WorldWideScience

Sample records for radioactive waste required

  1. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  2. ECOLOGICAL AND TECHNICAL REQUIREMENTS OF RADIOACTIVE WASTE UTILISATION

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2013-01-01

    Full Text Available The paper presents a survey of radioactive waste disposal technologies used worldwide in terms of their influence upon natural environment. Typical sources of radioactive waste from medicine and industry were presented. In addition, various types of radioactive waste, both liquid and solid, were described. Requirements and conditions of the waste’s storage were characterised. Selected liquid and solid waste processing technologies were shown. It was stipulated that contemporary methods of radioactive waste utilisation enable their successful neutralisation. The implementation of these methods ought to be mandated by ecological factors first and only then economical ones.

  3. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  4. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  5. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  6. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  7. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  8. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  9. Sources, classification, and disposal of radioactive wastes: History and legal and regulatory requirements

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1991-01-01

    This report discusses the following topics: (1) early definitions of different types (classes) of radioactive waste developed prior to definitions in laws and regulations; (2) sources of different classes of radioactive waste; (3) current laws and regulations addressing classification of radioactive wastes; and requirements for disposal of different waste classes. Relationship between waste classification and requirements for permanent disposal is emphasized; (4) federal and state responsibilities for radioactive wastes; and (5) distinctions between radioactive wastes produced in civilian and defense sectors

  10. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  11. Requirements for shipment of DOE radioactive mixed waste

    International Nuclear Information System (INIS)

    Gablin, K.; No, Hyo; Herman, J.

    1993-01-01

    There are several sources of radioactive mixed waste (RMW) at Argonne National Laboratory which, in the past, were collected at waste tanks and/or sludge tanks. They were eventually pumped out by special pumps and processed in an evaporator located in the waste operations area in Building No. 306. Some of this radioactive mixed waste represents pure elementary mercury. These cleaning tanks must be manually cleaned up because the RMW material was too dense to pump with the equipment in use. The four tanks being discussed in this report are located in Building No. 306. They are the Acid Waste Tank, IMOX/FLOC Tanks, Evaporation Feed Tanks, and Waste Storage Tanks. All of these tanks are characterized and handled separately. This paper discusses the process and the requirements for characterization and the associated paperwork for Argonne Waste to be shipped to Westinghouse Hanford Company for storage

  12. Requirements for a radioactive waste data base

    International Nuclear Information System (INIS)

    Sato, Y.; Kobayashi, I.; Kikuchi, M.

    1990-01-01

    With the progress of nuclear fuel cycle in Japan, various types of radioactive waste will generate at each nuclear facility in the cycle. Therefor generated volume and stored quantity of waste will be supposed to increase. From the viewpoints of safety and public acceptance, by using mainframe computer it is necessary that the treatment of historical waste data, the estimation of generated waste volume and stored quantity and the investigation of research and development status of waste processing and disposal are carried out. This paper proposes design and development of the radioactive waste data base which is able to properly and correctly manage and grasp numerical and/or documentary information for generated radioactive waste. So the data base will be expected to use for planning the future management of radioactive waste. (author)

  13. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  14. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  15. Balancing requirements for radioactive waste management and radiation protection

    International Nuclear Information System (INIS)

    Lafuma, J.; Lefevre, J.

    1985-01-01

    The authors recall the principles of radiation protection and their application to radioactive waste management. The dose limitation system applies to every stage in management. The accepted risk limits should be compared with the level of risk from other sources, particularly from natural radiation. The uncertainties associated with long-term estimates should not lead to unrealistic requirements. The optimum rules are to be obtained by discussion among those responsible for radiation protection, nuclear safety and radioactive waste management. Satisfactory, applicable rules can be worked out in the present state of the art [fr

  16. Classification and disposal of radioactive wastes: History and legal and regulatory requirements

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This document discusses the laws and regulations in the United States addressing classification of radioactive wastes and the requirements for disposal of different waste classes. This review emphasizes the relationship between waste classification and the requirements for permanent disposal

  17. Systematic handling of requirements and conditions (in compliance with waste acceptance requirements for a radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Keyser, Peter; Helander, Anita

    2012-01-01

    This Abstract and presentation will demonstrate the need for a structured requirement management and draw upon experiences and development from SKB requirements data base and methodology, in addition to international guidelines and software tools. The presentation will include a discussion on how requirement management can be applied for the decommissioning area. The key issue in the decommissioning of nuclear facilities is the progressive removal of hazards, by stepwise decontamination and dismantling activities that have to be carried out safely and within the boundaries of an approved safety case. For decommissioning there exists at least two safety cases, one for the pre-disposal activities and one for the disposal facility, and a need for a systematic handling of requirements and conditions to safely manage the radioactive waste in the long term. The decommissioning safety case is a collection of arguments and evidence to demonstrate the safety of a decommissioning project. It also includes analyzing and updating the decommissioning safety case in accordance with the waste acceptance criteria's and the expected output, i.e. waste packages. It is a continuous process to confirm that all requirements have been met. On the other hand there is the safety case for a radioactive waste disposal facility, which may include the following processes and requirements: i) Integrating relevant scientific (and other) information in a structured, traceable and transparent way and, thereby, developing and demonstrating an understanding of the potential behavior and performance of the disposal system; ii) Identifying uncertainties in the behavior and performance of the disposal system, describing the possible significance of the uncertainties, and identifying approaches for the management of significant uncertainties; iii) Demonstrating long-term safety and providing reasonable assurance that the disposal facility will perform in a manner that protects human health and the

  18. Nuclear safety requirements for upgrading the National Repository for Radioactive Wastes-Baita Bihor

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Necula, Daniela

    2000-01-01

    The upgrading project of National Repository for Radioactive Wastes-Baita Bihor is based on the integrated concept of nuclear safety. Its ingredients are the following: A. The principles of nuclear safety regarding the management of radioactive wastes and radioprotection; B. Safety objectives for final disposal of low- and intermediate-level radioactive wastes; C. Safety criteria for final disposal of low- and intermediate-level radioactive wastes; D. Assessment of safety criteria fulfillment for final disposal of low- and intermediate-level radioactive wastes. Concerning the nuclear safety in radioactive waste management the following issues are considered: population health protection, preventing transfrontier contamination, future generation radiation protection, national legislation, control of radioactive waste production, interplay between radioactive waste production and management, radioactive waste repository safety. The safety criteria of final disposal of low- and intermediate-level radioactive wastes are discussed by taking into account the geological and hydrogeological configuration, the physico-chemical and geochemical characteristics, the tectonics and seismicity conditions, extreme climatic potential events at the mine location. Concerning the requirements upon the repository, the following aspects are analyzed: the impact on environment, the safety system reliability, the criticality control, the filling composition to prevent radioactive leakage, the repository final sealing, the surveillance. Concerning the radioactive waste, specific criteria taken into account are the radionuclide content, the chemical composition and stability, waste material endurance to heat and radiation. The waste packaging criteria discussed are the mechanical endurance, materials toughness and types as related to deterioration caused by handling, transportation, storing or accidents. Fulfillment of safety criteria is assessed by scenarios analyses and analyses of

  19. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  20. Quality assurance requirements and description for the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1992-01-01

    The Quality Assurance Requirements and Description (QARD) is the principal quality assurance document for the Civilian Radioactive Waste Management Program (Program). It establishes the minimum requirements for the Quality Assurance Program. The QARD contains regulatory requirements and program commitments necessary for the development of an effective quality assurance program. Quality assurance implementing documents must be based on, and consistent with, QARD requirements. The QARD applies to the following: (1) acceptance of spent nuclear fuel and high-level radioactive waste; (2) transport of spent nuclear fuel and high-level radioactive waste; (3) the Monitored Retrievable Storage (MRS) facility through application for an operating license; (4) Mined Geologic Disposal System (MGDS), including the site characterization activities (exploratory studies facility (ESF) and surface based testing), through application for an operating license; (5) the high-level-waste form from production through acceptance. Section 2.0 defines in greater detail criteria for determining work subject to QARD requirements. The QARD is organized into sections, supplements, appendices, and a glossary. The sections contain requirements that are common to all Program elements. The supplements contain requirements for specialized activities. The appendices contain requirements that are specific to an individual Program element. The glossary establishes a common vocabulary for the Quality Assurance Program

  1. Regulatory objectives, requirements and guidelines for the disposal of radioactive wastes - long-term aspects

    International Nuclear Information System (INIS)

    1987-01-01

    It is the purpose of this document to present the regulatory basis for judging the long-term acceptability of radioactive waste disposal options, assuming that the operational aspects of waste emplacement and facility closure satisfy the existing regulatory framework of requirements. Basic objectives of radioactive waste disposal are given, as are the regulatory requirements which must be satisfied in order to achieve these objectives. In addition, guidelines are given on the application of the radiological requirements to assist proponents in the preparation of submissions to the Atomic Energy Control Board (AECB). The primary focus of the requirements is on radiation protection, although environmental protection and institutional controls are also addressed in a more general way since these factors stem directly from the overall objectives for radioactive waste disposal

  2. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  3. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  4. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  5. Predicting transport requirements for radioactive-waste slurries

    International Nuclear Information System (INIS)

    Motyka, T.; Randall, C.T.

    1983-01-01

    A method for predicting the transport requirements of radioactive waste slurries was developed. This method involved preparing nonradioactive sludge slurries chemically similar to the actual high-level waste. The rheological and settling characteristics of these synthetic waste slurries were measured and found to compare favorably with data on actual defense waste slurries. Pressure drop versus flow rate data obtained fom a 2-in. slurry test loop confirmed the Bingham plastic behavior of the slurry observed during viscometry measurements. The pipeline tests, however, yielded friction factors 30 percent lower than those predicted from viscometry data. Differences between the sets of data were attributed to inherent problems in interpreting accurate yield-stress values of slurry suspensions with Couette-type viscometers. Equivalent lengths of fittings were also determined and found to be less than that of water at a specified flow rate

  6. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  7. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  8. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  9. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  10. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  11. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  12. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  13. Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards.

    Science.gov (United States)

    Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G

    2013-11-01

    In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.

  14. An interim report of the Subcommittee on Radioactive Waste Countermeasures: measures for radioactive waste treatment and disposal

    International Nuclear Information System (INIS)

    1984-01-01

    The Subcommittee on Radioactive Waste Countermeasures has studied on the measures for land disposal of low-level radioactive wastes and ultra-low-level radioactive wastes and the measures for treatment and disposal of high-level radioactive wastes and transuranium wastes. The results of studies so far are presented as an interim report. In disposal of low-level radioactive wastes, the land disposal is being required increasingly. The measures according to the levels of radioactivity are necessary. For the ultra-low-level radioactive wastes, their occurrence in large quantities is expected along with reactor decommissioning. In disposal of the high-level radioactive wastes, the present status is a transition toward the practical stages. Transuranium wastes should increase in their arising in the future. (Mori, K.)

  15. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  17. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  19. Regulation on radioactive waste management

    International Nuclear Information System (INIS)

    1999-01-01

    A national calculator control system for the metropolitan radioactive waste banks was developed in 1999. The NNSA reviewed by the regulations the feasibility of some rectification projects for uranium ore decommissioning and conducted field inspections on waste treating systems and radioactive waste banks at the 821 plant. The NNSA realized in 1999 the calculator control for the disposal sites of low and medium radioactive waste. 3 routine inspections were organized on the reinforced concrete structures for disposal units and their pouring of concrete at waste disposal site and specific requirements were put forth

  20. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  1. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  2. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  3. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  4. Requirements on radioactive waste for disposal (waste acceptance requirements as of February 2017). Konrad repository; Anforderungen an endzulagernde radioaktive Abfaelle (Endlagerungsbedingungen, Stand: Februar 2017). Endlager Konrad

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, Karin; Moeller, Kai (eds.)

    2017-02-10

    The Bundesamt fuer Strahlenschutz (BfS - Federal Office for Radiation Protection) has established waste acceptance requirements for the Konrad repository. These requirements were developed on the basis of the results of a site-specific safety assessment. They include general requirements on waste packages and specific requirements on waste forms and packagings as well as limitations for activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. Requirements on documentation and delivery of waste packages were additionally included.

  5. Comparative analysis of DOE Order 5820.2A, NRC, and EPA radioactive and mixed waste management requirements

    International Nuclear Information System (INIS)

    1991-07-01

    As directed by DOE-Headquarters and DOE-Idaho, the Radioactive Waste Technical Support Program (TSP) drafted an analysis of DOE Order 5820. 2A on ''Radioactive Waste Management'' to develop guidelines and criteria for revising the Order. This comparative matrix is a follow up to the earlier analysis. This matrix comparing the requirements of DOE Order 5820.2A with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) regulations was prepared at the request of EM-30. The matrix compares DOE Order 5820.2A with the following: NRC regulations in 10 CFR Part 61 on ''Licensing Requirements for Land Disposal of Radioactive Waste''; NRC regulations in 10 CFR Part 60 on ''Disposal of High-Level Radioactive Waste in Geologic Repositories''; EPA regulations in 40 CFR Part 191 on ''Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Waste''; EPA regulations in 40 FR Part 192 on ''Health and Environmental Protection Standards for Uranium and Thorium Mill Tailing''; and EPA regulations under the Resource Conservation and Recovery Act

  6. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  7. Revk - a Tool for the Fulfilment of Requirements from National Rules for Tracking and Documentation of Radioactive Residual Material and Radioactive Waste

    International Nuclear Information System (INIS)

    Hartmann, B.; Haeger, M.; Gruendler, D.

    2006-01-01

    According to the German Radiation Protection Ordinance treatment, storage, whereabouts of radioactive material etc. have to be documented. Due to legal requirements an electronic documentation system for radioactive waste has to be installed. Within the framework of the currently largest decommissioning project of nuclear facilities by Energiewerke Nord GmbH, a material flow-waste tracking and control system (ReVK) has been developed, tailored to the special needs of the decommissioning of nuclear facilities. With this system it is possible to record radioactive materials which can be released after treatment or decay storage for restricted and unrestricted utilization. Radioactive waste meant for final storage can be registered and documented as well. Based on ORACLE, ReVK is a client/server data base system with the following modules: 1. data registration, 2. transport management, 3. waste tracking, 4. storage management, 5. container management, 6. reporting, 7. activity calculation, 8. examination of technical acceptance criteria for storages and final repositories. Furthermore ReVK provides a multitude of add-ons to meet special user needs, which enlarge the spectrum of application enormously. ReVK is validated and qualified, accepted by experts and authorities and fulfils the requirements for a radioactive waste documentation system. (authors)

  8. Sponsored research on radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in chapters entitled: introduction (background, responsibilities, options, structure of the programme); strategy development; disposal of accumulations; disposal of radioactive waste arisings; quality assurance for waste conditioning quality assurance related to radioactive waste disposal (effectiveness of different rock types as natural barriers to the movement of radioactivity, and non-site specific factors in the design of repositories; radiological assessment; environmental studies; research and development to meet requirements specific to UKAEA wastes; long term research (processes for the solidification of highly active liquid wastes); plutonium contamination waste minimisation. (U.K.)

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  10. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  11. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  12. Civilian Radioactive Waste Management System Requirements Document

    International Nuclear Information System (INIS)

    1992-12-01

    This document specifies the top-level requirements for the Civilian Radioactive Waste Management System (CRWMS). The document is referred to herein as the CRD, for CRWMS Requirements document. The OCRWM System Engineering Management Plan (SEMP) establishes the technical document hierarchy (hierarchy of technical requirements and configuration baseline documents) for the CRWMS program. The CRD is the top-level document in this hierarchy. The immediate subordinate documents are the System Requirements Documents (SRDS) for the four elements of the CRWMS and the Interface Specification (IFS). The four elements of the CRWMS are the Waste Acceptance System, the Transportation System, the Monitored Retrievable Storage (MRS) System and the Mined Geologic Disposal System (MGDS). The Interface Specification describes the six inter-element interfaces between the four elements. This hierarchy establishes the requirements to be addressed by the design of the system elements. Many of the technical requirements for the CRWMS are documented in a variety of Federal regulations, DOE directives and other Government documentation. It is the purpose of the CRD to establish the technical requirements for the entire program. In doing so, the CRD summarizes source documentation for requirements that must be addressed by the program, specifies particular requirements, and documents derived requirements that are not covered in regulatory and other Government documentation, but are necessary to accomplish the mission of the CRWMS. The CRD defines the CRWMS by identifying the top-level functions the elements must perform (These top-level functions were derived using functional analysis initially documented in the Physical System Requirements (PSR) documents). The CRD also defines the top-level physical architecture of the system and allocates the functions and requirements to the architectural elements of the system

  13. Radioactive waste shredding: Preliminary evaluation

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size

  14. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  15. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  16. Regulation on radioactive waste management, Governmental Agreement No. 559-98

    International Nuclear Information System (INIS)

    1998-01-01

    This regulation defines the responsibilities on the radioactive waste management in Guatemala including the requirements of users, handling of radioactive wastes, authorization of radioactive waste disposal, transport of radioactive wastes and penalties

  17. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  18. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  19. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  20. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    International Nuclear Information System (INIS)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.; Gonzalez, N.

    2007-01-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in the Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)

  1. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  2. Shifting paradigms in managing radioactive waste

    International Nuclear Information System (INIS)

    Le Bars, Y.; Pescatore, C.

    2004-01-01

    The Stakeholder involvement in policy making of radioactive waste management, has received considerable attention within the OECD. The Nea forum on Stakeholder confidence (FSC) was set up in 2000. A Nea recent publication entitled ''Learning and adapting to societal requirements for radioactive waste management'' brings together the key FSC findings and experience covering four years of work. Six main areas are targeted in this publication and are briefly described in this document: favourable candidates for issuing radioactive waste management policy, the design of the decision-making process, the social and ethical dimension, trust in the actors, Stakeholder involvement and the local dimension of radioactive waste management. (A.L.B.)

  3. Is radioactive mixed waste packaging and transportation really a problem

    International Nuclear Information System (INIS)

    McCall, D.L.; Calihan, T.W. III.

    1992-01-01

    Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ''low-level radioactive waste'' was in fact ''radioactive mixed waste'' and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations

  4. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  5. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  6. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  7. Grading of Requirements for Radioactive Waste Activities in Nuclear Research Reactors: Radioisotope Production Facilities

    International Nuclear Information System (INIS)

    Tawfik, Y.E.

    2017-01-01

    A graded approach is applicable in all stages of the life time of a research reactor. During the life time of a research reactor, any grading performed should not, in any manner, affect safety functions and operational limits and conditions are preserved, so that there are no undue radiological hazards to workers, public or environment. The grading of activities should be based on safety analyses, and regulatory requirements. Other elements to be considered in grading are the complexity and the maturity of the technology, operating experience associated with the activities and the stage in the life time of the facility. In order to ensure that proper and a de quate provision is made for the safety implications associated with the management and disposal of radioactive waste, the waste is characterized and classified. The general scheme for classifying radioactive waste as presented in the current study is based on considerations of long term safety, and thus, by implication, disposal of the waste. This classification provides a starting point for the grading of activities associated with the packaging and disposal of radioactive waste

  8. Radioactive waste problems in Russia

    International Nuclear Information System (INIS)

    Bridges, O.; Bridges, J.W.

    1995-01-01

    The collapse of the former Soviet Union, with the consequent shift to a market driven economy and demilitarisation, has had a profound effect on the nuclear and associated industries. The introduction of tighter legislation to control the disposal of radioactive wastes has been delayed and the power and willingness of the various government bodies responsible for its regulation is in doubt. Previously secret information is becoming more accessible and it is apparent that substantial areas of Russian land and surface waters are contaminated with radioactive material. The main sources of radioactive pollution in Russia are similar to those in many western countries. The existing atomic power stations already face problems in the storage and safe disposal of their wastes. These arise because of limited on site capacity for storage and the paucity of waste processing facilities. Many Russian military nuclear facilities also have had a sequence of problems with their radioactive wastes. Attempts to ameliorate the impacts of discharges to important water sources have had variable success. Some of the procedures used have been technically unsound. The Russian navy has traditionally dealt with virtually all of its radioactive wastes by disposal to sea. Many areas of the Barents, Kola and the Sea of Japan are heavily contaminated. To deal with radioactive wastes 34 large and 257 small disposal sites are available. However, the controls at these sites are often inadequate and illegal dumps of radioactive waste abound. Substantial funding will be required to introduce the necessary technologies to achieve acceptable standards for the storage and disposal of radioactive wastes in Russia. (author)

  9. Radioactive waste mangement in Canada

    International Nuclear Information System (INIS)

    Didyk, J.P.

    1976-01-01

    The objectives of the Canadian radioactive waste management program are to manage the wastes so that the potential hazards of the material are minimized, and to manage the wastes in a manner which places the minimum possible burden on future generations. The Atomic Energy Control Board regulates all activities in the nuclear field in Canada, including radioactive waste management facility licensing. The Atomic Energy Control Act authorizes the Board to make rules for regulating its proceedings and the performance of its functions. The Atomic Energy Control Regulations define basic regulatory requirements for the licensing of facilities, equipment and materials, including requirements for records and inspection, for security and for health and safety

  10. Regulatory document R-104, Regulatory objectives, requirements and guidelines for the disposal of radioactive wastes - long-term aspects

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose and scope of this document is to present the regulatory basis for judging the long-term acceptability of radioactive waste disposal options. The basic objectives of radioactive waste disposal are given as are the regulatory requirements to be satisfied. (NEA)

  11. Collecting and identifying the radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, C. GH.

    2001-01-01

    The procedure 'Collecting and identifying the radioactive waste' applied by the Radioactive Waste Management Department, STDR, complies with the requirements of the competent authority concerning the radioactive source management. One of the most important tasks, requiring the application of this procedure, is collecting and identification of 'historical wastes' for which a complete book keeping does not exist from different reasons. The chapter 1 presents the procedure's goal and the chapter 2 defines the applicability field. Chapter 3 enlists the reference documents while the chapter 4 gives the definitions and abbreviations used in the procedure. Chapter 5 defines responsibilities of the operators implied in collecting, identification and characterization of the radioactive wastes, the producers of the radioactive wastes being implied. Chapter 6 gives the preliminary conditions for applying the procedure. Among these, the transport, collecting, processing, storing and characterization costs are implied, as well as the compliance with technical and different other condition. The procedure structure is presented in the chapter 7. In collecting radioactive wastes, two situations are possible: 1- the producer is able to prepare the wastes for transport and to deliver them to STDR; 2 - the wastes are received from the producer by a delegate STDR operator, properly and technically prepared. The producer must demonstrate by documents the origin and possession, analysis bulletins specifying, the radionuclides activity and measurement date, physical state and, in addition, for spent radiation sources, the series/number of the container and producer. In case the producer is not able to display all this information, the wastes are taken into custody by the STDR labs in view of their analysis. A record in writing is completed specifying the transfer of radioactive wastes from the producer to the STDR, a record which is sent to the national authority in charge with the

  12. Radioactive waste management in an Australian state - IAEA style

    International Nuclear Information System (INIS)

    Shields, B.; Newbery, S.M.

    1999-01-01

    The IAEA have produced a series of publications within the RADWASS programme. These publications are comprehensive in their coverage and are applicable to all aspects of radioactive waste management - from the individual user level to State and National level. Adherence to the principles contained in these publications is advocated in the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The publications provide a useful check list against which to determine the current status of radioactive management, at various levels (individual level, State, National) and also provide a basis for planning future waste management requirements. In Tasmania, these publications have been utilised to assess the current radioactive waste management system and to determine future management requirements, particularly for storage of radioactive waste. This paper illustrates the application of the publications for auditing individual users' waste management status and for determining future State storage requirements for radioactive waste. A brief outline of the process used and the main issues identified as a result, will be presented. These issues include some requiring a National approach for their resolution. Copyright (1999) Australasian Radiation Protection Society Inc

  13. Training requirements and responsibilities for the Buried Waste Integrated Demonstration at the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Vega, H.G.; French, S.B.; Rick, D.L.

    1992-09-01

    The Buried Waste Integrated Demonstration (BWID) is scheduled to conduct intrusive (hydropunch screening tests, bore hole installation, soil sampling, etc.) and nonintrusive (geophysical surveys) studies at the Radioactive Waste Management Complex (RWMC). These studies and activities will be limited to specific locations at the RWMC. The duration of these activities will vary, but most tasks are not expected to exceed 90 days. The BWID personnel requested that the Waste Management Operational Support Group establish the training requirements and training responsibilities for BWID personnel and BWID subcontractor personnel. This document specifies these training requirements and responsibilities. While the responsibilities of BWID and the RWMC are, in general, defined in the interface agreement, the training elements are based on regulatory requirements, DOE orders, DOE-ID guidance, state law, and the nature of the work to be performed

  14. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  15. Method of solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Mihara, Shigeru; Yamashita, Koji; Sauda, Kenzo.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and more conveniently from radioactive wastes. Method: liquid wastes contain, in addition to sodium sulfate as the main ingredient, nitrates hindering the polymerizing curing reactions and various other unknown ingredients, while spent resins contain residual cationic exchange groups hindering the polymerizing reaction. Generally, as the acid value of unsaturated liquid polyester resins is lower, the number of terminal alkyd resins is small, formation of nitrates is reduced and the polymerizing curing reaction is taken place more smoothly. In view of the above, radioactive wastes obtained by dry powderization or dehydration of radioactive liquid wastes or spent resins are polymerized with unsaturated liquid polyester resins with the acid value of less than 13 to obtain plastic solidification. Thus, if the radioactive wastes contain a great amount of polymerization hindering material such as NaNO 2 , they can be solidified rapidly and conveniently with no requirement for pre-treatment. (Kamimura, Y.)

