste in Japan].

    Science.gov (United States)

    Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki

    2013-03-01

    Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.

  1. Black-tailed jack rabbit movements and habitat utilization at the Idaho National Engineering Laboratory radioactive waste management complex

    International Nuclear Information System (INIS)

    Grant, J.C.

    1983-01-01

    In June 1982, a study of black-tailed jack rabbit (Lepus californicus) ecology was initiated at the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC). This study will provide data necessary to evaluate the role of jack rabbits in radionuclide transport away from the Subsurface Disposal Area of the RWMC. Primary goals are to document radionuclide concentrations in jack rabbit tissues, and determine population size, movement patterns, habitat use, and food habits of jack rabbits inhabiting the RWMC area. Study design and prelimianry results are discussed

  2. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  3. Diagnostic compositions containing a chelate of radioactive indium and 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Goedemans, W.T.

    1981-01-01

    There are disclosed aqueous, radioassaying solutions of a chelate of radioactive indium and an 8-hydroxyquinoline, having an essential absence of an organic solvent, e.g., alcohol or chloroform. The solutions are useful in radioassaying warmblooded animals. (author)

  4. Radioactive wastes management: what is the situation?

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  5. Speciation analysis on Eu(3) in aqueous solution using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Hotokezaka, H.; Tanaka, S.; Nagasaki, S.

    2001-01-01

    Investigation of the chemical behaviour of lanthanides and actinides in the geosphere is important for the safety assessment of high-level radioactive waste disposal. However, determination of speciation for lanthanides and actinides is difficult, because it is too hard to distinguish between metal ion and colloidal metal in aqueous solution. Laser-induced breakdown spectroscopy (LIBS) can detect both ions and microparticles of metals in aqueous solution, especially, high sensitive to microparticles. In this study, we analysed Eu(III) ion and Eu 2 O 3 particle in aqueous solution by LIBS, and measured the hydrolysis behaviour of Eu(III) in aqueous solution. Furthermore, we tried to detect the plasma emission of Eu(III) ions sorbed on TiO 2 particles, and also tried to observe the adsorption behaviour of Eu(III) ions onto TiO 2 particles in aqueous solution. (authors)

  6. Sandia Laboratories technical capabilities: auxiliary capabilities

    International Nuclear Information System (INIS)

    1978-09-01

    The primary responsibility of the environmental health function is the evaluation and control of hazardous materials and conditions. The evaluation and control of toxic materials, nonionizing radiation such as laser beams and microwaves, and ionizing radiation such as from radiation machines and radioactive sources, are examples of the activities of environmental health programs. A chemical laboratory is operated for the analysis of toxic and radioactive substances and for the bioassay program to provide an index of internal exposure of personnel to toxic and radioactive materials. Instrumentation support and development is provided for environmental health activities. A dosimetry program is maintained to measure personnel exposure to external ionizing radiation. A radiation counting laboratory is maintained. Reentry safety control and effluent documentation support are provided for underground nuclear tests at the Nevada Test Site. A radiation training program is provided for laboratory personnel which covers all areas of radiation protection, from working with radioactive materials to radiation-producing machines. The information science activity functions within the framework of Sandia Laboratories' technical libraries. Information science is oriented toward the efficient dissemination of information to technical and administrative personnel. Computerized systems are used to collect, process and circulate books, reports, and other literature. Current-awareness, reference, translation, and literature-search services are also provided

  7. Radioactive waste management information for 1993 and record-to-date

    International Nuclear Information System (INIS)

    Taylor, K.A.

    1994-07-01

    This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1993. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System

  8. Radioactive waste management information for 1990 and record-to-date

    International Nuclear Information System (INIS)

    Litteer, D.L.; Peterson, C.N.; Sims, A.M.

    1991-07-01

    This document presents detailed data and graphics on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1990. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System (RWMIS)

  9. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  10. Dicarbonic acid anilides containing radioactive iodine (iodine 131, 123, 125, or 132) as well as their metal and amine salts; methods for the preparation of these compounds and of radioactive functional diagnostics containing them

    International Nuclear Information System (INIS)

    Buttermann, G.

    1976-01-01

    A method for the preparation of dicarbonic acid anilides containing radioactive iodine is described. The initial substances are N,N dimethyl-p-toluene sulfonamide, N,N bis-dimethyl aminosulfon, or dimethyl sulfon, or mixtures of these, which are heated in aqueous solution or in a melt with an alkali or alkaline earth radioiodide as carrier-free as possible. From the water-soluble salts of the obtained iodine-labelled dicarbonic acid anilides aqueous solutions are produced with 1 mg up to 5 g iodine-labelled dicarbonic acid anilide per 10 ml and an activity of 0.025 and 25 mCi per ml with physiologically compatible bases as radioactive functional diagnostics. (RB) [de

  11. Development of monitoring technology for environmental radioactivity

    International Nuclear Information System (INIS)

    Lee, Chang Woo; Cho, Young Hyun; Lee, M. H.; Choi, K. S.; Hong, K. H.; Sin, H. S.; Kim, M. K.; Pak, J. H.

    2000-05-01

    The accurate and reliable determination techniques of the radioactive isotopes in environmental samples are very important to protect public health from the potential hazards of radiation. Isolation and purification of radiostrontium from environmental aqueous sample was performed by using strontium selectively binding resin (Sr-spec) and strontium selectively permeable liquid membrane. Radioactivity of radiostrontium was measured by liquid scintillation counter coupled with dual counting window and spectrum unfolding method. With combustion apparatus a new determination of Tc-99 in the environmental samples was developed for overcoming demerits of conventional TBP extraction method. An optimized method for determining beta-emitting 2 41Pu in the presence of alpha-emitting nuclides was developed using a liquid scintillation counting system. A method for measuring Rn-222 and Ra-226 in aqueous sample using liquid scintillation counting technique has studied. On-line measurement system coupled with ion chromatography and portable liquid scintillation detector was developed. U and Th measured by inductively coupled plasma mass spectrometry (ICP-MS). The mehtod of flow-injection preconcentration for the analysis of U and Th in seawater was developed. A new electrodeposition method for alpha spectrometry was developed

  12. Development of monitoring technology for environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Woo; Cho, Young Hyun; Lee, M. H.; Choi, K. S.; Hong, K. H.; Sin, H. S.; Kim, M. K.; Pak, J. H

    2000-05-01

    The accurate and reliable determination techniques of the radioactive isotopes in environmental samples are very important to protect public health from the potential hazards of radiation. Isolation and purification of radiostrontium from environmental aqueous sample was performed by using strontium selectively binding resin (Sr-spec) and strontium selectively permeable liquid membrane. Radioactivity of radiostrontium was measured by liquid scintillation counter coupled with dual counting window and spectrum unfolding method. With combustion apparatus a new determination of Tc-99 in the environmental samples was developed for overcoming demerits of conventional TBP extraction method. An optimized method for determining beta-emitting {sup 2}41Pu in the presence of alpha-emitting nuclides was developed using a liquid scintillation counting system. A method for measuring Rn-222 and Ra-226 in aqueous sample using liquid scintillation counting technique has studied. On-line measurement system coupled with ion chromatography and portable liquid scintillation detector was developed. U and Th measured by inductively coupled plasma mass spectrometry (ICP-MS). The mehtod of flow-injection preconcentration for the analysis of U and Th in seawater was developed. A new electrodeposition method for alpha spectrometry was developed.

  13. Investigation of the radioactivity in the environment around the Blayais CNPE

    International Nuclear Information System (INIS)

    Barbey, P.; Boilley, D.; Josset, M.; Migeon, A.; Bernollin, A.; Dunand, E.

    2012-01-01

    This document reports the identification of potential sources of radioactive pollutions of the Blayais CNPE (nuclear power plant for the production of electricity) in France, recalls the results of a previous study, and indicates the geographic and radiologic perimeters of the investigation. It reports the radio-ecological investigation of the aqueous medium (sediments, aqueous plants, fish, water), of the ground medium (soil and plants), and the investigation of transfers of chemical species (hydrazine, morpholine, boron, lithium) by the power plant

  14. Measurement of radioactivity in water samples

    International Nuclear Information System (INIS)

    Richards, L.

    1990-01-01

    Public concern about the levels of radioactivity release to the environment whether authorised discharges or resulting from nuclear accident, has increased in recent years. Consequently there is increasing pressure for reliable data on the distribution of radioactivity and the extent of its intrusion into food chains and water supplies. As a result a number of laboratories not experienced in radioactivity measurements have acquired nucleonic counting equipment. These notes explore the underlying basics and indicate sources of essential data and information which are required for a better understanding of radioactivity measurements. Particular attention is directed to the screening tests which are usually designated ''gross'' alpha and ''gross'' beta activity measurement. (author)

  15. Use of fixation techniques in processing radioactive wastes from nuclear power plants in Czechoslovakia

    International Nuclear Information System (INIS)

    Seliga, M.

    1977-01-01

    The current state of radioactive waste disposal from the Bohunice nuclear power plant is described. The method of vacuum cementation was chosen for solidifying liquid radioactive wastes. This method makes it possible to obtain a product whose properties, namely strength, leachability, and radiation stability allow for the production of blocks without packing material. Also solved was the fixation of liquid radioactive waste using bituminization based on mixing liquid radioactive waste with aqueous bitumen emulsion in a film evaporator in which the mixture of liquid radioactive wastes and bitumen emulsion evaporate producing solid bitumen. The parameters are given of the cementation and bituminization lines which are designed for use in nuclear power plants with WWER type reactors. (J.B.)

  16. Revised Arrangements for the Management of Solid and Non-Aqueous Radioactive Waste - 12452

    Energy Technology Data Exchange (ETDEWEB)

    Fullbrook, Michael; Walker, Johann; Macnab, Alec [Atomic Weapons Establishment, Aldermaston (United Kingdom)

    2012-07-01

    In 2010, Atomic Weapons Establishment (AWE) identified a requirement to implement revised management arrangements for the generation, storage and disposal of radioactive waste. A thorough review of the current arrangements/processes was undertaken which included both legal compliance requirements and the identification of business improvement opportunities. On completion of this review a suitable project team was established and in 2011 an integrated Radioactive Waste Management process was implemented throughout the business. Initial results have shown measurable improvements within Radioactive Waste management compliance, operator understanding and increased business efficiency. Through the development and implementation of the revised working arrangements AWE has been able to continue to demonstrate both legal compliance to its regulators along with business efficiency and effectiveness improvements. Simple to follow process maps have improved employees understanding of Radioactive Waste management requirements, provided them with easily accessible information and ensured the business operates in a single coherent manner. The implementation of a modern electronic data management system has ensured all waste related information is easily retrievable and appropriately maintained. The additional functions that have been built into the system have reduced the potential for human error and increased the overall efficiency of the Waste Management department through the use of the automated report generation functionality. (authors)

  17. Fifty years of studies on environmental radioactivity in Peru

    International Nuclear Information System (INIS)

    Osores, Jose M.; Gonzales, Susana; Martinez, Jorge; Lopez, Edith; Jara, Raul; Anaya, Aurelio

    2008-01-01

    In May of 1962, due to the explosions carried out by the Commission of Atomic Energy of the United States in the Christmas Island, a group of professionals of the 'Junta de Control de Energia Atomica' of Peru, created in 1957, carried out experimental evaluations of atmospheric radioactivity, obtaining acceptable results regarding those of Naval US Research Laboratory, this was the beginning of the Laboratory of Atmospheric Radioactivity that begins to operate permanently in February of 1964. In 1966, France began a program of nuclear tests in the French Polynesian, generating concern due to the meteorological conditions that could affect the peruvian population. With the support of experts and equipments on the part of the government from France, the Laboratory of Environmental Radioactivity began their activities in August of 1966. At the present time, the Laboratory of Environmental Radioactivity is located in the Nuclear Center RACSO of the 'Instituto Peruano de Energia Nuclear' and it carries out the following programs: Radiological Environmental Surveillance in the Influence Area of the Nuclear Center, Nationwide Radiological Environmental Surveillance, Marine Radiological Environmental Surveillance, Radiological Environmental Surveillance in the Peruvian Antarctic Region and Surveillance of the Radioactive Contamination of Foods. The results of the evaluations of the programs of radiological environmental surveillance, developed nationwide from 1962, show one gradual decrease of the levels of environmental radioactivity. Significant concentrations of Cs-137 and Be-7 were found in the Antarctic region, and, in the area of influence of the nuclear center RACSO, environmental discharges of I-131, Cs-137, Co-60, Cs- 134 and Te-123m were detected, however, the concentrations did not present radiological risk for the population. (author)

  18. Status of determining transuranic nuclides speciation in aqueous solution with laser spectrometry

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun; Chen Xi; Long Haoqi; Zeng Jishu; Su Xiguang; Fan Xianhua

    2007-01-01

    The knowledge about speciation of transuranic nuclides in aqueous solution is a basis for understanding the chemical and migration behavior of transuranic nuclides in aqueous solution. The speciation of transuranic nuclides with trace concentration is complicated in near neutral aqueous solutions, including change of oxidation state, complexation and colloid generation, etc. The concentrations of transuranium in near neutral aqueous solution usually below the sensitivity range of method such as conventional absorption spectroscopy. The radioactive analysis method has a very low detection limits for radionuclides, however, it wouldn' t allow the direct measurement of the transuranic species. In contrast with these methods, laser spectroscopy is an ideal method with high sensitivity, and non-contact and non-destructive for determining the speciation of transuranic nuclides. This paper summarizes the status and application of LIPAS (Laser-induced Photoacoustic Spectrometry), LIBD (Laser-induced Breakdown Detection) and TRLFS (Time-resolved Laser Fluorescence Spectrometry) to determine the speciation of transuranic nuclides with trace concentration in aqueous solutions. (authors)

  19. Active waste disposal monitoring at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-10-01

    This report describes an active waste disposal monitoring system proposed to be installed beneath the low-level radioactive disposal site at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory, Idaho. The monitoring instruments will be installed while the waste is being disposed. Instruments will be located adjacent to and immediately beneath the disposal area within the unsaturated zone to provide early warning of contaminant movement before contaminants reach the Snake River Plain Aquifer. This study determined the optimum sampling techniques using existing monitoring equipment. Monitoring devices were chosen that provide long-term data for moisture content, movement of gamma-emitting nuclides, and gas concentrations in the waste. The devices will allow leachate collection, pore-water collection, collection of gasses, and access for drilling through and beneath the waste at a later time. The optimum monitoring design includes gas sampling devices above, within, and below the waste. Samples will be collected for methane, tritium, carbon dioxide, oxygen, and volatile organic compounds. Access tubes will be utilized to define the redistribution of radionuclides within, above, and below the waste over time and to define moisture content changes within the waste using spectral and neutron logging, respectively. Tracers will be placed within the cover material and within waste containers to estimate transport times by conservative chemical tracers. Monitoring the vadose zone below, within, and adjacent to waste while it is being buried is a viable monitoring option. 12 refs., 16 figs., 1 tab

  20. A Brief Discussion on the Decision Aiding Techniques Applied to a Laboratory of Radioactive Decontamination: A General Case

    International Nuclear Information System (INIS)

    Kodma, Y.; Sordi, G. M. A. A.; Rodrigues, D. L.

    2004-01-01

    In the Laboratory of Radioactive Decontamination ( RDL ) at the Instituto de Pesquisas Energeticas e Nucleares IPEN it has been received objects and equipments from the various installations, each one processing different kinds of radioisotopes. These radioactive materials can range from nuclear fuel fabrication and processing, research reactor utilization or radiopharmaceuticals production. This means many different physical and chemical properties of the contaminants and composition of the contaminated surface. It is difficult to decide whether to decontaminate or not the objects and equipment that were used on the processing of these radioactive materials. Most of the radioactive contamination are transferable ones but some are fixed that would imply in more effort to reduce the contamination levels. Depending on the reuse or on the repairing need, for instance, of equipments, tools or objects, the permissible levels of remaining contamination varies and for so the decontamination process shall be more severe. Several parameters must be considered to make a decision, not only their cost to buy new ones compared to the cost of the materials and personnel those will execute the decontamination, but also the installation budget to buy new equipments, collective dose of the workers, readiness for reuse and so on. In this work we discuss how the parameters influence on the decision about decontaminate or not and if so, up to where to proceed. We also compare the decision aiding techniques applied to a general case considering some parameters those are fundamental and others that are not so important all the time but can affect in a significant way the decontamination choice and the way they can affect the decision maker to choose the best option. (Author) 8 refs

  1. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  2. Study and survey of assembling parameters to a radioactive source production laboratory used to verify equipment

    International Nuclear Information System (INIS)

    Gauglitz, Erica

    2010-01-01

    This paper presents a survey of parameters for the proper and safe flooring, doors, windows, fume hoods and others, in a radiochemical laboratory. The layout of each item follows guidelines and national standards of the National Commission of Nuclear Energy (CNEN) and the International Atomic Energy Agency (IAEA), aiming to ensure the radiological protection of workers and environment. The adequate items arrangement in the radiochemical laboratory ensures quality and safety in the production of 57 Co 137 Cs and 133 Ba radioactive sealed sources, with activities 185, 9.3 and 5.4 MBq, respectively. These sources are used to verify meter activity equipment and should be available throughout the Nuclear Medicine Center, following the recommendations of CNEN-NN-3.05 standard R equirements for Radiation Protection and Safety Services for Nuclear Medicine , to verify the activity of radiopharmaceuticals that are administered in patients, for diagnosis and therapy. Verification of measuring activity equipment will be used to perform accuracy, reproducibility and linearity tests, which should show results within the limits specified in the standard CNEN-NN-3.05. (author)

  3. Radioactivity standards distribution program, 1978--1979. Interim report, 1978--1979

    International Nuclear Information System (INIS)

    Ziegler, L.H.

    1978-06-01

    A program for the distribution of calibrated radioactive samples, as one function of EPA's quality assurance program for environmental radiation measurements, is described. Included is a discussion of the objectives of the distribution program and a description of the preparation, availability, and distribution of calibrated radioactive samples. Instructions and application forms are included for laboratories desiring to participate in the program. This document is not a research report. It is designed for use by personnel of laboratories participating or desiring to participate in the Radioactivity Standards Distribution Program, which is a part of the U.S. Environmental Protection Agency's quality assurance program

  4. Development of a wireless radioactive material sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, Dimosthenis, E-mail: katsisdc@ieee.org [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States); Burns, David; Henriquez, Stanley; Howell, Steve; Litz, Marc [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States)

    2011-10-01

    Our team at the United States Army Research Laboratory (ARL) has designed and developed a low-power, compact, wireless-networked gamma sensor (WGS) array. The WGS system provides high sensitivity gamma photon detection and remote warning for a broad range of radioactive materials. This sensor identifies the presence of a 1 {mu}Ci Cs137 source at a distance of 1.5 m. The networked array of sensors presently operates as a facility and laboratory sensor for the movement of radioactive check sources. Our goal has been to apply this architecture for field security applications by incorporating low-power design with compact packaging. The performance of this radiation measurement network is demonstrated for both detection and location of radioactive material.

