WorldWideScience

Sample records for radioactive waste geological

  1. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  2. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  3. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  4. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  5. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  6. Geological problems in radioactive waste isolation

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, ''Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately

  7. Geological problems in radioactive waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. (ed.)

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  8. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  9. Geologic disposal of radioactive waste, 1983

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-10-01

    Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10 -4 Sv/y. 50 references, 11 figures, 6 tables

  10. Radioactive waste disposal process geological structure for the waste disposal

    International Nuclear Information System (INIS)

    Courtois, G.; Jaouen, C.

    1983-01-01

    The process described here consists to carry out the two phases of storage operation (intermediate and definitive) of radioactive wastes (especially the vitrified ones) in a geological dispositif (horizontal shafts) at an adequate deepness but suitable for a natural convection ventilation with fresh air from the land surface and moved only with the calorific heat released by the burried radioactive wastes when the radioactive decay has reached the adequate level, the shafts are totally and definitely occluded [fr

  11. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  12. Does geology help in the final disposal of radioactive wastes?

    International Nuclear Information System (INIS)

    Schaer, U.

    1987-01-01

    High-level radioactive wastes have to be stored safely for thousands of years in deep geological formations. The question discussed is whether or not a geological prognosis over this span of time is possible. The main problem is groundwater

  13. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  14. Radioactive waste disposal in deep geologic deposits. Associated research problems

    International Nuclear Information System (INIS)

    Rousset, G.

    1992-01-01

    This paper describes the research associated problems for radioactive waste disposal in deep geologic deposits such granites, clays or salt deposits. After a brief description of the underground disposal, the author studies the rheology of sedimentary media and proposes rheological models applied to radioactive wastes repositories. Waste-rock interactions, particularly thermal effects and temperature distribution versus time. 17 refs., 14 figs

  15. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  16. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  17. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  18. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1977-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the Southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory

  19. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1978-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory. 31 figures

  20. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  1. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  2. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A study has been made of the requirements and design features for containers to isolate vitrified heat generating radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible. (author)

  3. Geological Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA's Statute authorizes the Agency to 'establish or adopt standards of safety for protection of health and minimization of danger to life and property' - standards that the IAEA must use in its own operations, and which States can apply by means of their regulatory provisions for nuclear and radiation safety. The IAEA does this in consultation with the competent organs of the United Nations and with the specialized agencies concerned. A comprehensive set of high quality standards under regular review is a key element of a stable and sustainable global safety regime, as is the IAEA's assistance in their application. The IAEA commenced its safety standards programme in 1958. The emphasis placed on quality, fitness for purpose and continuous improvement has led to the widespread use of the IAEA standards throughout the world. The Safety Standards Series now includes unified Fundamental Safety Principles, which represent an international consensus on what must constitute a high level of protection and safety. With the strong support of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its standards. Standards are only effective if they are properly applied in practice. The IAEA's safety services encompass design, siting and engineering safety, operational safety, radiation safety, safe transport of radioactive material and safe management of radioactive waste, as well as governmental organization, regulatory matters and safety culture in organizations. These safety services assist Member States in the application of the standards and enable valuable experience and insights to be shared. Regulating safety is a national responsibility, and many States have decided to adopt the IAEA's standards for use in their national regulations. For parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions

  4. Risk analysis of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Girardi, F.; de Marsily, G.; Weber, J.

    1980-01-01

    The problems of risk analysis of geological disposal of radioactive waste are briefly summarized. Several characteristics, such as the very long time span considered, make it rather unique among the problems of modern society. The safety of nuclear waste disposal in geological formations is based on several barriers, natural and man-made, which prevent disposed radionuclides from reaching the biosphere. They include a) the physico-chemical form of conditioned waste, b) the waste container, c) the geological isolation, d) buffering and backfilling materials, radionuclide retention in the geosphere and e) environmental dilution and isolation processes. The knowledge available on each barrier and its modelling is reviewed. Specific disposal strategies in clay, granite and salt formations are considered, outlining the performance of the barriers in each particular strategy, and results obtained in preliminary evaluations

  5. Geological setting of the Novi Han radioactive waste storage site

    International Nuclear Information System (INIS)

    Evstatiev, D.; Kozhukharov, D.

    2000-01-01

    The geo environment in the area of the only operating radioactive waste repository in Bulgaria has been analysed. The repository is intended for storage of all kinds of low and medium level radioactive wastes with the exception of these from nuclear power production. The performed investigations prove that the 30 years of operation have not caused pollution of the geo environment. Meanwhile the existing complex geological settings does not provide prerequisites to rely on the natural geological safety barriers. The studies performed so far are considered to be incomplete since they do not provide the necessary information for the development of a model describing the radionuclide migration as well as for understanding of the neotectonic circumstances. The tasks of the future activities are described in order to obtain more detailed information about the geology in the area. (authors)

  6. A consideration of retrievability in geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sasaki, Noriaki

    2001-12-01

    Geologic disposal cannot be implemented based only on the consensus of the engaged technical community, and needs the wide social agreement and confidence for it. This is now a common understanding in many countries. Under this kind of recognition, the concept of retrievability in geologic disposal of radioactive wastes has been rapidly interested in recent years and has being discussed in several European countries. For example, EC has cooperated the concerted action on the retrievability of long-lived radioactive waste with the joining of nine countries, and the expert group on disposal concepts for radioactive waste (EKRA) set up by the Swiss government has presented its findings on the new concept of the long-lived radioactive waste management considering the retrievability. The OECD/NEA has also discussed on this issue and published the documents. There are some countries where the legislation requires the retrievability. This paper briefly summarizes the important findings and recommendations on the concept of retrievability, as the results of review of some interesting documents from European countries, for the purpose of reflecting to the research and development of geologic disposal in Japan. (author)

  7. Geological problems in radioactive waste isolation - second worldwide review

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. [ed.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  8. Geological problems in radioactive waste isolation - second worldwide review

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996

  9. Problems of solidificated radioactive wastes burial into deep geological structures

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Leonov, E.A.; Romadin, N.M.; Shishcits, I.Yu.

    1981-01-01

    Perspectives are noted of the radioactive wastes burial into deep geopogical structures. For these purposes it has been proposed to investigate severap types of rocks, which do not have intensive gas-generation when beeng heated; salt deposits and clays. Basing on the results of calculations it has been shown that the dimentions of zones of substantial deformations in the case of the high-level radioactive wastes burial to not exceed several hundreds of meters. Conclusion is made that in the case of choosing the proper geotogicat structure for burial and ir the case of inclusion in the structure of the burial site a zone of sanitary alienation, it is possible to isolate wastes safely for all the period of preservation. Preliminary demands have been formulated to geological structures and underground burial sites. As main tasks for optimizatiop of burial sited are considered: determination of necessary types, number and reliability of barriers which ensure isolation of wastes; to make prognoses of the stressed and deformed state of a geological massif on the influence of thermal field; investigation in changes of chemical and physical properties of rocks under heat, radiative and chemical influence; estimation of possible diffusion of radioactivity in a mountin massif; development of a rational mining-thechnological schemes of the burual of wastes of different types. A row of tasks in the farmeworks of this probtem are sotved successfutty. Some resutts are given of the theoretical investigations in determination of zones of distructions of rocks because of heat-load [ru

  10. Investigation concerning geologic storage of radioactive waste in the Netherlands

    International Nuclear Information System (INIS)

    1986-01-01

    The first stage of the research program concerning geological storage of radioactive waste in the Netherlands encloses desk studies for the preparation of a selection out of a number of locations for closer field examination, and of a choice of the most proper storage technique (mines, deep boreholes, caverns). This report is the first of two intermediate reports concerning the state of affairs of this first stage. 10 refs.; 6 figs

  11. Uncertainty analysis for geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Helton, J.C.

    1981-01-01

    The incorporation and representation of uncertainty in the analysis of the consequences and risks associated with the geologic disposal of high-level radioactive waste are discussed. Such uncertainty has three primary components: process modeling uncertainty, model input data uncertainty, and scenario uncertainty. The following topics are considered in connection with the preceding components: propagation of uncertainty in the modeling of a disposal site, sampling of input data for models, and uncertainty associated with model output

  12. Risk methodology for geologic disposal of radioactive waste: interim report

    International Nuclear Information System (INIS)

    Campbell, J.E.; Dillon, R.T.; Tierney, M.S.; Davis, H.T.; McGrath, P.E.; Pearson, F.J. Jr.; Shaw, H.R.; Helton, J.C.; Donath, F.A.

    1978-10-01

    The Fuel Cycle Risk Analysis Division of Sandia Laboratories is funded by the Nuclear Regulatory Commission (NRC) to develop a methodology for assessment of the long-term risks from radioactive waste disposal in deep, geologic media. The first phase of this work, which is documented in this report, involves the following: (1) development of analytical models to represent the processes by which radioactive waste might leave the waste repository, enter the surface environment and eventually reach humans and (2) definition of a hypothetical ''reference system'' to provide a realistic setting for exercise of the models in a risk or safety assessment. The second phase of this work, which will be documented in a later report, will involve use of the analytical models in a demonstration risk or safety assessment of the reference system. The analytical methods and data developed in this study are expected to form the basis for a portion of the NRC repository licensing methodology

  13. Geological aspects of the deep disposal of radioactive waste

    International Nuclear Information System (INIS)

    McEwen, T.J.

    1998-01-01

    Various environments have been selected throughout the world for the potential deep disposal of long-lived radioactive waste. The selection of these environments has been carried out using a variety of methods, some of them more logical and defensible than others. The 'raison d'etre' for their selection also varies from country to country. Important lessons have been learnt from the site selection programmes, the site characterisation activities and the accompanying performance assessments that have been carried out concerning the suitability of geological environments for the disposal of long-lived waste. These lessons are the subject of this paper. 24 refs

  14. Proceedings of the 1996 international conference on deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 September International Conference on Deep Geological Disposal of Radioactive Waste was held in Winnipeg, Canada. Speakers from many countries that have or are developing geological disposal technologies presented the current research and implementation strategies for the deep geological disposal of radioactive wastes. Special sessions focused on International Trends in Geological Disposal and Views on Confidence Building in Radioactive Waste Management; Excavation Disturbed Zone (EDZ) Workshop; Educator's Program and Workshop and a Roundtable on Social Issues in Siting

  15. Technical issues in the geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Weart, W.D.

    1980-01-01

    The status of technical understanding regarding radioactive waste repositories in geologic media is improving at a rapid rate. Within a few years the knowledge regarding non-salt repositories will be on a par with that which now exists for salt. To date there is no technical reason to doubt that geologic repositories in several different geologic media can be safely implemented to provide long-term isolation of radioactive wastes. Indeed, for bedded salt, there is now sufficient knowledge to allow all the identified phenomena to be bounded with satisfactory resultant consequences. It is possible to now proceed with technical confidence in an orderly development of a bedded-salt repository at a satisfactory site. This development would call for in-situ experiments, at the earliest possible stage, to confirm or validate the predictions made for the site. These in-situ experiments will be necessary for each repository in a different rock type. If, for non-technical reasons, repository development is delayed, field test facilities should be located as soon as possible in geologic settings typical of proposed repositories. Extensive testing to resolve generic issues will allow subsequent development of repositories to proceed more rapidly with only minimal in-situ testing required to resolve site-specific concerns

  16. Geologic modeling in risk assessment methodology for radioactive waste management

    International Nuclear Information System (INIS)

    Logan, S.E.; Berbano, M.C.

    1977-01-01

    Under contract to the U.S. Environmental Protection Agency (EPA), the University of New Mexico is developing a computer based assessment methodology for evaluating public health and environmental impacts from the disposal of radioactive waste in geologic formations. Methodology incorporates a release or fault tree model, an environmental model, and an economic model. The release model and its application to a model repository in bedded salt is described. Fault trees are constructed to provide the relationships between various geologic and man-caused events which are potential mechanisms for release of radioactive material beyond the immediate environs of the repository. The environmental model includes: 1) the transport to and accumulations at various receptors in the biosphere, 2) pathways from these environmental concentrations, and 3) radiation dose to man. Finally, economic results are used to compare and assess various disposal configurations as a basis for formulatin

  17. Geological disposal of high-level radioactive wastes. Historical perspective and contemporary issues

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2013-01-01

    The contemporary concept on the geological disposal of radioactive wastes, the position of Japan in the world stream of geological disposal, and the ideal aspect of the Japanese geological disposal after the Fukushima accident are described. (M.H.)

  18. Monitoring of geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    2001-04-01

    Geological repositories for disposal of high level radioactive waste are designed to provide isolation of the waste from human environment for many thousands of years. This report discusses the possible purposes for monitoring geological repositories at the different stages of a repository programme, the use that may be made of the information obtained and the techniques that might be applied. This report focuses on the different objectives that monitoring might have at various stages of a programme, from the initiation of work on a candidate site, to the period after repository closure. Each objective may require somewhat different types of information, or may use the same information in different ways. Having evaluated monitoring requirements, the report concludes with a brief evaluation of available monitoring techniques

  19. Risk methodology for geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R.; Guzowski, R.V.

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs

  20. Reversibility and retrievability in geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-01-01

    Reversibility of decisions is an important consideration in the step-wise decision-making process that is foreseen for engineered geologic disposal of radioactive waste. The implications of favouring retrievability of the waste within disposal strategies and the methods to implement it are also being considered by NEA Member countries. This report reviews the concepts of reversibility and retrievability as they may apply to the planning and development of engineered geologic repositories. The concepts span technical, policy and ethical issues, and it is important that a broad understanding is developed of their value and implications. Furthermore, improved comprehension and communication of these issues will clarify the value of flexible, step-wise decision making in repository development programmes and may help to generate a climate conducive to the further progress of such programmes. (author)

  1. The safe disposal of radioactive wastes in geologic salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.; Proske, R.

    Geologic salt formations appear to be particularly suitable for final storage. Their existance alone - the salt formations in Northern Germany are more than 200 million years old - is proof of their stability and of their isolation from biological cycles. In 1967 the storage of LAW and later, in 1972, of MAW was started in the experimental storage area Asse, south-east of Braunschweig, after the necessary technical preparations had been made. In more than ten years of operation approx. 114,000 drums of slightly active and 1,298 drums of medium-active wastes were deposited without incident. Methods have been developed for filling the available caverns with wastes and salt to ensure the security of long term disposal without supervision. Tests with electric heaters for simulation of heat-generating highly active wastes confirm the good suitability of salt formations for storing these wastes. Safety analyses for the operating time as well as for the long term phase after closure of the final storage area, which among others also comprise the improbable ''greatest expected accident'', namely break through of water, are carried out and confirm the safety of ultimate storage of radioactive wastes in geological salt formations. (orig./HP) [de

  2. Geological Disposal of Radioactive Waste: Technological Implications for Retrievability

    International Nuclear Information System (INIS)

    2009-01-01

    Various IAEA Member States are discussing whether and to what degree reversibility (including retrievability) might be built into management strategies for radioactive waste. This is particularly the case in relation to the disposal of long lived and/or high level waste and spent nuclear fuel (SNF) in geological repositories. It is generally accepted that such repositories should be designed to be passively safe with no intention of retrieving the waste. Nevertheless, various reasons have been advanced for including the concept of reversibility and the ability to retrieve the emplaced wastes in the disposal strategy. The intention is to increase the level of flexibility and to provide the ability to cope with, or to benefit from, new technical advances in waste management and materials technologies, and to respond to changing social, economic and political opinion. The technological implications of retrievability in geological disposal concepts are explored in this report. Scenarios for retrieving emplaced waste packages are considered and the report aims to identify and describe any related technological provisions that should be incorporated into the design, construction, operational and closure phases of the repository. This is based on a number of reference concepts for the geological disposal of radioactive waste (including SNF) which are currently being developed in Member States with advanced development programmes. The report begins with a brief overview of various repository concepts, starting with a summary of the types of radioactive waste that are typically considered for deep geological disposal. The main host rocks considered are igneous crystalline and volcanic rocks, argillaceous clay rocks and salts. The typical design features of repositories are provided with a description of repository layouts, an overview of the key features of the major repository components, comprising the waste package, the emplacement cells and repository access facilities

  3. The safety case for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kwong, Gloria

    2014-01-01

    The concept of a 'safety case' for a deep geological repository for radioactive waste was first introduced by the NEA Expert Group on Integrated Performance Assessment (IPAG). It was further developed in the NEA report entitled Confidence in the Long-term Safety of Deep Geological Repositories (1999), and since then it has been taken up in international safety standards as promulgated by the International Atomic Energy Agency (IAEA, 2006, 2011) and more recently in recommendations by the International Commission on Radiological Protection on the application of the system of radiological protection in geological disposal (ICRP, 2013). Many national radioactive waste disposal programmes and regulatory guides are also applying this concept. The NEA has used the safety case as a guide in several international peer reviews of national repository programmes and safety documentation. In Europe, the EU Directive 2011/70/ Euratom (EU, 2011) establishes a framework to ensure responsible and safe management of spent fuel and radioactive waste by member states that, inter alia, requires a decision-making process based on safety evidence and arguments that mirror the safety case concept. In 2007, the NEA, the IAEA and the European Commission (EC) organised a symposium on Safety Cases for the Deep Disposal of Radioactive Waste: Where Do We Stand? Since this time, however, there have been some major developments in a number of national geological disposal programmes and significant experience in preparing and reviewing cases for the operational and long-term safety of proposed and operating geological repositories. A symposium on The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art was thus organised to assess developments since 2007 in the practice, understanding and roles of the safety case, as applied internationally at all stages of repository development, including the interplay of technical, regulatory and societal issues. The symposium

  4. Problems and approach to geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kitayama, Kazumi; Yamazaki, Haruo; Ijiri, Yuji; Haga, Kazuko; Sakamaki, Masanori; Kishi, Kiyoshi

    2006-01-01

    This feature articles described a concept and technical problems of geological disposal of high-level radioactive waste in the civil engineering. It consists of six papers such as the present statues and subjects of geological disposal by KITAYAMA Kazumi, the diastrophism, igneous activity, and upheaval and erosion by YAMAZAKI Haruo, the groundwater flow and evaluation of nuclear transfer by IJIRI Yuji, evaluation of alteration of cement materials in the ultra-long period by HAGA Kazuko, The Mizunami Underground Research Laboratory in course of construction by SAKAMAKI Masanori, and interview of the ninetieth president of JSCE (Japan Society of Civil Engineers), he places his hope on JSCE and civil engineers by KISHI Kiyoshi. (S.Y.)

  5. Radionuclide transport behavior in a generic geological radioactive waste repository.

    Science.gov (United States)

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  6. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  7. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  8. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  9. Geological challenges in radioactive waste isolation: Third worldwide review

    International Nuclear Information System (INIS)

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-01-01

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all

  10. Geological challenges in radioactive waste isolation: Third worldwide review

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all

  11. Safety assessments for deep geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1984-01-01

    The objective of safety assessment for deep geological disposal of radioactive wastes is to evaluate how well the engineered barriers and geological setting inhibit radionuclide migration and prevent radiation dose to man. Safety assessment is influenced through interaction with the regulatory agencies, research groups, the public and the various levels of government. Under the auspices of the IAEA, a generic disposal system description has been developed to facilitate international exchange and comparison of data and results, and to enable development and comparison of performance for all components of the disposal system. It is generally accepted that a systems modelling approach is required and that safety assessment can be considered on two levels. At the systems level, all components of the system are taken into account to evaluate the risk to man. At the systems level, critical review and quality assurance on software provide the major validation techniques. Risk is a combination of dose estimate and probability of that dose. For analysis of the total system to be practical, the components are usually represented by simplified models. Recently, assessments have been taking uncertainties in the input data into account. At the detailed level, large-scale, complex computer programs model components of the system in sufficient detail that validation by comparison with field and laboratory measurements is possible. For example, three-dimensional fluid-flow, heat-transport and solute-transport computer programs have been used. Approaches to safety assessment are described, with illustrations from safety assessments performed in a number of countries. (author)

  12. Performance assessment of geological isolation systems for radioactive waste. Summary

    International Nuclear Information System (INIS)

    Cadelli, N.; Cottone, G.; Orlowski, S.; Bertozzi, G.; Girardi, F.; Saltelli, A.

    1988-01-01

    The report summarizes the studies undertaken in the framework of the project PAGIS of the CEC Research Programme on radioactive waste. It concerns the analysis of the safety performances on the deep disposal of vitrified high level waste in four geological options: clay, granite, salt and the sub-seabed. The report describes the selection of sites and scenarios with the corresponding data base. It outlines the methodology adopted for determining the safety level which can be achieved with an underground disposal system for HLW. Two complementary approaches have been implemented: 1) a set of deterministic calculations for evaluating the dose rates as a function of time and for analysing local sensitivity on single parameters or components of the disposal system, 2) stochastic calculations for both uncertainty and global sensitivity analyses. For each option, the report presents the most significant results, obtained from the calculations at specific sites-from both the approaches. Apart the dose rates and their expectation values, the predominant radionuclides and pathways to man are identified as well as the most sensitive parameters and phenomena. The final chapter concludes stating the feasibility of safe disposal of HLW in underground repositories. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  13. Geologic disposal of radioactive waste: Ethical and technical issues

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1999-01-01

    Ethical goals that future people should be protected and should not have to protect themselves from our radioactive waste are claimed by geologic repository projects. The best test of sufficient protection is to show that the calculated individual doses to future farming families are well below a regulatory limit. That limit should be no greater than what is now adopted to protect the public from operating licensed facilities. Present US calculations show doses, at times well beyond 10,000 years, that exceed current accepted limits by at least three orders of magnitude. Notwithstanding, there is a good chance that the goals can still be achieved by careful technical design of the geologic confinement system. But many in the US now propose ways that would allow greater individual exposures from radionuclides that eventually leak from a geologic repository. Examples include: (a) the 10,000-year cutoff proposed by industry, the US Congress, EPA, and DOE, thus obscuring the later times when higher doses are certain to result; (b) the vicinity-average dose proposed by industry and the US Congress; (c) the probabilistic critical groups proposed by EPRI and by the National Research Council's TYMS committee; (d) proposals to rely on future humans to detect and cleanup excessive amounts of radioactivity that may escape from a repository, and (e) the move to base compliance on calculated doses from well water drawn at considerable distance from Yucca Mountain. Each of these proposals would lead to a far more lenient radiation protection standard than current standards. Each of these proposals is without sufficient scientific basis for its use as a protector of public health. Each of these proposals would violate one or more of the ethical goals. Each is made without adequate discussion and explanation and without explaining how and why it would violate one or more of the ethical goals. What if serious work on alternatives fails to produce conservatively calculated and

  14. Environmental impact assessments and geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    O'Sullivan, P.; McKirdy, B.; Askarieh, M.; Bond, A.; Russell, S.

    1999-01-01

    Since 1985 it has been obligatory that facilities in the European Union designed for the permanent storage or disposal of radioactive waste be assessed to determine their effects on the environment. This assessment must be undertaken in advance of any decision by national authorities to give consent for development work to proceed. Member States are given wide discretion on how the above requirements are implemented in practice, e.g. the relevant European Council Directives call for the results of the environmental assessment to be made available to the public before development consent is granted but the detailed arrangements for dissemination of such information and procedures for public consultation are determined by individual Member States. Although the Directives require an assessment of the direct and indirect effects of a project on human beings and on various elements of the natural environment, they are non-specific as to what particular impacts should be addressed, particularly as regards the effects of a project on human beings. Therefore, for example, each Member State may decide whether or not social, health and economic impacts should be included in the assessment. This paper discusses the above issues. It proposes a model approach to environmental impact assessment in the context of geological repositories, including the role of the assessment on the overall decision processes for repository development, the scope and content of the assessment report, and approaches to public involvement

  15. Deep geologic storage of high level radioactive wastes: conceptual generic designs

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the studies on deep geologic storage of radioactive wastes and specially for the high-level radioactive wastes. The study is focussed to the geotechnical assessment and generic-conceptual designs. Methodology analysis, geotechnical feasibility, costs and operation are studied

  16. Reversibility and switching options values in the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ionescu, Oana; Spaeter, Sandrine

    2011-07-01

    This article offers some economic insights for the debate on the reversible geological disposal of radioactive waste. Irreversibility due to large sunk costs, an important degree of flexibility and several sources of uncertainty are taken into account in the decision process relative to the radioactive waste disposal. We draw up a stochastic model in a continuous time framework to study the decision problem of a reversible repository project for the radioactive waste, with multiple disposal stages. We consider that the value of reversibility, related to the radioactive waste packages, is jointly affected by economic and technological uncertainty. These uncertainties are modeled, first, by a 2-Dimensional Geometric Brownian Motion, and, second, by a Geometric Brownian Motion with a Poisson jump process. A numerical analysis and a sensitivity study of various parameters are also proposed. Switching options values in the geological disposal of radioactive waste. (authors)

  17. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    Science.gov (United States)

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  18. Transient temperature distributions in geological media surrounding radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Beyerlein, S W; Sunderland, J E [Massachusetts Univ., Amherst (USA). Dept. of Mechanical Engineering

    1981-01-01

    Closed form analytical solutions are presented for the transient temperature distributions resulting from underground radioactive waste disposal. The thermal source term is represented by point or spherical sources whose strength decreases exponentially with time. The transient temperature distributions can be determined above the disposal horizon over a time interval of hundreds of years.

  19. Uncertainties in the geological disposal for high-level radioactive waste

    International Nuclear Information System (INIS)

    Liu Xiaodong; Wang Changxuan

    2008-01-01

    Geological disposal, referring to the disposal of high-level solid radioactive waste in a facility located underground in a stable geological formation, was considered the most favourable methods to provide long term isolation of the radionuclides in the waste from the biosphere, and was adopted by IAEA and the developed nations with nuclear facilities. Over 50 years studies have been proved the technical feasibility of geological disposal for radioactive waste. However, there are many subjective and objective uncertainties on development, operation and closure of a geological disposal facility. For providing flexibility in responding to new technical information, advances in waste management and materials technologies, and in enabling social, economic and political aspects to be addressed, it is necessary to evaluate the uncertainties for all the R and D steps of a geological disposal program. (authors)

  20. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  1. Terminal storage of radioactive waste in geologic formations

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1976-01-01

    The principal aim of the National Waste Terminal Storage (NWTS) program is to develop pilot plants and, ultimately, repositories in several different rock formations in various parts of the country. Rocks such as salt, shale, limestone, granite, schists, and serpentinite may all qualify as host media for the disposition of radioactive wastes in the proper environments. In general, the only requirement for any rock formation or storage site is that it contain any emplaced wastes for so long as it takes for the radioactive materials to decay to innocuous levels. This requirement, though, is a formidable one as some of the wastes will remain active for periods of hundreds of thousands of years and the physical and chemical properties of rocks that govern circulating groundwater and hence containment, are difficult to determine and define. Nevertheless, there are many rock types and a host of areas throughout the country where conditions are promising for the development of waste repositories. Some of these are discussed below

  2. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-26

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included in the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.

  3. Technical support for GEIS: radioactive waste isoltaion in geologic formations. Volume 19. Thermal analyses

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/19, ''Thermal Analyses,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume discusses the thermal impacts of the isolated high level and spent-fuel wastes in geologic formations. A detailed account of the methodologies employed is given as well as selected results of the analyses

  4. Geological disposal of radioactive wastes: national commitment, local and regional involvement

    International Nuclear Information System (INIS)

    2013-07-01

    Long-term radioactive waste management, including geological disposal, involves the construction of a limited number of facilities and it is therefore a national challenge with a strong local/regional dimension. Public information, consultation and/or participation in environmental or technological decision-making are today's best practice and must take place at the different geographical and political scales. Large-scale technology projects are much more likely to be accepted when stakeholders have been involved in making them possible and have developed a sense of interest in or responsibility for them. In this way, national commitment, and local and regional involvement are two essential dimensions of the complex task of securing continued societal agreement for the deep geological disposal of radioactive wastes. Long-term radioactive waste management, including geological disposal, is a national challenge with a strong local/regional dimension. The national policy frameworks increasingly support participatory, flexible and accountable processes. Radioactive waste management institutions are evolving away from a technocratic stance, demonstrating constructive interest in learning and adapting to societal requirements. Empowerment of the local and regional actors has been growing steadily in the last decade. Regional and local players tend to take an active role concerning the siting and implementation of geological repositories. National commitment and local/regional involvement go hand-in-hand in supporting sustainable decisions for the geological disposal of radioactive waste

  5. Proceedings of the Workshop on near-field phenomena in geologic repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Prediction of the behaviour of radioactive waste and the geologic host medium is a complex problem, involving an understanding of many chemical and physical phenomena. Topics covered by this Workshop include rock mechanics in stressed and heated conditions; thermally induced groundwater flow in fractured rock; chemical changes to rock surfaces associated with groundwater and changes in the thermal and chemical environment; the chemical solubilities and sorption properties of radionuclides; and the long-term integrity of containers and packaging for radioactive waste.

  6. Concept and programme open-quotes Radioactive waste disposal in geological formations of Ukraineclose quotes

    International Nuclear Information System (INIS)

    Khrushchov, D.P.; Umanets, M.P.; Yakovlev, Eu.A.

    1994-01-01

    The concept and the programme open-quotes Radioactive waste disposal in geological formations of Ukraineclose quotes have been compiled. On the base of specialized criterions the evaluation of the territory of Ukraine was carried out, three geological regions and three types of geological formations favourable for RAW disposal have been selected. The programme of R ampersand D investigations includes three stages: preparatory (1993-1995), preparatory - experimental (1995-2004) and preparation of construction (2005-2010)

  7. Swedish programme for disposal of radioactive waste - geological aspects

    International Nuclear Information System (INIS)

    Baeckblom, G.; Karlsson, Fred

    1990-01-01

    Spent nuclear fuel and radioactive wastes of different types are generated in the course of electrical production. These wastes, which already exist and will continue to exist irrespective of the future for nuclear power in Sweden, are potential hazards if not properly managed. SKB in close co-operation with Swedish and international scientists and engineers have demonstrated the need to construct and operate a waste management system that will ensure very high safety for a long period of time. SKB has further demonstrated that with presently available technology it is possible to construct a final repository for long-lived wastes in Sweden that meets very high standards with respect to safety and radiation protection. SKB has also presented a programme for the research, development and other measures that are required to achieve an optimized disposal site system in Sweden. This programme is comprehensive and the strong support of national and international experts. Examples of research projects discussed in the present paper are: (a) efforts to describe the major zones in the rock mass, (b) characterization of low-conductive rock masses, (c) studies of post-glacial faulting and (d) the importance of natural analogues. The rationale for one of the most important projects in progress - the Hard Rock Laboratory - is also presented. (authors)

  8. Geological problems in radioactive waste isolation - A world wide review

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  9. The scientific and regulatory basis for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Savage, D.

    1995-01-01

    The disposal of radioactive waste is a central issue in the future of nuclear power and poses considerable technical, political and social issues. This book addresses these topics in an integrated fashion using performance assessment of the disposal concept as a unifying theme. Subjects addressed include: regulatory criteria; waste types, sources and characteristics; man-made or ''engineered'' barriers; the selection and evaluation of geological disposal media; the use of underground research laboratories; the movement of radionuclides in the biosphere; repository performance assessment tools approaches; addressing uncertainty and spatial variability; assessing information from natural systems; and looking at radioactive waste in relation to other wastes. (Author)

  10. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    International Nuclear Information System (INIS)

    R.A. Levich; J.S. Stuckless

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation

  11. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  12. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  13. Planning and Design Considerations for Geological Repository Programmes of Radioactive Waste

    International Nuclear Information System (INIS)

    2014-11-01

    Disposal in a geological repository is the generally accepted solution for the long term management of high level and/or long lived radioactive wastes, in line with the general principles defined in the IAEA Safety Fundamentals. This publication presents practical information on the way a geological repository programme for radioactive waste could be defined and planned, with special attention to all aspects having an impact on the timing. Country specific examples for repository development phases are provided, based on actual experiences from Member States

  14. Reversibility and retrievability in geologic disposal of radioactive waste. A new Nea report

    International Nuclear Information System (INIS)

    Brown, P.A.; Pascatore, C.; Sumerling, T.

    2001-01-01

    Radioactive waste needs to be managed responsibly to ensure public safety and the protection of the environment, as well as security from unauthorized interference, now and in the future. One of the most challenging tasks is the management of long-lived radioactive waste that must be isolated from the human environment for many thousands, or even hundreds of thousands, of years. There is a consensus among the engaged technical community that engineered geologic disposal provides a safe and ethical method for the long term management of such waste. This method is also cited in the national policies of several countries as either a promising or appropriate method for dealing with long-lived radioactive waste. Engineered geologic disposal means emplacement of waste in repositories constructed deep underground in suitable geologic media. Thus the waste is contained, and safety assured by passive barriers with multiple safety functions, so that there is no need for any further actions by future generations. Primary principles of the engineered geologic disposal concept are that waste will only be emplaced in a repository when there is high confidence in the ultimate long-term safety, and that the long-term safety must not rely on actions following the closure of the repository. This does not mean, however, that actions cannot be taken. Most repository development programmes include the possibility of post-closure activities for security and monitoring purposes. (authors)

  15. Treatment of uncertainties in the geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.

    1985-01-01

    Uncertainty in the analysis of geologic waste disposal is generally considered to have three primary components: (1) computer code/model uncertainty, (2) model parameter uncertainty, and (3) scenario uncertainty. Computer code/model uncertainty arises from problems associated with determination of appropriate parameters for use in model construction, mathematical formulatin of models, and numerical techniques used in conjunction with the mathematical formulation of models. Model parameter uncertainty arises from problems associated with selection of appropriate values for model input, data interpretation and possible misuse of data, and variation of data. Scenario uncertainty arises from problems associated with the ''completeness' of scenarios, the definition of parameters which describe scenarios, and the rate or probability of scenario occurrence. The preceding sources of uncertainty are discussed below

  16. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  17. The application of geological computer modelling systems to the characterisation and assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    White, M.J.; Del Olmo, C.