  16. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  17. ANSTO's radioactive waste management policy. Preliminary environmental review

    International Nuclear Information System (INIS)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs

  18. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  19. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  1. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  2. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  3. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  4. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Barboza, Alex

    2009-01-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  5. Database basic design for safe management radioactive waste

    International Nuclear Information System (INIS)

    Son, D. C.; Ahn, K. I.; Jung, D. J.; Cho, Y. B.

    2003-01-01

    As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used in association with national radioactive waste management project, standardization of data form and its protocol is required, Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management

  6. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  8. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  9. Cross flow filtration of aqueous radioactive tank wastes

    International Nuclear Information System (INIS)

    McCabe, D.J.; Reynolds, B.A.; Todd, T.A.; Wilson, J.H.

    1997-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic

  10. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  11. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  12. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  13. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  14. Step-By-Step: Life Cycle Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Radioactive waste is an unavoidable by-product when nuclear technologies are used for electricity production and for beneficial practices in medicine, agriculture, research and industry. When the radioactivity of the waste is above a certain threshold, the waste requires special disposal methods. Through extensive research, standards and approaches have been developed for safely and securely preparing for and managing radioactive waste disposal. In the course of its journey from the point of generation to disposal, radioactive waste undergoes a number of predisposal management treatment steps to transform it into a safe, stable and manageable form suitable for transport, storage and disposal

  15. Emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes - would geological disposal be an appropriate solution for some of these wastes

    International Nuclear Information System (INIS)

    Rein, K. von

    1994-01-01

    This work deals with the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. After some generalities on the pollution of natural environment and the legislations taken by the swedish government the author tries to answer to the question : would geological disposal be an appropriate solution for the non-radioactive hazardous wastes? Then is given the general discussion of the last three articles concerning the background to current environmental policies and their implementation and more particularly the evolution and current thoughts about environmental policies, the managing hazardous activities and substances and the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. Comments and questions concerning the similarity or otherwise between the present position of radioactive waste disposal and the background to current environmental policies are indicated. (O.L.)

  16. Radioactive waste management at nuclear power plant Cernavoda

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  17. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  18. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level (radioactive) waste (HLW) as (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel...that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission...determines...requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph B. The approach also results in definitions of other wastes classes, i.e., transuranic (TRU) and low-level waste (LLW). The basic waste classification scheme that results from the quantitative definitions of highly radioactive and requires permanent isolation is depicted. The concentrations of radionuclides that correspond to these two boundaries, and that may be used to classify radioactive wastes, are given

  19. Radioactive waste management; the realities as against the myths

    International Nuclear Information System (INIS)

    Williams, I.

    1980-01-01

    Nuclear power generation is now an essential requirement for the mankind in the current energy difficulties. The problem of radioactive waste management is arousing the opposition, but it must not inhibit the utilization of nuclear energy. Radioactive waste management concerns the whole course from its occurrence to its final disposal. The purpose of the management is then to protect absolutely the human beings of present and future generations from the danger of radioactivity. Radioactive wastes are varied much in their kinds and natures. While the management technology is nearly all established, the amounts of wastes are increasing. The following matters are described. Definition of radioactive waste management, fundamental strategies of the management, kinds of radioactive wastes, the present situation of radioactive waste management, and problems in the management. (J.P.N.)

  20. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  1. Actions of a protocol for radioactive waste management

    International Nuclear Information System (INIS)

    Sousa, Joyce Caroline de Oliveira; Andrade, Idalmar Gomes da Silva; Frazão, Denys Wanderson Pereira; Abreu, Lukas Maxwell Oliveira de; França, Clyslane Alves; Macedo, Paulo de Tarso Silva de

    2017-01-01

    Radioactive wastes are all those materials generated in the various uses of radioactive materials, which can not be reused and which have radioactive substances in quantities that can not be treated as ordinary waste. All management of these wastes must be carried out carefully, including actions ranging from its collection to the point where they are generated to their final destination. However, any and all procedures must be carried out in order to comply with the requirements for the protection of workers, individuals, the public and the environment. The final product of the study was a descriptive tutorial on the procedures and actions of a standard radioactive waste management protocol developed from scientific publications on radiation protection. The management of radioactive waste is one of the essential procedures in the radiological protection of man and the environment where the manipulation of radioactive materials occurs. The standard radioactive management protocol includes: collection, segregation of various types of wastes, transport, characterization, treatment, storage and final disposal. The radioactive wastes typology interferes with sequencing and the way in which actions are developed. The standardization of mechanisms in the management of radioactive waste contributes to the radiological safety of all those involved

  2. An assessment of partition and transmutation against UK requirements for radioactive waste management: supporting studies

    International Nuclear Information System (INIS)

    Cummings, R.; Crookshanks, C.E.; McAdams, R.; Rogers, J.M.; Sims, H.E.; Smith-Briggs, J.L.

    1996-06-01

    A study of partition and transmutation (P and T) has recently been reported: An Assessment of Partition and Transmutation Against UK Requirements for Radioactive Waste Management (DOE/RAS/96.007). The prospects were assessed for real safety or financial gains being made through the future use of partition and transmutation within the United Kingdom in radioactive waste management. The assessment was made by AEA Technology, on behalf of the Department of the Environment. The assessment was partly based on the results of a number of studies described here. (Author)

  3. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  4. ANSTO`s radioactive waste management policy. Preliminary environmental review

    Energy Technology Data Exchange (ETDEWEB)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs.

  5. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    filtration of gaseous radioactive substances. It is also necessary to capture and condition the radioactive substances in the exhaust gas from the nuclear plant and equipment and the controlled zones. The second subsystem provides effective control and management of gaseous waste in normal and accidental conditions — one of the main issues of nuclear fuel cycle facility design and operation. Many of the issues relating to air cleaning and gaseous radioactive waste management systems have been covered in several IAEA publications. This publication is an attempt to provide systematic and comprehensive information on the entire subject. This publication takes into account the increasing requirements for the protection of the public and the environment, and during the publication’s preparation, the available technical information was collected and reviewed

  6. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  7. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  8. RAF 9054 - Strengthening Radioactive Waste Management in Africa

    International Nuclear Information System (INIS)

    Atogo, M.

    2017-01-01

    Radioactive waste is waste that contains Radioactive Material . It is usually a by-product of nuclear power generation and other applications of nuclear fission or nuclear technology, such as research and medicine. Radioactive waste management is a requirement to protect human beings and the environment from radioactive hazards now and for the long term. The application of management system requirements shall be graded to deploy resources at appropriate levels. Grading should not be used as a justification for not applying all of the necessary management system elements or required quality controls. The classification of RW is important to allow for easy handling and transportation and enhancement of safety while going through the process of waste management. The AFRA project “Strengthening Waste Management Infrastructure”, RAF/4/015 was initiated in 1996 by the IAEA. The objective of the project was to build the RWM infrastructure of AFRA member state. A follow-up project “Sustaining Waste Management Infrastructure”, RAF/3/005, was approved in 2005 for a duration of 5 years to help sustain the RWM capabilities and programs initiated in the AFRA member states as well as to help the new African countries joining the IAEA. RAF 9054 provides for a framework for the formulation of relevant legislations and technical skills for the establishment for a framework for the safe management of radioactive waste

  9. Waste Acceptance System Requirements document (WASRD)

    International Nuclear Information System (INIS)

    1993-01-01

    This Waste Acceptance System Requirements document (WA-SRD) describes the functions to be performed and the technical requirements for a Waste Acceptance System for accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) into the Civilian Radioactive Waste Management System (CRWMS). This revision of the WA-SRD addresses the requirements for the acceptance of HLW. This revision has been developed as a top priority document to permit DOE's Office of Environmental Restoration and Waste Management (EM) to commence waste qualification runs at the Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) in a timely manner. Additionally, this revision of the WA-SRD includes the requirements from the Physical System Requirements -- Accept Waste document for the acceptance of SNF. A subsequent revision will fully address requirements relative to the acceptance of SNF

  10. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  11. Summary report of a seminar on geosphere modelling requirements of deep disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Piper, D.; Paige, R.W.; Broyd, T.W.

    1989-02-01

    A seminar on the geosphere modelling requirements of deep disposal of low and intermediate level radioactive wastes was organised by WS Atkins Engineering Sciences as part of Her Majesty's Inspectorate of Pollution's Radioactive Waste Assessment Programme. The objectives of the seminar were to review geosphere modelling capabilities and prioritise, if possible, any requirements for model development. Summaries of the presentations and subsequent discussions are given in this report. (author)

  12. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  13. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  14. Waste package performance criteria for deepsea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Colombo, P.; Fuhrmann, M.

    1988-07-01

    Sea disposal of low-level radioactive waste began in the United States in 1946, and was placed under the licensing authority of the Atomic Energy Commission (AEC). The practice stopped completely in 1970. Most of the waste disposed of at sea was packaged in second- hand or reconditioned 55-gallon drums filled with cement so that the average package density was sufficiently greater than that of sea water to ensure sinking. It was assumed that all the contents would eventually be released since the packages were not designed or required to remain intact for sustained periods of time after descent to the ocean bottom. Recently, there has been renewed interest in ocean disposal, both in this country and abroad, as a waste management alternative to land burial. The Marine Protection, Research and Sanctuaries Act of 1972 (PL 92-532) gives EPA the regulatory responsibility for ocean dumping of all materials, including radioactive waste. This act prohibits the ocean disposal of high-level radioactive waste and requires EPA to control the ocean disposal of all other radioactive waste through the issuance of permits. In implementing its permit authorities, EPA issued on initial set of regulations and criteria in 1973 to control the disposal of material into the ocean waters. It was in these regulations that EPA initially introduced the general requirement of isolation and containment of radioactive waste as the basic operating philosophy. 37 refs

  15. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    International Nuclear Information System (INIS)

    Dziewinska, K.M.

    1998-01-01

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities

  16. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  17. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  18. Policies and strategies for radioactive waste management

    International Nuclear Information System (INIS)

    2009-01-01

    A policy for spent fuel and radioactive waste management should include a set of goals or requirements to ensure the safe and efficient management of spent fuel and radioactive waste in the country. Policy is mainly established by the national government and may become codified in the national legislative system. The spent fuel and radioactive waste management strategy sets out the means for achieving the goals and requirements set out in the national policy. It is normally established by the relevant waste owner or nuclear facility operator, or by government (institutional waste). Thus, the national policy may be elaborated in several different strategy components. To ensure the safe, technically optimal and cost effective management of radioactive waste, countries are advised to formulate appropriate policies and strategies. A typical policy should include the following elements: defined safety and security objectives, arrangements for providing resources for spent fuel and radioactive waste management, identification of the main approaches for the management of the national spent fuel and radioactive waste categories, policy on export/import of radioactive waste, and provisions for public information and participation. In addition, the policy should define national roles and responsibilities for spent fuel and radioactive waste management. In order to formulate a meaningful policy, it is necessary to have sufficient information on the national situation, for example, on the existing national legal framework, institutional structures, relevant international obligations, other relevant national policies and strategies, indicative waste and spent fuel inventories, the availability of resources, the situation in other countries and the preferences of the major interested parties. The strategy reflects and elaborates the goals and requirements set out in the policy statement. For its formulation, detailed information is needed on the current situation in the country

  19. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  20. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1987-06-01

    This report presents a proposal for quantitative and generally applicable risk-based definitions of high-level and other radioactive wastes. On the basis of historical descriptions and definitions of high-level waste (HLW), in which HLW has been defined in terms of its source as waste from reprocessing of spent nuclear fuel, we propose a more general definition based on the concept that HLW has two distinct attributes: HLW is (1) highly radioactive and (2) requires permanent isolation. This concept leads to a two-dimensional waste classification system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with shorter-term risks due to high levels of decay heat and external radiation. We define wastes that require permanent isolation as wastes with concentrations of radionuclides exceeding the Class-C limits that are generally acceptable for near-surface land disposal, as specified in the US Nuclear Regulatory Commission's rulemaking 10 CFR Part 61 and its supporting documentation. HLW then is waste requiring permanent isolation that also is highly radioactive, and we define ''highly radioactive'' as a decay heat (power density) in the waste greater than 50 W/m 3 or an external radiation dose rate at a distance of 1 m from the waste greater than 100 rem/h (1 Sv/h), whichever is the more restrictive. This proposal also results in a definition of Transuranic (TRU) Waste and Equivalent as waste that requires permanent isolation but is not highly radioactive and a definition of low-level waste (LLW) as waste that does not require permanent isolation without regard to whether or not it is highly radioactive

  1. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  2. Development of Specifications for Radioactive Waste Packages

    International Nuclear Information System (INIS)

    2006-10-01

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste

  3. Development of Specifications for Radioactive Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-10-15

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste.

  4. Radioactive waste management: Spanish experiences

    International Nuclear Information System (INIS)

    Beceiro, A. R.

    1996-01-01

    Radioactive waste generation began in Spain during the 1950's, in association with the first applications of radioactive isotopes in industry, medicine and research. Spain's first nuclear power plant began its operations in 1968. At present, there are in operation some one thousand installations possessing the administrative authorization required to use radioactive isotopes (small producers), nine nuclear groups and a tenth is now entering the dismantling phase. There are also activities and installations pertaining to the front end of the nuclear fuel cycle (mining, milling and the manufacturing of fuel elements). Until 1985, the research center Junta de Energia Nuclear (now CIEMAT) rendered radioactive waste removal, and subsequent conditioning and temporary storage services to the small producers. Since the beginning of their operations the nuclear power plants and fuel cycle facilities have had the capacity to condition and temporarily store their own radioactive wastes. ENRESA (Empresa Nacional de Residuos Radiactivos, S. A.) began its operations in the second half of 1985. It is a state-owned company created by the Government in accordance with a previous parliamentary resolution and commissioned to establish a system for management of such wastes throughout Spain, being in charge also of the dismantling of nuclear power plants and other major installations at the end of their operating lifetimes. Possibly the most outstanding characteristic of ENRESA's evolution over these last seven years has been the need to bring about a compromise between solving the most immediate and pressing day-to-day problems of operation (the first wastes were removed at the beginning of 1986) and establishing the basic organization, resources, technology and installations required for ENRESA to operate efficiently in the long term. (author)

  5. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  6. 77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues

    Science.gov (United States)

    2012-07-11

    ...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... regulatory time of compliance for a low-level radioactive waste disposal facility, allowing licensees the... system, and revising the NRC's licensing requirements for land disposal of radioactive waste. DATES: The...

  7. China's status and strategy of radioactive waste management

    International Nuclear Information System (INIS)

    Bi Decai

    2001-01-01

    China has a forty-year history of nuclear industry and nuclear technology application. Safety management of radioactive wastes has been the great concern of related regulatory authorities. After the national policy on regional disposal for low and intermediate level radioactive waste was enacted in 1992, the management of radioactive wastes gradually focused on disposal. Currently, the strategies for radioactive waste management in China are: (a) storing high level radioactive wastes temporarily and launching the study of vitrification and deep geological disposal of high level liquid waste, treating spent fuels from PWR by reprocessing; (b) implementing regional disposal policy for low and intermediate level wastes, implementing cement solidification for low and intermediate level liquid waste before disposal, carrying out bulk casting shallow land disposal technology and hydraulic-fractured cement solidification for deep geological disposal in some special regions under specific conditions, treating low and intermediate level solid radioactive wastes by cement solidification after incineration or by compressing before final disposal; (c) stabilizing the tailing repository by reinforcing embankment, constructing flood dam and overlaying plantation; and (d) developing and formulating laws, regulations, and standards to ensure safe management of radioactive wastes. When establishing standards, other than to follow the generic principles and requirements, emphasis should be placed on the following principles: safety the first, economy, disposal of radioactive wastes as focus, and introduction of international advanced standards as possible. (author)

  8. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  9. Inspection and testing in conditioning of radioactive waste

    International Nuclear Information System (INIS)

    1997-08-01

    This report was prepared as part of the IAEA's programme on quality assurance and quality control requirements for radioactive waste packages. The report provides guidance and rationale for the application of inspections and tests as part of the entire quality assurance programme to verify and demonstrate that waste conditioning is being performed in a manner that protects human health and the environment from hazards associated with radioactive waste. The report is relevant to the Technical Reports Series No. 376, ''Quality Assurance for Radioactive Waste Packages'' dealing in general with the quality assurance programme of organization consigning radioactive waste to the repository, and elaborates its section devoted to inspection and testing for acceptance. 14 refs, 7 figs

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  11. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  12. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    Galkin, A.; Tkachenko, V.

    2002-01-01

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  13. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  14. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  15. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  16. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  17. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    A general analysis of transportation requirements for postfission radioactive wastes that are produced from the commercial light water reactor (LWR) fuel cycle and that are assumed to require Federal custody for storage or disposal is given. Possible radioactive wastes for which transportation requirements are described include: spent fuel, solidified high-level waste, fuel residues (cladding wastes), plutonium, and non-high-level transuranic (TRU) wastes. Transportation is described for wastes generated in three fuel cycle options: once-through fuel cycle, uranium recycle only, and recycle of uranium and plutonium. The geologic considerations essential for repository selection, the nature of geologic formations that are potential repository media, the thermal criteria for waste placement in geologic repositories, and conceptual repositories in four different geologic media are described. The media are salt deposits, granite, shale, and basalt. Possible alternatives for managing retired facilities and procedures for decommissioning are reviewed. A qualitative comparison is made of wastes generated by the uranium fuel cycle and the thorium fuel cycle. This study presents data characterizing wastes from prebreeder light water breeder reactors using thorium and slightly enriched uranium-235. The prebreeder LWBRs are essentially LWRs using thorium. The operation of HTGR and LWBR cycles are conceptually designed, and wastes produced in these cycles are compared for potential differences

  18. Requirements for the safe management of radioactive waste. Proceedings of a seminar held in Vienna, 28-31 August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This publication contains the proceedings of the Seminar on Requirements for the Safe Management of Radioactive Waste held from 28 to 31 August 1995 in Vienna. The Seminar summarizes the experience gained up to date in the safe management of radioactive waste. The papers were presented by outstanding invited speakers from Member States. It is expected that the outcome of the presentations and discussions of the broad set of issues on radioactive waste management included in this publication will be used in the preparation process of the Convention on the Safe Management of Radioactive Waste. The information provided in this publication has been arranged as follows: The first part includes the opening statement and three topical presentations in the opening session and the paper on radioactive waste management as part of the environmental protection. The second, third and fourth parts include papers dealing with planning for safety, experience in the safe management of radioactive waste and radioactive waste management issues, respectively. The fifth part contains the summaries of the three sessions, including the respective panel discussions, provided by the chairman of each session. Finally, the sixth part incorporates statements by panelists and is a summary of the panel discussions provided by the respective chairmen on three topics: ``Implications of Treating Spent Fuel as High Level Waste``, ``Residues from Past Activities and Accidents`` and ``Exclusion, Exemption and Clearance of Materials from Nuclear Regulatory Control``. Refs, figs and tabs.

  19. Radioactive wastes handling problems in Venezuela

    International Nuclear Information System (INIS)

    Ramirez, R.; Venegas, R.

    1984-07-01

    A brief description of the radioactive wastes problem in Venezuela is presented. The origins of the problem are shown in a squematic form. The requirements for its solution are divided into three parts: information system, control system, radioactive wastes hadling system. A questionnaire summarizing factors to be considered when looking for a solution to the problem in Venezuela is included, as well as conclusions and recomendations for further discussion

  20. A proposed classification system for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1989-01-01

    On the basis of the definition of high-level wastes (HLW) in the Nuclear Waste Policy Act of 1982 and previous descriptions of reprocessing wastes, a definition is proposed based on the concept that HLW is any waste which is highly radioactive and requires permanent isolation. This conceptual definition of HLW leads to a two-dimensional waste classification system in which one axis, related to 'highly radioactive', is associated with shorter-term risks from waste management and disposal due to high levels of decay heat and external radiation, and the other axis, related to 'requires permanent isolation', is associated with longer-term risks from waste disposal. Wastes that are highly radioactive are defined quantitatively as wastes with a decay heat (power density) greater than 50 W/m 3 or an external dose-equivalent rate greater than 100 rem/h (1 Sv/h) at a distance of 1 m from the waste, whichever is more restrictive. Wastes that require permanent isolation are defined quantitatively as wastes with concentrations of radionuclides greater than the Class-C limits that are generally acceptable for near-surface land disposal, as obtained from the Nuclear Regulatory Commission's 10 CFR Part 61 and its associated methodology. This proposal leads to similar definitions of two other waste classes: transuranic (TRU) waste and equivalent is any waste that requires permanent isolation but is not highly radioactive; and low-level waste (LLW) is any waste that does not require permanent isolation, without regard to whether or not it is highly radioactive. 31 refs.; 3 figs.; 4 tabs

  1. RADWASS update. Radioactive Waste Safety Standards Programme

    International Nuclear Information System (INIS)

    Delattre, D.

    2000-01-01

    By the late 1980s, the issue of radioactive wastes and their management was becoming increasingly politically important. The IAEA responded by establishing a high profile family of safety standards, the Radioactive Waste Safety Standards (RADWASS). By this means, the IAEA intended to draw attention to the fact that well-established procedures for the safe management of radioactive wastes already were in place. The programme was intended to establish an ordered structure for safety documents on waste management and to ensure comprehensive coverage of all relevant subject areas. RADWASS documents are categorized under four subject areas - discharges, predisposal, disposal, and environmental restoration. The programme is overseen through a formalized review and approval mechanism that was established in 1996 for all safety standards activities. The Waste Safety Standards Committee (WASSC) is a standing body of senior regulatory officials with technical expertise in radioactive waste safety. To date, three Safety Requirements and seven Safety Guides have been issued

  2. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  3. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  4. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant

  5. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  6. Radioactive waste management centers: an approach

    International Nuclear Information System (INIS)

    Lotts, A.L.

    1980-01-01

    Radioactive waste management centers would satisfy the need for a cost-effective, sound management system for nuclear wastes by the industry and would provide a well integrated solution which could be understood by the public. The future demands for nuclear waste processing and disposal by industry and institutions outside the United States Government are such that a number of such facilities are required between now and the year 2000. Waste management centers can be organized around two general needs in the commercial sector: (1) the need for management of low-level waste generated by nuclear power plants, the once-through nuclear fuel cycle production facilities, from hospitals, and other institutions; and (2) more comprehensive centers handling all categories of nuclear wastes that would be generated by a nuclear fuel recycle industry. The basic technology for radioactive waste management will be available by the time such facilities can be deployed. This paper discusses the technical, economic, and social aspects of organizing radioactive waste managment centers and presents a strategy for stimulating their development

  7. The status of radioactive waste management: needs for reassessments

    International Nuclear Information System (INIS)

    Eisenbud, M.

    1980-01-01

    Plicies that dictate the procedures for management of radioactive wastes are influenced by superstition and require fresh examination. It is shown that low level wastes from biomedical and clinical laboratories could be safely disposed of without any restrictions related to their radioactivity. High level waste management should be reexamined to determine the length of isolation required; thought by some to be 1000 years, and to investigate the use of geological repositories. It is also proposed that many forms of waste could be safely disposed of in the oceans, as data has already been accumulated from the fallout of massive quantities of radioactive debris. (H.K.)

  8. Characterization of radioactive mixed wastes: The industrial perspective

    International Nuclear Information System (INIS)

    Leasure, C.S.