  5. The laboratories of geological studies; Les laboratoires d`etudes geologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA`s activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  6. Environmental monitoring report: Sandia Laboratories, 1976

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1977-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the Albuquerque population is calculated. The environmental monitoring for calendar year 1976 shows that concentrations of radioactive materials in the Albuquerque area are typical of natural background for the area. An exception is a single onsite location where slightly abnormal uranium concentrations are expected. An estimated 0.044 person-rem Albuquerque area (80 km radius) population dose commitment results from calculated Sandia Laboratories releases. Over the same area 57,000 person-rem is accumulated from natural background. There were no measurable offsite radioactive effluent releases in CY 1976

  7. Effective extraction of radioactive cesium from various pollutants with a detergent solution including Mg2+ and K+

    International Nuclear Information System (INIS)

    Noguchi, Yuki; Kida, Toshiyuki; Kato, Eiichi; Akashi, Mitsuru; Shimizu, Kikuo

    2015-01-01

    Radioactive cesium (Cs) is extracted effectively from various polluted samples such as soil, silt, and burned ash by washing with a detergent solution comprised of KCl, MgCl 2 , and hydroxyethyl cellulose in a 5% H 2 SO 4 aqueous solution. Repeatedly washing extracts more than 65% of the radioactive Cs. (author)

  8. Management of radioactive waste at the Oak Ridge National Laboratory: a technical review

    International Nuclear Information System (INIS)

    1985-01-01

    This review was performed for the US Department of Energy by a panel of the Board on Radioactive Waste Management under the National Research Council's Commission on Physical Sciences, Mathematics, and Resources. In summary, ORNL's waste management practices have kept offsite doses low; some of the practices are temporary and improvised - they may not be as satisfactory in the future; reducing anticipated future releases will be difficult because the limited number of candidate waste disposal locations are characterized by topographic peculiarities; and a major ORNL accomplishment has been the demonstration that hydrofracture can be a successful method of disposal for at least low- and intermediate-level waste. The panel obtained its information over a 2-year period by examining a large body of technical literature, by making six visits to the Oak Ridge National Laboratory, and through briefings by representatives of government agencies and their subcontractors. Chapter 2 contains the charge to the panel. Chapters 3, 4, and 5 describe the site, the waste that is present, and the methods used to handle it. Chapters 6 through 10 treat the manner in which the performance of the waste-handling system is monitored, the criteria against which performance is assessed, the panel's assessment of performance, and consideration of alternative methods for future handling of radioactive waste. Chapter 11 contains a brief comparison of ORNL with other sites. The panel's principal conclusions and recommendations are summarized below and treated in detail in subsequent chapters. In general, the conclusions and recommendations considered by the panel to be the most important are provided first. 123 refs., 30 figs., 24 tabs

  9. Expansion design for a Laboratory of Radioactive Sources Handling type II, class B; Diseno de ampliacion para un Laboratorio de Manejo de Fuentes Radiactivas tipo II, clase B

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, P. S.

    2014-07-01

    This work presents the expansion design of the Radioactive Wastes Research Laboratory (RWRL) installation authorized by the Comision Nacional de Seguridad Nuclear y Salvaguardias (Mexico) as type II class C, to manage 40 different radionuclides, approximately. The RWRL has 4 areas at the present time: a laboratory of instrumental analysis, one of radioactive material processes, other of counting and a chemical reagents stock, which is not integrated to the operation license of the RWRL. With the purpose of expanding the operation license of the RWRL to an installation type II class B, to manage until 370 MBq of high radio toxicity radionuclides, is presented in this work an expansion proposal of the RWRL. The expansion proposal is based in: (1) the Mexican Nuclear Standard NOM-027-Nucl-1996 for installations type II class B, (2) the current distribution of water, light, electricity, extraction, gas, air and vacuum services of RWRL, and (3) the available areas inside the building that the RWRL occupies. The proposal contemplates the creation of additional new areas for RWRL: 3 laboratories, 2 dressing rooms, 2 bathrooms and 2 warehouses, one for radioactive materials and another for reagents chemical radiologically inactive. Architectural, electric, hydraulic, extraction and gas planes corresponding to the expansion of RWRL were realized. Inside the proposal the budget required to carry out the mentioned expansion is also presented. (Author)

  10. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, K.; Goethals, P.

    2006-07-15

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  11. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    International Nuclear Information System (INIS)

    Van Hecke, K.; Goethals, P.

    2006-01-01

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  12. Integrated planning of laboratory, in-situ, modelling and natural analogue studies in the Swiss radioactive waste management programme

    International Nuclear Information System (INIS)

    McKinley, I.G.; Zuidema, P.

    2001-01-01

    After more than 25 years of development, the Swiss radioactive waste management programme has a well established disposal strategy supported by an integrated R and D infrastructure. The process of implementation of repository projects is constrained by political factors, but a dynamic R and D programme is strongly guided by periodic integrated performance assessments and includes: Experimental studies in conventional and ''hot'' laboratories; Projects in underground test facilities and field test sites; Model development verification and validation; Natural and archaeological analogue projects. R and D in the Swiss national programme focuses on filling remaining gaps in system understanding, enhancing confidence via validation and demonstration projects, system optimisation and maintaining state of the art technical capacity in key areas. Increasingly, such work is carried out in collaboration with partner national waste management organisations. In addition, The National Cooperative for the Disposal of Radioactive Waste (Nagra) provides support services to developing programmes - which allows Nagra to widen its range of experience while providing attractive access to a knowledge base accumulated at a cost of over 750 M CHF. (author)

  13. Study of the physicochemical properties of the interface between titanium dioxide and various aqueous solutions

    International Nuclear Information System (INIS)

    Mazilier, C.

    1988-01-01

    The aim of this work is the study of ion exchange capacity of titanium dioxide in view of high temperature water purification and radioactive effluent processing because of its resistance to heat and radiations. Titanium dioxide is obtained by alkaline hydrolysis of an aqueous solution of Ti (IV) and is characterized by analytical physical chemistry methods. Interface between Ti0 2 and simple aqueous solutions (electrolytes) is more particularly studied by potentiometry [fr

  14. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  15. Radioactive substances monitoring programme. Report for 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The Radioactive Substances Act 1993 provides for controls to be exercised over the use and keeping of radioactive materials and the accumulation and disposal of radioactive wastes. The Environment Agency (the Agency) has been responsible for administration and enforcement of the Act in England and Wales since its formation on 1 April 1996. Prior to this date the work was undertaken by Her Majesty's Inspectorate of Pollution (HMIP). In support of its regulatory functions HMIP commissioned independent monitoring. This report presents the results from monitoring undertaken in 1995. The 1995 HMIP programme required operators of certain sites to provide samples of their liquid effluents for independent radiochemical analysis. The results provide checks on site operators' returns and insights into their quality assurance (QA) procedures and analytical techniques. The analyses were undertaken by the Laboratory of the Government Chemist (LGC) at its laboratories in Teddington, Middlesex. The programme also included checks on solid low level radioactive waste destined for land disposal at the site operated by British Nuclear Fuels plc (BNFL) at Drigg in Cumbria. (author)

  16. Results of the Interlaboratory Exercise CNS/CIEMAT-05 among Environmental Radioactivity Laboratories (Vegetable Ash); Evaluacion de la Intercomparacion CSN/CIEMAT-2005 entre Laboratorios Nacionales Radiactividad Ambiental (Ceniza Vegetal)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.; Valino Garcia, F.

    2006-07-01

    The document describes the outcome of the CSN/CIEMAT-05 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the IUPAC {sup I}nternational harmonised protocol for the proficiency testing of analytical chemistry laboratories{sup .} The exercise has been designed to evaluate the capability of national laboratories to determine environmental levels of radionuclides in vegetable ash samples. The sample has been prepared by the Environmental Radiation Laboratory, from the University of Barcelona, and it contains the following radionuclides: Sr-90, Pu-238, Am-241, Th-230, Pb-210, U-238, Ra-226, K-40, Ra-228, TI-208, Cs- 137 and Co-60. Reference values have been established TROUGH the kind collaboration of three international laboratories of recognized experience: IAEA MEL and IRSN-Orsay. The results of the exercise were computed for 35 participating laboratories and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, to achieve a more complete and objetiva study of the laboratories' performance. Some difficulties encountered to dissolve the test sample caused a lower response of analyses involving radiochemical separation, thus some laboratories couldn't apply their routine methods and no conclusions on PU-238, Am-241 and Th-230 performances have been obtained. The exercise has revealed an homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. The study has shown that participant laboratories perform radioactive determinations in vegetable ash samples with satisfactory quality levels. (Author) 6 refs.

  17. Incorporation of Savannah River Plant radioactive waste into concrete

    International Nuclear Information System (INIS)

    Stone, J.A.

    1975-01-01

    Results are reported of a laboratory-scale experimental program at the Savannah River Laboratory to gain information on the fixation of high-level radioactive wastes in concrete. Two concrete formulations, a High-Alumina Cement and a Portland Pozzalanic cement, were selected on the bases of leachability and compressive strength for the fixation of non-radioactive simulated wastes. Therefore, these two cements were selected for current studies for the fixation of actual Savannah River Plant high-level wastes. (U.S.)

  18. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  19. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Yoshikazu Kikawada; Takao Oi; Katsumi Hirose; Masaaki Hirose; Atsushi Tsukamoto; Ko Nakamachi; Teruyuki Honda; Hiroaki Takahashi

    2015-01-01

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  20. Development of standardized radioactive 46Sc solution

    International Nuclear Information System (INIS)

    Du Hongshan; Jia Zhang; Yu Yiguang; Sun Naiyao

    1988-01-01

    A method of preparation of standardized radioactive 46 Sc solution is developed. The separation of 46 Sc, the composition of 46 Sc solution and its stability, and radioactivity measurement of 46 Sc are systematically studied. The results obtained in the study and in the applications in many laboratories have shown that our method is effective and reliable

  1. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  2. Alteration of national glass in radioactive waste repository host rocks: A conceptional review

    International Nuclear Information System (INIS)

    Apps, J.A.

    1987-01-01

    The storage of high-level radioactive wastes in host rocks containing natural glass has potential chemical advantages, especially if the initial waste temperatures are as high as 250 0 C. However, it is not certain how natural glasses will decompose when exposed to an aqueous phase in a repository environment. The hydration and devitrification of both rhyolitic and natural basaltic natural glasses are reviewed in the context of hypothetical thermodynamic phase relations, infrared spectroscopic data and laboratory studies of synthetic glasses exposed to steam. The findings are compared with field observations and laboratory studies of hydrating and devitrifying natural glasses. The peculiarities of the dependence of hydration and devitrification behavior on compositional variation is noted. There is substantial circumstantial evidence to support the belief that rhyolitic glasses differ from basaltic glasses in their thermodynamic stability and their lattice structure, and that this is manifested by a tendency of the former to hydrate rather than devitrify when exposed to water. Further research remains to be done to confirm the differences in glass structure, and to determine both physically and chemically dependent properties of natural glasses as a function of composition

  3. Advance in radioactive decontamination

    International Nuclear Information System (INIS)

    Basteris M, J. A.; Farrera V, R.

    2010-09-01

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  4. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.; Lepel, E.A. [Pacific Northwest National Lab., Richland, WA (United States); Champ, D.R.; Killey, R.W.D.; Young, J.L.; Cooper, E.L. [Chalk River Labs., Chalk River, Ontario (Canada)

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public to such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions

  5. In-situ stabilization of radioactively contaminated low-level solid wastes buried in shallow trenches: an assessment

    International Nuclear Information System (INIS)

    Arora, H.S.; Tamura, T.; Boegly, W.J.

    1980-09-01

    The potential effectiveness of materials for in-situ encapsulation of low-level, radioactively contaminated solid waste buried in shallow trenches is enumerated. Cement, clay materials, and miscellaneous sorbents, aqueous and nonaqueous gelling fluids and their combinations are available to solidify contaminated free water in trenches, to fill open voids, and to minimize radionuclide mobility. The success of the grouting technique will depend on the availability of reliable geohydrologic data and laboratory development of a mix with enhanced sorption capacity for dominant radionuclides present in the trenches. A cement-bentonite-based grout mix with low consistency for pumping, several hours controlled rate of hardening, negligible bleeding, and more than 170 kPa (25 psi) compressive strength are a few of the suggested parameters in laboratory mix development. Cost estimates of a cement-bentonite-based grout mix indicate that effective and durable encapsulation can be accomplished at a reasonable cost (about $113 per cubic meter). However, extensive implementation of the method suggests the need for a field demonstration of the method. 53 references

  6. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  7. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  8. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out

  9. Radiation safety requirements for radionuclide laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide lays down the requirements for laboratories and storage rooms in which radioactive substances are used or stored as unsealed sources. In addition, some general instructions concerning work in radionuclide laboratories are set out.

  10. Geo-scientific considerations on evaluation of possible sites for radioactive waste isolation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Doi, K [Radioactive Waste Management Center, Tokyo (Japan)

    1980-08-01

    Japan is located on the Circum-Pacific Arc, which is a geoscientifically difficult area for selecting sites suitable as repositories for isolating radioactive waste. The writer has analyzed the problems relevant to radioactive waste isolation in this aqueous and active structural territory, with a view to examining the possibility of finding geological formations suitable for such repositories. As a result, certain parts in Neogene sedimentary rocks and Palaeozoic calcarious rocks were found to present geological characteristics that appeared favorable for radioactive waste isolation, while, on the other hand, the study indicated that much difficulty would be foreseen in crystalline rocks such as are currently suitable in the US and in Europe for high level radioactive waste isolation.

  11. The hell of a radioactivity

    International Nuclear Information System (INIS)

    Lambert, G.

    2004-01-01

    Nuclear accident, contaminations, pollutions and never-ending hazards: nuclear energy and especially radioactivity frightens the collective unconscious in an unreasoned way. The object of this book is to explain in a simple manner the bases and real values of natural radioactivity, nuclear energy and even of nuclear bombs. Without any will of proselytism, but with all the necessary scientific exactness, the author uses a novel style and the fancied story of a young couple for the exploration of the industrial and natural environment of radioactivity. From field measurements to laboratory visits, the reader, whatever his scientific culture, will be able to make his own opinion about this important question of science and society. (J.S.)

  12. Removal of Radioactive Pollutants by Liquid Emulsion Membrane From Liquid Waste

    International Nuclear Information System (INIS)

    Yossef, Y.A.A.

    2013-01-01

    Radioactive liquid waste should be safely managed because it is potentially hazardous to human health and the environment. Several methods were used for treatment of liquid waste, such as liquid emulsion membrane (LEM). In this work, liquid emulsion membrane using Tri-butyl phosphate (TBP) plus Bis (2-ethylhexyl) phosphate (HDEHP) as mobile carriers, hydrochloric acid (HCl) as stripping agents and an emulsifying agent (span 80) was used for the extraction of uranium ions from radioactive liquid waste. Various parameters influencing the permeation of uranium ions through the membrane have been optimized to separate uranium ions from radioactive liquid waste such as: the effects of membrane material, carrier concentration, operating conditions, etc. were examined; moreover, the transport mechanism of this uranium was also studied. The internal mass transfer in the water/oil (W/O) emulsion drop, the external mass transfer around the drop, the rates of formation, and the decomposition of the complex at the external aqueous-organic interface were considered. The results show that, the liquid emulsion membrane which consists of (25% by volume HDEHP, 0.005 M + 75% by volume TBP, 0.01 M) as extractant (carrier), span 80, 4% (v/v) (sorbitan monooleate) as surfactant agent, hydrochloric acid (HCl), (1.0 M) as stripping agent. From the results, the maximum extraction percent of uranium ions (nearly about of 100%) occurred at the operating conditions: stirring speed =500 rpm, the ratio between LEM and feed phase (liquid waste) = 20 ml: 100 ml, the ratio between organic phase (membrane phase) to internal aqueous phase (stripping phase) = 1.0 and the ph value of the external aqueous phase equal to 5.0.

  13. Apparatus for fixing radioactive waste

    International Nuclear Information System (INIS)

    Murphy, J.D.; Pirro, J. Jr.; Lawrence, M.; Wisla, S.F.

    1975-01-01

    Fixing radioactive waste is disclosed in which the waste is collected as a slurry in aqueous media in a metering tank located within the nuclear facilities. Collection of waste is continued from time to time until a sufficient quantity of material to make up a full shipment to a burial ground has been collected. The slurry is then cast in shipping containers for shipment to a burial ground or the like by metering through a mixer into which fixing materials are simultaneously metered at a rate to yield the desired proportions of materials. (U.S.)

  14. The absorption of Mn-54 onto some kinds of clay in aqueous solution

    International Nuclear Information System (INIS)

    Chu Minh Khoa; Le Van So

    2000-01-01

    The absorption of radioactive Mn-54 from aqueous solutions by natural treated clay of Dilinh region has been investigated. The effect of many factors such as time, pH, carrier concentration... were studied. It was found that the uptake is maximum in neutral or slightly alkaline solutions. The experimental results show that natural clay is suited for the moval of radioactive Mn-54. These types of clay may be considered superior to synthetic exchangers for the removal of Mn-54 if the availability and price of the former are taken into account. (author)

  15. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  16. Applicability of a generic monitoring program for radioactive waste burial grounds at Oak Ridge National Laboratory and Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1978-07-01

    Six burial grounds were evaluated at Oak Ridge to determine which would be most suitable for testing the generic monitoring approach, and two were selected. Burial Ground 4 was chosen because it is known to be leaking radioactivity and a monitoring program is desirable to determine the source, pattern and extent of the leakage. Burial Ground 6 was chosen because the most complete radiologic and geologic data is available and modern burial practices have been utilized at this site. At the Idaho National Engineering Laboratory (INEL) only one burial ground exists, the Radioactive Waste Management Complex (RWMC). The data available on the burial grounds are insufficient for an adequate understanding of radionuclide migration patterns and accordingly, inadequate for the design of reliable monitoring programs. It was decided, therefore, that preliminary monitoring programs should be designed in order to obtain additional data for a later implementation of reliable monitoring programs. The monitoring programs designed for ORNL consist primarily of the installation of surface water monitoring stations, the surveillance of trench sump wells, a test boring program to study subsurface geologic conditions, a ground water sampling program and the installation of instrumentation, specifically infiltrometers and evaporation pans, to develop data on site water balances. The program designed for the INEL burial ground includes installation of trench sumps, a ground water monitoring program, test borings to further define subsurface geohydrologic conditions and the installation of instrumentation to develop data on the site water balance. The estimated costs of implementing the recommended programs are about $420,820 for monitoring Burial Grounds 4 and 6 at Oak Ridge and $382,060 for monitoring the RWMC at INEL. 12 figures

  17. Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape

    Energy Technology Data Exchange (ETDEWEB)

    Garten, C.T. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1995-12-31

    Oak Ridge National Laboratory (ORNL) is located within the Valley and Ridge Physiographic Province of eastern Tennessee (USA). Wildlife populations have access to some radioactively contaminated sites at ORNL. Contaminated animals or animal nests within the Laboratory`s boundaries have been found to contain {sup 90}Sr or {sup 137}Cs on the order of 10{sup -2}-10{sup 4} Bq g{sup -1} and trace amounts of other radionuclides (including transuranic elements). Animals that are capable of flight and animals with behaviour patterns or developmental life stages involving contact with sediments in radioactive ponds, like benthic invertebrates, present the greatest potential for dispersal of radioactivity. The emigration of frogs and turtles from waste ponds also presents a potential for dispersal of radioactivity but over distances < 5 km. Mud-dauber wasps (Hymenoptera) and swallows (Hirundinidae) may transport radioactive mud for nest building, but also over relatively short distances (0.2-1 km). Movement by small mammals is limited by several factors, including physical barriers and smaller home ranges. Larger animals, like white-tailed deer (Odocoileus virginianus) are potential vectors of radioactivity due to their greater body size, longer life expectancy, and larger home range. Larger animals contain greater amounts of total radioactivity than smaller animals, but tissue concentrations of {sup 137}Cs generally decline with body size. (author).