    1996-01-01

    The deep disposal of radioactive waste requires the collection and analysis of large amounts of geological data. These data give information on the geological and hydrogeological setting of repositories and research sites, including the geological structure and the nature of the groundwater. The collection of these data is required in order to develop an understanding of the geology and the geological evolution of sites and to provide quantitative information for performance assessments. An integrated approach to the interpretation and provision of these data is proposed in this paper, via the use of computer systems, here termed geological modelling systems. Geological modelling systems are families of software programmes which allow the incorporation of site investigation data into integrated 3D models of sub-surface geology

  18. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  19. Status of technologies related to the isolation of radioactive wastes in geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    Irish, E R [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Safety and Environmental Protection; Cooley, C R [Department of Energy, Washington, DC (USA). Office of Nuclear Waste Management

    1980-09-01

    The authors present an overview of the status of technologies relevant to the isolation of radioactive wastes in geologic repositories. In addition to summarizing scientific and technical work on waste forms and packages, the: a) importance of the systems viewpoint, b) importance of modeling, c) need for site-specific investigations, d) consideration of future sub-surface human activities and e) prospects for successful isolation are discussed. It is concluded that successful isolation of radioactive wastes from the biosphere appears technically feasible for periods of thousands of years provided that the systems view is used in repository siting and design.

  20. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    Science.gov (United States)

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  1. Synopsis of in situ testing for mined geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Gnirk, P.F.

    1980-01-01

    The concept of mined geologic disposal of radioactive wastes was proposed about 25 years ago. Until the mid-1970's, research and development activities were directed essentially to the evaluation of the disposal concept fot salt formations. During the past 5 years, the waste disposal technology programs in the USA and other countries have been expanded substantially in effort and scope for evaluation of a broader range of geologic media beyond salt, including basalt, granite, shale, and tuff. From the outset, in situ testing has been an integral part of these programs, and has included activities concerned with rock mass characterization, the phenomenological response of rock to waste or simulated waste emplacement, model development and verification, and repository design. This paper provides a synopsis of in situ tests that have been or are being performed in geologic media in support of the waste disposal programs in the USA, the United Kingdom, Sweden, and the Federal Republic of Germany

  2. China's deep geological disposal program for high level radioactive waste, background and status 1998

    International Nuclear Information System (INIS)

    Ju Wang; Xu Guoqing; Guo Yonghai

    2001-01-01

    This paper presents the background and progress made in the study of China's high level radioactive waste, including site screening, site evaluation, the study on radionuclide migration, bentonite, natural analogue studies, and performance assessment, etc. The study on Beishan area, the potential area for China's geological repository, is also presented in this paper. (author)

  3. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  4. Developing international safety standards for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.

    2001-01-01

    In the context of the International Atomic Energy Agency's (IAEA) programme to create a corpus of internationally accepted Radioactive Waste Safety Standards (RADWASS), focus is currently being placed on establishing standards for the 'geological disposal of radioactive waste'. This is a challenging task and to help the standards development process there is a need to stimulate discussion of some of the associated scientific and technical issues. A number of position papers developed in recent years by a subgroup of the Waste Safety Standards Committee (WASSC), the subgroup on Principles and Criteria for Radioactive Waste Disposal, address many of the relevant issues. These include a common safety based framework for radioactive waste disposal, appropriate time frames for safety assessment, different possible indicators of long-term safety, the safety implications of reversibility and retrievability, the assessment of possible human intrusion into the repository, the role and limitations of institutional control, establishing reference critical groups and biospheres for long-term assessment, and what is meant by 'compliance' with the standards. These papers will be discussed at a Specialists Meeting to be held at the IAEA in June 2001 as a means of establishing the extent to which they enjoy the general support of experts. In order to broaden that consensus, the conclusions reached at the Specialists Meeting on the issues listed above will be presented and discussed with participants at a number of international meetings. Later this year, a draft safety standard on the geological disposal of radioactive waste which takes account of the consensus positions reached through the various consultations will be submitted for the consideration of Waste Safety Standards Committee (WASSC), the officially approved body within the IAEA for the review and approval of waste safety standards. The Committee is made up of government appointed radioactive waste regulators

  5. Designing shafts for handling high-level radioactive wastes in mined geologic repositories

    International Nuclear Information System (INIS)

    Hambley, D.F.; Morris, J.R.

    1988-01-01

    Waste package conceptual designs developed in the United States by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management are the basis for specifying the dimensions and weights of the waste package and transfer cask combinations to be hoisted in the waste handling shafts in mined geologic repositories for high-level radioactive waste. The hoist, conveyance, counterweight, and hoist ropes are then sized. Also taken into consideration are overwind and underwind arrestors and safety features required by the U.S. Nuclear Regulatory Commission. Other design features such as braking systems, chairing system design, and hoisting speed are considered in specifying waste hoisting system parameters for example repository sites

  6. Analysis of the geological stability of a hypothetical radioactive waste repository in a bedded salt formation

    International Nuclear Information System (INIS)

    Tierney, M.S.; Lusso, F.; Shaw, H.R.

    1978-01-01

    This document reports on the development of mathematical models used in preliminary studies of the long-term safety of radioactive wastes deeply buried in bedded salt formations. Two analytical approaches to estimating the geological stability of a waste repository in bedded salt are described: (a) use of probabilistic models to estimate the a priori likelihoods of release of radionuclides from the repository through certain idealized natural and anthropogenic causes, and (b) a numerical simulation of certain feedback effects of emplacement of waste materials upon ground-water access to the repository's host rocks. These models are applied to an idealized waste repository for the sake of illustration

  7. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 23. Environmental effluent analyses

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/23, ''Environmental Effluent Analysis,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Drat Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume discusses the releases to the environment of radioactive and non-radioactive materials that arise during facility construction and waste handling operations, as well as releases that could occur in the event of an operational accident. The results of the analyses are presented along with a detailed description of the analytical methodologies employed

  8. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  9. Experience in selection and characterization of sites for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1997-12-01

    An important matter in the development of a geological repository for disposal radioactive waste is the selection of a site that has characteristics that are favorable for isolation. A number of Member States have had national programmes under way for several decades to investigate sites to gather the geological information needed to design and construct a safe repository. The purpose of this report is to document this experience and to summarize what has been learned about the site selection and investigation process. It is hoped it will be of interest to scientists and engineers working in national disposal programmes by providing them information and key references regarding the disposal programmes in other countries. It may also be of interest to members of the public and to decision makers wanting an overview of the worldwide status of programmes to select and characterize geological disposal sites for radioactive waste

  10. Deep storage of radioactive waste from a geological point of view

    Energy Technology Data Exchange (ETDEWEB)

    Venzlaff, Helmut [Federal Institute for Geo-Sciences and Raw Materials, Hannover (Germany)

    2015-08-15

    For a deep storage of radioactive waste geologists gave their preference to salt prior to other rock complexes such as clay or granite. Major deposits from pure rock salt are particularly suitable to safely seal radioactive wastes from the biosphere because due to their plasticity they are free from fissures in which liquids and gases could circulate and because their thermal conductivity is higher than of other rocks. The geological stability of salt domes can be shown by their geological evolution. Thus the salt dome in Gorleben was formed 100 million years ago and is older than the Atlantic, the Alps or the ascent of the low mountain range. During this long period it survived ocean floods, mountain formations, earthquakes, volcanism and ice ages without considerably changing its shape. There are no geological reasons, why it should not remain stable during the next million years.

  11. Deep storage of radioactive waste from a geological point of view

    International Nuclear Information System (INIS)

    Venzlaff, Helmut

    2015-01-01

    For a deep storage of radioactive waste geologists gave their preference to salt prior to other rock complexes such as clay or granite. Major deposits from pure rock salt are particularly suitable to safely seal radioactive wastes from the biosphere because due to their plasticity they are free from fissures in which liquids and gases could circulate and because their thermal conductivity is higher than of other rocks. The geological stability of salt domes can be shown by their geological evolution. Thus the salt dome in Gorleben was formed 100 million years ago and is older than the Atlantic, the Alps or the ascent of the low mountain range. During this long period it survived ocean floods, mountain formations, earthquakes, volcanism and ice ages without considerably changing its shape. There are no geological reasons, why it should not remain stable during the next million years.

  12. Considering timescales in the post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2009-01-01

    A key challenge in the development of safety cases for the deep geological disposal of radioactive waste is handling the long time frame over which the radioactive waste remains hazardous. The intrinsic hazard of the waste decreases with time, but some hazard remains for extremely long periods. Safety cases for geological disposal typically address performance and protection for thousands to millions of years into the future. Over such periods, a wide range of events and processes operating over many different timescales may impact on a repository and its environment. Uncertainties in the predictability of such factors increase with time, making it increasingly difficult to provide definite assurances of a repository's performance and the protection it may provide over longer timescales. Timescales, the level of protection and the assurance of safety are all linked. Approaches to handling timescales for the geological disposal of radioactive waste are influenced by ethical principles, the evolution of the hazard over time, uncertainties in the evolution of the disposal system (and how these uncertainties themselves evolve) and the stability and predictability of the geological environment. Conversely, the approach to handling timescales can affect aspects of repository planning and implementation including regulatory requirements, siting decisions, repository design, the development and presentation of safety cases and the planning of pre- and post-closure institutional controls such as monitoring requirements. This is an area still under discussion among NEA member countries. This report reviews the current status and ongoing discussions of this issue. (author)

  13. Geological storage of radioactive wastes: governance and practical implementation of the reversibility concept

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    This document comments the different issues associated with the concept of reversibility in the case of geological disposal of radioactive wastes: adopted approach for investigations on the practical implementation of reversibility, decision and assessment process related to the practical implementation of reversibility, role of local actors in decision and monitoring process on a middle and long term, control and vigilance during the reversibility period, memory preservation and its inter-generational transmission, modalities of financing reversibility and the radioactive waste management system, development of a citizen ability and expertise sharing, and perspectives

  14. Prediction of long-term crustal movement for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Tabei, Kazuto; Koide, Hitoshi; Tashiro, Toshiharu

    2000-01-01

    Long-term stability of the geological environment is essential for the safe geological disposal of radioactive waste, for which it is necessary to predict the crustal movement during an assessment period. As a case study, a numerical analysis method for the prediction of crustal movement in Japan is proposed. A three-dimensional elastic analysis by FEM for the geological block structure of the Kinki region and the Awaji-Rokko area is presented. Stability analysis for a disposal cavern is also investigated. (author)

  15. CIGeO geological disposal for high-level radioactive waste in France

    International Nuclear Information System (INIS)

    Ouzounian, Gerald; Bolia, Jelana

    2014-01-01

    Andra is the sole French organization responsible for the radioactive waste management in the country. Its work relies extensively on the legal basis provided by several major laws (Waste Act of 1991 and the Planning Act of 2006), which shaped the main principles of the waste management strategy and determined the corresponding implementation tools. Andra's industrial activities are essentially based around three of its national disposal facilities. Two of these operational facilities, by their design and comprehensive monitoring system, are considered worldwide as solid and proven reference solutions for the concerned types of radioactive waste. Andra is also charged with designing a future deep geological repository for intermediate-level long-lived and high-level waste and researching potential management and disposal solutions for the graphite and radium-bearing waste. The purpose of this article is to update the information to the readers about the Cigeo geological disposal project for high-level radioactive waste in France (authors)

  16. Costs and ways of financing of the geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Venet, P.; Haijtink, B.

    1988-01-01

    A global approach to the management of radioactive wastes must take into account not only the technological or safety aspects but also economic and financial considerations. In this study, the cost of geological disposal of radioactive wastes are initially evaluated for a certain number of representative cases of present tendencies in the European Community. These expenses comprise research, development and site validation costs, transport and interim storage costs and finally expenditure relating to various investment and exploitation phases of the disposal site as well as its closure. The possible ways of financing are subsequently reviewed and the financial charges which resulted are calculated for each considered scenario. The study is based on the most recent technical knowledge. It has been carried out by natural organizations involved in the management of radioactive wastes. ANDRA in France, CEN/SCK and ONDRAF/NIRAS in Belgium and DBE in Federal Republic of Germany on behalf of the Commission of the European Communities [fr

  17. Radioactive waste management: the relation between geological disposal and advanced nuclear technologies

    International Nuclear Information System (INIS)

    Schroder, Jantine

    2013-01-01

    Throughout this paper we aim to scope the most pregnant themes, issues and research questions concerning the relation between geological disposal and advanced nuclear technologies in the broad context of radioactive waste management. Especially from a socio-technical point of view the mutual impacts, divergences and complementarities between both strategies seem to have received limited dedicated examination up until today. Specific attention is paid to the main arguments that seem to underpin both research streams, related to how the issue of radioactive waste is contextualized and which problems and solutions are consequently identified and proposed. Ultimately we aim to encourage scientifically integer communication and constructive dialogue between both fields, to investigate the common possibilities of enhancing radioactive waste management as a whole. (authors)

  18. Costs and ways of financing of the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Venet, P.; Baetsle, L.H.; Barthoux, A.; Engelmann, H.J.

    1985-01-01

    A global approach to the management of radioactive waste must take into account not only the technological or safety aspects but also economic and financial considerations. In this study, the costs of geological disposal of radioactive waste are initially evaluated for a certain number of representative cases of present tendencies in the European Community. These expenses comprise research, development and site validation costs, transport and interim storage costs and finally expenditure relating to various investment and exploitation phases of the disposal site as well as its closure. The possible ways of financing are subsequently reviewed and the financial charges which resulted are calculated for each considered scenario. The study is based on the most recent technical knowledge. It has been carried out by national organizations involved in the management of radioactive waste: ANDRA in France, CEN/SCK and ONDRAF/NIRAS in Belgium and DBE in F.R. of Germany on behalf of the Commission of the European Communities

  19. Low-level radioactive waste program of the US Geological Survey - in transition

    International Nuclear Information System (INIS)

    Fischer, J.N.

    1983-01-01

    In 1983, the US Geological Survey will publish final reports of geohydrologic investigations at five commercial low-level, radioactive-waste burial sites in the United States. These reports mark the end of the first phase of the US Geological Survey program to improve the understanding of earth-science principles related to the effective disposal of low-level wastes. The second phase, which was initiated in 1981, is being developed to address geohydrologic issues identified as needing greater attention based upon results of the first-phase site studies. Specific program elements include unsaturated-zone hydrology, geochemistry, clay mineralogy, surface geophysical techniques, and model development and testing. The information and expertise developed from these and previous studies will allow the US Geological Survey to provide sound technical assistance to State low-level waste compacts, the Department of Energy, the Nuclear Regulatory Commission, and the Environmental Protection Agency. 11 references

  20. The implementing geological disposal of radioactive waste technology platform main achievement in 2015

    International Nuclear Information System (INIS)

    Delay, J.; Garcia, M.; Kowe, R.

    2015-01-01

    After decades of bilateral and multilateral cooperation, several European waste management organizations decided, under the auspices of the European Commission (EC), to join their forces to tackle the remaining research, development and demonstration (RD&D) challenges associated with the implementation of their respective geological disposal programs. The main objectives of the Implementing geological disposal of radioactive waste technology platform (IGD-TP) are to initiate and carry out collaborative actions in Europe to tackle the remaining research, development and demonstration (RD&D) challenges with a view to advancing the implementation of geological disposal programmes for high-level and long-lived waste in Europe. This paper presents the organisation of the work and the main Joint activities and projects to date, initiated by the IGD-TP members and supported for some of them by the European Commission under the FP7 framework programme and in the near future under the Horizon 2020 programme. (authors)

  1. Swiss plans for deep geological repositories for radioactive wastes - Basics for communication at the localities affected

    International Nuclear Information System (INIS)

    Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the concept of how information concerning deep geological repositories for radioactive wastes should be presented and communicated to those in the areas which have been designated as potential sites for the repositories. Communication basics based on scientific knowledge in this area are discussed. The importance of a concept for general communication and risk-communication as a particular challenge are discussed. Trust and transparency are quoted as being indispensable in this connection. Ways of dealing with various target audiences and the media are examined. The report is concluded with a check-list that deals with important questions arising from the process of communicating information on deep geological repositories for radioactive wastes

  2. Geological characterisation of potential disposal areas for radioactive waste from Risoe, Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Binderup, M.; Nilsson, B.; Schack Pedersen, S.A.

    2011-01-01

    Low- and intermediate-level radioactive waste from the Danish nuclear research facility, Risoe, includes construction materials from the reactors, different types of contaminated material from the research projects and radioactive waste from hospitals, industry and research institutes. This material must be stored in a permanent disposal site in Denmark for at least 300 years. The latter study was conducted by the Geological Survey of Denmark and Greenland (GEUS) and the aim was to locate a sediment or rock body with low permeability down to 100-300 m below the ground surface. GEUS was given the task to locate approximately 20 potential disposal areas. The survey resulted in the selection of 22 areas throughout Denmark. Six of these areas are preferred on geological and hydrogeological criteria. (LN)

  3. Proposal for a research programme on geological disposal of radioactive waste in the Netherlands

    International Nuclear Information System (INIS)

    1984-06-01

    The present report sets out a tentative research program related to radiologic safety of geological disposal of radioactive waste, set against the background of present knowledge in this field. The final stage of this program has to lead to a definitive appraisal of the suitability of the site explored in that stage for disposal of high-level radioactive waste. Subsequent stages of the research effort is outlined in a critical path diagram. Radiological safety figures as the central factor in making choices. The report indicates the state of the art in different specialisms involved in the study of both natural barriers (rheology, hydrology, radionuclide transport, radiation damage) and artificial barriers (mining engineering) for geological disposal. (G.J.P.)

  4. Present situation and perspective of China's geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Zhang, H.

    2005-01-01

    The theme of the conference, 'Political and Technical Progress of Geologic Repositories', has drawn world-wide attention and remains a challenging topic facing the nuclear industry. I am delighted to attend this important conference and have the opportunity to state our views. And I would like to express my gratitude to our host Sweden and IAEA. The development of nuclear science and technology and the peaceful uses of nuclear energy is one of the greatest achievements of the mankind in the 20. century. The development and progress of nuclear technology, from application of fission energy to the exploration of fusion energy, embodies the mankind's expectation to the future. It will be the major energy of final settlement of the issue of global sustainable development. The safe and effective treatment and disposal of nuclear waste are of vital importance to the peaceful uses of nuclear energy and technology. The most dangerous and long-lived waste has to be contained and isolated from the human living environment. Construction of geologic repository in appropriate geological formation for radioactive waste disposal is being accepted as a suitable solution and being studied widely. In the International Conference on Geological Repositories held in Denver, U.S.A., in November 1999, senior governmental representatives from more than 20 countries stated related policies and decisions of their respective countries, which caught world-wide attention. I am convinced that this conference, an event about geologic repository following the Denver conference, will produce positive results for the safe and effective disposal of nuclear waste. Now I would like to take this opportunity to brief you on China's current situation and perspectives of geologic disposal of high-level radioactive waste. (author)

  5. Deep geological disposal of radioactive waste - An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted.

  6. Deep geological disposal of radioactive waste - An international perspective

    International Nuclear Information System (INIS)

    Gautschi, A.

    2015-01-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted

  7. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The study of the ''Admissible thermal loading in geological formations and its consequence on radioactive waste disposal methods'' comprises four volumes: Volume 1. ''Synthesis report'' (English/French text). Volume 2. Granite formations (French text). Volume 3. Salt formations (German text). Volume 4. Clay formations (French text). The present ''synthesis report'' brings together the formation produced by the three specific studies dealing with granite, salt and clay

  8. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  9. Cost and ways of financing of the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Venet, P.; Baetsle, L.H.; Barthoux, A.; Engelmann, H.J.

    1986-01-01

    In the paper, the costs of geological disposal of radioactive waste are initially evaluated for a certain number of representative cases of present tendencies in the European Community. These expenses comprise research, development and site validation costs, transport and interim storage costs and finally expenditure relating to various investment and exploitation phases of the disposal site as well as its closure. The possible ways of financing are subsequently reviewed and the financial charges which resulted are calculated for each considered scenario. (author)

  10. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  11. Leaching behavior of a simulated bituminized radioactive waste form under deep geological conditions

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi; Akimoto, Toshiyuki

    2003-01-01

    The leaching behavior of a simulated bituminized waste form was studied to acquire data for the performance assessment of the geologic disposal of bituminized radioactive waste. Laboratory-scale leaching tests were performed for radioactive and non-radioactive waste specimens simulating bituminized waste of a French reprocessing company, COGEMA. The simulated waste was contacted with deionized water, an alkaline solution (0.03-mol/l KOH), and a saline solution (0.5-mol/l KCl) under atmospheric and anoxic conditions. The concentrations of Na, Ba, Cs, Sr, Np, Pu, NO 3 , SO 4 and I in the leachates were determined. Swelling of the bituminized waste progressed in deionized water and KOH. The release of the soluble components, Na and Cs, was enhanced by the swelling, and considered to be diffusion-controlled in the swelled layers of the specimens. The release of sparingly soluble components such as Ba and Np was solubility-limited in addition to the progression of leaching. Neptunium, a redox-sensitive element, showed a distinct difference in release between anoxic and atmospheric conditions. The elemental release from the bituminized waste specimens leached in the KCl was very low, which is likely due to the suppression of swelling of the specimens at high ionic strength. (author)

  12. Selection of nuclide decay chains for use in the assessment of the radiological impact of geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Thorne, M.C.

    1982-12-01

    The criteria for selecting nuclide decay chains for use in the assessment of the radiological impact of geological repositories for radioactive waste are given. The reduced chains recommended for use with SYVAC are described. (author)

  13. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Search for potential [disposal] sites

    International Nuclear Information System (INIS)

    Dixon, G.L.; Glanzman, V.M.

    1982-01-01

    The objective is to locate and characterize rock masses at the NTS and in southern Nevada suitable as host media for high-level radioactive wastes; to describe the areal and depth distribution and structural integrity of these rock masses; and to assess the potential for contaminant release by hydrologic transport, or as a result of tectonic, and (or) volcanic activity. From previous geologic work at NTS, the general geology is well known. Areas likely to have suitable host rocks and hydrologic conditions at depths appropriate for a repository are evaluated by detailed surface mapping, surface geophysical methods, exploratory drilling, and geophysical techniques. 10 refs., 1 figs

  14. Identification of scenarios in the safety assessment of a deep geological site for radioactive waste disposal

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1990-01-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them corresponding to a type of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an underground laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events. 4 refs., 1 tab [fr

  15. Geological Consideration for the Site Selection of Radioactive Waste at the PPTN Serpong Area

    International Nuclear Information System (INIS)

    Sucipta

    2002-01-01

    Geological consideration is a main aspect in the exploration or selection of site for radioactive waste repository, because, really that repository site must be surrounded by geological system (geosphere). The objective of the site selection is to obtain a site which geologically capable to prevent the escape of waste pollution from repository to biosphere. Beside that the site must be free from geological processes which harmfull to longterm stability of the site. Descriptive analysis method was applied in this research and combined with evaluation by scoring methods. From the analysis result could be identified that PPTN Serpong morphologically consist of undulatory plains (elevation 80-100 m above msl), the lithology are alluvial deposits. Quarternary tuffs, pumiceous tuffs, clayey tuffs. sandy tuffs and limestone. The geological structure was supposed a horst and graben which buried more than 15 m since Pleistocene. Hydrological condition are moderately run-off, and the distance to the river is about 160 m. The depth of groundwater is 8.3 m, with parallel drainage system. Geological resources found in the site are land and groundwater. The most potential of geological hazard is supposed a rock mass movement. By the land evaluation could be concluded that PPTN Serpong area have moderate suitability for NSD site. (author)

  16. Status of borehole plugging and shaft sealing for geologic isolation of radioactive waste

    International Nuclear Information System (INIS)

    1979-01-01

    Activities in programs devoted to disposal of radioactive waste in deep geologic formations are reported. Research on borehole plugging and shaft sealing is emphasized. Past and current activities related to penetration sealing were assessed through an exhaustive literature review and contacts with industrial, governmental, and research organizations. Cited references are included along with a bibliography assembled for this study. Evaluation of literature reviewed and presentation of information obtained from personal contacts are summarized. Technical considerations for penetration sealing as related to nuclear waste isolation, but which may differ from conventional technology, are presented and research needs are identified

  17. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  18. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  19. Cement-based grouts in geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Onofrei, M.

    1996-01-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from -7 m s -1 to 10 -9 m s -1 and to penetrate fissures in the rock with apertures as small as 10 μm. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment

  20. Use of petrophysical data for siting of deep geological repository of radioactive waste

    Science.gov (United States)

    Petrenko, Liliana; Shestopalov, Vyacheslav

    2017-11-01

    The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  1. Use of petrophysical data for siting of deep geological repository of radioactive waste

    Directory of Open Access Journals (Sweden)

    Petrenko Liliana

    2017-01-01

    Full Text Available The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  2. Key radionuclides and parameters that determine performance of geologic repositories for high-level radioactive wastes

    International Nuclear Information System (INIS)

    Joonhong Ahn; Atsuyuki Suzuki

    1993-01-01

    This paper presents results of a mathematical analysis for performance of the engineered barriers of high-level radioactive waste repositories. The main body of the mathematical model developed in this study is mass transport of actinides in a bentonite region. In an analysis of actinide transport, radioactive decay chain and effects of low solubilities must be taken into account. In many previous models for mass transport in engineered barriers including radioactive decay chain, however, boundary conditions at the interface between the waste form and the bentonite region cannot be determined flexibly. In some models, solubility-limited boundary condition is assumed for all the members in a chain. In order to investigate what are key radionuclides and parameters that control performance of engineered barriers of a geologic repository, we must evaluate mass transport with the source boundary condition determined by a detailed analysis on mass transfer at the boundary. In this study, we developed a mathematical model, which can determine whether the inner boundary condition is solubility-limited or congruent release, based on a mathematical analysis for mass transfer at the glass dissolution location, and how long the solubility-limited boundary condition applies. Based on the mathematical model, we point out radionuclides and parameters that have primary influences on the performance of a repository, and investigate a reasonable strategy for coupling geologic disposal and partitioning of those key radionuclides from the standpoint of reducing hazard of geologic disposal. (authors). 4 tabs., 2 figs., 8 refs

  3. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  4. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    Science.gov (United States)

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  5. Draft directive on the management of radioactive wastes based on deep geological disposal

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The European Commission works on a legal framework to assure that all the member states apply the same standards in all the stages of the management of spent fuels and radioactive wastes till their definitive disposal. The draft propositions are the following. The standards to follow are those proposed by the IAEA. First, each member state has to set a national program dedicated to the management of radioactive wastes. This program will have to detail: the chosen solution, the description of the project, a time schedule, costs and financing. Secondly, the exportation of nuclear wastes for definitive disposal is not allowed unless the 2 countries have agreed to build a common nuclear waste disposal center. Thirdly, the population will have to be informed on the project and will have to take part in the decision process. Fourthly, the standards set by IAEA will be enforced by law. There is a broad consensus between scientists and international organizations like IAEA to consider that the disposal in deep geological layers of high-level radioactive wastes is the most adequate solution. (A.C.)

  6. Technical development for geological disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sugino, Hiroyuki; Kawakami, Susumu; Yamanaka, Yumiko

    1997-01-01

    Technical developments for geological disposal of high-level radioactive wastes materials research and design technique for engineered barriers (overpack and buffer material) were studied to evaluate more reliable disposal systems for high-level radioactive wastes. A lifetime prediction model for the maximum corrosion depth of carbon steel was developed. A preferable alloys evaluation method for crevice corrosion was established for titanium. Swelling pressure and water permeability of bentonite as a buffer material was measured, and coupled hydro-thermo-mechanical analysis code for bentonite was also studied. The CIP (cold isostatic pressing) method for monolithically formed buffer material was tested. A concept study on operation equipment for the disposal site was performed. Activities of microorganisms involved in underground performance were investigated. (author)

  7. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  8. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  9. Conceptual design of the virtual engineering system for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    2000-02-01

    The role of Virtual Engineering System for High Level Radioactive Waste Geological Disposal (hereafter the VES) is to accumulate and unify the results of research and development which JNC had been carried out for the completion of the second progress report on a computer system. The purpose and functions of VES with considering the long-term plan for geological disposal in Japan was studied. The analysis between geological environment assessment, safety performance assessment, and engineering technology had not been integrated mutually in the conventional study. The iterative analysis performed by VES makes it possible to analyze natural barrier and engineering barrier more quantitatively for obtaining safety margin and rationalization of the design of a waste repository. We have examined the system functions to achieve the above purpose of VES. Next, conceptual design for codes, databases, and utilities that consist of VES were performed by examining their purpose and functions. The conceptual design of geological environment assessment system, safety performance assessment system, waste repository element database, economical assessment system, investigation support system, quality assurance system, and visualization system are preformed. The whole system configuration, examination of suitable configuration of hardware and software, examination of system implementation, the confirmation of parallel calculation technology, the conceptual design of platform, the development of demonstration program of platform are performed. Based upon studies stated above, the VES development plan including prototype development during the period of selection of the site candidate was studied. The concept of VES was build based on the examination stated above. (author)

  10. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation

    International Nuclear Information System (INIS)

    2008-01-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  11. Prediction of long term stability for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Koide, Hitoshi; Kono, Itoshi

    1998-01-01

    On geological disposal of radioactive wastes, study on prediction of diastrophism has been paid many attentions, and then long term future prediction ranging from some thousands to some tends thousands years may be necessary for some target nuclides. As there are various methods in the future prediction, it is essential to use a computational dynamic procedure to conduct a quantitative prediction. However, it causes an obstacle to advancement of the prediction method that informations on deep underground have a lot of uncertain elements because of their few and indirect data. In this paper, a long term prediction procedure of diastrophism relating to geological disposal of radioactive wastes with low level but isolation terms required to some thousands years was investigated and each one example was shown on flow of the investigation and its modeling method by using the finite element method. It seems to be a key to upgrade accuracy of future diastrophism prediction how an earth fault can be analyzed. And, as the diastrophism is a long term and complex phenomenon and its prediction has many uncertain elements, it is important to judge comprehensively results of its numerical analysis geologically and on rock engineering. (G.K.)

  12. Geological Disposal of Radioactive Waste: A Long-Term Socio-Technical Experiment.

    Science.gov (United States)

    Schröder, Jantine

    2016-06-01

    In this article we investigate whether long-term radioactive waste management by means of geological disposal can be understood as a social experiment. Geological disposal is a rather particular technology in the way it deals with the analytical and ethical complexities implied by the idea of technological innovation as social experimentation, because it is presented as a technology that ultimately functions without human involvement. We argue that, even when the long term function of the 'social' is foreseen to be restricted to safeguarding the functioning of the 'technical', geological disposal is still a social experiment. In order to better understand this argument and explore how it could be addressed, we elaborate the idea of social experimentation with the notion of co-production and the analytical tools of delegation, prescription and network as developed by actor-network theory. In doing so we emphasize that geological disposal inherently involves relations between surface and subsurface, between humans and nonhumans, between the social, material and natural realm, and that these relations require recognition and further elaboration. In other words, we argue that geological disposal concurrently is a social and a technical experiment, or better, a long-term socio-technical experiment. We end with proposing the idea of 'actor-networking' as a sensitizing concept for future research into what geological disposal as a socio-technical experiment could look like.

  13. A study on nuclide migration in buffer materials and rocks for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sato, Haruo

    1998-01-01

    This thesis summarizes the results investigated in order to establish a basic theory on the predictive method of diffusion coefficients of nuclides in compacted sodium bentonite which is a candidate buffer material and in representative rocks for the geological disposal of radioactive waste by measuring the pore structural factors of the compacted bentonite and rocks such as porosity and tortuosity, measuring diffusion coefficients of nuclides in the bentonite and rocks, acquiring basic data on diffusion and developing diffusion models which can quantitatively predict nuclide migration in long-term. (J.P.N.). 117 refs

  14. Study of heat diffusion in a granitic geologic formation of high level radioactive wastes

    International Nuclear Information System (INIS)

    Goldstein, S.; Juignet, N.

    1980-06-01

    Thermal study of granitic underground storage of vitrified high level radioactive wastes in a regular network of shafts and galleries. The aim is to show influence on temperature rise of the geologic formation of main parameters to define the storage zone and to determine the network dimension in function of the rock properties. Two models were studied allowing a rapid variation of geometrical and physical parameters. A numerical method using finite element method or Green functions were used for calculations. Temperatures are determined either for the whole storage site or a unit cell of the lattice [fr

  15. Hydrologic and geologic aspects of low-level radioactive-waste site management

    International Nuclear Information System (INIS)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations

  16. Geological mappability of bored versus drill and blast excavations for radioactive waste repositories

    International Nuclear Information System (INIS)

    Nilsen, B.; Ozdemir, L.

    1992-01-01

    The issue of accurate geological mappability has been subject of intense debate in the selection of bored versus drill and blast excavation for radioactive waste repositories. This paper is intended to provide an assessment of the problems usually encountered in mappability on the basis of field experience from a large number of completed tunnels, mainly as part of the Norwegian hydropower projects. The main conclusion is that mapping in a mechanically excavated underground opening, with very few exceptions, reflects the in-situ conditions more accurately than mapping in a drill and blast tunnel. This is due to the overbreak effects of drill and blast excavation, primarily

  17. Dealing with uncertainties in the safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2002-01-01

    Confidence in the safety assessment of a possible project of radioactive waste geological repository will only be obtained if the development of the project is closely guided by transparent safety strategies, acknowledging uncertainties and striving for limiting their effects. This paper highlights some sources of uncertainties, external or internal to the project, which are of particular importance for safety. It suggests safety strategies adapted to the uncertainties considered. The case of a possible repository project in the Callovo-Oxfordian clay layer of the French Bure site is examined from that point of view. The German project at Gorleben and the Swedish KBS-3 project are also briefly examined. (author)

  18. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  19. Release consequence analysis for a hypothetical geologic radioactive waste repository in salt

    International Nuclear Information System (INIS)

    1979-08-01

    One subtask conducted under the INFCE program is to evaluate and compare the health and safety impacts of different fuel cycles in which all radioactive wastes (except those from mining and milling) are placed in a geologic repository in salt. To achieve this objective, INFCE Working Group 7 examined the radiologic dose to humans from geologic repositories containing waste arisings as defined for seven reference fuel cycles. This report examines the release consequences for a generic waste repository in bedded salt. The top of the salt formation and the top of the repository are assumed to be 250 and 600 m, respectively, below the surface. The hydrogeologic structure above the salt consists of two aquifers and two aquitards. The aquifers connect to a river 6.2 km from the repository. The regional gradient to the river is 1 m/km in all aquifers. Hydrologic, transport, and dose models were used to model two release scenarios for each fuel cycle, one without a major disturbance and one in which a major geologic perturbation breached the repository immediately after it was sealed. The purpose of the modeling was to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere, and to determine the potential dose to humans. Of the many radionuclides in the waste, only 129 I and 226 Ra arrived at the river in sufficient concentrations for a measurable dose calculation. Radionuclide concentrations in the ground water pose no threat to man because the ground water is a concentrated brine and it is diluted by a factor of 10 6 to 10 7 upon entering the river

  20. Questions on geology in connection with final radioactive waste disposal in the Fennoscandian Shield

    International Nuclear Information System (INIS)

    Bjoerklund, A.