    1992-01-01

    Physical and chemical characterization of Radioactive Mixed Wastes (RMW) is necessary for determination of appropriate treatment options and to satisfy environmental regulations. Radioactive mixed waste can be classified as two main categories; contact-handled (low level) RMW and remote-handled RMW. Ibis discussion will focus mainly on characterization of contact handled RMW. The characterization of wastes usually follows one of two pathways: (1) characterization to determine necessary parameters for treatment or (2) characterization to determine if the material is a hazardous waste. Sometimes, however, wastes can be declared as hazardous waste without testing and then treated as hazardous waste. Characterization of radioactive mixed wastes pose some unique issues, however, that will require special solutions. Below, five issues affecting sampling and analysis of RMW will be discussed

  9. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  10. Treatment of radioactive waste - Routine or challenge? Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    The seminar had the following topics: Proposal for new legislation covering radioactive waste management in the EU, new requirements preparations for the later repository, efficient and cost effective treatment of radioactive waste water, intermediate level waste cementation, incineration of spent ion exchange resins in a triphasic mixture, application of THOR-technology on resins, new development for transportation and storage of reactor vessel parts, and conditioning of nuclear fuel containing wastes. (uke)

  11. Waste classification - history, standards, and requirements for disposal

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    This document contains an outline of a presentation on the historical development in US of different classes (categories) or radioactive waste, on laws and regulations in US regarding classification of radioactive wastes; and requirements for disposal of different waste classes; and on the application of laws and regulations for hazardous chemical wastes to classification and disposal of naturally occurring and accelerator-produced radioactive materials; and mixed radioactive and hazardous chemical wastes

  12. Estimation of global inventories of radioactive waste and other radioactive materials

    International Nuclear Information System (INIS)

    2008-06-01

    A variety of nuclear activities have been carried out in the second part of the twentieth century for different purposes. Initially the emphasis was on military applications, but with the passage of time the main focus of nuclear activities has shifted to peaceful uses of nuclear energy and to the use of radioactive material in industry, medicine and research. Regardless of the objectives, the nuclear activities generate radioactive waste. It was considered worthwhile to produce a set of worldwide data that could be assessed to evaluate the legacy of the nuclear activities performed up to the transition between the twentieth and the twenty first century. The assessment tries to cover the inventory of all the human produced radioactive material that can be considered to result from both military and civilian applications. This has caused remarkable difficulties since much of the data, particularly relating to military programmes, are not readily available. Consequently the data on the inventory of radioactive material should be considered as order-of-magnitude approximations. This report as a whole should be considered as a first iteration in a continuing process of updating and upgrading. The accumulations of radioactive materials can be considered a burden for human society, both at present and in the future, since they require continuing monitoring and control. Knowing the amounts and types of such radioactive inventories can help in the assessment of the relative burdens. Knowledge of the national or regional radioactive waste inventory is necessary for planning management operations, including the sizing and design of conditioning, storage and disposal facilities. A global inventory, either of radioactive waste or of other environmental accumulations of radioactive material, could be used to provide a perspective on the requirements and burdens associated with their management, by means of comparisons with the burdens caused by other types of waste or other

  13. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  14. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  15. Impermeable Graphite: A New Development for Embedding Radioactive Waste

    International Nuclear Information System (INIS)

    Fachinger, Johannes

    2016-01-01

    Irradiated graphite has to be handled as radioactive waste after the operational period of the reactor. However, the waste management of irradiated graphite e.g. from the Spanish Vandellos reactor shows, that waste management of even low contaminated graphite could be expensive and requires special retrieval, treatment and disposal technologies for safe long term storage as low or medium radioactive waste. FNAG has developed an impermeable graphite matrix (IGM) as nuclear waste embedding material. This IGM provides a long term stable enclosure of radioactive waste and can reuse irradiated graphite as feedstock material. Therefore, no additional disposal volume is required if e.g. concrete waste packages were replaced by IGM waste packages. The variability of IGM as embedding has been summarized in the following paper usable for metal scraps, ion exchange resins or debris from buildings. Furthermore the main physical, chemical and structural properties are described. (author)

  16. The Danish inventory of radioactive waste and the required repository type

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Gerhard [Oeko-Institut e.V., Darmstadt (Germany). Div. on Nuclear Engineering and Facility Safety

    2014-11-15

    Denmark has a relatively small inventory of radioactive wastes. As Denmark never built and operated nuclear power plants, the wastes resulted only from various research activities. In order to manage those wastes, the Danish Government has ordered to describe those wastes and the available management options. Based on vague criteria, most of the waste types were termed as ''short-lived'' and as suitable for a surface-near disposal facility. The Government then ordered the Geological survey organization of Denmark, GEUS, to scan Denmark for suitable locations. ''Suitable'' depth was defined as 0 to 100 m below ground. Neither were isolation properties or other requirements for geological layers defined nor were those criteria agreed in a broader sense (with experts, with the public). GEUS identified a number of potentially suitable locations and selected six of those as the most promising. In this paper the basic decision of preferring surface-near disposal for most of the waste types is analysed. As a central criterion for the suitability of the waste types for surface-near disposal is defined that those waste types decay within 300 years to below today's clearance levels. The results show, that none of the Danish types of waste meets this simple requirement. All are above that criterion, most of them by several orders of magnitude and over very much longer times such as 100.000 years or even longer. The basic assumption of the performed site selection procedure, to search for near-surface locations for short-lived wastes, so proves to be invalid. The whole process should be re-done on the basis that the long-term isolation of those wastes in impermeable layers has to be guaranteed. The suitability criteria should focus on the long-term isolation of all wastes and should be agreed in advance.

  17. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Christensen, B. D.

    1999-01-01

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization

  18. Policy Requirements and Factors of High-Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    Lee, Kang Myoung; Jeong, J. Y.; Ha, K. M.

    2007-06-01

    Recently, the need of high-level radioactive waste policy including spent fuel management becomes serious due to the rapid increase in oil price, the nationalism of natural resources, and the environmental issues such as Tokyo protocol. Also, the policy should be established urgently to prepare the saturation of on-site storage capacity of spent fuel, the revision of 'Agreement for Cooperation-Concerning Civil Uses of Atomic Energy' between Korea and US, the anxiety for nuclear weapon proliferation, and R and D to reduce the amount of waste to be disposed. In this study, we performed case study of US, Japan, Canada and Finland, which have special laws and plans/roadmaps for high-level waste management, to draw the policy requirements to be considered in HLW management. Also, we reviewed social conflict issues experienced in our society, and summarized the factors affecting the political and social environment. These policy requirements and factors summarized in this study should be considered seriously in the process for public consensus and the policy making regarding HLW management. Finally, the following 4 action items were drawn to manage HLW successfully : - Continuous and systematic R and D activities to obtain reliable management technology - Promoting companies having specialty in HLW management - Nurturing experts and workforce - Drive the public consensus process

  19. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Dalpiaz, E.L. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  20. Managing radioactive waste issues and misunderstandings (radiation realities, energy comparison, waste strategies)

    International Nuclear Information System (INIS)

    Rosen, M.

    2001-01-01

    The technical specialist is confident that radioactive waste can be safely managed, but many in the public remain totally unconvinced. There are issues and deep-seated misunderstandings that drive public doubts. Currently, a growing concern with pollution from other industrial waste is enabling radioactive waste issues to be debated in a wider context that allows comparisons with other potentially hazardous waste, particularly from energy generation sources. Health effects and time period issues are not unique to radioactive waste. This paper concentrates on 3 topics. The first concerns radiation health effects where the real realities of radiation are covered. The large misunderstandings that exist about radiation and its health effects have led to an almost zero health impact regulatory policy. A policy which must be more fully understood and dealt with. The second topic deals with a few revealing comparisons about the various energy generation systems. Nuclear power's 10 thousand fold lower fuel requirements, compared with a comparable fossil fuelled plant, is a dominating factor decisively minimising environmental impacts. The third topic examines waste disposal strategies. Extraordinarily small radioactive waste quantities permit a confinement strategy for disposal as opposed to the more common dispersion strategy for most toxic waste. The small quantities coupled with radioactive decay, contrary to the public perception, make any potential hazard from both low and high level radioactive waste exceedingly small. (author)

  1. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  3. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  4. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  5. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  6. Identification and characterization of Department of Energy special-case radioactive waste

    International Nuclear Information System (INIS)

    Williams, R.E.; Kudera, D.E.

    1990-01-01

    This paper identifies and characterizes Department of Energy (DOE) special-case radioactive wastes. Included in this paper are descriptions of the special-case waste categories and their volumes and curie contents, as well as discussions of potential methods for management of these special-case wastes. Work on extensive inventories of DOE-titled special-case waste are still in progress. All radioactive waste is characterized to determine its waste category. Some wastes may have characteristics of more than one of the major waste types. These characteristics may prevent such wastes from being managed as typical high-level, low-level, or transuranic waste. DOE has termed these wastes special-case wastes. Special-case wastes may require special management and disposal schemes. Because of these special considerations, DOE-Headquarters (HQ) required the identification of all existing and potential DOE-owned special case waste to determine future management planning and funding requirements. The inventory effort includes all commercially held, DOE-owned radioactive materials

  7. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  8. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  9. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  10. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  11. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  12. National policy for control of radioactive sources and radioactive waste from non-power applications in Lithuania

    International Nuclear Information System (INIS)

    Klevinskas, G.; Mastauskas, A.

    2001-01-01

    According to the Law on Radiation Protection of the Republic of Lithuania (passed in 1999), the Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for the radiation protection of public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources from the beginning of their 'life cycle', when they are imported in, used, transported and placed as spent into the radioactive waste storage facilities. For the effective control of sources there is national authorization system (notification- registration-licensing) based on the international requirements and recommendations introduced, which also includes keeping and maintaining the Register of Sources, controlling and investigating events while illegally carrying on or in possession of radioactive material, decision making and performing the state radiation protection supervision and control of users of radioactive sources, controlling, within the limits of competence, the radioactive waste management activities in nuclear and non-nuclear power applications. According to the requirements set out in the Law on Radiation Protection and the Government Resolution 'On Establishment of the State Register of the Sources of Ionizing Radiation and Exposure of Workers' (1999) and supplementary legal acts, all licence-holders conducting their activities with sources of ionizing radiation have to present all necessary data to the State Register after annual inventory of sources, after installation of new sources, after decommissioning of sources, after disposal of spent sources, after finishing the activities with the generators of ionizing radiation. The information to the Radiation Protection Centre has to be presented every week from the Customs Department of the Ministry of Finance about all sources of ionizing radiation imported to or exported from Lithuania and the information about the companies performed these

  13. Risk assessment and radioactive waste management

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1979-01-01

    Problems of radioactive waste management, both real and apparent, have provided a serious constraint in the development of nuclear power. Several studies have been conducted in an attempt to evaluate the actual (quantifiable) risks of radioactive waste management and place them in a reasonable perspective. These studies are reviewed and discussed. Generally, the studies indicate the risks to be of a level of seriousness which might normally be considered acceptable in current society. However, it is apparent that this acceptability has not been attained and public apprehension prevails. To understand the reasons for this apprehension requires an assessment of those factors of ''perceived'' risks which play a major role in determining public attitudes toward radioactive waste management programs and nuclear power, in general. Such factors might include the spector of legacies of harm to future generations, genetic effects, nuclear garbage dumps, proliferation of plutonium inventories, nuclear terrorism, etc. A major problem in development of acceptable waste management policies and programs requires not only the recognition of the importance of perceived risk factors but development of a methodology for their incorporation in planning and conduct of such activities. Some approaches to the development of this methodology are discussed

  14. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  15. Assessment of the requirements for DOE's annual report to congress on low-level radioactive waste

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-level Radioactive Waste Policy Amendments Act of 1985 (PL99-240; LLRWPAA) requires the Department of Energy (DOE) to ''submit to Congress on an annual basis a report which: (1) summarizes the progress of low-level waste disposal siting and licensing activities within each compact region, (2) reviews the available volume reduction technologies, their applications, effectiveness, and costs on a per unit volume basis, (3) reviews interim storage facility requirements, costs, and usage, (4) summarizes transportation requirements for such wastes on an inter- and intra-regional basis, (5) summarizes the data on the total amount of low-level waste shipped for disposal on a yearly basis, the proportion of such wastes subjected to volume reduction, the average volume reduction attained,, and the proportion of wastes stored on an interim basis, and (6) projects the interim storage and final disposal volume requirements anticipated for the following year, on a regional basis (Sec. 7(b)).'' This report reviews and assesses what is required for development of the annual report specified in the LLRWPAA. This report addresses each of the subject areas set out in the LLRWPAA

  16. Requirements of the London Convention for dumping radioactive waste at sea

    International Nuclear Information System (INIS)

    Sutton, H.C.

    1982-10-01

    This report outlines the requirements of the London Convention for dumping radioactive waste at sea and considers their scientific basis more fully. It is intended primarily as an appraisal and aid to understanding of the two documents IAEA 210 and IAEA 211, published by the International Atomic Energy Agency, and relating to the oceanographic and radiobiological basis of their definitions of high level waste and recommendations relating to its dumping at sea, which were required for London Convention purposes. The adequacy and conservation in these recommendations are considered, and the report also compares the predictions of the model on which the recommendations are based with some limited but relevant observations on radiation doses resulting from natural causes (radium in the sea), and from fallout from nuclear bomb tests. It is concluded that if dumping is carried out within the limits and according to the recommendations required by the IAEA, then it is extremely unlikely that this could lead to significant human hazard, either now or in the future. Some of the reasons for this conclusion are summarised in the final chapter

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  18. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  20. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  1. Radioactive waste disposal and constitution

    International Nuclear Information System (INIS)

    Stober, R.

    1983-01-01

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH) [de

  2. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  3. What to do with radioactive wastes?

    International Nuclear Information System (INIS)

    2006-01-01

    This power point presentation (82 slides) gives information on what is a radioactive waste, radioactivity and historical review of radioactivity, radioactive period, natural radioactivity (with examples of data), the three main radiation types (α, β, γ), the origin of radioactive wastes (nuclear power, research, defense, other), the proportion of radioactive wastes in the total of industrial wastes in France, the classification of nuclear wastes according to their activity and period, the quantities and their storage means, the 1991 december 30 law (France) related to the radioactive waste management, the situation in other countries (Germany, Belgium, Canada, USA, Finland, Japan, Netherlands, Sweden, Switzerland), volume figures and previsions for the various waste types in 2004, 2010 and 2020, the storage perspectives, the French national debate on radioactive waste management and the objective of perpetuated solutions, the enhancement of the public information, the 15 June 2006 law on a sustainable management of radioactive materials and wastes with three main axis (deep separation and transmutation, deep storage, waste conditioning and long term surface storage), and the development of a nuclear safety and waste culture that could be extended to other types of industry

  4. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  5. Strategy and methodology for radioactive waste characterization

    International Nuclear Information System (INIS)

    2007-03-01

    Over the past decade, significant progress has been achieved in the development of waste characterization as well as control procedures and equipment. This has been as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. This publication discusses the strategy and methodology to be adopted in conceiving a characterization programme for the various kinds of radioactive waste fluxes or packages. No international publications have dealt with this topic in such depth. The strategy elaborated here takes into account the international State of the art in the different characterization methodologies. The strategy and methodology of the characterization programme will depend on the type of radioactive waste. In addition, the accuracy and quality of the characterization programme very much depends on the requirements to demonstrate compliance with the waste acceptance criteria. This publication presents a new subdivision of radioactive waste based on its physicochemical composition and its time dependence: simple/stable, complex/stable, simple/variable and complex/variable. Decommissioning and historical waste deserve special attention in this publication, and they can belong to any of the four categories. Identifying the life cycle of the radioactive waste is a cornerstone in defining the strategy for radioactive waste characterization. The waste acceptance criteria and the performance assessment of the repository are other key factors in the strategy and

  6. The IAEA's role in safe radioactive waste management

    International Nuclear Information System (INIS)

    Flory, D.; Bruno, G.

    2011-01-01

    In accordance with its statute, IAEA is authorized to develop and maintain safety standards. This mission is reflected in the main programme of the IAEA on nuclear safety and security. In the field of the safety of radioactive waste management the IAEA is responsible for the delineation of a global safety regime to protect the public and the environment from harmful effects of ionizing radiation. This delineation is established on the basis of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, as well as on the development of safety standards for the management of all radioactive waste. The safety standards are the fruit of an international consensus on a high level of safety for the protection of people and environment. Safety guides are edited by IAEA, 7 volumes concern general safety requirements and 6 volumes deal with specific safety requirements (for instance for research reactors or for radioactive waste disposal facilities). Furthermore the IAEA assists Member States in the implementation of the safety standards and provides related services

  7. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  8. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  9. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  10. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  11. Approach to defining de minimis, intermediate, and other classes of radioactive waste

    International Nuclear Information System (INIS)

    Cohen, J.J.; Smith, C.F.

    1986-01-01

    This study has developed a framework within which the complete spectrum of radioactive wastes can be defined. An approach has been developed that reflects both concerns in the framework of a radioactive waste classification system. In this approach, the class of any radioactive waste stream is dependent on its degree of radioactivity and its persistence. To be consistent with conventional systems, four waste classes are defined. In increasing order of concern due to radioactivity and/or duration, these are: 1. De Minimis Wastes: This waste has such a low content of radioactive material that it can be considered essentially nonradioactive and managed according to its nonradiological characteristics. 2. Low-Level Waste (LLW): Maximum concentrations for wastes considered to be in this class are prescribed in 10CFR61 as wastes that can be disposed of by shallow land burial methods. 3. Intermediate Level Waste (ILW): This category defines a class of waste whose content exceeds class C (10CFR61) levels, yet does not pose a sufficient hazard to justify management as a high-level waste (i.e., permanent isolation by deep geologic disposal). 4. High-Level Waste: HLW poses the most serious management problem and requires the most restrictive disposal methods. It is defined in NWPA as waste derived from the reprocessing of nuclear fuel and/or as highly radioactive wastes that require permanent isolation

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  13. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  14. Management of radioactive waste: A review

    OpenAIRE

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  15. Data base for radioactive waste management: review of low-level radioactive waste disposal history

    International Nuclear Information System (INIS)

    Clancy, J.J.; Gray, D.F.; Oztunali, O.I.

    1981-11-01

    This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 1 is a summary and analysis of the history of low level waste disposal at both commercial and government disposal facilities

  16. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  17. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  18. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  19. Leachability of bituminized radioactive waste. Literature survey

    International Nuclear Information System (INIS)

    Akimoto, Toshiyuki; Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi

    1999-02-01

    Bituminized radioactive waste that will be returned from COGEMA, France is planned to be disposed of in deep geologic repository in Japan. Data on leachability of radionuclides from bituminized waste are required for the performance assessment of the disposal. We made a literature survey on bitumen and bituminized radioactive waste, placing emphasis on leach tests and leach data in terms of geologic disposal. This survey revealed that reliable leach data on transuranium elements and data obtained under reducing conditions that is characteristic to deep underground are lacking. (author). 64 refs

  20. Proposed classification scheme for high-level and other radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Croff, A.G.

    1986-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 defines high-level radioactive waste (HLW) as: (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel....that contains fission products in sufficient concentrations; and (B) other highly radioactive material that the Commission....determines....requires permanent isolation. This paper presents a generally applicable quantitative definition of HLW that addresses the description in paragraph (B). The approach also results in definitions of other waste classes, i.e., transuranic (TRU) and low-level waste (LLW). A basic waste classification scheme results from the quantitative definitions

  1. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  2. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  3. Decontamination processes for low level radioactive waste metal objects

    International Nuclear Information System (INIS)

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-01-01

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC

  4. National Plan for the management of radioactive materials and wastes 2013-2015

    International Nuclear Information System (INIS)

    2013-02-01

    This new release of the National Plan for the management of radioactive materials and wastes (PNGMDR) first addresses the principles and objectives of this management: presentation of radioactive materials and wastes, principles to be taken into account to define the different management ways, legal and institutional framework for waste management, societal dimension and memory safeguarding, waste management cost and financing. It proposes an assessment and draws perspectives for the existing management practices: management of historical situations, management of residues of mine processing and mine tailings, management of radioactive wastes, waste management with respect to radioactive decay, valorization of radioactive wastes, incineration of radioactive wastes, storage of very-low-activity wastes, of storage of low- and medium-activity and short-life wastes, management of reinforced natural radioactivity wastes. The third part gives an overview of needs and perspectives for management methods: wastes requiring a specific processing, low-activity long-life wastes, and high-activity and medium-activity long-life wastes

  5. Principles for disposal of radioactive and chemical hazardous wastes

    International Nuclear Information System (INIS)

    Merz, E. R.

    1991-01-01

    The double hazard of mixed wastes is characterized by several criteria: radioactivity on the one hand, and chemical toxicity, flammability, corrosiveness as well as chemical reactivity on the other hand. Chemotoxic waste normally has a much more complex composition than radioactive waste and appears in much larger quantities. However, the two types of waste have some properties in common when it comes to their long-term impact on health and the environment. In order to minimize the risk associated with mixed waste management, the material assigned for ultimate disposal should be thoroughly detoxified, inertized, or mineralized prior to conditioning and packaging. Good control over the environmental consequence of waste disposal requires that detailed criteria for tolerable contamination should be established, and that compliance with these criteria can be demonstrated. For radioactive waste, there has been an extensive international development of criteria to protect human health. For non-radioactive waste, derived criteria exist only for a limited number of substances

  6. Remote ignitability analysis of high-level radioactive waste

    International Nuclear Information System (INIS)

    Lundholm, C.W.; Morgan, J.M.; Shurtliff, R.M.; Trejo, L.E.

    1992-09-01

    The Idaho Chemical Processing Plant (ICPP), was used to reprocess nuclear fuel from government owned reactors to recover the unused uranium-235. These processes generated highly radioactive liquid wastes which are stored in large underground tanks prior to being calcined into a granular solid. The Resource Conservation and Recovery Act (RCRA) and state/federal clean air statutes require waste characterization of these high level radioactive wastes for regulatory permitting and waste treatment purposes. The determination of the characteristic of ignitability is part of the required analyses prior to calcination and waste treatment. To perform this analysis in a radiologically safe manner, a remoted instrument was needed. The remote ignitability Method and Instrument will meet the 60 deg. C. requirement as prescribed for the ignitability in method 1020 of SW-846. The method for remote use will be equivalent to method 1020 of SW-846

  7. Radioactive waste in Federal Germany

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1988-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) is responsible for the long-term storage and disposal of radioactive waste according to the Federal Atomic Energy Act. On behalf of the Federal Minister of the Environment, Nature Conservation and Nuclear Safety, since 1985, the PTB has been carrying out annual inquiries into the amounts of radioactive waste produced in the Federal Republic of Germany. Within the scope of this inquiry performed for the preceding year, the amounts of unconditioned and conditioned waste are compiled on a producer- and plant-specific basis. On the basis of the inquiry for 1986 and of data presented to the PTB by the waste producers, future amounts of radioactive waste have been estimated up to the year 2000. The result of this forecast is presented. In the Federal Republic of Germany two sites are under consideration for disposal of radioactive waste. In the abandoned Konrad iron mine in Salzgitter-Bleckenstedt it is intended to dispose of such radioactive waste which has a negligible thermal influence upon the host rock. The Gorleben salt dome is being investigated for its suitability for the disposal of all kinds of solid and solidified radioactive wastes, especially of heat-generating waste. Comparing the estimated amount of radioactive wastes with the capacity of both repositories it may be concluded that the Konrad and Gorleben repositories will provide sufficient capacity to ensure the disposal of all kinds of radioactive waste on a long-term basis in the Federal Republic of Germany. 1 fig., 2 tabs

  8. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  9. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  10. An integrated approach to the management of radioactive waste in Australia

    International Nuclear Information System (INIS)

    Woollett, S.M.

    2002-01-01

    This paper draws attention to the practices and progress in radioactive waste management in Australia. A National Repository for the disposal of low-level and short-lived intermediate- level radioactive waste and a National Store for the storage of long-lived intermediate-level radioactive waste are presently being established. This has necessitated considerable activity in addressing emerging issues in the management of radioactive waste. The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has a major role in developing an integrated approach to manage radioactive waste in Australia. This approach begins with the development of a radioactive waste management policy and identification of the issues in radioactive waste management requiring attention. ARPANSA is developing national standards and guidance documents for the safe and responsible management of waste prior to its acceptance at the National Repository or National Store. This contributes to the Agency's promotion of uniformity of radiation protection and nuclear safety policy and practices across Australia's Commonwealth, State and Territory jurisdictions. (author)

  11. Policies and Strategies for Radioactive Waste Management (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    To assure the safe, technically optimal and cost effective management of spent fuel and radioactive waste, appropriate policies and strategies are required. This publication clarifies the differences between a policy and a strategy, and provides principal advice to Member States on the typical composition, mutual links and the process of compilation of such documents. It also offers options for and indicates approaches to the management of spent fuel and radioactive waste, thus enabling an effective spent fuel and radioactive waste management infrastructure to be developed.

  12. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  13. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  14. Evolution in radioactive waste countermeasures

    International Nuclear Information System (INIS)

    Moriguchi, Yasutaka

    1984-01-01

    The establishment of radioactive waste management measures is important to proceed further with nuclear power development. While the storage facility projects by utilities are in progress, large quantity of low level wastes are expected to arise in the future due to the decommissioning of nuclear reactors, etc. An interim report made by the committee on radioactive waste countermeasures to the Atomic Energy Commission is described as follows: the land disposal measures of ultra-low level and low level radioactive wastes, that is, the concept of level partitioning, waste management, the possible practice of handling wastes, etc.; the treatment and disposal measures of high level radioactive wastes and transuranium wastes, including task sharing among respective research institutions, the solidification/storage and the geological formation disposal of high level wastes, etc. (Mori, K.)

  15. Bioprocessing of low-level radioactive and mixed hazard wastes

    International Nuclear Information System (INIS)

    Stoner, D.L.

    1990-01-01

    Biologically-based treatment technologies are currently being developed at the Idaho National Engineering Laboratory (INEL) to aid in volume reduction and/or reclassification of low-level radioactive and mixed hazardous wastes prior to processing for disposal. The approaches taken to treat low-level radioactive and mixed wastes will reflect the physical (e.g., liquid, solid, slurry) and chemical (inorganic and/or organic) nature of the waste material being processed. Bioprocessing utilizes the diverse metabolic and biochemical characteristics of microorganisms. The application of bioadsorption and bioflocculation to reduce the volume of low-level radioactive waste are strategies comparable to the use of ion-exchange resins and coagulants that are currently used in waste reduction processes. Mixed hazardous waste would require organic as well as radionuclide treatment processes. Biodegradation of organic wastes or bioemulsification could be used in conjunction with radioisotope bioadsorption methods to treat mixed hazardous radioactive wastes. The degradation of the organic constituents of mixed wastes can be considered an alternative to incineration, while the use of bioemulsification may simply be used as a means to separate inorganic and organics to enable reclassification of wastes. The proposed technology base for the biological treatment of low-level radioactive and mixed hazardous waste has been established. Biodegradation of a variety of organic compounds that are typically found in mixed hazardous wastes has been demonstrated, degradative pathways determined and the nutritional requirements of the microorganisms are understood. Accumulation, adsorption and concentration of heavy and transition metal species and transuranics by microorganisms is widely recognized. Work at the INEL focuses on the application of demonstrated microbial transformations to process development

  16. Chemical decontamination of radioactive waste

    International Nuclear Information System (INIS)

    Mohamed, H.I.