  18. Preparation methods of copper-ferrocyanide functionalized magnetic nanoparticles for selective removal of cesium in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Hee-Man Yang; Kune Woo Lee; Bum-Kyoung Seo; Jei Kwon Moon [KAERI, Daejeon (Korea, Republic of)

    2013-07-01

    Copper ferrocyanide functionalized magnetite nanoparticles (Cu-FC-MNPs) were successfully synthesized by the immobilization of copper and ferrocyanide on the surface of [1-(2 amino-ethyl)-3-aminopropyl] trimethoxysilane modified magnetite nanoparticles. A radioactive cesium (Cs) adsorption test was carried out to investigate the effectiveness of Cu-FC-MNPS for the removal of radioactive Cs. Furthermore, the Cu-FC-MNPs showed excellent separation ability by an external magnet in an aqueous solution. (authors)

  19. On-site Destruction of Radioactive Oily Wastes Using Adsorption Coupled with Electrochemical Regeneration - 12221

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.W. [Arvia Technology Ltd, Daresbury Innovation Centre, Daresbury, WA4 4FS (United Kingdom); Wickenden, D.A. [Magnox Ltd, Berkeley Centre, Gloucestershire, GL13 9PB (United Kingdom); Roberts, E.P.L. [School of Chemical Engineering, University of Manchester, Manchester, M60 1QD (United Kingdom)

    2012-07-01

    Arvia{sup R}, working with Magnox Ltd, has developed the technology of adsorption coupled with electrochemical regeneration for the degradation of orphan radioactive oil wastes. The process results in the complete destruction of the organic phase where the radioactivity is transferred to liquid and solid secondary wastes that can then be processed using existing authorised on-site waste-treatment facilities.. Following on from successful laboratory and pilot scale trials, a full scale, site based demonstrator unit was commissioned at the Magnox Trawsfynydd decommissioning site to destroy 10 l of LLW and ILW radioactive oils. Over 99% of the emulsified oil was removed and destroyed with the majority of activity (80 - 90%) being transferred to the aqueous phase. Secondary wastes were disposed of via existing routes with the majority being disposed of via the sites active effluent treatment plant. The regeneration energy required to destroy a litre of oil was 42.5 kWh/l oil. This on-site treatment approach eliminates the risks and cost associated with transporting the active waste oils off site for incineration or other treatment. The Arvia{sup R} process of adsorption coupled with electrochemical regeneration has successfully demonstrated the removal and destruction of LLW and ILW radioactive oils on a nuclear site. Over 99.9% of the emulsified oil was removed, with the majority of the radioactive species transferred to the aqueous, supernate, phase (typically 80 - 90 %). The exception to this is Cs-137 which appears to be more evenly distributed, with 43% associated with the liquid phase and 33 % with the Nyex, the remainder associated with the electrode bed. The situation with Plutonium may be similar, but this requires confirmation, hence further work is underway to understand the full nature of the electrode bed radioactive burden and its distribution within the body of the electrodes. - Tritium gaseous discharges were negligible; hence no off-gas treatment

  20. IRSN's radiological proficiency testings: a key for managing the quality of test laboratories in charge of the environmental radioactivity survey in France?

    Energy Technology Data Exchange (ETDEWEB)

    Ameon, R.; Gleizes, M.; Maulard, A.; Moine, J.; Vignaud, C. [Institute for Radioprotection and Nuclear Safety, IRSN (France)

    2014-07-01

    In France, many actors are involved in environmental monitoring (IRSN, operators of nuclear facilities, State services, approved air quality monitoring associations, environmental protection associations, private environmental laboratories...). The French National Network for Environmental Radioactivity Monitoring (RNM) federates all these entities. RNM brings together the environmental measurement results made in a regulatory framework on the French territory and make them available to the public through a web site. The quality of these measurements is guaranteed by subjecting the test laboratories to an approval procedure under the control of the French nuclear safety authority (ASN). The approval procedure includes administrative requirements (the laboratory shall meet ISO 17025 requirements) and the participation to proficiency testings (PT) provided by IRSN in order to demonstrate their technical competence. As approvals cover all components of the environment, the five-year PT program is defined on a combination of: - 6 types of environmental matrices: water, soil/sediments, biological matrices (tea, tobacco, fish, milk,...), aerosols on filters, gas-air (activated charcoal cartridge) and ambient air (RPL dosimeters), - 17 categories of radioactive measurements: g-emitters, gross a, gross b, {sup 3}H, {sup 14}C, {sup 90}Sr/{sup 90}Y, pure b-emitters, U isotopes and U content, Th isotopes, {sup 226}Ra and decay products, {sup 228}Ra and decay products, Pu/Am, {sup 129}I/{sup 131}I, noble gases, g-dose rate. Following ISO/CEI 17043 requirements, IRSN, as an accredited PT provider is in charge of: - Preparation and dispatch of test items, - Control of the homogeneity and stability of produced test items, - Determination of the assigned values, - Analysis of the results transmitted by participants in terms of relative bias, En number and z-score, - Publication of the report. PT program managed by IRSN groups 6 to 7 interlaboratory comparisons per year. Each of

  1. DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES

    International Nuclear Information System (INIS)

    Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

    2002-01-01

    The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU(reg s ign) reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition

  2. Data Processing and Programming Applied to an Environmental Radioactivity Laboratory; Desarrollo Informatico Aplicado a un Laboratorio de Radiactividad Ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Trinidad, J.A.; Gasco, C.; Palacios, M.A.

    2009-07-01

    This report is the original research work presented for the attainment of the author master degree and its main objective has been the resolution -by means of friendly programming- of some of the observed problems in the environmental radioactivity laboratory belonging to the Department of Radiological Surveillance and Environmental Radioactivity from CIEMAT. The software has been developed in Visual Basic for applications in Excel files and it solves by macro orders three of the detected problems: a) calculation of characteristic limits for the measurements of the beta total and beta rest activity concentrations according to standards MARLAP, ISO and UNE and the comparison of the three results b) Pb-210 and Po-210 decontamination factor determination in the ultra-low level Am-241 analysis in air samples by alpha spectrometry and c) comparison of two analytical techniques for measuring Pb-210 in air ( direct-by gamma spectrometry- and indirect -by radiochemical separation and alpha spectrometry). The organization processes of the different excel files implied in the subroutines, calculations and required formulae are explained graphically for its comprehension. The advantage of using this kind of programmes is based on their versatility and the ease for obtaining data that lately are required by tables that can be modified as time goes by and the laboratory gets more data with the special applications for describing a method (Pb-210 decontamination factors for americium analysis in air) or comparing temporal series of Pb-210 data analysed by different methods (Pb-210 in air). (Author)

  3. Concentration and solidification of liquid radioactive wastes. Laboratory studies

    International Nuclear Information System (INIS)

    Nuche Vazquez, F.; Lora Soria, F. de

    1969-01-01

    Bench scale runs on concentration of intermediate level radioactive wastes, and incorporation of the concentrates in asphalt, are described. The feasibility of the process has been demonstrated, with a maximum incorporation of 60 percent of salts into the asphaltic matrix and a volume reduction factor of 10. (Author) 14 refs

  4. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  5. Future radioactive liquid waste streams study

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  6. Future radioactive liquid waste streams study

    International Nuclear Information System (INIS)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL

  7. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  8. Lessons learned from radioactive/mixed waste analyses at EG ampersand G Idaho, Inc

    International Nuclear Information System (INIS)

    Murphy, R.J.; Sailer, S.J.; Bennett, J.T.; Arvizu, J.S.

    1990-01-01

    For the past 30 years extensive chemical characterizations of environmental and waste samples have been performed by numerous academic, commercial, and government analytical chemistry laboratories for the purposes of research, monitoring, and compliance with regulations. The vast majority of these analyses, however, has been conducted on samples containing natural concentrations of radioactive constituents. It is only within the last decade that a small number of laboratories have been conducting extensive chemical characterizations of highly radioactive samples and consequently have begun to identify many special requirements for the safe and accurate conduct of such analyses. Experience gained from chemical analyses of radioactively contaminated samples has indicated special requirements and actions needed in the following three general areas: Sample collection and preservation; chemical analysis protocols; disposal of waste from chemical analyses. In this paper we will summarize the experience and findings acquired from four years of radioactive sample analyses by the Environmental Chemistry Unit, an analytical chemistry laboratory of EG ampersand G Idaho, Inc. at the Idaho National Engineering Laboratory. 6 tabs

  9. Results of the Interlaboratory Exercise CSN/CIEMAT-100 Among Environmental Radioactivity Laboratories (Soil); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-00 (Suelo)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.

    2002-07-01

    The document describes the outcome of the CSN/CIEMAT-00 interlaboratory test comparison among environmental radioactivity laboratories. the exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. the test sample was a soil containing environmental levels of K-40, Ra-226, Ac-228, Sr-90, Cs-137, Cs-134, Pu (239-240) y Am-241. the Universidad Autonoma de Barcelona prepared the material and reported adequate statistical studies of homogeneity. The results of the exercise were computed for 30 participating laboratories, and their analytical performance was assessed using the u-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The exercise has drawn that several laboratories have difficulties in the evaluation of combined uncertainty, mainly in analysis involving radiochemical steps. The study has shown an homogeneous inter-laboratory behaviour, and the improvement achieved through subsequent exercises in the quality of the data they are producing. (Author) 10 refs.

  10. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-01-01

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value

  11. Safety in the management of radioactive substances; Seguridad en el manejo de sustancias radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Balter, Henia [Centro de Investigaciones Nucleares, Montevideo (Uruguay); Rey, Ana; Leon, Alba; Jelen, Miguel [Universidad de la Republica, Montevideo (Uruguay). Facultad de Quimica

    1994-12-31

    A brief explanation of radiation protection,external irradiation,internal contamination,risk factors, active laboratory design,localization,ventilation,working surfaces,area distribution,classification of active laboratory.Radiopharmacy laboratory,shielding, area monitoring,personal dosimetry,rules for management of open sources,maximum admitted limits for radionuclides currently used in radiopharmacy.Decontamination of active areas and materials,surfaces,equipment s.Decontamination of hands.Waste disposal.Radioactive materials transportation.Reception of radioactive materials.Bibliography.

  12. Radioactive waste management information, 1982 summary and record-to-date

    International Nuclear Information System (INIS)

    Cassidy, G.B.

    1983-07-01

    This document summarizes radioactive waste data records for the Idaho National Engineering Laboratory (INEL) compiled since 1952. Kinds of information include volume, radioactivity, isotopic identity, origin, and decay status. The radioactive waste data presented was obtained from the INEL Radioactive Waste Management Information System (RWMIS). This report is updated annually to incorporate waste management data for the current year and reflects changes in previous annual reports. Changes are made to more accurately reflect the current status of waste operations at the INEL

  13. Radioactive Waste Management information for 1994 and record-to-date

    International Nuclear Information System (INIS)

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-07-01

    This document, Radioactive Waste Management Information for 1994 and Record-To-Date, contains computerized radioactive waste data records from the Idaho National Engineering Laboratory (INEL). Data are compiled from information supplied by the US Department of Energy (DOE) contractors. Data listed are on airborne and liquid radioactive effluents and solid radioactive waste that is stored, disposed, and sent to the INEL for reduction. Data are summarized for the years 1952 through 1993. Data are detailed for the calendar year 1994

  14. Effective adsorption and collection of cesium from aqueous solution using graphene oxide grown on porous alumina

    Science.gov (United States)

    Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji

    2018-04-01

    Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.

  15. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  16. NPL support for environmental radioactivity measurements in the United Kingdom

    International Nuclear Information System (INIS)

    Jerome, Simon

    2009-01-01

    Full text: The United Kingdom was one of the first nations to initiate a civil nuclear power programme in the 1950s, with the first commercial generation of electricity being achieved in 1957. As the civil nuclear programme grew in size, an ongoing programme of environmental monitoring was instituted by central government that placed the responsibility for monitoring radioactivity in the local environment and the measurement of discharges of radioactive gases and liquids with the site operator, the Environment Agency, the Environment and Heritage Service, the Food Standards Agency and the Scottish Environment Protection Agency (or their predecessors). This presentation will discuss the sources of radioactivity in the UK environment from the nuclear industry, natural and other sources, focussing on how these sources of radioactivity are monitored and what future trends may be, taking the Windscale fire of 1957, the Chernobyl accident and the Litvinenko incident of 2006 as examples of how unexpected events have been addressed in the UK. As the national metrology institute for the UK, the NPL is required to provide support to the National Measurement System infrastructure of the UK, including the measurement of radioactivity. The presentation will also describe the absolute standardisation of radioactivity at the NPL, and how this is disseminated to organisations measuring environmental radioactivity in the UK by means of directly traceable standards of radioactivity and through the provision of an ongoing series of proficiency test exercises. The outcomes of some recent proficiency tests will be discussed, with emphasis on how the general performance of laboratories participating in these proficiency tests has matured over the years since their inception in 1989. In addition, the data treatment of such proficiency tests will also be examined in order to illustrate that statutory regulatory bodies, laboratory accreditation organisations and customers are able to

  17. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Lenail, B.

    1984-01-01

    Transport of radioactive materials is dependent of transport regulations. In practice integrated doses for personnel during transport are very low but are more important during loading or unloading a facility (reactor, plant, laboratory, ...). Risks occur also if packagings are used outside specifications. Recommendations to avoid these risks are given [fr

  18. Laboratory facilities increased by gifts

    International Nuclear Information System (INIS)

    1968-01-01

    As a result of gifts from two Member States facilities at the Agency's research centre at Seibersdorf, Austria, have been increased. New equipment has been provided by France and Romania. The French equipment is a coincidence counter to be operated in conjunction with a computer and is valued at $35 000. It can give automatically an exact measurement of radioactivity in a chemical solution containing radioisotopes. This means that a sample of the solution can be sent to another laboratory to be used for calibrating instruments and checking results of research work. Since 1963 nearly 8 000 radioactive solutions to be used as standards have been sent from Seibersdorf to research laboratories and hospitals in 56 countries. The demand continues to grow, and in order to meet it the equipment was developed by the Saclay Research Centre of the Commissariat a l'Energie Atomique in collaboration with Seibersdorf. From Romania have come six electronic measuring instruments worth $6 000 to assist nuclear research, surveying and prospecting. Three are electronic scalers for experimental work involving the counting of radioactive emissions, and three are survey meters for detecting the presence of radioactivity in geological samples. (author)

  19. Roshydromet system of environment radioactive contamination monitoring in the Arctic region of Russia

    International Nuclear Information System (INIS)

    Chelukanov, V.

    1995-01-01

    159 arctic hydrometerological stations take measurements of gamma radiation. 51 stations monitor the density of atmospheric radioactive fallout and 12 stations monitor the concentration of aerosols. 13 hydrological stations sited in the mouths of main Arctic Ocean rivers take water samples. Regional laboratories carry out isotop analysis of samples. Information on high levels of a radioactivity measured at the monitoring stations, as well as information on abnormal radioactivity from regional laboratories are transmitted to the Information Centers on the monitoring system (Moscow and Obnisk) by cable. 2 figs., 1 tab

  20. CEA and its radioactive wastes

    International Nuclear Information System (INIS)

    Marano, S.

    1999-01-01

    CEA annually produces about 3500 tons of radioactive wastes in its 43 basic nuclear installations. CEA ranks third behind EDF and Cogema. Low-level wastes (A wastes) are sent to ANDRA (national agency for the management of nuclear wastes)whereas medium-level wastes (B wastes) are stored by CEA itself. CEA has checked off its storing places and has set up an installation Cedra to process and store ancient and new nuclear wastes. 3 other installations are planned to operate within 6 years: Agate (Cadarache) will treat liquid effluents, Stella (Saclay) will process liquid wastes that are beta or gamma emitters, and Atena (Marcoule) will treat and store radioactive sodium coming from Phenix reactor and IPSN laboratories. The use of plasma torch for vitrifying wastes is detailed, the management of all the nuclear wastes produced by CEA laboratories and installations is presented. (A.C.)

  1. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  2. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  3. Post-process intensification of photographic silver images, using radioactive compounds

    International Nuclear Information System (INIS)

    1979-01-01

    A method of post-process intensification of silver images on a developed and fixed photographic film or plate is described, comprising the steps of (a) converting silver of the developed film or plate to a radioactive compound by contracting the film or plate with an aqueous alkaline solution of an organo-S 35 compound which reacts selectively with silver in a photographic film or plate; (b) placing the film or plate treated in step (a) in direct contact with a receiver film which is sensitive to beta radiation whereby the receiver film is exposed by radiation from the radioactive compound; and (c) developing and fixing the resulting intensified receiver film. (author)

  4. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  5. Laboratory and Field Age of Aqueous Grape Juice Bait and Capture of Zaprionus indianus (Diptera: Drosophilidae).

    Science.gov (United States)

    Epsky, Nancy D; Gill, Micah A

    2017-06-01

    Volatile chemicals produced by actively fermenting aqueous grape juice bait have been found to be highly attractive to the African fig fly, Zaprionus indianus Gupta. This is a highly dynamic system and time period of fermentation is an important factor in bait efficacy. A series of field tests were conducted that evaluated effects of laboratory versus field fermentation and sampling period (days after placement [DAP]) on bait effectiveness as the first step in identifying the chemicals responsible for attraction. Tests of traps with bait that had been aged in the laboratory for 0, 3, 6, and 9 d and then sampled 3 DAP found higher capture in traps with 0- and 3-d-old baits than in traps with 6- or 9-d-old baits. To further define the time period that produced the most attractive baits, a subsequent test evaluated baits aged for 0, 2, 4, and 6 d in the laboratory and sampled after 1-4 DAP, with traps sampled and bait discarded at the end of each DAP period. The highest capture was in traps with 4-d-old bait sampled 1 DAP, with the second best capture in traps with 0-d-old bait sampled 3 DAP. However, there tended to be fewer flies as DAP increased, indicating potential loss of identifiable flies owing to decomposition in the actively fermenting solutions. When traps were sampled and bait recycled daily, the highest capture was in 2- and 4-d-old baits sampled 1 DAP and in 0-d-old baits sampled 2-4 DAP. Similar patterns were observed for capture of nontarget drosophilids. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  6. An experiment on radioactive equilibrium and its modelling using the ‘radioactive dice’ approach

    Science.gov (United States)

    Santostasi, Davide; Malgieri, Massimiliano; Montagna, Paolo; Vitulo, Paolo

    2017-07-01

    In this article we describe an educational activity on radioactive equilibrium we performed with secondary school students (17-18 years old) in the context of a vocational guidance stage for talented students at the Department of Physics of the University of Pavia. Radioactive equilibrium is investigated experimentally by having students measure the activity of 214Bi from two different samples, obtained using different preparation procedures from an uraniferous rock. Students are guided in understanding the mathematical structure of radioactive equilibrium through a modelling activity in two parts. Before the lab measurements, a dice game, which extends the traditional ‘radioactive dice’ activity to the case of a chain of two decaying nuclides, is performed by students divided into small groups. At the end of the laboratory work, students design and run a simple spreadsheet simulation modelling the same basic radioactive chain with user defined decay constants. By setting the constants to realistic values corresponding to nuclides of the uranium decay chain, students can deepen their understanding of the meaning of the experimental data, and also explore the difference between cases of non-equilibrium, transient and secular equilibrium.

  7. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  8. Inverse hydrochemical models of aqueous extracts tests

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  9. Portable laboratories for radioactivity measurements

    International Nuclear Information System (INIS)

    Damljanovic, D.; Smelcerovic, M.; Koturovic, A.; Drndarevic, V.; Sobajic, M.

    1989-01-01

    The portable radiometric laboratories LARA-10, LARA-GS, LARA-86 and ALARA-10 designed, developed and produced at the Boris Kidric Institute are described. Earlier models (LARA-1, LARA-1D, LARA-2 and LARA-5) are presented in brief. The basic characteristics of the devices and methods of measurements are given. All the instruments are battery operated and almost all can also use 220V/50Hz supply. They are a very suitable facility for radiological monitoring of soil, water, food, clothes etc., when working in field conditions (author)

  10. Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-09-01

    This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17 ampersand Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  11. Transportation accidents/incidents involving radioactive materials (1971--1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions

  12. Decontamination and decommission of a radiochemical laboratory building complex

    International Nuclear Information System (INIS)

    Zoubek, Norbert

    2008-01-01

    Full text: Handling of unsealed radioactive substances for research and development purposes in chemical or pharmaceutical industries or research centres as well as production of radioactive substances (e.g. for applications in nuclear medicine or industry) requires operation of special radiochemical laboratories. In general, operation of radiochemical laboratories is strongly regulated by the government and national authorities. The operator needs a permit related to radiological protection. In general, technical requirements for such facilities are very high. To ensure high safety standards with respect to the employees and the environment, several radiological protection measures have to be taken. These measures (for example special shielding or ventilation and waste water systems) depend on various factors, e.g. activity in use, kind of nuclides, chemical properties and volatility of substances. In order to close-down such radiochemical laboratories some radiological protection measures have to be maintained to ensure protection of both humans and the environment induced by possible residual contaminations within the facility including technical inventory. However, a later reuse of the facility as a non-radioactive facility requires removal of all radioactive contamination with respect to national regulation. Resulting radioactive wastes have to be disposed of under control of competent authorities. Based on the experience of a decontamination and decommission project for a former radiochemical laboratory complex, the main steps necessary to release such a facility are discussed. Analytical aspects of initial conditions, necessary organisational structures within the project, resources needed estimation and exploration of the radiological situation in the laboratory, elaboration of a measuring strategy and decontamination methods as well as different waste disposal routes in relation to different waste types are reported. (author)

  13. Spread-sheet application to classify radioactive material for shipment

    International Nuclear Information System (INIS)

    Brown, A.N.