    1990-01-01

    The use of nuclear power involves handling and disposal of radioactive waste. A number of methods for disposal have been proposed, one of which is the construction of repositories in crystalline bedrock of old continental crust. This possibility is usually considered reliable because of the relative stability of such bedrock. The Fennoscandian area has repeatedly been glaciated during the past 3 mission years. The last glacial event terminated some 10 000 years ago. This glacial ''massage'' has maintained a dense network of fractures and faults open for circulating water and ascending gas. Blocks of relatively unfractured bedrock have been proposed as suitable sites for the disposal of nuclear waste. Such questions concern neotectonic activity, the movement, salt content and amount of water at a few hundred metres depth, the mobility of elements in the bedrock as well as the geological processes which might be active beneath any future ice cap. Deep groundwaters, dating of young fracture minerals and neotectonic movements have been studied during 1985 - 1989 in a Nordic reserach program sponsored by NKA, the Nordic Liaison Committee for Atomic Energy. Deep saline groundwaters may have a negative effect on repositories of nuclear waste and the knowledge of the location of such waters may also give a hint as to the pattern of water movement in the bedrock. Therefore the composition, origin and location of deep groundwaters were studied. The development of faults in the bedrock through a site of waste disposal before the radioactivity in the waste has decayed to a safe level is considered a serious risk factor. Neotectonic movements have mostly followed old faults and fracture zones in the bedrock, which repeatedly have been reactivated during geological time, leaving blocks between the faults tectonically undisturbed. (CLS) 80 refs

  1. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    International Nuclear Information System (INIS)

    McEvoy, F.M.; Schofield, D.I.; Shaw, R.P.; Norris, S.

    2016-01-01

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  2. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, F.M., E-mail: fmcevoy@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Schofield, D.I. [British Geological Survey, Tongwynlais, CF15 7NE (United Kingdom); Shaw, R.P. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Norris, S. [Radioactive Waste Management Limited, B587, Curie Avenue, Harwell, Didcot OX11 0RH (United Kingdom)

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  3. US Geological Survey research in radioactive waste disposal: Fiscal Years, 1983, 1984, and 1985

    International Nuclear Information System (INIS)

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The USGS has been assisting the DOE in evaluating the suitability of the Yucca Mountain area, located on and adjacent to the Nevada Test Site (NTS) and about 160 km northwest of Las Vegas, as a possible repository site for the disposal of commercially generated high-level radioactive wastes and wastes from DOE facilities. An essential part of this work is defining the geology and hydrology of the area in order to assess the potential for the transport of radionuclides from a repository to the human environment. In addition, the potential for disruption of a repository as a result of volcanic or tectonic activity or accelerated erosion is being evaluated. As part of the Nevada Nuclear Waste Storage Investigations (NNWSI) project, the USGS is performing multi-disciplinary studies involving detailed surface mapping, surface geophysics, exploratory drilling, borehole geophysics, and topical studies of hydrology, climate, and tectonics. Studies are being performed to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. Hydrologic investigations are directed to determination of present and past hydrologic regimes of the NTS and vicinity in order to predict the potential for ground-water transport of radioactive waste from a repository in Yucca Mountain to the accessible environment. Paleoclimatic studies are also being performed to aid in predicting future climate in the NTS vicinity

  4. Advances in the self-burial concept for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Logan, S.E.

    1996-01-01

    The self-burial concept for deep geological disposal of high-level radioactive waste seeks to utilize the radioactive decay heat emitted by the wastes to melt rock and allow descent by gravity into crystalline rock for isolation. Logan developed the governing equations for the self-disposal process in a paper published in 1973 and 1974 showing that moderate waste concentrations in capsules 1 to 2 m in diameter could descend through granite or basalt to considerable depths, in some cases grater than 10 km. Safety considerations related to filling, handling, and initial cooling of such large capsules prior to release, plus the severe container material environment, has prevented use of the concept. Byalko in Russia recently proposed using a sulfur-filled borehole as a conduit for conveying small capsules down to an accumulation zone at a safe depth of several kilometers. This advance in the self-burial concept overcomes previous problems with self-burial. First, capsules of 0.3 m or less in diameter are relatively simple to fill and handle. Second, investigations indicate that once emplaced at an initial accumulation depth, rock-melting can proceed without an enveloping waste container

  5. Methodology of safety assessment and sensitivity analysis for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1995-01-01

    A deterministic safety assessment methodology has been developed to evaluate long-term radiological consequences associated with geologic disposal of high-level radioactive waste, and to demonstrate a generic feasibility of geologic disposal. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. A computer code system GSRW thus developed is based on a non site-specific model, and consists of a set of sub-modules for calculating the release of radionuclides from engineered barriers, the transport of radionuclides in and through the geosphere, the behavior of radionuclides in the biosphere, and radiation exposures of the public. In order to identify the important parameters of the assessment models, an automated procedure for sensitivity analysis based on the Differential Algebra method has been developed to apply to the GSRW. (author)

  6. Techno-economic Comparison of Geological Disposal of Carbon Dioxide and Radioactive Waste

    International Nuclear Information System (INIS)

    2014-12-01

    The reduction of greenhouse gas emissions is an important prerequisite for sustainable development. The energy sector is a major contributor to such emissions, which are mostly from fossil fuel fired power plants acting as point sources of carbon dioxide (CO 2 ) discharges. For the last twenty years, the new technology of carbon capture and storage, which mitigates CO 2 emissions, has been considered in many IAEA Member States. This technology involves the removal of CO 2 from the combustion process and its disposal in geological formations, such as depleted oil or gas fields, saline aquifers or unmineable coal seams. A large scale energy supply option with low CO 2 emissions is nuclear power. The high level radioactive waste produced during nuclear power plant operation and decommissioning as well as in nuclear fuel reprocessing is also planned to be disposed of in deep geological formations. To further research and development in these areas and to compare and learn from the planning, development and implementation of these two underground waste disposal concepts, the IAEA launched the coordinated research project (CRP) Techno-economic Comparison of Ultimate Disposal Facilities for Carbon Dioxide and Radioactive Waste. The project started in 2008 and was completed in 2012. The project established an international network of nine institutions from nine IAEA Member States, representing both developing and developed countries. The CRP results compared the geological disposal facilities in the following areas: geology, environmental impacts, risk and safety assessment, monitoring, cost estimation, public perception, policy, regulation and institutions. This publication documents the outcome of the CRP and is structured into thematic chapters, covering areas analysed. Each chapter was prepared under the guidance of a lead author and involved co-authors from different Member States with diverse expertise in related areas. Participants drew on the results of earlier

  7. Information on scientific and technological co-operation between the CMEA member countries in radioactive waste burial in geological formations

    International Nuclear Information System (INIS)

    Tolpygo, V.K.

    1984-02-01

    Research on radioactive waste treatment and disposal constitutes an important area of cooperation between the CMEA member countries. An important part in cooperation has been assigned to the study of systems for disposing radioactive waste of all kinds in geological formations. The cooperation which was initiated in 1971 was realized within the two research programmes scheduled for subsequent periods, viz. for 1971 to 1975, and from 1976 to 1983. Programme work for 1971 to 1975 included three major fields of research: theoretical and experimental research, scientific and technological research and methodological research. As regards methodological research and results of work by the plan for 1976 to 1983, comprehensive research on the methods of disposing radioactive waste in geological formations has been practically completed and documents relating to the industrial introduction of these methods have been prepared. The results of research renders it possible to properly organize from the standpoint of methodology surveying, designing of schematic diagrams and structures of all facilities involving the burial of radioactive waste in geological formations, the evaluation of suitability of the sanitary protection zone from the standpoint of environmental protection and the rational use of natural resources. The drawing of prognostic charts and the development of recommendations on the use of interior of the earth for burying radioactive waste make it possible for the planning bodies, ministries and agencies to evaluate the possibilities for underground burial of radioactive waste in selecting a site and in designing and construction of new nuclear power plants and other nuclear facilities

  8. Regulating the long-term safety of geological disposal of radioactive waste: practical issues and challenges

    International Nuclear Information System (INIS)

    2008-01-01

    Regulating the long-term safety of geological disposal of radioactive waste is a key part of making progress on the radioactive waste management issue. A survey of member countries has shown that differences exist both in the protection criteria being applied and in the methods for demonstrating compliance, reflecting historical and cultural differences between countries which in turn result in a diversity of decision-making approaches and frameworks. At the same time, however, these differences in criteria are unlikely to result in significant differences in long-term protection, as all the standards being proposed are well below levels at which actual effects of radiological exposure can be observed and a range of complementary requirements is foreseen. In order to enable experts from a wide range of backgrounds to debate the various aspects of these findings, the NEA organised an international workshop in November 2006 in Paris, France. Discussions focused on diversity in regulatory processes; the basis and tools for assuring long-term protection; ethical responsibilities of one generation to later generations and how these can be discharged; and adapting regulatory processes to the long time frames involved in implementing geological disposal. These proceedings include a summary of the viewpoints expressed as well as the 22 papers presented at the workshop. (author)

  9. Deep geological radioactive waste disposal in Germany: Lessons learned and future perspectives

    International Nuclear Information System (INIS)

    Lempert, J.P.; Biurrun, E.

    2001-01-01

    As far back as in the seventies a fully developed, integrated concept for closing the nuclear fuel cycle was agreed upon in Germany between the Federal Government of that time and the electricity utilities. In the twenty years elapsed since then it was further developed as necessary to permanently fit the state of the art of science and technology. For management of spent fuel, the concept currently considers two equivalent alternatives: direct disposal of the spent fuel or reprocessing the fuel and recycling in thermal reactors. Interim storage of spent fuel and vitrified high level waste (HLW) to allow for decay heat generation to decrease to a convenient level is carried out in centralized installations. Radioactive waste disposal in pursuant to German regulations for all kinds of waste is to be carried out exclusively in deep geologic repositories. At present in the country, there are three centralized interim storage facilities for spent fuel, one of them can also accept vitrified HLW. Several facilities are in use for low level waste (LLW) and intermediate level waste (ILW) storage at power plants and other locations. A pilot conditioning facility for encapsulating spent fuel and/or HLW for final disposal is now ready to be commissioned. Substantial progress has been achieved in realization of HLW disposal, including demonstration of all the needed technology and fabrication of a significant part of the equipment. With regard to deep geologic disposal of LLW and ILW, Germany has worldwide unique experience. The Asse salt mine was used as an experimental repository for some 10 years in the late sixties and seventies. After serving since then as an underground research facility, it is now being backfilled and sealed. The Morsleben deep geologic repository was in operation for more than 25 years until September 1998. (author)

  10. Storage of radioactive waste

    International Nuclear Information System (INIS)

    Pittman, F.K.

    1974-01-01

    Four methods for managing radioactive waste in order to protect man from its potential hazards include: transmutation to convert radioisotopes in waste to stable isotopes; disposal in space; geological disposal; and surface storage in shielded, cooled, and monitored containers. A comparison of these methods shows geologic disposal in stable formations beneath landmasses appears to be the most feasible with today's technology. (U.S.)

  11. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  12. NRC regulations for disposal of high-level radioactive wastes in geologic repositories: technical criteria

    International Nuclear Information System (INIS)

    Martin, J.B.; Bell, M.J.; Regnier, E.P.

    1983-01-01

    The Nuclear Regulatory Commission is promulgating regulations specifying the technical criteria fo disposal of high-level radioactive wastes in geologic repositories. The proposed rule was published for public comment in July 1981. Public comments have been received and considered by the Commission staff. The Commission will soon approve and publish a revised final rule. While the final rule being considered by the Commission is fundamentally the same as the proposed rule, provisions have been added to permit flexibility in the application of numerical criteria, some detailed design requirements have been deleted, and other changes have been made in response to comments. The rule is consistent with the recently enacted Nuclear Waste Policy Act of 1982

  13. Deep geological disposal of radioactive waste in Switzerland - Overview and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Schnellmann, M.; Zuidema, P.; Gautschi, A.

    2015-07-01

    This article reviews the situation in Switzerland regarding the disposal of radioactive wastes. The development of the Swiss concept for wastes with high, medium and low levels of activity is reviewed, as detailed in the Sectorial Plan for Deep Geological Repositories published in 2008. The three stages involved are described in detail. Further investigations carried out in the Grimsel and Mont Terri underground laboratories are reported on. The state of current work is reviewed. A map is provided of the areas in northern Switzerland which have been selected for further, more intensive research, along with a review of the possible rock formations to be investigated. Data already obtained are reviewed and proposals for further investigations are discussed. In the upcoming stage 3 of the plan, the selection of one site per repository type will be made, leading to the submission of a general licence application.

  14. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    Science.gov (United States)

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  15. Current safety issues in the development of geological disposal of radioactive waste in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Deep geological disposal of high level and medium level long-lived waste in France is one of the three research paths defined by the law of 30th December 1991 on radioactive waste management. Research should be undertaken on: separation and transmutation of long-lived radionuclides in these waste; reversible or non reversible disposal in deep geological layers supported by investigations in underground laboratories; processes for conditioning and long term surface storage of these waste. In 2006, a global evaluation report on this research should be established by the Government and sent to the French Parliament. On this basis the Parliament should promulgate a law providing new objectives for the research and possibly presenting a framework for a deep disposal process. The French Nuclear Safety Authority has the responsibility to license the underground laboratories foreseen in the second research path and the nuclear facilities involved in the first and third research paths and make sure that existing high level and medium level long-lived waste currently produced are properly managed. It will give its advice on the safety aspects associated to the envisaged future management options. Its main concern is that results obtained in 2006 will be conclusive enough to take decisions for future orientations. Concerning the deep disposal option, under the responsibility of ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), the construction of an underground laboratory has been authorized on the Bure site, in eastern France, and the shafts are under construction. The main issue is the level of investigations that may be performed in the host rock in order to support the feasibility study of a disposal concept on this site. Other issues are the elaboration of new safety standards to set a framework for a safety assessment of a disposal concept, the specifications for acceptance of waste packages in a future deep disposal, and relation of safety matters with

  16. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Lee, K. J.; Chang, S. H. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, K. J.; Chang, S. H. [Khalifa Univ. of Science/Technology and Research, Abu Dhabi (United Arab Emirates)

    2012-03-15

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research.

  17. Development of Spherical Near Field Model for Geological Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Kim, S. Y.; Lee, K. J.; Chang, S. H.; Lee, K. J.; Chang, S. H.

    2012-01-01

    Modeling for geological radioactive waste repository can be divided into 3 parts. They are near field modeling related to engineered barrier, far field modeling related to natural barrier and biosphere modeling. In order to make the general application for safety assessment of geological waste repository, spherical geometry near field model has been developed. This model can be used quite extensively when users calculate equivalent spherical geometry for specific engineered barrier like equivalent waste radius, equivalent barrier radius and etc. Only diffusion was considered for general purpose but advection part can be updated. Goldsim and Goldsim Radionuclide Transport (RT) module were chosen and used as developing tool for the flexible modeling. Developer can freely make their own model with developer friendly graphic interface by using Goldsim. Furthermore, model with user friendly graphic interface can be developed by using Goldsim Dashboard Authoring module. The model has been validated by comparing the result with that of another model, inserting similar inputs and conditions. The model has been proved to be reasonably operating from the comparison result by validation process. Cylindrical model can be developed as a further work based on the knowledge and experience from this research

  18. Safety analysis of geologic containment of long life radioactive wastes. Critical assessment of existing methods and proposition of prospective approach

    International Nuclear Information System (INIS)

    Masure, P.; Gedefroy, P.; Imauven, C.

    1983-01-01

    Existing methods of risk analysis applied to disposal of long-lived radioactive waste in geologic formations are rewieved. A prospective analysis method for containment performances is proposed, deduced in the burial system from the combination of interaction between wastes, repository, host rock, surrounding geosphere, of natural evolution of each component of the system, sudden or chance events that could break waste containment. The method is based on the elaboration of four basic schemes graded in difficulties to facilitate comparisons

  19. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    Science.gov (United States)

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  1. Radiological protection aspects of geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Kimura, Hideo

    1992-01-01

    A high-level radioactive waste, generated at a nuclear fuel reprocessing plant, will be disposed of deep, i.e., several hundred meters, within geological formations, to isolate it from the human environment. Since the waste contains significant amounts of long-lived radionuclides, such as Tc-99, I-129, Cs-135 and transuranic elements, the safety of its disposal, particularly as regards the requirement for the radiological protection of human and his environment even in the far future, is one of the essential subjects of all countries engaged in nuclear power production. The radiological protection system has long been established and applied to regulate radiation exposures to the public associated with a relatively short-term release of radioactive materials, during normal and accidental conditions, from nuclear installations such as a power plant and reprocessing plant. Radioactive waste disposal, which potentially offers a long-term radiological consequence on the public, inevitably produces a specific requirement, from the standpoint of radiological protection, that individuals and populations in the future should be accorded at least a current level of the protection. This requirement has caused a serious debate, among the community of radiological protection, on how to establish radiological protection standards and criteria, and how to establish safety assessment methodologies to demonstrate compliance with them. We have discussed in this paper on specific items such as numerical guides to indicate radiological consequences, time frames over which calculations of the consequences are to be carried out, uncertainties to be involved in the calculations, and safety assessment methodologies. (author)

  2. Geologic disposal as optimal solution of managing the spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Ilie, P.; Didita, L.; Ionescu, A.; Deaconu, V.

    2002-01-01

    To date there exist three alternatives for the concept of geological disposal: 1. storing the high-level waste (HLW) and spent nuclear fuel (SNF) on ground repositories; 2. solutions implying advanced separation processes including partitioning and transmutation (P and T) and eventual disposal in outer space; 3. geological disposal in repositories excavated in rocks. Ground storing seems to be advantageous as it ensures a secure sustainable storing system over many centuries (about 300 years). On the other hand ground storing would be only a postponement in decision making and will be eventually followed by geological disposal. Research in the P and T field is expected to entail a significant reduction of the amount of long-lived radioactive waste although the long term geological disposal will be not eliminated. Having in view the high cost, as well as the diversity of conditions in the countries owning power reactors it appears as a reasonable regional solution of HLW disposal that of sharing a common geological disposal. In Romania legislation concerning of radioactive waste is based on the Law concerning Spent Nuclear Fuel and Radioactive Waste Management in View of Final Disposal. One admits at present that for Romania geological disposal is not yet a stressing issue and hence intermediate ground storing of SNF will allow time for finding a better final solution

  3. Conceptual design of the Virtual Engineering System for High Level Radioactive Waste Geological Disposal

    International Nuclear Information System (INIS)

    1999-06-01

    The Virtual Engineering System for the High Level Radioactive Waste Geological Disposal (hereafter the VE) adopts such computer science technologies as advanced numerical simulation technology with special emphasis upon computer graphics, massive parallel computing, high speed networking, knowledge engineering, database technology to virtually construct the natural and the part of social environment of disposal site in syberspace to realize the disposal OS as its final target. The principle of tile VE is to provide for a firm business standpoint after The 2000 Report by JNC and supply decision support system which promotes various evaluations needed to be done from the year of 2000 to the licensing application for disposal to the government. The VE conceptual design was performed in the year of 1998. The functions of the VE are derived from the analysis of work scope of implementing organization in each step of geological waste disposal: the VE functions need the safety performance assessment, individual process analysis, facility designing, cost evaluation, site surveillance, research and development, public acceptance. Then the above functions are materialized by integrating such individual system as geology database, groundwater database, safety performance assessment system, coupled phenomena analysis system, decision support system, cost evaluation system, and public acceptance system. The integration method of the systems was studied. The concept of the integration of simulators has also been studied from the view point of CAPASA program. Parallel computing, networking, and computer graphic for high speed massive scientific calculation were studied in detail as the element technology to achieve the VE. Based on studies stated above, the concept of the waste disposal project and subjects that arise from 1999 to licensing application are decided. (author)

  4. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  5. Geological disposal of high level radioactive waste in China: progress during 1985-2004

    International Nuclear Information System (INIS)

    Wang Ju; Xu Guoqing; Zheng Hualing; Fan Xianhua; Wang Chengzu; Fan Zhiwen

    2005-01-01

    Safe disposal of high level radioactive waste (HLW) is a challenging issue for the sustainable development of nuclear energy. The studies for the disposal of HLW in China started in 1985, the proposed goal was to build China's high level waste repository by mid-21st Century, while the waste to be disposed of will be vitrified waste, transuranic waste and small amount of spent fuel. The proposed repository was a shaft-tunnel-silo model hosted by granite in saturated zone. In the period of 1985 to 2004, progress was made in China's HLW disposal program. It was decided that 'deep geological disposal' will be used to dispose of China's HLW, while the technical strategy for the development of repository will a 3-step strategy, that includes steps of site selection and site evaluation, construction of underground research laboratory, and construction of repository. Based on nation wide screening, the Beishan area, Gansu Province, northwestern China, located in Gobi desert area with few inhabitants, integral crust structure and favorable geological and hydrogeological conditions, was selected as the most potential area for China's repository. In early 1990's, site selection for underground research laboratory was conducted, 2 sites in the suburb of Beijing were preliminarily selected as the potential sites for a 'generic underground research laboratory'. It was determined to use bentonite as backfill material for the repository, while the bentonite from Gaomiaozi deposit in Inner Mongolia was selected as potential buffer and backfill material for China's repository. The studies on the mineralogical, geotechnical, physico-mechanical and thermal properties of the Gaomiaozi bentonite have been conducting. Some parameters such as sorption radio, diffusion coefficient and dispersion coefficient of radionuclides (Np, Pu and Tc) in Beishan granite and bentonite have been obtained. A low-oxygen glove box and a device simulating the temperature, pressure and redox potential of

  6. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  7. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  8. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    Science.gov (United States)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  9. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    Science.gov (United States)

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  10. ICRP PUBLICATION 122: Radiological Protection in Geological Disposal of Long-lived Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Weiss, W.; Larsson, C-M.; McKenney, C.; Minon, J-P.; Mobbs, S.; Schneider, T.; Umeki, H.; Hilden, W.; Pescatore, C.; Vesterlind, M.

    2013-01-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission’s three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  11. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  12. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    International Nuclear Information System (INIS)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches

  13. Development of probabilistic assessment methodology for geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kimura, H.; Takahashi, T.

    1998-01-01

    The probabilistic assessment methodology is essential to evaluate uncertainties of long-term radiological consequences associated with geologic disposal of radioactive wastes. We have developed a probabilistic assessment methodology to estimate the influences of parameter uncertainties/variabilities. An exposure scenario considered here is based on a groundwater migration scenario. A computer code system GSRW-PSA thus developed is based on a non site-specific model, and consists of a set of sub modules for sampling of model parameters, calculating the release of radionuclides from engineered barriers, calculating the transport of radionuclides through the geosphere, calculating radiation exposures of the public, and calculating the statistical values relating the uncertainties and sensitivities. The results of uncertainty analyses for α-nuclides quantitatively indicate that natural uranium ( 238 U) concentration is suitable for an alternative safety indicator of long-lived radioactive waste disposal, because the estimated range of individual dose equivalent due to 238 U decay chain is narrower that that due to other decay chain ( 237 Np decay chain). It is internationally necessary to have detailed discussion on the PDF of model parameters and the PSA methodology to evaluated the uncertainties due to conceptual models and scenarios. (author)

  14. Concepts and examples of safety analyses for radioactive waste repositories in continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This document is addressed to authorities and specialists responsible for or involved in planning, performing and/or reviewing safety assessments of underground radioactive waste repositories. It is a companion to a general introductory document on the subject ''Safety Assessment for the Underground Disposal of Radioactive Wastes'', IAEA Safety Series No. 56, 1981, and reference to this earlier document will facilitate the reader's understanding of the present report. Since examples of safety analyses are summarized here, it is hoped that this document will contribute to providing a basis for a common understanding among authorities and specialists concerned with the numerous studies involving a variety of scientific disciplines. While providing technical information, this document is also intended to stimulate further international discussion. The purposes of this report are: a) to identify the factors to be taken into account in radiological safety analyses of deep geological repositories, indicating as far as possible their relative importance during the various phases of system development; b) to show how these factors have been analysed in various safety assessment studies; and c) to comment on the merits of the selected and alternative approaches.

  15. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults

  16. Deep geologic repository for low and intermediate radioactive level waste in Canada

    International Nuclear Information System (INIS)

    Liu Jianqin; Li Honghui; Sun Qinghong; Yang Zhongtian

    2012-01-01

    Ontario Power Generation (OPG) is undergoing a project for the long-term management of low and intermediate level waste (LILW)-a deep geologic repository (DGR) project for low and intermediate level waste. The waste source term disposed, geologic setting, repository layout and operation, and safety assessment are discussed. It is expected to provide reference for disposal of low and intermediate level waste that contain the higher concentration of long-lived radionuclides in China. (authors)

  17. Sources/treatment of uncertainties in the performance assessment of geologic radioactive waste repositories

    International Nuclear Information System (INIS)

    Cranwell, R.M.

    1987-01-01

    Uncertainties in the performance assessment of geologic radioactive waste repositories have several sources. The more important ones include: 1) uncertainty in the conditions of a disposal system over the temporal scales set forth in regulations, 2) uncertainty in the conceptualization of the geohydrologic system, 3) uncertainty in the theoretical description of a given conceptual model of the system, 4) uncertainty in the development of computer codes to implement the solution of a mathematical model, and 5) uncertainty in the parameters and data required in the models and codes used to assess the long-term performance of the disposal system. This paper discusses each of these uncertainties and outlines methods for addressing these uncertainties

  18. Effect of coupling behavior on groundwater flow for geological disposal of radioactive high level waste

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kobayashi, Akira; Ohnishi, Yuzo; Chijimatsu, Masakazu

    2003-01-01

    In order to estimate the effects of coupled thermal-hydraulic-mechanical phenomena in near-field for geological disposal of high-level radioactive waste on a vast groundwater flow system, a far-field analysis was simulated based on the results of the simulation of coupled phenomena in near-field using averaged tensor and heat flux. From the results of the coupled analyses of near-field and far-field it was clarified that groundwater flow system was influenced by coupled phenomena in near-field. Moreover, it can be said that groundwater flux into a disposal tunnel is regarded as a complement to safety assessment of a disposal because it strongly correlates with traveling time of groundwater. (author)

  19. Risk methodology for geologic disposal of radioactive waste: model description and user manual for Pathways model

    International Nuclear Information System (INIS)

    Helton, J.C.; Kaestner, P.C.

    1981-03-01

    A model for the environmental movement and human uptake of radionuclides is presented. This model is designated the Pathways-to-Man Model and was developed as part of a project funded by the Nuclear Regulatory Commission to design a methodology to assess the risk associated with the geologic disposal of high-level radioactive waste. The Pathways-to-Man Model is divided into two submodels. One of these, the Environmental Transport Model, represents the long-term distribution and accumulation of radionuclides in the environment. This model is based on a mixed-cell approach and describes radionuclide movement with a system of linear differential equations. The other, the Transport-to-Man Model, represents the movement of radionuclides from the environment to man. This model is based on concentration ratios. General descriptions of these models are provided in this report. Further, documentation is provided for the computer program which implements the Pathways Model

  20. Corrosion behaviour of container materials for geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Accary, A.

    1985-01-01

    The disposal of high level radioactive waste in geological formations, based on the multibarrier concept, may include the use of a container as one of the engineered barriers. In this report the requirements imposed on this container and the possible degradation processes are reviewed. Further on an overview is given of the research being carried out by various research centres in the European Community on the assessment of the corrosion behaviour of candidate container materials. The results obtained on a number of materials under various testing conditions are summarized and evaluated. As a result, three promising materials have been selected for a detailed joint testing programme. It concerns two highly corrosion resistant alloys, resp. Ti-Pd (0.2 Pd%) and Hastelloy C4 and one consumable material namely a low carbon steel. Finally the possibilities of modelling the corrosion phenomena are discussed

  1. Exposing the faults: the geological case against the plans by UK NIREX to dispose of radioactive waste

    International Nuclear Information System (INIS)

    Richardson, P.J.

    1989-01-01

    NIREX has given the strong impression throughout is recent public consultation exercise connected with underground disposal of low and intermediate level waste that the problem is one of public and political acceptability, rather than one of a technical nature. This is not the place in which to list the considerable failings of this latest attempt. Nevertheless, the results of the consultation process show quite clearly that it has no mandate from the British public to develop a single, national deep repository for the burial of radioactive waste. There is considerable opposition to this method of managing radioactive waste and a quite reasonable suspicion of the claims by NIREX concerning the supposed integrity and safety of this deep burial option. This report gives substance to those suspicions and spells out in detail the significant areas of uncertainty in the concept of effective geological containment of hazardous radioactive elements, which remain dangerous for tens of thousands of years. Because the science of geology is essentially retrospective rather than predictive, NIREX's plans for a single, national, deep 'repository' depend heavily upon a wide range of assumptions about the geological and hydrogeological regimes in certain areas of the United Kingdom (UK). This report demonstrates that these assumptions are based on a limited understanding of UK geology and on unvalidated and simplistic theoretical models of geological processes, the performance of which can never be directly tested over the long time-scales involved. An extensive public relations exercise cannot hide the unavoidable technical uncertainties associated with burying radioactive waste. Dumping radioactive waste is foolhardy and irresponsible in the face of these unknowns. NIREX's proposals offer no guarantees for the safe and effective containment of radioactivity. They are deeply flawed. This report exposes the faults. (author)

  2. Preliminary consideration for research on geological disposal of high-level radioactive waste in China in the period of 2000-2040

    International Nuclear Information System (INIS)

    Xu Guoqing

    2004-01-01

    Based on the overseas practical experiences with combination of domestic realistic conditions a preliminary consideration of a long-range plan is proposed for research on geological disposal of high-level radioactive waste in China in the period of 2000-2040. An overview of research on geological disposal of high-level radioactive waste in the overseas and mainland is presented shortly first in this paper. Then the discussion is centered on the preliminary consideration of a long-range plan for research on geological disposal of high-level radioactive waste in China. The partition of stages of research on geological disposal of high-level radioactive waste, the goal, task, research contents and time table for each research stage is stated in this preliminary consideration. The data mentioned above will probably be useful for making plan for geological disposal of high-level radioactive waste in the future in China. (author)

  3. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  4. Parametric analysis of mined geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Parker, F.L.; Ichel, A.

    1982-01-01

    A simplified mathematical model has been developed to screen potential mined geological repository sites taking into account the uncertainty in the input data. Initial input data that was assumed constant was inventory of radioactive wastes, number and size of cannisters, size of repository, and the ground water flow area. Though there is some uncertainty in these data, by far the greatest uncertainty pertained to leach rate of the waste form and cannister, ground water velocity, retardation rates of nuclides relative to ground water, distance to the biosphere and flow rate in the receiving waters in the biosphere. These were varied over realistic ranges from 1 to 4 orders of magnitude. The results showed that there are a wide variety of combinations of these parameters that allow a waste repository to be sited without exceeding the maximum permissible concentrations of isotopes in drinking water. It is concluded that for the artificially-created nuclides it is the intermediate time period, greater than 1000 years and less than 1 million years, that poses the greatest problem

  5. Issues related to the USEPA probabilistic standard for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Okrent, D.

    1993-01-01

    This paper asks whether some of the fundamental bases for the 1985 USEPA standard on disposal of high level radioactive wastes (40 CFR Part 191) warrant re-examination. Similar questions also apply to the bases for the radioactive waste disposal requirements proposed by most other countries. It is suggested that the issue of intergenerational equity has been dealt with from too narrow a perspective. Not only should radioactive and nonradioactive hazardous waste disposal be regulated from a consistent philosophic basis, but the regulation of waste disposal itself should be embedded in the broader issues of intergenerational conservation of options, conservation of quality, and conservation of access. (author). 25 refs

  6. Overview of the site selection, geological and engineering problems facing radioactive waste disposal at Sellafield, UK

    International Nuclear Information System (INIS)

    Haszeldine, R.S.; Smythe, D.K.

    1996-01-01

    UK Nirex Ltd is the company charged with finding a suitable site for the disposal of radioactive waste in the United Kingdom. Since 1991, Nirex has concentrated its site investigation work at Longlands Farm which is owned by British Nuclear Fuels Ltd and is near their Sellafield site. Planning permission was sought for the development of an underground Rock Characterisation Facility (RCF) at the site in 1994. A public Planning Inquiry began in September 1995. A wide range of scientific and technical objections were put by expert witnesses against the Nirex Proposal. These witnesses were co-ordinated by three Objecting Organisations - Cumbria County Council, Friends of the Earth and Greenpeace. Their written evidence is presented in this book. The grounds of the objections include: the inadequacy of the methodology adopted by Nirex for site selection and investigation; The unsuitability of the site geology, hydrology and geochemistry; that construction of the RCF would destroy the data essential to deciding site suitability; that the RCF would provide a conduit for the release of radioactivity; a number of features in the Nirex risk assessment that would lead to an underestimation of the potential risks of a repository at this site. (UK)

  7. The study of fracture mineralization and relationship with high level radioactive waste of deep geological repository

    International Nuclear Information System (INIS)

    Reyes, Cristina N.