    2006-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. There is also a variety of alternatives for treatment and conditioning of the wastes prior disposal. The importance of treatment of radioactive waste for protection of human and environment has long been recognized and considerable experience has gained in this field. Generally, the methods used for treatment of radioactive wastes can be classified into three type's biological, physical and chemical treatment this physical treatment it gives good result than biological treatment. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. In chemical treatment there are different procedures, solvent extraction, ion exchange, electro dialysis but solvent extraction is best one because high purity can be optioned on the other hand the disadvantage that it is expensive. Beside the solvent extraction technique one can be used is ion exchange which gives reasonable result, but requires pretreatment that to avoid in closing of column by colloidal and large species. Electro dialysis technique gives quite result but less than solvent extraction and ion exchange technique the advantage is a cheep.(Author)

  17. Storing solid radioactive wastes at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate

  18. Technical report from Radioactive Waste Management Funding and Research Center

    International Nuclear Information System (INIS)

    2007-10-01

    As the only one Japanese organization specialized in radioactive waste, RWMC (Radioactive Waste Management Funding and Research Center) has been conducting the two major roles; R and D and the fund administration for radioactive waste management. The focus of its studies includes land disposal of LLW (Low-level radioactive wastes) and it has gradually extended to research on management and disposal techniques for high-level (HLW) and TRU wastes and studies on securing and managing the funds required for disposal of these wastes. The present document is the yearly progress report of 2006 and the main activities and research results are included on spent fuel disposal techniques including radon diffusion and emanation problem, performance studies on underground facilities for radioactive waste disposal and its management, technical assessment for geological environment, remote control techniques, artificial barrier systems proposed and its monitoring systems, and TRU disposals. (S. Ohno)

  19. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  20. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  1. IAEA Meeting to Highlight Technologies to Safely Manage Radioactive Waste

    International Nuclear Information System (INIS)

    2014-01-01

    The two-day Forum was divided into four sessions that follow the journey of radioactive waste from its generation to final disposal: The first session provided an overview of the peaceful uses of nuclear technologies, the radioactive waste they generate, and of integrated management approaches adapted to various waste classes, as well as associated economic, security and safeguards considerations; The second session developed the steps required to manage radioactive waste before its disposal; The third illustrated disposal solutions for radioactive waste that must remain under regulatory control; and The fourth and final session focused on how evolving nuclear technologies, such as better use of nuclear fuel, innovative fuels and advanced reactors and fuel cycles, could affect future waste management needs

  2. Radioactive waste management in Brazil: a realistic view

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador; Xavier, Ana Maria

    2014-01-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  3. Radioactive waste management in Brazil: a realistic view

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador, E-mail: paulo@cnen.gov.br, E-mail: jperez@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana Maria, E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil)

    2014-07-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  4. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  5. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  6. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  7. The Net Enabled Waste Management Database as an international source of radioactive waste management information

    International Nuclear Information System (INIS)

    Csullog, G.W.; Friedrich, V.; Miaw, S.T.W.; Tonkay, D.; Petoe, A.

    2002-01-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an integral part of the IAEA's policies and strategy related to the collection and dissemination of information, both internal to the IAEA in support of its activities and external to the IAEA (publicly available). The paper highlights the NEWMDB's role in relation to the routine reporting of status and trends in radioactive waste management, in assessing the development and implementation of national systems for radioactive waste management, in support of a newly developed indicator of sustainable development for radioactive waste management, in support of reporting requirements for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, in support of IAEA activities related to the harmonization of waste management information at the national and international levels and in relation to the management of spent/disused sealed radioactive sources. (author)

  8. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  9. Long term safety requirements and safety indicators for the assessment of underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Vovk, Ivan

    1998-01-01

    This presentation defines: waste disposal, safety issues, risk estimation; describes the integrated waste disposal process including quality assurance program. Related to actinides inventory it shows the main results of calculated activity obtained by deterministic estimation. It includes the Radioactive Waste Safety Standards and requirements; features related to site, design and waste package characteristics, as technical long term safety criteria for radioactive waste disposal facilities. Fundamental concern regarding the safety of radioactive waste disposal systems is their radiological impact on human beings and the environment. Safety requirements and criteria for judging the level of safety of such systems have been developed and there is a consensus among the international community on their basis within the well-established system of radiological protection. So far, however, little experience has been gained in applying long term safety criteria to actual disposal systems; consequently, there is an international debate on the most appropriate nature and form of the criteria to be used, taking into account the uncertainties involved. Emerging from the debate is the increasing conviction that the combined use of a variety of indicators would be advantageous in addressing the issue of reasonable assurance in the different time frames involved and in supporting the safety case for any particular repository concept. Indicators including risk, dose, radionuclide concentration, transit time, toxicity indices, fluxes at different points within the system, and barrier performance have all been identified as potentially relevant. Dose and risk are the indicators generally seen as most fundamental, as they seek directly to describe the radiological impact of a disposal system, and these are the ones that have been incorporated into most national standards to date. There are, however, certain problems in applying them. Application of a variety of different indicators

  10. Overview of the solid radioactive waste management programme for Cernavoda NPP

    International Nuclear Information System (INIS)

    Raducea, D.

    2001-01-01

    The wastes generated from nuclear power plants have a very large diversity, and can be grouped into non-radioactive and radioactive wastes. These two types are manipulated completely different ways from each other. Among radioactive wastes, solid radioactive wastes are important, because of their diversity, their method of treatment and of their volume compared to the others types. The strategy for their treatment and characterisation has a dynamic character and allows modification after the identification of new solutions at the international level, or after the production of new waste types. The Radioactive Waste Management concept for Cernavoda NPP established the general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment. The radioactive waste management programme has the following major characteristics: plant operation at all times ensures that radioactive wastes are minimised; procedures are established to ensure that radiation doses to operating staff and members of the public are in accordance with ALARA and contamination from collection, transportation and storage of wastes are eliminated; all staff is trained and qualified to carry out their responsibilities. This presentation does not address the management of spent fuel, contaminated heavy water and the disposal of the solid radioactive wastes.(author)

  11. Public service of radioactive waste management for small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2001-01-01

    By Governmental decree of May 1999, the Agency for radwaste management (ARAO) was authorized as a state public service for managing radioactive waste from small producers. By this decree the ARAO also became the operator of the Central Interim Storage intended for radioactive waste from industry, medicine and research, located in Brinje near Ljubljana. In this paper the current situation will be presented, together with plans for improving public service and the necessary refurbishment and modernization of the storage facility. Execution of the proposed measures, modifications and a modernization will ensure proper and safe storing of all radioactive waste from small producers produced in Slovenia, thus fulfilling the requirements for full operation of the public service of radioactive waste management.(author)

  12. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  13. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  14. Development of a comprehensive radioactive waste classification system

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1989-01-01

    Several previous studies have been conducted with the intent of developing a rational system for classification of radioactive wastes. Although none of the proposed systems has gained general acceptance, certain waste classes, specifically high-level waste and low-level waste suitable for shallow land burial have been essentially defined by regulation. Wastes which remain undefined include: those intermediate level wastes which require more restrictive controls than that provided by shallow land burial but not the high degree of isolation needed for high level wastes, and wastes below regulatory concern (BRC) which entail so low a radiological risk that they can be managed according to their nonradiological properties. This study has developed a framework within which the complete spectrum of radioactive wastes can be defined

  15. Infrared thermography applied to monitoring of radioactive waste drums

    International Nuclear Information System (INIS)

    Kelmer, P.; Camarano, D.M.; Calado, F.; Phillip, B.; Viana, C.; Andrade, R.M.

    2013-01-01

    The use of thermography in the inspection of drums containing radioactive waste is being stimulated by the absence of physical contact. In Brazil the majority of radioactive wastes are compacted solids packed in metal drums stored temporarily for decades and requires special attention. These drums have only one qualitative indication of the radionuclides present. However, its structural condition is not followed systematically. The aim of this work is presents a methodology by applying thermography for monitoring the structural condition of drums containing radioactive waste in order to detect degraded regions of the drums. (author)

  16. Occupational doses involved in a radioactive waste management laboratory

    International Nuclear Information System (INIS)

    Lima, Raquel dos Santos; Silva, Amanda J. da; Fernandes, Ivani M.; Mitake, Malvina Boni; Suzuki, Fabio Fumio

    2008-01-01

    The Radioactive Waste Laboratory (RWL) of IPEN-CNEN/SP receives, treats, packs, characterizes and stores institutional radioactive wastes, in their physical forms solid, liquid or gaseous and sealed radioactive sources, with the objective to assure an adequate level of protection to the population and to future generations and the preservation of environment. Since its creation, RWL has already received and treated about one thousand cubic meter of solid waste, eight thousand spent sealed radioactive sources from practices in industry, medicine and research, totaling more than 100 TBq. In addition, fifteen thousand radioactive lightning rods and twenty two thousand radioactive smoke detectors were received. The activities accomplished in RWL, as dismantling of lightning rods, compaction of solid wastes, decontamination of objects, waste characterization, treated waste packages rearrangement, among others, cause risks of intake and/or external exposure of workers. Requirements of radiological safety established in the regulations of the nuclear authority and international recommendations are consolidated in the RWL radioprotection plan in order to ensure the safety and protection of workers. In this paper, it was evaluated if the procedures adopted were in accordance with the requirements established in the radioprotection plan. It was also studied which activities in the waste management had substantial contribution to the occupational doses of the RWL workers in the period from 2001 up to 2006. For that, the radioprotection plan, the operational and safety procedures, the records of workplace monitoring and the individual dose reports were analyzed. It was observed that the highest individual doses resulted from operations of treated waste packages rearrangement in the facility, and none of the workers received doses above the annual limit. (author)

  17. Methodology development for radioactive waste treatment of CDTN/BR - liquid low-level radioactive wastes

    International Nuclear Information System (INIS)

    Morais, Carlos Antonio de

    1996-01-01

    The radioactive liquid wastes generated in Nuclear Technology Development Centre (CDTN) were initially treated by precipitation/filtration and then the resulting wet solid wastes were incorporated in cement. These wastes were composed of different chemicals and different radioactivities and were generated by different sectors. The objective of the waste treatment method was to obtain minimum wet solid waste volume and decontamination and minimum operational cost. The composition of the solid wastes were taken into consideration for compatible cementation process. Approximately 5,400 litres of liquid radioactive wastes were treated by this process during 1992-1995. The volume reduction was 1/24 th and contained 20% solids. (author)

  18. Radioactive waste: show time? - 16309

    International Nuclear Information System (INIS)

    Codee, Hans; Verhoef, Ewoud

    2009-01-01

    Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA - the radioactive waste organisation in the Netherlands - can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: 'That long?' How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management. (authors)

  19. Report on current research into organic materials in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A preliminary review of relevant recent papers on organic materials in radioactive waste is presented. In particular, the effects of chelating or complexing agents, the influence of bacteria and the role of colloids are assessed. The requirement for further radioactive waste inventory detail is indicated. Potential problem areas associated with the presence of organic materials in radioactive waste are identified and appropriate experimental work to assess their significance is proposed. Recommendations for specific further work are made. A list and diagrams of some of the more important polymer structures likely to be present in radioactive waste and their possible degradation products are appended. (author)

  20. 78 FR 45578 - Application For a License to Export Radioactive Waste

    Science.gov (United States)

    2013-07-29

    ... NUCLEAR REGULATORY COMMISSION Application For a License to Export Radioactive Waste Pursuant to 10..., 2013, radioactive waste authorized for disposal by the XW021, 11006101. as contaminated export will not original secondary waste exceed quantities generators, as resulting from imported in required or the...

  1. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  2. Alternative methods for disposal of low-level radioactive wastes. Task 2c: technical requirements for earth mounded concrete bunker disposal of low-level radioactive waste. Volume 4

    International Nuclear Information System (INIS)

    Miller, W.O.; Bennett, R.D.

    1985-10-01

    The study reported herein contains the results of Task 2c (Technical Requirements for Earth Mounded Concrete Bunker Disposal of Low-Level Radioactive Waste) of a four-task study entitled ''Criteria for Evaluating Engineered Facilities''. The overall objective of this study is to ensure that the criteria needed to evaluate five alternative low-level radioactive waste (LLW) disposal methods are available to potential license applicants. The earth mounded concrete bunker disposal alternative is one of several methods that may be proposed for disposal of low-level radioactive waste. The name of this alternative is descriptive of the disposal method used in France at the Centre de la Manche. Experience gained with this method at the Centre is described, including unit operations and features and components. Some improvements to the French system are recommended herein, including the use of previous backfill around monoliths and extending the limits of a low permeability surface layer. The applicability of existing criteria developed for near-surface disposal (10 CFR Part 61 Subpart D) to the earth mounded concrete bunker disposal method, as assessed in Task 1, are reassessed herein. With minor qualifications, these criteria were found to be applicable in the reassessment. These conclusions differ slightly from the Task 1 findings

  3. Signs of progress. IAEA perspectives on radioactive waste management

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2000-01-01

    From various perspectives, the issue of radioactive waste management is a compelling one. There are, for example, different levels and categories of waste, different storage and disposal methods, and different siting and environmental requirements. The differences reflect the issue's complexity. Regrettably they also can serve to cloud public perceptions about the issue as a whole. We should not lose sight of communicating a broader ''holistic approach'' - all types of generated radioactive wastes need to be managed safely and we should intensify efforts to clarify the complex picture and further advance public understanding. The main goal we are pursuing is the protection of public health, safety, and the environment in which we live. Fortunately, notable progress is being made through international cooperation in radioactive waste management to resolve common problems and bring us closer toward achieving this goal for all types of radioactive wastes

  4. Radioactive wastes - inventories and classification

    International Nuclear Information System (INIS)

    Brennecke, P.; Hollmann, A.

    1992-01-01

    A survey is given of the origins, types, conditioning, inventories, and expected abundance of radioactive wastes in the future in the Federal Republic of Germany. The Federal Government's radioactive waste disposal scheme provides that radioactive wastes be buried in deep geological formations which are expected to ensure a maintenance-free, unlimited and safe disposal without intentional excavation of the wastes at a later date. (orig./BBR) [de

  5. Non-fuel cycle radioactive waste policy in Turkey

    International Nuclear Information System (INIS)

    Izmir, A.I.; Uslu, I.

    2001-01-01

    Full text: Introduction. Radioactive wastes generated in Turkey are mostly low level radioactive waste generated from the operation of one research reactor, research centers and universities, hospitals, and from radiological application of various industries. It involves both short-lived and long lived radionuclides. In general, this includes radioactive materials, which are no longer useful and have their origin from practice or intervention both with unsealed and sealed sources. Radioactive Waste Management in Turkey. Utilisation of radioactive materials in Turkey requires special authorisations and falls under legal rules, in particular under the Radiation Safety Regulation of 24th March 2000 (Official Gazette number: 20983) outlining a general regulation for the protection of the population and workers against the danger of ionising radiation and subsequent amendments. There is also a requirement enforced by the Regulations for Radioactive Wastes Exempt from Regulatory Authority Control (published on 15 January 2000, Official Gazette number: 23934) that identifies the limits and other conditions for the discharges of radioactive substances to the environment. Radioactive waste is generally understood as material for which no further use is foreseen, and which has been managed in a system of reporting, authorisation and control as specified in International Atomic Energy Agency (IAEA) recommendations or national legislation. In this paper radioactive waste is considered in two categories: as originated from unsealed sources or from sealed sources. a) Management of Unsealed Sources. Unsealed radionuclides are utilised in human medicine for in vivo diagnosis, metabolic therapy and in vitro biological analysis. The most common types of radionuclides used in Turkey are C-14, Co-57, Cr-51, Fe-59, Ga-67, H-3, I-123, I-125, I-131, In-111, Mo-99, P-32, P-33, Re-186, S-35, Sr-89, Sr-90, Tc-99, Tl-201, Xe-133, Y-90 which are import of radiopharmaceuticals to Turkey in

  6. The analysis of the program to develop the Nuclear Waste Management System: Allocated requirements for the Office of Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Woods, T.W.

    1991-09-01

    This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)

  7. Radioactive waste management at Cernavoda NPP after 5 years of experience

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste but people are worried about those produced in nuclear power plants. Their concern is an unjustified fear toward the hazard from radioactive wastes because any country, which produces electrical power in this way, pays a lot of attention of all relevant parties involved in radioactive waste management. The same policy is applied for Cernavoda NPP. Our concept establishes the general approach required for the collection, handling, conditioning and storage of radioactive waste from Cernavoda NPP Unit 1 and will be ready for expansion when other units are brought into service. Among others, a major objective is to reduce the radioactive waste production and volume. In this regard we are trying to improve as much as possible our procedures and radioactive wastes management. Further, it will be presented the radioactive waste management, including the improvements in our program and the future plans.(author)

  8. Method and device for solidifying radioactive waste

    International Nuclear Information System (INIS)

    Hayashi, Tadamasa.

    1981-01-01

    Purpose: To solidify radioactive waste without producing radioactive dusts by always heating and evaporating the water from liquid radioactive waste in a mixture of liquid plastic and exhausting the molten mixture of the waste residue and the plastic material. Constitution: Liquid plastic material in a tank cooled to prevent polymerization or changes of its properties is continuously supplied to the top of a heating and mixing evaporator by a constant supply pump. After the heat transfer surface of the evaporator is covered with the plastic material, radioactive waste in the tank is supplied to the evaporator via the constant supply pump. The waste is abruptly mixed with the plastic material by an agitating rotor, heated by a heater, and the evaporated water is fed to a condenser. An anhydrous molten mixture is continuously exhausted from the bottom of the evaporator into a mixture cooler, a polymerizing agent and catalyst are introduced thereinto from a polymerizing agent tank and a catalyst tank, inhibitor is introduced thereinto from a polymerization inhibitor tank as required, and is filled with the mixture a solidifying container while it is cooled for its polymerization and solidification. (Yoshino, Y.)

  9. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  10. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  11. Management of long-lived radioactive waste: stakes and ASN actions

    International Nuclear Information System (INIS)

    Dandrieux, G.

    2011-01-01

    Due to the length of time it takes to decay, long-lived radioactive waste will remain a hazard on a timescale beyond the length of a human life, and even of several generations. In the case of this waste, long-term management solutions must be implemented to protect human health and the environment without requiring human intervention. In accordance with requirements under the Law, ANDRA (national agency for the management of radioactive waste) is carrying out research on disposal solutions in deep or subsurface geological formations. Nonetheless, until such repositories become available, ASN (authority for nuclear safety) has a duty to ensure safety at current and future interim storage facilities, as well as the safety of operations to retrieve and package this type of waste. To this end, ASN acts on several levels: it is involved in drawing up regulations and reference texts, at national and international level, it examines safety analysis reports related to radioactive waste management at basic nuclear installations, by means of inspections that it performs at every step in radioactive waste management. In its capacity as joint coordinator of the national plan for the management of nuclear waste and materials (PNGMDR) working group, ASN also plays a very active role in drawing up the provisions of the PNGMDR aimed at improving and optimising radioactive waste management. (author)

  12. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  13. Developing a Pre-disposal radioactive waste management framework for malawi

    International Nuclear Information System (INIS)

    Guasi, Ephron

    2016-04-01

    In Malawi, uranium mining and other potential radioactive waste generating activities are on the increase. An elaborate national policy document and strategy on radioactive waste management is however not available. A national policy is important because it provides overall direction and the basis for decision making with respect to the management of radioactive waste in a country. Thus the absence of the national policy creates a gap in the country’s regulatory framework for ensuring safety and protection of people and the environment from sources of ionizing radiation. The present study was undertaken to minimize the impact of this regulatory framework gap by proposing a predisposal radioactive waste management framework for Malawi. This was achieved by analyzing the current and anticipated applications of radioactive materials and activities. The international and national regulatory requirements related to predisposal radioactive waste management were also reviewed and analyzed. The study found out that a predisposal radioactive waste management frame work comprised of onsite management of wastes from hospitals and uranium mining and export of high activity disused sources to supplier or management facilities in nearby countries would be the best for Malawi for now and the next ten years. (au)

  14. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A.

    2006-01-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  15. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  16. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  17. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  18. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  19. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  20. Radioactive waste incineration system cold demonstration test, (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Seike, Yasuhiko; Takaoku, Yoshinobu; Yamanaka, Yasuhiro; Asahara, Masaharu; Katagiri, Keishi; Matsumoto, Kenji; Nagae, Madoka

    1985-12-01

    It is urgently necessary to solve the radioactive waste problem. As an effective means for the volume reduction of low-level radioactive wastes, an improved incineration system is greatly required. SHI's Waste Incineration (WIS) licensed by Combustion Engineering, Inc., has the significant advantage of processing a variety of wastes. We started a cold demonstration test in April, 1984 to verify the excellent performance of WIS. The test was successfully completed in September, 1985 with the record of more than 1000 hours of incineration testing time. In the present paper, we describe the test results during one and half years of test period.

  1. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  2. Treatment of radioactive organics liquid wastes

    International Nuclear Information System (INIS)

    Morales Galarce, Tania

    1999-01-01

    Because of the danger that radioactive wastes can pose to society and to the environment a viable treatment alternative must be developed to prepare these wastes for final disposal. The waste studied in this work is a liquid organic waste contaminated with the radioisotope tritium. This must be treated and then changed into solid form in a 200 liter container. This study defined an optimum formulation that immobilizes the liquid waste. The organic waste is first submitted to an absorption treatment, with Celite absorbent, which had the best physical characteristics from the point of view of radioactive waste management. Then this was solidified by forming a cement mortar, using a highly resistant local cement, Polpaico 400. Various mixes were tested, with different water/cement, waste/absorbent and absorbed waste/cement ratios, until a mixture that met the quality control requirements was achieved. The optimum mixture obtained has a water/cement ratio of 0.35 (p/p) that is the amount of water needed to make the mixture workable, and minimum water for hydrating the cement; a waste/absorbent ration of 0.5 (v/v), where the organic liquid is totally absorbed, and is incorporated in the solid's crystalline network; and an absorbed waste/cement ratio of 0.8 (p/p), which represents the minimum amount of cement needed to obtain a solid product with the required mechanical resistance. The mixture's components join together with no problem, to produce a good workable mixture. It takes about 10 hours for the mixture to harden. After 14 days, the resulting solid product has a resistance to compression of 52 Kgf/cm2. The formulation contains 22.9% immobilized organic waste, 46.5% cement, 14.3% Celite and 16.3% water. Organic liquid waste can be treated and a solid product obtained, that meets the qualitative and quantitative parameters required for its disposal. (CW)

  3. An overview of radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Liblong, S.W.; Wong, C.F.

    2014-01-01

    As a Tier I nuclear nation, with a comprehensive nuclear sector whose beginnings date back to the 1940's, Canada is faced with radioactive waste management challenges for a diverse range of radioactive material - from very low-level to high-level. The nuclear fuel cycle is fully realized in Canada, from uranium mines and mills through to significant reliance on nuclear energy thorough to a broad-based science & technology platform. Natural Resources Canada is responsible for Canadian nuclear policy, while the provincial governments decide on the management of their resources and energy mix within their jurisdictions. While the fundamental policy regarding responsibility for radioactive waste places the onus on the generator, the means by which this is accomplished is not prescriptive beyond meeting regulatory requirements. As a result, approaches to dealing with radioactive waste have evolved according to the needs and abilities of the various generators. This paper will provide an overview of radioactive waste management in Canada, highlighting the approaches used within various sectors for the different classifications of waste, and will also look at plans for future waste management capabilities being developed at this time (including issues related to disposal vs. management). Challenges to the development of an effective and comprehensive 'Canadian solution' will also be discussed. (author)

  4. Handbook of high-level radioactive waste transportation

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government's system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government's program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project

  5. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  6. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  7. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  8. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  9. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  10. The radioactive waste management programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, Alvaro R.; Vico, Elena

    2002-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Spanish Government. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Economy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The Fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  11. Integration of CERCLA and RCRA requirements at the Radioactive Waste Burial Grounds, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Hoffman, W.D.; Wyatt, D.E.

    1992-01-01

    The purpose of this paper to is present the comprehensive approach being taken at the Savannah River Site (SRS) to consolidate regulatory documents, characterization and assessment activities for 3 contiguous waste management facilities. These facilities cover 7.12 x 10 5 m 2 (194 acres) and include an Old Radioactive Waste Burial Ground, a Low Level Radioactive Waste Disposal Facility, and a closed Mixed Waste Management Facility. Each of these facilities include one or more operable units including solvent tanks, transuranic waste storage pads, research lysimeters and experimental confinement disposal vaults. All of these facilities have differing submittal dates for regulatory documents but similar and continuous environmental problems. The characterization and risk assessment require simultaneous efforts for all facilities to adequately define the nature and extent of past, present and future environmental impact. Current data indicates that contaminant plumes in both soil and water are comingled, interspersed and possibly exist internally within the contiguous facilities, requiring a combined investigative effort. This paper describes the combination of regulatory documents leading to this comprehensive and integrative approach for burial ground characterization at the Savannah River Site

  12. Physical system requirements - Accept waste

    International Nuclear Information System (INIS)

    1992-08-01

    The Nuclear Waste Policy Act (NWPA) assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the OCRWM Director subsequently issued the Management Systems improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. Thus, a comprehensive functional analysis effort has been undertaken which is intended to: Identify the functions that must be performed to fulfill the waste disposal mission; Identify the corresponding requirements imposed on each of the functions; and Identify the conceptual architecture that will be used to satisfy the requirements. The principal purpose of this requirements document is to present the results that were obtained from the conduct of a functional analysis effort for the Accept Waste mission

  13. Radioactive waste management - a safe solution

    International Nuclear Information System (INIS)

    1993-01-01

    This booklet sets out current United Kingdom government policy regarding radioactive waste management and is aimed at reassuring members of the public concerned about the safety of radioactive wastes. The various disposal or, processing or storage options for low, intermediate and high-level radioactive wastes are explained and sites described, and the work of the Nuclear Industry Radioactive Waste Executive (NIREX) is outlined. (UK)

  14. Radioactive waste below regulatory concern

    International Nuclear Information System (INIS)

    Neuder, S.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission (NRC) published two notices in the Federal Register concerning radioactive waste below regulatory concern. The first, a Commission Policy Statement and Implementation Plan published August 29, 1986, concerns petition to exempt specific radioactive waste streams from the regulations. The second, an Advanced Notice of Proposed Rulemaking published Decemger 2, 1986, addresses the concept of generic rulemaking by the NRC on radioactive wastes that are below regulatory concern. Radioactive waste determined to be below regulatory concern would not be subject to regulatory control and would not need to go to a licensed low-level radioactive waste disposal site. The Policy Statement and Implementation Plan describe (1) the information a petitioner should file in support of a petition to exempt a specific waste stream, (2) the decision criteria the Commission intends to use for judging the petition, and (3) the internal administrative procedures to use be followed in order to permit the Commission to act upon the petition in an expedited manner

  15. The strategy and practice of radioactive waste management in the Pacific Basin

    International Nuclear Information System (INIS)

    Norman, N.; Gray, B.R.

    1992-01-01

    Radioactive waste management is an integral part of the planning process for the nuclear industry in Pacific Basin countries. This paper reviews areas of common interest and cooperation, sources of waste and current inventories, production rates, and future plans. Each level of radioactive waste requires different methods for handling, storage, and disposal. Definitions may vary In detail from country to country, but generally high level wastes are defined as those deriving from spent fuel and from reprocessing of fuel. These wastes contain transuranic elements and fission products that are highly radioactive, heat-generating and long-lived. Intermediate level and low level wastes may include, respectively, material from fuel fabrication and power generation other than spent fuel, and those wastes produced by research institutions, hospitals, and in other non-power producing Industrial uses of radioisotopes. The energy requirements of most countries are likely to continue to grow, and the use of radioactive isotopes in medicine and other non-energy industrial sectors is also expanding. The Pacific Nuclear Council member states participating in the Waste Management Working Group, are predicting, therefore, that the volume of radioactive waste for disposal will continue to grow

  16. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  17. Radioactive waste management - the Indian scenario

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2008-01-01

    In India, nuclear power generation programme and application of radioisotopes for health care and various other application is increasing steadily. With resultant increase in generation of radioactive waste, emphasis is on the minimization of generation of radioactive waste by deploying suitable processes and materials, segregation of waste streams at sources, recycle and re-use of useful components of waste and use of volume reduction techniques. The minimization of the radioactive waste is also essential to facilitate judicious use of the scarce land available for disposal, to reduce impact on the environment due to disposal and, finally to optimize the cost of radioactive waste management. This paper presents a bird's eye view of radioactive waste management programme in the country today

  18. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  19. Swiss guideline: Protection objectives for the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Zurkinden, A.

    1994-01-01

    The Swiss guideline R-21 establishing the protection objectives for the disposal of radioactive waste has been reviewed and amended in order to adapt it to improvements made in the field of radioactive waste disposal. In an introductory part, the new guideline states the overall objective of radioactive waste disposal and the associated principles which have to be observed. The guideline then establishes the safety requirements applied to a geological disposal facility. These safety requirements are formulated as protection goals for the whole disposal system and not as specific criteria applying to the system components. The guideline gives finally a series of explanatory comments and indications concerning the conduct of the safety assessment for a disposal facility

  20. Development of a Radioactive Waste Assay System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Duck Won; Song, Myung Jae; Shin, Sang Woon; Sung, Kee Bang; Ko, Dae Hach [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kil Jeong; Park, Jong Mook; Jee, Kwang Yoong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Nuclear Act of Korea requires the manifest of low and intermediate level radioactive waste generated at nuclear power plants prior to disposal sites.Individual history records of the radioactive waste should be contained the information about the activity of nuclides in the drum, total activity, weight, the type of waste. A fully automated nuclide analysis assay system, non-destructive analysis and evaluation system of the radioactive waste, was developed through this research project. For the nuclides that could not be analysis directly by MCA, the activities of the representative {gamma}-emitters(Cs-137, Co-60) contained in the drum were measured by using that system. Then scaling factors were used to calculate the activities of {alpha}, {beta}-emitters. Furthermore, this system can automatically mark the analysis results onto the drum surface. An automated drum handling system developed through this research project can reduce the radiation exposure to workers. (author). 41 refs., figs.

  1. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  2. Research requirements for a unified approach to modelling chemical effects associated with radioactive waste disposal

    International Nuclear Information System (INIS)

    Krol, A.A.; Read, D.

    1986-09-01

    This report contains the results of a review of the current modelling, laboratory experiments and field experiments being conducted in the United Kingdom to aid understanding and improve prediction of the effects of chemistry on the disposal of radioactive wastes. The aim has been to summarise present work and derive a structure for future research effort that would support the use of probabilistic risk assessment (pra) methods for the disposal of radioactive wastes. The review was conducted by a combination of letter and personal visits, and preliminary results were reported to a plenary meeting of participants held in April, 1986. Following this meeting, copies of the report were circulated to participants at draft stage, so that the finalised report should be taken to provide as far as possible a consensus of opinion of research requirements. (author)

  3. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  4. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  5. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  6. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  7. Radioactive waste management practices in India

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2012-01-01

    Different countries around the globe, especially those involved in nuclear power plant operation, spent fuel reprocessing, nuclear research activities and diverse nuclear applications; generate large inventory of radioactive wastes. These waste streams generated during various stages of nuclear fuel cycle are of different categories, which require special care for handling, treatment and conditioning. Conventional treatment and conditioning methods may not be efficient for various type of waste; therefore special options may be required to manage these waste streams. Presently, Indian waste management fraternity is focused to minimize the volume of the waste to be finally disposed off, by partitioning radionuclides, regenerating separation media and re-using as much of the waste components as possible and economically feasible. This approach, together with the reuse/recycling strategy, seems to represent a robust waste treatment strategy for the future

  8. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  9. Radioactive waste with 14C in Argentina

    International Nuclear Information System (INIS)

    Di Lello, D.S.

    2009-01-01

    14 C is a long half-life radioisotope, which is present in radioactive waste generated during the operation and decommissioning of nuclear power plants. 14 C can also be found in waste generated by medical diagnostic laboratories or any one generated by fields that deal with research and development (mainly connected with the biochemists area). According to international precedents the disposal of 14 C based on the final amount found in radioactive waste and its chemical form have conditioned the design and operation of the facilities (either because of the amount of it or the chemical form in which 14 C was present). We have to take into account that the design of facilities for radioactive waste disposal is included among the obligations of the National Radioactive Waste Management Program (PNGRR). It is absolutely necessary to count with enough information about the characteristics of any waste containing 14 C that is generated in Argentina, in order to be able to fulfil the requirements previously mentioned. The main characteristics of interest in the frame of the present project are: a) the principal reactions that take place for the formation of 14 C; b) The specific concentration of activity in materials where this radio nuclei is formed or is accumulated; c) To know which is the current step in the process of managing these wastes (in Argentina and all over the world). Either if it refers to bulk or conditioned storage, inside the generating facility; d) Transportation possibilities of 14 C under these conditions; e) The accumulated volume and the generation rate of this kind of waste in Argentina. This paper presents an initial collection and evaluation of the information related to the characteristics already mentioned, having gathered published material from the literature and information in the PNGRR up to this moment. The description of the characteristics of the radioactive waste containing 14 C from nuclear power plants, hospitals and research and

  10. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  11. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  12. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  13. Geochemistry of radioactive waste disposal

    International Nuclear Information System (INIS)

    Bird, G.W.

    1979-01-01

    Safe, permanent disposal of radioactive wastes requires isolation of a number of elements including Se, Tc, I, Sr, Cs, Pd, u, Np, Pu and Cm from the environment for a long period of time. The aquatic chemistry of these elements ranges from simple anionic (I - ,IO 3 - ) and cationic (Cs + ,Sr ++ ) forms to multivalent hydrolyzed complexes which can be anionic or cationic (Pu(OH) 2 + ,Pu(OH) 3 + , PuO 2 (CO 3 )(OH) - ,PuO 2 Cl - ,etc.) depending on the chemical environment. The parameters which can affect repository safety are rate of access and composition of grounwater, stability of the waste container, stability of the waste form, rock-water-waste interactons, and dilution and dispersion as the waste moves away from the repository site. Our overall research program on radioactive waste disposal includes corrosion studies of containment systems hydrothermal stability of various waste forms, and geochemical behaviour of various nuclides including solubilities, redox equilibria, hydrolysis, colloid fomation and transport ion exchange equilibria and adsorption on mineral surfaces and irreversible precipitation reactions. This paper discusses the geochemistry of I, Se, Tc, Cs, Sr and the actinide elements and potential mechanisms by which the mobility could be retarded if necessary

  14. Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112

    International Nuclear Information System (INIS)

    Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

    1994-11-01

    This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities

  15. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  16. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  17. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  18. Characterisation of radioactive waste at Cernavoda NPP Unit 1 during normal operation

    International Nuclear Information System (INIS)

    Iordache, M.; Bujoreanu, L.; Popescu, I. V.

    2008-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste results that have a very large diversity. At Cernavoda NPP the important waste categories are non-radioactive wastes and radioactive wastes, which are manipulated completely different from which other. For a CANDU type reactor, the production of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products of materials which form part of the technological systems; - activated products of process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination activities. The most important types of solid wastes that are obtained and then handled, processed (if required) and temporarily stored are: solid low level radioactive wastes (classified as compact and non-compact), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, decontamination and maintenance operations. Radioactive gas wastes occur subsequent to the fission process inside the fuel elements as well as due to the process fluids neutron activation in the reactor systems. As result of the plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed to the ventilation stack in a controlled manner so that an exceeding of the maximum permissible concentrations of radioactive material to the environment should not occur. (authors)

  19. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  20. Establishing a national system for radioactive waste management. A publication within the RADWASS programme

    International Nuclear Information System (INIS)

    1995-09-01

    This Safety Standard is intended to cover the requirements for establishing a national system for safe management of radioactive wastes especially, for solid, liquid and airborne radioactive waste resulting from the nuclear fuel cycle. The main text of the Safety Standard is organized as follows: (a) Section 2 sets out the main objective for radioactive waste management and the principle on which radioactive waste management policy and strategies should be based; (b) Section 3 presents the basic components of a national framework for radioactive waste management; (c) Section 4 outlines the responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities; and (d) Section 5 describes important features of radioactive waste management

  1. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  2. Proposal of threshold levels for the definition of non-radioactive wastes

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu

    1979-01-01

    With increasing amounts of radioactive wastes along with the advances of nuclear power generation and radioactive material utilizations, the needs for management cost reduction and resource saving have arisen. Under the situation, the threshold levels for the definition of non-radioactive solid wastes are required. The problem has been studied by an ad hoc committee in Nuclear Safety Research Association, by the request of the Science and Technology Agency. The matters described are the procedures of deriving the threshold levels, the feasibility studies of the management of waste threshold-level with several enterprises, and future subjects of study. The threshold levels are grouped in two, i.e. the unconditional level and the conditional level. According to the unconditional threshold level, solid wastes are separated definitely into radioactive and non-radioactive ones. According to the conditional threshold level, under certain conditions, some radioactive solid wastes according to the unconditional level are regarded as non-radioactive ones. (J.P.N.)

  3. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    International Nuclear Information System (INIS)

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was a result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release

  4. Sponsored research on radioactive waste management. Progress report January 1981 - March 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The report is in chapters entitled: introduction (background, responsibilities, options, structure of the programme); strategy development; disposal of accumulations; disposal of radioactive waste arisings; quality assurance for waste conditioning quality assurance related to radioactive waste disposal (effectiveness of different rock types as natural barriers to the movement of radioactivity, and non-site specific factors in the design of repositories; radiological assessment; environmental studies; research and development to meet requirements specific to UKAEA wastes; long term research (processes for the solidification of highly active liquid wastes); plutonium contamination waste minimisation.

  5. Determination of a radioactive waste classification system

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for /sup 239/Pu or mixed transuranic waste is 1.0 ..mu..Ci/cm/sup 3/ of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10/sup 8/ per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity.

  6. Determination of a radioactive waste classification system

    International Nuclear Information System (INIS)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for 239 Pu or mixed transuranic waste is 1.0 μCi/cm 3 of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10 8 per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity

  7. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  8. Guidelines for sea dumping packages of radioactive waste. Revised version.

    International Nuclear Information System (INIS)

    Anon.

    1979-04-01

    The purpose of these Guidelines is to establish general requirements and provide practical information for the design and manufacture of packages for sea dumping of radioactive waste, in accordance with the terms of the OECD Council Decision establishing a Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste. These Guidelines are in compliance with the IAEA Revised Definition and Recommendations of 1978, for applying the London Dumping Convention to radioactive waste, and are intended for application under the responsibility of the appropriate national authorities of countries participating in the NEA Mechanism

  9. Classification of Radioactive Waste. General Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste.

  10. Classification of Radioactive Waste. General Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  11. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  12. Historical radioactive waste in France: Situation and lessons learnt

    International Nuclear Information System (INIS)

    Blary, C.; Averous, J.

    2002-01-01

    Some radioactive waste, produced several decades ago, have been stored until now, awaiting an appropriate treatment process or further policy decision, in facilities that are now considered under the present safety standards. When no satisfactory improvements can be brought about the safety of the storage, the retrieval of the old radioactive waste is required. In France, typical facilities concerned with historical radioactive waste are shallow wells, pools, silos, effluents tanks and trenches. Several aspects, sometimes combined, make the retrieval usually more difficult and longer than thought. These aspects are mainly a lack of concern regarding retrieval of the waste when designing the facilities, an insufficient waste characterisation or record keeping, a lack of monitoring, this lack of monitoring becoming more detrimental as the facility is ageing, and a lack of maintenance. Problems related to historical radioactive waste management have been identified and operators are making efforts to eradicate them. Without considering the financial cost of old radioactive waste retrieval, operators have to face problems such as risk of loss of radionuclides containment, radiation protection, handling and transportation. The nuclear safety authority has decided to make safety guidelines regarding designing and operating storage facilities as a result of experience feedback from the storage operators. (author)

  13. The Constitution, waste facility performance standards, and radioactive waste classification: Is equal protection possible?

    Energy Technology Data Exchange (ETDEWEB)

    Eye, R.V. [Kansas Dept. of Health and Environment, Topeka, KS (United States)

    1993-03-01

    The process for disposal of so-called low-level radioactive waste is deadlocked at present. Supporters of the proposed near-surface facilities assert that their designs will meet minimum legal and regulatory standards currently in effect. Among opponents there is an overarching concern that the proposed waste management facilities will not isolate radiation from the biosphere for an adequate length of time. This clash between legal acceptability and a perceived need to protect the environment and public health by requiring more than the law demand sis one of the underlying reasons why the process is deadlocked. Perhaps the most exhaustive public hearing yet conducted on low-level radioactive waste management has recently concluded in Illinois. The Illinois Low-Level Radioactive Waste Disposal Facility Sitting Commission conducted 71 days of fact-finding hearings on the safety and suitability of a site near Martinsville, Illinois, to serve as a location for disposition of low-level radioactive waste. Ultimately, the siting commission rejected the proposed facility site for several reasons. However, almost all the reasons were related, to the prospect that, as currently conceived, the concrete barrier/shallow-land burial method will not isolate radioactive waste from the biosphere. This paper reviews the relevant legal framework of the radioactive waste classification system and will argue that it is inadequate for long-lived radionuclides. Next, the paper will present a case for altering the classification system based on high-level waste regulatory considerations.

  14. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  15. The Radioactive Waste Management Programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, A. R.; Vico, E.

    2000-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Ministry of Industry and Energy. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Industry and Energy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  16. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  18. Terminal storage of radioactive waste in geologic formations

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1976-01-01

    The principal aim of the National Waste Terminal Storage (NWTS) program is to develop pilot plants and, ultimately, repositories in several different rock formations in various parts of the country. Rocks such as salt, shale, limestone, granite, schists, and serpentinite may all qualify as host media for the disposition of radioactive wastes in the proper environments. In general, the only requirement for any rock formation or storage site is that it contain any emplaced wastes for so long as it takes for the radioactive materials to decay to innocuous levels. This requirement, though, is a formidable one as some of the wastes will remain active for periods of hundreds of thousands of years and the physical and chemical properties of rocks that govern circulating groundwater and hence containment, are difficult to determine and define. Nevertheless, there are many rock types and a host of areas throughout the country where conditions are promising for the development of waste repositories. Some of these are discussed below

  19. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  20. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Krause, H.

    1984-01-01

    The importance of radioactive wastes from nuclear power plants (NPPs) results primarily from their large amounts. In NPPs more radioactive wastes arise than in all other plants of the nuclear fuel cycle, with the exception of uranium mills. Although the volume is great, NPP wastes are relatively low in activity and radiotoxicity and short in half-life. Several methods for treatment of NPP wastes are available that meet all the relevant requirements and they have attained high technical standards and are highly reliable. Consequently, the discharge of radionuclides with liquid and gaseous effluents and the resulting dose commitment to the general public are far below established limits. The quality of the conditioned wastes conforms to the requirements for ultimate disposal. The final disposal of NPP wastes has already been demonstrated successfully in several places and the feasibility of NPP decommissioning and management of the wastes arising in this process have been proved. The problems associated with the management of radioactive wastes from NPPs have been solved both scientifically and technically; there is no urgent need for improvement. This is why for new developments cost-benefit aspects must be considered, including the dose commitment to the operating staff and general aspects such as public acceptance and socio-ethical questions. Spectacular new developments are not to be expected in the near future. However, by continuous improvement of details and optimization of the whole system useful contributions can still be made to develop nuclear technology further. (author)

  1. Radioactive waste management in the Czech Republic

    International Nuclear Information System (INIS)

    Duda, Vitezslav

    2008-01-01

    Radioactive waste and spent nuclear fuel are generated in the Czech Republic as a consequence of the peaceful use of nuclear energy and ionising radiation in many industries, particularly in the generation of nuclear energy, health care (therapy, diagnostics), research, and agriculture. The current extent of utilisation of nuclear energy and ionising radiation in the Czech Republic is comparable with that of other developed countries. The Concept of Radioactive Waste and Spent Nuclear Fuel Management is a fundamental document formulating government and state authority strategy for the period up to approximately 2025 (affecting policy up to the end of the 21st century), concerning the organizations which generate radioactive waste and spent nuclear fuel. The Concept puts forward solutions to provide for the disposal of waste in compliance with requirements for the protection of human health and the environment without excessively transferring any of the current impacts of nuclear energy and ionising radiation utilisation to future generations. The Concept was approved by the government of the Czech Republic in 2002. According to the Concept high level waste and spent nuclear fuel generated at the Dukovany and Temelin nuclear power plants will eventually be disposed of in a deep geological repository. Such a repository should commence operation in 2065. Work aimed at selecting potentially suitable sites began in 1992, but the final site has not yet been determined. In compliance with the aforementioned Concept, the Radioactive Waste Repository Authority (RAWRA) is responsible for finding two suitable sites before 2015. The current stage of evaluation covers the whole of the Czech Republic and includes detailed criteria and requirements. Based on the latest findings RAWRA suggested six potential sites for further investigation at the beginning of 2003. (author)

  2. Analysis of the Institutional Framework For Radioactive Waste Management in Indonesia

    Directory of Open Access Journals (Sweden)

    D.S. Wisnubroto

    2009-07-01

    Full Text Available The analysis of the infrastructure for radioactive waste management in Indonesia has been studied using several parameters, i.e. policy, regulatory authorities and their regulations, implementing organizations and financial system. By considering the international trends and the Indonesian program to utilize nuclear power, the infrastructure of radioactive waste management needs to be improved. The Act No. 10/1997 on Nuclear Energy for the future beneficence will have to be amended to incorporate several missing key points on waste management, such as definition of radioactive waste, disposal of Low and Intermediate Level Waste (LILW, and classification of waste. Full involvement of some important stakeholders, especially the State Ministry of Environment, on the radioactive waste management infrastructure is required since some radioactive waste is generated from non nuclear waste. Assigning full authority to the State Ministry of Environment for regulating radioactive waste generated by non nuclear facilities may be more effective, whereas BAPETEN is still holding onto control over the waste generated from nuclear facilities. In the near future, several regulations on clearance level, classification of waste, NORM/TENORM, and financial system are expected to be set up for urgent need. By considering the high risk for handling of radioactivity, including for transportation and storage, the liability or assurance of the safety for such activities must be accounted for. Finally, establishment of financial system for long term waste management in Indonesia needs to be implemented to ensure that the radioactive waste will not be the burden on future generations.

  3. Analysis of the Institutional Framework For Radioactive Waste Management in Indonesia

    International Nuclear Information System (INIS)

    Wisnubroto, D.S.

    2009-01-01

    The analysis of the infrastructure for radioactive waste management in Indonesia has been studied using several parameters, i.e. policy, regulatory authorities and their regulations, implementing organizations and financial system. By considering the international trends and the Indonesian program to utilize nuclear power, the infrastructure of radioactive waste management needs to be improved. The Act No. 10/1997 on Nuclear Energy for the future beneficence will have to be amended to incorporate several missing key points on waste management, such as definition of radioactive waste, disposal of Low and Intermediate Level Waste (LILW), and classification of waste. Full involvement of some important stakeholders, especially the State Ministry of Environment, on the radioactive waste management infrastructure is required since some radioactive waste is generated from non nuclear waste. Assigning full authority to the State Ministry of Environment for regulating radioactive waste generated by non nuclear facilities may be more effective, whereas BAPETEN is still holding onto control over the waste generated from nuclear facilities. In the near future, several regulations on clearance level, classification of waste, NORM/TENORM, and financial system are expected to be set up for urgent need. By considering the high risk for handling of radioactivity, including for transportation and storage, the liability or assurance of the safety for such activities must be accounted for. Finally, establishment of financial system for long term waste management in Indonesia needs to be implemented to ensure that the radioactive waste will not be the burden on future generations (author)

  4. Low and intermediate level radioactive waste in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.C.; Ortiz, J.R.; Sanchez, S.

    2002-01-01

    Currently, it is necessary to establish, in a few years, a definitive repository for low and intermediate level radioactive waste in order to satisfy the necessities of Mexico for the next 50 years. Consequently, it is required to estimate the volumes of the radioactive waste generated annually, the stored volumes to-date and their projection to medium-term. On this subject, the annual average production of low and intermediate level radioactive waste from the electricity production by means of nuclear power reactors is 250 m 3 /y which consist of humid and dry solid waste from the 2 units of the Laguna Verde Nuclear Power plant having a re-use efficiency of effluents of 95%. On the other hand, the applications in medicine, industry and research generate 20 m 3 /y of solid waste, 280 m 3 /y of liquid waste and approximately 10 m 3 /y from 300 spent sealed radioactive sources. The estimation of the total volume of these waste to the year 2035 is 17500 m 3 corresponding to the 46% of the volume generated by the operation and maintenance of the 2 units of the Laguna Verde Nuclear Power plant, 34% to the decommissioning of these 2 units at the end of their useful life and 20% to the waste generated by applications in medicine, industry and research. (author)

  5. The technology of concrete in the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hironaga, Michihiko

    2000-01-01

    The fuel policy of Japan with poor energy resources requires for establishment of nuclear fuel cycle, where uranium fuel once used at a nuclear power station is effectively used at a form of cycling by its reprocessing and its reuse at a fast breeder reactor. At present, 51 units of nuclear power plants are under operation in Japan, of which power generation is 302.1 billion kWh corresponding to 34.6 % of annual power generation in Japan. Radioactive waste is a wasted material containing radioactive materials forming at operation of the nuclear power station and at reprocessing process and so forth carried out at the nuclear fuel cycle. It is required for isolation from human biosphere environment because of its characteristic. Concrete is expected for a play to control leakage of radioactive materials and transfer to biosphere environment as a structural and barrier material constructing a disposal facility of radioactive wastes. Here were described on play, present state, and future problem of concrete mainly used for civil engineering and structural materials and with a strong common recognition at a viewpoint of the 'disposal of radioactive wastes'. (G.K.)

  6. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  7. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  8. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  9. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  10. Requirements for permitting a mixed waste incinerator

    International Nuclear Information System (INIS)

    Trichon, M.; Feldman, J.; Serne, J.C.

    1990-01-01

    The consideration, design, selection and operation of any incinerator depends primarily on characteristic quality (ultimate and proximate analyses) and quantity to the waste to be incinerated. In the case of burning any combination of mixed hazardous, biomedical and radioactive low level waste, specific federal and generic state environmental regulatory requirements are outlined. Combustion chamber temperature and waste residence time requirements will provide the rest of the envelope for consideration. Performance requirements must be balanced between the effects of time and temperature on destruction of the organic waste and the vaporization and possible emission of the inorganic waste components (e.g., toxic metals, radioactive inorganics) as operating conditions and emission levels will be set in state and federal regulatory permits. To this end the complete characterization of the subject waste stream must be determined if an accurate assessment of incineration effectiveness and impact are to be performed

  11. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power reactors and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of LLW. This Safety Guide deals with the safety issues associated with the predisposal management of LLW from nuclear fuel cycle facilities, large research and development installations and radioisotope production facilities. This includes all steps and activities in the management of waste, from its initial generation to its final acceptance at a waste disposal facility or the removal of regulatory control. The predisposal management of radioactive waste includes decommissioning. The term 'decommissioning' encompasses both the process of decommissioning a facility and the management of the waste that results (prior to its disposal). Recommendations on the process of decommissioning are provided in Refs. Recommendations on the management of the waste resulting from decommissioning are included in this Safety Guide. Although the mining and milling of uranium and thorium ores is part of the nuclear fuel cycle, the management of the operational waste (e.g. waste rock, tailings and effluent treatment waste) from these activities is not within the scope of this Safety Guide. The LLW that is

  12. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  13. Radioactive waste containment - a literature study

    International Nuclear Information System (INIS)

    Mohiuddin, G.

    1985-01-01

    One of the basic requirements of safe radioactive waste disposal is isolation of the radioactive substances to prevent leakage into the biosphere. The multi-barrier concept has been developed to meet this requirement. Within the framework of the concept, barriers can be either natural or man-made. Natural barriers, i.e. geologic formations,have been investigated for their suitability, with host rock and their different properties being determined and compared. It has been found that the qualification of a proposed repository medium cannot be defined on the basis of physical, chemical, and mineralogical criteria alone, but that these data have to be completed by a global evaluation of the entire system consisting of waste products and waste forms, host rock, and surrounding rock. The study in hand reviews the reports and also lists the studies made on engineered barriers, as e.g. immobilisation barriers, container and package barriers, of various waste forms. A review of the studies dealing with the various waste disposal techniques shows that the sub-surface waste disposal and the deep underground disposal in mines are the best developed techniques currently. A review of ultimate disposal concepts adopted abroad shows that most countries favour the mining technology approach, with the exception of Denmark where R and D work in this field is focused on deep well disposal. (orig./HP) [de

  14. Assessing inventories of past radioactive waste arisings at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; TerHuurne, M.A.; Miller, M.T.; Edwards, N.W.; Hulley, V.R.; McCann, D.J.

    1998-01-01

    Internationally, a great deal of progress has been made in improving the management of currently accumulating and anticipated future radioactive wastes. Progress includes improved waste collection, segregation, characterization and documentation in support of disposal facility licensing and operation. These improvements are not often very helpful for assessing the hazards of wastes collected prior to their implementation, since, internationally, historic radioactive wastes were not managed and documented according to today's methods. This paper provides an overview of Atomic Energy of Canada Limited's (AECL) unique approach to managing its currently accumulating, low-level radioactive wastes at Chalk River Laboratories (CRL) and it describes the novel method AECL-CRL has developed to assess its historic radioactive wastes. Instead of estimating the characteristics of current radioactive wastes on a package-by-package basis, process knowledge is used to infer the average characteristics of most wastes. This approach defers, and potentially avoids, the use of expensive analytical technologies to characterize wastes until a reasonable certainty is gained about their ultimate disposition (Canada does not yet have a licensed radioactive waste disposal facility). Once the ultimate disposition is decided, performance assessments determine if inference characterization is adequate or if additional characterization is required. This process should result in significant cost savings to AECL since expensive, resource-intensive, up-front characterization may not be required for low-impact wastes. In addition, as technological improvements take place, the unit cost of characterization usually declines, making it less expensive to perform any additional characterization for current radioactive wastes. The WIP-III data management system is used at CRL to 'warehouse' the average characteristics of current radioactive wastes. This paper describes how this 'warehouse of information

  15. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  16. Decision Assessment of Clearance Level on Radioactive Waste Management

    International Nuclear Information System (INIS)

    Zainus Salimin; Gunandjar

    2007-01-01

    Radioactive waste on the safe level activity containing very small radioactive material gives small radiology influence to the human, it is not necessary to control by regulatory body. The radioactive waste on the safe level activity is safe to release as the common waste. For exemption of the control, it is required the safe activity level limits in which the value of clearance level is fulfilled by regulatory body, however until now it is not decided yet. The exemption decision is obtained if its activity is lower than or same with clearance level based on the annual effective dose receiving by public on the value is lower than or same with 0,01 mSv. The exposure pathways of radioactive waste to the human have important role for determination of clearance level. The decision assessment of clearance level on the radioactive waste management has been done by analysis of radioactive exposure pathways to the human for activities of the disposal and the recycle of solid wastes, also the release of liquid and gas effluent. For solid waste disposal, the exposure pathway was evaluated since the transportation of packed waste from the treatment facility to the disposal facility and during its operation. Exposure pathways for solid waste recycle consist of the pathways for handling and transportation of cleared material to the recycling facility, the fabrication and the utilization of its product. Exposure pathways for liquid and gas releases occur since its releases to the environment up to the human (public) by specific traffic lane. (author)

  17. Survey of product quality control of radioactive waste

    International Nuclear Information System (INIS)

    Warnecke, E.

    1989-01-01

    The PTB has developed basic procedures with regard to deriving final storage conditions and product quality control. After this, requirements for radioactive waste are derived via safety analysers, in which information about the radioactive waste, the geological overall situation of the site and the layout of the final storage mine, in particular, are included as basic data. The final storage conditions are only determined with the awarding of the planning decision. Compliance with them can be proved by random sample tests on waste containers or via a qualification and inspection of the conditioning process. (DG) [de

  18. A common framework for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.; Barraclough, I.

    2002-01-01

    Various industrial, research and medical activities give rise to waste that contain or are contaminated with radioactive material. In view of the potential radiological hazards associated with such waste they have to be managed and disposed of in such a way as to ensure that such potential hazards are adequately managed and controlled in compliance with the safety principles and criteria. Over the past few decades experience in radioactive waste management has led to the development of various options for radioactive waste management and has also led to the development of principles which the various waste management options should satisfy in order to achieve an acceptable level of safety. International consensus has evolved in respect of the principles. However, complete consensus in respect of demonstrating compliance with the requirements for managing and disposing of the whole range of waste types is still developing. This paper identifies the various waste types that have to be managed, the prevailing safety principles and the disposal options available. It discusses the development of a common framework which would enable demonstration that a particular disposal option would meet the safety principles and requirements for the disposal of a particular waste type. (author)

  19. Application of EPA regulations to low-level radioactive waste

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Piciulo, P.L.

    1985-01-01

    The survey reported here was conducted with the intent of identifying categories of low-level radioactive wastes which would be classified under EPA regulations 40 CFR Part 261 as hazardous due to the chemical properties of the waste. Three waste types are identified under these criteria as potential radioactive mixed wastes: wastes containing organic liquids; wastes containing lead metal; and wastes containing chromium. The survey also indicated that certain wastes, specific to particular generators, may also be radioactive mixed wastes. Ultimately, the responsibility for determining whether a facility's wastes are mixed wastes rest with the generator. However, the uncertainties as to which regulations are applicable, and the fact that no legal definition of mixed wastes exists, make such a determination difficult. In addition to identifying mixed wastes, appropriate methods for the management of mixed wastes must be defined. In an ongoing study, BNL is evaluating options for the management of mixed wastes. These options will include segregation, substitution, and treatments to reduce or eliminate chemical hazards associated with the wastes listed above. The impacts of the EPA regulations governing hazardous wastes on radioactive mixed waste cannot be assessed in detail until the applicability of these regulations is agreed upon. This issue is still being discussed by EPA and NRC and should be resolved in the near future. Areas of waste management which may affect generators of mixed wastes include: monitoring/tracking of wastes before shipment; chemical testing of wastes; permits for treatment of storage of wastes; and additional packaging requirements. 3 refs., 1 fig., 2 tabs

  20. Issues in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Ashbrook, A.W.

    1984-01-01

    All industry finds itself today enmeshed in a morass of regulation, political apathy and public antagonism when it comes to hazardous industrial waste. Our industry is a world-class leader on all three fronts. There are no disposal facilities in Canada for radioactive wastes and the prognosis for the future is bleak. As the industry gets older, more and more facilities will be closed and require decommissioning. New facilities require plans for the long-term management of their wastes. Indeed, one major public issue with the nuclear industry is the fate of the wastes produced. In looking at the situation in which we find ourselves today with respect to the long-term management of naturally-occurring low-level radioactive wastes, one must wonder where we are going in the future, and whether indeed is an end in sight

  1. National inventory of radioactive wastes

    International Nuclear Information System (INIS)

    1997-01-01

    There are in France 1064 sites corresponding to radioactive waste holders that appear in this radioactive waste inventory. We find the eighteen sites of E.D.F. nuclear power plants, The Cogema mine sites, the Cogema reprocessing plants, The Cea storages, the different factories and enterprises of nuclear industry, the sites of non nuclear industry, the Andra centers, decommissioned installations, disposals with low level radioactive wastes, sealed sources distributors, national defence. (N.C.)

  2. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  3. Supercompaction of radioactive waste at NPP Krsko

    International Nuclear Information System (INIS)

    Fink, K.; Sirola, P.

    1996-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  4. Mixed radioactive and chemotoxic wastes (RMW)

    International Nuclear Information System (INIS)

    Dejonghe, I.P.

    1991-01-01

    During the first decades of development of nuclear energy, organizations involved in the management of nuclear wastes had their attention focused essentially on radioactive components. The impression may have prevailed that, considering the severe restrictions on radioactive materials, the protection measured applied for radioactive components of wastes would be more than adequate to cope with potential hazards from non radioactive components associated with radioactive wastes. More recently it was acknowledged that such interpretation is not necessarily justified in all cases since certain radioactive wastes also contain non-negligible amounts of heavy metals or hazardous organic components which, either, do not decay, or are subject to completely different decay (decomposition) mechanisms. The main purposes of the present study are to analyze whether mixed radioactive wastes are likely to occur in Europe and in what form, whether one needs a basis for integration for evaluating various forms of toxicity and by which practical interventions possible problems can be avoided or at least reduced. (au)

  5. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  6. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  7. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  8. The transport of radioactive waste

    International Nuclear Information System (INIS)

    Appleton, P.R.; Poulter, D.R.

    1989-01-01

    Regulations have been developed to ensure the safe transport of all radioactive materials by all modes (road, rail, sea and air). There are no features of radioactive waste which set it aside from other radioactive materials for transport, and the same regulations control all radioactive material transport. These regulations and their underlying basis are described in this paper, and their application to waste transport is outlined. (author)

  9. An overview of the AECB's strategy for regulating radioactive waste management activities

    International Nuclear Information System (INIS)

    Hamel, P.E.; Smythe, W.D.; Duncan, R.M.; Coady, J.R.

    1982-07-01

    The goal of the Canadian Atomic Energy Control Board in regulating the management of radioactive wastes is to ensure the protection of people and the environment. A program of cooperation with other agencies, identification and adoption of baselines for describing radioactive wastes, development of explicit criteria and requirements, publication of related regulatory documents, establishment of independent consultative processes with technical experts and the public, and maintenance of awareness and compatibility with international activities is underway. Activities related to high-level radioactive waste, uranium mine and mill tailings, low- and medium-level wastes, radioactive effluents from nuclear facilities, and decommissioning and decontamination are described

  10. Revision of DOE Order 5820.2 Radioactive Waste Management

    International Nuclear Information System (INIS)

    Albenesius, E.L.

    1988-01-01

    The Radioactive Waste Management Order of Department of Energy (DOE), 5820.2 was radically revised to a more prescriptive style with accountable performance objectives. In particular, major changes were required in the low-level radioactive waste (LLW) Management Chapter. These changes will move the Department toward equivalence with Nuclear Regulatory Commission's 10 CFR 61 at arid disposal sites and, because of emphasis on groundwater protection beyond these requirements for DOE disposal sites in humid areas. Formal issue of the Order is expected at the end of September 1988

  11. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  12. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  13. Krsko NPP radioactive waste characteristics

    International Nuclear Information System (INIS)

    Skanata, D.; Kroselj, V.; Jankovic, M.

    2007-01-01

    In May 2005 Krsko NPP initiated the Radioactive Waste Characterization Project and commissioned its realization to the consulting company Enconet International, Zagreb. The Agency for Radwaste Management was invited to participate on the Project. The Project was successfully closed out in August 2006. The main Project goal consisted of systematization the existing and gathering the missing radiological, chemical, physical, mechanical, thermal and biological information and data on radioactive waste. In a general perspective, the Project may also be considered as a part of broader scope of activities to support state efforts to find a disposal solution for radioactive waste in Slovenia. The operational low and intermediate level radioactive waste has been structured into 6 waste streams that contain evaporator concentrates and tank sludges, spent ion resins, spent filters, compressible and non-compressible waste as well as specific waste. For each of mentioned waste streams, process schemes have been developed including raw waste, treatment and conditioning technologies, waste forms, containers and waste packages. In the paper the main results of the Characterization Project will be briefly described. The results will indicate that there are 17 different types of raw waste that have been processed by applying 9 treatment/conditioning technologies. By this way 18 different waste forms have been produced and stored into 3 types of containers. Within each type of container several combinations should be distinguished. Considering all of this, there are 34 different types of waste packages altogether that are currently stored in the Solid Radwaste Storage Facility at the Krsko NPP site. Because of these findings a new identification system has been recommended and consequently the improvement of the existing database on radioactive waste has been proposed. The potential areas of further in depth characterization are indicated. In the paper a brief description on the

  14. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  15. Radioactive waste disposal : policies and practices in New Zealand

    International Nuclear Information System (INIS)

    Robertson, M.K.

    1996-01-01

    The management of radioactive waste and its ultimate dispoal have been a significant problem for the nuclear industry. A lot of resources have been devoted to developing management and dispoal systems. As well as being one of the major technical problems, it has been a very significant public relations issue. Public concern about risks associated with disposal of radioactive waste has been on a global scle. It has focused on local issues in some countries, but generl attitudes have been common worldwide. Great differences exist between countries in the scale and aspects of nuclear technoloy in use. In particular the presence or absence of a nuclear power programme, and to a lesser extent of any nuclear reactors, greatly influence the magnitude of the waste disposal problem. Nevertheless, public perceptions of the problem are to some degree independent of these differences. What radioactive wastes are there in New Zealand? Is there a hazard to the New Zealand public or the New Zealand environment from current radioactive waste disposal practices? What policies are in place to control these practices? This report seeks to provide some information on these questions. It also brings together in one document the waste disposal policies followed by the National Radiation Laboratory for different uses of radioactive mateials. Except for some small quantities which are exempt from most controls, radioactive material can be used in New Zealand only under the control of a person holding a licence under the Radiation Protection Act 1965. All requirements of the Radiation Protection Regulations 1982 must also be observed. More detailed safety advice and further mandatory requirements are contained in codes of safe practice. Compliance with one of these is a condition on most licencees. These provisions are administered by the National Radiation Laboratory (NRL) of the Ministry of Health. (author). 7 refs., 2 tabs., 1 fig

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  17. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  18. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  19. Quality assurance for safety in the radioactive waste management: a quality assurance system in Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Petrova, A.; Kolev, I.

    2000-01-01

    Novi Han Radioactive Waste Repository (RWR) is still the only place in Bulgaria for storage of low and intermediate level radioactive waste. It is necessary to establish and maintain a Quality Assurance (QA) system to ensure that the RWR can be operated safely with regard to the health and safety of the general public and site personnel. A QA system has to establish the basic requirements for quality assurance in order to enhance nuclear safety by continuously improving the methods employed to achieve quality. It is envisaged that the QA system for the Novi Han RWR will cover the operation and maintenance of the radioactive waste disposal facilities, the radiation protection and monitoring of the site, as well as the scientific and technology development aspects. The functions of the Novi Han RWR presume the availability of an environmental management system. It is appropriate to establish a QA system based on the requirements of the ISO Standards 9001 and 14000, using the recommendations of the IAEA (Quality assurance for safety in NPPs and other nuclear installations, code and safety guides Q1-Q14). (authors)

  20. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  1. Quality assurance in processing radioactive waste for land disposal

    International Nuclear Information System (INIS)

    1984-01-01

    To provide the appropriate assurances as to the quality of processed radioactive waste it is necessary to consider the complete range of activities involved in the formation and operation of a radioactive waste processing facility. To this end, an outline has been given to the individual elements which should be addressed in quality assurance proposals to the authorising Departments. In general terms, the quality checks on product material should be aimed at demonstrating that the radioactive waste product is what was agreed at the time of process approval. In addition, at the discretion of the authorising Departments, the waste processor will be required to confirm that the product meets any specific acceptance criteria such as the capability to retain the immobilised radionuclides when in contact with water. (author)

  2. [Microbiological Aspects of Radioactive Waste Storage].

    Science.gov (United States)

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  3. Management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated. Cement solidification and bituminization unit has come into trial run. Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities. Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces. Disposal of low and intermediate level radioactive wastes pursues the policy of 'regional disposal'. Four repositories have been planned to be built in northwest, southwest, south and east China respectively. A program for treatment and disposal of high level radioactive waste has been made

  4. An innovative approach to solid Low Level Radioactive Waste processing and disposal

    International Nuclear Information System (INIS)

    Pancake, D.C. Jr.; Sodaro, M.A.

    1994-01-01

    This paper will focus on a new system of Low Level Radioactive Waste (LLW) accumulation, processing and packaging, as-well as the implementation of a Laboratory-wide training program used to introduce new waste accumulation containers to all of the on-site radioactive waste generators, and to train them on the requirements of this innovative waste characterization and documentation program

  5. Evaluation of cost of radioactive waste management during the Chernobyl NPP decommissioning

    International Nuclear Information System (INIS)

    Gavrish, V.M.; Tkachev, D.A.

    2009-01-01

    The article presents the results of calculations on evaluation of radioactive waste volumes, the required financing, and the labor expenses for management of radioactive waste that may arise during the decommissioning of Chernobyl NPP Units 1, 2, 3

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  7. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  8. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  9. Radioactive waste interim storage in Germany

    International Nuclear Information System (INIS)

    2015-12-01

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  10. Radioactive waste products 2002 (RADWAP 2002). Proceedings

    International Nuclear Information System (INIS)

    Odoj, R.; Baier, J.; Brennecke, P.; Kuehn, K.

    2003-01-01

    The 4 th International Seminar on Radioactive Waste Products was organised by the Forschungszentrum Juelich in co-operation with the Bundesamt fuer Strahlenschutz and the European Commission. On behalf of the Bundesamt, I would like to welcome all participants of this scientific-technical meeting. I very much appreciate the participation not only of numerous German scientists, engineers and technicians as well as governmental and industrial representatives, but would particularly express my gratitude for the participation of many colleagues from abroad. Radioactive waste management and disposal is a worldwide issue and international co-operation to support national programmes is therefore much appreciated. The international organisations provide, among other things, guidance to member countries on safe, economic and environmentally acceptable solutions for radioactive waste disposal. On a national basis respective programmes are developed, modified or successfully realized. Nevertheless, the challenge of radioactive waste management and disposal is no longer a scientific and technical exclusivity. The importance of ethical and social aspects, the dialogue with the public and transparency in decision-making processes increase more and more. Thus, when addressing safety-related key questions one needs to be as open as possible on scientific-technical aspects and to consider the involvement of the public requiring a clear, open-minded and transparent communication. (orig.)

  11. Communication from the Radioactive Waste Service

    CERN Multimedia

    2011-01-01

    The Radioactive Waste service of the Radiation protection Group informs you that as of 15 April 2011 radioactive waste can be delivered to the waste treatment centre (Bldg. 573) only during the following hours: Mon- Thu: 08:00 – 11:30 / 13:30 – 16:00 Fri : 08:00 – 11:30 An electronic form must be filled in before the arrival of the waste at the treatment centre: https://edh.cern.ch/Document/General/RadioactiveWaste for further information, please call 73171.

  12. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  13. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  14. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  15. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  16. Environmental requirements for radioactive wastes final disposal in shallow ground repositories; Requisitos ambientais para disposicao final de rejeitos radioativos em repositorios de superficie

    Energy Technology Data Exchange (ETDEWEB)

    Raduan, Rosane Napolitano

    1994-12-31

    Low and intermediate level radioactive waste confinement have been a well know practice for about five decades. Wastes disposal in shallow ground repositories are originated in the nuclear fuel cycle and the application of isotopes in medicine, industry, research and education and other activities. An adequate choice of sites for repositories constructions is based on a criterions analysis of a series of requirements for environmental impact assessment. This analysis allows, together with physical and chemical parameters of the immobilized and packed radioactive wastes, to carry out this choice. The main objective of this work is to have an overview of principal topics that allows an environment impact analysis resulting from a controlled radioactive waste disposal. (author). 68 refs., 14 figs., 6 tabs.

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  18. Design basis for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Lewi, J.; Kaluzny, Y.

    1990-01-01

    All radioactive waste disposal sites, regardless of disposal concept, are designed to isolate the radioactive substances contained in such waste for a period at least equal to the time it may remain potentially harmful. Isolation is achieved through the use of containment barriers. This paper summarises the function and limits of different types of barrier used in various disposal systems. For each type of barrier, the paper describes and comments on the site selection criteria and waste packaging requirements applicable in various countries. 13 refs., 1 fig [fr

  19. State-of-the-art report on radioactive waste disposal

    International Nuclear Information System (INIS)

    Larsson, A.

    1989-01-01

    In view of the considerable work required to develop repositories for radioactive waste, an extensive international co-operation has evolved within the area. The work has also engaged the IAEA to a great extent. The Agency has published a number of reports, covering different aspects of waste disposal. Following a recommendation by its Technical Review Committee on Underground Disposal (TRCUD) the Agency will publish a ''state-of-the-art'' report on radioactive waste disposal. The report is still in the preparation stage. In this article the principal subjects of the future report are discussed

  20. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  1. Strategic areas in radioactive waste management. The viewpoint and work orientations of the Nea radioactive waste management committee

    International Nuclear Information System (INIS)

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) is a forum of senior operators, regulators, policy makers, and senior representatives of R and D institutions in the field of radioactive waste management. The Committee assists Member countries by providing objective guidance on the solution of radioactive waste problems, and promotes Safety in the short- and long-term management of radioactive waste. This report identifies some of the major challenges currently faced by national waste management programmes, and describes the strategic areas in which the RWMC should focus its efforts in future years. (author)

  2. Radioactive waste management in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.)

    1978-01-01

    The technologies developed in West Germany for radioactive waste management are widely reviewed. The first topic in this review paper is the disposal of low- and middle-level radioactive liquid wastes. Almost all these liquid wastes are evaporated, and the typical decontamination factor attained is 10/sup 4/ -- 10/sup 6/. The second topic is the solidification of residuals. Short explanation is given to bituminization and some new processes. The third topic is high-level liquid wastes. Degradation of glass quality due to various radiation is discussed. Embedding of small glass particles containing radioactive wastes into metal is also explained. Disposals of low-level solid wastes and the special wastes produced from reprocessing and mixed oxide fuel fabrication are explained. Final disposal of radioactive wastes in halite is discussed as the last topic. Many photographs are used to illustrate the industrial or experimental use of those management methods.

  3. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  4. Regulatory aspects of underground disposal of radioactive waste in Switzerland

    International Nuclear Information System (INIS)

    Luethi, H.R.

    1978-01-01

    The management of radioactive waste has become an important problem in Switzerland, and work has now begun on technical investigations and the preparation of a regulatory framework for deep-underground disposal. The law currently in force is the Federal Law on the Peaceful Use of Atomic Energyy and Radiation Protection, under which two licences are required, one for construction and one for operation. An amendment to this Law is envisaged whereby the licensing system will be modified, in particular by requiring an additional licence which will be granted by the Federal Government, with the consent of Parliament, if the safe disposal of waste can be guaranteed. The producers of radioactive waste are primarily responsible for the management thereof, but the National Co-operative Society for the Storage of Radioactive Waste (NAGRA) has the task of planning, constructing and operating repositories. The licensing authority in Switzerland is the Federal department of Communications and Energy. (NEA) [fr

  5. Radioactive waste management plan for the PBMR (Pty) Ltd fuel plant

    International Nuclear Information System (INIS)

    Makgae, Mosidi E.

    2009-01-01

    The Pebble Bed Modular Reactor (Pty) Ltd Fuel Plant (PFP) radioactive waste management plan caters for waste from generation, processing through storage and possible disposal. Generally, the amount of waste that will be generated from the PFP is Low and Intermediate Level Waste. The waste management plan outlines all waste streams and the management options for each stream. It also discusses how the Plant has been designed to ensure radioactive waste minimisation through recycling, recovery, reuse, treatment before considering disposal. Compliance to the proposed plan will ensure compliance with national legislative requirements and international good practice. The national and the overall waste management objective is to ensure that all PFP wastes are managed appropriately by utilising processes that minimize, reduce, recover and recycle without exposing employees, the public and the environment to unacceptable impacts. Both International Atomic Energy Agency (IAEA) and Department of Minerals and Energy (DME) principles act as a guide in the development of the strategy in order to ensure international best practice, legal compliance and ensuring that the impact of waste on employees, environment and the public is as low as reasonably achievable. The radioactive waste classification system stipulated in the Radioactive Waste Management Policy and Strategy 2005 will play an important role in classifying radioactive waste and ensuring that effective management is implemented for all waste streams, for example gaseous, liquid or solid wastes.

  6. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  7. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  8. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2007-01-01

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  9. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  10. The RS-485 communication system design of the waste steel radioactivity detector system

    International Nuclear Information System (INIS)

    Zhang Yongli

    2014-01-01

    The importance and schematic structure of the waste steel radioactivity detector system is given firstly in this paper, and then the RS-485 communication system design including the circuit and program of the waste steel radioactivity detector system is provided. The test result of RS-485 communication system is also introduced, that shows the design completely meets the requirements of the waste steel radioactivity detector system. (author)

  11. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  12. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  13. Civilian Radioactive Waste Management System Requirements Document (CRP)

    International Nuclear Information System (INIS)

    C.A. Kouts

    2006-01-01

    The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible for design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further

  14. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  15. Some points in legal regulation of radioactive waste management

    International Nuclear Information System (INIS)

    Tikhankin, Anatoly; Levin, Alexander

    1999-01-01

    In Russia, the system of the legal acts regulating radioactive waste management is now in progress. Development of the federal norms and regulations on the use of atomic energy is a responsibility of Gosatomnazdor. This presentation describes in detail the work done by Gosatomnadzor in 1997/1998 on the development of the legal documents regulating the management of radioactive waste and spent nuclear material. A document of special importance is ''Burial of Radioactive Wastes. Principles, Criteria and Basic Safety Requirements''. This is discussed in some detail. For all stages of radioactive waste management, safety criteria for population and personnel are set up in strict analogy with current legislation for any other type of radiological hazard. A combined, or hybrid, safety criterion is suggested for estimation of long-term safety of radioactive waste repository systems, for the period upon termination of the established administrative monitoring after closing the repository. A dose criterion is accepted for normal radiation exposure and a risk criterion for potential radiation exposure. The safety of radioactive waste repository should be ensured by means of graded safeguard throughout the entire period of burial. Graded safeguard is based on independent barriers on the way of ionising radiation and emission of radioactive substances into the environment and protection and maintenance of these barriers. Examples show how the provisions of the document are applied in practice in the permafrost area of Russia. Permafrost soil has low water permeability, which is significant because underground water is the main transport medium in case of a leakage from a repository

  16. Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Cole, L.; Kudera, D.; Newberry, W.

    1995-12-01

    This document results from the Secretary of Energy's response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ''address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. '' The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities

  17. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  18. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  19. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  20. Radioactive Waste Management in A Hospital

    Science.gov (United States)

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  1. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  2. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Cotton, T.

    1985-01-01

    With the passage of the Nuclear Waste Policy Act of 1982 (NWPA), Congress for the first time established in law a comprehensive Federal policy for commercial high-level radioactive waste management, including interim storage and permanent disposal. NWPA provides sufficient authority for developing and operating a high-level radioactive waste management system based on disposal in mined geologic repositories. Authorization for other types of waste facilities will not be required unless major problems with geologic disposal are discovered, and studies to date have identified no insurmountable technical obstacles to developing geologic repositories. The NWPA requires the Department of Energy (DOE) to submit to Congress three key documents: (1) a Mission Plan, containing both a waste management plan with a schedule for transferring waste to Federal facilities and an implementation program for choosing sites and developing technologies to carry out that plan; (2) a monitored retrievable storage (MRS) proposal, to include a site-specific design for a long-term federal storage facility, an evaluation of whether such an MRS facility is needed and feasible, and an analysis of how an MRS facility would be integrated with the repository program if authorized by Congress; and (3) a study of alternative institutional mechanisms for financing and managing the radioactive waste system, including the option of establishing an independent waste management organization outside of DOE. The Mission Plan and the report on alternative institutional mechanisms were submitted to the 99th US Congress in 1985. The MRS proposal is to be submitted in early 1986. Each of these documents is discussed following an overview of the Nuclear Waste Policy Act of 1982

  3. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  4. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  5. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  6. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 17 June 1985. Nuclear Industry Radioactive Waste Executive

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from the Nuclear Industry Radioactive Waste Executive, on the management and disposal of radioactive waste arising in the UK, under the headings: introduction; the structure of NIREX; the nature of radioactive waste; plans for the disposal of low and intermediate level wastes. Representatives of NIREX were examined on the subject of the memorandum and the minutes of evidence are recorded. (U.K.)

  7. The Control of Pollution (Radioactive Waste) Regulations 1976 of 10 June 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The discharge into a public sewer of trade effluent is governed by the Control of Pollution Act 1974, under which water authorities in England and Wales have certain powers to regulate such discharges. These provisions have not however applied hitherto to radioactive waste, the disposal of which required mainly authorisation by the Minister of State for the Environment. Under the present Regulations, the 1974 Act will apply to radioactive waste so as to give water authorities control over liquid discharges into their sewers, notwithstanding that they contain radioactive waste while the powers of the Minister of State are maintained regarding control and disposal of the radioactive parts of such waste under the 1960 act on Radioactive substances. (N.E.A.) [fr

  8. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  9. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  10. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  11. Estimation of contaminant transport in groundwater beneath radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Wang, J.C.; Tauxe, J.D.; Lee, D.W.

    1995-01-01

    Performance assessments are required for low-level radioactive waste disposal facilities to demonstrate compliance with the performance objectives contained in either 10 CFR 61, open-quotes Licensing Requirements for Land Disposal of Radioactive Waste,close quotes or U.S. Department of Energy Order 5820.2A, open-quotes Radioactive Waste Management.close quotes The purpose of a performance assessment is to provide detailed, site-specific analyses of all credible pathways by which radionuclides could escape from the disposal facility into the environment. Among these, the groundwater pathway analysis usually involves complex numerical simulations. This paper demonstrates that the use of simpler analytical models avoids the complexity and opacity of the numerical simulations while capturing the essential physical behavior of a site

  12. Treatment of radioactive wastes by incineration; Tratamiento de desechos radiactivos por incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Priego C, E., E-mail: emmanuel.priego@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    Great part of the radioactive wastes of low and intermediate level generated during the nuclear fuel cycle, in laboratories and other sites where the radionuclides are used for the research in the industry, in medicine and other activities, are combustible wastes. The incineration of these radioactive wastes provides a very high reduction factor and at the same time converts the wastes in radioactive ashes and no-flammable residuals, chemically inert and much more homogeneous that the initial wastes. With the increment of the costs in the repositories and those every time but strict regulations, the incineration of radioactive wastes has been able to occupy an important place in the strategy of the wastes management. However, in a particular way, the incineration is a complex process of high temperature that demands the execution of safety and operation requirements very specific. (author)

  13. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  14. Radioactive waste from non-power applications in Sweden

    International Nuclear Information System (INIS)

    Haegg, Ann-Christin; Lindbom, Gunilla; Persson, Monica

    2001-01-01

    Full text: The system for handling of radioactive waste from the Nuclear Fuel Cycle in Sweden is well established and has been in use for many years. Radioactive waste from other sources is not always handled as rigorously. The Swedish Radiation Protection Institute, SSI has identified the issue and therefore initiated a study with the aim to achieve a sufficient system for handling and disposal of radioactive waste from all sources of radioactive waste. In this paper we discuss some of the sources of radioactive waste and the specific problems they represent. We give a brief description on how they are regulated and handled today and identify some interesting issues. Conventional industry, hospitals, research and education: In the conventional industry the use of different types of radioactive sources is common. The size and type of radioactive source depends on the application (from some megaBq up to thousands of terraBq). The radioactive waste from hospitals, research institutions and pharmaceutical or bio-technical industries consists mainly of very short-lived radionuclides. Also most sealed sources used in the medical field contains short-lived radionuclides. According to the Swedish Radiation Protection Act a licence is needed for the use of sealed sources exceeding 50 kiloBq. For hospitals and research institutes the SSI issues one license covering all radioactive sources below 500 megaBq up to a summary limit depending on the application. All sources with activity exceeding 500 megaBq require a separate license. SSI has issued about 2500 licences. For each licence an annual fee is paid to the SSI. When the radioactive source has fulfilled its purpose the licensee is obliged to inform the SSI that the source is no longer in use and show a certificate from the recognised waste facility. Not until this has been done the licensee is released from its responsibilities. SSI has issued regulations on Radioactive Waste Not Associated with Nuclear Energy. These

  15. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  16. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal(I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Hong, D. S.; Hwang, G. H.; Shin, J. J.; Yuk, D. S. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Characteristics and states of management of low and intermediate level radioactive waste in site : state of management for each type of wastes, characteristics of low and intermediate level solid radioactive waste, stage of management of low and intermediate level solid radioactive waste. Survey of state of management and characteristics of low and intermediate level radioactive waste disposal facility in foreign countries : state of management of disposal facilities, classification criteria and target radionuclides for assessment in foreign disposal facilities. Survey of the assessment methods of the radionuclides inventory and establishing the direction of requirement : assessment methods of the radionuclides inventory, analysis of radionuclides assay system in KORI site, establishment the direction of requirement in the assessment methods.

  17. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2006-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  18. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  19. Radioactive waste programme in Latvia

    International Nuclear Information System (INIS)

    Salmins, A.

    2000-01-01

    An overview is made on the use of radioactive sources and waste management in Latvia. Brief overview of the development of national legal documents - the framework law of environmental protection; international agreements; the new law on radiation safety and nuclear safety; regulation of the Cabinet of Ministers - is given. The regulatory infrastructure in the nearest future is outlined. The institutional framework for radioactive waste management is described. Basic design of the repository and radioactive waste inventory are also given. The activities on the EU DG Environment project CASIOPEE are reported

  20. Conditioning and storage of low level radioactive waste in FR Yugoslavia

    International Nuclear Information System (INIS)

    Plecas, I.; Pavlovic, R.; Pavlovic, S.

    2000-01-01

    FR Yugoslavia is a country without any nuclear power plant on its territory. In the last forty years in the country, as a result of the two research reactors operation and also from radionuclides applications in medicine, industry and agriculture, radioactive waste materials of different levels of specific activity are generated. As a temporary solution, these radioactive waste materials are stored in the two interim storage facility. Since one of the storage facilities is completely full with radioactive wastes, packed in metal drums and plastic barrels, and the second one has an effective space for the next few years, attempts are made in the 'Vinca' Institute of Nuclear Sciences in developing the the immobilization process, for low and intermediate level radioactive wastes and their safe disposal. As an immobilization process, cementation process is investigated. Developed immobilization process has, as a final goal, production of solidified waste-matrix mixture form, that is easy for handling and satisfies requirements for interim storage and final disposal. Radioactive wastes immobilized in inactive matrices are to be placed into concrete containers for further manipulation and disposal

  1. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  2. Regulatory issues related to long-term storage and disposal of radioactive wastes in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.; Romanenko, O.; Tazhibayeva, I.; Zhunussova, T.

    2012-01-01

    Full text: Reported material is a result of activity accomplished in the framework of cooperation program between Kazakhstan and Norway within 2009-2012. This work was divided into three distinctive parts, as follows: 1. Analysis of existing threats associated with radioactive wastes in the Republic of Kazakhstan. The objective of this part of the work was to reveal the most important threats in the sphere of radioactive waste management in the Republic of Kazakhstan, which require an increased regulatory attention. Threat assessment needed to identify: main radiological threats both for people who work with radioactive wastes and for population living near the radioactive waste storage places now and in the long term which require an increased regulatory attention; problems that need urgent and detailed analysis; and main problems in the realization of regulatory process in Kazakhstan including weakness in the regulatory and legal framework. Threat assessment analysis showed that in order to reduce the level of threats it was necessary to begin developing a national policy and strategy for radioactive waste management which need to be approved by the Government, to develop proposals for Radioactive Wastes new classification, including identification of relevant categories of Radioactive Wastes, as well as criteria for their disposal in accordance with IAEA recommendations and experience from other countries. 2. Development of new classification system for radioactive wastes in Kazakhstan. Following the results of threat assessment performed within the first stage, the objective of the second part of work was to develop a proposal to adopt a new Radioactive Wastes classification in Kazakhstan in accordance with the IAEA recommendations, including implementation of new categories, taking into account international experience and current situation in Kazakhstan. The result of this stage of work was a proposal for a new Radioactive Wastes classification and

  3. Management of radioactive wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1976-01-01

    The increased emphasis in many countries on the development and utilization of nuclear power is leading to an expansion of all sectors of the nuclear fuel cycle, giving rise to important policy issues and radioactive-waste management requirements. Consequently, the IAEA and the Nuclear Energy Agency of OECD felt that it would be timely to review latest technology for the management of the radioactive wastes arising from nuclear fuel cycle facilities, to identify where important advances have been made, and to indicate those areas where further technological development is needed. Beginning in 1959, the IAEA, either by itself or jointly with OECD/NEA has held seven international symposia on the management of radioactive wastes. The last symposium, on the management of radioactive wastes from fuel reprocessing, was held jointly by the IAEA and OECD/NEA in Paris in November 1972. An objective of the 1976 symposium was to update the information presented at the previous symposia with the latest technological developments and thinking regarding the management and disposal of all categories of radioactive wastes. Consequently, although the scope of the symposium was rather broad, attention was focussed on operational experience and progress in unresolved areas of radioactive waste management. The programme dealt primarily with the solidification of liquid radioactive wastes and disposal of the products, especially the high-level fission products and actinide-containing waste from fuel reprocessing. Other topics covered policy and planning, treatment of hulls and solvent, management of plutonium-contaminated waste, and removal of gaseous radionuclides. The major topic of interest was the current state of the technology for the reduction and incorporation of the high-level radioactive liquid from fuel reprocessing into solid forms, such as calcines, glasses or ceramics, for safe interim storage and eventual disposal. The approaches to vitrification ranged from two stage

  4. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  5. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  6. Recent advances in cement solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Vigreux, B.; Jaouen, C.

    1987-01-01

    Advanced cement solidification processes and systems have been developed by SGN to meet changing requirements in radioactive waste processing and packaging and to avoid the difficulties often encountered in waste concreting on an industrial scale. SGN applies a strict development methodology to ensure integration of the most recent information on chemical behavior of solidified wastes plus compliance with the precise needs of waste producers and evolving regulatory requirements concerning waste package storage and disposal. Based on a hierarchical definition of objectives, this methodology was implemented following an overall study on radwaste concreting performed in 1983 and 1984 for Electricite de France (EdF), France's national electric power utility. It ensures that industrial and regulatory factors are fully considered from the start of development work. It also constrains development in the direction of true process optimization and guarantees compliance with defined objectives. The methodology has helped SGN develop concreting processes adapted to various types of radioactive waste. The most widely employed processes are first briefly described in this paper. It then presents continuous and batch systems using these processes, focusing on technological features chosen at a very early stage in development

  7. Low-level radioactive waste management. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radioisotopes today, there has been a steady accumulation of waste products. Although the difficulties involved in radioactive waste management are considerable, responsible solutions are possible. This paper will discuss low-level radioactive waste, including its production, the amounts in storage, the rate of waste accumulation and possible strategies for its management. (author). 2 figs

  8. Approaches of the state committee on the environment protection to development of ecological requirements for radioactive wastes management generated in the decommissioning of nuclear submarines

    Energy Technology Data Exchange (ETDEWEB)

    Pechkurov, A. V.; Shusharina, N.M

    1999-07-01

    According to this presentation, handling of radioactive waste from the Russian nuclear submarines (NS) is complex because of a lack of sufficient infrastructure for the management of such wastes. The considerable part of decommissioned NSs is located at the main bases of the North and Pacific Navies and at the territories of the enterprises dealing with building and maintenance of NSs. Existing stationary and floating facilities for radioactive wastes are practically filled up completely and there is no adequate reserve facilities. Norway and the USA render their assistance in increasing the existing capacity of the liquid radioactive waste reprocessing facility of Atomflot, and Japan assists in the creation of a floating facility at Zvezda in the far east. The coastal infrastructure created in the 1960s for radioactive waste processing and long-term storage at the Fleet was not commissioned. The present storage facilities, particularly of trench and open type, are dangerous contamination sources for the environment. Realisation of the full-scaled and complex disposal scheme for reactor compartments of disposed NSs requires the solution of a large number of problems and the fundamental requirements on this work are outlined.

  9. Approaches of the state committee on the environment protection to development of ecological requirements for radioactive wastes management generated in the decommissioning of nuclear submarines

    International Nuclear Information System (INIS)

    Pechkurov, A. V.; Shusharina, N.M.

    1999-01-01

    According to this presentation, handling of radioactive waste from the Russian nuclear submarines (NS) is complex because of a lack of sufficient infrastructure for the management of such wastes. The considerable part of decommissioned NSs is located at the main bases of the North and Pacific Navies and at the territories of the enterprises dealing with building and maintenance of NSs. Existing stationary and floating facilities for radioactive wastes are practically filled up completely and there is no adequate reserve facilities. Norway and the USA render their assistance in increasing the existing capacity of the liquid radioactive waste reprocessing facility of Atomflot, and Japan assists in the creation of a floating facility at Zvezda in the far east. The coastal infrastructure created in the 1960s for radioactive waste processing and long-term storage at the Fleet was not commissioned. The present storage facilities, particularly of trench and open type, are dangerous contamination sources for the environment. Realisation of the full-scaled and complex disposal scheme for reactor compartments of disposed NSs requires the solution of a large number of problems and the fundamental requirements on this work are outlined

  10. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  11. The Texas approach to the management of low-level radioactive waste after 1992

    International Nuclear Information System (INIS)

    Jacobi, L.R.

    1992-01-01

    By 1993, Texas licensees will be producing 52000 ft 3 of low level radioactive waste (LLRW) containing 11000 Ci of Radioactivity. The three operating pressurized water reactors will produce 63% of the waste volume and greater than 90% of the radioactivity. While the majority of the waste is solid LLRW, some of it, such as liquid scintillation vials and bulk liquids from hospitals, universities, and research facilities, is mixed waste. Most of this waste can be shipped out of state and incinerated, but 60 ft 3 of lead contaminated waste from nuclear power plants and other industrial plants requires land disposal

  12. Deep-well injection of liquid radioactive waste in Russia. Present situation

    International Nuclear Information System (INIS)

    Rybalchenko, A.

    1998-01-01

    At present there are 3 facilities (polygons) for the deep-well injection of liquid radioactive waste in Russia, all of which were constructed in the mid60's. These facilities are operating successfully, and activities have started in preparation for decommissioning. Liquid radioactive waste is injected into deep porous horizons which act as 'collector-layers', isolated from the surface and from groundwaters by a relatively thick sequence of rock of low permeability. The collector-layers (also collector-horizons) contain salt waters or fresh waters of no practical application, lying beneath the main horizons containing potable waters. Construction of facilities for the deep-well injection of liquid radioactive waste was preceded by geological surveys and investigations which were able to substantiate the feasibility and safety of radioactive waste injection, and to obtain initial data for facility design. Operation of the facilities was accompanied by monitoring which confirmed that the main safety requirement was satisfied i.e. localisation of radioactive waste within specified boundaries of the geologic medium. The opinion of most specialists in the atomic power industry in Russia favours deep-well injection as a solution to the problem of liquid radioactive waste management; during the period of active operation of defence facilities (atomic power industry of the former U.S.S.R.), this disposal method prevented the impact of radioactive waste on man and the environment. The experience accumulated concerning the injection of liquid radioactive waste in Russia is of interest to scientists and engineers engaged in problems of protection and remediation of the environment in the vicinity of nuclear industry facilities; an example of the utilisation of the deep subsurface for solidified radioactive waste and the disposal of different types of nuclear materials. Information on the scientific principles and background for the development of facilities for the injection

  13. Development of threshold guidance: National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1986-09-01

    The current study has been conducted to provide DOE with a technical basis for the development of threshold guidance. The objective of the study was to develop the necessary background information and recommendations to assist the DOE in implementing the threshold limit concept for the disposal of DOE wastes at DOE facilities. The nature of low-level radioactive waste (LLW) varies greatly in both form and radionuclide content. While some low-level waste streams can contain substantial quantities of radioactive constituents, a potentially significant fraction of low-level waste is contaminated either very slightly or not at all. There is a strong likelihood that managing wastes with extremely low levels of radioactivity as nonradioactive waste would pose no significant safety problems and could result in substantial cost savings relative to its handling as LLW. Since all materials, including waste products, contain some radioactivity, it is necessary to distinguish between those wastes that would require disposal as LLW and those that have sufficiently low levels of radiological content to be managed according to their nonradiological properties. 131 refs., 9 figs., 24 tabs

  14. Draft of regulations for road transport of radioactive wastes

    International Nuclear Information System (INIS)

    Gese, J.; Zizka, B.

    1979-06-01

    A draft regulation is presented for the transport of solid and solidified radioactive wastes from nuclear power plants. The draft takes into consideration dosimetric, safety and fire-fighting directives, transport organization, anticipated amounts of radioactive wastes, characteristics of containers, maintenance of vehicles, and equipment of vehicles and personnel. The draft is based on the provisional regulations governing the transport on public roads issued in 1973, valid directives, decrees, acts and standards, and complies with 1973 IAEA requirements. (J.P.)

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  16. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  17. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  18. Radioactive waste management regulatory framework in Mexico

    International Nuclear Information System (INIS)

    Barcenas, M.; Mejia, M.

    2001-01-01

    The purpose of this paper is to present an overview of the current regulatory framework concerning the radioactive waste management in Mexico. It is intended to show regulatory historical antecedents, the legal responsibilities assigned to institutions involved in the radioactive waste management, the sources of radioactive waste, and the development and preparation of national standards for fulfilling the legal framework for low level radioactive waste. It is at present the most important matter to be resolved. (author)

  19. Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste

    International Nuclear Information System (INIS)

    Homola, J.

    2003-01-01

    This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia

  20. Current issues and regulatory infrastructure aspects on radioactive waste management in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    2002-01-01

    The nuclear facilities that exist throughout Romania perform a broad range of missions from research to nuclear materials production to radioactive waste management, and to deactivation and decommissioning. As a consequence, there is a broad array of external regulations and internal requirements that potentially applies to a facility or activity. Therefore, the management of radioactive waste occurs within a larger context of managing hazards, both radiological and industrial, at these facilities. At the same time, concern for upgrading existing facilities used for radioactive waste management, as called for in Article 12, fits into a larger framework of safety management. The primary objective of the Romanian Nuclear Regulatory Body-CNCAN on legislation and regulatory infrastructure for the safety of radioactive waste management is to protect human health and the environment now and in the future. It is unanimously recognized that a well developed regulated system for the management and disposal of radioactive waste is a prerequisite for both public and market acceptance of nuclear energy. It is to underline that the continuing internationalization of the nuclear industry following terrorist attacks of 11 September 2001 stresses the need for national legislation and regulatory infrastructure to be based on internationally endorsed principles and safety standards. The paper presents some aspects of the Romanian experience on the national legislative and regulatory system related to the followings aspects of the safety aspects of radioactive waste management: definition of responsibilities; nuclear and radiation safety requirements; siting and licensing procedures; regulatory functions; international co-operation and coherence on strategies and criteria in the area of safety of radioactive waste management. Finally, prescriptive and goal oriented national as well international regimes in the field of the safety of radioactive waste management are briefly commented

  1. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  2. Performance assessment for underground radioactive waste disposal systems

    International Nuclear Information System (INIS)

    1985-01-01

    A waste disposal system comprises a number of subsystems and components. The performance of most systems can be demonstrated only indirectly because of the long period that would be required to test them. This report gives special attention to performance assessment of subsystems within the total waste disposal system, and is an extension of an IAEA report on Safety Assessment for the Underground Disposal of Radioactive Wastes

  3. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Motojima, Kenji; Kawamura, Fumio.

    1981-01-01

    Purpose: To increase the efficiency of removing radioactive cesium from radioactive liquid waste by employing zeolite affixed to metallic compound ferrocyanide as an adsorbent. Method: Regenerated liquid waste of a reactor condensation desalting unit, floor drain and so forth are collected through respective supply tubes to a liquid waste tank, and the liquid waste is fed by a pump to a column filled with zeolite containing a metallic compound ferrocyanide, such as with copper, zinc, manganese, iron, cobalt, nickel or the like. The liquid waste from which radioactive cesium is removed is dried and pelletized by volume reducing and solidifying means. (Yoshino, Y.)

  4. Historic low-level radioactive waste federal policies, programs and oversight

    International Nuclear Information System (INIS)

    Blanchette, M.; Kenney, J.; Zelmer, B.

    2011-01-01

    'Full text:' The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radio-isotopes today, there has been a steady accumulation of waste products. Historic waste is low-level radioactive waste for which the federal government has accepted responsibility for long-term management. This paper will outline the policy framework used to govern institutional and financial arrangements for the disposal of radioactive waste by waste producers and owners and the major radioactive projects in which the Government of Canada is currently involved. It will provide an overview of the organizations established for the management of historic radioactive waste and NRCan's oversight role. Finally, an overview of the historic waste program activities managed on behalf of the federal government through these organizations in the Port Hope area, the Greater Toronto Area, in Fort McMurray, Alberta and along the Northern Transportation Route is provided. Canada's Policy Framework for Radioactive Waste, sets out principles that govern the institutional and financial arrangements for disposal of radioactive waste by waste producers and owners. According to the Policy Framework: The federal government will ensure that radioactive waste disposal is carried out in a safe, environmentally sound, comprehensive, cost-effective and integrated manner; The federal government has the responsibility to develop policy, to regulate, and to oversee producers and owners; and, The waste producers and owners are responsible, in accordance with the principle of 'polluter pays', for the funding, organization, management and operation of disposal and other facilities required for their wastes. Arrangements may be different for nuclear fuel waste, low-level radioactive waste and

  5. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  6. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  7. International Education Alliance for education in Radioactive Waste Management

    International Nuclear Information System (INIS)

    King, G.P.

    1993-01-01

    Sharing information among countries about technologies being used or planned for spent nuclear fuel and high-level radioactive waste management, storage, and disposal is important toward building national confidence and trust within nations for proceeding with implementation of long-term solutions to waste management. To facilitate the effective sharing, specific mechanisms or vehicles are required. To this end, in 1992, the International Education Alliance for Education in Radioactive Waste Management was established. This paper discusses the purpose, objectives, plans, activities, and benefits of this newly-formed first-of-a-kind international education alliance in this field

  8. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  9. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  10. Method of transporting radioactive slurry-like wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Yusa, H; Sugimoto, Y

    1975-06-30

    The object is to prevent blockage of a transporting tube to positively and effectively transport radioactive slurry wastes. A method of transporting radioactive slurry-like wastes produced in an atomic power plant, wherein liquid wastes produced in the power plant are diluted to form into a driving liquid, by which said radioactive slurry-like wastes are transported within the pipe, and said driving liquid is recovered as the liquid waste.

  11. National Inventory of Radioactive Wastes, Edition 1998

    International Nuclear Information System (INIS)

    Pallard, Bernard; Vervialle, Jean Pierre; Voizard, Patrice

    1998-01-01

    The National Radioactive Waste Inventory is an annual report of French National Agency for Radioactive Waste Management (ANDRA). The issue on 1998 has the following content: 1. General presentation; 2. Location of radioactive wastes in France; 3. Regional file catalogue; 4. Address directory; 5. Annexes. The inventory establishes the producer and owner categories, the French overseas waste sources, location of pollutant sides, spread wastes (hospitals, universities and industrial sector), railways terminals

  12. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  13. De minimis concepts in radioactive waste disposal. Considerations in defining de minimis quantities of solid radioactive waste for uncontrolled disposal by incineration and landfill

    International Nuclear Information System (INIS)

    1983-02-01

    This document deals with recommendations addressed to those national authorities wishing to dispose of low level radioactive waste into the terrestrial environment, on how de minimis levels or quantities can be derived. The only radioactive materials covered here are declared solid radioactive wastes of very low activity which are controlled up to the point where deliberate control is lost, or wastes below a level that requires regulatory control. As regards the disposal sites, these wastes are not intended to be disposed of in fully controlled disposal facilities, such as repositories located in shallow land, rock cavities, etc. On the other hand, it is considered that these materials should not be disposed of in any place, but should be handled like other municipal wastes. Among the different techniques available, only two are considered in this document, namely a sanitary landfill facility, and an urban incineration plant

  14. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  15. World ocean and radioactive wastes

    International Nuclear Information System (INIS)

    Kiknadze, O.E.; Sivintsev, Yu.V.

    2000-01-01

    The radioecological situation that took shape in the Arctic, North Atlantic Ocean and Far East regions as a result of radioactive waste marine disposal was assessed. Accurate account of radionuclides formation and decay in submerged water-water reactors of nuclear submarines suggests that total activity of radioactive waste disposed near the Novaya Zemlya amounted to 107 kCi by the end of 1999. Activity of radioactive waste disposed in the North Atlantic currently is not in excess of 430 kCi. It is pointed out that the Far East region heads the list in terms of total activity disposed (529 kCi). Effective individual dose for critical groups of population in the Arctic, North Atlantic and Far East regions was determined. The conclusion was made that there is no detrimental effect of the radioactive waste disposed on radioecological situation in the relevant areas [ru

  16. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  17. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  18. JET experience on managing radioactive waste and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Stephen, E-mail: Stephen.reynolds@ccfe.ac.uk [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Newman, Mark; Coombs, Dave; Witts, David [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • We describe the current waste management structure and processes in place for managing radioactive waste generated as part of JET operations. • We detail the key lessons to be learnt for future fusion experiments and specifically ITER. • Early involvement of specialist waste management advisors and representatives are recommended. • Implementation of a complete integrated electronic waste tracking system will streamline the waste management process. - Abstract: The reduced radiotoxicity and half-life of radioactive waste arisings from nuclear fusion reactors as compared to current fission reactors is one of the key benefits of nuclear fusion. As a result of the research programme at the Joint European Torus (JET), significant experience on the management of radioactive waste has been gained which will be of benefit to ITER and the nuclear fusion community. The successful management of radioactive waste is dependent on accurate and efficient tracking and characterisation of waste streams. To accomplish this all items at JET which are removed from radiological areas are identified and pre-characterised, by recording the radiological history, before being removed from or moved between radiological areas. This system ensures a history of each item is available when it is finally consigned as radioactive waste and also allows detailed forecasting of future arisings. All radioactive waste generated as part of JET operations is transferred to dedicated, on-site, handling facilities for further sorting, sampling and final streaming for off-site disposal. Tritium extraction techniques including leaching, combustion and thermal treatment followed by liquid scintillation counting are used to determine tritium content. Recent changes to government legislation and Culham specific disposal permit conditions have allowed CCFE to adopt additional disposal routes for fusion wastes requiring new treatment and analysis techniques. Facilities currently under

  19. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  20. Regulatory aspects of underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    It is a basic principle of radioactive waste management in the U.K. to comply with the system of dose limitations laid down by the International Commission on Radiological Protection. The Radioactive Substances Act, 1960, prohibits the disposal of radioactive waste on or from all premises (except those belonging to the Crown) unless authorised by the appropriate authority. Consultation, as necessary, with local and public authorities is provided for. Under the Nuclear Installations Act, 1965, nuclear installations, with some exceptions, require to be licensed by the Health and safety executive. Installations for the disposal of radioactive waste are not, as such, prescribed as nuclear installations under the Nuclear Installations Act, 1965 (and thereby governed by the licensing procedure under the Act), but they may be, if they involve the storage of bulk quantities of radioactive waste. The Secretary of State for the Environment, together with the Secretaries of State for Scotland and Wales are responsible for the development of a nuclear waste management policy, helped in this task by the newly-formed Radioactive Waste Management Advisory Committee. (NEA) [fr

  1. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  2. A method for conditioning radioactive-wastes

    International Nuclear Information System (INIS)

    Cuaz, Daniel; Thiery, Daniel.

    1974-01-01

    Description is given of a method for conditioning radioactive-wastes, according to the main patent. This method is characterized in that the radioactive wastes are constituted by radio-elements incorporated with filtration and/or floculation promoters. This can be applied to radioactive effluent processing [fr

  3. Status and prospects of radioactive waste management in France

    International Nuclear Information System (INIS)

    Gonnot, F.M.

    2012-01-01

    The chairman of ANDRA (French agency for the management of radioactive waste) presents the activities of the agency in the framework of the 2006 Planning Act that took in principle the decision to dispose of the high-level and the long-lived radioactive waste in a geological repository (Cigeo project). One of the important aspects of the Cigeo project is the requirement by law, to study the reversibility and therefore to demonstrate the capability to retrieve already disposed waste packages. In March 2010 the Government accepted the 30 km 2 area proposed by ANDRA for the location of the future repository. At present, ANDRA teams are fully busy on 2 fronts: first in preparing the license application for Cigeo to be submitted in 2015, and secondly in preparing the industrial phase of the Cigeo project. Low-level and intermediate-level radioactive waste are disposed of in surface facilities. (A.C.)

  4. Radioactive waste management services. Safety and technical advisory services available from the IAEA

    International Nuclear Information System (INIS)

    2000-09-01

    This brochure provides updated information about the services and assistance the International Atomic Energy Agency (IAEA) is able to render, upon request by Member States, in the area of radioactive waste management. The ultimate objective is to ensure that all wastes are managed safely and in a way which protects both individual and the environment, now and in the future. The IAEA is the sole global international organization with the statutory authority to establish safety standards for the protection of health against exposure to ionizing radiation. These include safety standards for radioactive waste management. A comprehensive set of such standards is being established, and continuously updated, under the Agency's aegis, which lay out the requirements for the safe management of all types of radioactive waste. The Agency has a further statutory obligation ro provide for the application of these standards at the request of States. The safety of radioactive waste management is not attainable through safety standards alone but requires special technology. An additional function of the IAEA is thus to foster the transfer of technology among States, including the specific technology needed to ensure safe radioactive waste management

  5. Defining greater-than-class-C low-level radioactive waste

    International Nuclear Information System (INIS)

    Knecht, M.A.; Oztunali, O.I.

    1986-01-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) was signed by President Reagan on January 15, 1986. This act requires the federal government to be responsible for the disposal of greater-than-class-C low-level radioactive waste (LLRW) that is generated commercially by state agencies and by federal entities (other than waste generated by atomic weapons research, development, or testing, or by decommissioning of vessels of the nuclear navy). To plan for disposal, the federal government will require estimates of the volume of waste involved and characterization of this waste. A clear definition of greater-than-class-C LLRW is the first step in determining what wastes will be included in the waste to be received by the federal government. This definition will influence major policy decisions to be made for management of such waste. The purpose of this paper is to examine the existing information on greater-than-class-C LLRW in view of the current definition of such waste and potential changes in this definition - for example, an upper limit on the concentrations of radionuclides in LLRW. The paper identifies further information needs to develop a clear definition of such waste for use in federal planning for acceptance of responsibility for disposal of such waste

  6. Radioactive waste management policy in the UK of best practicable environmental options for waste disposal and storage

    International Nuclear Information System (INIS)

    Johnson, P.D.; Feates, F.S.

    1986-01-01

    The organisations which produce radioactive waste carry the direct responsibility for safe and effective management of the wastes and for meeting the costs. UK Nirex Ltd., the Nuclear Industry Radioactive Waste Executive, has been set up to develop and operate new disposal facilities. Individual producers of radioactive waste undertake research related to the treatment of their own wastes, and UK Nirex Ltd. commissions research related to the disposal facilities it wishes to develop. Whatever new disposal facilities are developed and used, UK Nirex Ltd. will have to show that any proposed facilities comply with the principles for assessment of proposals for the protection of the human environment issued by the Government Authorising Departments in 1984, and which incorporate basic radiological safety requirements

  7. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  8. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Takahashi, Toshihiko; Maruko, Morihisa; Takamura, Yoshiyuki.

    1981-01-01

    Purpose: To effectively separate radioactive claddings from the slurry of wasted ion exchange resins containing radioactive claddings. Method: Wasted ion exchange resins having radioactive claddings (fine particles of iron oxides or hydroxide adhered with radioactive cobalt) are introduced into a clad separation tank. Sulfuric acid or sodium hydroxide is introduced to the separation tank to adjust the pH value to 3 - 6. Then, sodium lauryl sulfate is added for capturing claddings and airs are blown from an air supply nozzle to generate air bubbles. The claddings are detached from the ion exchange resins and adhered to the air bubbles. The air bubbles adhered with the claddings float up to the surface of the liquid wastes and then forced out of the separation tank. (Ikeda, J.)

  9. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  10. Radioactive classification of mixed waste -- The need for uniformity

    International Nuclear Information System (INIS)

    Koch, J.D.

    1995-01-01

    In July of 1994, many generators of radioactive and mixed wastes found themselves without a means of disposing of their wastes. This has led these generators to thoroughly search the regulations for guidelines to determine at what level something becomes radioactive. Unfortunately, each regulatory agency, EPA, OSHA, NRC, DOT and DOE have their own requirements such that there are no uniform guidelines to assist in making this determination. Subcontractors to the DOE find themselves further frustrated with each remediation site determining radiation levels and commercial treatment, storage and disposal facilities doing the same. This paper examines the need for the uniform classification of radioactive material. It will review past attempts of regulatory agencies to set minimum levels and the current regulatory climate. The paper will also discuss the experience of Quanterra Environmental Services in dealing with the changes in disposal options due to the closure of low-level radioactive disposal facilities to outside compact states, and the impact of the different regulatory requirements

  11. Radioactive waste disposal. Facts, problems and responsible action

    International Nuclear Information System (INIS)

    Finckh, E.; Seitz, M.

    1994-01-01

    In a first part, natural science and technology aspects of waste management are outlined: basic concepts of radioactivity; properties, detection and primary effects of radioactive radiation; biological effect of radioactivity and radiation; general geological bases; composition of spent fuel elements; interim storage and transport; reprocessing of spent fuels; classification and treatment of radioactive wastes; emplacement possibilities for radioactive wastes; possible ways of radionuclides from the repository back into the biosphere; comparative consideration of the risks involved in nuclear waste management. The second part of the paper deals with ethical and theological aspects of radioactive waste management. (orig./HP) [de

  12. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  13. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  14. Radioactive lightning rods waste treatment

    International Nuclear Information System (INIS)

    Vicente, Roberto; Dellamano, Jose C.; Hiromoto, Goro

    2008-01-01

    Full text: In this paper, we present alternative processes that could be adopted for the management of radioactive waste that arises from the replacement of lightning rods with attached Americium-241 sources. Lightning protectors, with Americium-241 sources attached to the air terminals, were manufactured in Brazil until 1989, when the regulatory authority overthrew the license for fabrication, commerce, and installation of radioactive lightning rods. It is estimated that, during the license period, about 75,000 such devices were set up in public, commercial and industrial buildings, including houses and schools. However, the policy of CNEN in regard to the replacement of the installed radioactive rods, has been to leave the decision to municipal governments under local building regulations, requiring only that the replaced rods be sent immediately to one of its research institutes to be treated as radioactive waste. As a consequence, the program of replacement proceeds in a low pace and until now only about twenty thousand rods have reached the waste treatment facilities The process of management that was adopted is based primarily on the assumption that the Am-241 sources will be disposed of as radioactive sealed sources, probably in a deep borehole repository. The process can be described broadly by the following steps: a) Receive and put the lightning rods in initial storage; b) Disassemble the rods and pull out the sources; c) Decontaminate and release the metal parts to metal recycling; d) Store the sources in intermediate storage; e) Package the sources in final disposal packages; and f) Send the sources for final disposal. Up to now, the disassembled devices gave rise to about 90,000 sources which are kept in storage while the design of the final disposal package is in progress. (author)

  15. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  16. Shallow disposal of radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A review and evaluation of computer codes capable of simulating the various processes that are instrumental in determining the dose rate to individuals resulting from the shallow disposal of radioactive waste was conducted. Possible pathways of contamination, as well as the mechanisms controlling radionuclide movement along these pathways have been identified. Potential transport pathways include the unsaturated and saturated ground water systems, surface water bodies, atmospheric transport and movement (and accumulation) in the food chain. Contributions to dose may occur as a result of ingestion of contaminated water and food, inhalation of contaminated air and immersion in contaminated air/water. Specific recommendations were developed regarding the selection and modification of a model to meet the needs associated with the prediction of dose rates to individuals as a consequence of shallow radioactive waste disposal. Specific technical requirements with regards to risk, sensitivity and uncertainty analyses have been addressed

  17. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  18. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  19. [Problems of safety regulation under radioactive waste management in Russia].

    Science.gov (United States)

    Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

    2012-01-01

    Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.

  20. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  1. Preliminary waste acceptance requirements - Konrad repository project

    International Nuclear Information System (INIS)

    Brennecke, P.W.; Warnecke, E.H.

    1991-01-01

    In Germany, the planned Konrad repository is proposed for the disposal of all types of radioactive wastes whose thermal influence upon the host rock is negligible. The Bundesamt fuer Strahlenschutz has established Preliminary Waste Acceptance Requirements (as of April 1990) for this facility. The respective requirements were developed on the basis of the results of site-specific safety assessments. They include general requirements on the waste packages to be disposed of as well as more specific requirements on the waste forms, the packaging and the radionuclide inventory per waste package. In addition, the delivery of waste packages was regulated. An outline of the structure and the elements of the Preliminary Waste Acceptance Requirements of April 1990 is given including comments on their legal status. (Author)

  2. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  3. Physical System Requirements: Transport Waste

    International Nuclear Information System (INIS)

    1992-04-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Director subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. The objective of this document is to establish the essential functions, requirements, interfaces, and system architecture for the Transport Waste mission. Based upon the Nuclear Waste Policy Act, the mission of the Waste Transportation System is to transport SNF and/or HLW from the purchaser's/producer's facilities to, and between, NWMS facilities in a manner that protects the health and safety of the public and of workers and the quality of the environment makes effective use of financial and other resources, and to the fullest extent possible uses the private sector

  4. Development of a working set of waste package performance criteria for deepsea disposal of low-level radioactive waste. Final report

    International Nuclear Information System (INIS)

    Columbo, P.; Fuhrmann, M.; Neilson, R.M. Jr; Sailor, V.L.

    1982-11-01

    The United States ocean dumping regulations developed pursuant to PL92-532, the Marine Protection, Research, and Sanctuaries Act of 1972, as amended, provide for a general policy of isolation and containment of low-level radioactive waste after disposal into the ocean. In order to determine whether any particular waste packaging system is adequate to meet this general requirement, it is necessary to establish a set of performance criteria against which to evaluate a particular packaging system. These performance criteria must present requirements for the behavior of the waste in combination with its immobilization agent and outer container in a deepsea environment. This report presents a working set of waste package performance criteria, and includes a glossary of terms, characteristics of low-level radioactive waste, radioisotopes of importance in low-level radioactive waste, and a summary of domestic and international regulations which control the ocean disposal of these wastes

  5. Radioactive waste management for a radiologically contaminated hospitalized patient

    International Nuclear Information System (INIS)

    Pina Jomir, G.; Michel, X.; Lecompte, Y.; Chianea, N.; Cazoulat, A.

    2015-01-01

    Radioactive waste management in the post-accidental phase following caring for a radiologically contaminated patient in a hospital decontamination facility must be anticipated at a local level to be truly efficient, as the volume of waste could be substantial. This management must comply with the principles set out for radioactive as well as medical waste. The first step involves identification of radiologically contaminated waste based on radioactivity measurement for volume reduction. Then, the management depends on the longest radioactive half-life of contaminative radionuclides. For a half-life inferior to 100 days, wastes are stored for their radioactivity to decay for at least 10 periods before disposal like conventional medical waste. Long-lived radioactive waste management implies treatment of liquid waste and special handling for sorting and packaging before final elimination at the French National Agency for Radioactive Waste Management (ANDRA). Following this, highly specialized waste management skills, financial responsibility issues and detention of non-medical radioactive sources are questions raised by hospital radioactive waste management in the post-accidental phase. (authors)

  6. Method of processing radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kikuchi, M; Funabashi, K; Yusa, H; Horiuchi, S

    1978-12-21

    Purpose: To decrease the volume of radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid. Method: The concentration ratio of sodium hydroxide to boric acid by weight in radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid is adjusted in the range of 0.28 - 0.4 by means of a pH detector and a sodium concentration detector. Thereafter, the radioactive liquid wastes are dried into powder and then discharged.

  7. Ruthenium separation device from radioactive waste

    International Nuclear Information System (INIS)

    Ayabe, Osao.

    1988-01-01

    Purpose: To efficiently oxidize ruthenium in radioactive wastes and evaporize ruthenium tetraoxide after oxidization thereof, thereby improve the separation and recovery rate. Constitution: The device comprises an oxidization vessel for supplying an oxidizing agent into radioactive wastes to oxidize ruthenium in the wastes into ruthenium tetraoxide, and a distillation vessel for introducing radioactive wastes after oxidization, distillating under heating ruthenium tetraoxide leached into the wastes and evaporizing ruthenium tetraoxide. By dividing the device into the oxidizing vessel and the distillation vessel, the oxidizing treatment and the distilling treatment can individually be operated optimally to improve the separation and recovery rate of ruthenium. (Takahashi, M.)

  8. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  9. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  10. Radioactive wastes. The management of nuclear wastes. Waste workshop, first half-year - Year 2013-2014

    International Nuclear Information System (INIS)

    Esteoulle, Lucie; Rozwadowski, Elodie; Duverger, Clara

    2014-01-01

    The first part of this report first presents radioactive wastes with their definition, and their classification (radioactivity level, radioactive half-life). It addresses the issue of waste storage by presenting the different types of storage used since the 1950's (offshore storage, surface warehousing, storage in deep geological layer), and by discussing the multi-barrier approach used for storage safety. The authors then present the French strategy which is defined in the PNGMDR to develop new management modes on the long term, to improve existing management modes, and to take important events which occurred between 2010 and 2012 into account. They also briefly present the Cigeo project (industrial centre of geological storage), and evoke controversies related to the decision to locate this project in Bure (existence of geological cracks and defects, stability and tightness of the clay layer, geothermal potential of the region, economic cost). The second part proposes an overview of the issue of nuclear waste management. The author recalls the definition of a radioactive waste, indicates the origins of these wastes and their classification. She proposes a history of the radioactive waste: discovery of radioactivity, military industrialisation and awareness of the dangerousness of radioactive wastes, nuclear wastes and recent incidents (West Valley, La Hague, Windscale). An overview of policies of nuclear waste management is given: immersion of radioactive wastes, major accidental releases, solutions on the short term and on the medium term

  11. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    DOTSON, PATRICK WELLS; GALLOWAY, ROBERT B.; JOHNSON JR, CARL EDWARD

    1999-01-01

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  12. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  13. Radioactive waste treatment

    International Nuclear Information System (INIS)

    Alter, U.

    1988-01-01

    For the Federal Government the safe disposal of waste from nuclear power plants constitutes the precondition for their further operation. The events in the year 1987 about the conditioning and transport of low activity waste and medium activity waste made it clear that it was necessary to intensify state control and to examine the structures in the field of waste disposal. A concept for the control of radioactive waste with negligible heat development (LAW) from nuclear installations is presented. (DG) [de

  14. Treatment of low- and intermediate-level liquid radioactive wastes

    International Nuclear Information System (INIS)

    1984-01-01

    This report aims at giving the reader details of the experience gained in the treatment of both low- and intermediate-level radioactive liquid wastes. The treatment comprises those operations to remove radioactivity from the wastes and those that change only its chemical composition, so as to permit its discharge. Considerable experience has been accumulated in the satisfactory treatment of such wastes. Although there are no universally accepted definitions for low- and intermediate-level liquid radioactive wastes, the IAEA classification (see section 3.2) is used in this report. The two categories differ from one another in the fact that for low-level liquids the actual radiation does not require shielding during normal handling of the wastes. Liquid wastes which are not considered in this report are those from mining and milling operations and the high-level liquid wastes resulting from fuel reprocessing. These are referred to in separate IAEA reports. Likewise, wastes from decommissioning operations are not within the scope of this report. Apart from the description of existing methods and facilities, this report is intended to provide advice to the reader for the selection of appropriate solutions to waste management problems. In addition, new and promising techniques which are either being investigated or being considered for the future are discussed

  15. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  16. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  17. R and D projects for disposal concepts for special radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    Updated requirements for the elaboration of reference methods or back-up methods for the conditioning and ultimate storage of special radioactive wastes are worked out. Subsequently, the present state-of-art and ongoing studies are analyzed. Special radioactive wastes collected in collecting points, or produced in medicine and industry are included in the paper. With special unclear wastes, the emphasis is on wastes from LWR-type reactors and those from the unclear fuel cycle. The PTB data base is to by complemented by the characterization of waste compounds with volatile nuclides. 16 specialist contributions have been included in the data base. (HP) [de

  18. Radioactive Waste and Clean-up Division

    International Nuclear Information System (INIS)

    Collard, G.

    2001-01-01

    The main objectives of the Radioactive Waste and Clean-up division of SCK-CEN are outlined. The division's programme consists of research, development and demonstration projects and aims to contribute to the objectives of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation of radioactively contaminated sites

  19. Evaluation of low and intermediate level radioactive solidified waste forms and packages

    International Nuclear Information System (INIS)

    1990-10-01

    Evaluation of low and intermediate level radioactive waste forms and packages with respect to compliance with quality and safety requirements for transport, interim storage and disposal has become a very important part of the radioactive waste management strategy in many countries. The evaluation of waste forms and packages provides precise basic data for regulatory bodies to establish safety requirements, and implement quality control and quality assurance procedures for radioactive waste management programmes. The requirements depend very much upon the disposal option selected, treatment technology used, waste form characteristics, package quality and other factors. The regulatory requirements can also influence the methodology of waste form/package evaluation together with selection and analysis of data for quality control and safety assurance. A coordinated research programme started at the end of 1985 and brought together 12 participants from 11 countries. The results of the programme and each particular project were discussed at three Research Coordination Meetings held in Cairo, Egypt, in May, 1986; in Beijing, China, in April, 1998; and at Harwell Laboratory, United Kingdom, in November, 1989. This document summarises the salient features and results achieved during the four year investigation and a recommendation for future work in this area. Refs, figs and tabs

  20. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)