    1998-01-01

    A spread-sheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spread-sheet are used to confirm the proper US DOT classification when offering radioactive material packages for transport. The user must input to the spread-sheet the mass of the material being classified, the physical form (liquid or not) and the activity of each regulated nuclide. The spread-sheet uses these inputs to calculate two general values: 1)the specific activity of the material and a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material. If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three low specific activity designations (LSA-I, LSA-II, LSA-III, or not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity). This spread-sheet has proven to be an invaluable aid for shippers of radioactive materials at the Idaho National Engineering and Environmental Laboratory. (authors)

  14. Critical evaluation of the Laboratory of Radionuclide Metrology results of the Institute of Radiation Protection and Dosimetry - IRD in the international key comparisons of activity measurement of radioactive solutions

    International Nuclear Information System (INIS)

    Iwahara, A.; Tauhata, L.; Silva, C.J. da

    2014-01-01

    The Radionuclide Metrology Laboratory (LMR) of LNMRI/IRD has been participating since 1984, in international key-comparisons of activity measurement of radioactive sources organized by BIPM and the Regional Metrology Organizations as EURAMET and APMP. The measured quantity is the activity of a radioactive solution, in becquerel (Bq), containing the radionuclide involved and the of measurement methods used are 4αβ-γ coincidence/anticoincidence, coincidence sum-peak and liquid scintillation. In this paper a summary of the methods used and a performance analysis of the results obtained are presented. (author)

  15. Environmental radioactivity in Canada 1986

    International Nuclear Information System (INIS)

    1987-01-01

    The radiological surveillance program of the Department of National Health and Welfare is conducted for the purpose of determining levels of environmental radioactivity in Canada and assessing the resulting population exposures. During 1986 the program was strongly influenced by radioactive fallout on Canada resulting from the Chernobyl nuclear reactor accident on April 26, 1986 in the Soviet Ukraine. The Environmental Radiation Hazards Division (ERHD) increased its frequency of analyses of environmental samples immediately following the accident. Interim screening limits for foodstuffs were developed. A measurement program for radioactivity in domestic and imported foods was implemented. The ERHD measurement program was supplemented by additional measurements conducted by many other private and government laboratories. Radiation doses to Canadian from Chernobyl fallout were extremely low with no group in the population receiving more than 10 microsieverts

  16. Treatment of radioactive effluents at the Boris Kidric Institute

    International Nuclear Information System (INIS)

    Bojovic, P.; Drobnik, S.; Popara, D.

    1964-10-01

    The paper describes the origin, composition and activity of radioactive effluents at the Boris Kidric Institute, their collection at the places or origin, transport to the place of disposal and treatment of some smaller quantities. Special attention has been paid to effluents with short-lived isotopes produced in the Laboratory for radioactive isotope production (author)

  17. Radioactive wastes: the challenge of volumes reduction

    International Nuclear Information System (INIS)

    Lepetit, V.

    2005-01-01

    The reduction of radioactive waste volumes is a priority for the French atomic energy commission (CEA) and for the Areva group. This article gives a rapid overview of the equipments and processes used to separate the valorizable materials from the ultimate wastes: pulsed separation columns and evaporators for the liquid-liquid extraction, compactification of spent fuel hulls, remote handling systems, recoverable colloid for surface decontamination, decontaminating foam, hydrothermal oxidation of organic and aqueous effluents, cold crucible vitrification etc. (J.S.)

  18. Process for final storage of high level radioactive fission product solution

    International Nuclear Information System (INIS)

    Ellis, J.R.B.; Fries, B.A.

    1984-01-01

    In this process for the storage of an aqueous solution of radioactive nuclides, the solution is diluted with system water, which is obtained from a reservoir below the bottom of the sea in a porous geological stratum. After dilution, the diluted solution is injected into the same geological stratum under the bottom of the sea. (orig.) [de

  19. Environmental radioactivity measurement intercomparison exercise 1990

    International Nuclear Information System (INIS)

    Jerome, S.M.

    1991-05-01

    In a recent national intercomparison exercise, 49 laboratories involved in making environmental radioactivity measurements took part in the analysis of samples supplied by the National Physical Laboratory (NPL) in the United Kingdom. There were two sets of samples; one containing pure β-emitters and one containing β/γ-emitters. Two thirds of the participants measured the β/γ-emitter sample only, the remainder measured both. The results are presented. (author)

  20. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    International Nuclear Information System (INIS)

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition

  1. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  2. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  3. International Laboratory of Marine Radioactivity: Biennial report 1985-1986

    International Nuclear Information System (INIS)

    1987-10-01

    A review of the scientific activities of the ILMR in 1985-1986 is presented. The scientific programs of the Radiobiology Laboratory, Radiochemistry-Geochemistry Laboratory and Marine Environmental Studies Laboratory are briefly described. In addition lists of the visiting consultants/experts, trainees/fellows, publications/meetings, Committee/Expert group membership, courses and research/technical contracts are given

  4. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  5. Adaptation of the TCLP and SW-846 methods to radioactive mixed waste

    International Nuclear Information System (INIS)

    Griest, W.H.; Schenley, R.L.; Caton, J.E.; Wolfe, P.F.

    1994-01-01

    Modifications of conventional sample preparation and analytical methods are necessary to provide radiation protection and to meet sensitivity requirements for regulated constituents when working with radioactive samples. Adaptations of regulatory methods for determining ''total'' Toxicity Characteristic Leaching Procedure (TCLP) volatile and semivolatile organics and pesticides, and for conducting aqueous leaching are presented

  6. Lessons learnt from participation in international inter-comparison exercise for environmental radioactivity measurement

    International Nuclear Information System (INIS)

    Jha, S.K.; Pulhani, Vandana; Sartandel, Sangeeta

    2016-06-01

    Environmental Radioactivity Measurement Section of Health Physics Division is regularly carrying out surveillance of the radioactivity concentration in the environment. The laboratory participates in the inter-comparison exercises conducted by various international agencies for quality assurance and quality control of analytical estimations. This report summarizes the results of the analysis of radioactivity in environmental matrices of the inter-comparison exercises. The participation in inter-comparison exercises has demonstrated competence in radionuclide identification and estimations, equivalence with the results of other participating laboratories, validated adopted analytical methods, introduced traceability to measurement etc. at national and international level. (author)

  7. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-04-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed are (1) to accomplish the purpose of the laboratory; (2) to protect the environment, (3) to provide safe working conditions; and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of a well engineered plutonium or transplutonium laboratory are given

  8. Radiological design of hot laboratories

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    The fundamental design objectives for a laboratory where work with highly radioactive and highly toxic materials, such as plutonium and transplutonium nuclides, is performed, are (1) to accomplish the purpose of the laboratory, (2) to protect the environment, (3) to provide safe working conditions, and (4) to keep radiation exposure to staff as low as practicable. The major planning and design features of well-engineered plutonium or transplutonium laboratory are given. (author)

  9. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  10. Physicochemical changes of cements by ground water corrosion in radioactive waste storage

    International Nuclear Information System (INIS)

    Contreras R, A.; Badillo A, V. E.; Robles P, E. F.; Nava E, N.

    2009-10-01

    Knowing that the behavior of cementations materials based on known hydraulic cement binder is determined essentially by the physical and chemical transformation of cement paste (water + cement) that is, the present study is essentially about the cement paste evolution in contact with aqueous solutions since one of principal risks in systems security are the ground and surface waters, which contribute to alteration of various barriers and represent the main route of radionuclides transport. In this research, cements were hydrated with different relations cement-aqueous solution to different times. The pastes were analyzed by different solid observation techniques XRD and Moessbauer with the purpose of identify phases that form when are in contact with aqueous solutions of similar composition to ground water. The results show a definitive influence of chemical nature of aqueous solution as it encourages the formation of new phases like hydrated calcium silicates, which are the main phases responsible of radionuclides retention in a radioactive waste storage. (Author)

  11. Dose dispenser for radioactive gas

    International Nuclear Information System (INIS)

    Horwitz, N.H.; Gutkowski, R.E.

    1977-01-01

    An activity metering apparatus for metering predetermined activities of radioactive gas from a supply ampul to dose vials is described. The apparatus includes a shielded ampul housing, a fine metering valve communicating with the ampul housing chamber, a shielded vial housing and a hypodermic needle communicating with the metering valve and received through an opening in the vial housing. A Geiger-Muller tube is adjustably supported opposite an opening in the vial housing, whereby the activity of the radioactive gas dispensed to a partially evacuated vial within the vial chamber may be read directly by a standard laboratory rate meter

  12. Automatic exposure system for radioactive source at teaching laboratory; Sistema automatico de abertura de fonte radioativa em laboratorio de ensino

    Energy Technology Data Exchange (ETDEWEB)

    Seren, Maria Emilia G.; Gaal, Vladmir; Morais, Sergio Luiz de; Rodrigues, Varlei, E-mail: mseren@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2013-12-15

    The development of Compton Scattering experiment, studied by undergraduate students of the Medical Physics course at the Universidade Estadual de Campinas (UNICAMP), takes place in the Medical Physics Teaching Laboratory, belonging to the Gleb Wataghin Physics Institute (IFGW/UNICAMP). The experiment consists of a fixed {sup 137}Cs radioactive source, with current activity of 610.5 MBq and a scintillation detector that turns around the center of the system whose function is to detect the scattered photons spectrum by a scatter object (target). The {sup 137}Cs source is stored in a lead shield with a collimating window for the gamma radiation emitted with energy of 0.662 MeV. This source is exposed only when an attenuation barrier protecting the collimating window is opened. The process of opening and closing the attenuation barrier may deliver a radiation dose to users when done manually. Considering the stochastic harmful effects of ionizing radiation, the goal of this project was to develop an automatic exposure system of the radioactive source, in order to reduce the radiation dose received during the Compton Scattering experiment. The developed system is micro controlled and performs standard operating routines, responding to emergencies. Furthermore, an electromagnetic lock enables quick closing of the barrier by gravity, in case of interruption of the electrical current circuit. Besides reducing the total dose to lab users, the system adds more security to the routine, since it limits the access to the radioactive source and prevents accidental exposure. (author)

  13. Safety apparatus for serious radioactive accidents (1962)

    International Nuclear Information System (INIS)

    Estournel, R.; Rodier, J.

    1962-01-01

    In the case of a serious radioactive accident, radioactive dust and gases may be released into the atmosphere. It is therefore necessary to be able to evaluate rapidly the importance of the risk to the surrounding population, and to be able to ensure, even in the event of an evacuation of the Centre, the continuation of the radioactivity analyses and the decontamination of the personnel. For this, the Anti-radiation Protection Service at Marcoule has organised mobile detection teams and designed a mobile laboratory and a mobile shower-unit. After describing the duty of the mobile teams, the report gives a description of the apparatus which would be used at the Marcoule Centre in the case of a serious radioactive accident. The method of using this apparatus is given. (authors) [fr

  14. Treatment of short-lived radioactive wastes

    International Nuclear Information System (INIS)

    Yamaguchi, Chiri

    1976-01-01

    Recently short life nuclides have come to be utilized increasingly as diagnostic radioisotopes, and Tc-99m (half-life; 6.05 hours) and Ga-67 (half-life 7.79 hours) are replacing the most nuclides fomerly used in vivo test. Such development of radioactive products inevitably causes the rapid increase of their wastes. At present, the radioactive wastes produced by hospitals and university laboratories in Japan are collected by the Japan Radioisotope Association, and treated by the Japan Atomic Energy Research Institute. These wastes are divided into combustibles and incombustibles to store in the store house in the Japan Atomic Energy Research Institute. The present law in Japan contains the contradiction which treats the matter with one several millionth of radioactivity after decay same as the original radioactive matter. Thus solid must be stored permanently, while gas and liquid can be discharged after dilution. (Kobatake, H.)

  15. Derivation of residual radioactive material guidelines for 13 radionuclides present in Operable Unit IV at Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    Faillace, E.; Nimmagadda, M.; Yu, C.

    1994-12-01

    Residual radioactive material guidelines for 13 radionuclides (americium-241; cobalt-60; cesium-137; europium-152, -154, and -155; plutonium-238, -239, and -240; strontium-90; and uranium-234, -235, and -238) were derived for Operable Unit (OU) IV at Brookhaven National Laboratory. This site has been identified for remedial action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Single-nuclide guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of OU IV should not exceed a dose constraint of 30 mrem/yr following remedial action for the current use and plausible future use scenarios or a dose limit of 100 mrem/yr for plausible but less likely future use scenarios. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for determining residual radioactive material guidelines. Four potential scenarios were considered; each assumed that, for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The four scenarios varied with regard to the type of site use, time spent at the site, and sources of food consumed

  16. Validation of radioactivity measurements under the Safe Drinking Water Act

    International Nuclear Information System (INIS)

    Goldin, Abraham S.

    1978-01-01

    Radioactivity measurements are made under the Safe Drinking Water Act to obtain information on the potential radiological hazard of water and to institute regulatory action when water quality does not meet requirements. Measurements must be both precise and accurate if these goals are to be met. Regulations issued under the act require that analyses be performed by approved (certified) laboratories, which must carry out quality assurance programs. This paper briefly describes the certification requirements and discusses the components of an effective quality assurance program. The Environmental Protection Agency has established procedures for the certification of laboratories making radioactivity measurements of drinking water. These procedures recommend minimum laboratory qualifications for personnel, facilities, equipment, and procedures; proficiency testing by analysis of samples provided by the Agency; and operation of a quality assurance program. A major function of a quality assurance program is to provide the Laboratory Director an ongoing flow of information on laboratory analytical performance. A properly designed and conducted program provides this information in a timely manner, indicates areas where discrepancies exist, and often suggests ways of correcting the discrepancies. Pertinent aspects of radioactivity measurements for drinking water are discussed, including how analyses of blanks, blind duplicates, and reference samples contribute needed information, and evaluations by control charts and statistical analyses. Examples of the usefulness of quality control in correcting both procedural and background problems are given. (author)

  17. Twenty years of an international nuclear laboratory

    International Nuclear Information System (INIS)

    Suschny, O.

    1982-01-01

    The laboratories of the International Atomic Energy Agency were started in 1959 with a physics laboratory, a chemistry laboratory and an electronics workshop. Early work centred on absolute radionuclide calibrations and on assessments of the consequences of radioactive fallout from atomic weapons testing on the health of the people in Member States. Subsequently, work was started on the use of radioactive and stable isotopes in agriculture, in hydrology, in medical applications, in pest and insect control and with the entry into force of the Nuclear Non-Proliferation Treaty a Safeguard Analytical Laboratory was established to provide support for the Agency's safeguards inspection responsibilities. Together with WHO a network of 43 Secondary Standard Dosimetry Laboratories were set up in Member States to improve dosimetric accuracy in medicine and radiation protection worldwide. Throughout their history, the laboratories of the IAEA have lent great importance on their training programmes that have enabled many workers in nuclear or nuclear related research to gain experience. This emphasis on training has been stressed particularly to benefit research workers from developing countries

  18. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Lainetti, Paulo E.O.

    2009-01-01

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  19. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    International Nuclear Information System (INIS)

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m 3 of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of 137 Cs and 90 Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details

  20. Formation and properties of radiocolloids in aqueous solution - a literature survey

    International Nuclear Information System (INIS)

    Olofsson, U.; Allard, B.; Andersson, K.; Torstenfelt, B.

    1981-06-01

    The sorption of radionuclides on various rocks and minerals has been studied within many national waste programs as a means of predicting the migration behaviour of radionuclides that might be released from e.g. an underground repository for radioactive waste. One major objection against the conclusions that can be drawn from laboratory sorption studies is that the possibility of a formation of small fractions of highly mobile particulates are usually not considered. The elements, present in spent nuclear fuel, which are most likely to form colloid species would be hydrolyzable elements like the actinides and possibly Sr as well as Pb and Cu representing the encapsulation material. Moreover the radionuclides would be present in aqueous solutions in very low concentrations and under these conditions other phenomena occurs than at macroconcentrations. This literature survey is meant to be a basis for further studies on the formation and transport of radiocolloids in the groundwater-rock environment. The colloids will probably not be retarded by the same mechanisms as dissolved species in true solution, but may in some cases migrate with the same velocity as the groundwater. (Auth.)

  1. Radioactivity measurement for emergency or post-accident situations

    International Nuclear Information System (INIS)

    Champion, D.

    2010-01-01

    Specific objectives have to be achieved by radioactivity measurements during emergency or post-accident situations, which are different from those in normal situation. At the beginning of a nuclear emergency, few radioactivity data will be available, mainly from automatic monitoring systems implemented on the site or in its surrounding. Progressively, measurement programmes will be performed, in priority to get information on dose rate, atmospheric radionuclides and surface activities. In order to avoid excessive exposure of the measure teams, these programmes should be optimized. During early post-accident phase, different types of measurements will be done, following two main objectives: 1) to improve the assessment of the environmental contamination and people exposure; 2) for control purpose, to check the contamination of urban places, foodstuff and other products, compared to specific reference levels. The samples measurement in laboratories would be a challenge: usually, the laboratories involved in routine monitoring have to deal with very low level of radioactivity and a poor diversity of artificial radionuclides; after a reactor accident, the environmental samples to be measured would be more active and with a mixture of radionuclides (mainly with short or middle half-life) difficult to be characterized. So theses laboratories have to be trained and organised before any severe accident. (author)

  2. Feasibility of disposal of high-level radioactive waste into the seabed. volume 7: Review of laboratory investigations of radionuclide migration through deep-sea sediments

    International Nuclear Information System (INIS)

    Brush, L.H.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This volume contains a review of the laboratory investigations of radionuclide migration through deep-sea sediments. In addition, it discusses the data selected for the radiological assessment, on the basis of both field and laboratory studies

  3. Radioactive hazards

    International Nuclear Information System (INIS)

    Gill, J.R.

    1980-01-01

    The use of radioactive substances in hospital laboratories is discussed and the attendant hazards and necessary precautions examined. The new legislation under the Health and Safety at Work Act which, it is proposed, will replace existing legal requirements in the field of health and safety at work by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare already established, is considered with particular reference to protection against ionising radiations. (UK)

  4. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  5. Marine radioactivity studies in the World Oceans (MARS)

    International Nuclear Information System (INIS)

    Povinec, P.P.; Togawa, O.

    1999-01-01

    The International Atomic Energy Agency's Marine Environment Laboratory is carrying out from 1996 a project with international participation 'Marine Radioactivity Studies in the World Oceans (MARS)'. The main objectives of the project are to provide new data on marine radioactivity and to develop a better understanding of the present radionuclide distribution in the open ocean. Within the framework of the project, various research activities are being carried out to fulfill the objectives: Coordinated Research Programme (CRP), scientific expeditions to the open ocean, development of a database for marine radioactivity, evaluation of radionuclide distributions and dose assessments. (author)

  6. Implementation plan for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-06-01

    Plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL) were initially submitted in ES/ER-17 ampersand D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The information presented in the current document summarizes the progress that has been made to date and provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present the plans and schedules associated with the remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. A comprehensive program is under way at ORNL to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be submitted to the US Environmental Protection Agency and the Tennessee Department of Environment and Conservation (EPA/TDEC) as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were originally submitted in ES/ER-17 ampersand D 1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in the present document. Chapter I provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5

  7. Characterisation of radioactive waste at Cernavoda NPP Unit 1 during normal operation

    International Nuclear Information System (INIS)

    Iordache, M.; Bujoreanu, L.; Popescu, I. V.