    2003-01-01

    Extensive investigations of the Ordovician, Dinantian and Permo-Triassic rocks of the Sellafield area of northwest England were undertaken by United Kingdom Nirex Ltd. as a possible national site for geological disposal of intermediate and low-level radioactive waste. Very detailed studies of fracture mineralisation at Sellafield were thus put in hand by Nirex Ltd. and the results summarised by the British Geological Survey. Deep (up to 2 km) boreholes were put down with excellent core recovery. It is generally agreed that the most significant pathway for the escape of all but a very few radionuclides is by solution in and advection of groundwater. In this context, rock fracture systems are particularly important because they offer a potentially rapid pathway to the surface and the biosphere. One striking aspect of this work is that the fracture mineralisation seemingly records major and rapid fluctuations in redox conditions -sometimes during apparently continuous precipitation of cements (ferroan and non-ferroan calcites, dolomite). Carbonate cements record variations in Fe 2+ availability. Fe(III) precipitates also as oxide (hematite) and Fe(II) as sulphide (pyrite). This study focuses on these elements and valence states and also on Mn; another element susceptible to redox controls but known to respond differently from Fe. Shallow sub-surface stores or repositories would be more likely to have oxidising or fluctuating redox conditions. The mineralisation sequences documented at Sellafield are potentially promising in this context. Ferroan carbonate cements are sensitive indicators of later movement of oxidising ground waters. (author)

  8. Modeling in low-level radioactive waste management from the US Geological Survey perspective

    International Nuclear Information System (INIS)

    Robertson, J.B.

    1980-01-01

    The United States Geological Survey (USGS) is a long-standing proponent of using models as tools in geohydrologic investigations. These models vary from maps and core samples to elaborate digital computer algorithms, depending on the needed application and resources available. Being a non-regulatory scientific agency, the USGS uses models primarily for: improving modeling technology, testing hypotheses, management of water resources, providing technical advice to other agencies, parameter sensitivity analysis, and determination of parameter values (inverse problems). At low-level radioactive waste disposal sites, we are most interested in developing better capabilities for understanding the groundwater flor regime within and away from burial trenches, geochemical factors affecting nuclide concentration and mobility in groundwater, and the effects that various changes in the geohydrologic conditions have on groundwater flow and nuclide migration. Although the Geological Survey has modeling capabilities in a variety of complex problems, significant deficiencies and limitations remain in certain areas, such as fracture flow conditions and solute transport in the unsaturated zone. However, even more serious are the deficiencies in measuring or estimating adequate input data for models and verification of model utility on real problems. Flow and transport models are being used by the USGS in several low-level disposal site studies, with varying degrees of sucess

  9. Preliminary analysis on the disposal of high-level radioactive wastes in geological formations of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Mattos, Luis Antonio Terribile de

    1981-01-01

    Several studies show that deep geological formations are the most promising solution - technical and economical - for the safe disposal of the high-level radioactive wastes produced by the nuclear industry. In order to obtain the necessary information to assess on the use of geological sites in Brazil - for the disposal of high-level radioactive waste generated by the brazilian nuclear industry - a careful survey on the basalt and granite rocks of Sao Paulo State was made. The data obtained were evaluated according to guidelines established by the International Atomic Energy Agency. The favourable and unfavourable characteristics of the basalts, granites and their respective occurrence areas in the Sao Paulo state territory - as potential waste disposal sites - were analysed. This preliminary and regional characterization is not a conclusive study whether these two rocks types are definitively the most suitable geological formations for use as nuclear waste repository or not. It is the subsidy for a more detailed analysis. Other factors such as social, political and economical aspects, ecological effects, engineering geology, heat generation rate of the waste, type of radiation emitted and corrosive nature of the waste must also be taken into account. (author)

  10. Geological disposal of radioactive waste: national commitment, local and regional involvement - A Collective Statement of the OECD Nuclear Energy Agency Radioactive Waste Management Committee Adopted March 2012

    International Nuclear Information System (INIS)

    2012-01-01

    Disposal in engineered facilities built in stable, deep geological formations is the reference solution for permanently isolating long-lived radioactive waste from the human biosphere. This management method is designed to be intrinsically safe and final, meaning that it is not dependent on human presence or intervention in order to fulfil its safety goal. Selecting the site of a waste repository brings up a range of issues involving scientific knowledge, technical capacity, ethical values, territorial planning, community well-being and more. Bringing to fruition the multi-decade task of siting and developing a repository demands a strong national commitment and significant regional and local involvement. This collective statement by the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency recognises the advances made towards greater transparency and dialogue among the diverse stakeholders concerned and identifies the fundamental elements needed to support national commitment and to foster territorial involvement. It concludes that technical and societal partners can develop shared confidence in the safety of geological repositories and jointly carry these projects forward [fr

  11. Geological disposal of radioactive wastes: national commitment, local and regional involvement. A Collective Statement of the OECD Nuclear Energy Agency 'Radioactive Waste Management Committee', adopted March 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Disposal in engineered facilities built in stable, deep geological formations is the reference solution for permanently isolating long-lived radioactive waste from the human biosphere. This management method is designed to be intrinsically safe and final, i.e. not dependent on human presence and intervention in order to fulfil its safety goal. Siting waste repositories brings up a range of issues that touch on scientific knowledge, technical capacity, ethical values, territorial planning, community well-being, and more. Bringing to fruition the multi-decades task of siting and developing a repository demands a strong national commitment and a significant regional and local involvement. This Collective Statement by the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency recognizes the advances made toward greater transparency and dialogue among the diverse relevant stakeholders and identifies the fundamental ingredients needed to support national commitment and foster territorial involvement. It concludes that technical and societal partners can develop shared confidence in the safety of geological repositories and jointly carry these projects forward

  12. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  13. Extended biosphere dataset for safety assessment of radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Kato, Tomoko; Suzuki, Yuji

    2007-01-01

    JAEA has an on-going programme of research and development relating to the safety assessment of the deep geological disposal systems of high-level radioactive waste (HLW) and transuranic waste (TRU). In the safety assessment of HLW and TRU disposal systems, biosphere assessment is necessary to estimate future radiological impacts on human beings (e.g. radiation dose). In order to estimate radiation dose, consideration needs to be given to the biosphere into which future releases of radionuclides might occur and to the associated future human behaviour. The data of some biosphere parameters needed to be updated by appropriate data sources for generic and site-specific biosphere assessment to improve reliability for the biosphere assessment, because some data published in the 1980's or the early 90's were found to be inappropriate for the recent biosphere assessment. Therefore, data of the significant parameters (especially for element-dependent) were set up on the basis of recent information, to update the generic biosphere dataset. (author)

  14. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  15. Geological repository layout for radioactive high level long lived waste in argillite

    International Nuclear Information System (INIS)

    Gaussen, JL

    2006-01-01

    In the framework of the 1991 French radioactive waste act, ANDRA has studied the feasibility of a geological repository in the argillite layer of the Bure site for high level long lived waste. This presentation is focussed on the underground facilities which constitute the specific component of this project. The preliminary underground layout which has been elaborated is based on four categories of data: - the waste characteristics and inventory; - the geological properties of the host argillite; - the long term performance objectives of the repository; - the specifications in terms of operation and reversibility. The underground facilities consist of two types of works: the access works (shafts and drifts) and the disposal cells. The function of the access works is to permit the implementation of two concurrent activities: the nuclear operations (transfer and emplacement of the disposal packages into the disposal cells) and the construction of the next disposal cells. The design of the drifts network which matches up to this function is also influenced by two other specifications: the minimization of the drift dimensions in order to limit their influence on the integrity of the geological formation and the necessity of a safe ventilation in case of fire. The resulting layout is a network of 4 parallel drifts (2 of them being dedicated to the operation, the other two being dedicated to the construction activities). The average diameter of these access drifts is 7 meters. The link between the surface and the underground is ensured by 4 shafts. The most important function of the disposal cells is to contribute to the long term performance of the repository. In this regard, the thermal and geotechnical considerations play an important role. The B wastes (intermediate level wastes) are not (or not very) exothermic. Consequently, the design of their disposal cells result mainly from geotechnical considerations. The disposal packages (made of concrete) are piled up in

  16. Geologic siting considerations for the disposal of radioactive waste into submarine geologic formations

    International Nuclear Information System (INIS)

    Hollister, C.D.

    1979-01-01

    The most desirable characteristics of the host medium are: (1) low permeability and high Kd; (2) ability to self heal, i.e., be visco-elastic in response to dynamic stress; (3) stability under predicted thermal loading; (4) a low content of organic matter, i.e., be well oxidized. The submarine geologic formation that appears to best satisfy the above criteria is abyssal red clay. Depending on organic interactions and permeability considerations, light brown deep-sea clays with 20 to 40% CaCO 3 also may be suitable. Increasingly organic-rich, more permeable biogenic oozes appear less suitable, with turbidite sands and silts least desirable of all. Ocean regions excluded at the present time are: (1) areas less than 4000 meters deep; (2) the continental margin including fans, deltas, aprons, cones; (3) proximal portions of abyssal plains; (4) all fracture zone abyssal plains; (5) all submarine canyon-levee systems; (6) areas covered with less than 50 meters of sediment; (7) areas greater than 100 nautical miles from plate boundaries; (8) areas with ice-rafted debris; (9) major shipping lanes, cable routes and defense installations; (10) seafloor regions below areas of high biological productivity; and (11) approximately one third of the world's ocean floor satisfy these criteria

  17. Strategic program for deep geological disposal of high level radioactive waste in China

    International Nuclear Information System (INIS)

    Wang Ju

    2004-01-01

    A strategic program for deep geological disposal of high level radioactive waste in China is proposed in this paper. A '3-step technical strategy': site selection and site characterization-site specific underground research laboratory-final repository, is proposed for the development of China's high level radioactive waste repository. The activities related with site selection and site characterization for the repository can be combined with those for the underground research laboratory. The goal of the strategy is to build China's repository around 2040, while the activities can be divided into 4 phases: 1) site selection and site characterization; 2) site confirmation and construction of underground research laboratory, 3) in-situ experiment and disposal demonstration, and 4) construction of repository. The targets and tasks for each phase are proposed. The logistic relationship among the activities is discussed. It is pointed out that the site selection and site characterization provide the basis for the program, the fundamental study and underground research laboratory study are the key support, the performance assessment plays a guiding role, while the construction of a qualified repository is the final goal. The site selection can be divided into 3 stages: comparison among pre-selected areas, comparison among pre-selected sites and confirmation of the final site. According to this strategy, the final site for China's underground research laboratory and repository will be confirmed in 2015, where the construction of an underground laboratory will be started. In 2025 the underground laboratory will have been constructed, while in around 2040, the construction of a final repository is to be completed

  18. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 10. Repository preconceptual design studies: granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 10 ''Repository Preconceptual Design Studies: Granite,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in granite. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/11, ''Drawings for Repository Preconceptual Design Studies: Granite.''

  19. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  20. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. An extra issue: background of the geological disposal

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, an extra issue of the progress report, was prepared for the expected readers of the report to have background information on the geological disposal. Thus it gives information about (1) generation of high-level radioactive wastes, (2) history of plans proposed for HLW disposal in Japan, and (3) procedure until the geological disposal plan is finally adopted and basic future schedules. It further discusses on such problems in HLW treatment and disposal, as for example a problem of reliable safety for a very long period. (Ohno, S.)

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  2. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  3. Use of naturally occurring helium to estimate ground-water velocities for studies of geologic storage of radioactive waste

    International Nuclear Information System (INIS)

    Marine, I.W.

    1977-01-01

    In a study of the potential for storing radioactive waste in metamorphic rock at the Savannah River Plant near Aiken, South Carolina, the rate of water movement was determined to be about 0.06 m/y by analyzing gas dissolved in the water. The gas contained up to 6 percent helium, which originated from the radioactive decay of natural uranium and thorium in the crystalline rock. The residence time of the water in the rock was calculated to be 840,000 years from the quantity of uranium and thorium in the rock, their rates of radioactive decay, and the quantity of helium dissolved in the water. The estimation of ground-water velocities by the helium method is more applicable to the assessment of a geologic site for storage of radioactive waste than are velocities estimated from packer tests, pumping tests, or artificial tracer tests, all of which require extensive time and space extrapolations

  4. Microbes in deep geological systems and their possible influence on radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    West, J M; McKinley, I G; Chapman, N A [Institute of Geological Sciences, Harwell (UK). Environmental Protection Unit

    1982-09-01

    Although the fact is often overlooked, proposed nuclear waste repositories in geological formations would exist in an environment quite capable of sustaining microbial life which could considerably affect containment of radionuclides. In this paper a brief review of biological tolerance of extreme environments is presented with particular reference to studies of the microbiology of deep geological formations. The possible influence of such organisms on the integrity of a waste repository and subsequent transport of radionuclides to the surface is discussed.

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  6. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  7. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  8. Emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes - would geological disposal be an appropriate solution for some of these wastes

    International Nuclear Information System (INIS)

    Rein, K. von

    1994-01-01

    This work deals with the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. After some generalities on the pollution of natural environment and the legislations taken by the swedish government the author tries to answer to the question : would geological disposal be an appropriate solution for the non-radioactive hazardous wastes? Then is given the general discussion of the last three articles concerning the background to current environmental policies and their implementation and more particularly the evolution and current thoughts about environmental policies, the managing hazardous activities and substances and the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. Comments and questions concerning the similarity or otherwise between the present position of radioactive waste disposal and the background to current environmental policies are indicated. (O.L.)

  9. Geological criteria for site selection of an LILW radioactive waste repository in the Philippines

    International Nuclear Information System (INIS)

    Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo; Palattao, Maria Visitacion; Reyes, Rolando; Nohay, Carl; Singayan, Alfonso

    2013-01-01

    In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its location along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)

  10. Geological criteria for site selection of an LILW radioactive waste repository in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Aurelio, Mario; Taguibao, Kristine Joy [National Institute of Geological Sciences, University of the Philippines, Quezon City (Philippines); Vargas, Edmundo; Palattao, Maria Visitacion; Reyes, Rolando; Nohay, Carl; Singayan, Alfonso [Philippine Nuclear Research Institute, Department of Science and Technology, Quezon City (Philippines)

    2013-07-01

    In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its location along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)

  11. Contribution to draft generic environmental impact statement on commercial waste management: radioactive waste isolation in geologic formations

    International Nuclear Information System (INIS)

    1978-04-01

    This document concentrates on deep geologic isolation of wastes in bedded salt, granite, shale, and basalt with emphasis on wastes from three fuel cycles: reprocessing wastes from uranium and plutonium recycling, reprocessing wastes from uranium-only recycling, and spent unreprocessed fuel with no recycling. The analyses presented in this document are based on preconceptual repository designs. As the repository designs progress through future phases, refinements will occur which might modify some of these results. The 12 sections in the report are: introduction; selection and description of generic repository sites; LWR wastes to be isolated in geologic formations; description of waste isolation facilities; effluents from the waste isolation facility; assessment of environment impacts for various geographical locations of a waste isolation facility; environmental monitoring; decommissioning; mine decommissioning site restoration; deep geologic alternative actions; potential mechanisms of containment failure; and considerations relevant to provisional versus final storage

  12. Interfaces between transport and geological disposal systems for high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    1994-09-01

    This document is an IAEA publication which identifies and discusses the interfaces and the interface requirements between high level waste, the waste transport system used for carriage of the waste to the disposal facility, and the high level waste disposal facility. The development of this document was prompted in part by the initiatives in various Member States to select, characterize and design the facilities for potential high level waste geological repositories. These initiatives have progressed to the point where an international document would be useful in calling attention to the need for establishing, in a systematic way, interfaces and interface requirements between the transport systems to be used and the waste disposal packages and geological repository. Refs, figs and tabs

  13. Geology of the Vaalputs radioactive waste disposal site in the Republic of South Africa

    International Nuclear Information System (INIS)

    Andreoli, M.A.G.; Andersen, N.J.B.; Levin, M.; Niemand, N.

    1987-01-01

    The Vaalputs site is underlain by an extensive veneer of Tertiary and Quaternary deposits covering a crystalline basement of Precambrian age. The geological history of the area, from the oldest to the youngest event, may be summarized as follows: 1. Polyphasic ductile/ductile-brittle deformation and 1 100 Ma old granulite facies metamorphism of a (volcano) sedimentary sequence, and of associated syntectonic to late-tectonic granitic and basic intrusions. 2. Deposition of glacial tillite after a long erosional hiatus in Karoo (Permian) times. The preservation of these rocks is limited to down-faulted structural blocks within the area investigated. 3. Lower Tertiary rejuvenation of older faults and shear zones, accompanied by kimberlitic volcanism, resulted in the uplift of the Kamiesberge mountain range west of the site. Intense erosion of these mountains shed abundant detritus, which accumulated in tectonically controlled troughs and fans. 4. From ca. 25 Ma ago to the Present, tectonic stability and (semi)arid conditions have generally prevailed, leading to an extensive thin cover of calcrete and wind-blown Kalahari sands. The unfaulted, highly impermeable nature of the Vaalputs formation renders it very suitable for the safe disposal of low- to medium-level radioactive waste in the area selected. However, the numerous faults and shear zones in the granitic and gneissic basement will need in-depth investigations should a high-level radwaste repository be required

  14. A directory of computer programs for assessment of radioactive waste disposal in geological formations. Volume 2

    International Nuclear Information System (INIS)

    Ashton, J.; Broyd, T.W.; Jones, M.A.; Knowles, N.C.; Liew, S.K.; Mawbey, C.S.; Read, D.; Smith, S.L.

    1993-01-01

    This directory describes computer programs suitable for the assessment of radioactive waste disposal facilities in geological formations. The programs, which are mainly applicable to the post-closure analysis of the repository, address combinations of the following topics: nuclide inventory, corrosion, leaching, geochemistry, geomechanics, heat transfer, groundwater flow, radionuclide migration, biosphere modelling, safety assessment and site evolution. A total of 320 programs are identified, of which 84 are reviewed in detail, 192 in summary and 44 in tabular fashion. Originally published in 1983, the directory was updated in 1985 with the addition of new programs and the revision of some of the existing program reviews. This directory has been completely rewritten in 1991 with the addition of more new programs and a full revision of all the existing program reviews, some of which have been deleted as they are no longer in general use. Although the directory is specific to the post-closure assessment of a repository site, some of the programs described can also be used in other areas of repository (e.g. repository design). This directory is composed of two volumes, the present volume is the second

  15. Bentonite analogue research related to geological disposal of radioactive waste: current status and future outlook

    Energy Technology Data Exchange (ETDEWEB)

    Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland)

    2015-06-15

    The practice of utilising natural analogues in assessing the long-term behaviour of various components of geological repositories for radioactive waste is already well established in most disposal programmes. Numerous studies on bentonites, focussing on bentonite interaction with other components of the engineered barrier system and a range of host rock environments, are present in the literature. In this article, recent bentonite natural analogue studies are briefly reviewed, and gaps in the current literature identified, with the aim of (1) suggesting where relevant new information could be obtained by data mining published bentonite natural analogue studies with a new focus on current safety case requirements, (2) collecting relevant information by revisiting known bentonite analogue sites and conducting investigations with more appropriate analytical techniques, and (3) identifying novel study sites where, for example, bentonite longevity in very dilute to highly saline groundwater conditions can be studied. It must be noted that the use of natural analogues in safety case development is likely to be site and repository design-specific in nature and thus emphasis is placed on the appropriate use of relevant natural analogue data on bentonite longevity. (authors)

  16. A directory of computer programs for assessment of radioactive waste disposal in geological formations. Volume 1

    International Nuclear Information System (INIS)

    Ashton, J.; Broyd, T.W.; Jones, M.A.; Knowles, N.C.; Liew, S.K.; Mawbey, C.S.; Read, D.; Smith, S.L.

    1993-01-01

    This directory describes computer programs suitable for the assessment of radioactive waste disposal facilities in geological formations. The programs, which are mainly applicable to the post-closure analysis of the repository, address combinations of the following topics: nuclide inventory, corrosion, leaching, geochemistry, geomechanics, heat transfer, groundwater flow, radionuclide migration, biosphere modelling, safety assessment and site evolution. A total of 320 programs are identified of which 84 are reviewed in detail, 192 in summary and 44 in tabular fashion. Originally published in 1983, the directory was updated in 1985 with the addition of new programs and the revision of some of the existing program reviews. This directory has been completely rewritten in 1991 with the addition of more new programs and a full revision of all the existing program reviews, some of which have been deleted as they are no longer in general use. Although the directory is specific to the post-closure assessment of a repository site, some of the programs described can also be used in other areas of repository (e.g. repository design). This directory is composed of two volumes, the present volume is the first

  17. Risk methodology for geologic disposal of radioactive waste: asymptotic properties of the environmental transport model

    International Nuclear Information System (INIS)

    Helton, J.C.; Brown, J.B.; Iman, R.L.

    1981-02-01

    The Environmental Transport Model is a compartmental model developed to represent the surface movement of radionuclides. The purpose of the present study is to investigate the asymptotic behavior of the model and to acquire insight with respect to such behavior and the variables which influence it. For four variations of a hypothetical river receiving a radionuclide discharge, the following properties are considered: predicted asymptotic values for environmental radionuclide concentrations and time required for environmental radionuclide concentrations to reach 90% of their predicted asymptotic values. Independent variables of two types are used to define each variation of the river: variables which define physical properties of the river system (e.g., soil depth, river discharge and sediment resuspension) and variables which summarize radionuclide properties (i.e., distribution coefficients). Sensitivity analysis techniques based on stepwise regression are used to determine the dominant variables influencing the behavior of the model. This work constitutes part of a project at Sandia National Laboratories funded by the Nuclear Regulatory Commission to develop a methodology to assess the risk associated with geologic disposal of radioactive waste

  18. Bentonite analogue research related to geological disposal of radioactive waste: current status and future outlook

    International Nuclear Information System (INIS)

    Reijonen, H.M.; Russel, A.W.

    2015-01-01

    The practice of utilising natural analogues in assessing the long-term behaviour of various components of geological repositories for radioactive waste is already well established in most disposal programmes. Numerous studies on bentonites, focussing on bentonite interaction with other components of the engineered barrier system and a range of host rock environments, are present in the literature. In this article, recent bentonite natural analogue studies are briefly reviewed, and gaps in the current literature identified, with the aim of (1) suggesting where relevant new information could be obtained by data mining published bentonite natural analogue studies with a new focus on current safety case requirements, (2) collecting relevant information by revisiting known bentonite analogue sites and conducting investigations with more appropriate analytical techniques, and (3) identifying novel study sites where, for example, bentonite longevity in very dilute to highly saline groundwater conditions can be studied. It must be noted that the use of natural analogues in safety case development is likely to be site and repository design-specific in nature and thus emphasis is placed on the appropriate use of relevant natural analogue data on bentonite longevity. (authors)

  19. A directory of computer programs for assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Broyd, T.W.; Dean, R.B.; Hobbs, G.D.; Knowles, N.C.; Putney, J.M.; Wrigley, J.

    1984-01-01

    This Directory describes computer programs suitable for the assessment of radioactive waste disposal facilities in geological formations. The programs, which are mainly applicable to the post closure analysis of the repository, address combinations of the following topics: nuclide inventory, corrosion, leaching, geochemistry, stress analysis, heat transfer, groundwater flow and radionuclide transport. Biosphere modelling, surface water flow and risk analysis are not covered. A total of 248 programs are identified, of which 50 are reviewed in detail, 134 in summary and 64 in tabular fashion. The directory has been compiled using a combination of literature searches, telephone and postal correspondence and meetings with recognised experts in the respective areas of work covered. It differs from previous reviews of computer programs for similar topics areas in two main respects. Firstly, the method of obtaining information has resulted in program descriptions of considerable breadth and detail. Secondly, the Directory has concentrated wherever possible on European codes, whereas most previous work of this nature has looked solely at programs developed in North America. The reviews are presented in good faith, but it has not been possible to run any of the programs on a computer, and so truly objective comparisons may not be made. Finally, although the Directory is specific to the post-closure assessment of a repository site, some of the programs described could also be used in other areas of repository analysis (eg repository design)

  20. Evaluation of performance of barrier materials in geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasakura, Takeshi; Kobayashi, Ichizo

    2004-01-01

    It is important to evaluate the hydraulic and mechanical performance of barrier materials for geological disposal of radioactive waste. Many experiments on the hydraulic and mechanical performance of barrier materials have been implemented. However, both the ordinary water head-controlled permeability test for evaluating hydraulic performance and the oedometer test for obtaining the mechanical properties are usually needed. In this study, the flow pump permeability test was applied to various barrier materials with the purpose of quickly evaluating their hydraulic performance. The flow pump permeability test was shown to be applicable to every barrier material employed in this study, of which the coefficient of permeability ranged from 10-7 to 10-14 m/sec. The time needed to obtain the coefficient of permeability was about 1/8 that of ordinary head-controlled permeability tests. The resulting coefficient of permeability was more accurate than that from the standard water head-controlled permeability test. Moreover, the bentonite-engineered barrier materials were subjected to a constant strain rate consolidation test, which is a method to quickly evaluate the mechanical performance. The results of the consolidation tests were consistent with the results of the oedometer tests and the necessary time for the test was reduced to only four days even in case of Na-ben-tonite, for which a couple of months was necessary with the standard oedometer test. (author)

  1. Geological disposal of high-level radioactive waste and the role of rock engineering

    International Nuclear Information System (INIS)

    Sugihara, Kozo

    2008-01-01

    Japan Atomic Energy Agency (JAEA) and its predecessors have been conducting an extensive geoscientific research program since the 1970's in order to contribute to the formation of a firm scientific and technological basis for the geological disposal of high level radioactive waste in Japan. As a part of this program, in situ experiments have been performed at the Tono Mine in soft sedimentary rocks and at the Kamaishi Mine in hard crystalline rocks. An experiment on excavation disturbance has been one of these experiments and has revealed the extent and properties of the excavation disturbed zone (EDZ) and the applicability of available measurement methods. It is suggested that mechanical excavation and controlled excavation have reduced excavation damage of the rock mass around a drift, although some improvements in the currently available methods for measuring and simulating the EDZ are essential to understand excavation disturbance in more detail. JAEA is now promoting two underground research laboratory projects in Japan; the Mizunami Underground Research Laboratory (MIU) project for crystalline rocks and the Horonobe Underground Research Laboratory (Horonobe URL) project for sedimentary rocks. From a rock mechanical point of view, the major interest in these projects will be paid to failure phenomenon deep underground, rock stress estimation at larger scales and long-term physical stability of underground structure. These projects are open for international collaboration. (author)

  2. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses

  3. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses.

  4. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 5. Baseline rock properties-granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/5, Baseline Rock Properties--Granite, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report, on the rock properties of typical granites, includes an evaluation of the various test results reported in the literature. Firstly, a literature survey was made in order to obtain a feel for the range of rock properties encountered. Then, granites representative of different geologic ages and from different parts of the United States were selected and studied in further detail. Some of the special characteristics of granite, such as anisotropy, creep and weathering were also investigated. Lastly, intact properties for a typical granite were selected and rock mass properties were derived using appropriate correction factors

  5. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 21. Ground water movement and nuclide transport

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    This volume, TM-36/21 Ground Water Movement and Nuclide Transport, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling of spent fuel and uranium-only recycling. The studies presented in this volume consider the effect of the construction of the repository and the consequent heat generation on the ground water movement. Additionally, the source concentrations and leach rates of selected radionuclides were studied in relation to the estimated ground water inflow rates. Studies were also performed to evaluate the long term migration of radionuclides as affected by the ground water flow. In all these studies, three geologic environments are considered; granite, shale and basalt.

  6. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  7. The geology of some United Kingdom nuclear sites related to the disposal of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1980-04-01

    The geological sequences beneath ten British nuclear sites are extrapolated from the available data. Formations that are potentially suitable hosts for low and medium level radioactive waste are identified and their relative merits assessed. Of the sites investigated, formations beneath five afford little or no potential, formations beneath a further three offer only moderate potential and sites underlain by the most favourable formations are at Dounreay and Harwell. (author)

  8. The geology of some United Kingdom nuclear sites related to the disposal of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1980-06-01

    The geological sequences beneath a further twelve nuclear sites in Britain are predicted from available data. Formations that are potentially suitable hosts for low and medium-level radioactive waste are identified and their relative merits assessed. Of the sites investigated, formations beneath six afford little or no potential, formations beneath a further 4 offer only moderate potential and sites underlain by the most favourable formations are Dungeness and Hinkley Point. (author)

  9. Adapting the notion of natural (geological) barrier for final disposal of low- and intermediate-level radioactive wastes in Romania

    International Nuclear Information System (INIS)

    Durdun, I.; Marunteanu, C.; Andrei, V.

    2001-01-01

    According to the Minimum Disturbances Design (MDD) notion by Carl-Olof Morfeldt of Mineconsult, Sweden, any site selection, design and construction of low- and intermediate-level radioactive waste repository should be based on a thorough knowledge of the geological environmental so that the implantation of the disposal facility induce no significant harmful consequences. This work presents the way in which the Romanian program of radioactive waste management was implemented for disposal of low- and intermediate-level radioactive wastes from Cernavoda NPP. Based on geological criteria of selection of lithologic, petrographic, tectonic, seismologic, hydrologic and geo-technic nature, 37 sites were analyzed from which 2 were retained and finally one, Saligny site, was chosen, as the most close to Cernavoda NPP. Also, public acceptance and transport connections were taken into consideration. SUTRA, SWMS-2D and CHAIN-2D codes were applied to analyze the safety and the geological barrier effects. The barrier consists in red clay, a smectitic mineralogic compound. The computation showed that in Saligny vault the maximal tritium extension is kept inside due to the red clay barrier. Geo-technical engineering works were conducted to improve the properties of the loess upper layer which resulted in lowering its sensitivity to moistening and erosion

  10. Safety regulation of geological disposal of radioactive waste: progress since Cordoba and remaining challenges

    International Nuclear Information System (INIS)

    Duncan, A.; Pescatore, C.

    2010-01-01

    Claudio Pescatore, Deputy Division Head (NEA) presented a paper, the purpose of which was to recall where we stood at the time of the Cordoba Workshop (1997) on the regulation of disposal of long-lived radioactive waste, to review developments since then, to present the key existing issues, and reflect on the remaining challenges and possible responses. The overview study on progress in regulation for geological disposal since the Cordoba workshop [NEA/RWMC/RF(2008)6], provides a good list of references regarding the first two issues. The presentation of the existing issues takes advantage of the synthesis of the responses to a questionnaire completed by the regulatory organisations in preparation for this workshop. It warns regulators and implementers that international work to date seems to have created an expectation in the mind of the public and in some organisations that nothing less than a guarantee by the regulator is needed of maintaining current levels of protection of both individuals and populations practically forever, regardless of the impracticality of this. This expectation needs to be replaced with a carefully and clearly explained understanding of the choices involved in dealing with long-lived radioactive waste against a background of our responsibilities to both current and future generations and our practical capacity to deliver them. Concerning the current major challenges faced in regulation, the paper comes back to the issue of the 'guarantee' by the regulator and it observes that there is no doubt that there is a willingness to do the best to comply with the principle of protection and that we are broadly convinced that current concepts for geological disposal, supported by multiple lines of reasoning and application of best available techniques (BAT) will meet that principle. However, we do not have the capacity to prove or guarantee this, nor do we believe that it is possible in practice. Although we are advised that it is neither

  11. Radioactive wastes - inventories and classification

    International Nuclear Information System (INIS)

    Brennecke, P.; Hollmann, A.

    1992-01-01

    A survey is given of the origins, types, conditioning, inventories, and expected abundance of radioactive wastes in the future in the Federal Republic of Germany. The Federal Government's radioactive waste disposal scheme provides that radioactive wastes be buried in deep geological formations which are expected to ensure a maintenance-free, unlimited and safe disposal without intentional excavation of the wastes at a later date. (orig./BBR) [de

  12. Performance assessment of geological isolation systems for radioactive waste. Disposal in clay formations

    International Nuclear Information System (INIS)

    Marivoet, J.; Bonne, A.

    1988-01-01

    In the framework of the PAGIS project of the CEC Research Programme on radioactive waste, performance assessment studies have been undertaken on the geological disposal of vitrified high-level waste in clay layers at a reference site at Mol (B) and a variant site at Harwell (UK). The calculations performed for the reference site shown that most radionuclides decay to negligible levels within the first meters of the clay barrier. The maximum dose rates arising from the geological disposal of HLW, as evaluated by the deterministic approach are about 10 -11 Sv/y for river pathways. If the sinking of a water well into the 150 m deep aquifer layer in the vicinity of the repository is considered together with a climatic change, the maximum calculated dose rate rises to a value of 3.10 -7 Sv/y. The calculated maxima arise between 1 million and 15 million years after disposal. The maximum dose rates evaluated by stochastic calculations are about one order of magnitude higher due to the considerable uncertainties in the model parameters. In the case of the Boom clay the estimated consequences of a fault scenario are of the same order of magnitude as the results obtained for the normal evolution scenario. The maximum risk is estimated from stochastic calculations to be about 4.10 -8 per year. For the variant site the case of the normal evolution scenario has been evaluated. The maximum dose rates calculated deterministically are about 1.10 -6 Sv/y for river pathways and 6.10 -5 Sv/y for a water well pathways; these doses would occur after about 1 million years. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  13. Bridging nuclear safety, security and safeguards at geological disposl of high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Niemeyer, Irmgard; Deissmann, Guido; Bosbach, Dirk

    2016-01-01

    Findings and recommendations: • Further R&D needed to identify concepts, methods and technologies that would be best suited for the holistic consideration of safety, security and safeguards provisions of geological disposal. • 3S ‘toolbox’, including concepts, methods and technologies for: ■ material accountancy, ■ measurement techniques for spent fuel verification, ■ containment and surveillance, ■ analysis of open source information, ■ environmental sampling and monitoring, ■ continuity of knowledge, ■ design implications. •: Bridging safety, security and safeguards in research funding and research activities related to geological disposal of high-level radioactive waste and spent nuclear fuel.

  14. Safety assessment of radioactive waste disposal into geological formations; a preliminary application of fault tree analysis to salt deposits

    International Nuclear Information System (INIS)

    Bertozzi, B.; D'Alessandro, M.; Girardi, F.; Vanossi, M.

    1978-01-01

    The methodology of the fault tree analysis (FTA) has been widely used at the Joint Research Centre of Ispra in nuclear reactor safety studies. The aim of the present work consisted in studying the applicability of this methodology to geological repositories of radioactive wastes, including criteria and approaches for the quantification of probalities of primary events. The present work has just an illustrative purpose. Two ideal cases of saline formations, I.E. a bedded salt and a diapir were chosen as potential disposal sites for radioactive waste. On the basis of arbitrarily assumed hydrogeological features of the salt formations and their surrounding environment, possible phenomena capable of causing the waste to be released from each formation have been discussed and gathered following the logical schemes of the FTA. The assessment of probability values for release events due to natural causes as well as to human actions, over different time periods, up to one million years, has been discussed

  15. Containers and overpacks for high-level radioactive waste in deep geological disposal. Conditions: French Corrosion Programme

    International Nuclear Information System (INIS)

    Crusset, D.; Plas, F.; Santarini, G.

    2003-01-01

    Within the framework of the act of French law dated 31 December, 1991, ANDRA (National Radioactive Waste Management Agency) is responsible for conducting the feasibility study on disposal of reversible and irreversible high-level or long-life radioactive waste in deep geological formations. Consequently, ANDRA is carrying out research on corrosion of the metallic materials envisaged for the possible construction of overpacks for vitrified waste packages or containers for spent nuclear fuel. Low-alloy or unalloyed steels and the passive alloys (Fe-Ni-Cr-Mo) constitute the two families of materials studied and ANDRA has set up a research programme in partnership with other research organisations. The 'broad outlines' of the programme, which includes experimental and modelling operations, are presented. (authors)

  16. Study on engineering economics of China high-level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Qu Jun; Guo Zongzhi; Yang Lirong; Hu Jiang

    2012-01-01

    In this paper, based on the research and analysis about the repository construction cost of the European, US and Japan, together with the concept design pattern of China's high level radioactive waste repository, the preliminary economic analysis of China is presented. Meanwhile, combining with China's nuclear power development layout and picking-up policy of spent fuel fund, the preliminary measurement concerning the capital resource of high level radioactive waste disposal is implemented, which contribute to the conclusion initiatively that the spent fuel fund could meet the need of the financial demand of disposal cost. (authors)

  17. The environmental and ethical basis of the geological disposal of long-lived radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1995-01-01

    This partial translation into Finnish of the recently issued Collective Opinion of the Radioactive Waste Management Committee (RWMC) of the OECD Nuclear Energy Agency is published here to provide general information to the members of the Finnish Nuclear Society. Full translation will be published later by the Ministry of Trade and Industry. The collective opinion addresses the strategy for the final disposal of long-lived radioactive wastes seen from an environmental and ethical perspective, including considerations of equity and fairness within and between generations

  18. Qualitative acceptance criteria for radioactive wastes to be disposed of in deep geological formations

    International Nuclear Information System (INIS)

    1990-05-01

    The present Safety Guide has to be seen as a companion document to the IAEA Safety Series No. 99. It is concerned with the waste form which is an important component of the overall disposal system. Because of the broad range of waste types and conditioned forms and variations in the sites, designs and constructional approaches being considered for deep geological repositories, this report necessarily approaches the waste acceptance criteria in a general way, recognizing that the assignment of quantitative limits to these criteria has to be the responsibility of national authorities. The main objective of this Safety Guide is to set out qualitative waste acceptance criteria as a basis for specifying quantitative limits for the waste forms and packages which are intended to be disposed of in deep geological repositories. It should serve as guidance for assigning such parameter values which would fully comply with the safety assessment and performance of a waste disposal system as a whole. This document is intended to serve both national authorities and regulatory bodies involved in the development of deep underground disposal systems. The qualitative waste acceptance criteria dealt with in the present Safety Guide are primarily concerned with the disposal of high level, intermediate level and long-lived alpha bearing wastes in deep geological repositories. Although some criteria are also applicable in other waste disposal concepts, it has to be borne in mind that the set of criteria presented here shall ensure the isolation capability of a waste disposal system for periods of time much longer than for other waste streams with shorter lifetimes. 51 refs, 1 tab

  19. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  20. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  1. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2006-01-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  2. Radioactive waste

    International Nuclear Information System (INIS)

    Berkhout, F.

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  3. Radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, F

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author).

  4. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  5. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  6. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  7. Report of ICRP Task Group 80: 'radiological protection in geological disposal of long-lived solid radioactive waste'.

    Science.gov (United States)

    Weiss, W

    2012-01-01

    The report of International Commission on Radiological Protection (ICRP) Task Group 80 entitled 'Radiological protection in geological disposal of long-lived solid radioactive waste' updates and consolidates previous ICRP recommendations related to solid waste disposal (ICRP Publications 46, 77, and 81). The recommendations given in this report apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the 2007 system of radiological protection, described in ICRP Publication 103, can be applied in the context of the geological disposal of long-lived solid radioactive waste. The report is written as a self-standing document. It describes the different stages in the lifetime of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences application of the protection system over the different phases in the lifetime of a disposal facility is the level of oversight that is present. The level of oversight affects the capability to reduce or avoid exposures. Three main time frames have to be considered for the purpose of radiological protection: time of direct oversight when the disposal facility is being implemented and active oversight is taking place; time of indirect oversight when the disposal facility is sealed and indirect oversight is being exercised to provide additional assurance on behalf of the population; and time of no oversight when oversight is no longer exercised because memory is lost. Copyright © 2012. Published by Elsevier Ltd.

  8. Consideration of timescales in post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2006-11-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. Over such periods, a wide range of events and processes characterised by many different timescales acts on a repository and its environment. These events and processes, their attendant uncertainties, and their possible impacts on repository evolution and performance must be identified, assessed and communicated in a safety case. The handling of issues related to timescales was discussed at an OECD/NEA workshop held in Paris in 2002 and a short report providing an account of the lessons learnt and issues raised at the workshop, was published in 2004. There is, however, an evolving understanding regarding the nature of the issues related to timescales and how they should be addressed, which provides the motivation for the present report. The report is based on the analysis of the responses to a questionnaire received from twenty-four organisations, representing both implementers and regulators from thirteen OECD member countries, as well as discussions that took place in several later meetings. The report is aimed at interested parties that already have some detailed background knowledge of safety assessment methodologies and safety cases, including safety assessment practitioners and regulators, project managers and scientific specialists in relevant disciplines. Its aims are: - to review the current status and ongoing discussions on the handling of issues related to timescales in the deep geological disposal of long-lived radioactive waste; - to highlight areas of consensus and points of difference between national programmes; and - to determine if there is room for further improvement in methodologies to handle these issues in safety assessment and in building and presenting safety cases. The handling of issues related to timescales in safety cases is affected

  9. Methodology for the biosphere analysis in the evaluation of deep geological repositories for high radioactive waste

    International Nuclear Information System (INIS)

    Cancio, D.; Pinedo, P.; Aguero, A.; Simon, I.; Torres, C.; Robles, B.; Smith, G.M.; Little, R.; Watkings, B.; Brice, A.; Jaen, J.A.; Coronado, S.

    1997-01-01

    This report summarizes the work done and the achievements reached within the R and D Project that IMA/CIEMAT has had with ENRESA during 1993-1995. The overal R and D Project has a wide radiological protection context, but the work reported here relates only to the development of a Methodology for considering the Biosphere sub-system in the assessments of deep geological repositories for high radioactive wastes (HLW). The main areas concerned within the Methodology have to do with Biosphere structure and morphology in the long-term relevant to deep disposal of HLW: in the contexts of the assessment of these systems, and appropiate modelling of the behaviour of radionuclides released to the biosphere system and with the associated human exposure. This document first provides a review of the past and present international and national concerns about the biosphere modelling and its importance in relation to the definition of safety criteria. A joint ENRESA/ANDRA/IPSN/CIEMAT study about the definition and proactical descriptions of the biosphere systems under different climatic states is then summarized. The Methodology developed by IMA/CIEMAT is outlined with an illustration of the way it works. Different steps and procedures are included for a better proactical understanding of the software tools developed within the project to support the application of the Methologoy. This Methodology is widely based on an international working group on Reference Biospheres part national work for ENRESA has been supported under a collaborative agreement with QuantiSci Ltd. Specific software development have been carried out in collaboration with QuantiSci Ltd and with the Polytechnical University of Madrid. Most of the items included within the Methodology and moreover the Methodology as a whole, follows a continuos progressive development. It is increasinaly recognized that assessment capabilities, establisment of safety criteria and regulatory framework and the steps in a

  10. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 22. Nuclear considerations for repository design

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/22, ''Nuclear Considerations for Repository Design,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. Included in this volume are baseline design considerations such as characteristics of canisters, drums, casks, overpacks, and shipping containers; maximum allowable and actual decay-heat levels; and canister radiation levels. Other topics include safeguard and protection considerations; occupational radiation exposure including ALARA programs; shielding of canisters, transporters and forklift trucks; monitoring considerations; mine water treatment; canister integrity; and criticality calculations

  11. Use of natural analogues to support radionuclide transport models for deep geological repositories for long lived radioactive wastes

    International Nuclear Information System (INIS)

    1999-10-01

    Plans to dispose high level and long lived radioactive wastes in deep geological repositories have raised a number of unique problems, mainly due to the very long time-scales which have to be considered. An important way to help to evaluate performance and provide confidence in the assessment of safety in the long term is to carry out natural analogue studies. Natural analogues can be regarded as long term natural experiments the results or outcome of which can be observed, but which, by definition, are uncontrolled by humans. Studies of natural analogues have been carried out for more than two decades, although the application of information from them is only relatively recently becoming scientifically well ordered. This report is part of a the IAEA's programme on radioactive waste management dealing with disposal system technology for high level and long lived radioactive waste. It presents the current status of natural analogue information in evaluating models for radionuclide transport by groundwater. In particular, emphasis is given to the most useful aspects of quantitative applications for model development and testing (geochemistry and coupled transport models). The report provides an overview of various natural analogues as reference for those planning to develop a research programme in this field. Recommendations are given on the use of natural analogues to engender confidence in the safety of disposal systems. This report is a follow up of Technical Reports Series No. 304 on Natural Analogues in Performance Assessments for the Disposal of Long Lived Radioactive Waste (1989)

  12. Status of technology for isolating high-level radioactive wastes in geologic repositories

    International Nuclear Information System (INIS)

    Klingsberg, C.; Duguid, J.

    1980-10-01

    This report attempts to summarize the status of scientific and technological knowledge relevant to long-term isolation of high-level and transuranic wastes in a mined geologic repository. It also identifies and evaluates needed information and identifies topics in which work is under way or needed to reduce uncertainties. The major findings and conclusions on the following topics are presented: importance of the systems approach; prospects for successful isolation of wastes; need for site-specific investigations; human activities in the future; importance of modelling; disposal of transuranic wastes; status of technology of isolation barriers, performance assessment, site selection and characterization, and potential host rocks

  13. In situ experiments for disposal of radioactive wastes in deep geological formations

    International Nuclear Information System (INIS)

    1987-12-01

    This report reviews the current status of in-situ experiments undertaken to assess various concepts for disposal of spent fuel and reprocessed high-level waste in deep geological formations. Specifically it describes in-situ experiments in three geological formations - clay, granite and domed salt. The emphasis in this report is on the in-situ experiments which deal with the various issues related to the near-field effects in a repository and the geological environment immediately surrounding the repository. These near-field effects are due to the disturbance caused by both the construction of the repository and the waste itself. The descriptions are drawn primarily from four underground research facilities: the Underground Experimental Facility, Belgium (clay), the Stripa Project, Sweden and the Underground Research Laboratory, Canada (granite) and the Asse Mine, Federal Republic of Germany (salt). 54 refs, figs and tab

  14. Long-term evolution of radio-active waste storage in geological formations: analogy with the weathering of mineral deposits

    International Nuclear Information System (INIS)

    Cantinolle, P.; Griffault, L.; Jebrak, M.

    1986-01-01

    The aim of this study was to select examples of mineral deposits and their weathering environment, showing the long-term behaviour, in geological time, measuring (area, volume) some constituent elements of radio-active waste storage subject to the hazards of hydrogeochemical weathering. Initially, a feasibility study was made to collate data available within the BRGM (mining group and public service) and from literature dealing with weathering of deposits. It was thus discovered that the analogy between radio-active waste storage and mineral deposits could be approached in two different yet complementary ways: - one approach is to observe the behaviour of a mineral deposit in relation to the country rocks. For this a bibliographic metallogenic study was made. The other approach is to observe the behaviour of chemical elements during deposition of a mineral deposit whose genesis is similar to the spatial and thermal environment of a deposit of radio-active waste in a geological formation. For this two sites were selected corresponding to hydrothermal systems showing strong analogies to those expected in the neighbourhood of the storage sites. These two sites, Langenberg in the Vosges and La Telhaie in Brittany, were the subject of complementary analytical work [fr

  15. Long-term risk assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.; D'Alessandro, M.

    1978-01-01

    Methods for long-term safety analysis of waste from nuclear power production in the European Community are under study at the Joint Research Centre (JRC) at Ispra, Italy. Aim of the work is to develop a suitable methodology for long-term risk assessment. The methodology under study is based on the assessment of the quantitative value of a system of barriers which may be interposed between waste and man. The barriers considered are: a) quality of the segregation afforded by the geological formation, b) chemical and physical stability of conditioned waste, c) interaction with geological environments (subsoil retention), d) distribution in the biosphere. The methodology is presently being applied to idealized test cases based on the following assumptions: waste are generated during 30 years of operations in a nuclear park (reprocessing + refabrication plant) capable of treating 1000 ton/yr of LWR fuel. High activity waste is conditioned as borosilicate glass (HAW) while low- and medium-level wastes are bituminized (BIP). All waste is disposed off into a salt formation. Transport to the biosphere, following the containment failure occurs by groundwater, with no delay due to retention on adsorbing media. Distribution into the biosphere occurs according to the terrestrial model indicated. Under these assumptions, information was drawn concerning environmental contamination, its levels, contributing elements and pathways to man

  16. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    For the final disposal of conditioned radioactive wastes clay formations have plasticity, low permeability and high sorption capacity in their favour. Their disadvantage lies in their thermal conductivity and moisture content. The aim of this document is to take stock of the state of the art pertaining to the thermal phenomena linked to the dispoasl of conditioned radioactive wastes. The study, limited to normal, non-accident operating conditions, considers vitrified wastes cast in metal containers and disposal of in an underground infrastructure built in clay. The composition and characteristics of clays can vary widely between formations and even between sites, since the nature and content of argillaceous and other minerals depend on age, sedimentation conditions, depth, origin of the sediments, etc. This study is therefore limited to a specific clay in a specific deposit, i.e., the Boom clay located at Mol beneath the CEN/SCK establishment

  17. Influence of radiation on the system liquid radioactive wastes: geologic formation

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Balukova, V.D.; Kabakchi, S.A.; Medvedeva, M.L.

    1979-01-01

    Introduction of liquid radioactive wastes into deep strata-collectors results in a number of physical-chemical processes: precipitation, dissolution, complex formation, sorption, etc. The area occupied by the injected waste and changes in the nature of the liquid phase depend primarily on radiolysis processes in the heterogeneous system of liquid waste-stratal material occurring at elevated temperatures and pressures. Experiments that simulate actual conditions of temperature, pressure and high radiation levels on this system have been performed. Results are presented for radiolytic gas formation and for changes in the liquid phase and sorption capacity of stratal minerals. It is shown that the temperature increase in the stratum-collector significantly enhances waste decomposition processes, promotes sorption of radionuclides and decreases the mobility of the waste in the formation

  18. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 3. Safety assessment for geological disposal systems

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 3 of the progress report, concerns safety assessment for geological disposal systems definitely introduced in part 1 and 2 of this series and consists of 9 chapters. Chapter I concerns the methodology for safety assessment while Chapter II deals with diversity and uncertainty about the scenario, the adequate model and the required data of the systems above. Chapter III summarizes the components of the geological disposal system. Chapter IV refers to the relationship between radioactive wastes and human life through groundwater, i.e. nuclide migration. In Chapter V is made a reference case which characterizes the geological environmental data using artificial barrier specifications. (Ohno. S.)

  19. Radioactive wastes

    International Nuclear Information System (INIS)

    Straub, C.P.

    1975-01-01

    A review is presented on the environmental behavior of radioactive wastes. The management of high-level wastes and waste disposal methods were discussed. Some topics included were ore processing, coagulation, absorption and ion exchange, fixation, ground disposal, flotation, evaporation, transmutation and extraterrestrial disposal. Reports were given of the 226 Ra, 224 Ra and tritium activity in hot springs, 90 Sr concentrations in the groundwater and in White Oak Creek, radionuclide content of algae, grasses and plankton, radionuclides in the Danube River, Hudson River, Pacific Ocean, Atlantic Ocean, Lake Michigan, Columbia River and other surface waters. Analysis showed that 239 Pu was scavenged from Lake Michigan water by phytoplankton and algae by a concentration factor of up to 10,000. Benthic invertebrates and fish showed higher 239 Pu concentrations than did their pelagic counterparts. Concentration factors are also given for 234 Th, 60 Co, Fe and Mr in marine organisms. Two models for predicting the impact of radioactivity in the food chain on man were mentioned. In an accidental release from a light-water power reactor to the ocean, the most important radionuclides discharged were found to be 90 Sr, 137 Cs, 239 Pu and activation products 65 Zr, 59 Fe, and 95 Zr

  20. Self-sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2010-01-01

    Disposal of high-level radioactive waste and spent nuclear fuel in engineered facilities, or repositories, located deep underground in suitable geological formations is being developed worldwide as the reference solution to protect humans and the environment both now and in the future. Assessing the long-term safety of geological disposal requires developing a comprehensive understanding of the geological environment. The transport pathways are key to this understanding. Of particular interest are fractures in the host rock, which may be either naturally occurring or induced, for example, during the construction of engineered portions of a repository. Such fractures could provide pathways for migration of contaminants. In argillaceous (clay) formations, there is evidence that, over time, fractures can become less conductive and eventually hydraulically insignificant. This process is commonly termed 'self-sealing'. The capacity for self-sealing relates directly to the function of clay host rocks as migration barriers and, consequently, to the safety of deep repositories in those geological settings. This report - conducted under the auspices of the NEA Clay Club - reviews the evidence and mechanisms for self-sealing properties of clays and evaluates their relevance to geological disposal. Results from laboratory tests, field investigations and geological analogues are considered. The evidence shows that, for many types of argillaceous formations, the understanding of self-sealing has progressed to a level that could justify its inclusion in performance assessments for geological repositories. (authors)

  1. Workshop on geologic data requirements for radioactive waste management assessment models, Santa Fe, New Mexico, June 28--July 1, 1976

    International Nuclear Information System (INIS)

    1976-09-01

    Exchange of information is needed among persons working in two broad categories of studies concerned with terminal storage of radioactive waste. These two categories are: (1) investigations of several types of geologic formations in a number of locations to determine suitability for use with various emplacement techniques, and (2) development of models for the ERDA, NRC, and EPA, for the general purpose of assessing the long term safety of terminal storage facilities. The Workshop held in Santa Fe, New Mexico, June 28-July 1, 1976, sponsored by the Office of Waste Isolation and arranged by The University of New Mexico addressed this need. Presentations covered background topics of: geologic studies being made, methods for risk analysis, assessment models being developed, and descriptions of field observations of radionuclide migration. During vigorous discussion periods, a list of items to be jointly attacked by geologists and modelers was worked out

  2. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-09-01

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  3. Validation of predictive models for geologic disposal of radioactive waste via natural analogs

    International Nuclear Information System (INIS)

    Cohen, J.J.; Smith, C.F.

    1981-03-01

    The incorporation of toxic or hazardous material in the earth's crust is a phenomenon not unique to radioactive waste burial. Useful insights on the environmental transport and effects of underground toxic or radioactive material can be derived from comparative analysis against natural (mineral) analogs. This paper includes a discussion of the background and rationale for the analog approach, a descripton of several variations of the approach, and some sample applications to illustrate the concept, focusing on Radium-226 and Iodine-129 as specific case studies

  4. Regulation and Guidance for the Geological Disposal of Radioactive Waste. Review of the Literature and Initiatives of the Past Decade

    International Nuclear Information System (INIS)

    2010-01-01

    In January 1997, the NEA workshop 'Regulating the Long-term Safety of Radioactive Waste Disposal' (the 'Cordoba workshop') provided an important reference point for regulatory issues in the field of geological disposal of radioactive waste. These issues included regulatory frameworks at the national and international levels, the understanding of what is meant by demonstrating regulatory compliance, and approaches to an appropriate regulatory process. In the intervening years many international and national developments have taken place. A follow-up workshop was organised in Tokyo in January 2009 to take stock of progress, with a draft providing an overview of the development of regulation and guidance at both national and international levels, on international and multi-national initiatives for developing recommendations and common views on regulatory issues, as well as an overview of the experience of regulatory review of some of the safety studies produced during the last decade. This paper reviews the evolution of these initiatives and issues over the past decade or so focusing on the major areas addressed in Cordoba, notably: international developments in regulation (IRCP recommendations, IAEA Safety Standards, developments at the NEA), radioactive waste disposal criteria (risk/dose criteria for protection of human beings, protection of the environment, timescales), performance assessment trends (General development of performance assessment/safety case, further technical, scientific and methodical aspects), the conduct of the regulatory process (technical review process, non-technical aspects and their impact). With regard to regulatory development at the international level, the Safety Requirements WS-R-4 'Geological Disposal of Radioactive Waste' (issued in 2006 and jointly sponsored by the IAEA and the NEA) is addressed in particular

  5. Devising a groundwater monitoring strategy for a geologic repository for radioactive waste

    International Nuclear Information System (INIS)

    Leonhart, L.S.; DeLuca, F.A.; Sheahan, N.T.; West, L.M.

    1981-01-01

    This paper represents a topical treatment of the subject of groundwater monitoring as it relates to the particular needs of high-level nuclear waste disposal facilities using the Basalt Waste Isolation Project (BWIP) as a specific reference. While the involvement with management of high-level radioactive wastes and the design and operation of repository facilities is presently parochial to the federal government and certain prime contractors, it is believed that the technical aspects involved with this groundwater monitoring example provide an interesting comparison with those encountered at near-surface and underground-injection, hazardous waste disposal operations. In particular, the integration of several program facets ranging from baselining parameters to validation of predictive models into a comprehensive strategy may be of interest. It is hoped that this type of conceptual exchange will be beneficial to all concerned

  6. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography

  7. Issues relating to safety standards on the geological disposal of radioactive waste. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    2002-06-01

    Within the International Atomic Energy Agency focus is currently being placed on establishing safety standards for the geological disposal of radioactive waste. This is a challenging task and a Specialists Meeting was held from 18 to 22 June 2001 with the intention of providing a mechanism for promoting discussion on some of the associated scientific and technical issues and as a means of developing the consensus needed for establishing the standards. The meeting used, as its basis, a number of position papers developed in recent years with the help of a subgroup of the Waste Safety Standards Committee (WASSC), the subgroup on Principles and Criteria for Radioactive Waste Disposal, together with selected relevant regional and national papers. The report contains the summaries of the sessions of the Specialists Meeting together with the conclusions drawn relevant to the establishment of standards. The sessions of the Meeting addressed the following topics: Common framework for radioactive waste disposal; Making the safety case - demonstrating compliance; Safety indicators; Reference critical groups and biospheres; Human intrusion; Reversibility and retrievability; Monitoring and institutional control. The publication contains 26 individual presentations delivered by participants. Each of these presentations was indexed separately

  8. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 6. Baseline rock properties-shale

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM36/6 Baseline Rock Properties--Shale, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. The report is a result of a literature survey of the rock properties of shales occurring in the United States. Firstly, data were collected from a wide variety of sources in order to obtain a feel for the range of properties encountered. Secondly, some typical shales were selected for detailed review and these are written up as separate chapters in this report. Owing to the wide variability in lithology and properties of shales occurring in the United States, it became necessary to focus the study on consolidated illite shales. Using the specific information already generated, a consistent set of intact properties for a typical, consolidated illite shale was obtained. Correction factors, largely based on geological considerations, were then applied to the intact data in order to yield typical rock mass properties for this type of shale. Lastly, excavation problems in shale formations were reviewed and three tunnel jobs were written up as case histories

  9. Human intrusion into geologic repositories for high-level radioactive waste: potential and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, F X [Nuclear Regulatory Commission, Washington, DC (USA). Office of Nuclear Regulatory Research

    1981-12-01

    Isolation of high-level radioactive waste over long periods of time requires protection not only from natural events and processes, but also from the deliberate or inadvertent activities of future societies. This paper evaluates the likelihood of inadvertent human intrusion due to the loss of societal memory of the repository site. In addition measures to prevent inadvertent intrusion, and to guide future societies in any decision to deliberately intrude into the repository are suggested.

  10. Study concerning the geological storage of radioactive waste in the Netherlands

    International Nuclear Information System (INIS)

    1987-03-01

    This report presents an intermediate state of affairs in the execution of the first stage of the program of research concerning the geological storage of nuclear waste in the Netherlands (OPLA-program). This first stage consists of desk studies and laboratory investigations in view of the judgement of the desirability of continuation of this program in eventual next steps with field research. 19 refs.; 11 figs.; 1 table

  11. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  12. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  13. Radiation damage studies on natural rock salt from various geological localities of interest to the radioactive waste disposal program

    International Nuclear Information System (INIS)

    Levy, P.W.

    1981-01-01

    As part of a program to investigate radiation damage in geological materials of interest to the radioactive waste disposal program, radiation damage, particularly radiation induced sodium metal colloid formation, has been studied in 14 natural rock salt samples. All measurements were made with equipment for making optical absorption and other measurements on samples, in a temperature controlled irradiation chamber, during and after 0.5 to 3.0 MeV electron irradiation. Samples were chosen for practical and scientific purposes, from localities that are potential repository sites and from different horizons at certain localities

  14. Great Meteor East (distal Madeira Abyssal Plain): geological studies of its suitability for disposal of heat-emitting radioactive wastes

    International Nuclear Information System (INIS)

    Searle, R.C.; Schultheiss, P.J.; Weaver, P.P.E.; Noel, M.; Kidd, R.B.; Jacobs, C.L.; Huggett, Q.J.

    1985-01-01

    This report summarises geological and geophysical studies carried out by the Institute of Oceanographic Sciences up to December 1983 in an area of the Madeira Abyssal Plain in order to assess its suitability for the disposal of heat-emitting radioactive waste. The results of work carried out in the same area by the Rijks Geologische Dienst of the Netherlands are also reviewed in the report. Other oceanographic studies in the area in the fields of geochemistry, biology and oceanography are briefly touched upon. (author)

  15. Status report on the Nuclear Regulatory Commission regulations for land disposal of low-level radioactive wastes and geologic repository disposal of high-level wastes

    International Nuclear Information System (INIS)

    Browning, R.E.; Bell, M.J.; Dragonette, K.S.; Johnson, T.C.; Roles, G.W.; Lohaus, P.H.; Regnier, E.P.

    1984-01-01

    On 27 December 1982, the United States Nuclear Regulatory Commission (NRC) amended its regulations to provide specific requirements for licensing the land disposal of low-level radioactive wastes. The regulations establish performance objectives for land disposal of waste; technical requirements for the siting, design, operations, and closure activities for a near-surface disposal facility; technical requirements concerning waste form and classification that waste generators must meet for the land disposal of waste; institutional requirements; financial assurance requirements; and administrative and procedural requirements for licensing a disposal facility. Waste generators must comply with the waste form and classification provisions of the new rule, on 27 December 1983, one year later. During this implementation period, licensees must develop programmes to ensure compliance with the new waste form and classification provisions. The NRC is also promulgating regulations specifying the technical criteria for disposal of high-level radioactive wastes in geological repositories. The proposed rule was published for public comment in July 1981. Public comments have been received and considered by the Commission staff. The Commission will soon approve and publish a revised final rule. While the final rule being considered by the Commission is fundamentally the same as the proposed rule, provisions have been added to permit flexibility in the application of numerical criteria, some detailed design requirements have been deleted, and other changes have been made in response to comments. The rule is consistent with the recently enacted Nuclear Waste Policy Act of 1982. (author)

  16. Behavior of rare earth elements in fractured aquifers: an application to geological disposal criteria for radioactive waste

    International Nuclear Information System (INIS)

    Lee, Seung Gu; Kim, Yong Je; Lee, Kil Yong; Kim, Kun Han

    2003-01-01

    An understanding of the geochemistry of potential host rocks is very important in the site evaluation for construction of an underground geologic repository for radioactive waste. Because of similar valence and ionic radii and high similarity in electronic structure with trivalent actinides (such as Am 3+ and Cm 3+ ), the rare earth elements (REEs) have been used to predict the behavior of actinide-series elements in solution (Runde et al., 1992). For Am and Cm, which occur only in the trivalent states in most waste-disposal repository environments, the analogy with the REEs is particularly relevant. In order to discuss the behavior of REEs in geological media and to deduce the behavior of actinides in geological environments based on the REE abundance, and to provide an useful tool in deciding an optimum geological condition for radioactive disposal, we estimated the REE abundance from various kinds of fractured rock type. In fractured granitic aquifer, chondrite-normalized REE pattern show Eu positive anomaly due to fracture-filling calcite precipitation. However, in fractured meta-basaltic and volcanic tuffaceous aquifer, REE pattern do not show the change of Eu anomaly due to fracture-filling calcite precipitation. Eu shows very similar properties such as cohesive energy, ionic radii with coordination number compared to Am. Therefore, if we consider the Eu behavior in fractured rocks and the similar physical/chemical properties of Eu and Am, together, our results strongly suggest that Eu is a very useful analogue for predicting the behavior of Am in geological environment

  17. The Influence of Engineering-Geological Conditions on the Construction of the Radioactive Waste Dump

    Directory of Open Access Journals (Sweden)

    Jozef Kuzma

    2007-01-01

    Full Text Available A secure stability and reliable serviceability of the radioactive dump is a difficult engineering problem. Due to the difficult geological formations determined mainly by a high compressibility, the low shear strength of soils, and the high ground water level, or a high upward hydrostatic pressure these demands will increase. An influence of the required reliability and the lifespan on the structure of these specific objects is considerable. In this contribution, we are trying to contribute to the problem of solving these difficulties and complicated problems.

  18. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  19. Biosphere modeling for safety assessment to high-level radioactive waste geological disposal. Application of reference biosphere methodology to safety assesment of geological disposal

    International Nuclear Information System (INIS)

    Baba, Tomoko; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Suzuki, Yuji; Naito, Morimasa

    2000-01-01

    In the safety assessment of a high-level radioactive waste disposal system, it is required to estimate future radiological impacts on human beings. Consideration of living habits and the human environment in the future involves a large degree of uncertainty. To avoid endless speculation aimed at reducing such uncertainty, an approach is applied for identifying and justifying a 'reference biosphere' for use in safety assessment in Japan. considering a wide range of Japanese geological environments, saline specific reference biospheres' were developed using an approach consistent with the BIOMOVS II reference biosphere methodology. (author)

  20. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  1. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  2. Disposal and long-term storage in geological formations of solidified radioactive wastes

    International Nuclear Information System (INIS)

    Shischits, I.

    1996-01-01

    The special depository near Krasnoyarsk contains temporarily about 1,100 tons of spent nuclear fuel (SNF) from WWR- should be solidified and for the most part buried in geological formations. Solid wastes and SNF from RBMK reactors are assumed to be buried as well. For this purpose special technologies and underground constructions are required. They are to be created in the geological plots within the territory of Russian Federation and adjacent areas of CIS, meeting the developed list of requirements. The burial structures will vary greatly depending on the geological formation, the amount of wastes and their isotope composition. The well-known constructions such as deep wells, shafts, mines and cavities can be mentioned. There is a need to design constructions, which have no analog in the world practice. In the course of the Project fulfillment the following work will be conducted: -theoretical work followed by code creation for mathematical simulation of processes; - modelling on the base of prototypes made from equivalent materials with the help of simulators; - bench study; - experiments in real conditions; - examination of massif properties in particular plots using achievements of geophysics, including gamma-gamma density detectors and geo locators. Finally, ecological-economical model will be given for designing burial sites

  3. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  4. The application of quadtree algorithm for information integration in the high-level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Gao Min; Zhong Xia; Huang Shutao

    2008-01-01

    A multi-source database for high-level radioactive waste geological disposal, aims to promote the information process of the geological of HLW. In the periods of the multi-dimensional and multi-source and the integration of information and applications, it also relates to computer software and hardware, the paper preliminary analysises the data resources Beishan area, Gansu Province. The paper introduces a theory based on GIS technology and methods and open source code GDAL application, at the same time, it discusses the technical methods how to finish the application of the Quadtree algorithm in the area of information resources management system, fully sharing, rapid retrieval and so on. A more detailed description of the characteristics of existing data resources, space-related data retrieval algorithm theory, programming design and implementation of ideas are showed in the paper. (authors)

  5. A preliminary study on the regional fracture systems for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Young Kown; Park, Byoung Yoon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    For the deep geological disposal of high-level radioactive waste, it is essential to characterize the fracture system in rock mass which has a potential pathways of nuclide. Currently, none of research results are in classification and detailed properties for the fracture system in Korea. This study aims to classify and describe the regional fracture system in lithological and geotectonical point of view using literature review, shaded relief map, and aeromagnetic survey data. This report contains the following: - Theoretical review of the fracture development mechanism. - Overall fault and fracture map. - Geological description on the distributional characteristics of faults and fractures(zone) in terms of lithological domain and tectonical province. 122 refs., 22 figs., 4 tabs. (Author)

  6. Review on influences of colloids on geologic disposal of high level radioactive waste. For better understanding of natural colloidal materials

    International Nuclear Information System (INIS)

    Kanai, Yutaka; Suzuki, Masaya; Kamioka, Hikari; Yoshida, Takahiro; Suko, Takeshi

    2007-01-01

    Although the influences of colloidal materials on radionuclide transport in geological media are pointed out, their behaviors in natural environment have not yet been well elucidated and therefore their influences on the geologic disposal of high-level radioactive waste (HLW) are not fully estimated quantitatively. This paper reviewed the studies on natural colloids, especially focused on inorganic, organic and biological colloids, and discussed the future works to be carried out. Much attention should be paid to the sampling and analysis. Excellent techniques for in-situ observation, concentration without changing the state of colloid, standard procedure for analysis, are necessary to be developed. More research studies on the behaviors of colloids are required in not only far- and near-fields but also items on effects of the environments and its evolution. (author)

  7. LISA: A performance assessment code for geological repositories of radioactive waste

    International Nuclear Information System (INIS)

    Bertozzi, G.; Saltelli, A.