    2008-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste results that have a very large diversity. At Cernavoda NPP the important waste categories are non-radioactive wastes and radioactive wastes, which are manipulated completely different from which other. For a CANDU type reactor, the production of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products of materials which form part of the technological systems; - activated products of process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination activities. The most important types of solid wastes that are obtained and then handled, processed (if required) and temporarily stored are: solid low level radioactive wastes (classified as compact and non-compact), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, decontamination and maintenance operations. Radioactive gas wastes occur subsequent to the fission process inside the fuel elements as well as due to the process fluids neutron activation in the reactor systems. As result of the plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed to the ventilation stack in a controlled manner so that an exceeding of the maximum permissible concentrations of radioactive material to the environment should not occur. (authors)

  8. Practice and experience in traceability of radioactivity measurements of environmental samples

    International Nuclear Information System (INIS)

    Huang Zhijian

    1990-01-01

    This paper discusses some aspects on radioactivity measurement traceability and summarizes the work on quality assurance of radioactivity measurements of environmental samples in the laboratory, including transfer of standards, preparation of reference materials, and calibration of efficiency for volumse surces with Ge(Li) spectrometer. Some practical activitis regarding intercomparison of radioactivity measurements and other traceabillity-related activities are also described. Some sugestions relating to performing quality assurance are made

  9. Low radioactivities '85. (The 7th Nuclear Science Colloquium)

    International Nuclear Information System (INIS)

    1985-01-01

    The conference proceedings contain 108 papers. The following topics are dealt with: accelerator mass spectroscopy, rare decays, underground laboratories, low level counting and spectroscopy, double beta-decay experiments, low level detectors, cosmogenic radionuclides and rare events, 14 C counting and applications, 3 H counting and hydrology appllications, natural radioactivity in the environment, gaseous detectors, anthropogenic radionuclides and radioactivity in the environment. (J.P.)

  10. Working safely with radioactive materials

    International Nuclear Information System (INIS)

    Davies, Wynne

    1993-01-01

    In common with exposure to many other laboratory chemicals, exposure to ionising radiations and to radioactive materials carries a small risk of causing harm. Because of this, there are legal limits to the amount of exposure to ionising radiations at work and special rules for working with radioactive materials. Although radiation protection is a complex subject it is possible to simplify to 10 basic things you should do -the Golden Rules. They are: 1) understand the nature of the hazard and get practical training; 2) plan ahead to minimise time spent handling radioactivity; 3) distance yourself appropriately from sources of radiation; 4) use appropriate shielding for the radiation; 5) contain radioactive materials in defined work areas; 6) wear appropriate protective clothing and dosimeters; 7) monitor the work area frequently for contamination control; 8) follow the local rules and safe ways of working; 9) minimise accumulation of waste and dispose of it by appropriate routes, and 10) after completion of work, monitor, wash, and monitor yourself again. These rules are expanded in this article. (author)

  11. Web page of the Ibero-American laboratories network of radioactivity analysis in foods: a tool for inter regional diffusion

    International Nuclear Information System (INIS)

    Melo Ferreira, Ana C. de; Osores, Jose M.; Fernandez Gomez, Isis M.; Iglicki, Flora A.; Vazquez Bolanos, Luis R.; Romero, Maria de L.; Aguirre Gomez, Jaime; Flores, Yasmine

    2008-01-01

    One objective of the thematic networks is the exchanges of knowledge among participants, for this reason, actions focused to the diffusion of their respective work are prioritized, evidencing the result of the cooperation among the participant groups and also among different networks. The Ibero-American Laboratories Network of Radioactivity Analysis in Foods (RILARA) was constituted in 2007, and one of the first actions carried out in this framework, was the design and conformation of a web page. The web pages have become a powerful means for diffusion of specialized information. Their power, as well as their continuous upgrading and the specificity of the topics that can develop, allow the user to obtain fast information on a wide range of products, services and organizations at local and world level. The main objective of the RILARA web page is to provide updated relevant information to interested specialists in the subject and also to public in general, about the work developed by the network laboratories regarding the control of radioactive pollutants in foods and related scientific issues. This web has been developed based on a Content Management Systems that helps to eliminate potential barriers to the communication web, reducing the creation costs, contribution and maintenance of the content. The tool used for its design is very effective to be used in the process of teaching, learning and for the organization of the information. This paper describes how was conceived the design of this web page, the information that contains and how can be accessed and/or to include any contribution, the value of this page depends directly on the grade of updating of the available contents so that it can be useful and attractive to the users. (author)

  12. Radioactive nuclides in sewage sludges and problems associated with their utilisation or dumping

    International Nuclear Information System (INIS)

    Schneider, P.; Brunner, P.; Tiefenbrunner, F.; Dierich, M.P.

    1990-01-01

    In a sewage plant with radioactively contaminated sewage an accumulation of radionuclides was found in the sewage sludge. The specific activities are in inverse proportion to the water content of the sewage sludge, the dehydrated sewage sludge having the highest specific activities. The retained radionuclides seem to be firmly accumulated in the sludge. Nevertheless, they are in a form which can be utilised by plants. This was demonstrated in experiments with Trifolium Repens and Secale Cereale where the rate of absorption was 15-33% (in Ci/kg dry weight per plant: nCi/kg dry weight soil x 100). Thus there are problems associated with using radioactively contaminated sewage sludge as a fertiliser. In further experiments to extract radioactive nuclides from ashed sewage sludge it was shown that acidifying the aqueous phase results in an increase in the level of radioactivity in the eluated fractions. (author)

  13. Method for immobilizing radioactive iodine

    International Nuclear Information System (INIS)

    Babad, H.; Strachan, D. M.

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M2O.3Al2O3. 6SiO2.2MX, where M alkali metal; X I - or IO 3- ) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800 0 to 1100 0 C.) for a time sufficient to form sodalite

  14. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-09-01

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  15. Lower fungi and radioactivity

    International Nuclear Information System (INIS)

    Adamek, M.

    1989-01-01

    Sorption activities for radioactive elements were observed in molds Penicillinum muszynsky, Aspergillus versicolor and Alternaria tenius. Aspergillus flavus, Aspergillus fumigatus and Aspergillus niger were isolated in laboratory and cultivated on a modified substrate containing uranyl nitrate and uranyl acetate. They were found to be capable of absorbing in the biomass some members of the uranium decay series. (E.J.). 4 tabs., 11 refs

  16. Scientific capabilities of the advanced light source for radioactive materials

    International Nuclear Information System (INIS)

    Shuh, D.K.

    2007-01-01

    The Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory (LBNL) is a third-generation synchrotron radiation light source and is a U.S. Department of Energy (DOE) national user facility. Currently, the ALS has approximately forty-five operational beamlines spanning a spectrum of scientific disciplines, and provides scientific opportunities for more than 2 000 users a year. Access to the resources of the ALS is through a competitive proposal mechanism within the general user program. Several ALS beamlines are currently being employed for a range of radioactive materials investigations. These experiments are reviewed individually relying on a graded hazard approach implemented by the ALS in conjunction with the LBNL Environmental, Health, and Safety (EH and S) Radiation Protection Program. The ALS provides radiological work authorization and radiological control technician support and assistance for accepted user experimental programs. LBNL has several radioactive laboratory facilities located near the ALS that provide support for ALS users performing experiments with radioactive materials. The capabilities of the ALS beamlines for investigating radioactive materials are given and examples of several past studies are summarised. (author)

  17. 30 years practical training in applied radioactivity

    International Nuclear Information System (INIS)

    Koch, H.; Bergmann, K.

    1986-01-01

    The education of radiophysicists and radiochemists was one of the prerequisites for the foundation of institutes and laboratories in the field of nuclear and isotope research in the GDR. Therefore, the first practical course on applied radioactivity was started at the Leipzig Institute of Aplied Radioactivity in 1956. At present more than 150 experiments are included in various practical courses which are intended for the postgraduate qualification of chemists and physicists of research and industry and graduate students of colleges and universities

  18. Water-equivalent solid sources prepared by means of two distinct methods

    International Nuclear Information System (INIS)

    Koskinas, Marina F.; Yamazaki, Ione M.; Potiens Junior, Ademar

    2014-01-01

    The Nuclear Metrology Laboratory at IPEN is involved in developing radioactive water-equivalent solid sources prepared from an aqueous solution of acrylamide using two distinct methods for polymerization. One of them is the polymerization by high dose of 60 Co irradiation; in the other method the solid matrix-polyacrylamide is obtained from an aqueous solution composed by acrylamide, catalyzers and an aliquot of a radionuclide. The sources have been prepared in cylindrical geometry. In this paper, the study of the distribution of radioactive material in the solid sources prepared by both methods is presented. (author)

  19. Radioactive ores from Agostinho field, Pocos de Caldas (MG), Brazil

    International Nuclear Information System (INIS)

    Fujimori, K.

    1974-01-01

    Aiming to characterize the radioactive minerals of Campo Agostinho, Pocos de Caldas - Brazil, the survey of all natural radiactive elements and their geochemical behaviors, decays and radioactive equilibrium was done. Several models of radioactive instability of the minerals or the radioactive samples were proposed to characterize the geochemistry and the mineralization of radioactive elements. The complete isotopic analysis of the elements was done by high resolution gamma spectrometry, using a Ge(Li) detector, at the temperature of liquid nitrogen, coupled to a multichannel analyser. The sample in radioactive equilibrium of Atomic Energy Comission of United States - A.S. n.6, NBL - New Brunswick Laboratory, was considered as standard sample. Fluorite, zircons, pirite, molibinite, rutile, anatase, niobophyllite, and in small ratio (bellow 0.1%) uranothorianite, coffinite, pyrochlore, monazite and apatite. (M.C.K.) [pt

  20. Evaluation of technologies for remediation of disposed radioactive and hazardous wastes in a facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Reno, H.W.; Martin, D.D.; Rasmussen, T.L.

    1989-01-01

    For the past twenty years the US Department of Energy has been investigating and evaluating technologies for the long term management of disposed transuranic contaminated wastes at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. More than fifty technologies have been investigated and evaluated and three technologies have been selected for feasibility study demonstration at the complex. This paper discusses the evaluation of those technologies and describes the three technologies selected for demonstration. The paper further suggests that future actions under the Comprehensive Environmental Response, Compensation, and Liability Act should build from previous evaluations completed heretofore. 18 refs., 3 figs., 1 tab

  1. The effect of treatment parameters and detergent additions on the softening of radioactively contaminated process wastewater at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Roe, M.M.; Kent, T.E.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) is a research facility owned by the Department of Energy and operated by Martin Marietta Energy Systems. At ORNL, research is performed in a wide range of areas including nuclear energy research, environmental sciences, materials research, health and safety research, and production of radioisotopes. These activities generate 70 million gallons per year of process wastewater which is basically tap water and ground water containing trace amounts of radioactive compounds. This water is treated for removal of contaminants at the Process Waste Treatment Plant (PWTP) before discharge to the environment

  2. WHATIF-AQ, Geochem Speciation and Saturation of Aqueous Solution

    International Nuclear Information System (INIS)

    Nielsen, Ole John; Jensen, Bror Skytte

    1988-01-01

    1 - Description of program or function: WHATIF-AQ is part of a family of programs for calculations of geochemistry in the near-field of radioactive waste with temperature gradients. The program calculates speciation and saturation indices for an aqueous solution at temperatures in the range 0 - 125 degrees C. The chemical equilibrium is determined by solving a set of nonlinear equations consisting of the equilibrium constant and mass balance constraints. 2 - Method of solution: The set of equations is solved using a generalized Newton-Raphson technique

  3. Method of solidifying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Pekar, A.; Petrovic, J.; Timulak, J.

    1987-01-01

    Liquid radioactive waste containing boric acid salts is mixed with zeolite tuff and neutralized by lime. Power plant fly ash containing single-component or mixed Portland cement is then added to the mixture. Prior to packaging, anion-active bitumen emulsion or an aqueous emulsion of fatty acid salts and of free fatty acids insoluble in water can be added. Examples are given listing accurate proportions of the individual components. The advantage of the said solidification method is the use of easily available raw materials and improved values of extractability of the resulting product radionuclides. (E.S.)

  4. Safety guide for protection in nuclear medicine laboratories

    International Nuclear Information System (INIS)

    1995-01-01

    The regulations that must be taken into account during constructing the nuclear medicine laboratories to meet the requirements of radiation protection and the specifications of equipment in the laboratory, quality control, radioactive monitoring, protective procedures, personnel qualifications are given

  5. The removal of radioactive strontium from aqueous solutions by foam separation

    International Nuclear Information System (INIS)

    Shakir, K.; Aziz, M.; Atomic Energy Establishment, Cairo

    1979-01-01

    The flotation of strontium ions from aqueous solutions has been investigated using cetyl trimethyl ammonium bromide, potassium laurate, sodium lauryl sulphate or Aeroslo 18 as collector. Aerosol 18 proved to be the most suitable. With this reagent strontium removals of about 97.5% - 99% could be achieved for metal ion concentrations ranging from 1 x 10 -7 M (or probably less) to 1.3 x 10 -4 M. The effects of pH, collector concentration, ionic strength, gas flow rate and period of bubbling were determined and the optimum flotation conditions have been established. (orig.) [de

  6. Procedures for accurately diluting and dispensing radioactive solutions

    International Nuclear Information System (INIS)

    1975-01-01

    The technique currently used by various laboratories participating in international comparisons of radioactivity measurements are surveyed and recommendations for good laboratory practice established. Thus one describes, for instance, the preparation of solutions, dilution techniques, the use of 'pycnometers', weighing procedures (including buyoancy correction), etc. It should be possible to keep random and systematic uncertainties below 0.1% of the final result

  7. Decontamination flowsheet development for a waste oil containing mixed radioactive contaminants

    International Nuclear Information System (INIS)

    Vijayan, S.; Buckley, L.P.

    1993-01-01

    The majority of waste oils contaminated with both radioactive and hazardous components are generated in nuclear power plant, research lab. and uranium-refinery operations. The waste oils are complex, requiring a detailed examination of the waste management strategies and technology options. It may appear that incineration offers a total solution, but this may not be true in all cases. An alternative approach is to decontaminate the waste oils to very low contaminant levels, so that the treated oils can be reused, burned as fuel in boilers, or disposed of by commercial incineration. This paper presents selected experimental data and evaluation results gathered during the development of a decontamination flowsheet for a specific waste oil stores at Chalk River Labs. (CRL). The waste oil contains varying amounts of lube oils, grease, paint, water, particulates, sludge, light chloro- and fluoro-solvents, polychlorinated biphenyls (PCB), complexing chemicals, uranium, chromium, iron, arsenic and manganese. To achieve safe management of this radioactive and hazardous waste, several treatment and disposal methods were screened. Key experiments were performed at the laboratory-scale to confirm and select the most appropriate waste-management scheme based on technical, environmental and economic criteria. The waste-oil-decontamination flowsheet uses a combination of unit operations, including prefiltration, acid scrubbing, and aqueous-leachage treatment by precipitation, microfiltration, filter pressing and carbon adsorption. The decontaminated oil containing open-quotes de minimisclose quotes levels of contaminants will undergo chemical destruction of PCBs and final disposal by incineration. The recovered uranium will be recycled to a uranium milling process

  8. Environment Laboratories Newsletter. Vol. 1, No. 02, Jul.-Dec. 2014

    International Nuclear Information System (INIS)

    Liong Wee Kwong, Laval

    2014-11-01

    Responding to Member States’ requests to physically monitor and report on the types and trends of contaminants in the natural environment is core business for the IAEA Environment Laboratories. This includes providing quality control and capacity building services relevant to radioactive substances and toxic pollutants, as well as communicating how environmental contaminants interact with other stressors to impact biodiversity and undermine the provision of essential ecosystem services. By fulfilling these functions using a practical, hands-on approach, the IAEA Environment Laboratories are unique within the UN system. In this edition of the Environment Laboratories Newsletter, we focus on recent initiatives and field activities to monitor radioactive and other substances in the environment, as well as key partnerships focused on improving the performance of analytical laboratories around the world. We report on a diverse array of activities, from sea water monitoring off the coast of Fukushima, Japan, and the Barents Sea, to training courses on the rapid determination of radioactive strontium in milk and the analysis of trace elements and organic contaminants in marine samples

  9. HARAS. A new method for risk evaluation of working with open radioactive materials

    International Nuclear Information System (INIS)

    Klaver, T.

    1998-01-01

    Thumbs of rule with respect to the characteristics and the handling of, and protection facilities for radioactive materials in laboratories are used by everybody involved in radiation protection activities. However, the thumbs of rule must be based on a thorough risk analysis. The so-called HARAS study provides the results of such an analysis, consisting of recommendations to alter the government policy with respect to radionuclide laboratories. HARAS is a Dutch abbreviation for handling of radioactive materials

  10. Annotated bibliography of radioactive waste management publications at Pacific Northwest Laboratory, January 1978 through July 1982

    International Nuclear Information System (INIS)

    1982-09-01

    This bibliography lists publications (831 abstracts) from the Pacific Northwest Laboratory's Department of Energy sponsored research and development programs from January 1978 through July of 1982. The abstracts are grouped in subject categories, as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., High-Level Radioactive Wastes. Three indexes, each preceded by a brief description, are provided: personal author, subject, and report number. Cited are research reports, journal articles, books, patents, theses, and conference papers. Excluded are technical progress reports. Since 1978 the Nuclear Waste Management Quarterly Progress Report has been published under the series number PNL-3000. Beginning in 1982, this publication has been issued semiannually, under the series number PNL-4250. This bibliography is the successor to two others, BNWL-2201 (covering the years 1965-1976) and PNL-4050 (1975-1978). It is intended to provide a useful reference to literature in waste management written or compiled by PNL staff

  11. Evaluation of uncertainty and detection limits in radioactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M. [Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Escuela Tecnica Superior de Ingenieria de Bilbao, Alda. Urquijo, s/n, 48013 Bilbao (Spain); Idoeta, R. [Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Escuela Tecnica Superior de Ingenieria de Bilbao, Alda. Urquijo, s/n, 48013 Bilbao (Spain)], E-mail: raquel.idoeta@ehu.es; Legarda, F. [Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Escuela Tecnica Superior de Ingenieria de Bilbao, Alda. Urquijo, s/n, 48013 Bilbao (Spain)

    2008-10-01

    The uncertainty associated with the assessment of the radioactive content of any sample depends on the net counting rate registered during the measuring process and on the different weighting factors needed to transform this counting rate into activity, activity per unit mass or activity concentration. This work analyses the standard uncertainties in these weighting factors as well as their contribution to the uncertainty in the activity reported for three typical determinations for environmental radioactivity measurements in the laboratory. It also studies the corresponding characteristic limits and their dependence on the standard uncertainty related to those weighting factors, offering an analysis of the effectiveness of the simplified characteristic limits as evaluated by various measuring software and laboratories.

  12. Evaluation of uncertainty and detection limits in radioactivity measurements

    International Nuclear Information System (INIS)

    Herranz, M.; Idoeta, R.; Legarda, F.

    2008-01-01

    The uncertainty associated with the assessment of the radioactive content of any sample depends on the net counting rate registered during the measuring process and on the different weighting factors needed to transform this counting rate into activity, activity per unit mass or activity concentration. This work analyses the standard uncertainties in these weighting factors as well as their contribution to the uncertainty in the activity reported for three typical determinations for environmental radioactivity measurements in the laboratory. It also studies the corresponding characteristic limits and their dependence on the standard uncertainty related to those weighting factors, offering an analysis of the effectiveness of the simplified characteristic limits as evaluated by various measuring software and laboratories

  13. IEN Low-level-radioactive waste Management

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S.; Silva, S. da; Silva, J.J.G.

    1986-01-01

    The control, treatment and disposal of the low-level radioactive waste produced in the units of IEN-CNEN, in Brazil are presented, in details. These wastes are generated from a particle accelerator (CV-28 cyclotron), radiochemistry laboratories and a nuclear research reactor (Argonaut type). (Author) [pt

  14. Andra - Everything you ever wanted to know about radioactive waste management

    International Nuclear Information System (INIS)

    2014-08-01

    Andra is a publicly owned industrial and commercial body, set up by the French act of 30 December 1991. Its role was expanded by the 2006 Planning Act on the long-term management of radioactive materials and waste. Andra is independent of the producers of radioactive waste, and is under the supervision of the ministries responsible for energy, research and the environment. Andra is responsible for identifying, implementing and guaranteeing safe management solutions for all French radioactive waste, in order to protect present and future generations from the risks inherent in such substances. Andra's role involves a number of activities: running the two existing above-ground disposal facilities in the Aube, the first one for low- and intermediate- level, short-lived waste (LILW-SL) and the other one for very-low-level waste (VLLW), the Cires facility; monitoring the Manche disposal facility, the CSM, France's first above-ground disposal facility for low- and intermediate-level waste, which is now closed; studying and designing disposal facilities for waste as yet without a special facility, that is: Low-level, long-lived waste (LLW-LL), High-level and intermediate-level long-lived waste (HLW, ILW-LL) - the Cigeo project; taking in radioactive waste from hospitals, research laboratories, universities and radioactive objects owned by private individuals (old luminous clocks and watches, health care equipment containing radium, natural laboratory salts, certain minerals, etc.); at the request of the owner or the authorities, cleaning up sites polluted by radioactivity; surveying and listing French radioactive waste and issuing the National Inventory of Radioactive Materials and Waste every three years; informing all members of the public by means of documents, exhibitions, visits to its facilities, etc.; preserving the memory of its centers; promoting and disseminating its know-how outside France. Contents: 1 - Andra, its role, its activities, its funding; 2

  15. Talk of Francois Loos, delegate minister of industry, at the Meuse prefecture (Bar-le-Duc). Visit of the underground laboratory of research on the geologic disposal of radioactive wastes, Bure (Meuse)

    International Nuclear Information System (INIS)

    2005-01-01

    In this talk, the French minister of industry recalls, first, the context of the management of radioactive wastes and the research programs launched in the framework of the 'Bataille' law from December 30, 1991. Then, he stresses on the importance of the work carried out so far in the three ways of research on radioactive wastes: separation/transmutation, deep underground disposal and long duration surface storage. He introduces the government will of organizing a public debate about the management of radioactive wastes before the preparation of the law project for the implementation of the technological and scientifical choices (the 'road-map') of France in the domain of radioactive wastes management. He stresses also on the importance of the financing warranties of this management and of the public information in this domain. He concludes on the economical support of the government in consideration of the regions that have accepted or would accept the setting up of waste management research laboratories and industrial facilities. (J.S.)

  16. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  17. Package testing capabilities at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Taylor, J.M.

    1993-01-01

    The purpose of this paper is to describe the package testing capabilities at the Pacific Northwest Laboratory (PNL). In the past all of the package testing that was performed at PNL was done on prototype or mocked up radioactive material packaging. Presently, we are developing the capability to perform testing on non-radioactive material packaging. The testing on the non-radioactive material packaging will be done to satisfy the new performance oriented packaging requirements (DOT Docket HM-181, 1991). This paper describes the equipment used to perform the performance oriented packaging tests and also describes some testing capability for testing radioactive material packaging

  18. Possibilities for action in the case of radioactive pollution, problems and perspectives

    International Nuclear Information System (INIS)

    Mutaf, V.

    2009-01-01

    This article describes basic threats with the use of radioactive substances typical for Republic of Moldova. The main tasks of the network of observation and laboratory control in the case of radioactive pollution are listed. Prospects of development of radiological protection units in the country are determined.

  19. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    International Nuclear Information System (INIS)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. ''Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3

  20. Radioactivity monitoring in Romania

    International Nuclear Information System (INIS)

    Alexandrescu, M.; Milu, C.

    1996-01-01

    Radioactivity monitoring in Romania is based on National Regulations for Radiation Protection enforced in 1976, on other environment protection laws enforced in the last years and on the recommendations of IAEA. Accordingly two systems of radioactive monitoring are to date operational in this field: the first one is the self-control of the radioactive emissions in the environment generated by the own nuclear activities (of nuclear units like the Cernavoda NPP, the Institute of Atomic Physics at Magurele-Bucharest, the Institute for Nuclear Research at Pitesti, the R Plant at Feldioara, Uranium mining units, etc.), while the other is based on two national agencies (the National Network of Environment Radiation Monitoring of the Ministry of Waters, Forests and Environment Protection and the Network of Radiation Hygiene Laboratories of the Health Ministry). The authors review and discuss the radiation protection legislation, the structure and the organizational operations of the national monitoring systems and the co-operation of the national monitoring systems with international authorities or programmes. 3 Figs., 1 tab., 11 refs

  1. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  2. Effect of flow rate on the adsorption coefficient of radioactive krypton on activated carbon

    International Nuclear Information System (INIS)

    Sun, L.S.C.; Underhill, D.W.

    1981-01-01

    For some time, there have been questions relative to the effect of carrier gas velocity on the adsorption coefficient for radioactive noble gases on activated charcoal. Resolution of these questions is particularly important in terms of developing standard procedures for determining such coefficients under laboratory conditions. Studies at the Harvard Air Cleaning Laboratory appear to confirm that the adsorption coefficient for radioactive krypton on activated charcoal is independent of the velocity of the carrier gas

  3. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  4. The design of hot laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The need for specialized laboratories to handle radioactive substances of high activity has increased greatly due to the expansion of the nuclear power industry and the widespread use of radioisotopes in scientific research and technology. Such laboratories, which are called hot laboratories, are specially designed and equipped to handle radioactive materials of high activity, including plutonium and transplutonium elements. The handling of plutonium and transplutonium elements presents special radiation-protection and safety problems because of their high specific activity and high radiotoxicity. Therefore, the planning, design, construction and operation of hot laboratories must meet the stringent safety, containment, ventilation, shielding, criticality control and fire-protection requirements. The IAEA has published two manuals in its Safety Series, one on the safety aspects of design and equipment of hot laboratories (SS No.30) and the other on the safe handling of plutonium (SS No.39). The purpose of the symposium in Otaniemi was to collect information on recent developments in the safety features of hot laboratories and to review the present state of knowledge. A number of new developments have taken place as the result of growing sophistication in the philosophy of radiation protection as given in the ICRP recommendations (Report No.22) and in the Agency's basic safety standards (No.9). The topics discussed were safety features of planning and design, air cleaning, transfer and transport systems, criticality control, fire protection, radiological protection, waste management, administrative arrangements and operating experience

  5. Presence of radioactivity in a sewage system: a proposal for radioactivity control

    International Nuclear Information System (INIS)

    Serradell, Vicente; Ballesteros, Luisa; Ortiz, Josefina

    2008-01-01

    Most hospitals use radioisotopes in diagnostics and to a lesser extent in therapy. The liquid residues thus generated are usually subjected to treatment before being discharged into the sewage system. Nevertheless, a certain amount of these residues escape from the treatment system and are poured directly into the sewer. In addition, other radioactive products used for research and industrial purposes may also be disposed of in the same way. The waste waters in many sewage systems can therefore be expected to be radiologically contaminated and the need for at least a basic control system in such situations seems obvious. When designing a procedure to measure radioactivity, certain conditions should be borne in mind: 1) The control program has to be simple and inexpensive; 2) Samples must be taken from the appropriate places; 3) Short life radionuclides will probably be present in significant amounts, so that specific recipes should be prepared; 4) Iodine is also frequently present. Special precautions should be taken to keep it in solution. In recent years, the Environmental Radioactivity Laboratory of the Universidad Politecnica de Valencia (Spain) has carried out a series of tests on the Valencia city sewage system and sewage treatment plant in order to design a permanent program to control radioactive contamination of the city's sewage system. This paper presents a proposal which we believe can provide the answer to this problem. (author)

  6. Transfer of radioactive contamination from milk to commercial dairy products

    International Nuclear Information System (INIS)

    Wilson, L.G.; Sutton, P.M.

    1988-01-01

    The fate of radioactive contamination resulting from fallout from the Chernobyl accident was studied during milk processing. A range of commercial dairy products was produced on a pilot-laboratory scale and the radiocaesium contents were measured by high-resolution gamma spectrometry. The results show that the radiocaesium partitioned with the water phase and therefore butter, cream and cheese had relatively low levels of radioactivity. Ion exchange demineralization was effective in removing radiocaesium from whey. Ultrafiltration of whey resulted in a reduction of radioactivity relative to retentate solids. (author)

  7. Handbook of radioactivity analysis. Second edition

    International Nuclear Information System (INIS)

    L'Annunziata, M.

    2003-07-01

    This updated and much expanded Second Edition is an authoritative handbook providing the principles, practical techniques, and procedures for the accurate measurement of radioactivity from the very low levels encountered in the environment to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, fuel cycle facilities, and in the implementation of nuclear safeguards. The book describes the preparation of samples from a wide variety of matrices, assists the investigator or technician in the selection and use of appropriate radiation detectors, and presents state-of-the-art methods of analysis. Fundamentals of radioactivity properties, radionuclide decay, the calculations involved, and methods of detection provide the basis for a thorough understanding of the analytical procedures. The Handbook of Radioactivity Analysis, Second Edition is suitable as a teaching text for university and professional training courses

  8. Marine Radioactivity Mapping in Malaysia

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Abdul Kadir Ishak; Norfaizal Mohamad; Wo, Y.M.; Kamarudin Samuding

    2015-01-01

    This book focuses on data collection, mapping and also development of marine radioactivity which obtained from a few researchs from year 2003 until 2008. The aims of the database reported in this book is to become a benchmark as well to be a reference material for future researchers. Furthermore, this book contained the radionuclide pollution information and distribution pattern mapping in marine environment. To strengthen the content for this book, the authors also provide a complete technical information which consist methods, prepation and sample analysis either in field work or laboratory. By producing this book, the author hope that it will help future researcher who are involved in oceanography and marine radioactivity.

  9. Storage containers for radioactive material

    International Nuclear Information System (INIS)

    Cassidy, D.A.; Dates, L.R.; Groh, E.F.

    1981-01-01

    A radioactive material storage system is disclosed for use in the laboratory. This system is composed of the following: a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof; a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate; the groove and the gasket, and a clamp for maintaining the cover and the plate are sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage

  10. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less

  11. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  12. Environmental sampling program for a solar evaporation pond for liquid radioactive wastes

    International Nuclear Information System (INIS)

    Romero, R.; Gunderson, T.C.; Talley, A.D.

    1980-04-01

    Los Alamos Scientific Laboratory (LASL) is evaluating solar evaporation as a method for disposal of liquid radioactive wastes. This report describes a sampling program designed to monitor possible escape of radioactivity to the environment from a solar evaporation pond prototype constructed at LASL. Background radioactivity levels at the pond site were determined from soil and vegetation analyses before construction. When the pond is operative, the sampling program will qualitatively and quantitatively detect the transport of radioactivity to the soil, air, and vegetation in the vicinity. Possible correlation of meteorological data with sampling results is being investigated and measures to control export of radioactivity by biological vectors are being assessed

  13. Radioactivity in the Romanian Black Sea sector one decade after Chernobyl

    International Nuclear Information System (INIS)

    Bologa, A.S.; Patrascu, V.

    1997-01-01

    Radioactivity monitoring in the marine environment was imposed by the increasing development of nuclear energetics and its world-wide use in many different activities. Spatial and temporal monitoring of marine radioactivity along the Romanian Black Sea shore has been systematically performed by the Romanian Marine Research Institute (RMRI), in close co-operation with the Research Laboratory of Environmental Radioactivity (RLER) belonging to the Institute of Meteorology and Hydrology (until 1990) and to the Research Institute for Environmental Engineering (REIE) afterwards, since 1991

  14. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    International Nuclear Information System (INIS)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these open-quotes geomorphic hazardsclose quotes include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC

  15. Behavior of radioactive metal surrogates under various waste combustion conditions

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Lee, Jae Hee; Kim, Jung Guk; Yoo, Jae Hyung; Kim, Joon Hyung

    2002-01-01

    A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 900 .deg. C, under oxygen-deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm O 2 ). At high temperatures above 1,400 .deg. C, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 1500 .deg. C. Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd 2 O 3 , CoO and Cs 2 O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration

  16. Treatment of radioactive laboratory waste for mercury removal

    International Nuclear Information System (INIS)

    Osteen, A.B.; Bibler, J.P.

    1990-01-01

    Routine analyses of Savannah River Laboratory wastes at the Savannah River Site occasionally reveal mercury concentrations in the waste in excess of the 0.200 μg/L RCRA limit. An ion exchange resin has been demonstrated to be effective for the removal of dissolved mercury from laboratory waste in a special permitted project. The ion exchange material is Duolite trademark GT-73, a polystyrene/divinylbenzene resin with thiol functional groups. As a result of the decontamination demonstration, the resin is in use or under consideration for use with several other SRS radwaste streams as a reliable medium for mercury removal

  17. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    The application of radioactive isotopes and various scientific instruments based on different ionizing and non-ionizing radiation have brought new safety problems to laboratory workers today. Therefore, there is a need to revise present knowledge of safety measures to deal with new hazards, thus broadening the outlook towards health and safety measures for contemporary laboratory staff. This handbook presents a series of articles on current knowledge regarding laboratory safety

  18. System for measuring radioactivity of labelled biopolymers

    International Nuclear Information System (INIS)

    Gross, V.

    1980-01-01

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs

  19. The radioactive grasshopper

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: Grasshoppers are 'tagged' with radiation in order to trace their movements for purposes of agricultural research. They are fed on young wheat containing iridium-192; the radioactivity taken up by the grasshoppers can then be observed by a portable scintillation counter. Laboratory tests have shown the biological period of the iridium to be of the order of seven days, and that about one microcurie per insect is needed to enable them to be traced during two months. (author)

  20. The radioactive grasshopper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Grasshoppers are 'tagged' with radiation in order to trace their movements for purposes of agricultural research. They are fed on young wheat containing iridium-192; the radioactivity taken up by the grasshoppers can then be observed by a portable scintillation counter. Laboratory tests have shown the biological period of the iridium to be of the order of seven days, and that about one microcurie per insect is needed to enable them to be traced during two months. (author)

  1. Allelopathic effect of meskit ( Prosopis juliflora (Sw.) DC) aqueous ...

    African Journals Online (AJOL)

    Phytoinhibitory effect of Prosopis juliflora aqueous extracts on tropical crops were tested under laboratory conditions. Maize, Cotton, and forage grasses (Rodus and Panicum) were used as test plants. Litter fall and under canopy soils were tested for checking allelopathic effects under natural conditions. All the extracts ...

  2. The role of national regulatory authority in monitoring of radioactivity and in case of seizure of radioactive or nuclear material

    International Nuclear Information System (INIS)

    Morkunas, G.

    2002-01-01

    Full text: The Radiation Protection Centre is a regulatory authority in radiation protection in Lithuania. Its main tasks are licensing of practices, supervision, control and enforcement of radiation protection requirements, dosimetric, radiometric and spectrometric measurements, evaluation of exposure and its sources, expertise and advice on optimization of radiation protection. Its activities may be divided into two main parts -- regulatory and analytical ones. Food, drinking water, environmental, wipe and other samples are monitored, the appropriate evaluation of doses is done. The data on concentrations of artificial radionuclides in different bodies are available. The laboratory is to be accredited according to the ISO 17025 standard in the framework of Phare Twinning Project. In case of seized radioactive or nuclear material the Radiation Protection Centre has to identify the necessary radiation protection means for members of public and emergency workers, perform measurements of dose rate and radioactive contamination, and, if necessary, evaluate doses received due to the seized radioactive or nuclear material. Since the Radiation Protection Centre has its departments in the largest cities of Lithuania the above mentioned measures can be taken very urgently, especially the ones connected with primary evaluation of situation and identification of optimized radiation protection measures. The Radiation Protection Centre has its own possibilities of identification of radionuclides in the seized material. Such installations as HpGe spectrometers (Oxford and Canberra), equipment for radiochemical separation of U, Pu and actinides, alpha spectrometer, liquid scintillation spectrometer and neutron rem counter are available. There were a few cases when seized material had to be analyzed also. Different sources were found in different places of Lithuania, and it was necessary to define the activity and isotopic content of these sources. The following scheme is used in

  3. Prospecting the radioactivity of the air. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1953-01-01

    The most recent French measurements made in an aerial laboratory and on the summit of the Puy-de-Dome are listed. The data shows the existence of a strong source of radioactivity at about August 15th.

  4. investigations on the use of surfactants for the separation of some organics and metal ions from aqueous media

    International Nuclear Information System (INIS)

    Mahmoud, M.R.

    2007-01-01

    the copreceipitate flotation of 137 Cs from dilute aqueous solutions and simulated radioactive wastes using nickel hexacyanoferrate(11) as a co precipitant and sodium lauryl sulfate, cetyltrimethylammonium bromide,or dodecyl amine as a collect or was extensively investigated to establish the best conditions for cesium removal. under the optimal conditions, removals exceeding 99% and decontamination factors higher than 110 could be achieved for the radioactive waste simulant. the results are compared with those obtained by conventional removal methods and are discussed in terms of the collector properties and the electrical state of the co precipitate

  5. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora

  6. Floristic composition and plant succession on near-surface radioactive-waste-disposal facilities in the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, G.D.; Foxx, T.S.

    1982-03-01

    Since 1946, low-level radioactive waste has been buried in shallow landfills within the confines of the Los Alamos National Laboratory. Five of these sites were studied for plant composition and successional patterns by reconnaissance and vegetation mapping. The data show a slow rate of recovery for all sites, regardless of age, in both the pinon-juniper and ponderosa pine communities. The sites are not comparable in succession or composition because of location and previous land use. The two oldest sites have the highest species diversity and the only mature trees. All sites allowed to revegetate naturally tend to be colonized by the same species that originally surrounded the sites. Sites on historic fields are colonized by the old field flora, whereas those in areas disturbed only by grazing are revegetated by the local native flora.

  7. Subsurface Investigations Program at the radioactive waste management complex of the Idaho National Engineering Laboratory. Annual progress report, FY-1985

    International Nuclear Information System (INIS)

    Hubbell, J.M.; Hull, L.C.; Humphrey, T.G.; Russell, B.F.; Pittman, J.R.; Cannon, K.M.

    1985-12-01

    This report describes work conducted in FY-85 in support of the Subsurface Investigation Program at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. The work is part of a continuing effort to define and predict radionuclide migration from buried waste. The Subsurface Investigation Program is a cooperative study conducted by EG and G Idaho and the US Geological Survey, INEL Office. EG and G is responsible for the shallow drilling, solution chemistry, and net downward flux portions of this program, while the US Geological Survey is responsible for the weighing lysimeters and test trench. Data collection was initiated by drilling, sampling, and instrumenting shallow wells, continuing the installation of test trenches, and modifying the two weighing lysimeters. Twenty-one shallow auger holes were around the Radioactive Waste Management Complex (RWMC) to evaluate radionuclide content in the surficial sediments, to determine the geologic and hydrologic characteristics of the surficial sediments, and to provide as monitoring sites for moisture in these sediments. Eighteen porous cup lysimeters were installed in 12 auger holes to collect soil water samples from the surficial sediments. Fourteen auger holes were instrumented with tensiometers, gypsum blocks and/or psychrometers at various depths throughout the RWMC. Readings from these instruments are taken on a monthly basis

  8. Processing of radioactive ruthenium with aluminosilicate gels

    International Nuclear Information System (INIS)

    Kanno, Takuji; Ichinose, Yasuhiro; Ito, Katsuo

    1979-01-01

    Coprecipitation of radioactive Ru with hydroxides has been studied for the purpose of the management of the high level waste from the nuclear fuel reprocessing. Aluminosilicate gel used as coprecipitant was prepared by addition of aqueous sodium hydroxide to sodium aluminate-sodium silicate solution containing ruthenium nitrate. Ruthenium quantitatively precipitates under the conditions, aluminate > 4 x 10 -2 M, Al/Si 0 C. However, volatilization rate of Ru is suppressed by coating with mullite phase into which aluminosilicate gel transformes above 900 0 C. The amount of Ru volatilized in Ar-flow was reduced to about 10% of that in air-flow. (author)

  9. Interim report to the Nuclear Regulatory Commission on radioactive waste classification

    International Nuclear Information System (INIS)

    King, W.C.; Cohen, J.J.

    1977-01-01

    The Lawrence Livermore Laboratory assisted the Nuclear Regulatory Commission in the development of a radioactive waste classification system that will satisfy technical, environmental, and societal concerns. This is an interim report to the NRC on work accomplished to date. It describes a proposed waste-classification system that is based on the final disposition of waste material. The system consists of three classes of radioactive waste. The classification of any radioactive waste will depend primarily on its hazard potential. Other characteristics such as longevity (half-size) will be considered also. The levels of hazard that differentiate the three classes of radioactive waste will be determined by ongoing work. This report describes other work to be completed before a suitable radioactive waste-classificaion system is established

  10. Issues in radioactive mixed waste compliance with RCRA [Resource Conservation and Recovery Act]: Some examples from ongoing operations at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eaton, D.L.; Smith, T.H.; Clements, T.L. Jr.; Hodge, V.

    1990-01-01

    Radioactive mixed waste is subject to regulation under both the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). The regulation of such waste is the responsibility of the Environmental Protection Agency (EPA) and either the Nuclear Regulatory Commission (NRC) or the Department of Energy (DOE), depending on whether the waste is commercially generated or defense-related. The recent application of the RCRA regulations to ongoing operations at the DOE's Idaho National Engineering Laboratory (INEL) are described in greater detail. 8 refs., 2 figs

  11. Environmental monitoring report, Sandia Laboratories 1975

    International Nuclear Information System (INIS)

    Holley, W.L.; Simmons, T.N.

    1976-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the population is calculated

  12. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  13. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  14. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  15. The status of radioactive waste management: needs for reassessments

    International Nuclear Information System (INIS)

    Eisenbud, M.

    1980-01-01

    Plicies that dictate the procedures for management of radioactive wastes are influenced by superstition and require fresh examination. It is shown that low level wastes from biomedical and clinical laboratories could be safely disposed of without any restrictions related to their radioactivity. High level waste management should be reexamined to determine the length of isolation required; thought by some to be 1000 years, and to investigate the use of geological repositories. It is also proposed that many forms of waste could be safely disposed of in the oceans, as data has already been accumulated from the fallout of massive quantities of radioactive debris. (H.K.)

  16. Management of Disused Radioactive Sealed Sources in Egypt - 13512

    International Nuclear Information System (INIS)

    Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.

    2013-01-01

    The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralized radioactive waste management facility in Egypt by law 7/2010. (authors)

  17. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  18. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  19. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  20. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  1. Implementation of ISO 28218 quality system in the laboratory of body radioactivity counter CIEMAT; Implementacion de la norma ISO 28218 en el sistema de calidad del laboratorio del contador de radiactividad corporal del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Amaro, J. F.; Perez Lopez, B.; Lopez Ponte, M. A.; Perez Jimenez, C.

    2011-07-01

    The laboratory of body radioactivity counter has implemented IS0 28218 standard Performance Criteria for Radio bioassay in all measured in vivo techniques of internal contamination in the human organism in monitoring programs defined by the Personal Dosimetry Service Internal CIEMAT. The application of this rule in the laboratory's quality system is essential to meet the technical requirements of the standard IS0/IEC 17025 with the purpose of obtaining ENAC accreditation as a testing laboratory and calibration within the framework of the accreditation of Service CIEMAT Radiation Dosimetry. (Author)

  2. Health and Safety Laboratory environmental quarterly, March 1--June 1, 1976. [Fallout, natural radioactivity, and lead in environmental samples from USA, India, and Taiwan during 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1976-07-01

    This report presents current data from the HASL environmental programs, the Air Monitoring Section of the Bhabha Atomic Research Center in India, the Health Physics Section of the Institute of Nuclear Science in Taiwan and the Radiological and Environmental Research Division at Argonne National Laboratory. The initial section consists of interpretive reports and notes on the history of long-range fallout, cesium-137 in Bombay milk, natural and fallout radioactivity in Indian diet, reporting results of radioactivity measurements at near zero levels of sample activity and background, plutonium in soil northeast of the Nevada Test Site, radon levels at the Lloyd, NY regional station, strontium-90 in New York and San Francisco diets through 1975, plutonium-239, 240 in 1974 diet, up-dating stratospheric radionuclide inventories to July 1975 and a revised table of radionuclides. Subsequent sections include tabulations of radionuclide levels in stratospheric air; lead and radionuclides in surface air; strontium-90 in deposition, milk, diet, tap water, and human bone; cesium-137 in Chicago foods in April 1976; and environmental radioactivity surveys for nuclear power plants in North Taiwan. A bibliography of recent publications related to environmental studies is also presented.

  3. Aqueous foam toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  4. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  5. Radioactivity and health

    International Nuclear Information System (INIS)

    Stannard, J.N.; Baalman, R.W. Jr.

    1988-01-01

    This book details the knowledge of the biological effects of ionizing radiation from the discovery of radium to about 1980. Research findings and conclusions are presented largely as the investigators saw and reported them except where the work under discussion was markedly iconoclastic and obviously wrong according to the author's comments. Findings from over 100 personal interviews and literature searches including unpublished or little-known materials are summarized. The material in the book is divided into six sections. The first section deals with naturally occurring radioactive elements. The next section covers material on man-made radioisotopes. Inhalation toxicology (radioactive dusts and particles and respirable gases) is the subject of Section 3. Section 4 deals with environmental matters - radioecology, fallout from nuclear weapons tests, transport of radionuclides, testing and standard settings, and Section 5 consists of information on laboratory and field instrumentation. The development of the therapy for exposure and of nuclear medicine is traced in the final section

  6. Laboratory operation during radiation emergency

    International Nuclear Information System (INIS)

    Bunata, M.; Prouza, Z.; Tecl, J.

    2009-01-01

    During radiation emergency, a special operation mode of laboratories of the Radiation Monitoring Network (hereinafter RMN) is expected. The principal factors differing the emergency mode from the normal one are the following: - significantly higher amount of analyzed samples; - high activities of the majority of the samples; - higher risk of personal and equipment contamination; - higher working and psychological demands on laboratory staff. The assuring of the radiation protection requirements of laboratory staff has to be the primary objective, nevertheless the risk of equipment contamination and of samples cross- contamination of course have to be as well taken into consideration. The presentation describes the experience of the RMN Central Laboratory of the National Radiation Protection Institute in Prague (SURO) which was obtained during realization of field tests, in which a radioactive matter was released. These tests allow us to evaluate the source term or radioactivity dispersal balance based on various detection methods with the aim to estimate exposure of the afflicted persons. Tests provided to simulate emergency working conditions in Central Laboratory - high number of contaminated samples, which have to be analyzed in a short time (short half-time of used radionuclide 99m Tc) using sophisticated laboratory techniques (gamma spectrometers, aerosols collectors, etc.). The testing shows the availability of the SURO laboratory to work during the radiation emergency and to participate on its determination. The suitable settings and the ideal number of staff have been found. The average analysis time was approximately 1 minute per sample and the sample results were available just a few minutes after the counting. Moreover, the settings avoided any danger and kept both the crew and the samples safe and secure from contamination. (authors)

  7. Laboratory operation during radiation emergency

    International Nuclear Information System (INIS)

    Bunata, M.; Tecl, J.; Prouza, Z.

    2008-01-01

    During radiation emergency, a special operation mode of laboratories of the Radiation Monitoring Network (hereinafter RMN) is expected. The principal factors differing the emergency mode from the normal one are the following: - significantly higher amount of analyzed samples; - high activities of the majority of the samples; - higher risk of personal and equipment contamination; - higher working and psychological demands on laboratory staff. The assuring of the radiation protection requirements of laboratory staff has to be the primary objective, nevertheless the risk of equipment contamination and of samples cross- contamination of course have to be as well taken into consideration. The presentation describes the experience of the RMN Central Laboratory of the National Radiation Protection Institute in Prague (SURO) which was obtained during realization of field tests, in which a radioactive matter was released. These tests allow us to evaluate the source term or radioactivity dispersal balance based on various detection methods with the aim to estimate exposure of the afflicted persons. Tests provided to simulate emergency working conditions in Central Laboratory -high number of contaminated samples, which have to be analyzed in a short time (short half-time of used radionuclide 99m Tc) using sophisticated laboratory techniques (gamma spectrometers, aerosols collectors, etc.). The testing shows the availability of the SURO laboratory to work during the radiation emergency and to participate on its determination. The suitable settings and the ideal number of staff have been found. The average analysis time was approximately 1 minute per sample and the sample results were available just a few minutes after the counting. Moreover, the settings avoided any danger and kept both the crew and the samples safe and secure from contamination. (authors)

  8. The management of radioactive wastes; La gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  9. The waste management at research laboratories - problems and solutions; Gestao de rejeitos radioativos em laboratorios de pesquisa - problemas e solucoes

    Energy Technology Data Exchange (ETDEWEB)

    Dellamano, Jose Claudio; Vicente, Roberto, E-mail: jcdellam@ipen.b, E-mail: rvicente@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Rejeitos Radioativos

    2011-10-26

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  10. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  11. National facilities for the management of institutional radioactive waste in Romania

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.N.; Dragolici, F.; Nicu, M.; Lungu, L.; Cazan, L.; Matei, G.; Guran, V.

    2000-01-01

    The management of the non-fuel cycle radioactive wastes from all over Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR). Final disposal is carried out at the National Repository of Radioactive Wastes (DNDR) at Baita Bihor. Radioactive waste treated at STDR arise from three main sources: 1. Wastes arising from the WWR-S research reactor during operation and the future decommissioning works; 2. Local waste from other facilities operating on IFIN-HH site. These sources include wastes generated during the normal activities of the STDR; 3. Wastes from IFIN-HH off site facilities and activities including medical, biological, and industrial applications all over the country. The Radiochemical Production Center, operating within IFIN-HH is the most important source of low and intermediate level radioactive wastes (liquid and solid), as the operational wastes arising from processing at STDR are. The STDR basically consists of liquid and solid waste treatment and conditioning facilities, a radioactive decontamination centre, a laundry and an intermediate storage area. The processing system of the STDR are located at six principal areas performing the following activities: 1. Liquid effluent treatment; 2. Burning of combustible solid stuff; 3. Compaction of solid non-combustible stuff; 4. Cement conditioning; 5. Radioactive decontamination; 6. Laundry. The annual designed treatment capacity of the plant is 1500 m 3 Low Level Aqueous Waste, 100 m 3 Low Level Solid Waste and shielded drums for Intermediate Level Waste. The temporary storage within and final disposal of waste in the frame of DNDR are explained as well as the up-dating of institutional radioactive waste infrastructure

  12. Identification of Radioactive Pilot-Plant test requirements

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Riebling, E.F.

    1995-05-09

    Radioactive Pilot-Plant testing needs and alternatives are evaluated for enhanced Sludge Washing and High and Low-Level Vitrification efforts. Also investigated was instrument and equipment testing needs associated with the vitrification and retrieval process. The scope of this document is to record the existing March 1994 letter report for future use. A structured Kepner-Trego{trademark} decision analysis process was used to assist analysis of the testing needs. This analysis provided various combinations of laboratory and radioactive (hot) and cold pilot testing options associated with the above need areas. Recommendations for testing requirements were made.

  13. Identification of Radioactive Pilot-Plant test requirements

    International Nuclear Information System (INIS)

    Powell, W.J.; Riebling, E.F.

    1995-01-01

    Radioactive Pilot-Plant testing needs and alternatives are evaluated for enhanced Sludge Washing and High and Low-Level Vitrification efforts. Also investigated was instrument and equipment testing needs associated with the vitrification and retrieval process. The scope of this document is to record the existing March 1994 letter report for future use. A structured Kepner-Trego trademark decision analysis process was used to assist analysis of the testing needs. This analysis provided various combinations of laboratory and radioactive (hot) and cold pilot testing options associated with the above need areas. Recommendations for testing requirements were made

  14. Aspects related to the testing of sealed radioactive sources

    International Nuclear Information System (INIS)

    Olteanu, C. M.; Nistor, V.; Valeca, S. C.

    2016-01-01

    Sealed radioactive sources are commonly used in a wide range of applications, such as: medical, industrial, agricultural and scientific research. The radioactive material is contained within the sealed source and the device allows the radiation to be used in a controlled way. Accidents can result if the control over a small fraction of those sources is lost. Sealed nuclear sources fall under the category of special form radioactive material, therefore they must meet safety requirements during transport according to regulations. Testing sealed radioactive sources is an important step in the conformity assessment process in order to obtain the design approval. In ICN Pitesti, the Reliability and Testing Laboratory is notified by CNCAN to perform tests on sealed radioactive sources. This paper wants to present aspects of the verifying tests on sealed capsules for Iridium-192 sources in order to demonstrate the compliance with the regulatory requirements and the program of quality assurance of the tests performed. (authors)

  15. Microfiltration of radioactive contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L P; Slade, J A; Vijayan, S; Wong, C F

    1993-04-01

    Cross-flow microfiltration processing of radioactive liquids has been in use at Chalk River Laboratories for about four years. The separation process removes suspended particles from radioactive waste solutions. The clean liquid can then be treated with conventional reverse osmosis membranes to achieve volume reduction factors approaching 100. Microfiltration removes particles below the rating of 0.2 microns, in part from particle agglomeration. Operating experience relating to a 15 USGPM unit is presented. Coupling microfiltration technology with chemical treatment enhances the removal of soluble species. Research and development experience with the removal of soluble contaminants found in ground water and waste water will be discussed. The technology has advantages over other membrane technologies, namely lower energy costs, a lesser degree of fouling, and a higher recovery of processed solution. Future applications of the technology are addressed. (author). 10 refs., 3 tabs., 4 figs.

  16. Microfiltration of radioactive contaminants

    International Nuclear Information System (INIS)

    Buckley, L.P.; Slade, J.A.; Vijayan, S.; Wong, C.F.

    1993-04-01

    Cross-flow microfiltration processing of radioactive liquids has been in use at Chalk River Laboratories for about four years. The separation process removes suspended particles from radioactive waste solutions. The clean liquid can then be treated with conventional reverse osmosis membranes to achieve volume reduction factors approaching 100. Microfiltration removes particles below the rating of 0.2 microns, in part from particle agglomeration. Operating experience relating to a 15 USGPM unit is presented. Coupling microfiltration technology with chemical treatment enhances the removal of soluble species. Research and development experience with the removal of soluble contaminants found in ground water and waste water will be discussed. The technology has advantages over other membrane technologies, namely lower energy costs, a lesser degree of fouling, and a higher recovery of processed solution. Future applications of the technology are addressed. (author). 10 refs., 3 tabs., 4 figs

  17. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  18. The performance of polymer containers used for the storage of radioactive waste

    International Nuclear Information System (INIS)

    Brown, L.; Bonin, H.W.; Bui, V.T.

    2005-01-01

    An evaluation of the performance of polymeric materials after exposure to radiation and acidic aqueous solutions provides a basis for the evaluation of failure mechanisms affecting these materials. The work evaluated the importance of the combined effects of aqueous solution diffusion, radiation exposure, and temperature on the mechanical performance, diffusion profile and molecular structure of polymeric materials. This work demonstrated that the dose rate is an extremely important factor since low dose rates have been shown to result in an increase in stress at yield (15 - 20%) over the times studied, whereas higher dose rates reduced stress at yield as discussed above. Irradiation of both Nylon 6,6 and Semi-Aromatic Nylon 6,6 at dose rates of 37 and 56 kGy/hr resulted in an initial decrease in the stress at yield and subsequent recovery. Irradiation at 20 kGy/hr resulted in an initial increase in stress at yield and a continued increase throughout the aging time. It is suggested that polyamide 6,6 may be considered an acceptable material for the fabrication of storage containers for Low Level Radioactive Waste. Similarly, semi-aromatic polyamide 6,6, with its greater resistance to the combined effects of solution diffusion and radiation exposure, may be considered an acceptable material for the fabrication of containers for the storage of Intermediate Level Radioactive Waste. Finally, these results provide further explanation of the results obtained for materials such as polycarbonate, which has been previously determined to be viable candidates for the storage of High Level Radioactive Waste. (author)

  19. The performance of polymer containers used for the storage of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: bonin-h@rmc.ca

    2005-07-01

    An evaluation of the performance of polymeric materials after exposure to radiation and acidic aqueous solutions provides a basis for the evaluation of failure mechanisms affecting these materials. The work evaluated the importance of the combined effects of aqueous solution diffusion, radiation exposure, and temperature on the mechanical performance, diffusion profile and molecular structure of polymeric materials. This work demonstrated that the dose rate is an extremely important factor since low dose rates have been shown to result in an increase in stress at yield (15 - 20%) over the times studied, whereas higher dose rates reduced stress at yield as discussed above. Irradiation of both Nylon 6,6 and Semi-Aromatic Nylon 6,6 at dose rates of 37 and 56 kGy/hr resulted in an initial decrease in the stress at yield and subsequent recovery. Irradiation at 20 kGy/hr resulted in an initial increase in stress at yield and a continued increase throughout the aging time. It is suggested that polyamide 6,6 may be considered an acceptable material for the fabrication of storage containers for Low Level Radioactive Waste. Similarly, semi-aromatic polyamide 6,6, with its greater resistance to the combined effects of solution diffusion and radiation exposure, may be considered an acceptable material for the fabrication of containers for the storage of Intermediate Level Radioactive Waste. Finally, these results provide further explanation of the results obtained for materials such as polycarbonate, which has been previously determined to be viable candidates for the storage of High Level Radioactive Waste. (author)

  20. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  1. Non-aqueous removal of sodium from reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Welch, F H; Steele, O P [Rockwell International, Atomics International Division, Canoga Park (United States)

    1978-08-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component.

  2. Non-aqueous removal of sodium from reactor components

    International Nuclear Information System (INIS)

    Welch, F.H.; Steele, O.P.

    1978-01-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component

  3. Transportation of radioactive materials: legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.; Heiskell, M.M.

    1980-01-01

    The transportation of radioactive materials, as well as hazardous materials in general, has been an issue of ever-increasing concern and an object of numerous regulations and legislative actions worldwide. The Transportation Technology Center of the US Department of Energy's Sandia Laboratories in Albuquerque, New Mexico, is currently involved in developing a national program to assure the safe shipment of radioactive materials. At Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, this overall effort is being supported in a specialized manner. As part of the Logistics Modeling program at ORNL, the Ecological Sciences Information Center has developed comprehensive data bases containing legislative and regulatory actions relevant to the transportation of hazardous materials. The data bases are separated according to status level of the legislation. The Current Legislation Data Base includes all new legislative actions introduced during the present year (1980) or those bills carried over from the previous year's sessions. The second data file, Historical Legislation Data Base, consists of all legislative actions since 1976 that have passed and become public laws, as well as those actions that were unsuccessful and were classified as denied by law. Currently the data bases include state-, local-, and federal, level legislation, with emphasis on the transportation of radioactive materials. Because of their relevance to the transportation issues, actions involving related subject areas such as, disposal and storage of radioactive wastes, moratoriums on power plant construction, and remedial actions studies, special agencies to regulate shipment of radioactive materials, and requirements of advanced notification, permits and escorts are also included in the data bases

  4. Critical review of the chemistry and thermodynamics of technetium and some of its inorganic compounds and aqueous species

    International Nuclear Information System (INIS)

    Rard, J.A.

    1983-01-01

    Chemical and thermodynamic data for Technetium (Tc) and some of its inorganic compounds and aqueous species are reviewed here. Major emphasis is given to systems with potential geochemical applications, especially the geochemistry of radioactive waste disposal. Compounds considered include oxides, hydroxides, hydrates oxides, halides, oxyhalides, double halides, and sulfides. The aqueous species considered include those in both noncomplexing media (pertechnetates, technetates, aquo-ions, and hydrolyzed cations) and complexing media (halides, sulfates, and phosphates). Thermodynamic values are recommended for specific compounds and aqueous ions when reliable experimental data are available. Where thermodynamic data are inadequate or unavailable, the chemistry is still discussed to provide information about what needs to be measured, and which chemistry needs to be clarified. A major application of these thermodynamic data will be for chemical equilibrium modeling and for construction of potential-pH diagrams for aqueous solutions. Unfortunately, the present lack of data precludes such calculations for complexing aqueous media. The situation is much better for noncomplexing aqueous media, but the chemistry and thermodynamics of cationic Tc(V) species and hydrolyzed Tc(III) species are poorly understood. 240 references, 6 tables

  5. Removal of organics from radioactive waste. V. 2

    International Nuclear Information System (INIS)

    Williams, J.; Kitchin, J.; Burton, W.H.

    1989-05-01

    This report reviews the available literature concerning the removal of organic substances from radioactive waste streams. A substantial portion of low level wastes generated in the various parts of the nuclear fuel cycle, nuclear laboratories and other places where radionuclides are used for research, industrial medical and defense related activities is organic (paper, wood, plastics, rubber etc.) and combustible. These combustible wastes can be processed by incineration. Incineration converts combustible wastes into radioactive ashes and residues that are non-flammable, chemically inert and more homogenous than the initial waste. (author)

  6. Measurement of nuclear cross sections using radioactive beams

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E.

    1999-01-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a 6 He nuclear radioactive beam (β emitting with half life 806.7 ms) for the study of the reaction 6 + 209 Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  7. Transportation accidents/incidents involving radioactive materials (1971-1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1993-01-01

    In 1981, Sandia National Laboratories developed the Radioactive Materials Incident Report (RMIR) database to support its research and development activities for the U.S. Department of Energy (DOE). The RMIR database contains information on transportation accidents/incidents with radioactive materials that have occurred since 1971. The RMIR classifies a transportation accident/incident in one of six ways: as a transportation accident, a handling accident, a reported incident, missing or stolen, cask weeping, or other. This paper will define these terms and provide detailed examples of each. (J.P.N.)

  8. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  9. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  10. Accident with radioactive substances in laboratory. An exercise during the education of persons in radiation protection, who are working with open radioactive sources

    International Nuclear Information System (INIS)

    Stolze, B.

    2003-01-01

    In spite of carefulness it is possible,that contamination occur by handling unscaled radioactive sources or in case of an accident. It is demonstrated in an exercise managing an accident with unscaled radioactive sources. The persons, who are educated in radiation protection for handling unsealed radioactive sources, must have knowledge of theoretical regulations of the radiation protection law and of the limits in radiation protection. Also they have to know the handling to reduce possible contamination. They have to be able to calculate the dose of skin contamination. In my lecture I give some information on regulations of accidents with radioactive sources in Germany and a scenario of an accident and I explain, what is to do to manage this event. A person opened an ampoule. The activity splashed and contaminated the person's hand, arm and face. Also in the room there was a contamination. The desk and the floor were contaminated. There were 50 MBq P-32 as NaH 2 P''32O 3 in water solution, I give a report on practices in our courses, which the participants have to do. The radiological experts have to decontaminate the skin and they have to calculate the skin-dose and to give the information to the authorities. (Author) 4 refs

  11. Transportation of radioactive materials: the legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico

  12. Transportation of radioactive materials: the legislative and regulatory information system

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico.

  13. The monitoring of radioactive substances in biological food chains by the veterinary service in Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, O [Central State Veterinary Institute, Prague, Czechoslovakia (Czech Republic)

    1986-07-01

    Czechoslovakia has established an environmental monitoring system to protect the hygienic conditions of the environment from the radiation hazard. The control authorities of the Ministry of Agriculture and Food take part in this system in order to collect information on the contamination with radioactive substances of soil, plants, game, food animals, foodstuffs and raw materials, i.e. information on all links of the food chain which extends from animals to man. A radioactive substances detection programme has been launched by the appropriate authorities in agriculture, animal husbandry and veterinary service. The programme includes a two-stage laboratory analysis of radioactive substances. The majority of laboratories covering the programme are already in operation.

  14. The monitoring of radioactive substances in biological food chains by the veterinary service in Czechoslovakia

    International Nuclear Information System (INIS)

    Pawel, O.

    1986-01-01

    Czechoslovakia has established an environmental monitoring system to protect the hygienic conditions of the environment from the radiation hazard. The control authorities of the Ministry of Agriculture and Food take part in this system in order to collect information on the contamination with radioactive substances of soil, plants, game, food animals, foodstuffs and raw materials, i.e. information on all links of the food chain which extends from animals to man. A radioactive substances detection programme has been launched by the appropriate authorities in agriculture, animal husbandry and veterinary service. The programme includes a two-stage laboratory analysis of radioactive substances. The majority of laboratories covering the programme are already in operation

  15. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  16. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  17. Radioactive waste disposal : policies and practices in New Zealand

    International Nuclear Information System (INIS)

    Robertson, M.K.

    1996-01-01

    The management of radioactive waste and its ultimate dispoal have been a significant problem for the nuclear industry. A lot of resources have been devoted to developing management and dispoal systems. As well as being one of the major technical problems, it has been a very significant public relations issue. Public concern about risks associated with disposal of radioactive waste has been on a global scle. It has focused on local issues in some countries, but generl attitudes have been common worldwide. Great differences exist between countries in the scale and aspects of nuclear technoloy in use. In particular the presence or absence of a nuclear power programme, and to a lesser extent of any nuclear reactors, greatly influence the magnitude of the waste disposal problem. Nevertheless, public perceptions of the problem are to some degree independent of these differences. What radioactive wastes are there in New Zealand? Is there a hazard to the New Zealand public or the New Zealand environment from current radioactive waste disposal practices? What policies are in place to control these practices? This report seeks to provide some information on these questions. It also brings together in one document the waste disposal policies followed by the National Radiation Laboratory for different uses of radioactive mateials. Except for some small quantities which are exempt from most controls, radioactive material can be used in New Zealand only under the control of a person holding a licence under the Radiation Protection Act 1965. All requirements of the Radiation Protection Regulations 1982 must also be observed. More detailed safety advice and further mandatory requirements are contained in codes of safe practice. Compliance with one of these is a condition on most licencees. These provisions are administered by the National Radiation Laboratory (NRL) of the Ministry of Health. (author). 7 refs., 2 tabs., 1 fig

  18. Frozen soil barriers for hazardous waste confinement

    International Nuclear Information System (INIS)

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-01-01

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies

  19. The R and D activities carried out in Ispra according to a cooperation between ENEA COMB and JRC Ispra in the field of radioactive waste management

    International Nuclear Information System (INIS)

    Nannicini, R.; Dworschak, H.; Daniele, F.

    1987-01-01

    The R and D activities, carried out in Ispra since 1984, in the field of radioactive waste management,COMB (Technological Development Laboratory) and JRC, concerned final hot tests of the ENEA owned ESTER mini-pilot plant for HLW vitrification, the trasportation of3 of the activeglass? containing crucibles from the Ispra to the Karlsruhe (Transuranium Institute) establishment of JRC for produced by the ESTER plant. While the ESTER experience is being successfully finished, contemporarily the basis has been established to start the PETRA experience, more complete than the previous one, but also more complex. The PETRA experimental infrastructure will be particulary useful for studying, developing and verifying, in real activity conditions, advanced chemical extracting agents and mainly new matrices for the immobilisation of HLWs, or their fractions, and of mixtures of various aqueous waste streams

  20. Management of radioactive disused lightning rods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de Oliveira; Silva, Fabio, E-mail: pos@cdtn.br, E-mail: silvaf@cdtn.br [Centro de Desenvolvimento da Energia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of {sup 241}Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the {sup 241}Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  1. Management of radioactive disused lightning rods

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira; Silva, Fabio

    2013-01-01

    The manufacture of radioactive lightning rod was allowed from 1970 to 1989. This authorization was based on state-of-the art science of that time that verified that radioactive lightning rods had efficiency superior to the conventional lightning rods, denominated Franklin. However, the experience showed that their efficiency was not superior enough to justify the use of radioactive sources. Consequently, in 1989, the National Commission or Nuclear Energy - CNEN, issued the Resolution 04/89 from 04-19-1989, that forbidden the importation of 241 Am tapes, assembling and commercialization of radioactive lightning-rods. The institutes of CNEN are responsible for receiving these lightning-rods and sending to the users procedures for removing and dispatch to the institutes. Therewith, these devices are kept away from the human being and environment. The Nuclear technology Development Center - CDTN and Institute for Energy and Nuclear Research - IPEN of CNEN, has built laboratories appropriate for dismantling such devices and store the 241 Am tapes safely. Nowadays are being researched methodologies to evaluate the contamination levels of the frame for possible recycling and become better the management of these devices. (author)

  2. Radioactive solid waste management study of generated in the source production laboratory for brachytherapy

    International Nuclear Information System (INIS)

    Barbosa, Nayane K.O.; Carvalho, Vitória S.; Marques, José R.O.; Costa, Osvaldo L.; Baptista, Tatyana S.; Vicente, Roberto; Rostelato, M.E.C.M.; Zeituni, Carlos A.; Souza, Daiane C.B.

    2017-01-01

    A management system for radioactive solid wastes generated during seed production in the Laboratório de Produção de Fontes para Radioterapia (LPFRT) was developed. For this, the volume and the mass of each item of solid wastes generated in Glove box were estimated. It is possible to estimate, per week, how much reject will enter the warehouse, what space it will occupy and also its weight. In the final step of the characterization, the decay calculation is applied to define the time the reject will be stored for later disposal in the collection system. After the characterization process, it is noticed that the rate of volume and radioactivity decreases as the retention time of the rejects increases due to the release of the materials, and also, there is the decay of the radioactivity present in the reservoir. It is also observed that the rate of entry and exit of the wastes is proportional

  3. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    Science.gov (United States)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  4. Product consistency leach tests of Savannah River Site radioactive waste glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Bates, J.K.

    1990-01-01

    The product consistency test (PCT) is a glass leach test developed at the Savannah River Site (SRS) to confirm the durability of radioactive nuclear waste glasses that will be produced in the Defense Waste Processing Facility. The PCT is a seven day, crushed glass leach test in deionized water at 90C. Final leachates are filtered and acidified prior to analysis. To demonstrate the reproducibility of the PCT when performed remotely, SRS and Argonne National Laboratory have performed the PCT on samples of two radioactive glasses. The tests were also performed to compare the releases of the radionuclides with the major nonradioactive glass components and to determine if radiation from the glass was affecting the results of the PCT. The test was performed in triplicate at each laboratory. For the major soluble elements, B, Li, Na, and Si, in the glass, each investigator obtained relative precisions in the range 2-5% in the triplicate tests. This range indicates good precision for the PCT when performed remotely with master slave manipulators in a shielded cell environment. When the results of the two laboratories were compared to each other, the agreement was within 20%. Normalized concentrations for the nonradioactive and radioactive elements in the PCT leachates measured at both facilities indicated that the radionuclides were released from the glass slower than the major soluble elements in the glass. For both laboratories, the normalized releases for both glasses were in the general order Li ∼ B ∼ Na > Si > Cs - 137 > Sb - 125 < Sr - 90. The normalized releases for the major soluble elements and the final pH values in the tests with radioactive glass are consistent with those for nonradioactive glasses with similar compositions. This indicates that there was no significant effect of radiation on the results of the PCT

  5. A study on the treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    Jeong, Gyeong Hwan; Chung, U. S.; Baik, S. T.; Park, S. K.; Moon, J.S.; Jung, K.J.

    1998-12-01

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants on the dewatering of radioactive slurries with anionic flocculants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant Triton X-100 was effective in reducing the moisture content of the cake

  6. A study on the treatment of radioactive slurry liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gyeong Hwan; Chung, U. S.; Baik, S. T.; Park, S. K.; Moon, J.S.; Jung, K.J

    1998-12-01

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants on the dewatering of radioactive slurries with anionic flocculants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant Triton X-100 was effective in reducing the moisture content of the cake.

  7. Stabilization of mixed waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Gillins, R.L.; Larsen, M.M.

    1989-01-01

    EG and G Idaho, Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory. Laboratory-scale testing has shown that extraction procedure toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal as either landfill waste or low-level radioactive waste, depending upon the radioactivity content. This paper presents the results of drum-scale solidification testing conducted on hazardous, low-level incinerator flyash generated at the Waste Experimental Reduction Facility. The drum-scale test program was conducted to verify that laboratory-scale results could be successfully adapted into a production operation

  8. Implementation of a management applied program for solid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the Post-irradiated Fuel Examination Facility, the Irradiated Material Examination Facility, the Research Reactor, and the laboratories at KAERI. A data collection of a solid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material balance and inventory study.

  9. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  10. Advance in radioactive decontamination; Avances en descontaminacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Basteris M, J. A. [Universidad Autonoma de Yucatan, Facultad de Medicina, Departamento de Diagnostico por Laboratorio y Gabinete, Av. Cupules No. 232, Col. Garcia Gineres, 97070 Merida, Yucatan (Mexico); Farrera V, R., E-mail: basteris@prodigy.net.m [Hospital de Especialidades de la UMAE, Centro Medico Nacional Ignacio Garcia Tellez, Departamento de Medicina Nuclear, Calle 34 x 41, Exterrenos el Fenix s/n, Col. Industrial, 91750 Merida, Yucatan (Mexico)

    2010-09-15

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  11. Underground laboratories for rock mechanics before radioactive waste

    International Nuclear Information System (INIS)

    Duffaut, P.

    1985-01-01

    Many rock mechanics tests are performed in situ, most of them underground since 1936 at the Beni Bahdel dam. The chief tests for understanding the rock mass behaviour are deformability tests (plate test and pressure cavern test, including creep experiments) and strength tests (compression of a mine pillar, shear test on rock mass or joint). Influence of moisture, heat, cold and freeze are other fields of investigation which deserve underground laboratories. Behaviour of test galleries, either unsupported or with various kinds of support, often is studied along time, and along the work progression, tunnel face advance, enlargement or deepening of the cross section. The examples given here help to clarify the concept of underground laboratory in spite of its many different objectives. 38 refs.; 1 figure; 1 table

  12. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  13. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  14. Radioactivity in soils and sediments in and adjacent to the Los Alamos area, 1974-1977

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Peters, R.J.; Stoker, A.K.

    1980-02-01

    Soils and sediments are analyzed for gross alpha, gross beta, 238 Pu, 239 Pu, 137 Cs, 90 Sr, and total uranium as part of the continuing Environmental Monitoring Program at the Los Alamos Scientific Laboratory. This report documents the levels of radioactivity of radionuclides in soils and sediments in northern New Mexico from natural sources and worldwide fallout as well as at seven on-site soil and sediment stations which contain radioactivity contributed by the Laboratory for the period 1974 through 1977

  15. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor.

    Science.gov (United States)

    Sebaaly, Carine; Charcosset, Catherine; Stainmesse, Serge; Fessi, Hatem; Greige-Gerges, Hélène

    2016-03-15

    This work is dedicated to prepare liposomal dry powder formulations of inclusion complexes of clove essential oil (CEO) and its main component eugenol (Eug). Ethanol injection method and membrane contactor were applied to prepare liposomes at laboratory and large scale, respectively. Various liposomal formulations were tested: (1) free hydroxypropyl-β-cyclodextrin loaded liposomes; (2) drug in hydroxypropyl-β-cyclodextrin in liposomes (DCL); (3) DCL2 obtained by double loading technique, where the drug is added in the organic phase and the inclusion complex in the aqueous phase. Liposomes were characterized for their particle size, polydispersity index, Zeta potential, morphology, encapsulation efficiency of CEO components and Eug loading rate. Reproducible results were obtained with both injection devices. Compared to Eug-loaded liposomes, DCL and DCL2 improved the loading rate of Eug and possessed smaller vesicles size. The DPPH(•) scavenging activity of Eug and CEO was maintained upon incorporation of Eug and CEO into DCL and DCL2. Contrary to DCL2, DCL formulations were stable after 1 month of storage at 4°C and upon reconstitution of the dried lyophilized cakes. Hence, DCL in aqueous and lyophilized forms, are considered as a promising carrier system to preserve volatile and hydrophobic drugs enlarging their application in cosmetic, pharmaceutical and food industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Antioxidant, antinociceptive and anti-inflammatory properties of the aqueous and ethanolic leaf extracts of Andrographis paniculata in some laboratory animals.

    Science.gov (United States)

    Adedapo, Adeolu Alex; Adeoye, Bisi Olajumoke; Sofidiya, Margaret Oluwatoyin; Oyagbemi, Ademola Adetokunbo

    2015-07-01

    The study was designed to evaluate the anti-inflammatory, analgesic and antioxidant properties of Andrographis paniculata leaf extracts in laboratory animals. The dried and powdered leaves of the plant were subjected to phytochemical and proximate analyses. Its mineral content was also determined. Acute toxicity experiments were first performed to determine a safe dose level. The plant material was extracted using water and ethanol as solvents. These extracts were then used to test for the anti-inflammatory, analgesic and antioxidant properties of the plant. The anti-inflammatory tests included carrageenan-induced and histamine-induced paw oedema. The analgesic tests conducted were formalin paw lick test and acetic acid writhing test. The antioxidant activities of the extracts of A. paniculata were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), total polyphenol (TP) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) using ascorbic acid as standard for both DPPH and FRAP, and gallic acid as a standard for both TP and ABTS. The acute toxicity experiment demonstrated that the plant is safe at high doses even at 1600 mg/kg. It was observed that the ethanolic extract of A. paniculata had higher antioxidant activity than the aqueous extract. The experiments using both extracts may suggest that the extracts of A. paniculata leaves possess anti-inflammatory, analgesic and antioxidant properties, although the ethanolic extract seemed to have higher biological properties than the aqueous extract. The results from this study may have justified the plant's folkloric use for medicinal purpose.

  17. Biological effects of water reservoir radioactive contamination

    International Nuclear Information System (INIS)

    Mashneva, N.I.

    1983-01-01

    Radiation damage to fresh water fishes at early stages of ontogenesis is revealed only during the spawn incubation in a solution with 10 -5 to 10 -3 Cu/l radioactivity and at relatively high dosages exceeding 500-1000 rad. Damaging effect of a fission product mixture of 9, 30 and 100 day age as well as of several separate radionuclides on embryogenesis of freshwater fishes depends mainly on fish species, concentration, toxicity, chemical form of radionuclides in the residence medium, on peculiarities of metabolism between the aqueous medium and an organism, stage of the embryo development by the moment of radiation effect and duration of this effect

  18. Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge. Experimental design approach

    International Nuclear Information System (INIS)

    Yunus Pamukoglu, M.; Mustafa Senyurt; Bulent Kirkan

    2017-01-01

    The biosorption of radioactive Th(IV) ions in the aqueous solutions onto the modified powdered waste sludge (MPWS) has been examined. In this context, the parameters affecting biosorption of Th(IV) from aqueous solutions has been examined by using MPWS biosorbent in Box Behnken statistical experimental design. The structure of MPWS biosorbent was characterized by using SEM and BET techniques. According to the experimental design results, MPWS and Th(IV) concentrations should be kept high to achieve the maximum efficiency in Th(IV) biosorption. On the other hand, MPWS, which is also used as a biosorbent, is an economical, effective and natural biosorbent. (author)

  19. The radioactivity of spirulina and its heavy elements

    International Nuclear Information System (INIS)

    Fantariandraintsoa, A.A.

    2014-01-01

    Spirulina is one of the three classes of algae that have the ability to accumulate contaminants from the environment in which they live. The main aim of this work is to study the radioactive contamination of Spirulina using gamma spectrometry and to determine its content of heavy elements using the technique of X-ray fluorescence analysis. Use of detector and Gamma Vision software, in the laboratory of nuclear analysis of the I nstitut National des Sciences et Techniques Nucleaires -Madagascar (INSTN-Madagascar), allowed us to find some amount of radioactive elements such as potassium, lead, thallium and bismuth. The elements found in the laboratory of X-ray fluorescence analysis, of the same institute, using the conventional method along with the XRF AXIL software are calcium, iron, magnesium, bromine, rubidium and strontium as well as heavy elements zinc and copper. Spirulina is rich in potassium, its activity is 98±56 Bq.Kg -1 and the average concentration of the radioactive element is 16.2 g.Kg -1 . Analysis results leads us to say that it is best to consume spirulina from well secured against pollution (greenhouse) culture and we can say that we need to improve crops in natural environments. [fr

  20. An innovative approach to solid Low Level Radioactive Waste processing and disposal

    International Nuclear Information System (INIS)

    Pancake, D.C. Jr.; Sodaro, M.A.

    1994-01-01

    This paper will focus on a new system of Low Level Radioactive Waste (LLW) accumulation, processing and packaging, as-well as the implementation of a Laboratory-wide training program used to introduce new waste accumulation containers to all of the on-site radioactive waste generators, and to train them on the requirements of this innovative waste characterization and documentation program