    1985-01-01

    LISA, developed at JRC-Ispra, is a statistical code, which calculates the radiation exposures and risks associated with radionuclide releases from geological repositories of nuclear waste. The assessment methodology is described briefly. It requires that a number of probabilistic components be quantified and introduced in the analysis; the results are thus expressed in terms of risk. The subjective judgment of experts may be necessary to quantify the probabilities of occurrence of rare geological events. Because of large uncertainties in input data, statistical treatment of the Monte Carlo type is utilized for the analysis; thus, the output from LISA is obtained in the form of distributions. A few results of an application to a probabilistic scenario for a repository mined in a clay bed are illustrated

  8. Evolution in radioactive waste countermeasures

    International Nuclear Information System (INIS)

    Moriguchi, Yasutaka

    1984-01-01

    The establishment of radioactive waste management measures is important to proceed further with nuclear power development. While the storage facility projects by utilities are in progress, large quantity of low level wastes are expected to arise in the future due to the decommissioning of nuclear reactors, etc. An interim report made by the committee on radioactive waste countermeasures to the Atomic Energy Commission is described as follows: the land disposal measures of ultra-low level and low level radioactive wastes, that is, the concept of level partitioning, waste management, the possible practice of handling wastes, etc.; the treatment and disposal measures of high level radioactive wastes and transuranium wastes, including task sharing among respective research institutions, the solidification/storage and the geological formation disposal of high level wastes, etc. (Mori, K.)

  9. Report preceding the public debate on the Cigeo project of deep geological storage of radioactive wastes

    International Nuclear Information System (INIS)

    2013-01-01

    This report first presents and comments the inventory made by the ANDRA of materials and wastes which are to be stored in the Cigeo deep geological storage. It highlights the transparency of the decision process related to this project (public debate, investigations and expertise), and also outlines the opinions of some local representatives and associations committed in environment protection regarding the project preparation. Five recommendations are then made by the High Committee for transparency and information on nuclear safety (HCTISN). Additional information is provided in appendix about the material inventory, about the history of the decision process, and also about meetings and hearings held by the High Committee

  10. Considerations on pressure build-up in deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Beer, Hans-Frieder

    2015-01-01

    Gas formation caused by corrosion of metals is a pivotal point with respect to the safety analysis of deep geological repositories. Solid corrosion products are formed unavoidably during the gas formation. The volumes of these solid corrosion products are multiples of the original waste volume. These solid corrosion products are chemically extremely stable and result in a pressure increase inside the repository. This pressure is considerably higher than that of the overlaying rock. The question that arises is, why this aspect is not considered in the consulted documents.

  11. Development of site selection criteria for radioactive waste disposal in view of favourable geological settings in Germany

    International Nuclear Information System (INIS)

    Baltes, B.; Brewitz, W.

    2001-01-01

    In Germany it is intended to dispose of all types of radioactive waste in deep geological formations. Since the government has doubts regarding the suitability of the Gorleben site, further sites in different host rock formations have to be investigated. This investigation process has to be carried out with respect to technical suitability and safety as well as to public acceptance. A Committee has been established whose mandate is to develop a comprehensible procedure for the selection of sites for radioactive waste disposal in Germany. The Committee developed an iterative procedure which provides, besides the increase of transparency, the necessary flexibility in dealing with assessment results. The method is governed by geo-scientific and social-scientific criteria that are presented in this paper. 7 steps have been identified in the procedure: 1) exclusion of areas with obviously unfavourable conditions, 2) identification of areas with favourable geological settings, 3) exclusion of areas for socio-scientific reasons, 4) identification of regions with favourable conditions and ranking of regions, 5) identification of sites for further identification, 6) above-ground site investigation and ranking of potentially suitable sites, and 7) identification of sites for suitability investigations. The first 3 steps give the remaining areas that meet the minimum requirements. The criteria of the first 3 steps are: extensive vertical movements, active disturbance zones, seismic activity and volcanic activity, as for the 4 last steps criteria are based on geo- and socio- scientific weighing, voluntariness and regional mediation. (A.C.)

  12. Japan's Siting Process for the Geological Disposal of High-level Radioactive Waste - An International Peer Review

    International Nuclear Information System (INIS)

    Brassinnes, Stephane; Fabbri, Olivier; Rubenstone, James; Seppaelae, Timo; Siemann, Michael; ); Kwong, Gloria; )

    2016-01-01

    The Nuclear Energy Agency carried out an independent peer review of Japan's siting process and criteria for the geological disposal of high-level radioactive waste in May 2016. The review concluded that Japan's site screening process is generally in accordance with international practices. As the goal of the siting process is to locate a site - that is both appropriate and accepted by the community - to host a geological disposal facility for high-level radioactive waste, the international review team emphasises in this report the importance of maintaining an open dialogue and interaction between the regulator, the implementer and the public. Dialogue should begin in the early phases and continue throughout the siting process. The international review team also underlines the importance of taking into account feasibility aspects when selecting a site for preliminary investigations, but suggests that it would be inappropriate to set detailed scientific criteria for nationwide screening at this stage. The team has provided extensive advisory remarks in the report as opportunities for improvement, including the recommendation to use clear and consistent terminology in defining the site screening criteria as it is a critical factor in a successful siting process. (authors)

  13. Development of site selection criteria for radioactive waste disposal in view of favourable geological settings in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Baltes, B.; Brewitz, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Cologne (Germany)

    2001-07-01

    In Germany it is intended to dispose of all types of radioactive waste in deep geological formations. Since the government has doubts regarding the suitability of the Gorleben site, further sites in different host rock formations have to be investigated. This investigation process has to be carried out with respect to technical suitability and safety as well as to public acceptance. A Committee has been established whose mandate is to develop a comprehensible procedure for the selection of sites for radioactive waste disposal in Germany. The Committee developed an iterative procedure which provides, besides the increase of transparency, the necessary flexibility in dealing with assessment results. The method is governed by geo-scientific and social-scientific criteria that are presented in this paper. 7 steps have been identified in the procedure: 1) exclusion of areas with obviously unfavourable conditions, 2) identification of areas with favourable geological settings, 3) exclusion of areas for socio-scientific reasons, 4) identification of regions with favourable conditions and ranking of regions, 5) identification of sites for further identification, 6) above-ground site investigation and ranking of potentially suitable sites, and 7) identification of sites for suitability investigations. The first 3 steps give the remaining areas that meet the minimum requirements. The criteria of the first 3 steps are: extensive vertical movements, active disturbance zones, seismic activity and volcanic activity, as for the 4 last steps criteria are based on geo- and socio- scientific weighing, voluntariness and regional mediation. (A.C.)

  14. The new ICRP recommendations on radiological protection in geological disposal of long-lived solid radioactive waste

    International Nuclear Information System (INIS)

    Lochard, Jacques; Schneider, Thierry

    2014-01-01

    Radioactive waste management has been the subject of several recommendations of the International Commission on Radiological Protection (ICRP) since 1985. The aim of the new Publication 122 (2013) is to describe how the 2007 general recommendations of the Commission (Publication 103) can be applied in the context of geological disposal. For this purpose, it is important to emphasise that the new approach developed by ICRP is based on three types of exposure situations: planned, emergency and existing: - Planned exposure situations correspond to situations where exposures result from the operation of deliberately introduced sources. Exposures can be planned and fully controlled. - Emergency exposure situations correspond to situations where exposures result from the loss of control of a source within a planned exposure, or from an unexpected situation (e.g. malevolent event). These situations require urgent actions to prevent or mitigate exposures. - Existing exposure situations correspond to situations where exposures result from sources that already exist when decisions are taken to control them. The characterisation of exposure is therefore a prerequisite for their control. The application of the three basic radiological protection principles - justification, optimisation of protection and limitation of individual doses - are therefore considered in this new framework with justification and optimisation applying to the three types of exposure situations and limitation only to planned exposure situations. The main points highlighted in Publication 122 for the application of the system of radiological protection to geological disposal of long-life solid radioactive waste are summarized

  15. Release consequence analysis for a hypothetical geologic radioactive waste repository in hard rock

    International Nuclear Information System (INIS)

    1979-12-01

    This report makes an evaluation of the long-term behaviour of the wastes placed in a hard rock repository. Impacts were analyzed for the seven reference fuel cycles of WG 7. The reference repository for this study is for granitic rock or gneiss as the host rock. The descriptions of waste packages and repository facilities used in this study represent only one of many possible designs based on the multiple barriers concept. The repository's size is based on a nuclear economy producing 100 gigawatts of electricity per year for 1 year. The objective of the modeling efforts presented in this study is to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere and thus determine an estimate of the potential dose to humans so that the release consequence impacts of the various fuel cycles can be compared. Currently available hydrologic, leach, transport, and dose models were used in this study

  16. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Snyder, K.E.; Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E.

    1995-02-01

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period

  17. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  18. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    International Nuclear Information System (INIS)

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300 0 C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed

  19. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    Science.gov (United States)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  20. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008; Entsorgungsprogramm und Standortgebiete fuer geologische Tiefenlager. Zusammenfassung. November 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  1. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.

    Science.gov (United States)

    Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon

    2011-12-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  2. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste

    International Nuclear Information System (INIS)

    Wilson, James C; Towler, George; Thorne, Michael C; Norris, Simon

    2011-01-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source–pathway–receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  3. Preliminary study on the three-dimensional geoscience information system of high-level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Li Peinan; Zhu Hehua; Li Xiaojun; Wang Ju; Zhong Xia

    2010-01-01

    The 3D geosciences information system of high-level radioactive waste geological disposal is an important research direction in the current high-level radioactive waste disposal project and a platform of information integration and publishing can be used for the relevant research direction based on the provided data and models interface. Firstly, this paper introduces the basic features about the disposal project of HLW and the function and requirement of the system, which includes the input module, the database management module, the function module, the maintenance module and the output module. Then, the framework system of the high-level waste disposal project information system has been studied, and the overall system architecture has been proposed. Finally, based on the summary and analysis of the database management, the 3D modeling, spatial analysis, digital numerical integration and visualization of underground project, the implementations of key functional modules and the platform have been expounded completely, and the conclusion has been drawn that the component-based software development method should be utilized in system development. (authors)

  4. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  5. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  7. Creation and Plan of an Underground Geologic Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif in Russia

    International Nuclear Information System (INIS)

    Gupalo, T A; Kudinov, K G; Jardine, L J; Williams, J

    2004-01-01

    This joint geologic repository project in Russia was initiated in May 2002 between the United States (U.S.) International Science and Technology Center (ISTC) and the Federal State Unitary Enterprise ''All-Russian Research and Design Institute of Production Engineering'' (VNIPIPT). The project (ISTC Partner Project 2377) is funded by the U.S. Department of Energy Office of Civilian Radioactive Waste Management (DOE-RW) for a period of 2-1/2 years. ISTC project activities were integrated into other ongoing geologic repository site characterization activities near the Mining and Chemical Combine (MCC K-26) site. This allowed the more rapid development of a plan for an underground research laboratory, including underground design and layouts. It will not be possible to make a final choice between the extensively studied Verkhne-Itatski site or the Yeniseiski site for construction of the underground laboratory during the project time frame because additional data are needed. Several new sources of data will become available in the next few years to help select a final site. Studies will be conducted at the 1-km deep borehole at the Yeniseisky site where drilling started in 2004. And in 2007, after the scheduled shutdown of the last operating reactor at the MCC K-26 site, data will be collected from the rock massif as the gneiss rock cools, and the cool-down responses modeled. After the underground laboratory is constructed, the data collected and analyzed, this will provide the definitive evidence regarding the safety of the proposed geologic isolation facilities for radioactive wastes (RW). This data will be especially valuable because they will be collected at the same site where the wastes will be subsequently placed, rather than on hypothetical input data only. Including the operating costs for 10 to 15 years after construction, the cost estimate for the laboratory is $50M. With additional funding from non-ISTC sources, it will be possible to complete this

  8. Performance assessment of geological isolation systems for radioactive waste. Disposal into the sub-seabed

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Charles, D.; Delow, C.E.; McColl, N.P.

    1988-01-01

    This report describes an assessment of the radiological impact of sub-seabed disposal of vitrified high level waste, carried out as part of the PAGIS project of the CEC Research Programme on radioactive waste. Where possible the data used in this study have been taken from those provided by the Nuclear Energy Agency Seabed Working Group. The waste was assumed to be placed into the sub-seabed sediments by means of the free fall penetrator technique. An alternative method, emplacement in a deep borehole, was also studied. Three disposal sites were considered: the reference site Great Meteor East, in the N.E. Atlantic, and two alternative sites: Southern Nares Abyssal Plain in the N.W. Atlantic and Cape Verde Rise in N.E. Atlantic. Models were used to describe the release of radionuclides from the waste, their migration through the sediments, their dispersion in the world oceans and the pathways to man. For the normal evolution scenario, best estimate peak individual dose rates for the penetrator option was evaluated at 2 x 10 -10 Sv y -1 arising 0.1 million years after emplacement. The collective dose commitment was 10,000 man Sv. The corresponding figures for the borehole option were 2 x 10 -14 Sv y -1 and 1 man Sv. The risks from seven altered evolution scenarios were also calculated and the risk was predicted to be always less than 10 -9 y -1 . Uncertainty and sensitivity analyses were also performed and showed that the peak dose was most sensitive to variations in Kd values, pore water velocity, pore water diffusivity and burial depth. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  9. Radioactive waste disposal at Sellafield, UK: site selection, geological and engineering problems

    International Nuclear Information System (INIS)

    Haszeldine, R.S.; Smythe, D.K.

    1996-01-01

    UK Nirex is the company charged with finding a suitable site for the underground disposal of radioactive waste in the United Kingdom. Since 1991, Nirex has concentrated its investigation work at a site owned by British Nuclear Fuels Ltd near Sellafield. Planning permission was sought in 1994 for the development of an underground Rock Characterisation Facility at the site. A public Planning Inquiry began in September 1995. A wide range of scientific and technical objections were put by expert witnesses against the Nirex proposal. These witnesses were co-ordinated by three Objecting Organisations - Cumbria County Council, Friends of the Earth and Greenpeace. Their written evidence is presented in the 34 chapters of this book and separate abstracts have been written for each contribution. (UK)

  10. System analysis methods for geological repository of high level radioactive waste in granite

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju; Li Yunfeng; Jin Yuanxin; Zhao Honggang

    2009-01-01

    Taking Beishan granite site as an example, this paper proposes the conceptual and structural design of repository for high level radioactive waste at first. Then the function, structure, environment and evolution of the repository are described by the methodology of system analysis. Based on these designs and descriptions, a calculation model for the repository is developed with software GoldSim. At last, this calculation model is applied to emulate the space-time distribution of repository radiotoxicity, to analyze the sensitivity of parameters in the model, to optimize the design parameters, and to predict and assess the repository performance. The results of this study can provide technical supports for resources allocation and coordination of R and D projects. (authors)

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  12. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    Every granite formation possesses, the following main characteristics: presence of fissures; physico-chemical alterability; presence of internal or peripheral heterogeneities. From samples at ambient temperature, sound granite is found to have the properties of a hard, elastic rock with a relatively low thermal conductivity. Its natural permeability is low or very low, and most of the percolating water passes through fissures affecting the rock mass. In this report are examined: effects of heat on cavity stability, mechanical interaction between conditioned wastes and the geological environment, effects on the stability of infilling materials, heat effects on the host rock and underground water, assessment of the permissible thermal load and design of the storage facility

  13. Safety of geological disposal of high-level and long-lived radioactive waste in France

    International Nuclear Information System (INIS)

    2006-01-01

    A major activity of the Nuclear Energy Agency (NEA) in the field of radioactive waste management is the organisation of independent, international peer reviews of national studies and projects. The peer reviews help national programmes assess accomplished work. The general comments expressed in these reviews are also of potential interest to other member countries. The French Government requested that the NEA organize an international peer review of the Dossier 2005 Argile produced by the National Agency for Radioactive Waste Management (ANDRA). The scope and objectives of the review were laid out in the Terms of Reference (ToR). The peer review was to inform the French Government whether the Dossier 2005 Argile was: consistent with international practices and with other national disposal programmes, in particular those considering argillaceous formations, and whether the future research needs were consistent with the available knowledge basis and priorities well-identified. The French authorities were particularly interested in receiving detailed recommendations for specific improvements, notably if the decision-making process led to a site-selection phase. According to the ToR, the NEA Secretariat established an international review team (IRT) made up of ten international specialists, including one member of the NEA Secretariat. The experts were chosen to bring complementary expertise to the review. This report presents the consensus view of the IRT. It is based on the Dossier 2005 Argile and supporting documents, on information provided by ANDRA in answers to questions raised by the IRT, and on direct interactions with staff from ANDRA during two working seminars in France. (author)

  14. Development of geological disposal system for spent fuels and high-level radioactive wastes in Korea

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won

    2013-01-01

    Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  15. DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

    Directory of Open Access Journals (Sweden)

    HEUI-JOO CHOI

    2013-02-01

    Full Text Available Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  16. Deep disposal of high activity radioactive wastes: the study of engineered and geological barriers behaviour

    International Nuclear Information System (INIS)

    Yu Jun; Cui; Delage, P.; Laure, E. de; Behrouz, Gatmiri; Sulem, J.; Anh Minh, Tang

    2008-09-01

    One option for the isolation of high activity and long lived radioactive wastes is the disposal of the vitrified waste containers in galleries dug inside impermeable rocks of the deep underground (granite, argillite, salt). The multi-barrier isolation concept is based on the use of successive barriers to avoid the migration of radionuclides towards the biosphere (container envelope, engineered barrier made of compacted swelling clay, and host rock). In parallel to the works carried out in underground laboratories, experiments and simulation works are performed in order to understand the behaviour of storage facilities and barriers under the effects of constraints, water fluxes and temperature changes. In this context, the UR Navier geotechnical team (CERMES), a joint research unit of Ecole des Ponts ParisTech and LCPC, has been working for more than 15 years on this topic for various contractors. These works are based on original experimental devices allowing to identify the thermo-hydro-mechanical phenomena and thereafter to model them. This dossier presents a summary of these works. (J.S.)

  17. Geological disposal of high-level radioactive waste. Conceptual repository design in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Griffin, J.R.; Davies, J.W.; Burton, W.R.

    1980-01-01

    The paper gives an interim report on UK studies on possible designs for a repository for vitrified high-level radioactive waste in crystalline rock. The properties of the waste are described and general technical considerations of consequences of disposal in the rock. As an illustration, two basic designs are described associated with pre-cooling in an intermediate store. Firstly, a 'wet repository' is outlined wherein canisters are sealed up closely in boreholes in the rock in regions of low groundwater movement. Secondly, a 'dry repository' above sea level is described where emplacement in tunnels is followed by a loose backfill containing activity absorbers. A connection to deep permeable strata maintains water levels below emplacement positions. Variants on the two basic schemes (tunnel emplacement in a wet repository and in situ cooling) are also assessed. It is concluded that all designs discussed produce a size of repository feasible for construction in the UK. Further, (1) a working figure of 100 0 C per maximum rock temperature is not exceeded, (2) no insuperable engineering problems have so far been found, though rock mechanics studies are at an early stage; (3) it is not possible to discount the escape of a few long-lived 'man-made' isotopes. A minute increment to natural activity in the biosphere may occur from traces of uranium and its decay chains; (4) at this stage, all the designs are still possible candidates for the construction of a UK repository. (author)

  18. Radioactive wastes in Oklo

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores R, J.H.; Pena, P.; Lopez, A.

    2006-01-01

    The acceptance of the Nuclear Energy as electric power supply implies to give answer to the population on the two main challenges to conquer in the public opinion: the nuclear accidents and the radioactive wastes. Several of the questions that are made on the radioactive wastes, its are the mobility migration of them, the geologic stability of the place where its are deposited and the possible migration toward the aquifer mantels. Since the half lives of the radioactive waste of a Nuclear Reactor are of several hundred of thousands of years, the technical explanations to the previous questions little convince to the public in general. In this work summary the results of the radioactive waste generated in a natural reactor, denominated Oklo effect that took place in Gabon, Africa, it makes several thousands of millions of years, a lot before the man appeared in the Earth. The identification of at least 17 reactors in Oklo it was carried out thanks to the difference in the concentrations of Uranium 235 and 238 prospective, and to the analysis of the non-mobility of the radioactive waste in the site. It was able by this way to determine that the reactors with sizes of hardly some decimeter and powers of around 100 kilowatts were operating in intermittent and spontaneous form for space of 150,000 years, with operation cycles of around 30 minutes. Recent studies have contributed information valuable on the natural confinement of the radioactive waste of the Oklo reactors in matrixes of minerals of aluminum phosphate that caught and immobilized them for thousands of millions of years. This extracted information from the nature contributes guides and it allows 'to verify' the validity of the current proposals on the immobilization of radioactive wastes of a nuclear reactor. This work presents in clear and accessible form to the public in general on the secure 'design', operation, 'decommissioning' and 'storage' of the radioactive waste of the reactors that the nature put

  19. Design study on containers for geological disposal of high-level radioactive waste. Phase 2

    International Nuclear Information System (INIS)

    1986-01-01

    This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarized as follows: Type A: A thin-walled corrosion-resistant metal shell filled with lead or cement grout. Type B: An unfilled thick-walled carbon steel shell. Type C: an unfilled carbon steel shell plated externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design types A and B are feasible in manufacturing terms but design Type C is not. Furthermore, a titanium-palladium alloy is considered the most suitable metal for Type A container shells and lead is the preferred filler. The analysis shows that design Types A and B both have adequate resistance to pressure and temperature loadings and both would resist accidental impact damage when upright. A reduction in waste heat output at disposal would lower the stress levels in Type A containers but would have virtually no effect on Type B. There is insufficient data to compare the relative costs and benefits of design Types A and B. In conclusion design Types A and B are both considered feasible but Type A would require more development than Type B. In both cases further research is needed to confirm the long-term corrosion performance of the candidate materials. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used

  20. Assessment report of research and development on 'geological disposal of high-level radioactive waste' (Interim report)

    International Nuclear Information System (INIS)

    Notoya, Shin; Shimizu, Kazuhiko; Ota, Kunio; Sasao, Eiji

    2010-08-01

    Japan Atomic Energy Agency (JAEA) consulted an assessment committee, 'Evaluation Committee of Research and Development (R and D) Activities for Geological Disposal of High-Level Radioactive Waste', for interim assessment of R and D on high-level radioactive waste disposal in accordance with 'General Guideline for Evaluation of Government R and D Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by Japan. In response to JAEA's request, the Committee assessed mainly the progress of the R and D project according to guidelines, which addressed the rationale behind the R and D project, the relevance of the project outcome and the efficiency of the project implementation during the period of the first midterm plan. As a result, the Committee concluded that the progress of the R and D project is satisfactory. In addition, the Committee provided a couple of issues and suggestions to be addressed in the implementation of the project during the period of the second midterm. A CD-ROM is attached as an appendix. (J.P.N.)

  1. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 2. Engineering technology for geological disposal

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the deep geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, part 2 of the progress report, concerns engineering aspect with reference to Japanese geological disposal plan, according to which the vitrified HLW will be disposed of into a deep, stable rock mass with thick containers and surrounding buffer materials at the depth of several hundred meters. It discusses on multi-barrier systems consisting of a series of engineered and natural barriers that will isolate radioactive nuclides effectively and retard their migrations to the biosphere environment. Performance of repository components, including specifications of containers for vitrified HLW and their overpacks under design as well as buffer material such as Japanese bentonite to be placed in between are described referring also to such possible problems as corrosion arising from the supposed system. It also presents plans and designs for underground disposal facilities, and the presumed management of the underground facilities. (Ohno, S.)

  2. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ( 18 O, 2 H, 13 C, 34 S, 87 Sr, 15 N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  3. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ({sup 18}O, {sup 2}H, {sup 13}C, {sup 34}S, {sup 87}Sr, {sup 15}N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  4. Performance assessment of geological isolation systems for radioactive waste. Disposal in salt formations

    International Nuclear Information System (INIS)

    Storck, R.; Aschenbach, J.; Hirsekom, R.P.; Nies, A.; Stelte, N.

    1988-01-01

    In the framework of the PAGIS project of the CEC Research Programme on radioactive waste, a performance assessment of a repository of vitrified HLW in rock salt formations has been carried out. The first volume of the study is split into four tasks. Task 1 recalls the main steps that have led to the selection of the reference and the variant site. Task 2 condenses all information available on the rock formations which are planned to host the repository, the overlying geosphere and the geohistoric development of the sites. Task 3 states the technical details of repository planning, while in Task 4 conceivable release scenarios are discussed. Volume II (Tasks 5 to 10) is concerned with the modelling procedures. In Task 5 data for the waste inventory are collected and the selection of relevant nuclides for transport calculations is discussed. Task 6 gives the near-field modelling, i.e. the models for corrosion of the waste canisters, the degradation of the waste matrix and the models used for the HLW boreholes. Task 7 deals with the modelling of the repository. Its division into sections is discussed and models for physical and chemical effects taken into account in each section are presented. In Task 8 the modelling of the overburden is given. In Task 9 additional models for the subrosion scenario and a human intrusion scenario are given. Task 10 is concerned with the biosphere modelling. In Volume III results of deterministic and probabilistic calculations are presented. Task 11 gives the results for deterministic calculations with best estimate values for the parameters involved in the models. Task 12 presents the result of the uncertainty analysis, and Task 13 those of local and global sensitivity analyses followed by concluding remarks. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the

  5. Comments of the Wisconsin Radioactive Waste Review Board's Technical Advisory Council on the review draft of the north central regional geologic and environmental characterization reports, May 1983

    International Nuclear Information System (INIS)

    1984-01-01

    This document contains a collection of official comments on a draft report characterizing the subsurface geology of an area of Wisconsin proposed for a high-level radioactive waste disposal site. Most comments identify passages requiring correction or question the interpretation of the data

  6. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    International Nuclear Information System (INIS)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  7. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  8. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    International Nuclear Information System (INIS)

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, W.; Weir, J.E. Jr.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000 to 50,000 ft or 9,140 to 15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000 to 20,000 ft or 305 to 6,100 m), (3) a mined chamber (1,000 to 10,000 ft or 305 to 3,050 m), (4) a cavity with separate manmade structures (1,000 to 10,000 ft or 305 to 3,050 m), and (5) an exploded cavity (2,000 to 20,000 ft or 610 to 6,100 m). Areas considered to be unsuitable for waste disposal are those where seismic risk is high, where possible sea-level rise would inundate potential sites, where high topographic relief coincides with high frequency of faults, where there are unfavorable ground-water conditions, and where no suitable rocks are known to be present to depths of 20,000 feet (6,100 m) or more, and where these strata either contain large volumes of ground water or have high oil and gas potential

  9. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite

    International Nuclear Information System (INIS)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony; Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A.; Holt, Kathleen Caroline

    2004-01-01

    Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K sp >10 -40 ), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible

  10. Design study on containers for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Arup, O.

    1985-01-01

    A study has been made of the requirements and design features for containers to isolate vitrified high-level radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Some resist pressure by using a structural shell leaving the contents unstressed whereas others transmit loads to their contents. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. However, no entirely suitable materials have been found and further research is required in this area. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible although filling operations and container closure could be difficult

  11. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite

    International Nuclear Information System (INIS)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony; Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A.; Holt, Kathleen Caroline

    2003-01-01

    Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K sp > 10 -40 ), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

  12. Performance assessment of geological isolation systems for radioactive waste. Disposal in granite formations

    International Nuclear Information System (INIS)

    Van Kote, F.; Peres, J.M.; Olivier, M.; Lewi, J.; Assouline, M.; Mejon-Goula, M.J.

    1988-01-01

    In the framework of the PAGIS project of the CEC Research Programme on radioactive wastes, a performance assessment of a repository of vitrified HLW in granite was carried out. Three disposal sites were considered: the reference site Auriat and two alternative sites, Barfleur and a site in the U.K. The report describes the methodology adopted (a deterministic and a stochastic approach) with the corresponding data base and the models used. A parametric study of sub-systems (near field, far field and biosphere) was carried out by CEA-ANDRA using AQUARIUS, DIMITRIO and BIOS. A global evaluation of the performances was carried out by CEA-IPSN using MELODIE code. The results of deterministic calculations showed for Auriat a maximum dose equivalent evaluated at 6.10 -3 m Sv/a arising 3 millions years after disposal. Results of human intrusion scenario analyses, uncertainty analyses and global sensitivity analyses are presented. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  13. R and D programme on radioactive waste disposal into geological formations (study of a clay formation)

    International Nuclear Information System (INIS)

    Centre d'Etude de l'Energie Nucleaire, Mol

    1987-01-01

    This report deals with the R and D activities performed by the Belgian Nuclear Research Establishment (SCK/CEN) and its subcontractors concerning the disposal of high-level and long-life conditioned wastes in a deep clay formation, the Boom clay. The studies reported concern equally experimental as theoretical work spread over the following research issues: geochemical characterization of the Boom clay, modelling of radionuclide migration in the clay environment, irradiation effects and corrosion behaviour of candidate canister materials in the Boom clay, geomechanical, construction, backfilling and sealing studies related to underground facilities, regional hydrological investigations of the Mol site and safety and risk analysis. The geomechanical and construction-related studies are to a large extent focused on in situ research, performed along the construction of the underground Hades laboratory. The corrosion studies are also dealing with the preparation of in situ experiments in the same underground laboratory. These various research issues are meant to contribute to the assessment of the technical feasibility and safety of the geological disposal in an argillaceous host formation

  14. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  15. Office of Geologic Repositories quality assurance plan for high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    1986-08-01

    This document sets forth geologic repository program-wide quality assurance program requirements and defines management's quality assurance responsibilities for the Office of Geologic Repositories and its projects. (LM)

  16. Minimal alteration of montmorillonite following long-term interaction with natural alkaline groundwater: Implications for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, Antoni E.; Norris, Simon; Alexander, W.Russell

    2016-01-01

    Bentonite is one of the more safety-critical components of the engineered barrier system in the disposal concepts developed for many types of radioactive waste. Bentonite is utilised because of its favourable properties which include plasticity, swelling capacity, colloid filtration, low hydraulic conductivity, high retardation of key radionuclides and stability in geological environments of relevance to waste disposal. However, bentonite is unstable under the highly alkaline conditions induced by Ordinary Portland Cement (OPC: initial porewater pH > 13) and this has driven interest in using low alkali cements (initial porewater pH9-11) as an alternative to OPC. To build a robust safety case for a repository for radioactive wastes, it is important to have supporting natural analogue data to confirm understanding of the likely long-term performance of bentonite in these lower alkali conditions. In Cyprus, the presence of natural bentonite in association with natural alkaline groundwater permits the zones of potential bentonite/alkaline water reaction to be studied as an analogy of the potential reaction between low alkali cement leachates and the bentonite buffer in the repository. Here, the results indicate that a cation diffusion front has moved some metres into the bentonite whereas the bentonite reaction front is restricted to a few millimetres into the clay. This reaction front shows minimal reaction of the bentonite (volumetrically, less than 1% of the bentonite), with production of a palygorskite secondary phase following reaction of the primary smectites over time periods of 10"5–10"6 years. - Highlights: • Alkaline porewaters from cement and concrete could destabilise bentonite buffer in a repository. • Evidence utilised to examine processes over repository timescales. • Alkaline water from the Troodos ophiolite reacts with bentonite. • Waters exchange Ca for Na on bentonite, smectite reacts to form palygorskite. • Observations indicate

  17. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  18. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  19. Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes

    Science.gov (United States)

    Gautschi, Andreas

    2001-01-01

    As part of the Swiss programme for high-level radioactive-waste disposal, a Jurassic shale (Opalinus Clay) is being investigated as a potential host rock. Observations in clay pits and the results of a German research programme focusing on hazardous waste disposal have demonstrated that, at depths of 10-30 m, the permeability of the Opalinus Clay decreases by several orders of magnitude. Hydraulic tests in deeper boreholes (test intervals below 300 m) yielded hydraulic conductivities Las observaciones efectuadas en pozos en arcilla y los resultados de un programa de estudio alemán sobre eliminación de residuos peligrosos han demostrado que, a profundidades de entre 10 y 30 m, la permeabilidad de la Arcilla Opalina decrece en varios órdenes de magnitud. Los ensayos hidráulicos realizados en sondeos más profundos (en intervalos situados a más de 300 m) proporcionaron conductividades hidráulicas inferiores a 10-12 m/s, pese a que algunos de los intervalos interceptaban juntas y fallas. Estas medidas son coherentes con los datos hidrogeológicos de las secciones de Arcilla Opalina existentes en 10 túneles del Jurásico Plegado, al norte de Suiza. A pesar de las fallas extensivas, apenas se hallaron indicios de entrada de agua en los más de 6.600 m de túnel. Todos los flujos tenían lugar en secciones del túnel que soportan sobrecargas inferiores a 200 m. Los datos hidráulicos son coherentes con los datos hidroquímicos e isotópicos del agua intersticial de las arcillas. Los abundantes datos hidrogeológicos -parte de los cuales proceden de medios particularmente desfavorables desde el punto de vista geológico- proporcionan argumentos de que el transporte advectivo a través de fallas y juntas no es un aspecto crítico en lo que respecta a la idoneidad de la Arcilla Opalina como almacenamiento geológico profundo de residuos.

  20. Modeling The Inhalation Exposure Pathway In Performance Assessment Of Geologic Radioactive Waste Repository At Yucca Mountain

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2006-01-01

    Inhalation exposure pathway modeling has recently been investigated as one of the tasks of the BIOPROTA Project (BIOPROTA 2005). BIOPROTA was set up to address the key uncertainties in long term assessments of contaminant releases into the environment arising from radioactive waste disposal. Participants of this international Project include national authorities and agencies, both regulators and operators, with responsibility for achieving safe and acceptable radioactive waste management. The objective of the inhalation task was to investigate the calculation of doses arising from inhalation of particles suspended from soils within which long-lived radionuclides, particularly alpha emitters, had accumulated. It was recognized that site-specific conditions influence the choice of conceptual model and input parameter values. Therefore, one of the goals of the task was to identify the circumstances in which different processes included in specific inhalation exposure pathway models were important. This paper discusses evaluation of processes and modeling assumptions specific to the proposed repository at Yucca Mountain as compared to the typical approaches and other models developed for different assessments and project specific contexts. Inhalation of suspended particulates that originate from contaminated soil is an important exposure pathway, particularly for exposure to actinides such as uranium, neptunium and plutonium. Radionuclide accumulation in surface soil arises from irrigation of soil with contaminated water over many years. The level of radionuclide concentration in surface soil depends on the assumed duration of irrigation. Irrigation duration is one of the parameters used on biosphere models and it depends on a specific assessment context. It is one of the parameters addressed in this paper from the point of view of assessment context for the proposed repository at Yucca Mountain. The preferred model for the assessment of inhalation exposure uses

  1. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  3. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  4. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  5. Optimalization studies concerning volume reduction and conditioning of radioactive waste in view of storage and disposal (geological disposal into clay)

    International Nuclear Information System (INIS)

    Dejonghe, P.; Van De Voorde, N.; Bonne, A.

    1984-01-01

    Volume reduction of low-level and medium-level wastes, and simultaneous optimization of the quality of the conditioned end-product is a major challenge in the management of radioactive wastes. Comments will be given on recent achievements in treatment of non-high-level liquid and solid wastes from power reactors and low-level plutonium contaminated wastes. The latter results can contribute to an overall optimization of a radioactive waste management scheme, including the final disposal of the conditioned materials. Some detailed results will be given concerning volume reduction, decontamination factors, degree of immobilization of the contained radioelements, and cost considerations

  6. Safety and performance indicators for the assessment of long-term safety of deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hugi, M.; Schneider, J.W.; Dorp, F. van; Zuidema, P.

    2005-01-01

    The evaluation of the ability to isolate radioactive waste and the assessment of the long-term safety of a deep geological repository is usually done in terms of the calculated dose and/or risk for an average individual of the population which is potentially most affected by the potential impacts of the repository. At present, various countries and international organisations are developing so-called complementary indicators to supplement such calculations. These indicators are called ''safety indicators'' if they refer to the safety of the whole repository system; if they address the isolation capability of individual system components or the whole system from a more technical perspective, they are called ''performance indicators''. The need for complementary indicators follows from the long time frames which characterise the safety assessment of a geological repository, and the corresponding uncertainty of the calculated radiation dose. The main reason for these uncertainties is associated with the uncertain long-term prognosis of the surface environment and the related human behaviour. (orig.)

  7. Conceptual design and cost inputs associated with co-disposal of the spent fuel and long lived radioactive wastes in the deep geologic disposal facility

    International Nuclear Information System (INIS)

    Fako, R.; Sociu, F.; Nicolae, R.; Barariu, G

    2013-01-01

    The paper aims to be an integrated approach for the containment and isolation of spent fuel and / or long lived radioactive wastes in a Deep Geologic Repository in Romania. Several scenarios could be defined for the management of spent fuel and long lived radioactive waste in Romania considering many specific constraints in Romania (political, geological, economic, demographic, etc.). This paper intends to be an upgrade of several Research, Development and Demonstration (RD&D) works performed by SITON specialists on this subject, taking into account also the conclusions of the Workshop ôCost estimation on spent nuclear fuel disposal in Romaniaö organized by IAEA in cooperation with ANDR at the beginning of this year in Romania.This paper is, also, addressed to decision makers with target on to adopt the best strategy for construction of Deep Geologic Repository in Romania. (authors)

  8. Implications of safety requirements for the treatment of THMC processes in geological disposal systems for radioactive waste

    Directory of Open Access Journals (Sweden)

    Frédéric Bernier

    2017-06-01

    Full Text Available The mission of nuclear safety authorities in national radioactive waste disposal programmes is to ensure that people and the environment are protected against the hazards of ionising radiations emitted by the waste. It implies the establishment of safety requirements and the oversight of the activities of the waste management organisation in charge of implementing the programme. In Belgium, the safety requirements for geological disposal rest on the following principles: defence-in-depth, demonstrability and the radiation protection principles elaborated by the International Commission on Radiological Protection (ICRP. Applying these principles requires notably an appropriate identification and characterisation of the processes upon which the safety functions fulfilled by the disposal system rely and of the processes that may affect the system performance. Therefore, research and development (R&D on safety-relevant thermo-hydro-mechanical-chemical (THMC issues is important to build confidence in the safety assessment. This paper points out the key THMC processes that might influence radionuclide transport in a disposal system and its surrounding environment, considering the dynamic nature of these processes. Their nature and significance are expected to change according to prevailing internal and external conditions, which evolve from the repository construction phase to the whole heating–cooling cycle of decaying waste after closure. As these processes have a potential impact on safety, it is essential to identify and to understand them properly when developing a disposal concept to ensure compliance with relevant safety requirements. In particular, the investigation of THMC processes is needed to manage uncertainties. This includes the identification and characterisation of uncertainties as well as for the understanding of their safety-relevance. R&D may also be necessary to reduce uncertainties of which the magnitude does not allow

  9. Geological storage of radioactive wastes: governance and practical implementation of the reversibility concept; Stockage geologique de dechets radioactifs: gouvernance et mise en oeuvre pratique du concept de reversibilite

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-01-15

    This document comments the different issues associated with the concept of reversibility in the case of geological disposal of radioactive wastes: adopted approach for investigations on the practical implementation of reversibility, decision and assessment process related to the practical implementation of reversibility, role of local actors in decision and monitoring process on a middle and long term, control and vigilance during the reversibility period, memory preservation and its inter-generational transmission, modalities of financing reversibility and the radioactive waste management system, development of a citizen ability and expertise sharing, and perspectives

  10. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  11. Radioactive wastes. Management prospects

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  12. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2014-04-01

    Full Text Available Underground research laboratories (URLs, including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an “area-specific URL” in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 may be achieved, but the time left is limited.

  13. King's Trough Flank: geological and geophysical investigations of its suitability for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kidd, R.B.; Searle, R.C.; Weaver, P.P.E.; Jacobs, C.L.; Huggett, Q.J.; Noel, M.J.; Schultheiss, P.J.

    1983-01-01

    The King's Trough Flank study area in the Northeast Atlantic Ocean was chosen in 1979 as a location at which to examine the suitability of pelagic carbonate sequences for sub-seabed disposal of high-level radioactive waste. This report summarises investigations up to the end of 1982; following visits by four research ships to the area during which geophysical data and sediment samples were collected. The region is a characteristically rugged portion of the deep ocean floor with hills and scarps 10 to 30 km apart and slopes around the hills ranging from 18 deg to 30 deg. Areas of relatively smooth seafloor occur, however, up to 35 km across, where slopes no greater than 2 deg are recorded. At this stage an apparent discrepancy between the geophysical and sediment core data leaves some uncertainty regarding the stability of the sediment cover and the likelihood of current erosion in these areas. The general suitability of the area is discussed by comparing our present geological and geophysical data with the set of 'desirable characteristics' for a sub-seabed disposal site first outlined in 1979. The difficulties involved in extrapolating findings from presently-sampled depths of up to 10 metres to depths envisaged for shallow waste disposal are emphasised. (author)

  14. Research on advanced technology of performance assessment for geological disposal of high-level radioactive waste (Joint research)

    International Nuclear Information System (INIS)

    2006-12-01

    JAEA and RWMC have carried out a joint research program on advanced technologies that could be used to support performance assessments of geological disposal concepts for high-level radioactive waste. The following 5 items were considered in the program: 1) planning of a basic strategy for the development of analysis technologies on nuclide migration over various spatial and temporal scales; 2) development of analysis technologies for vitrified waste scale; 3) development of analysis technologies for repository scale; 4) development of integration technologies for geochemical information; and 5) development of technologies to promote the logical understanding of repository performance and safety. The above items were discussed in the context of technological experiences gained by JAEA and RWMC in previous repository-related studies. According to the results of these discussions, development strategies for each of the technology areas identified above were efficiently formulated by appropriate task allocations. Specific technical subjects requiring further investigation were also identified using this approach, and potential feed-backs from the results of these investigations into the overall research plan and strategy were considered. These specific research and development subjects in the overall strategy defined by this project should be implemented in the future. (author)

  15. The JAERI program for development of safety assessment models and acquisition of data needed for assessment of geological disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuzuru, H.

    1991-01-01

    The JAERI is conducting R and D program for the development of safety assessment methodologies and the acquisition of data needed for the assessment of geologic disposal of high-level radioactive wastes, aiming at the elucidation of feasibility of geologic disposal in Japan. The paper describes current R and D activities to develop interim versions of both a deterministic and a probabilistic methodologies based on a normal evolution scenario, to collect data concerning engineered barriers and geologic media through field and laboratory experiments, and to validate the models used in the methodologies. 2 figs., 2 refs

  16. Hydrogeologic modelling in support of a proposed Deep Geologic Repository in Canada for low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, J.F.; Normani, S.D.; Yin, Y. [Waterloo Univ., ON (Canada). Dept. of Civil and Environmental Engineering; Sykes, E.A.; Jensen, M.R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has proposed the construction of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste at the Bruce site on the shore of Lake Huron near Tiverton, Ontario. The DGR is to be excavated at a depth of about 680 m within argillaceous limestones of Ordovician age. A saturated regional-scale and site-scale numerical modelling study has been completed in order to evaluate the safety of storing radioactive waste at the site and to better understand the geochemistry and hydrogeology of the formations surrounding the proposed DGR. This paper reported on the regional-scale base-case modelling and analysis of the measured pressure profile in deep boreholes at the DGR site. The numerical modelling study provided a framework to investigate the groundwater flow system as it relates to, and potentially affects, the safety and long-term performance of the DGR. A saturated groundwater flow model was also developed using FRAC3DVS-OPG. The objective of regional-scale groundwater modelling of the Paleozoic sedimentary sequence underlying southwestern Ontario was to provide a basis for the assembly and integration of site-specific geoscientific data and to explain the influence of parameter and scenario uncertainty on predicted long-term geosphere barrier performance. The base-case analysis showed that solute transport in the Ordovician and lower Silurian is diffusion dominant. For the base-case parameters, the estimated mean life expectancy for the proposed DGR is more than 8 million years. The possible presence of a gas phase in the rock between the Cambrian and the Niagaran was not considered in the analyses of this paper. 9 refs., 2 tabs., 10 figs.

  17. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    International Nuclear Information System (INIS)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these open-quotes geomorphic hazardsclose quotes include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC

  18. Geology and hydrology of the proposed Lyons, Kansas, radioactive waste repository site. Final report

    International Nuclear Information System (INIS)

    1971-03-01

    The five chapters cover: surface geology and ground-water hydrology, status report of 6-month study of subsurface rocks, study of salt sequence, heat transfer, and energy storage and radiation damage effect in rock salt. 64 figures, 9 tables

  19. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  20. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  1. Radioactive Waste SECURITY

    International Nuclear Information System (INIS)

    Brodowski, R.; Drapalik, M.; Gepp, C.; Gufler, K.; Sholly, S.

    2010-01-01

    The purpose of this work is to investigate the safety requirements for a radioactive waste repository, the fundamental problems involved and the legislative rules and arrangements for doing so. As the title already makes clear, the focus of this work is on aspects that can be assigned to the security sector - ie the security against the influence of third parties - and are to be distinguished from safety measures for the improvement of the technical safety aspects. In this context, mention is made of events such as human intrusion into guarded facilities, whereas e.g. a geological analysis on seismic safety is not discussed. For a variety of reasons, the consideration of security nuclear waste repositories in public discussions is increasingly taking a back seat, as ia. Terrorist threats can be considered as negligible risk or well calculable. Depending on the type of storage, different security aspects still have to be considered. (roessner)

  2. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  3. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  4. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  5. Mining and engineering aspects and variants for the underground construction of a deep geological repository for radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Milchev, M.; Michailov, B.; Nanovska, E.; Harizanov, A.

    2003-01-01

    The aim of the present report is to investigate and to describe systematically the foreign experience, scientific and technical achievements and stages of development concerning the mining and engineering aspects and variants for underground construction of a deep geological repository for radioactive waste (RAW) and spent nuclear fuel (SNF). The ideal solution in managing the problems with harmful wastes seems to be either to remove them permanently from Earth (which is related with high risks and high costs) or to transform long-lived radionuclides to short-lived radionuclides using nuclear transmutation processes in a reactor or a particle accelerator. The latter is also a complex and immensely costly process and it can only reduce the quantities of some long-lived radionuclides, which can be then disposed in a geological repository. At present, the deep geological disposal remains the only solution for solving the problem with the hazard of storing radioactive wastes. The report submits a brief description and systematization of the performed investigations, accompanied by analysis of the scientific and technical level on world scale. The analysis is related with the particular geological conditions and the existing scientific studies available so far in Bulgaria. The main conclusions are that the complex scientific-technical and engineering problems related with the construction of a deep geological repository for RAW and SNF require long-term scientific investigations and preliminary complex works and it is high time to launch them in Bulgaria. (authors)

  6. Hydrogeologic modelling in support of a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 16264

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Sykes, Eric A.; Jensen, Mark R.

    2009-01-01

    A Deep Geologic Repository (DGR) for Low and Intermediate Level radioactive waste has been proposed by Ontario Power Generation for the Bruce Nuclear Power Development site in Ontario, Canada. The DGR is to be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes a regional-scale geologic conceptual model for the DGR site and analyzes flow system evolution using the FRAC3DVSOPG flow and transport model. This provides a framework for the assembly and integration of site-specific geo-scientific data that explains and illustrates the factors that influence the predicted long-term performance of the geosphere barrier. In the geologic framework of the Province of Ontario, the Bruce DGR is located at the eastern edge of the Michigan Basin. Borehole logs covering Southern Ontario combined with site specific data have been used to define the structural contours at the regional and site scale of the 31 sedimentary strata that may be present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an 18.500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian is characterized by units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/l. The computational sequence involves the calculation of steady-state density independent flow that is used as the initial condition for the determination of pseudo-equilibrium for a density dependent flow system that has an initial TDS distribution developed from observed data. Long-term simulations that consider future glaciation scenarios include the impact of ice thickness and permafrost. The selection of the performance measure used to evaluate a groundwater system is important. The traditional metric of average water particle travel time is inappropriate for geologic units such as the Ordovician where solute transport is

  7. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  8. Low probability natural phenomena and crustal movement on high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Kusunose, Kinichiro; Sato, Takashi; Cho, Akio; Togashi, Shigeko; Matsumoto, Akikazu; Kanai, Yutaka; Okumura, Koji; Shimokawa, Koichi; Mizuno, Kiyohide

    1998-01-01

    On subtheme ''development of long-term estimate method of crystal movement'', a control method has been developed under the conditions of 500 MPa confining pressure at 300degC. The method was tested under the conditions of 100 MPa confining pressure at room temperature and the rock fracture experiment was succeeded. On subtheme ''estimation method on the effect of volcanic activity'', in order to evaluate the effects of tephra fall on environment, pollen analysis of sample on outcrop in Sakaida and the topographic and geological survey of river terrace along Nyu-river in Yamagata prefecture were carried out. These results showed number of pollen was decreased immediately after AT tephra fall originated in Kyushu, so that effect of ash on forest was proved. However, the effect of AT tephra fall on ecological system was not so large as changing forest compositing species. On establishment of accurate geologic time measurement of pyroclastic materials, uranium and thorium were chemically separated from various kinds of mineral concentrated materials separated from pyroclastic materials. Iso chron of them was obtained by alpha count. Moreover, a direct geologic time measurement method for distal tephra was developed by pottasium-argon method. It makes possible direct measurement of geological time of young pyroclastic flow sediment. (S.Y.)

  9. Process and research method of radionuclide migration in high level radioactive waste geological disposal system

    International Nuclear Information System (INIS)

    Chen Rui; Zhang Zhanshi

    2014-01-01

    Radionuclides released from waste can migrate from the repository to the rock and soil outside. On the other hand, nuclides also are retarded by the backfill material. Radionuclide migration is the main geochemical process of the waste disposal. This paper introduces various methods for radionuclide migration research, and give a brief analysis of the geochemical process of radionuclide migration. Finally, two of the most important processes of the radionuclide migration have been instanced. (authors)

  10. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  11. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  12. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  13. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  14. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  15. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  16. Effect of damage on water retention and gas transport properties geo-materials: Application to geological storage of radioactive waste

    International Nuclear Information System (INIS)

    M'Jahad, S.

    2012-01-01

    In the context of geological disposal of radioactive waste, this work contributes to the characterization of the effect of diffuse damage on the water retention and gas transfer properties of concrete (CEM I and CEM V) selected by Andra, Callovo-Oxfordian argillite (host rock) and argillite / concrete interfaces. This study provides information on the concrete microstructure from Mercury porosimetry intrusion and water retention curves: each concrete has a distinct microstructure, CEM I concrete is characterized by a significant proportion of capillary pores while CEM V concrete has a large proportion of C-S-H pores. Several protocols have been developed in order to damage concrete. The damage reduces water retention capacity of CEM I concrete and increases its gas permeability. Indeed, gas breakthrough pressure decreases significantly for damaged concrete, and this regardless of the type of concrete. For argillite, the sample mass increases gradually at RH = 100%, which creates and increases damage in the material. This reduces its ability to retain water. Otherwise, water retention and gas transport properties of argillite are highly dependent of its initial water saturation, which is linked to its damage. Finally, we observed a clogging phenomenon at the argillite/concrete interfaces, which is first mechanical and then hydraulic (and probably chemical) after water injection. This reduces the gas breakthrough pressure interfaces. (author)

  17. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  18. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  19. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  20. Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action

  1. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  2. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  3. The Cigeo project, Meuse/Haute-Marne reversible geological disposal facility for radioactive waste. Project Owner File, Public debate of 15 May to 15 October 2013

    International Nuclear Information System (INIS)

    Dupuis, Marie-Claude; Gonnot, Francois-Michel

    2013-07-01

    Andra is exploring several options for the disposal of low-level long-lived waste (LLW-LL). With the French Government's approval, in June 2008 Andra began looking around France for a site to build an LLW-LL repository. In late 2008 it provided the Government with a report analysing the geological, environmental and socio-economic aspects of the forty odd municipalities that expressed an interest in the project. After the withdrawal of the two municipalities chosen in 2009 to conduct geological investigations, the government asked Andra to re-explore the various management options for graphite and radium-bearing waste, focusing in particular on ways to manage these types of waste separately. The High Committee for Transparency and Information on Nuclear Safety (HCTISN) created a working group to provide feedback on the search for a site for LLW-LL. Andra submitted a report to the Government in late 2012. This report contains proposals for continuing the search and draw in particular on the HCTISN's recommendations. Contents: 1 - Radioactive waste (Sources, Types, Management, Waste to be disposed of at Cigeo, Cigeo's estimated disposal capacities, Where IS HLW and ILW-LL being stored until Cigeo is commissioned? 2 - Why deep geological disposal? (A 15-year research programme, Presentation and assessment of the research results, The public debate of 2005-2006, Deep geological disposal ratified by the 2006 Planning Act, The 2006 Planning Act: other areas of research complementary to deep geological disposal, The situation in other countries); 3 - Why the Meuse/Haute-Marne site? (Selection of the Meuse and Haute-Marne site to host an underground research laboratory, The geological formation in the Meuse and Haute-Marne site, Callovo-Oxfordian clay, Siting of Cigeo's installations); 4 - How will Cigeo operate? (The installations at Cigeo, Construction of Cigeo, Transport of waste packages, Operation of Cigeo, Closure of Cigeo); 5 - Safety at Cigeo

  4. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  5. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  6. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  7. Disposal of high level and long lived radioactive waste in deep geological formation

    International Nuclear Information System (INIS)

    Niezborala, J.M.; Hoorelbeke, J.M.

    2000-01-01

    The status of ANDRA's research program on high level and long lived waste corresponds to the start of construction of the Meuse/Haute-Marne Underground Research Laboratory in an argillite layer, as well as to the selection in 1999 of preliminary disposal concepts corresponding to this layer. The paper describes the preliminary concepts dealing with transuranic waste, high level vitrified waste and potentially disposed spent fuel. Provision is made for a high level of flexibility, in particular with regard to options of reversibility of the disposal process, and to potential evolutions of the waste inventory. These concepts were selected for research purpose to assess by the year 2006 the feasibility of a potential repository, with.respect in particular to safety rules. The paper mentions the research targets of the program aiming at answering major scientific and technological questions raised by the concepts. The program includes the fitting and validation of the modelling, on the basis in particular of the experimental work to be carried out in the Underground Research Laboratory, making it possible to dimension the disposal concepts and to assess their safety. (authors)

  8. Trip report: workshop on risk analysis and geologic modeling in relation to the disposal of radioactive wastes into geological formations

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The Workshop was co-sponsored by the Commission of European Communities (CEC) and the Office of Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), with primary object being to promote international cooperation in developing and using risk assessment techniques for the long-term safety assessment of waste disposal. The attendance was restricted to specialists in the field and a few observers; 43 people were in attendance representing 14 different countries. Nothing particularly new or novel was presented nor any formal cooperation agreed upon. However, there was a feeling that continued informal cooperation was helpful and should be continued. Greater or lesser degrees of formality could be decided later. The U.S. program was definitely more advanced and larger in scope than the others that were discussed. Countries that seemed to have significant programs include the Federal Republic of Germany, France, Canada, Sweden, and the CEC. Abstracts of papers are presented together with consensus reports on containment failure modes and geosphere transport modeling

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  10. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  11. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  12. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  13. 2010 Survey on long-term preservation of information and memory for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2011-01-01

    Preservation of information and memory across generations is a cross-cutting theme of increasing importance for radioactive waste management. Because of the experience accumulated by the advanced national programmes that the RWMC represents, and the breadth of its related high-level initiatives, the Committee is uniquely placed internationally to combine resources and help develop state-of-the-art guidance on the long-term preservation of information and memory. In the context of fostering knowledge consolidation and transfer (KCT), the RWMC has already identified - in its reference document on KCT - the area of inter-generational transfer of knowledge as one of two areas needing development. In 2009, the RWMC decided to implement its programme of work in the area of information preservation and long-term memory as a series of projects or lines of actions opened by the RWMC and supervised by its Bureau. In order to better define its first series of projects the RWMC preformed a survey of its organisations needs and available materials and experience. At its meeting in 2010 the RWMC determined that the survey materials provided by organisations from 12 NEA countries constitute a good contribution to the literature in this field, and certainly to the upcoming projects. They provide as well a good baseline of information against which to measure progress a few years hence. This document reports the answers provided by organisations from 12 countries (Belgium, Canada, Finland, France, Hungary, Japan, Korea, Spain, Sweden, Switzerland, United Kingdom, and the USA,) to five questions related to long-term preservation of information and memory in the field of geological disposal. The questions are as follows: o What specific priority areas for long-term memory development have been identified in your agencies/countries? Which are the time scales of largest interest? o Do these priority proceed from good practice or/and from specific laws, regulations, policies exist in

  14. Geology, Bedrock, Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site Characterization., Published in 1998, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Bedrock dataset current as of 1998. Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site...

  15. Potential US/Canadian cooperative activities in geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1980-03-01

    A joint review meeting between the US and Canada was held on June 19 and 20, 1979 to discuss waste isolation activities in crystalline rocks. The review meeting served the purposes of an initial information transfer and as a mechanism to stimulate thinking for a workshop on US/Canadian cooperative programs which was held on June 21, 1979. The workshop participants divided into working groups to discuss areas of potential cooperation: the Administrative Working Group established protocol for information exchange and cooperative activities; the Geotechnical Working Group selected activities in exploration, field testing, instrumentation and measurement technique development, monitoring, and quality assurance where cooperation would be of benefit to both countries; and the Assessment/Modeling Working Group discussed areas in model development and verification, engineered barriers, radiation effects, hydrologic properties of fractured rocks, waste form leaching, and sorption where cooperation would enhance both the US and Canadian programs

  16. [US Geological Survey research in radioactive waste disposal, fiscal year 1979:] Department of Energy program for locating and characterizing disposal sites

    International Nuclear Information System (INIS)

    Dixon, G.L.; Hoover, D.B.

    1982-01-01

    The objective was to locate and characterize rock masses at the NTS and in southern Nevada suitable to be host media for high-level radioactive wastes, to describe the areal and depth distribution and structural integrity of these rock masses, and to assess the potential for contaminant release by hydrologic transport or as a result of tectonic and (or) volcanic activity. From previous geologic work at NTS, the general geology is well known. Areas likely to have suitable host rocks and hydrologic conditions at depths appropriate for a repository are evaluated by detailed surface mapping, surface geophysical methods, exploratory drilling, and borehole geophysical techniques. Progress is reported. 5 refs., 1 fig

  17. Quaternary-geological results and problems of the Gorleben project for final storage of radioactive waste

    International Nuclear Information System (INIS)

    Duphorn, K.

    1984-01-01

    The measured results and the ground-water flow models elaborated by the Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover, show that the ground-water flows relatively fast in the high-permeability quaternary sands and gravels of the Gorleben channel down to the caprock. This accounts for the current subrosion rate which has been determined to be up to 1 mm per annum, so that a subrosion volume of up to 10.000 m 3 a year is to be expected, which means that ground-water flow from the channel bottom to the soil surface is expected to take a period of only 600 up to 3700 years. These quaternary-hydrogeological results give reason to doubt whether the model of the geologic multi-barriers, according to which a protective function is attributed to the ''caprock barrier'', can really be applied. The results show that the ''salt-bed barrier'' at the Gorleben site is geologically unstable and endangered by subrosion, which is reason enough to likewise question the protective effect of this salt formation in the long run. (orig./HP) [de

  18. Safety and sensitivity analyses of a generic geologic disposal system for high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1994-11-01

    This report describes safety and sensitivity analyses of a generic geologic disposal system for HLW, using a GSRW code and an automated sensitivity analysis methodology based on the Differential Algebra. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. The results of sensitivity analyses indicate that parameters related to a homogeneous rock surrounding a disposal facility have higher sensitivities to the output analyzed here than those of a fractured zone and engineered barriers. The sensitivity analysis methodology provides technical information which might be bases for the optimization of design of the disposal facility. Safety analyses were performed on the reference disposal system which involve HLW in amounts corresponding to 16,000 MTU of spent fuels. The individual dose equivalent due to the exposure pathway ingesting drinking water was calculated using both the conservative and realistic values of geochemical parameters. In both cases, the committed dose equivalent evaluated here is the order of 10 -7 Sv, and thus geologic disposal of HLW may be feasible if the disposal conditions assumed here remain unchanged throughout the periods assessed here. (author)

  19. Natural phenomena with low probability and crustal movement on high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Kusunose, Kinichiro; Sato, Takashi; Cho, Akio

    1997-01-01

    By forecast of Ministry of International Trade and Industry, total amount of glassification materials will attain to about 40,000 of can of 200 liter in 2050 year. A geological circumstance of geological disposal needs to be stable for long time (at least more than 10,000 years). By development of long-term prediction method of crusted movement, the experiments of fracture of granite sample under confining pressure of 100 MPa suggested that the physical properties were Young's modulus 68 GPa, Poisson's ratio 0.29, the maximum strength 731 MPa and pressure of beginning dilatancy 457 MPa. The rupture behavior of granite belongs to class II. Skewness of perimeter at the largest strength was about 1%. There are static and dynamic process in the rupture cross-section forming process. With developing an evaluation method of volcanic activities effects on the basis of study on the change of circumstances caused on the large eruption, the change of vegetation was proved in the large area by analysis of pollen. Ionium age determination measurement equipment have lower back ground level than that of γ-ray counter. Accordingly, it is useful for measurement of low concentration of them. (S.Y.)

  20. Site characterization field manual for near surface geologic disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    McCray, J.G.; Nowatzki, E.A.

    1985-01-01

    This field manual has been developed to aid states and regions to do a detailed characterization of a proposed near-surface low-level waste disposal site. The field manual is directed at planners, staff personnel and experts in one discipline to acquaint them with the requirements of other disciplines involved in site characterization. While it can provide a good review, it is not designed to tell experts how to do their job within their own discipline

  1. Establishing deep geological repositories for radioactive waste in the United States of America

    International Nuclear Information System (INIS)

    Bennett, J.W.; Ballard, W.W. Jr.; Cooley, C.R.

    1984-01-01

    The paper describes, in broad terms, the interrelationship of the several regulations and recent legislation governing the National Waste Terminal Storage programme. The schedules of the first and second repositories are detailed, as are the interactions between the federal, state, and local governments. Limited portions of the Nuclear Regulatory Commission's regulations and the Environmental Protection Agency's standard are discussed to the extent that they affect the development schedules. (author)

  2. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  3. Research and development programme on radioactive waste disposal in deep geological formation (study of a clay formation)

    International Nuclear Information System (INIS)

    Heremans, R.; Manfroy, P.; Bonne, A.

    1980-01-01

    The experiments carried out at the Mol nuclear research center from 1 January 1976 to 30 June 1978 on the management and storage of radioactive wastes are described. The possibility of underground disposal and storage at Mol has been studied. Mol clay samples and ground water were analysed. Hydrogeological measurement were made together with experiments or heat transfer in clayes. The technical realization and environmental riscks of radioactive underground disposal at Mol are discussed

  4. High-level radioactive wastes disposals and collection of relating basic information on geological environment

    International Nuclear Information System (INIS)

    Ishii, Takemasa; Marui, Atsunao; Uchida, Youhei; Nakashima, Yoshito; Hayashi, Takeshi; Miyakoshi, Akinobu

    2004-01-01

    Details of the NMR (nuclear magnetic resonance) spectroscopic method with pulsed gradient magnetic field are described for obtaining self-diffusion coefficient of a water molecule in clay gels. By computer simulation of three dimensional diffusion in random lattice, it will be shown that a vast amount of data having hitherto collected on diffusion of water in geological environment may be understood systematically by employment of the concept of disturbance played by water adsorption on clay surface. The disturbance efficiency is expressed by a parameter obtainable in nuclear magnetic resonance (NMR) experiment. It is concluded that a thicker water-containing layer in buffer material surrounding the specimens would show a slower diffusion. (S. Ohno)

  5. A study on closure performance in geological disposal of high-level radioactive waste (H14)

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Kawakami, Susumu; Yui, Mikazu; Makino, Hitoshi; Sawada, Atsushi; Kurihara, Yuji; Mihara, Morihiro

    2003-04-01

    Regarding closure technology of underground facilities in geological disposal of the HLW in H12 report, the fundamental concept that closure technology has no impact against the engineered barrier system (EBS) was described. Performance Assessment (PA) has been performed without considering of the barrier function of closure elements. Following H12 report, the various in-situ data of the closure elements (ex. plug, backfill) have been obtained. Therefore, we considered that the PA of the EBS considering the expecting performance of the closure elements from the view points of both the engineering technology and the PA should be examined. First, the characteristics of rock mass and the function of the closure elements were summarized. Then, the closure scenario was developed preliminarily based on hydrological analysis between a hydraulic fracture and a disposal panel, the fault tree analysis, and so on. (author)

  6. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  7. Project TN-030: hydrogeology, ORNL radioactive waste burial grounds. US Geological Survey annual report, FY 82

    International Nuclear Information System (INIS)

    1982-01-01

    Near Burial Ground 3, five wells were cored through Unit F of the Chickamauga Limestone, previously considered to be a probable barrier to ground-water flow. Cores revealed that in this area Unit F actually consists of two continuous silty shale/shaley siltstone members with an interbedded limestone member. Weathering stains in the core and small-size solution openings revealed by televiewer logging indicate that this unit likely has greater permeability than previously described. A unique instrumentation system was designed and installed in six wells to provide information about hydraulic heads in the three geologic units immediately underlying the site. Sediment retrieved from two wells 450 feet and 1300 feet from the site was found to contain as much as 335 pCi/g and 0.83 pCi/g, respectively, of cesium-137. In Burial Ground 5 the construction of four clusters of piezometers of special design was compelted. The deepest wells were cored, geophysical logs were made of each piezometer, and hydraulic conductivities of the bedrock were measured in 50-foot depth increments. No contamination that could be measured by field instrumentation was found in the bedrock. Geophysical logs were made of several older wells in Burial Grounds 5 and 6 and the ILW area. Spectral logging identified the isotopes 60 Co and/or 137 Cs in several well bores. Tritium was found to still be present in water from wells used five years ago during tracer tests in two different areas, suggesting that an inefficient retardive mechanism for this nuclide exists in fine-grained geologic material

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  9. Disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Costello, J M [Australian Atomic Energy Commission Research Establishment, Lucas Heights

    1982-03-01

    The aims and options for the management and disposal of highly radioactive wastes contained in spent fuel from the generation of nuclear power are outlined. The status of developments in reprocessing, waste solidification and geologic burial in major countries is reviewed. Some generic assessments of the potential radiological impacts from geologic repositories are discussed, and a perspective is suggested on risks from radiation.

  10. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  11. Long-term observations programme on the geological environment of a radioactive waste repository in clayey or related formations, implications on the various phases of the project

    International Nuclear Information System (INIS)

    Manfroy, P.; Raynal, M.; Bonne, A.

    1993-01-01

    The process of emplacing radioactive waste in deep clayey or related formations involves numerous interdependent actions, the common objective of which is to guarantee optimum isolation of the waste for the durations required. Among these actions, observations on the geological environment will have to extend over a very long period of time, from site characterization to repository closure. All the far-field and near-field observations will constitute the basis and confirmation of the models intended to describe the phenomena which take place in the repository and its surrounding host formation and will have to be taken into account in the repository closure procedures. 6 refs

  12. Status report on research programmes of the Commission of European Communities related to risk evaluation of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Girardi, F.

    1977-01-01

    The programmes of the Commission of European Communities related to risk evaluation of geological disposal of radioactive waste are presented. The Joint Research Centre carries out theoretical modelling activities and a few selected experimental activities which are related to model development and verification. A set of contractual research activities, coordinated by the General Directorate of Research, Scientific Affairs and Education and set up primarily to encourage development of optimised waste management strategies will provide the many additional experimental data which are necessary for a realistic evaluation of long term hazard to man and the environment

  13. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  14. Nonmetallic engineered barriers, their properties and role in a geologic repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Lisy, F.

    1994-01-01

    The efficiency of engineered barrier systems depends to a great extent on the properties of the materials used. Backfill and sealing materials must fulfill certain requirements and criteria. They must feature low hydraulic conductivity, high retardation capacity, extremely good sorption properties for a wide range of radionuclides potentially leachable from the deposited waste, low permeability, good compatibility with engineered and natural barriers, good workability, and availability in the necessary quantity and at a reasonable price. Some basic properties are presented of materials which fulfill, to a considerable degree, these requirements and which are thus suggested as suitable backfills, sealings of buffers, namely clay- and cement-based materials (concretes, mortars, etc.). A brief information is also given on some other materials like bitumen, asphalt, etc. (Z.S.) 4 refs

  15. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  16. Geophysical and geological borehole investigations for the characterization of a site for radioactive waste disposal

    International Nuclear Information System (INIS)

    Olsson, O.; Ahlbom, K.

    1984-02-01

    In the Swedish program for site investigations detailed geological and geophysical investigations are performed at areas of 4-6 km 2 at the surface. Normally around 10 deep core bore holes are drilled. The length of the holes is normally from 600 to 1000 m. The holes are drilled to verify the location of fracture zones and to investigate the physical and hydraulic properties of the fracture zones at large depths. Investigations have been performed in a number of sites with mainly granitic and gneissic rocks. The core from these boreholes is logged with the aid of a microcomputer system. The cores are mapped with respect to rock type, structure, fractures and fracture minerals. Indications of water flow, shearing and core-discing are also studied. The boreholes are logged with a suite of geophysical logs. Several different electrical logs are used and have been found to be good indicators of fracture zones. Normally the electrical logs in combination with the fracture frequency are used to define the limits of fracture zones crossing the borehole. The temperature log and the salinity log have proved to be good indicators of permeable zones. The data from each hole is correlated with data obtained from the other holes and the surface investigations to build a fracture zone model which is used for the hydraulic modelling of the site. In order to verify the extension of the fracture zones at a distance from the borehole cross-hole techniques have been applied. At the Swedish test site Finnsjoe and in the Stripa mine the suitability of the mise a la masse technique for mapping of fracture zones was tested. At the Finnsjoe site it was possible to map a fairly complex fracture system over distances up to 150 m. In the Stripa mine the object was to follow the extent of a major fracture zone for distances up to 600 m. It was possible to obtain an indication of the orientation of the fracture zone

  17. Basic regulatory requirements for carrying out investigations, reasoning and the approving of the disposal of radioactive and other industrial waste in geological formations in the U.S.S.R

    International Nuclear Information System (INIS)

    Pimenov, M.K.

    1980-01-01

    Legislation and other regulatory standards in force or in preparation in the USSR relating to the disposal and storage of radioactive and other industrial wastes in underground formations are discussed in the report. A tentative outline of the basic operations involved in the disposal of radioactive and other industrial wastes into geological formations is given. Supervision, control and penalties provided by law are also discussed. Conclusions are made that the comparison of national legislative instruments and regulatory documents and procedures relating to underground disposal of radioactive and industrial wastes into geological formations is timely and urgent. (author)

  18. A Methodology to analyze the biosphere in the assessment of deep geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    Pinedo, P.; Smith, G.

    1996-11-01

    This report summarizes the work done and the achievements reached within the R and D Project that IMA/CIEMAT has had with ENRESA during 1993-1995. The overall R and D Project has a wide radiological protection context, but the work reported here relates only to the development of a Methodology for considering the Biosphere sub-system in the assessments of deep geological repositories for high radioactive wastes (HLW). The main areas concerned within the Methodology have to do with the Biosphere structure and morphology in the long-term relevant to deep disposal of HLW: in the contexts of the assessment of these systems, and appropriate modelling of the behaviour of radionuclides released to the biosphere system and with the associated human exposure. This document first provides a review of the past and present international and national concerns about the biosphere modelling and its importance in relation to the definition of safety criteria. A joint ENRESA/ANDRA/IPSN/CIEMAT study about the definition and practical descriptions of the biosphere systems under different climatic states is then summarized. The Methodology developed by IMA/CIEMAT is outlined with an illustration of the way it works. Different steps and procedures are included for a better practical understanding of the software tools developed within the project to support the application of the Methodology. This methodology is widely based on an international working group on ''Reference Biospheres'', part of the BIOMOVS II Project. Specific software developments have been carried out in collaboration with Qunti Sci Itd and with the Polytechnical University of Madrid. (Author)

  19. Geological assessment of crystalline rock formations with a view to radioactive waste disposal

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-01-01

    Field work has been concentrated at the Altnabreac Research Site on north-east Scotland, where three deep boreholes to approximately 300 m and 24 shallow boreholes to approximately 40 m were drilled. The movement of groundwater within 300 m of the surface was investigated using a specially developed straddle packer system. Geochemical studies have demonstrated that most groundwater is dominated by recent recharge but one borehole yielded water with an age of around 10 4 years. Geophysical borehole logging has shown that the full wave train sonic logs and the acoustic logs show most promise for the assessment of crystalline rocks. In the laboratory the interaction of rocks and groundwater at the temperature/pressure conditions to be expected in a repository has established the geochemical environment to which waste canisters and backfill materials would be subjected. Other generic studies reported include the characterization of geotechnical properties of rocks at elevated temperatures and pressures, the development of a new cross-hole sinusoidal pressure test for the measurement of hydraulic properties and the use of thermal infra-red imagery to detect groundwater discharge zones

  20. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  1. Geo-microbiological reactivity of iron materials: impact on geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Esnault, L.

    2010-01-01

    This thesis sought to describe the dynamic concept of a viable and sustainable microbiological activity under deep geological disposal conditions and to assess its impact on containment properties and storage components. Thus, in this study, a model based on the bacterial ferric reduction was chosen for its sustainability criteria in the system and its ability to alter the materials in storage conditions. The main results of this work demonstrated the capability of the environment to stand the iron-reducing bacterial activity and the conditions of its development in the deep clay environments. The bio-availability of structural Fe (III) in clay minerals and iron oxides produced during the process of metal corrosion was clearly demonstrated. In this system, the corrosion appears to be a positive factor on bacterial activities by producing an energy source, hydrogen. The iron-reducing bacterial activities can lead to a resumption of metallic corrosion through the consumption of iron oxides in the passive film. The direct consequence would be a reduction of the lifetime of metal containers. In the case of ferric clay minerals, the consequences of such an activity are such that they can have an impact on the overall porous structure both in terms of chemical reactivity of the materials or physical behavior of the clayey barrier. One of the most significant results is the crystallization of new clay phases at very low temperatures, below 40 C, highlighting the influence of the anaerobic microbial activity in the mineralogical transformations of clay minerals. Furthermore, these experiments also allowed to visualize, for the first time, a mechanism of bacterial respiration at distance, this increases the field of the availability of essential elements as Fe 3+ for bacterial growth in extreme environment. In conclusion, these results clearly showed the impact of the microbiological factor on the reactivity of clay and metal minerals, while relying on control parameters on

  2. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  3. The hydrogeologic environment for a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 59285

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Jensen, Mark R.

    2012-01-01

    A Deep Geologic Repository (DGR) for low and intermediate level radioactive waste has been proposed by Ontario Power Generation for the Bruce nuclear site in Ontario, Canada. As proposed the DGR would be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes the hydrogeology of the DGR site developed through both site characterization studies and regional-scale numerical modelling analysis. The analysis provides a framework for the assembly and integration of the site-specific geo-scientific data and examines the factors that influence the predicted long-term performance of the geosphere barrier. Flow system evolution was accomplished using both the density-dependent FRAC3DVS-OPG flow and transport model and the two-phase gas and water flow computational model TOUGH2-MP. In the geologic framework of the Province of Ontario, the DGR is located on the eastern flank of the Michigan Basin. Borehole logs covering Southern Ontario combined with site-specific data from 6 deep boreholes have been used to define the structural contours and hydrogeologic properties at the regional-scale of the modelled 31 sedimentary strata that may be partially present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an approximately 18500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian includes units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/L. The Ordovician sediments are significantly under-pressured. The horizontal hydraulic conductivity for the Cobourg limestone is estimated to be 2x10 -14 m/s based on straddle-packer hydraulic tests. The low advective velocities in the Cobourg and other Ordovician units result in solute transport that is diffusion dominant with Peclet numbers less than 0:003 for a characteristic length of unity. Long

  4. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  5. Coupled thermal, hydraulic and mechanical analysis in the near field for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Taniguchi, Wataru

    1999-02-01

    Geological disposal of high-level radioactive waste (HLW) in Japan is based on a multibarrier system composed of engineered and natural barriers. The engineered barriers are composed of vitrified waste confined within a canister, overpack and buffer material. Highly compacted bentonite clay is considered one of the most promising candidate buffer material mainly because of its low hydraulic conductivity and high adsorption capacity of radionuclides. In a repository for HLW, complex thermal, hydraulic and mechanical (T-H-M) phenomena will take place, involving the interactive processes between radioactive decay heat from the vitrified waste, infiltration of ground water and stress generation due to the earth pressure, the thermal loading and the swelling pressure of the buffer material. In order to evaluate the performance of the buffer material, the coupled T-H-M behaviors within the compacted bentonite have to be modelled. Before establishing a fully coupled T-H-M model, the mechanism of each single phenomenon or partially coupled phenomena should be identified and modelled physically and numerically. Under the unsaturated condition, the water movement within the buffer material has often been expressed as a simple diffusion model with the constant apparent water diffusivity. However, the water movement in the low permeable and unsaturated porous medium has been known as a transfer process in both vapor and liquid phases. Therefore, it is necessary to incorporate the two-phase contribution into the physical model. In this study, the water diffusivity of compacted bentonite is obtained as a function of water content and temperature. The proposed water movement model is constructed by applying the Philip and de Vries' model and Darcy's law. While the water retention curve is measured by the thermocouple psychrometer, van Genuchten model is applied as the water retention curve because the smooth derivative of the water potential with respect to water content is

  6. Using geologic conditions and multiattribute decision analysis to determine the relative favorability of selected areas for siting a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Harrison, W.; Edgar, D.E.; Baker, C.H.

    1988-05-01

    A method is presented for determining the relative favorability of geologically complex areas for isolating high-level radioactive wastes. In applying the method to the northeastern region of the United States, seismicity and tectonic activity were the screening criteria used to divide the region into three areas of increasing seismotectonic risk. Criteria were then used to subdivide the area of lowest seismotectonic risk into six geologically distinct subareas including characteristics, surface-water and groundwater hydrology, potential human intrusion, site geometry, surface characteristics, and tectonic environment. Decision analysis was then used to identify the subareas most favorable from a geologic standpoint for further investigation, with a view to selecting a site for a repository. Three subareas (parts of northeastern Vermont, northern New Hampshire, and western Maine) were found to be the most favorable, using this method and existing data. However, because this study assessed relative geologic favorability, no conclusions should be drawn concerning the absolute suitability of individual subareas for high-level radioactive waste isolation. 34 refs., 7 figs., 20 tabs

  7. Radioactive waste treatment

    International Nuclear Information System (INIS)

    Alter, U.

    1988-01-01

    For the Federal Government the safe disposal of waste from nuclear power plants constitutes the precondition for their further operation. The events in the year 1987 about the conditioning and transport of low activity waste and medium activity waste made it clear that it was necessary to intensify state control and to examine the structures in the field of waste disposal. A concept for the control of radioactive waste with negligible heat development (LAW) from nuclear installations is presented. (DG) [de

  8. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.; Izabel, C.

    1990-01-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  9. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    Energy Technology Data Exchange (ETDEWEB)

    Escalier des Orres, P; Devillers, C; Cernes, A; Izabel, C [Agence Nationale pour la Gestion des Dechets Radioactifs - ANDRA (France)

    1990-07-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  11. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    Science.gov (United States)

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  12. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  13. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  14. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  15. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation; Guide de surete relatif au stockage definitif des dechets radioactifs en formation geologique profonde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  16. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 12. Repository preconceptual design studies: shale

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in shale. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/13, ''Drawings for Repository Preconceptual Design Studies: Shale.''

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 14. Repository preconceptual design studies: basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in basalt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/15, ''Drawings for Repository Preconceptual Design Studies: Basalt.''

  18. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  19. The disposal of high level radioactive waste in argillaceous host rocks identification of parameters, constraints and geological assessment priorities

    International Nuclear Information System (INIS)

    Horseman, S.T.

    1994-01-01

    The purpose of this report, commissioned by ENRESA, is to examine the characteristics, properties and responses of argillaceous media (clays and more indurated mudrocks) in some detail in order to identify the main parameters that will influence the radiological safety of a deep underground facility for the disposal of high-level radioactive wastes (HLW) and to highlight possible constraints and other important issues relating to the construction, operation and performance of such a facility

  20. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  1. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  2. 2005 dossier. ANDRA's researches on the geological disposal of high-level and long-lived radioactive wastes. Results and perspectives

    International Nuclear Information System (INIS)

    2005-06-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in deep geologic formations (argilites and granites). Content: 1 - Research on deep disposal of radioactive waste: general interest task: Legislative framework, ANDRA scientific objectives, Inspections and assessments; 2 - Designing a safe and reversible disposal system: Repository safety, Reversibility: an essential requirement; 3 - Clay Research on a repository in a clay formation, A long research programme, Dossier 2005 Argile; 4 - Meuse/Haute-Marne site clay: Expected properties of the rock formation, Choice of argillite, Meuse/Haute-Marne site, Conclusions from 10 years of research at the Meuse/Haute-Marne site; 5 - Repository installations: Safe and reversible architecture, Disposal of B waste, Disposal of C waste, Possible disposal of spent fuel (CU); 6 - The disposal facility in operation: From waste packages reception to their disposal in cells, Stages of the progressive closure of engineered structures; 7 - Reversible management: Freedom of choice for future generations, Various closure stages; 8 - Long-term evolution of the repository: Apprehending the repository complexity Main evolutions expected, Slow and limited release of radioactive substances; 9 - Repository safety and impact on man: Several evolution scenarios, Normal evolution, Altered evolution; 10 - Granite Research on a repository in a granite formation: A global approach, Scientific co-operations, Dossier 2005 Granite; 11 - Characteristics of French granite formations: What properties are required for a repository?, Different types of granite formations; 12 - Repository installations: Repository design adapted to granite fractures, Clay seals to prevent water flows, Waste disposal packages ensuring long-term leak-tightness, Physical and chemical environment favourable for waste packages, Architecture

  3. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  5. The Environmental and ethical basis of the geological disposal of long-lived radioactive waste. A collective opinion by the Radioactive Waste Management Committee (RWMC) of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The report presents a consensus position of the national authorities in their search for appropriate solutions in the safe disposal of radioactive wastes in the form of a Collective Opinion of the Radioactive waste Management Committee (RWMC) of the OECD Nuclear Energy Agency. The Collective Opinion addresses the strategy for the final disposal of long-lived radioactive wastes seen from an environmental and ethical perspective, including considerations of equity and fairness within and between generations. (7 refs.)

  6. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Introductory part and summaries

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan and comprises seven chapters. Chapter I briefly describes the importance of HLW management in promoting nuclear energy utilization. According to the long-term program, the HLW separated from spent fuels at reprocessing plants is to be vitrified and stored for a period of 30 to 50 years to allow cooling, then be disposed of in a deep geological formation. Chapter II mainly explains the concepts of geological disposal in Japan. Chapters III to V are devoted to discussions on three important technical elements (the geological environment of Japan, engineering technology and safety assessment of the geological disposal system) which are necessary for reliable realization of the geological disposal concept. Chapter VI demonstrates the technical ground for site selection and for setup of safety standards of the disposal. Chapter VII summarizes together with plans for future research and development. (Ohno, S.)

  7. Thermal analysis in the near field for geological disposal of high-level radioactive waste. Establishment of the disposal tunnel spacing and waste package pitch on the 2nd progress report for the geological disposal of HLW in Japan

    International Nuclear Information System (INIS)

    Taniguchi, Wataru; Iwasa, Kengo

    1999-11-01

    For the underground facility of the geological disposal of high-level radioactive waste (HLW), the space is needed to set the engineered barrier, and the set engineered barrier and rock-mass of near field are needed to satisfy some conditions or constraints for their performance. One of the conditions above mentioned is thermal condition arising from heat outputs of vitrified waste and initial temperature at the disposal depth. Hence, it is needed that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. Therefore, the design of engineered barrier and underground facility is conducted so that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. One of these design is establishment of the disposal tunnel spacing and waste package pitch. In this report, thermal analysis is conducted to establish the disposal tunnel spacing and waste package pitch to satisfy the constraint temperature in the near field. Also, other conditions or constraints for establishment of the disposal tunnel spacing and waste package pitch are investigated. Then, design of the disposal tunnel spacing and waste package pitch, considering these conditions or constraints, is conducted. For the near field configuration using the results of the design above mentioned, the temperature with time dependency is studied by analysis, and then the temperature variation due to the gaps, that will occur within the engineered barrier and between the engineered barrier and rock mass in setting engineered barrier in the disposal tunnel or pit, is studied. At last, the disposal depth variation is studied to satisfy the temperature constraint in the near field. (author)

  8. A new integrated approach to demonstrate the safe disposal of high-level radioactive waste and spent nuclear fuel in a geological repository

    International Nuclear Information System (INIS)

    Mueller-Hoeppe, N.; Krone, J.; Niehues, N.; Raitz von Frentz, R.

    2000-01-01

    Multi-barrier systems are accepted as the basic approach for long term environmental safe isolation of radioactive waste in geological repositories. Assessing the performance of natural and engineered barriers is one of the major difficulties in producing evidence of environmental safety for any radioactive waste disposal facility, due to the enormous complexity of scenarios and uncertainties to be considered. This paper outlines a new methodological approach originally developed basically for a repository in salt, but that can be transferred with minor modifications to any other host rock formation. The approach is based on the integration of following elements: (1) Implementation of a simple method and efficient criteria to assess and prove the tightness of geological and engineered barriers; (2) Using the method of Partial Safety Factors in order to assess barrier performance at certain reasonable level of confidence; (3) Integration of a diverse geochemical barrier in the near field of waste emplacement limiting systematically the radiological consequences from any radionuclide release in safety investigations and (4) Risk based approach for the assessment of radionuclide releases. Indicative calculations performed with extremely conservative assumptions allowed to exclude any radiological health consequences from a HLW repository in salt to a reference person with a safety level of 99,9999% per year. (author)

  9. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2005-01-01

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  11. Follow-up by the ANDRA to the Cigeo project after the public debate - Industrial centre of geological storage of radioactive wastes

    International Nuclear Information System (INIS)

    2014-05-01

    In a first part, this report comments and discusses the evolutions of the Cigeo (industrial centre of geological storage of radioactive wastes) project after the public debate in terms of: integration of a pilot industrial phase to the installation start up, implementation of a regularly reviewed master plan for the storage exploitation, a planning arrangement, and commitment of civil society in the project. The next part briefly presents the different steps defined by the ANDRA to answer the demand for reversibility. The third part states ANDRA's commitments: to guarantee safety above all, to preserve and to develop the hosting territory, and to manage the costs

  12. Experimental study and modelling of physico-chemical mechanisms of clay-concrete interactions in the radioactive waste geological disposal context

    International Nuclear Information System (INIS)

    Dauzeres, A.

    2010-09-01

    These research works are carried out as part of the radioactive wastes geological disposal feasibility study. The current option developed by Andra, includes several cementitious materials in contact with the surrounding Callovo-Oxfordian (COX) (an argillite). Concretes and argillite present very different pore solutions (ionic concentrations and pH). Controlled by the concentrations differences, the aqueous species diffusion in the solids generates chemical and physical disturbances. This study is based on experimental, analytical and numerical works, in order to identify the mechanisms controlling the clayey environment influence on cementitious materials. (author)

  13. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  14. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  15. Storage of radioactive wastes in geological formations. Technical criteria for site selection. Report by the work-group chaired by Professor Goguel

    International Nuclear Information System (INIS)

    Goguel, Jean; Candes, Pierre; Izabel, Cecile; Autran, Albert; Barthoux, Alain; Baudin, Guy; Devillers, Christian; Habib, Pierre; Lafuma, Jacques; Lefevre, Jean; Peaudecerf, Pierre; Pradel, Jacques; Salle, Claude; Treuil, Michel; Lebrun, Patrick; Tissier, Marie-Solange

    1985-06-01

    This document is the result of a prospective mission on the long term storage of radioactive wastes containing long-period emitters (wastes of B and C categories), and notably on a definitive storage in deep continental geological formations. After a presentation of hypotheses (brief description of the storage concept, main safety principles, objectives in terms of radiological safety, safety options, time-related considerations), the authors addressed the following issues: safety before closing during the exploitation period, and safety after closure (after backfilling and sealing of all underground cavities). For the first issue, they discuss the impacts of works on safety and thermal effects during exploitation. For the second issue, they discuss the site natural hydro-geological context, the disturbances brought by the storage (access of water to the storage, and return of water into the biosphere), and the influence of external factors (geological phenomena, human intrusion). Then, the authors make recommendations regarding reconnaissance programs and studies for the selection and qualification of a site. They finally propose technical criteria and main recommendations for site selection. Appendices propose a list of hearings, a presentation of the storage concept, a report on the impact of works, a report on the presence of mineralisation in granite massifs, reports on radiological consequences of intrusions in salt formations and in granite massif containing storage of radioactive wastes or vitrified wastes, a report on the characterization of unsteady parts of the French continental construction, a presentation of the evolution of climate and icings, and a study of seismic movements in the case of deep storages

  16. Monitoring of radioactive wastes

    International Nuclear Information System (INIS)

    Houriet, J.Ph.

    1982-08-01

    The estimation of risks presented by final disposal of radioactive wastes depends, among other things, on what is known of their radioisotope content. The first aim of this report is to present the current state of possibilities for measuring (monitoring) radionuclides in wastes. The definition of a global monitoring system in the framework of radioactive waste disposal has to be realized, based on the information presented here, in accordance with the results of work to come and on the inventory of wastes to be stored. Designed for direct measurement of unpackaged wastes and for control of wastes ready to be stored, the system would ultimately make it possible to obtain all adaquate information about their radioisotope content with regard to the required disposal safety. The second aim of this report is to outline the definition of such a global system of monitoring. Designed as a workbase and reference source for future work by the National Cooperative for the Storage of Radioactive Waste on the topic of radioactive waste monitoring, this report describes the current situation in this field. It also makes it possible to draw some preliminary conclusions and to make several recommendations. Centered on the possibilities of current and developing techniques, it makes evident that a global monitoring system should be developed. However, it shows that the monitoring of packaged wastes will be difficult, and should be avoided as far as possible, except for control measurements

  17. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  18. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  19. Engineering geology study of demo plant radioactive waste final disposal site of medium depth NSD type at Puspiptek, Serpong

    International Nuclear Information System (INIS)

    Heri Syaeful; Sucipta; Imam Achmad Sadisun

    2014-01-01

    Final disposal of radioactive waste intended to keep radioactive substances does not released to the environment until the substance activity decreased to the safe level. Storage concept of radioactive waste (RAW) final disposal that will be developed at the area of Puspiptek, Serpong is near surface disposal (NSD). Based on depth, NSD divided on two type, near surface NSD and medium depth NSD. Concept NSD in this research is medium depth NSD, which is between 30 – 300 meters. During NSD construction in medium-depth required the works of sub-surface excavation or tunneling. Analysis of in-situ stresses and sub-surface deformation performed to recognize the stress magnitude and its distribution that developed in soil/rock as well as the deformation occurred when sub-surface excavation takes place. Based on the analysis, acknowledged the magnitude of tensional and compression stress and its distribution that range from -441 kPa to 4,028 kPa with values of natural deformation or without reinforcement between 4.4 to 13.5 cm. A rather high deformation value which is achieved 13.5 cm leads to necessity of engineering reinforcement during excavation. The designs of engineering reinforcement on every excavation stage refer to the result of modeling analysis of stress and deformation distribution pattern. (author)

  20. Actors Notebook Nr 1 - Geological disposal: an unavoidable option for the system of sustainable management of radioactive wastes? Theme 1 - The role of Cigeo in the waste management system; Theme 2 - The control of risks specific to Cigeo

    International Nuclear Information System (INIS)

    2013-05-01

    This issue addresses the issue of geological storage of radioactive wastes. It evokes the concerned wastes, and the warehousing and transmutation as additional rather than alternative solutions to disposal. It presents the Cigeo project which aims at an industrial implementation of a reversible geological disposal. It evokes the dialogue process associated with this project, and the associated risks during the exploitation phase and after disposal closure. The next part first addresses the role of Cigeo in the waste management arrangement. It more particularly presents the different types of wastes to be stored in Cigeo (waste inventory elaboration, brief opinion of the IRSN), addresses the issue of reversibility (law content, notions of parcel retrievability and of reversibility period, definition of reversibility), proposes an overview of warehousing installations (design and safety aspects, long duration warehousing), addresses the possibility of the separation/transmutation technology for long-life wastes (notions and techniques of separation and transmutation, consequences for the fuel cycle). The second part of this issue addresses the management of risks specific to Cigeo. It more particularly addresses the exploitation phase (key notions, risk of dissemination of radioactive materials, personnel exposure and fire hazard, risks related to other external aggressions), the safety of high-activity and medium-activity long-life waste parcels, the storage sealing (associated safety functions, expected properties, issue of performance demonstration), the notion of geological barrier (associated safety functions, geological characteristics and confinement properties of the geological environment, evolution of these properties). The issue finally proposes a set of sheets presenting current experiments and studies: diffusion experiments, study of natural tracers, the study of fractures with respect to radionuclide transport, seismic or electric methods of detection

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  2. Discussion of quantitative assessment index system of suitability of the site for geological disposal repository of high-level radioactive waste

    International Nuclear Information System (INIS)

    Su Rui; Wang Ju

    2014-01-01

    Site selection and suitability assessment of site are one of important tasks of research and development of geological disposal engineering for high-level radioactive waste (HLW). Quantitative assessment of suitability of the site is based on the scientific, reasonable and operational index system. The discussion of index screening of quantitative assessment of suitability of the site is conducted. Principle of index screening is presented and index systems are established for different stages of site selection, including planning stage of site selection, region or area investigation stage, site characterization and site confirmation stage. But the considerations are taken of the complexity of site selection of geological disposal engineering for HLW and itself development of quantitative assessment method, so improvement of the index systems presented above is needed in the further. (authors)

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  6. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Schmude, J.

    1976-01-01

    Speech on the 18th March 1976 in the Bundestag by the parliamentary Secretary of State, Dr. Juergen Schmude, to substantiate the Federal government's draft to a Fourth Act amending the Atomic Energy Act. The draft deals mainly with the final storage of radioactive wastes and interrelated questions concerning waste treatment and waste collection, and with several ordinance empowerments in order to improve licensing and supervisory procedures. (orig./LN) [de

  7. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  8. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  9. Control, oversight and related terms in the international guidance on geological disposal of radioactive waste - Review of definitions and use

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents the most complete analysis of the use of the words control, oversight, etc. as used in NEA, IAEA and ICRP literature connected to radioactive waste disposal. It reveals the many different ways the same word, 'control', has been used in international guidance and ambiguities than can arise, especially so for the post-closure phase of the repository. The newly introduced ICRP terminology, namely the use of the words 'oversight' and 'built-in controls', represents a step forward in terminology and resolves the ambiguity

  10. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  11. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study

  12. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Yoshida, H.; Metcalfe, R.; Yamamoto, K.; Murakami, Y.; Hoshii, D.; Kanekiyo, A.; Naganuma, T.; Hayashi, T.

    2008-01-01

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure

  13. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan)], E-mail: dora@num.nagoya-u.ac.jp; Metcalfe, R. [Quintessa Japan, Queen' s Tower A7-707, Minatomirai, Yokohama 220-6007 (Japan); Yamamoto, K. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan); Murakami, Y. [Japan Atomic Energy Agency (JAEA), Tono Geoscience Centre (Japan); Hoshii, D.; Kanekiyo, A.; Naganuma, T. [Hiroshima University, Higashi Hiroshima, Kagamiyama 1-4-4 (Japan); Hayashi, T. [Asahi University, Department of Dental Pharmacology, Hozumi, Gifu (Japan)

    2008-08-15

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure.

  14. A model for evaluating radiological impacts on organisms other than man for use in post-closure assessments of geological repositories for radioactive wastes.

    Science.gov (United States)

    Thorn, M C; Kelly, M; Rees, J H; Sánchez-Friera, P; Calvez, M

    2002-09-01

    Bioaccumulation and dosimetric models have been developed that allow the computation of dose rates to a wide variety of plants and animals in the context of the deep geological disposal of solid radioactive wastes. These dose rates can be compared with the threshold dose rates at which significant deleterious effects have been observed in field and laboratory observations. This provides a general indication of whether effects on ecosystems could be observable, but does not quantify the level of those effects. To address this latter issue, two indicator organisms were identified and exposure-response relationships were developed for endpoints of potential interest (mortality in conifers and the induction of skeletal malformations in rodents irradiated in utero). The bioaccumulation, dosimetry and exposure-response models were implemented and used to evaluate the potential significance of radionuclide releases from a proposed deep geological repository for radioactive wastes in France. This evaluation was undertaken in the context of a programme of assessment studies being performed by the Agence nationale pour la gestion des déchets radioactifs (ANDRA).

  15. Leachability of bituminized radioactive waste. Literature survey

    International Nuclear Information System (INIS)

    Akimoto, Toshiyuki; Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi

    1999-02-01

    Bituminized radioactive waste that will be returned from COGEMA, France is planned to be disposed of in deep geologic repository in Japan. Data on leachability of radionuclides from bituminized waste are required for the performance assessment of the disposal. We made a literature survey on bitumen and bituminized radioactive waste, placing emphasis on leach tests and leach data in terms of geologic disposal. This survey revealed that reliable leach data on transuranium elements and data obtained under reducing conditions that is characteristic to deep underground are lacking. (author). 64 refs

  16. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  17. Literature study on the state-of-the-art for the marking of deep geological repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Buser, M.

    2010-05-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) summarises the results of a literature study on the marking of repositories for radioactive wastes. Knowledge gained and ideas discussed in Switzerland on the subject are collated and discussed. Various associated topics such as safety, risk and marking technologies are examined. 28 topics in six thematic blocks are presented and discussed. Not only marking concepts are discussed, but also questions on human and society-related factors, traditionalising information transfer and susceptibility to wrong interpretation are examined. The author is of the opinion that no reusable materials be used either in the repositories themselves or for their marking in order to help prevent future generations coming into contact with the dangerous wastes

  18. Geotechnical and geological aspects for repository concepts with retrievability of radioactive waste; Geotechnische und geologische Aspekte fuer Tiefenlagerkonzepte mit der Option der Rueckholung der radioaktiven Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon Vargas, Rocio; Mintzlaff, Volker [Technische Univ. Braunschweig (Germany). Inst. fuer Grundbau und Bodenmechanik

    2016-03-15

    The retrievability of heat-producing high-level radioactive waste (HAW) is on debate internationally as well as in Germany. This article deals with the geological and geotechnical consequences of the design of a repository with retrievability in different host rocks. The properties of rock salt, clay, shale and crystalline rock - potential host rocks for a repository with retrievability in Germany - will be presented. Based on these properties generic models of repositories with measurements for retrievability and monitoring will be also presented. With these models it can be derived that due the different stress-deformation-behavior there is a conflict of aims between the best possible closure of the waste and the option of retrieval.

  19. The development of technologies for the long-term containment of low-level radioactive and hazardous wastes into geologic formations

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1990-01-01

    In the humid eastern half of the country, the disposal of low-level radioactive wastes has evolved from the use of shallow, sanitary landfill type, excavations to current plans for the complete containment of long half-life radionuclides in large-diameter boreholes and other excavations in the deeper subsurface. In general, the aim of current procedures and regulations is to prevent the migration of contaminants into groundwaters. For the short half-life materials, burials may be accommodated in lined and capped trenches along with ''tumulus'' or concrete encased structures that would ensure containment for a few tens of years to perhaps several hundreds of years. The greatest interest though is planned where new and emerging technologies are being developed to emplace special and long half-life wastes into geologic formations at moderate to deep depths for complete containment for periods of thousands of years. 7 refs., 2 figs

  20. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  1. The regulatory function in radioactive waste management

    International Nuclear Information System (INIS)

    Duncan, A.; Pescatore, C.

    2008-01-01

    Allan Duncan, expert to NEA and former Chief Inspector for Pollution (United Kingdom), elaborated on the regulatory function in the domain of radioactive waste management. The preparation of a document and a brochure on the subject has been one of the main tasks of the Regulators' Forum since its creation in 2001. He stressed that management of NORM waste was generally subject to different standards than similar radioactive waste from a nuclear source, for no obvious reason than that of public perception. He also pointed out the large number of 'regulatory bodies' involved in the regulation of radioactive waste management facilities and particularly geological disposal facilities, and their links to the Government. He gave the example of the United Kingdom. He stressed the fact that, since there will not be continuous control, licensing of geological disposal is an act of trust in the regulatory system. A. Duncan gave the position of two Commissions in England on deep geological disposal. The UK Sustainable Development Commission says, 'it is impossible to guarantee safety over long-term disposal of (nuclear) waste' which implies that nuclear fission power should be shut down; CoRWM, the Committee on Radioactive Waste Management, recommends instead geological disposal for existing wastes as a broadly acceptable solution. As a concluding remark A. Duncan focused the attention on the general question of what current society needs to do in order to meet its obligations to future generations with respect to disposal of long-lived wastes. (authors)

  2. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  3. Fusion reactor radioactive waste management

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-01-01

    Quantities and compositions of non-tritium radioactive waste are estimated for some current conceptual fusion reactor designs, and disposal of large amounts of radioactive waste appears necessary. Although the initial radioactivity of fusion reactor and fission reactor wastes are comparable, the radionuclides in fusion reactor wastes are less hazardous and have shorter half-lives. Areas requiring further research are discussed

  4. Method for calcining radioactive wastes

    International Nuclear Information System (INIS)

    Bjorklund, W.J.; McElroy, J.L.; Mendel, J.E.

    1979-01-01

    A method for the preparation of radioactive wastes in a low leachability form involves calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix

  5. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected