WorldWideScience

Sample records for radioactive waste facility

  1. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  2. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  3. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  4. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  5. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  6. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  7. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  8. Annual Report of Radioactive Waste Facilities Operation in 2015

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; DIAO; Lei; SHEN; Zheng; LI; Wen-ge

    2015-01-01

    301of the Department of Radiochemistry,is in charge of the management of radioactive waste and the safety of the relative facilities to meet the request of the scientific research production.There are 16radioactive waste facilities,including9facilities which are closed and monitored

  9. Outline of the radioactive waste management strategy at the national radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.F.; Tukhto, A.A.; Ivanov, V.B.

    2000-01-01

    The national Belarus radioactive waste disposal facility 'Ekores' was started in 1964 and was designed for radioactive waste coming from nuclear applications in industry, medicine and research. It is located in the neighbourhood of Minsk (2 Mil. people) and it is the only one in this country. In 1997 the Government initiated the project for the facility reconstruction. The main reconstruction goal is to upgrade radiological safety of the site by creating adequate safety conditions for managing radioactive waste at the Ekores disposal facility. This covers modernising technologies for new coming wastes and also that the wastes currently disposed in the pits are retrieved, sorted and treated in the same way as new coming wastes. The reconstruction project developed by Belarus specialists was reviewed by the IAEA experts. The main provisions of the revised project strategy are given in this paper. The paper's intention is to outline the technical measures which may be taken at standard 'old type Soviet Radon' disposal facility so as to ensure the radiological safety of the site. (author)

  10. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  11. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  12. Radioactive waste management in a fuel reprocessing facility in fiscal 1982

    International Nuclear Information System (INIS)

    1984-01-01

    In the fuel reprocessing facility of the Power Reactor and Nuclear Fuel Development Corporation, radioactive gaseous and liquid waste are released not exceeding the respective permissible levels. Radioactive concentrated solutions are stored at the site. Radioactive solid waste are stored appropriately at the site. In fiscal 1982, the released quantities of radioactive gaseous and liquid waste were both below the permissible levels. The results of radioactive waste management in the fuel reprocessing facility in fiscal 1982 are given in the tables: the released quantities of radioactive gaseous and liquid waste, the produced quantities of radioactive solid waste, and the stored quantities of radioactive concentrated solutions and of radioactive solid waste as of the end of fiscal 1982. (Mori, K.)

  13. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  14. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  15. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  16. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  17. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  18. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  19. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  20. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  1. Reduction of radioactive waste by improvement of conditioning facilities

    Energy Technology Data Exchange (ETDEWEB)

    Radde, E.

    2014-07-01

    The NES (Nuclear Engineering Seibersdorf) is the only radioactive waste conditions and storage facility in Austria. It manages waste originating from research, industry and medicine. Its main goal is, not only to treat and store waste safety, but also to optimize processes to further reduce the waste volume. To achieve this goal, the New Handling Facility was built. In this paper we will show how the waste volume can be easily reduced by optimizing the conditioning and waste stream process. The NES owns a water treatment plant for cleaning of active waste water, an incineration plant that is used to burn radioactive waste. (Author)

  2. Development of a Commonwealth Radioactive Waste Management Facility in Australia

    International Nuclear Information System (INIS)

    Hesterman, R.

    2006-01-01

    Full text: The Australian Government has commenced a process to build a Commonwealth Radioactive Waste Management Facility in the Northern Territory for management of radioactive wastes produced by Australian Government agencies. The Government is committed to safely managing its relatively small volume of low level radioactive waste (approximately 3800 cubic metres) and even smaller volume of intermediate level waste (around 400 cubic metres) that have been generated since the early 1950s from the research, medical and industrial use of radioactive materials. Australia has no high level radioactive waste as it does not have any nuclear power reactors. Australian states and territories are responsible for the safe and secure management of low level and intermediate level waste generated within their jurisdictions. They have jointly generated approximately 200 cubic metres of low level radioactive waste and under 100 cubic metres of intermediate level for the same period. In July 2004, the Prime Minister announced that the Australian Government would examine the suitability of Commonwealth land holdings, both onshore and offshore, for establishing the Facility. An initial assessment of offshore territories by the Department of Education, Science and Training (DEST) did not find any sufficiently suitable sites for hosting the Facility. This was due to the low elevation of most territories, inadequate infrastructure and incompatibility with existing land uses. In July 2005, Dr Nelson, then the Minister for Education, Science and Training, announced that three Department of Defence properties in the Northern Territory would be investigated for siting the Facility. The three properties are Fishers Ridge, about 43 kilometres southeast of Katherine; Harts Range, 100 kilometres directly northeast of Alice Springs; and Mt Everard, about 27 kilometres directly northwest of Alice Springs. In addition, the Commonwealth Radioactive Waste Management Act 2005, enacted in December

  3. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  4. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  5. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  6. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  7. The Constitution, waste facility performance standards, and radioactive waste classification: Is equal protection possible?

    Energy Technology Data Exchange (ETDEWEB)

    Eye, R.V. [Kansas Dept. of Health and Environment, Topeka, KS (United States)

    1993-03-01

    The process for disposal of so-called low-level radioactive waste is deadlocked at present. Supporters of the proposed near-surface facilities assert that their designs will meet minimum legal and regulatory standards currently in effect. Among opponents there is an overarching concern that the proposed waste management facilities will not isolate radiation from the biosphere for an adequate length of time. This clash between legal acceptability and a perceived need to protect the environment and public health by requiring more than the law demand sis one of the underlying reasons why the process is deadlocked. Perhaps the most exhaustive public hearing yet conducted on low-level radioactive waste management has recently concluded in Illinois. The Illinois Low-Level Radioactive Waste Disposal Facility Sitting Commission conducted 71 days of fact-finding hearings on the safety and suitability of a site near Martinsville, Illinois, to serve as a location for disposition of low-level radioactive waste. Ultimately, the siting commission rejected the proposed facility site for several reasons. However, almost all the reasons were related, to the prospect that, as currently conceived, the concrete barrier/shallow-land burial method will not isolate radioactive waste from the biosphere. This paper reviews the relevant legal framework of the radioactive waste classification system and will argue that it is inadequate for long-lived radionuclides. Next, the paper will present a case for altering the classification system based on high-level waste regulatory considerations.

  8. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  9. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  10. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  11. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  12. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  13. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  14. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  15. Annual Report of Radioactive Waste Facilities Operation in 2013

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; LIU; Fu-guo

    2013-01-01

    301,a section of Department of Radiochemistry,which manages 15 facilities and undertakes the administrative tasks of radioactive waste,is the important guarantee of scientific research production and safety in CIAE.1 The safe operation of the radioactive waste management facilities In 2013,in order to ensure the operation safety,we formulated the inspection regulations,which included regular operation inspection,week safety inspection from the leaders of the section and

  16. National facilities for the management of institutional radioactive waste in Romania

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.N.; Dragolici, F.; Nicu, M.; Lungu, L.; Cazan, L.; Matei, G.; Guran, V.

    2000-01-01

    The management of the non-fuel cycle radioactive wastes from all over Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR). Final disposal is carried out at the National Repository of Radioactive Wastes (DNDR) at Baita Bihor. Radioactive waste treated at STDR arise from three main sources: 1. Wastes arising from the WWR-S research reactor during operation and the future decommissioning works; 2. Local waste from other facilities operating on IFIN-HH site. These sources include wastes generated during the normal activities of the STDR; 3. Wastes from IFIN-HH off site facilities and activities including medical, biological, and industrial applications all over the country. The Radiochemical Production Center, operating within IFIN-HH is the most important source of low and intermediate level radioactive wastes (liquid and solid), as the operational wastes arising from processing at STDR are. The STDR basically consists of liquid and solid waste treatment and conditioning facilities, a radioactive decontamination centre, a laundry and an intermediate storage area. The processing system of the STDR are located at six principal areas performing the following activities: 1. Liquid effluent treatment; 2. Burning of combustible solid stuff; 3. Compaction of solid non-combustible stuff; 4. Cement conditioning; 5. Radioactive decontamination; 6. Laundry. The annual designed treatment capacity of the plant is 1500 m 3 Low Level Aqueous Waste, 100 m 3 Low Level Solid Waste and shielded drums for Intermediate Level Waste. The temporary storage within and final disposal of waste in the frame of DNDR are explained as well as the up-dating of institutional radioactive waste infrastructure

  17. NSC confirms principles for safety review on Radioactive Waste Burial Facilities

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Nuclear Safety Commission authorized the scope of Principles for Safety Examination on Radioactive Waste Burial Facilities as suitable, the draft report for which was established by the Special Committee on Safety Standards of Radioactive Waste (Chairman Prof. Masao Sago, Science University of Tokyo) and reported on March 10 to the NSC. The principles include the theory that the facility must be controlled step by step, corresponding to the amount of radioactivity over 300 to 400 years after the burial of low-level solid radioactive waste with site conditions safe even in the event of occurrence of a natural disaster. The principles will be used for administrative safety examination against the application of the business on low-level radioactive waste burial facility which Japan Nuclear Fuel Industries, Inc. is planning to install at Rokkashomura, Aomori Prefecture. (author)

  18. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  19. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  20. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  1. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    Directory of Open Access Journals (Sweden)

    M. V. Vedernikova

    2017-01-01

    Full Text Available This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on data collected during operation of near-surface disposal facilities for short-lived intermediate-, lowand very low-level waste in France, as well as nearsurface disposal facilities for long-lived waste in Russia. Further analysis of occupational and public doses calculated at the design stage was completed covering a near-surface disposal facility in Belgium and deep disposal facilities in the United Kingdom and the Nizhne-Kansk rock massive (Russia. The results show that engineering and technical solutions enable almost complete elimination of internal occupational exposure, whereas external exposure doses would fall within the range of values typical for a basic nuclear facility. Conclusion: radioactive waste disposal facilities being developed, constructed and operated meet the safety requirements effective in the Russian Federation and consistent with relevant international recommendations. It has been found that individual occupational exposure doses commensurate with those received by personnel of similar facilities abroad. Furthermore, according to the forecasts, mean individual doses for personnel during radioactive waste disposal would be an order of magnitude lower than the dose limit of 20 mSv/year. As for the public exposure, during normal operation, potential impact is virtually impossible by delaminating boundaries of a nuclear facility sanitary protection zone inside which the disposal facility is located and can be solely attributed to the use

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  3. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  4. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  5. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  6. Analysis of local acceptance of a radioactive waste disposal facility.

    Science.gov (United States)

    Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew

    2008-08-01

    Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.

  7. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  8. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  9. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  10. Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Shadrack, Antoony; Kim, Changlak [KEPCO International Nuclear Graduate School, Uljin (Korea, Republic of)

    2013-07-01

    The nuclear power program will inevitably generate radioactive wastes including low-and intermediate radioactive waste and spent fuel. These wastes are hazardous to human health and the environment and therefore, a reliable radioactive waste disposal facility becomes a necessity. This paper describes Kenya's basic plans for the disposal of radioactive wastes expected from the nuclear program. This plan is important as an initial implementation of a national Low to intermediate level wastes storage facility in Kenya. In Kenya, radioactive waste is generated from the use of radioactive materials in medicine, industry, education and research and development. Future radioactive waste is expected to arise from nuclear reactors, oil exploration, radioisotope and fuel production, and research reactors as shown in table 1. The best strategy is to store the LILW and spent fuel temporarily within reactor sites pending construction of a centralized interim storage facility or final disposal facility. The best philosophy is to introduce both repository and nuclear power programs concurrently. Research and development on volume reduction technology and conceptual design of disposal facility of LILW should be pursued. Safe management of radioactive waste is a national responsibility for sustainable generation of nuclear power. The republic of Kenya is set to become the second African nuclear power generation country after South Africa.

  11. The situation of radioactive waste management in the fuel reprocessing facility (for fiscal 1979)

    International Nuclear Information System (INIS)

    1981-01-01

    In the fuel reprocessing facility of Power Reactor and Nuclear Fuel Development Corporation (PNC), the release of radioactive gaseous and liquid wastes was so controlled as not to exceed the set standards. Of the radioactive liquid wastes, concentrated wastes and sludge are stored in tanks. Radioactive solid wastes are suitably stored in containers. The situation of radioactive waste management in the fuel reprocessing facility in fiscal 1979 (from April, 1979, to March, 1980) is presented on the basis of the radiation control report made by PNC. The release of radioactive gaseous and liquid wastes was below the set standards. The following data are given in tables: the released quantity of radioactive gaseous and liquid wastes, the cumulative stored amount of radioactive liquid wastes, the produced quantity and cumulative stored amount of radioactive solid wastes; (for reference) the released quantity of radioactive gaseous and liquid wastes in fiscal 1977, 1978 and 1979. (J.P.N.)

  12. Commissioning of the very low level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  13. Socioeconomic issues and analyses for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ulland, L.

    1988-01-01

    Radioactive Waste facility siting and development can raise major social and economic issues in the host area. Initial site screening and analyses have been conducted for both potential high-level and low-level radioactive waste facilities; more detailed characterization and analyses are being planned. Results of these assessments are key to developing community plans that identify and implement measures to mitigate adverse socioeconomic impacts. Preliminary impact analyses conducted at high-level sites in Texas and Nevada, and site screening activities for low-level facilities in Illinois and California have identified a number of common socioeconomic issues and characteristics as well as issues and characteristics that differ between the sites and the type of facilities. Based on these comparisons, implications for selection of an appropriate methodology for impact assessment and elements of impact mitigation are identified

  14. Regulatory inspection practices for radioactive and non-radioactive waste management facilities

    International Nuclear Information System (INIS)

    Roy, Amitava

    2017-01-01

    Management of nuclear waste plays an important role in the nuclear energy programme of the country. India has adopted the Closed Fuel Cycle option, where the spent nuclear fuel is treated as a material of resource and the nuclear waste is wealth. Closed fuel cycle aims at recovery and recycle of valuable nuclear materials in to reactors as fuel and also separation of useful radio isotopes for the use in health care, agriculture and industry. India has taken a lead role in the waste management activities and has reached a level of maturity over a period of more than forty decades. The nuclear waste management primarily comprises of waste characterization, segregation, conditioning, treatment, immobilization of radionuclides in stable and solid matrices and interim retrievable storage of conditioned solid waste under surveillance. The waste generated in a nuclear facility is in the form of liquid and solid, and it's classification depends on the content of radioactivity. The liquid waste is characterized as Low level (LLW), Intermediate level (ILW) and High Level (HLW). The LLW is relatively large in volume and much lesser radioactive. The LLW is subjected to chemical precipitation using various chemicals based on the radionuclides present, followed by filtration, settling, ion exchange and cement fixation. The conditioning and treatment processes of ILW uses ion exchange, alkali hydrolysis for spent solvent, phase separation and immobilization in cement matrix. The High Level Waste (HLW), generated during spent fuel reprocessing and containing more than 99 percent of the total radioactivity is first subjected to volume reduction/concentration by evaporation and then vitrified in a meIter using borosilicate glass. Presently, Joule Heated Ceramic Meter is used in India for Vitrification process. Vitrified waste products (VWP) are stored for interim period in a multibarrier, air cooled facility under surveillance

  15. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    OpenAIRE

    M. V. Vedernikova; I. A. Pron; M. N. Savkin; N. S. Cebakovskaya

    2017-01-01

    This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on d...

  16. Risk communication on the siting of radioactive waste management facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Torii, Hiroyuki; Fujii, Yasuhiko

    2007-01-01

    Siting of radioactive waste management facilities frequently raise arguments among stakeholders such as a municipal government and the residents. Risk communication is one of the useful methods of promoting mutual understanding on related risks among stakeholders. In Finland and Sweden, siting selection procedures of repositories for spent nuclear fuels have been carried out successfully with risk communication. The success reasons are analyzed based on the interviews with those who belong to the regulatory authorities and nuclear industries in both countries. Also, in this paper, risk communication among the Japan Radioisotope Association (JRIA), a local government and the general public, which was carried out during the establishment process of additional radioactive waste treatment facilities in Takizawa Village, Iwate Prefecture, is analyzed based on articles in newspapers and interviews with persons concerned. The analysis results showed that good risk communication was not carried out because of the lack of confidence on the JRIA, decision making rules, enough communication chances and economic benefits. In order to make good use of these experiences for the future establishment of radioactive waste management facilities, the lessons learned from these cases are summarized and proposals for good risk communication (establishment of exploratory committee and technical support system for decision making, and measurements to increase familiarity of radioactive waste) are discussed. (author)

  17. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2006-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  18. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  19. Steps for safety. Radioactive waste management facilities and Y2K

    International Nuclear Information System (INIS)

    Warnecke, E.

    1999-01-01

    As part of the IAEA activities concerned with Year 2000 (Y2K) problem special attention is paid to operation of radioactive waste management facilities although, fortunately, in the management of radioactive materials the response of a process or activity to a failure would be slow in many instance, providing more time to resolve the issue before any radiological consequences occur. To facilitate greater cooperation, the IAEA organized an international workshop on the exchange of information concerning safety measure to address the Y2K issues on radioactive waste management and nuclear fuel cycle facilities

  20. Conceptual designs for waste quality checking facilities for low level and intermediate level radioactive wastes and hazardous waste

    International Nuclear Information System (INIS)

    Driver, S.; Griffiths, M.; Leonard, C.D.; Smith, D.L.G.

    1992-01-01

    This report summarises work carried out on the design of facilities for the quality checking of Intermediate and Low Level Radioactive Waste and Hazardous Waste. The procedures used for the quality checking of these categories of waste are summarised. Three building options are considered: a separate LLW facility, a combined facility for LLW and HW and a Waste Quality Checking Facility for the three categories of waste. Budget Cost Estimates for the three facilities are given based on 1991 prices. (author)

  1. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  2. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  3. Near-surface facilities for disposal radioactive waste from non-nuclear application

    International Nuclear Information System (INIS)

    Barinov, A.

    2000-01-01

    The design features of the near-surface facilities of 'Radon', an estimation of the possible emergency situations, and the scenarios of their progress are given. The possible safety enhancing during operation of near-surface facilities, so called 'Historical facilities', and newly developed ones are described. The Moscow SIA 'Radon' experience in use of mobile module plants for liquid radioactive waste purification and principal technological scheme of the plant are presented. Upgrading of the technological scheme for treatment and conditioning of radioactive waste for new-developed facilities is shown. The main activities related to management of spent ionizing sources are mentioned

  4. Systematic analysis method for radioactive wastes generated from nuclear research facilities

    International Nuclear Information System (INIS)

    Kameo, Yutaka; Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Katayama, Atsushi; Nakashima, Mikio; Takahashi, Kuniaki

    2011-01-01

    Analytical methods have been developed for the simple and rapid determination of radioactive nuclides, which are selected as important nuclides for the safety assessment of the disposal of wastes generated from research facilities. We advanced the development of a high-efficiency nondestructive measurement technique for γ-ray-emitting nuclides, simple and rapid methods for the pretreatment of hard-to-dissolve samples and subsequent radiochemical separation, and rapid determination methods for long-lived nuclides. In order to establish a system to analyze the important nuclides in various kinds of sample, actual radioactive wastes such as concentrated liquid waste, activated concrete, and metal pipes were analyzed by the present method. The results showed that the present method was well suited for a rapid and simple determination of low-level radioactive wastes generated from research facilities. (author)

  5. Remediation and decommissioning of radioactive waste facilities in Estonia

    International Nuclear Information System (INIS)

    Putnik, H.; Realo, E.

    2001-01-01

    Full text: The nuclear training facility at Paldiski was constructed in the early 1960's by the former USSR Navy. The hull sections of Delta and Echo class submarines each housing a full-sized ship reactor were installed in the main building of the site for training of navy personnel in safe operation of the submarine nuclear reactor systems. The first reactor was commissioned in 1968 and the second in 1982, while both was shut down in 1989. After Estonia's reproclamation of independence in 1991 the responsibility for the clean up and decommissioning of the Paldiski site became a subject of negotiations between Russia and Estonia. As the result Estonia took the ownership and control of the site in September 1995. Before the take over the Russian authorities defuelled the reactors and transported the spent fuel to Russia, dismantled the hull sections not related with reactor systems, seal-welded the hull sections housing the reactor vessels with their primary circuitry and enclosed those in reinforced concrete sarcophagi. The auxiliary facilities and radioactive waste were left intact. Main goals of the Conceptual Decommissioning Plan for the Paldiski facilities, developed under the auspices of the Paldiski International Expert Reference Group (Pier, a group established at the request of the Estonian government to advise local authorities to maintain the decommissioning and waste management at Paldiski) were defined as following: Establishing the waste management system and a long term monitored interim storage, corresponding to internationally accepted safety standards and capable to condition, receive and store all the waste generated during decommissioning of the facility; Reductions of the extent of radiologically controlled areas as much as possible, in order to minimise maintenance requirements. To achieve these goals the following main tasks were addressed in the short and medium term site management action plans: Rearrangement of site for the needs of

  6. National Low-Level Radioactive Waste Management Program. Use of compensation and incentives in siting Low-Level Radioactive Waste Disposal Facilities. Revision 1

    International Nuclear Information System (INIS)

    1985-10-01

    This document was prepared to increase understanding of compensation and incentives as they pertain to the siting of Low-Level Radioactive Waste Disposal Facilities. Compensation and incentives are discussed as methods to facilitate siting Low-Level Radioactive Waste Facilities. Compensations may be in the form of grants to enable host communities to evaluate potential impacts of the proposed facility. Compensations may also include reimbursements to the host community for costs incurred during facility construction, operation and closure. These may include required improvements to local roads, new equipment, and payments for revenue losses in local property taxes when disposal sites are removed from the tax base. Incentives provide benefits to the community beyond the costs directly related to the operation of the facility. Greater local control over waste facilities can be a powerful incentive. Local officials may be more willing to accept a facility if they have some control over the operation and monitoring associated with the facility. Failure to secure new disposal sites may cause such problems as illegal dumping which would create public health hazards. Also, lack of disposal capacity may restrict research and medical use of radioactive materials. The use of compensation and incentives may increase acceptance of communities for hosting a low-level waste disposal facility

  7. Radioactive waste control at the reprocessing facility in fiscal 1980

    International Nuclear Information System (INIS)

    1982-01-01

    At the fuel reprocessing facility of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the release of radioactive gaseous and liquid wastes are controlled so as not to exceed the specific levels. Concentrated low and high level liquid wastes, sludge, etc. are contained in storage tanks. Low and high level solid wastes are stored in appropriate containers. In fiscal 1980 (April to March), the release of gaseous and liquid wastes was below the specific levels (as in the previous years). Based on the report made by PNC in accordance with the law concerning the regulation of reactors, etc., the following data are presented in tables: the released quantity of radioactive gaseous and liquid wastes in fiscal 1980, the cumulative stored quantity of radioactive liquid wastes up to fiscal 1980; the cumulative stored quantity of radioactive solid wastes up to fiscal 1980 and the quantity of the same stored in fiscal 1980. (J.P.N.)

  8. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  9. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  10. Estimation of contaminant transport in groundwater beneath radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Wang, J.C.; Tauxe, J.D.; Lee, D.W.

    1995-01-01

    Performance assessments are required for low-level radioactive waste disposal facilities to demonstrate compliance with the performance objectives contained in either 10 CFR 61, open-quotes Licensing Requirements for Land Disposal of Radioactive Waste,close quotes or U.S. Department of Energy Order 5820.2A, open-quotes Radioactive Waste Management.close quotes The purpose of a performance assessment is to provide detailed, site-specific analyses of all credible pathways by which radionuclides could escape from the disposal facility into the environment. Among these, the groundwater pathway analysis usually involves complex numerical simulations. This paper demonstrates that the use of simpler analytical models avoids the complexity and opacity of the numerical simulations while capturing the essential physical behavior of a site

  11. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  12. Mastery of risks: we build the memory of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Lacourcelle, C.

    2011-01-01

    The ANDRA, the French national agency of radioactive wastes, is organizing today the information needs of tomorrow. The aim is to allow the future generations to have access to the knowledge of the existence of subsurface radioactive waste facilities and to understand the context and technologies of such facilities. The storage of this information is made on 'permanent paper', a high resistant paper with a lifetime of 600 to 1000 years. An updating of these data is made every 5 years for each waste disposal center. Another project, still in progress, concerns the memory management of deep geologic waste disposal facilities for which the time scale to be considered is of the order of millennia. (J.S.)

  13. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  14. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y C [Yonsei Univ., Seoul (Korea, Republic of); Park, W J; Lee, B S; Lee, S H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  15. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  16. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  17. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  18. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  19. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  20. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.

    1984-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  1. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.; Associated Technologies, Inc., Charlotte, NC)

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor. 4 figs

  2. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  3. CJSC ECOMET-S facility for reprocessing and utilisation of radioactive metal waste: operating experience

    International Nuclear Information System (INIS)

    Gelbutovsky, A.B.; Kishkin, S.A.; Mochenov, M.I.; Troshev, A.V.; Cheremisin, P.I.; Chernichenko, A.A.

    2006-01-01

    The principal objective of the paper is to present operating experience in management of radioactive metal waste, originating at nuclear power facilities of the Russian Federation. Issues of radioactive metal waste recycling by melting, with the purpose of unrestricted re-use in industry, or restricted re-use within the nuclear industry, have been considered. The necessity for using a method of melting at the final stage of radioactive metal waste recycling has been proved. Priority measures to be taken and results achieved in the implementation of the Governmental purpose-oriented programme 'Radioactive Metal Waste Reprocessing and Utilization' have been considered, the CJSC ECOMET-S being the main contractor on the Programme. Main specifications and results of operating a commercial melting facility, owned by CJSC 'ECOMET-S' and used to recycle low-level radioactive metal waste originated at the Leningrad Nuclear Power Plant, have been presented. (author)

  4. Site selection process for radioactive waste repository (radioactive facility) in Cuba as a fundamental safety criteria

    International Nuclear Information System (INIS)

    Vital, Jose Luis Peralta; Castillo, Reinaldo Gil; Chales Suarez, Gustavo; Rodriguez Reyes, Aymee

    1999-01-01

    The paper show the process of search carried out for the selection of the safest site in the National territory, in order to sitting the Facility (Repository) that will disposal the low and intermediate level radioactive wastes, as well as the possible Storage Facility for nuclear spent Fuel (radioactive wastes of high activity). We summarize the obtained Methodology and the Criterions of exclusion adopted for the development of the Process of site selection, as well as the current condition of the researches that will permit the obtaining of the nominative objectives. (author)

  5. Risk communication on the construction of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru

    2005-01-01

    In this paper, risk communications among the Japan Radioisotope Association (JRIA), a local government and the general public which were carried out during the development process of a radioactive waste treatment facility in Takizawa Village, Iwate Prefecture are analyzed based on the articles of newspapers and the interviews with the concerned people. The analysis results show good risk communications were not carried out because of the absence of the confidence to the JRIA, decision making rules and the merits. In order to make good use of this experience for the future development of radioactive waste management facilities, the lessons learned from this case are summarized and the check lists for good risk communication are proposed. (author)

  6. Analysis through indicators of the management of radioactive waste in a radioactive facility

    International Nuclear Information System (INIS)

    Amador Balbona, Zayda; Argudin Bocourt, William

    2013-01-01

    The evaluation of the management of radioactive waste in the center of isotopes of the Republic of Cuba is the objective of this work. To do so, all the operations of the management system are evaluated through indicators used by this radioactive facility over a decade ago. Available information is processed from 1996 until 2012. The major waste generators are identified through the indicator of annual generation of each working group by local and by worker and it were analyzed the available store radioactive inventory, the relationship between the variation of annual technological waste volume of waste and the annual total manipulated activity, the relationship generation-declassification and the percent of liquid effluents managed as waste. Indicators of unconditional clearance, as well as the of the gaseous and liquid discharges are presented. It is concluded, with all these indicators, that it is possible to determine where are the causes of the behavior in the generation of radioactive waste if it is an increase of manipulated activity int the places of work or of worker, or improper application of the procedures of collection. It is controlled not only management, but also determines in which aspects can work to achieve the objective of minimizing the formation of these wastes, to be able to reduce the production costs. National shedding environmental regulations are met and the results are acceptable)

  7. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  8. Solid radioactive waste processing facility of the NPP Leningrad

    International Nuclear Information System (INIS)

    Weichard, Swetlana

    2008-01-01

    On behalf of the Russian Company Rosenergoatom NUKEM Technologies GmbH is planning and constructing a complete facility for the processing of solid low- and medium-active radioactive wastes. The NPP Leningrad comprises 4 units of RBMK-1000 reactors, the plant life has been extended by 15 years, the first unit is to be decommissioned in 2018. The construction of four new units is planned. NUKEM is in charge of planning, manufacture, construction and startup of the following facilities: sorting, internal transport, combustion and waste gas cleaning, emission surveillance, compacting, packaging and radiological measurement.

  9. Long-term storage of radioactive solid waste within disposal facilities

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Edmunds, J.

    1986-05-01

    A study of the feasibility and implications of operating potential disposal facilities for low and intermediate level solid radioactive waste in a retrievable storage mode for extended periods of up to 200 years has been carried out. The arisings of conditioned UK radioactive waste up to the year 2030 have been examined. Assignments of these wastes to different types of underground disposal facilities have been made on the basis of their present activity and that which they will have in 200 years time. Five illustrative disposal concepts proposed both in the UK and overseas have been examined with a view to their suitability for adaption for storage/disposal duty. Two concepts have been judged unsuitable because either the waste form or the repository structure were considered unlikely to last the storage phase. Three of the concepts would be feasible from a construction and operational viewpoint. This suggests that with appropriate allowance for geological aspects and good repository and waste form design that storage/disposal within the same facility is achievable. The overall cost of the storage/disposal concepts is in general less than that for separate surface storage followed by land disposal, but more than that for direct disposal. (author)

  10. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  11. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  12. Operation technology of the ventilation system of the radioactive waste treatment facility(II) - Design and operation note

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Lee, B. C.; Bae, S. M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    As the radioactive waste treatment work, such as compaction and/or solidification of wastes, are done directly by the workers in the Radioactive Waste Treatment Facility, the reasonable design and operation of the ventilation system is essential. In this report, the design criteria and specification of the ventilation equipment, system operation method are described for the effective design and operation of ventilation system in the radioactive waste treatment facility. And the anti-vibration work which was done in the Radioactive Waste Treatment Facility in KAERI to reduce the effect of vibration due to the continuous operation of big rotational equipment, the intake fans and the exhaust fans, are described in the report. 11 refs., 10 figs., 12 tabs. (Author)

  13. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  14. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  16. Principles and guidelines for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1988-06-01

    Four basic principles relevant to radioactive waste disposal identified. These principles cover the justification of the activity giving rise to the waste, the consideration of risk to present and future generations, the minimization of the need for intervention in the future, and the financial obligations of the licensee. The use of risk limits as opposed to dose limits associated with disposal is discussed, as are the concepts of critical group, de minimis, and ALARA, in the context of a waste disposal facility. Guidance is given on the selection of the preferred waste disposal concept from among several alternatives, and for judging proposed design improvements to the chosen concept

  17. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  18. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  19. Current situation with the centralized storage facilities for non-power radioactive wastes in Latin American countries

    International Nuclear Information System (INIS)

    Benitez, Juan C.; Salgado, Mercedes; Idoyaga Navarro, Maria L.; Escobar, Carolina; Mallaupoma, Mario; Sbriz, Luciano; Moreno, Sandra; Gozalez, Olga; Gomez, Patricia; Mora, Patricia; Miranda, Alberto; Aguilar, Lola; Zarate, Norma; Rodriguez, Carmen

    2008-01-01

    Full text: Several Latin American (LA) countries have been firmly committed to the peaceful applications of ionizing radiations in medicine, industry, agriculture and research in order to achieve socioeconomic development in diverse sectors. Consequently the use of radioactive materials and radiation sources as well as the production of radioisotopes and labeled compounds may always produce radioactive wastes which require adequate management and, in the end, disposal. However, there are countries in the Latin American region whose radioactive waste volumes do not easily justify a national repository. Moreover, such facilities are extremely expensive to develop. It is unlikely that such an option will become available in the foreseeable future for most of these countries, which do not have nuclear industries. Storage has long been incorporated as a step in the management of radioactive wastes. In the recent years, there have been developments that have led some countries to consider whether the roles of storage might be expanded to provide longer-term care of long-live radioactive wastes The aim of this paper is to discuss the current situation with the storage facilities/conditions for the radioactive wastes and disused sealed radioactive sources in Latin-American countries. In some cases a brief description of the existing facilities for certain countries are provided. In other cases, when no centralized facility exists, general information on the radioactive inventories and disused sealed sources is given. (author)

  20. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  1. A commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.T.

    1986-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application fro a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  2. Radioactive waste interim storage in Germany

    International Nuclear Information System (INIS)

    2015-12-01

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  3. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  4. A successful case site selection for low-and intermediate-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Lee, Bongwoo

    2007-01-01

    Korea decided on Gyeongju-si as the site of low-and intermediate-level radioactive waste disposal facility by referendum in November, 2005. Five success factors are considered; 1) the mayor and municipal assembly leaded the public opinion of inhabitants, 2) an invitation group was formed by citizen, social and religious group, 3) Gyeongju-si has operated the nuclear power plant since 20 years ago, and this radioactive waste disposal facility brings large financial support, 4) many kinds of public information means were used for invitation agreement and 5) the preconception, a nuclear facility is danger, was removed by visiting citizen, social group and local inhabitants at the nuclear power plant facility. Promotion process of the project, invitation process of Gyeongju-si and success factors, construction of an invitation promotion group and development of public information activities, publicity of financial effects and safety of radioactive waste disposal facility, increase of general acceptance among inhabitants by many kinds of public information means, and P.R. of safety of nuclear power plant facility by visiting leadership layers are reported. (S.Y.)

  5. Screening calculations for radioactive waste releases from non-nuclear facilities

    International Nuclear Information System (INIS)

    Xu, Shulan; Soederman, Ann-Louis

    2009-02-01

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 μSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 μSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment plant

  6. Screening calculations for radioactive waste releases from non-nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shulan Xu; Soederman, Ann-Louis

    2009-02-15

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 muSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 muSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment

  7. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  8. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  9. Effectiveness of interim remedial actions at a radioactive waste facility

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.; Peterson, J.M.; Seay, W.M.; McNamee, E.

    1989-01-01

    Over the past eight years, several interim remedial actions have been taken at the Niagara Falls Storage Site (NFSS), primarily to reduce radon and gamma radiation exposures and to consolidate radioactive waste into a waste containment facility. Interim remedial actions have included capping of vents, sealing of pipes, relocation of the perimeter fence (to limit radon risk), transfer and consolidation of waste, upgrading of storage buildings, construction of a clay cutoff wall (to limit the potential groundwater transport of contaminants), treatment and release of contaminated water, interim use of a synthetic liner, and emplacement of an interim clay cap. An interim waste containment facility was completed in 1986. 6 refs., 3 figs

  10. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    International Nuclear Information System (INIS)

    Dominick, J L

    2001-01-01

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification

  11. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    International Nuclear Information System (INIS)

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  12. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  13. Study of waste acceptance criteria for low-level radioactive waste from medical, industrial, and research facilities (Contract research)

    International Nuclear Information System (INIS)

    Koibuchi, Hiroto; Dohi, Terumi; Ishiguro, Hideharu; Hayashi, Masaru; Senda, Masaki

    2008-12-01

    Japan Atomic Energy Agency (JAEA) is supposed to draw up the plan for the disposal program of the very low-level radioactive waste and low-level radioactive waste generated from medical, industrial and research facilities. For instance, there are these facilities in JAEA, universities, private companies, and so on. JAEA has to get to know about the waste and its acceptance of other institutions described above because it is important for us to hold the licenses for the disposal program regarding safety assessment. This report presents the basic data concerning radioactive waste of research institutes etc. except RI waste, domestic and foreign information related to acceptance criteria for disposal of the low-level radioactive waste, the current status of foreign medical waste management, waste acceptance, and such. In this report, Japan's acceptance criteria were summarized on the basis of present regulation. And, the criteria of foreign countries, United States, France, United Kingdom and Spain, were investigated by survey of each reference. In addition, it was reported that the amount of waste from laboratories etc. for near-surface disposal and their characterization in our country. The Subjects of future work: the treatment of hazardous waste, the problem of the double-regulation (the Nuclear Reactor Regulation Law and the Law Concerning Prevention from Radiation Hazards due to Radioisotopes and Others) and the possession of waste were discussed here. (author)

  14. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-01-01

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management

  15. US Army facility for the consolidation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables

  16. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  17. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  18. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  19. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  20. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.; Cameron, H.M.; Davies, A.R.; Hiscox, A.W.

    1995-01-01

    Probabilistic safety assessment methodology has been applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  1. Radioactive waste package assay facility. Volume 3. Data processing

    International Nuclear Information System (INIS)

    Creamer, S.C.; Lalies, A.A.; Wise, M.O.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd, and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd, on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. Volume 3, describes the work carried out by Siemens Plessey Controls Ltd on the data-processing aspects of an integrated waste assay facility. It introduces the need for a mathematical model of the assay process and develops a deterministic model which could be tested using Harwell experimental data. Relevant nuclear reactions are identified. Full implementation of the model was not possible within the scope of the Harwell experimental work, although calculations suggested that the model behaved as predicted by theory. 34 figs., 52 refs., 5 tabs

  2. Suitable areas for a long-term radioactive waste storage facility in Portugal

    International Nuclear Information System (INIS)

    Duarte, P.; Paiva, I.; Trindade, R.; Mateus, A.

    2006-01-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  3. Suitable areas for a long-term radioactive waste storage facility in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, P.; Paiva, I.; Trindade, R. [Instituto Tecnologico e Nuclear, Dept. de Proteccao Radiologica e Seguranca Nuclear, Sacavem (Portugal); Mateus, A. [Lisboa Univ., Dept. de Geologia and Creminer, Faculdade de Ciencias (Portugal)

    2006-07-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  4. Supercompaction of radioactive waste at NPP Krsko

    International Nuclear Information System (INIS)

    Fink, K.; Sirola, P.

    1996-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  5. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  6. The project for national disposal facility for low and intermediate level radioactive waste in Bulgaria

    International Nuclear Information System (INIS)

    Alexandrov, A.; Boyanov, S.; Christoskova, M.; Ivanov, A.

    2006-01-01

    The State Enterprise Radioactive Waste is the responsible organisation in Bulgaria for the radioactive waste management and, in particular, for the establishment of the national disposal facility (NDF) for low and intermediate level short-lived radioactive waste (LIL RAW SL). According to the national strategy for the safe management of spent fuel and radioactive waste the NDF should be commissioned in 2015. NDF will accept two main waste streams - for disposal and for storage if the waste is not disposable. The major part of disposable waste is generated by Kozloduy NPP. The disposal facility will be a near surface module type engineered facility. Consecutive erection of new modules will be available in order to increase the capacity of the facility. The corrective measures are previewed to be applied if needed - upgrading of engineered barriers and/or retrieval of the waste. The active control after the facility is closed should be not more than 300 years. The safety of the facility is supposed to be based on the passive measures based on defense in deep consisting of physical barriers and administrative measures. A multi barrier approach will be applied. Presently the NDF project is at the first stage of the facility life cycle - the site selection. The siting process itself consists of four stages - elaboration of a concept for waste disposal and site selection planning, data collection and region analyses, characterization of the preferred sites-candidates and site confirmation. Up till now the work on the first two stages of the siting process had been done by the SE RAW. Geological site investigations have been carried out for more than two decades all over the territory of the country. The results of the investigations have been summarized and analysed thoroughly. More than 40 potential sites have been considered, after the preselection 12 sites have been selected as favourable and among them 5 are pointed out as acceptable. The ultimate decision for a site

  7. Support of the radioactive waste treatment nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Lee, B.J.; Shim, G.S.; Chung, M.S.

    1982-01-01

    Technical service of radioactive waste treatment in Daeduck Engineering Center includes; 1) Treatment of radioactive wastes from the nuclear fuel fabrication facility and from laboratories. 2) Establishing a process for intermediate treatment necessary till the time when RWTF is in completion. 3) Technical evaluation of unit processes and equipments concerning RWTF. About 35 drums (8 m 3 ) of solid wastes were treated and stored while more than 130 m 3 of liquid wastes were disposed or stored. A process with evaporators of 10 1/hr in capacity, a four-stage solvent washer, storage tanks and disposal system was designed and some of the equipments were manufactured. Concerning RWTF, its process was reviewed technically and emphasis were made on stability of the bituminization process against explosion, function of PAAC pump, decontamination, and finally on problems to be solved in the comming years. (Author)

  8. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  9. A summary of the geotechnical and environmental investigations pertaining to the Vaalputs national radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Camisani-Calzolari, F.A.G.M.

    1986-08-01

    This report describes the geological environmental surveys that lead to the choice and final evaluation of the Vaalputs national facility for the disposal of radioactive waste. This survey looked at the geography, demography, ecology, meteorology, geology, geohydrology and background radiological characteristics of the Vaalputs radioactive waste facility

  10. Financial compensation for municipalities hosting interim or final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Barboza, Alex; Vicente, Roberto

    2005-01-01

    Brazilian Law No. 10308 issued November 20, 2001, establishes in its 34th article that 'those municipalities hosting interim or final disposal facilities for radioactive waste are eligible to receive a monthly payment as compensation'. The values of due payments depend on parameters such as volume of wastes and activity and half-lives of the radionuclides. The method to calculating those values was established by the National Commission on Nuclear Energy, the Brazilian regulatory authority, by Resolution No. 10, issued in the August 18, 2003. In this paper we report the application of that method to a low- and intermediate-level radioactive waste interim storage facility at the Nuclear Energy Research Institute. (author)

  11. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  12. Safety assessment for radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Thanaletchumy Karuppiah; Mohd Abdul Wahab Yusof; Nik Marzuki Nik Ibrahim; Nurul Wahida Ahmad Khairuddin

    2008-08-01

    Safety assessments are used to evaluate the performance of a radioactive waste disposal facility and its impact on human health and the environment. This paper presents the overall information and methodology to carry out the safety assessment for a long term performance of a disposal system. A case study was also conducted to gain hands-on experience in the development and justification of scenarios, the formulation and implementation of models and the analysis of results. AMBER code using compartmental modeling approach was used to represent the migration and fate of contaminants in this training. This safety assessment is purely illustrative and it serves as a starting point for each development stage of a disposal facility. This assessment ultimately becomes more detail and specific as the facility evolves. (Author)

  13. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  14. Obstacle factors and overcoming plans of public communication: With an emphasis on radioactive waste disposal facility siting

    International Nuclear Information System (INIS)

    Yoo, Hae-Woon; Oh, Chang-Taeg

    1996-01-01

    Korea is confronting a serious social conflict, which is phenomenon of local residents reaction to radioactive waste disposal facility. This phenomenon is traced back to the reason that the project sponsors and local residents do not communicate sufficiently each other. Accordingly, in order to overcome local residents' reaction to radioactive waste disposal facility siting effectively, it is absolutely necessary to consider the way of solutions and strategies with regard to obstacle factors for public communication. In this content, this study will review three cases (An-myon Island, Gul-up Island, Yang-yang) on local residents reaction to facility siting. As a result of analysis, authoritarian behavior of project sponsors, local stigma, risk, antinuclear activities of environmental group, failures in siting the radioactive waste disposal facility, etc. has negative impact on public communication of the radioactive waste disposal facility siting. In this study, 5 strategies (reform of project sponsor's authoritarianism, incentive offer, strengthening PA activities, more active talks with environmental groups, promoting credibility of project sponsors) arc suggested to cope with obstacle factors of public communication

  15. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  16. Radioactivity in gaseous waste discharged from the separations facilities during 1978

    International Nuclear Information System (INIS)

    Anderson, J.D.; Poremba, B.E.

    1979-01-01

    This document is issued quarterly for the purpose of summarizing the radioactive gaseous wastes that are discharged from the facilities of the Rockwell Hanford Operations. Data on alpha and beta emissions during 1978 are presented where relevant to the gaseous effluent. Emission data are not included on gaseous wastes produced within the 200 Areas by other Hanford contractors

  17. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  18. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  19. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  20. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  1. Centralized treatment facility for low level radioactive waste produced in Belgium. The CILVA project

    International Nuclear Information System (INIS)

    Renard, Cl.; Detilleux, M.; Debieve, P.

    1993-01-01

    Due to rather limited amount of waste produced and the small size of the Belgian territory (30 x 10 3 km 2 ), ONDRAF/NIRAS strategy aims at centralizing treatment conditioning and storage of radioactive waste. ONDRAF/NTRAS has decided to set up a new infrastructure: the CILVA unit. The CILVA facility is focused on the supercompaction and the incineration treatment, so that ONDRAF/NIRAS can safely manage all radioactive wastes produced in Belgium. (2 figs.)

  2. Development of 3D Visualization Technology for Medium-and Large-sized Radioactive Metal Wastes from Decommissioning Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A Rim; Park, Chan Hee; Lee, Jung Min; Kim, Rinah; Moon, Joo Hyun [Dongguk Univ., Gyongju (Korea, Republic of)

    2013-10-15

    The most important point of decommissioning nuclear facilities and nuclear power plants is to spend less money and do this process safely. In order to perform a better decommissioning nuclear facilities and nuclear power plants, a data base of radioactive waste from decontamination and decommissioning of nuclear facilities should be constructed. This data base is described herein, from the radioactive nuclide to the shape of component of nuclear facilities, and representative results of the status and analysis are presented. With the increase in number of nuclear facilities at the end of their useful life, the demand of decommissioning technologies will continue to grow for years to come. This analysis of medium-and large-sized radioactive metal wastes and 3D visualization technology of the radioactive metal wastes using the 3D-SCAN are planned to be used for constructing data bases. The data bases are expected to be used on development of the basic technologies for decommissioning nuclear facilities 4 session.

  3. Technology, socio-political acceptance, and the low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Andrews, L.J.; Domenech, J.S.

    1986-01-01

    The technology which is required to develop and operate low-level radioactive waste disposal sites in the 1990's is available today. The push for best available technology is a response to the political difficulties in securing public acceptance of the site selection process. Advances in waste management technologies include development of High Integrity Containers (HIC), solidification media, liquid volume reduction techniques using GEODE/sub sm/ and DeVoe-Holbein technology of selective removal of target radioisotopes, and CASTOR V storage casks. Advances in technology alone, however, do not make the site selection process easier and without socio-political acceptance there may be no process at all. Chem-Nuclear has been successful in achieving community acceptance at the Barnwell facility and elsewhere. For example, last June in Fall River County, South Dakota, citizens voted almost 2:1 to support the development of a low-level radioactive waste disposal facility. In Edgemont, the city nearest the proposed site, 85% of the voters were in favor of the proposed facility

  4. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF

  5. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  6. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  7. Interim storage of radioactive waste packages

    International Nuclear Information System (INIS)

    1998-01-01

    This report covers all the principal aspects of production and interim storage of radioactive waste packages. The latest design solutions of waste storage facilities and the operational experiences of developed countries are described and evaluated in order to assist developing Member States in decision making and design and construction of their own storage facilities. This report is applicable to any category of radioactive waste package prepared for interim storage, including conditioned spent fuel, high level waste and sealed radiation sources. This report addresses the following issues: safety principles and requirements for storage of waste packages; treatment and conditioning methods for the main categories of radioactive waste; examples of existing interim storage facilities for LILW, spent fuel and high level waste; operational experience of Member States in waste storage operations including control of storage conditions, surveillance of waste packages and observation of the behaviour of waste packages during storage; retrieval of waste packages from storage facilities; technical and administrative measures that will ensure optimal performance of waste packages subject to various periods of interim storage

  8. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  9. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  10. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  11. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  12. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  13. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  14. New low-level radioactive waste disposal/storage facilities for the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    Within the next few years the Savannah River Plant will require new facilities for the disposal and/or storage of solid low-level radioactive waste. Six options have been developed which would meet the regulatory and site-specific requirements for such facilities

  15. The estimation of the amount of radioactive waste from decommissioning of the nuclear facilities in Oarai Engineering Center

    International Nuclear Information System (INIS)

    Tanimoto, Kenichi; Aihara, Nagafumi; Imai, Katutomo; Tobita, Kazunori; Nemoto, Masaaki; Imahori, Shinji; Noguchi, Kouichi; Hasegawa, Makoto

    1998-11-01

    The estimation of the amount of radioactive waste produced from nuclear facilities in Oarai Engineering Center was performed for the purpose of using it for countermeasure of decommissioning planning. The conditions and the result of the estimation are as follows; (1) The total amount of occurrence of radioactive waste is 18,820 tons. As the items of the amount in radioactive level, the amount of 1 GBq/t and over is 820 tons and that of under 1 GBq/t is 18,000 tons. (2) The amount of metal waste is 5,820 tons and the amount of concrete is 13,000 tons. (3) Above calculation was based on related specifications, complete drawings, and visual observation. (4) To dismantle facilities, if must exfoliate the surface of wall. As for the polluted zone and the zone with possibility of pollution, it decided to exfoliate 5 cm in thickness from the surface of the wall. And, as for the zone that fundamentally pollution was not there, it decided to exfoliate surface 1 cm in thickness from the surface of the wall. (5) Using the suitable decontamination technology and exfoliation technology can reduce the amount of radioactive waste. (6) In the facilities dealing with sealed source judging from the past record of operation, there is no contact with the radioactive material, etc. Therefore, it can be disposed of all the waste that comes out from the facilities as non-radioactive waste. (author)

  16. Strategy and plan for siting and licensing a Rocky Mountain low-level radioactive waste facility

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    In 1979, the States of Nevada and Washington temporarily closed their commercial low-level radioactive waste (LLW) disposal facilities and South Carolina, the only other state hosting such a facility, restricted the amount of waste it would accept. All three states then announced that they did not intend to continue the status quo of accepting all of the country's commercial low-level radioactive waste. Faced with this situation, other states began considering alternative LLW management and disposal options. In the Rocky Mountain region, this evolved into discussions for the development of an interstate compact to manage low-level waste. Inherent in this management plan was a strategy to site and license a new LLW disposal facility for the Rocky Mountain region. The Rocky Mountain Low-Level Radioactive Waste Compact was negotiated over the course of a year, with final agreement on the language of the compact agreed to in early 1982. States eligible to join the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Colorado adopted the compact into law in 1982, and Nevada, New Mexico and Wyoming adopted it in 1983. Utah has joined the Northwest Compact, although it may decide to join the Rocky Mountain Compact after a new disposal facility is developed for the region. Arizona has taken no action on the Rocky Mountain Compact

  17. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Barboza, Alex

    2009-01-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  18. Secrets of successful siting legislation for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1988-01-01

    California's users of radioactive materials, working together through the California Radioactive Materials Management Forum (Cal Rad), have played a role in fostering development of our state's low-level radioactive waste disposal facility. One of Cal Rad's contributions was to develop and sponsor California's siting legislation in 1983. In this paper, the elements of the state's LLRW siting law, California Senate Bill 342 (Chapter 1177, Statutes a 1983), and their relationship to a successful siting program are described

  19. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  20. Developing operating procedures for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G.

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures

  1. The partnership approach to siting and developing radioactive waste management facilities

    International Nuclear Information System (INIS)

    2010-03-01

    History shows that the search for sites for radioactive waste management facilities has been marred by conflicts and delays. Affected communities have often objected that their concerns and interests were not addressed. In response, institutions have progressively turned away from the traditional 'decide, announce and defend' model, and are learning to 'engage, interact and co-operate'. This shift has fostered the emergence of partnerships between the proponent of the facility and the potential host community. Working in partnership with potential host communities enables pertinent issues and concerns to be raised and addressed, and creates an opportunity for developing a relationship of mutual understanding and mutual learning, as well as for developing solutions that will add value to the host community and region. Key elements of the partnership approach are being incorporated into waste management strategies, leading increasingly to positive outcomes. National radioactive waste management programmes are in various phases of siting facilities and rely on different technical approaches for the various categories of waste. In all cases, it is necessary for institutional actors and the potential or actual host community to build a meaningful, workable relationship. Partnership approaches are effective in achieving a desirable combination of licensable site and management concept while meeting the sometimes competing requirements of fair representation and competent participation. Partnership arrangements facilitate reaching agreement on measures for local control, financial support and future development

  2. Special feature of the facilities for final disposal of radioactive waste and its potential impact on the licensing process

    International Nuclear Information System (INIS)

    Lee Gonzales, Horacio M.; Medici, Marcela A.; Alvarez, Daniela E.; Biaggio, Alfredo L.

    2009-01-01

    During the lifetime of a radioactive waste disposal facility it is possible to identify five stages: design, construction, operation, closure and post-closure. While the design, and pre-operation stages are, to some extent, similar to other kind of nuclear or radioactive facilities; construction, operation, closure and post-closure have quite special meanings in the case of radioactive waste disposal systems. For instance, the 'closure' stage of a final disposal facility seems to be equivalent to the commissioning stage of a conventional nuclear or radioactive facility. This paper describes the unique characteristics of these stages of final disposal systems, that lead to concluded that their licensing procedure can not be assimilated to the standard licensing procedures in use for other nuclear or radioactive facilities, making it necessary to develop a tailored license system. (author)

  3. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  4. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  5. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  6. Methods for the minimization of radioactive waste from decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to provide Member States and their decision makers (ranging from regulators, strategists, planners and designers, to operators) with relevant information on opportunities for minimizing radioactive wastes arising from the D and D of nuclear facilities. This will allow waste minimization options to be properly planned and assessed as part of national, site and plant waste management policies. This objective will be achieved by: reviewing the sources and characteristics of radioactive materials arising from D and D activities; reviewing waste minimization principles and current practical applications, together with regulatory, technical, financial and political factors influencing waste minimization practices; and reviewing current trends in improving waste minimization practices during D and D

  7. Treatment and conditioning of low-level radioactive waste in Belgium: initial operating results of the Cilva facility

    International Nuclear Information System (INIS)

    Monsch, O.; Renard, C.; Deckers, J.; Luycx, P.

    1995-01-01

    The Belgian National Radioactive Waste and Enriched Fissile Material Agency (ONDRAF), which is responsible for the management of all radioactive waste in Belgium, recently decided to commission the CILVA facility. Operation of this facility, which comprises a number of units for the treatment of low-level radwaste, has been contracted to ONDRAF's Belgoprocess subsidiary based at the Dessel site. A consortium comprising SGN and Fabricom was in charge of building the CILVA facility's waste preparation and conditioning (concrete solidification) units. The concrete solidification processes, which were devised and developed by SGN, have been qualified to secure ONDRAF certification of the process and the facility. This enabled active commissioning of the waste conditioning unit in mid-August 1994. Active commissioning of the waste preparation unit was carried out in several stages up to the beginning of 1995 in accordance with operating requirements. Initial operating results of the two units are presented. (author)

  8. Radioactive waste safety appraisal. An international peer review of the licence application for the Australian near surface radioactive waste disposal facility. Report of the IAEA International Review Team

    International Nuclear Information System (INIS)

    2004-05-01

    Radioactive waste has been generated in Australia for a number of decades from the production and use of radioactive materials in medicine and industry, from the processing of various minerals containing natural radionuclides and from various research activities. It has been decided in the overall interest of safety and security to develop a radioactive waste disposal facility to accommodate the low level and short lived intermediate level waste, which make up the bulk of the waste, other than mining and minerals processing residues. A site selection process has been undertaken and environmental impact statement report prepared and approved. A licence application has been submitted to the national nuclear regulatory authority, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for siting, construction and operation of the facility. In order to assist the CEO of ARPANSA with his deliberations in this regard a request was made to the IAEA, in terms of its statutory mandate to establish international safety standards for radioactive waste safety and to provide for their application, to undertake an international peer review of the licence application and to advise the CEO accordingly. The outcome and recommendations of this peer review are presented in the report

  9. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  10. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  11. Investigation on proper materials of a liner system for trench type disposal facilities of radioactive wastes from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Arikawa, Masanobu; Sakamoto, Yoshiaki

    2011-08-01

    The Low-level Radioactive Waste Disposal Project Center of Japan Atomic Energy Agency will settle on near surface disposal facilities with and without engineered barriers for radioactive wastes from research, industrial and medical facilities. Both of them are so called 'concrete pit type' and 'trench type', respectively. The technical standard of constructing and operating a disposal facility based on 'Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors' have been regulated partly by referring to that of 'Waste Management and Public Cleansing Law'. This means that the concrete pit type and the trench type disposal facility resemble an isolated type for specified industrial wastes and a non leachate controlled type final disposal site for stable industrial wastes, respectively. On the other, We plan to design a disposal facility with a liner system corresponding to a leachate controlled type final disposal site on a crucial assumption that radioactive wastes other than stable industrial wastes to be disposed into the trench type disposal facility is generated. By current nuclear related regulations in Japan, There are no technical standard of constructing the disposal facility with the liner system referring to that of 'Waste Management and Public Cleansing Law'. We investigate the function of the liner system in order to design a proper liner system for the trench type disposal facility. In this report, We investigated liner materials currently in use by actual leachate controlled type final disposal sites in Japan. Thereby important items such as tensile strength, durability from a view point of selecting proper liner materials were studied. The items were classified into three categories according to importance. We ranked proper liner materials for the trench type disposal facility by evaluating the important items per material. As a result, high density polyethylene(HDPE) of high elasticity type polymetric sheet was selected

  12. Fleet servicing facilities for testing and maintaining rail and truck radioactive waste transport systems

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Preston, M.K.; Keith, D.A.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-01-01

    This paper examines feasibility design concepts and feasibility studies of Fleet Servicing Facilities (FSF). Such facilities are intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the waste handling plants in the United States presently receiving radioactive wastes have an onsite FSF, nor is there an existing third party facility providing all of these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the transport system is placed into service. Thus a need is indicated for FSFs or their equivalent at various radioactive materials receiving sites. This paper also compares the respective capital costs and operating characteristics of the following three concepts of a spent fuel cask transportation FSF; integrated FSF, colocated FSF, and independent FSF

  13. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  14. Study on Safety Assessment for TINT- Pre disposal Radioactive Waste Management Facilities by the Application of SAFRAN Software

    International Nuclear Information System (INIS)

    Ya-anant, Nanthavan

    2011-06-01

    Full text: The Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (TINT) provides a centralized radioactive waste management (RWM) service in the country. The pre disposal RWM facilities are composed of low and intermediate level waste treatment and storage facilities. The benefits of this study are (1) to improve the safety of pre disposal RWM facilities (2) to experience with the SAFRAN software tool for the safety assessment of pre disposal RWM facilities, which has been developed following to the methodology from International Atomic Energy Agency (IAEA). The work was performed on collecting all waste management data, the diagram of facilities, buildings, location, procedure, waste classification, waste form, radiological/chemical/physical properties including scenarios in normal and accidental conditions. The result of normal condition is that the effective dose per year of worker and public is less than 20 mSv and 1 mSv respectively. So the TINT-RWM operation is safe, as referred to the regulation

  15. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  16. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  17. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  18. Commercial low-level radioactive waste transportation liability and radiological risk

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  19. Commercial low-level radioactive waste transportation liability and radiological risk

    International Nuclear Information System (INIS)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers

  20. Radioactive waste problems in Russia

    International Nuclear Information System (INIS)

    Bridges, O.; Bridges, J.W.

    1995-01-01

    The collapse of the former Soviet Union, with the consequent shift to a market driven economy and demilitarisation, has had a profound effect on the nuclear and associated industries. The introduction of tighter legislation to control the disposal of radioactive wastes has been delayed and the power and willingness of the various government bodies responsible for its regulation is in doubt. Previously secret information is becoming more accessible and it is apparent that substantial areas of Russian land and surface waters are contaminated with radioactive material. The main sources of radioactive pollution in Russia are similar to those in many western countries. The existing atomic power stations already face problems in the storage and safe disposal of their wastes. These arise because of limited on site capacity for storage and the paucity of waste processing facilities. Many Russian military nuclear facilities also have had a sequence of problems with their radioactive wastes. Attempts to ameliorate the impacts of discharges to important water sources have had variable success. Some of the procedures used have been technically unsound. The Russian navy has traditionally dealt with virtually all of its radioactive wastes by disposal to sea. Many areas of the Barents, Kola and the Sea of Japan are heavily contaminated. To deal with radioactive wastes 34 large and 257 small disposal sites are available. However, the controls at these sites are often inadequate and illegal dumps of radioactive waste abound. Substantial funding will be required to introduce the necessary technologies to achieve acceptable standards for the storage and disposal of radioactive wastes in Russia. (author)

  1. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  2. Evolution in radioactive waste countermeasures

    International Nuclear Information System (INIS)

    Moriguchi, Yasutaka

    1984-01-01

    The establishment of radioactive waste management measures is important to proceed further with nuclear power development. While the storage facility projects by utilities are in progress, large quantity of low level wastes are expected to arise in the future due to the decommissioning of nuclear reactors, etc. An interim report made by the committee on radioactive waste countermeasures to the Atomic Energy Commission is described as follows: the land disposal measures of ultra-low level and low level radioactive wastes, that is, the concept of level partitioning, waste management, the possible practice of handling wastes, etc.; the treatment and disposal measures of high level radioactive wastes and transuranium wastes, including task sharing among respective research institutions, the solidification/storage and the geological formation disposal of high level wastes, etc. (Mori, K.)

  3. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  4. Radioactive waste processing facility and underground processing method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Hasegawa, Yasuyuki

    1998-01-01

    There are disposed a communication pit laterally extended in an underground base rock, an access pit extended from the ground surface to the communication pit, discarding pits laterally extended at a plurality of longitudinal positions of the communication pit and layered buffer materials for keeping a radioactive waste-sealing container at substantially the center of the discarding pit. The layered buffer material comprises fan-shaped buffer blocks divided so that the axial end faces of inner and outer layers are displaced with each other in the axial direction of the discarding pit and so that the circumferential end faces of the inner and the outer layers are circumferentially displaced with each other. Even if the base lock should move, the layered buffer material reduces the propagation of the movement to the radioactive waste-sealing vessel thereby enabling to enhance supporting strength. (N.H.)

  5. Radioactive waste management centers: an approach

    International Nuclear Information System (INIS)

    Lotts, A.L.

    1980-01-01

    Radioactive waste management centers would satisfy the need for a cost-effective, sound management system for nuclear wastes by the industry and would provide a well integrated solution which could be understood by the public. The future demands for nuclear waste processing and disposal by industry and institutions outside the United States Government are such that a number of such facilities are required between now and the year 2000. Waste management centers can be organized around two general needs in the commercial sector: (1) the need for management of low-level waste generated by nuclear power plants, the once-through nuclear fuel cycle production facilities, from hospitals, and other institutions; and (2) more comprehensive centers handling all categories of nuclear wastes that would be generated by a nuclear fuel recycle industry. The basic technology for radioactive waste management will be available by the time such facilities can be deployed. This paper discusses the technical, economic, and social aspects of organizing radioactive waste managment centers and presents a strategy for stimulating their development

  6. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  7. Andra - Everything you ever wanted to know about radioactive waste management

    International Nuclear Information System (INIS)

    2014-08-01

    Andra is a publicly owned industrial and commercial body, set up by the French act of 30 December 1991. Its role was expanded by the 2006 Planning Act on the long-term management of radioactive materials and waste. Andra is independent of the producers of radioactive waste, and is under the supervision of the ministries responsible for energy, research and the environment. Andra is responsible for identifying, implementing and guaranteeing safe management solutions for all French radioactive waste, in order to protect present and future generations from the risks inherent in such substances. Andra's role involves a number of activities: running the two existing above-ground disposal facilities in the Aube, the first one for low- and intermediate- level, short-lived waste (LILW-SL) and the other one for very-low-level waste (VLLW), the Cires facility; monitoring the Manche disposal facility, the CSM, France's first above-ground disposal facility for low- and intermediate-level waste, which is now closed; studying and designing disposal facilities for waste as yet without a special facility, that is: Low-level, long-lived waste (LLW-LL), High-level and intermediate-level long-lived waste (HLW, ILW-LL) - the Cigeo project; taking in radioactive waste from hospitals, research laboratories, universities and radioactive objects owned by private individuals (old luminous clocks and watches, health care equipment containing radium, natural laboratory salts, certain minerals, etc.); at the request of the owner or the authorities, cleaning up sites polluted by radioactivity; surveying and listing French radioactive waste and issuing the National Inventory of Radioactive Materials and Waste every three years; informing all members of the public by means of documents, exhibitions, visits to its facilities, etc.; preserving the memory of its centers; promoting and disseminating its know-how outside France. Contents: 1 - Andra, its role, its activities, its funding; 2

  8. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Laboratory

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  9. Treatment of solid radioactive waste: The incineration of low level radioactive waste

    International Nuclear Information System (INIS)

    Dirks, F.; Hempelmann, W.

    1982-01-01

    Nuclear facilities produce large quantities of burnable solid radioactive waste which incineration can reduce in volume and change into a form capable of ultimate storage. Experiments over many years were carried out at the Karlsruhe Nuclear Research Center to determine the boundary conditions for the design and construction of incineration plants for radioactive waste. On the basis of those experiments a test facility was started up in 1971. This operating facility consists of a shaft furnace lined with ceramics with a downstream series of ceramic flue gas filters. In 1976 the plant was exchanged by the installation of a pilot facility for burning organic solvents and of a flue gas scrubber. The plant has so far been in operation for more than 28000 hours and has processed in excess of 1500 to of solid and some 300 m 3 of liquid low level radioactive wastes. Various repairs and interventions were carried out without greatly impairing availability, which was 81 % on the average. The plant design is being used by various licensees in Japan and Europe; three plants are either in operation or completed, three more are under construction or in the planning stage. On the basis of the available process an incineration plant for alpha contaminated waste will be built at the Karlsruhe Nuclear Research Center in the next few years. (orig.)

  10. Radioactive waste package assay facility. Volume 1. Application of assay technology

    International Nuclear Information System (INIS)

    Findlay, D.J.S.; Green, T.H.; Molesworth, T.V.; Staniforth, D.; Strachan, N.R.; Rogers, J.D.; Wise, M.O.; Forrest, K.R.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd., and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd., on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. In volume 1, the reasons for assay are considered together with the various techniques that can be used, and the information that can be obtained. The practical problems associated with the use of the various techniques in an integrated assay facility are identified, and the key parameters defined. Engineering and operational features are examined and provisional designs proposed for facilities at three throughput levels: 15,000, 750 and 30 drums per year respectively. The capital and operating costs for such facilities have been estimated. A number of recommendations are made for further work. 16 refs., 14 figs., 13 tabs

  11. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  12. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  13. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  14. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  15. Licensing the California low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; Junkert, R.

    1992-01-01

    California has made significant progress toward the issuance of a license to construct and operate the Southwestern Compact's low-level radioactive waste disposal facility. However, obstacles to completing construction and preparing to receive waste still exist. This paper will describe the technical licensing issues, EIR/S process, political events, and public interactions that have impacted on California regulators' ability to complete the license application review and reach a decision on issuing a license. Issues associated with safely and liability evaluations, finalization of the environmental impact report, and land transfer processes involving multiple state, federal, and local agencies will be identified. Major issues upon which public and political opposition is focusing will also be described. (author)

  16. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S.

    2005-10-01

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site

  17. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S

    2005-10-15

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site.

  18. 1992 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act

  19. Application of quality assurance to radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs.

  20. Application of quality assurance to radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs

  1. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    International Nuclear Information System (INIS)

    Ledoux, M. R.; Cade, M. S.

    2002-01-01

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations

  2. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  3. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  4. Management of radioactive wastes of iodine therapy

    International Nuclear Information System (INIS)

    Silva, Andre R.M.; Santos, Helena C.

    2015-01-01

    The main objective of waste radioactive management is to ensure the protection of man and the preservation of the environment. The regulation that established the basis for the good radioactive waste management was elaborated by the Comissao Nacional de Energia Nuclear (CNEN), in 1985. It is the CNEN-NE-6:05: 'Management radioactive waste in radioactive facilities', which although it an important standard related to radioactive waste management and help largely in the design of a management system in radioactive facilities of radioisotope users, covers the topics in a general way and does not consider individuals aspects of the different plants, as is the case of nuclear medicine units. The main objective of this study is to show the segregation and safe packaging, avoiding unnecessary exposure of professionals involved and public individuals in general

  5. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  6. The establishment of a radioactive waste disposal facility in Western Australia for low level waste

    International Nuclear Information System (INIS)

    Hartley, B.M.; Wall, B.; Munslow-Davies, L.; Toussaint, L.F.; Hirschberg, K-J.; Terry, K.W.; Shepherd, M.

    1994-01-01

    The Radiation Health Section of the Health Department of Western Australia has been a repository for unwanted radioactive sources for many years. They have been placed in the radioactive store located on the Queen Elizabeth II Medical Centre Campus. After a collection period of more than 20 years the storage facilities of the Radiation Health Section were nearing capacity. A decision was made to relocate these sources into a permanent near surface burial facility. Following extensive community consultation and site investigations, waste originating in Western Australia was disposed of at Mt Walton (East), 80 km North East of Koolyanobbing Western Australia in November 1992. The site selection process, the radiation monitoring program and the legislative requirements are briefly outlined. 6 refs., 1 tab., 2 figs

  7. Management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated. Cement solidification and bituminization unit has come into trial run. Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities. Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces. Disposal of low and intermediate level radioactive wastes pursues the policy of 'regional disposal'. Four repositories have been planned to be built in northwest, southwest, south and east China respectively. A program for treatment and disposal of high level radioactive waste has been made

  8. Deep-well injection of liquid radioactive waste in Russia. Present situation

    International Nuclear Information System (INIS)

    Rybalchenko, A.

    1998-01-01

    At present there are 3 facilities (polygons) for the deep-well injection of liquid radioactive waste in Russia, all of which were constructed in the mid60's. These facilities are operating successfully, and activities have started in preparation for decommissioning. Liquid radioactive waste is injected into deep porous horizons which act as 'collector-layers', isolated from the surface and from groundwaters by a relatively thick sequence of rock of low permeability. The collector-layers (also collector-horizons) contain salt waters or fresh waters of no practical application, lying beneath the main horizons containing potable waters. Construction of facilities for the deep-well injection of liquid radioactive waste was preceded by geological surveys and investigations which were able to substantiate the feasibility and safety of radioactive waste injection, and to obtain initial data for facility design. Operation of the facilities was accompanied by monitoring which confirmed that the main safety requirement was satisfied i.e. localisation of radioactive waste within specified boundaries of the geologic medium. The opinion of most specialists in the atomic power industry in Russia favours deep-well injection as a solution to the problem of liquid radioactive waste management; during the period of active operation of defence facilities (atomic power industry of the former U.S.S.R.), this disposal method prevented the impact of radioactive waste on man and the environment. The experience accumulated concerning the injection of liquid radioactive waste in Russia is of interest to scientists and engineers engaged in problems of protection and remediation of the environment in the vicinity of nuclear industry facilities; an example of the utilisation of the deep subsurface for solidified radioactive waste and the disposal of different types of nuclear materials. Information on the scientific principles and background for the development of facilities for the injection

  9. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  10. Operation of the radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Kim, Kil Jeong; Ahn, Seom Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Lim, Kil Sung; Sohn, Young Joon; Kim, Tae Kook; Jeong, Kyung Hwan; Wi, Geum San; Park, Seung Chul; Park, Young Woong; Yoon, Bong Keun.

    1996-12-01

    The radioactive wasted generated at Korea Atomic Energy Research Institute (KAERI) in 1996 are about 118m 3 of liquid waste and 204 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. In 1996, 100.5m 3 of liquid waste was treated. (author). 84 tabs., 103 figs

  11. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  13. Order of 13 December 1985 on the transfer to ENRESA of the Radioactive Waste Management Facility at Sierra Albarrana

    International Nuclear Information System (INIS)

    1984-01-01

    This Order provides for the transfer of the Radioactive Waste Management Facility at Sierra Albarrana from the Junta de Energia Nuclear to ENRESA, the National Enterprise for Radioactive Waste; it also organises all stages of the transfer. (NEA) [fr

  14. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  15. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  16. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  17. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  18. Radioactive waste handling at the Mochovce NPP, 1998-2008

    International Nuclear Information System (INIS)

    Vasickova, Gabriela

    2009-01-01

    The radioactive waste management system at the Mochovce NPP is described. The system addresses technical aspects as well as administrative provisions related to radioactive waste generated within the controlled area, from the waste generation phase to waste sorting, packaging, storage, recording, measurement, and transportation to the Bohunice waste processing facility or transfer to the Mochovce liquid radioactive waste treatment facility. The article also addresses conditions for release from the controlled area to the environment for radioactive waste which can be exempt from the institutional administrative control system or released to the environment on the basis of a valid permission issued by the relevant regulatory authority

  19. Systematic handling of requirements and conditions (in compliance with waste acceptance requirements for a radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Keyser, Peter; Helander, Anita

    2012-01-01

    This Abstract and presentation will demonstrate the need for a structured requirement management and draw upon experiences and development from SKB requirements data base and methodology, in addition to international guidelines and software tools. The presentation will include a discussion on how requirement management can be applied for the decommissioning area. The key issue in the decommissioning of nuclear facilities is the progressive removal of hazards, by stepwise decontamination and dismantling activities that have to be carried out safely and within the boundaries of an approved safety case. For decommissioning there exists at least two safety cases, one for the pre-disposal activities and one for the disposal facility, and a need for a systematic handling of requirements and conditions to safely manage the radioactive waste in the long term. The decommissioning safety case is a collection of arguments and evidence to demonstrate the safety of a decommissioning project. It also includes analyzing and updating the decommissioning safety case in accordance with the waste acceptance criteria's and the expected output, i.e. waste packages. It is a continuous process to confirm that all requirements have been met. On the other hand there is the safety case for a radioactive waste disposal facility, which may include the following processes and requirements: i) Integrating relevant scientific (and other) information in a structured, traceable and transparent way and, thereby, developing and demonstrating an understanding of the potential behavior and performance of the disposal system; ii) Identifying uncertainties in the behavior and performance of the disposal system, describing the possible significance of the uncertainties, and identifying approaches for the management of significant uncertainties; iii) Demonstrating long-term safety and providing reasonable assurance that the disposal facility will perform in a manner that protects human health and the

  20. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  1. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  2. A feasibility study for the design of a simulated radioactive waste repository facility

    International Nuclear Information System (INIS)

    1986-10-01

    The paper contains the text and references of a feasibility study for the design of a simulated radioactive waste repository facility (final report). The work was commissioned by the Department of the Environment, United Kingdom, as part of its radioactive waste management research programme. The nature of the candidate buffer materials, the factors defining their behaviour, and the nature of a buffer material selection and testing programme, are examined. A description is given of the properties and modelling of host materials. The complex interactions between host materials, and between buffer and host materials, are discussed, along with the instrumentation requirements for measuring the interactions. Finally, the temperature field around a waste package, and modelling a host continuum with a segmental block, are both investigated. (U.K.)

  3. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  4. Radioactive waste mangement in Canada

    International Nuclear Information System (INIS)

    Didyk, J.P.

    1976-01-01

    The objectives of the Canadian radioactive waste management program are to manage the wastes so that the potential hazards of the material are minimized, and to manage the wastes in a manner which places the minimum possible burden on future generations. The Atomic Energy Control Board regulates all activities in the nuclear field in Canada, including radioactive waste management facility licensing. The Atomic Energy Control Act authorizes the Board to make rules for regulating its proceedings and the performance of its functions. The Atomic Energy Control Regulations define basic regulatory requirements for the licensing of facilities, equipment and materials, including requirements for records and inspection, for security and for health and safety

  5. Highest manageable level of radioactivity in the waste storage facilities of power plants

    International Nuclear Information System (INIS)

    Elkert, J.; Lennartsson, R.

    1991-01-01

    This project presents and discusses an investigation of the highest level of radioactivity possible to handle in the waste storage facilities. The amount of radioactivity, about 0.1% of the fuel inventory, is the same in both of the cases but the amount of water is very different. The hypothetical accident was supposed to be damage of the reactor fuel caused by loss of coolant. (K.A.E.)

  6. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  7. Classification of Radioactive Waste. General Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste.

  8. Classification of Radioactive Waste. General Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication is a revision of an earlier Safety Guide of the same title issued in 1994. It recommends revised waste management strategies that reflect changes in practices and approaches since then. It sets out a classification system for the management of waste prior to disposal and for disposal, driven by long term safety considerations. It includes a number of schemes for classifying radioactive waste that can be used to assist with planning overall national approaches to radioactive waste management and to assist with operational management at facilities. Contents: 1. Introduction; 2. The radioactive waste classification scheme; Appendix: The classification of radioactive waste; Annex I: Evolution of IAEA standards on radioactive waste classification; Annex II: Methods of classification; Annex III: Origin and types of radioactive waste

  9. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, M. R.; Cade, M. S.

    2002-02-25

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations.

  10. Interpretation of optimisation in the context of a disposal facility for long-lived radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    Full text: Guidance on the Requirements for Authorisation (the GRA) issued by the Environment Agency for England and Wales requires that all disposals of radioactive waste are undertaken in a manner consistent with four principles for the protection of the public. Among these is a principle of Optimisation, that: 'The radiological detriment to members of the public that may result from the disposal of radioactive waste shall be as low as reasonably achievable, economic and social factors being taken into account'. The principle of optimisation is widely accepted and has been discussed in both UK national policy and guidance and in documents from international organisations. The practical interpretation of optimisation in the context of post-closure safety of radioactive waste repositories is, however, still open to question. In particular, the strategies and procedures that a developer might employ to implement optimisation in the siting and development of a repository, and demonstrate optimisation in a safety case, are not defined. In preparation for its role of regulatory review, the Agency has undertaken a pilot study to explore the possible interpretations of optimisation stemming from the GRA, and to identify possible strategies and procedures that a developer might follow. A review has been undertaken of UK regulatory guidance and related documents, and also international guidance, referring to optimisation in relation to radioactive waste disposal facilities. In addition, diverse examples of the application of optimisation have been identified in the international and UK performance assessment literature. A one-day meeting was organised bringing together Agency staff and technical experts with different experiences and perspectives on the subject of optimisation in the context of disposal facilities for radioactive waste. This meeting identified and discussed key issues and possible approaches to optimisation, and specifically: (1) The meaning of

  11. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  12. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site's centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million

  13. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  14. Storage facilities for radioactive waste in tertiary education environment

    International Nuclear Information System (INIS)

    Sinclair, G.; Benke, G.

    1994-01-01

    The research and teaching endeavors of the university environment generate an assortment of radioactive waste that is unique in the range of isotopes and activities present, although the physical quantities of the waste may not be large. Universities may also be subject to unexpected, close public scrutiny of their operations due to the diverse nature of the university campus. This is rarely the case for other generators of radioactive waste. The experience of Monash University in formulating solutions for long term storage of radioactive waste is examined with respect to design, location and administration of the waste stores that were finally constructed. 7 refs., 1 tab., 1 fig

  15. Historical radioactive waste in France: Situation and lessons learnt

    International Nuclear Information System (INIS)

    Blary, C.; Averous, J.

    2002-01-01

    Some radioactive waste, produced several decades ago, have been stored until now, awaiting an appropriate treatment process or further policy decision, in facilities that are now considered under the present safety standards. When no satisfactory improvements can be brought about the safety of the storage, the retrieval of the old radioactive waste is required. In France, typical facilities concerned with historical radioactive waste are shallow wells, pools, silos, effluents tanks and trenches. Several aspects, sometimes combined, make the retrieval usually more difficult and longer than thought. These aspects are mainly a lack of concern regarding retrieval of the waste when designing the facilities, an insufficient waste characterisation or record keeping, a lack of monitoring, this lack of monitoring becoming more detrimental as the facility is ageing, and a lack of maintenance. Problems related to historical radioactive waste management have been identified and operators are making efforts to eradicate them. Without considering the financial cost of old radioactive waste retrieval, operators have to face problems such as risk of loss of radionuclides containment, radiation protection, handling and transportation. The nuclear safety authority has decided to make safety guidelines regarding designing and operating storage facilities as a result of experience feedback from the storage operators. (author)

  16. Non-fuel cycle radioactive waste policy in Turkey

    International Nuclear Information System (INIS)

    Demirel, H.

    2003-01-01

    Radioactive wastes generated in Turkey are mostly low level radioactive waste generated from the operation of one research reactor, research centers and universities, hospitals, and from radiological application of various industries. Disused sealed sources which potentially represent medium and high radiological risks in Turkey are mainly Am-241, Ra-226, Kr-85, Co-60, Ir-192 and Cs-137. All radioactive waste produced in Turkey is collected, segregated, conditioned and stored at CWPSF. Main components of the facility are listed below: Liquid waste is treated in chemical processing unit where precipitation is applied. Compactable solids are compressed in a compaction cell. Spent sources are embedded into cement mortar with their original shielding. If the source activities are in several millicuries, sometimes dismantling is applied and segregated sources are conditioned in shielded drums. Due to increasing number of radiation and nuclear related activities, the waste facility of CNAEM is now becoming insufficient to meet the storage demand of the country. TAEA is now in a position to establish a new radioactive waste management facility and studies are now being carried out on the selection of best place for the final storage of processed radioactive wastes. Research and development studies in TAEA should continue in radioactive waste management with the aim of improving data, models, and concepts related to long-term safety of disposal of long-lived waste

  17. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  18. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  19. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  20. Radioactive Waste Management at the New Conversion Facility of 'TVEL'R Fuel Company - 13474

    International Nuclear Information System (INIS)

    Indyk, S.I.; Volodenko, A.V.; Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V.

    2013-01-01

    The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL R Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

  1. Transport of radioactive waste in Germany - a survey

    International Nuclear Information System (INIS)

    Alter, U.

    1995-01-01

    The transport of radioactive waste is centralised and coordinated by the German Railway Company (Deutsche Bahn AG, DB) in Germany. The conditioning of radioactive waste is now centralised and carried out by the Gesellschaft fuer Nucklear Service (GNS). The Germany Railway Company, DB, is totally and exclusively responsible for the transport, the GNS is totally and exclusively responsible for the conditioning of radioactive waste. The German Railway Company transports all radioactive waste from nuclear power plants, conditioning facilities and the existing intermediate storage facilities in Germany. In 1992 nearly 177 shipments of radioactive waste were carried out, in 1991 the total amount was 179 shipments. A brief description of the transport procedures, the use of different waste packages for radioactive waste with negligible heat generation and the transport routes within Germany will be given. For this purpose the inspection authorities in Germany have used a new documentation system, a special computer program for waste flow tracking and quality assurance and compliance assurance, developed by the electrical power companies in Germany. (Author)

  2. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  3. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    Galkin, A.; Tkachenko, V.

    2002-01-01

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  4. Grading of Requirements for Radioactive Waste Activities in Nuclear Research Reactors: Radioisotope Production Facilities

    International Nuclear Information System (INIS)

    Tawfik, Y.E.

    2017-01-01

    A graded approach is applicable in all stages of the life time of a research reactor. During the life time of a research reactor, any grading performed should not, in any manner, affect safety functions and operational limits and conditions are preserved, so that there are no undue radiological hazards to workers, public or environment. The grading of activities should be based on safety analyses, and regulatory requirements. Other elements to be considered in grading are the complexity and the maturity of the technology, operating experience associated with the activities and the stage in the life time of the facility. In order to ensure that proper and a de quate provision is made for the safety implications associated with the management and disposal of radioactive waste, the waste is characterized and classified. The general scheme for classifying radioactive waste as presented in the current study is based on considerations of long term safety, and thus, by implication, disposal of the waste. This classification provides a starting point for the grading of activities associated with the packaging and disposal of radioactive waste

  5. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  6. Radioprotection considerations on the expansion project of an interim storage facility for radioactive waste

    International Nuclear Information System (INIS)

    Boni-Mitake, Malvina; Suzuki, Fabio F.; Dellamano, Jose C.

    2009-01-01

    The Radioactive Waste Management (GRR) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) receives, treats, packs, characterizes and stores institutional radioactive wastes generated at IPEN-CNEN/SP and also those received from several radiological facilities in the country. The current storage areas have been used to store the treated radioactive waste since the early 1980's and their occupation is close to their full capacity, so a storage area expansion is needed. The expansion project includes the rebuilding of two sheds and the enlargement of the third one in the area currently occupied by the GRR and in a small adjacent area. The civil works will be in controlled area, where the waste management operations will be maintained, so all the steps of this project should be planned and optimized, from the radioprotection point of view. The civil construction will be made in steps. During the project implementation there will be transfer operations of radioactive waste packages to the rebuilt area. After these transfer operations, the civil works will proceed in the vacant areas. This project implies on radiological monitoring, dose control of the involved workers, decontamination and clearance of areas and it is also envisaged the need for repacking of some radioactive waste. The objective this paper is to describe the radioprotection study developed to this expansion project, taking into account the national radioprotection and civil construction regulations. (author)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  8. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  9. Risk-informed approaches to assess ecological safety of facilities with radioactive waste

    International Nuclear Information System (INIS)

    Vashchenko, V.N.; Zlochevskij, V.V.; Skalozubov, V.I.

    2011-01-01

    Ingenious risk-informed methods to assess ecological safety of facilities with radioactive waste are proposed in the paper. Probabilistic norms on lethal outcomes and reliability of safety barriers are used as safety criteria. Based on the probability measures, it is established that ecological safety conditions are met for the standard criterion of lethal outcomes

  10. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  11. Radioactive waste management at Institute for Nuclear Research (ICN) - Pitesti

    International Nuclear Information System (INIS)

    Bujoreanu, C.

    2004-01-01

    The amounts of liquid and solid wastes accumulated at the Radioactive Wastes Treatment Plant are given. The technologies used for the treatment and conditioning of radioactive wastes are presented. The final product is metallic drum-concrete-radioactive wastes (type A package) for the final disposal at the National Repository Baita, Bihor. The facilities for radioactive waste management at ICN Pitesti are: Plant for treatment, with uranium recovery of liquid radioactive waste resulting from the fabrication of CANDU type nuclear fuel; Plant for treatment of low-active liquid wastes; Plant for conditioning in concrete of the radioactive concentrate obtained during the evaporation treatment of liquid radioactive waste; Plant for incineration of solid radioactive waste contaminated with natural uranium; Plant for treatment and conditioning of organic liquid radioactive waste with tritium content. This wastes are generated by Cernavoda-NPP operation; Plant for conditioning into bitumen of spent ion exchangers at TRIGA reactor. The existing Facility is Baita repository - with two rock cavities of an uranium mine and the total capacity of 21000 containers (200 l drums)

  12. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  13. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  14. Comprehensive development plans for the low- and intermediate-level radioactive waste disposal facility in Korea and preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Jin Hyeong; Kwon, Mi Jin; Jeong, Mi Seon; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

  15. Subsides for optimization of transfer of radioactive liquid waste from 99MO production plant to the waste treatment facility

    International Nuclear Information System (INIS)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro

    2013-01-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of 99 Mo from fission of low enriched uranium targets. In order to meet the present demand of 99m Tc generators the planned 'end of irradiation' activity of 99 Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of 99 Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the 99 Mo production facility. (author)

  16. Polyethylene liners in radioactive mixed waste packages: An engineering study

    International Nuclear Information System (INIS)

    Whitney, G.A.

    1991-05-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste treatment, storage, and disposal facilities for the US Department of Energy-Richland Operations Office under contract AC06-87RL10930. These facilities include solid waste disposal sites and radioactive solid waste storage areas. This document is 1 in a series of 25 reports or actions identified in a Solid Waste Management Event Fact Sheet and critique report (Appendix E) to address the problem of stored, leaking 183-H Solar Evaporation Basin waste drums. It specifically addresses the adequacy of polyethylene liners used as internal packaging of radioactive mixed waste. This document is to be used by solid waste generators preparing solid waste for storage at Hanford Site facilities. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of radioactive solid waste

  17. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2 radioactive waste and laundry shipments

    International Nuclear Information System (INIS)

    Doerge, D.H.; Haffner, D.R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  18. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  19. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  20. National inventory of radioactive wastes and valorizable materials. Synthesis report

    International Nuclear Information System (INIS)

    2004-01-01

    This national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. It contains: 1 - general introduction; 2 - the radioactive wastes: definition, classification, origin and management; 3 - methodology of the inventory: organization, accounting, prospective, production forecasting, recording of valorizable materials, exhaustiveness, verification tools; 4 - general results: radioactive waste stocks recorded until December 31, 2002, forecasts for the 2003-2020 era, post-2020 prospects: dismantling operations, recording of valorizable materials; 5 - inventory per producer or owner: front-end fuel cycle facilities, power generation nuclear centers, back-end fuel cycle facilities, waste processing or maintenance facilities, civil CEA research centers, non-CEA research centers, medical activities (diagnostics, therapeutics, analyses), various industrial activities (sources fabrication, control, particular devices), military research and experiment centers, storage and disposal facilities; 6 - elements about radioactive polluted sites; 7 - examples of foreign inventories; 8 - conclusion and appendixes. (J.S.)

  1. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  2. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    International Nuclear Information System (INIS)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs

  3. The state of radioactive waste management and of personnel radiation exposure in nuclear power generating facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1985-01-01

    (1) The state of radioactive waste management in nuclear power generating facilities: In the nuclear power stations, the released quantities of radioactive gaseous and liquid wastes are all below the control objective levels. For the respective nuclear power stations, the released quantities of radioactive gaseous and liquid wastes in fiscal 1983 and the objective levels are given in table. And, the quantities of solid wastes taken into storage and the cumulative amounts are given. For reference, the results each year since fiscal 1974 are shown. (2) The state of personnel radiation exposure in nuclear power generating facilities: In the nuclear power stations, the personnel radiation exposures are all below the permissible levels. The dose distribution etc. in the respective nuclear power stations are given in table. For reference, the results each year since fiscal 1974 are shown. (Mori, K.)

  4. ANSTO's radioactive waste management policy. Preliminary environmental review

    International Nuclear Information System (INIS)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs

  5. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  6. Low-level radioactive wastes

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.

    1988-01-01

    During dismantling operations of nuclear facilities radioctive and non radioactive wastes are produced. The distinction between both kinds of wastes is not easy. In each dismantling operation special care and rules are defined for the separation of wastes. Each case must be separately studied. The volume and the surface activites are analyzed. Part of the wastes had been disposed in a public environment. The regulations, the international recommendations, thetheoretical and experimental investigations in this field are presented. A regulation principle and examples of radioactivity limits, on the basis of international recommendations, are provided. Those limits are calculated from individual radiation dose that may reach human beings [fr

  7. Radioactive waste from nuclear power stations and other nuclear facilities

    International Nuclear Information System (INIS)

    Jelinek-Fink, P.

    1976-01-01

    After estimating the amounts of liquid and solid radioactive wastes that will be produced in nuclear power plants, reprocessing plants, by the fuel cycle industry, and in the nuclear research centers in the FRG until 1990, it is reported on the state of technology and on the tendencies in the development of processing radioactive waste. The paper also describes, how waste disposal is managed by those producing radioactive waste (see above), and discusses the future development of the complex of waste disposal from the industry's point of view. (HR/LN) [de

  8. Treatment of Radioactive Contaminated Soil and Concrete Wastes Using the Regulatory Clearance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Ryu, W. S.; Kim, T. K.; Shon, J. S.; Ahn, S. J.; Lee, Y. H.; Bae, S. M.; Hong, D. S.; Ji, Y. Y.; Lee, B. C

    2008-11-15

    In the radioactive waste storage facilities at the Korea Atomic Energy Research Institute (KAERI) in Daejoen, there are thousands drums of radioactive contaminated soil and concrete wastes. The soil and concrete wastes were generated in 1988 during the decommissioning process of the research reactor and the attached radioactive waste treatment facility which were located in Seoul. The wastes were transported to Daejeon and have been stored since then. At the generation time, the radioactive contamination of the wastes was very low, and the radionuclides in the wastes was Co-60 and Cs-137. As the wastes have been stored for more than 20 years, the radioactivity concentration of the wastes has been decayed to become very extremely low. The wastes are needed to be treated because they take up large spaces at the storage facility. Also by treating the wastes, final disposal cost can be saved. So, the regulatory clearance was considered as a treatment method for the soil and concrete wastes with extremely low radioactivity concentration.

  9. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  10. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  11. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  12. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  13. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  14. Summary of radioactive solid waste received in the 200 Areas during calendar year 1993

    International Nuclear Information System (INIS)

    Anderson, J.D.; Hagel, D.L.

    1994-09-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ''Hanford Site Solid Waste Acceptance Criteria,'' (WHC 1988), liquid waste data are not included in this document

  15. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  16. Branch technical position for performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Campbell, A.C.; Abramson, L.; Byrne, R.M.

    1994-01-01

    The U.S. Nuclear Regulatory Commission has developed a Draft Branch Technical Position on Performance Assessment of Low-Level Radioactive Waste Disposal Facilities. The draft technical position addresses important issues in performance assessment modeling and provides a framework and technical basis for conducting and evaluating performance assessments in a disposal facility license application. The technical position also addresses specific technical policy issues and augments existing NRC guidance pertaining to LLW performance assessment

  17. Low-level radioactive wastes. Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them. 18 references

  18. Preparation of safety analysis reports (SARs) for near surface radioactive waste disposal facilities. Format and content of SARs

    International Nuclear Information System (INIS)

    1995-02-01

    All facilities at which radioactive wastes are processed, stored and disposed of have the potential for causing hazards to humans and to the environment. Precautions must be taken in the siting, design and operation of the facilities to ensure that an adequate level of safety is achieved. The processes by which this is evaluated is called safety assessment. An important part of safety assessment is the documentation of the process. A well prepared safety analysis report (SAR) is essential if approval of the facility is to be obtained from the regulatory authorities. This TECDOC describes the format and content of a safety analysis report for a near surface radioactive waste disposal facility and will serve essentially as a checklist in this respect

  19. Significant progress towards development of the low-level radioactive waste disposal facility in Illinois

    International Nuclear Information System (INIS)

    Klebe, M.; Henry, T.L.; Corpstein, P.

    1996-01-01

    Development of disposal sites for low-level radioactive waste is a complicated legal, regulatory and public sector process. Development of the low-level radioactive waste disposal facility to support generators in Illinois and Kentucky is well under way. Significant progress has been made to re-engineer the siting development process capitalizing on prior lessons learned and a recommitment from Illinois state leadership assuring the future success of the program. Comparisons of why this new process will succeed are the major focus of this paper. Specific changes in approach from the previous process including changes in the Illinois Management Act (Management Act), creation of the Illinois Low-Level Radioactive Waste Siting Task Group (Task Group), new roles for the Illinois State Geologic Survey and Illinois State Water Survey (Scientific Surveys) and the Illinois Department of Nuclear Safety (IDNS), a new contractor reliance approach and increased confidence on the open-quote science close-quote are the major contrasts between the previous process and the new process currently underway

  20. Feasibility study on the business of collection and storage of waste from small producer of radioactive waste

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu; Hayashi, Masaru; Senda, Masaki

    2008-01-01

    Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center (RANDEC) has investigated the feasibility study on the business of collection and storage of many kinds of low level radioactive waste in radioactive facilities. This works include the total volume of waste, conceptual design of storage facility and cost estimation of construction and operation of this business. This paper describes the some points of the results of this study. (author)

  1. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  2. Radioactive waste from non-power applications in Sweden

    International Nuclear Information System (INIS)

    Haegg, Ann-Christin; Lindbom, Gunilla; Persson, Monica

    2001-01-01

    Full text: The system for handling of radioactive waste from the Nuclear Fuel Cycle in Sweden is well established and has been in use for many years. Radioactive waste from other sources is not always handled as rigorously. The Swedish Radiation Protection Institute, SSI has identified the issue and therefore initiated a study with the aim to achieve a sufficient system for handling and disposal of radioactive waste from all sources of radioactive waste. In this paper we discuss some of the sources of radioactive waste and the specific problems they represent. We give a brief description on how they are regulated and handled today and identify some interesting issues. Conventional industry, hospitals, research and education: In the conventional industry the use of different types of radioactive sources is common. The size and type of radioactive source depends on the application (from some megaBq up to thousands of terraBq). The radioactive waste from hospitals, research institutions and pharmaceutical or bio-technical industries consists mainly of very short-lived radionuclides. Also most sealed sources used in the medical field contains short-lived radionuclides. According to the Swedish Radiation Protection Act a licence is needed for the use of sealed sources exceeding 50 kiloBq. For hospitals and research institutes the SSI issues one license covering all radioactive sources below 500 megaBq up to a summary limit depending on the application. All sources with activity exceeding 500 megaBq require a separate license. SSI has issued about 2500 licences. For each licence an annual fee is paid to the SSI. When the radioactive source has fulfilled its purpose the licensee is obliged to inform the SSI that the source is no longer in use and show a certificate from the recognised waste facility. Not until this has been done the licensee is released from its responsibilities. SSI has issued regulations on Radioactive Waste Not Associated with Nuclear Energy. These

  3. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  4. Summary of radioactive solid waste received in the 200 Areas during calendar year 1990

    International Nuclear Information System (INIS)

    Anderson, J.D.; McCann, D.C.; Poremba, B.E.

    1991-04-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy-Richland Operations Office under contract AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1990. This report does not include solid radioactive wastes in storage or disposal in other areas or facilities such as the underground tank farms. Unless packaged within the scope of Hanford Site radioactive solid waste acceptance criteria, liquid waste data are not included in this document. 10 refs., 1 tab

  5. Management of radioactive waste in FR Yugoslavia

    International Nuclear Information System (INIS)

    Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as a result of the two research reactors operation and as a result of the radionuclides application in the medicine, industry and agriculture, radioactive waste materials of different levels of specific activity was generated. As a temporary solution, these radioactive waste materials are stored in the two interim storage facilities. Since the one of the storages is completely filled with the radioactive waste materials that are packed in the metal drums and plastic barrels, and the second one has a effective space for radioactive waste materials storing for the approximately next few years, attempts are made in the 'Vinca' institute of nuclear sciences in developing the immobilization process for the low and intermediate level radioactive waste materials and their safe disposal into the appropriate disposal system, that was adopted for such materials. Research work on optimization of the chosen techniques in treatment, conditioning, immobilization and storing the radioactive waste materials is in progress. Investigations are carrying out on materials that are adopted as components of the engineer trench system, in aim to improve their physical-chemical properties, mainly retention the radionuclides release from the disposal facility to environment, as well as their mechanical characteristics. Parallel with the optimization of the composition of the materials that will create the engineer trench system, optimization of the processes and matrix-radioactive waste mixture forms is in progress, and we hope that this work will influence the design of the future Yugoslav storage center, shallow land burial type, for low and intermediate level radioactive waste materials

  6. Directions in low-level radioactive-waste management. Incentives and compensation: providing resources for communities hosting low-level waste facilities

    International Nuclear Information System (INIS)

    1982-10-01

    State responsibility for the management of low-level radioactive waste necessitates the selection of candidate locations for a disposal facility. Concern over potential impacts can be expected from segments of the citizenry neighboring a proposed site. A number of national organizations comprising state and local officials have recommended the use of incentives and compensation to help offset the negative local impacts. This document explores that concept. Discussion provides background information on potential local impacts from a low-level waste facility and considers the nature and types of incentives and compensation benefits that could be provided. The document then examines realistic options for planning and implementing the benefit program. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for and managing low-level waste disposal facilities

  7. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  8. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  9. Current status of radioactive waste management (RWM) in Thailand

    International Nuclear Information System (INIS)

    Chantaraprachoom, N.

    2003-01-01

    Radioactive wastes in Thailand are mainly from the nuclear application in medicine, industry, agriculture, education and research reactor operation. The quantities of radioactive waste each year are relatively small. About 90 m 3 of processed waste and 7 m 3 unprocessed wastes are now stored at the waste storage facilities in the OAP. Recently the regulation on radioactive waste management was drafted and proposed to the cabinet for approval and to be promulgated as a ministerial regulation. A new nuclear research center, r which comprises 10 MW Research Reactor, Radioisotope Production and Centralized Waste Processing and Storage Facilities, is to be established at Ongkarak district in Nakornnayok province in the future. (author)

  10. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  11. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    International Nuclear Information System (INIS)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K.; Choi, Y. K.; Cho, J. H.

    2014-01-01

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas

  12. Treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Machida, Chuji

    1976-01-01

    Japan Atomic Energy Research Institute (JAERI) is equipped with such atomic energy facilities as a power test reactor, four research reactors, a hot laboratory, and radioisotope-producing factory. All the radioactive wastes but gas generated from these facilities are treated by the waste treatment facilities established in JAERI. The wastes carried into JAERI through Japan Radioisotope Association are also treated there. Low level water solution is treated with an evaporating apparatus, an ion-exchange apparatus, and a cohesive precipitating apparatus, while medium level solution is treated with an evaporating apparatus, and low level combustible solid is treated with an incinerating apparatus. These treated wastes and sludges are mixed with Portland cement in drum cans to solidify, and stored in a concrete pit. The correct classification and its indication as well as the proper packing for the wastes are earnestly demanded by the treatment facilities. (Kobatake, H.)

  13. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West

    International Nuclear Information System (INIS)

    Christensen, B. D.

    1999-01-01

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization

  14. Disposal of radioactive waste in land burial facilities at Studsvik

    International Nuclear Information System (INIS)

    Ericsson, G.; Haegg, C.; Bergman, C.

    1987-01-01

    The report presents the formal background for the handling of the Studsvik application for permission to build a plant for deposition of radioactive waste in land burial facilities. The SSI (National Swedish Institute of Radiation Protection) basis for assessment is reported and relevant factors are presented. The radiation doses calculated by the SSI do not exceed a few microsievert per annum in spite of very pessimistic assumptions. The report constitutes assessment material for the standpoint to be taken by the board of SSI. (L.F.)

  15. Investigation on design of repository for radioactive waste

    International Nuclear Information System (INIS)

    Zhang Boming; Zhang Ruixue; Wang Fengying

    2010-01-01

    The scheme design of the repository for radioactive waste is introduced according to the traits of radioactive waste in Jiangsu province, such as the style of the repository, lifting facilities, the step for preventing or controlling flood, the aseismatic measure, the pollution prevention and so on. This ensured the radioactive waste and the waste radioactive sources to be stored in security, the area environment not to be polluted. It can improve the use of nuclear technology in Jiangsu province. (authors)

  16. Summary of radioactive solid waste received in the 200 Areas during calendar year 1995

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1996-01-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1995. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document. This annual report provides a summary of the radioactive solid waste received in the both the 200-East and 200-West Areas during the calendar year 1995

  17. Summary of radioactive solid waste received in the 200 Areas during calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1996-06-06

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1995. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document. This annual report provides a summary of the radioactive solid waste received in the both the 200-East and 200-West Areas during the calendar year 1995.

  18. Summary of radioactive solid waste received in the 200 Areas during calendar year 1992

    International Nuclear Information System (INIS)

    Anderson, J.D.; Hagel, D.L.

    1992-05-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document

  19. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    International Nuclear Information System (INIS)

    Anderson, J.D.; Hagel, D.L.

    1995-08-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document

  20. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.D.; Hagel, D.L.

    1995-08-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

  1. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  2. Subsides for optimization of transfer of radioactive liquid waste from {sup 99}MO production plant to the waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Rego, Maria Eugenia de Melo; Vicente, Roberto; Hiromoto, Goro, E-mail: maria.eugenia@ipen.br, E-mail: rvicente@ipen.br, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The increasing need for radioisotopes lead Brazil to consider the domestic production of {sup 99}Mo from fission of low enriched uranium targets. In order to meet the present demand of {sup 99m}Tc generators the planned 'end of irradiation' activity of {sup 99}Mo is about 170 TBq per week. The radioactive waste from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the waste were predicted based on the fission yield and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production process and schedule, already established by the project management. The transfer of the waste from the production plant to the treatment facility will be done by means of special shielded packages. In the present study, the commercially available code Scale 6.0 was used to simulate the irradiation of the targets and the decay of radioactive products, assuming that an alkaline dissolution process would be performed on the targets before the removal and purification of {sup 99}Mo. The assessment of the shielding required for the packages containing liquid waste was done using MicroShield 9 code. The results presented here are part of a project that aims at contributing to the design of the waste management system for the {sup 99}Mo production facility. (author)

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  4. Performance assessment handbook for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

    1992-02-01

    Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes

  5. Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ragaisis, Valdas; Poskas, Povilas; Simonis, Vytautas; Adomaitis, Jonas Erdvilas [Lithuanian Energy Institute, Kaunas (Lithuania). Nuclear Engineering Lab.

    2011-11-15

    New solid radioactive waste management and interim storage facilities will be constructed for the Ignalina Nuclear Power Plant to support ongoing decommissioning activities, including removal and treatment of operational waste from the existing storage buildings. The paper presents approach and methods that have been used to assess radiological impacts to the general public potentially arising under normal operation and accident conditions and to demonstrate compliance with regulations in force. The assessment of impacts from normal operation includes evaluation of exposure arising from release of airborne radioactive material and from facilities and packages containing radioactive material. In addition, radiological impacts from other nearby operating and planned nuclear facilities are taken into consideration. The assessment of impacts under accident conditions includes evaluation of exposure arising from the selected design and beyond design basis accidents. (orig.)

  6. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pescatore, C.

    2010-01-01

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  7. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  8. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  9. A study on radiation shield design of storage facility for low and intermediate level radioactive waste in Bangladesh

    International Nuclear Information System (INIS)

    Khan, JJahirul Haque

    2005-02-01

    Bangladesh has no nuclear power reactor but has only one 3 MW TRIGA Mark-II Research Reactor. The Bangladesh Atomic Energy commission (BAEC) operates a 3 MW TRIGA Mark-II Research Reactor and maintains not only the nuclear facilities at its Atomic Energy Research Establishment (AERE) at Savar (near Dhaka) but also the related radiation facilities the whole country. The main sources of radioactive wastes result from the use of sealed and unsealed radiation sources in medicine industry, research, agriculture, etc as well as from operation and maintenance of the nuclear facilities the whole country. As a result radioactive wastes are increasing day by day and these wastes are classified as low and intermediate level radioactive waste (LILW) following the radiation safety philosophy of IAEA recommendations in Bangladesh. Radioactive waste is very sensitive issue to public and environment from the hazardous standpoint of ionizing radiation. Therefore, storage facility of LILW is very essential for safe radioactive waste management in Bangladesh and in parallel: this study is of a great importance due to new installation of this storage facility in future. The basic objective of this study is to recommend the radiation shield design parameters of the installation of storage facility for low and intermediate level radioactive waste from the points of view of radiation safety and sensitivity analysis. The shield design of this installation has been carried out with the Monte Carlo Code MCNP4C and the point Kernel Code Micro Shield 5.05 respectively considering the ICRP-60 (1990) recommendations for occupational exposure limit (10 μ Sv/hr). For more safety purpose every equivalent dose rate at different positions of this installation is considered below 9 μ Sv/hr in this study. The radiation shield design parameters are recommended based on MCNP4C calculated results than those of Micro Shield due to more credible results and these parameters are: (I) 51 cm thickness of

  10. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  11. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  12. Disposal of low and intermediate level solid radioactive waste

    International Nuclear Information System (INIS)

    Kanwar Raj

    1998-01-01

    Radioactive waste disposal facility is a very important link in the nuclear fuel cycle chain. Being at the end of the back-end of the fuel cycle, it forms an interface between nuclear industry and the environment. Therefore, the effectiveness of the disposal facility for safe isolation of radioactive waste is vital. This is achieved by following a systematic approach to the disposal system as a whole. Conditioned waste, engineered barriers, back-fill and surrounding geosphere are main components of the disposal system. All of them play complementary role in isolating the radioactivity contained in the waste for extended period of time

  13. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  14. Status of the Japan's regulatory policy on radioactive waste management. Cleanup and recycling issues

    International Nuclear Information System (INIS)

    Takeuchi, Daiji

    1995-01-01

    Wastes from nuclear facilities are very diversified concerning that have different levels of radioactivity and include different kinds of radioactive materials. Besides some of those waste is not assumed as radioactive waste. The basic policy of the radioactive waste management is taking that diversity into full account for appropriate separate management of different types of radioactive waste and treatment and disposal of each type in a rational manner, including recycling. From the point, the disposal methods are considered or under consideration to that waste, (1) from nuclear reactor facility, (2) from nuclear fuel cycle facility--HLW, waste contaminated TRU nuclides, or contaminated uranium, (3) from RI utilization or research institute, and (4) from decommissioning of nuclear facility. Now in Japan, regulation framework for some kind of LLW from reactor facility, including waste from decommissioning of reactor is established. (J.P.N.)

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  16. Quality assurance guidance for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.; Hedges, D.

    1991-04-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements of 10 CFR 61.12(j) for a low-level radioactive waste (LLRW) disposal facility. The QC requirements, plus audits and managerial controls requirements, establish the need for developing a quality assurance (QA) program and the guidance provided herein. The criteria developed for this document are similar to the criteria developed for Appendix B to Title 10 of the Code of Federal Regulations (10 CFR) Part 50. Although Appendix B is not a regulatory requirement for an LLRW disposal facility, the criteria that were developed for 10 CFR Part 50 are basic to any QA program. This document establishes QA guidance for the design, construction, and operation of those structures, engineered or natural systems, and components whose function is required to meet the performance objectives of Subpart C of 10 CFR Part 61 and to limit exposure to or release of radioactivity. 7 refs

  17. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  18. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  19. Requirements for a radioactive waste data base

    International Nuclear Information System (INIS)

    Sato, Y.; Kobayashi, I.; Kikuchi, M.

    1990-01-01

    With the progress of nuclear fuel cycle in Japan, various types of radioactive waste will generate at each nuclear facility in the cycle. Therefor generated volume and stored quantity of waste will be supposed to increase. From the viewpoints of safety and public acceptance, by using mainframe computer it is necessary that the treatment of historical waste data, the estimation of generated waste volume and stored quantity and the investigation of research and development status of waste processing and disposal are carried out. This paper proposes design and development of the radioactive waste data base which is able to properly and correctly manage and grasp numerical and/or documentary information for generated radioactive waste. So the data base will be expected to use for planning the future management of radioactive waste. (author)

  20. The licensing procedure for an intermediate storage facility for radioactive waste in Hanau

    International Nuclear Information System (INIS)

    Funke, P.; Graebener, K.H.

    2001-01-01

    Since the beginnings of nuclear energy utilisation in Germany, Hanau has been well-known worldwide as the centre for processing nuclear fuels. Names like Nukem, Alkem, RBU and Siemens are synonymous with the production of fuel elements made of highly enriched uranium for material test reactors, low-enriched uranium and uranium-plutonium mixtures (MOX) for prototype reactors and power reactors. Since the Transnuklear controversy in the late eighties, and particularly during the time of the Socialist-Green coalition in Hesse, the firms in Hanau have increasingly downscaled their activities, and finally closed down their fuel element facilities. Decommissioning of the facilities has been approved under paragraph 7 Para. 3 of the German atomic energy act (AtG). Decommissioning at the Uranium Processing Division of Siemens AG, the former RBU, is already well advanced, while Siemens' MOX Processing Division, the former Alkem, is currently being emptied of remaining nuclear fuels; at Nukem, the first buildings have been demolished. The radioactive waste encountered during decommissioning contains enriched uranium and plutonium, and thus constitutes a special category of radioactive waste. (orig.)

  1. Application of FEPs analysis to identify research priorities relevant to the safety case for an Australian radioactive waste facility

    International Nuclear Information System (INIS)

    Payne, T.E.; McGlinn, P.J.

    2007-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has established a project to undertake research relevant to the safety case for the proposed Australian radioactive waste facility. This facility will comprise a store for intermediate level radioactive waste, and either a store or a near-surface repository for low-level waste. In order to identify the research priorities for this project, a structured analysis of the features, events and processes (FEPs) relevant to the performance of the facility was undertaken. This analysis was based on the list of 137 FEPs developed by the IAEA project on 'Safety Assessment Methodologies for Near Surface Disposal Facilities' (ISAM). A number of key research issues were identified, and some factors which differ in significance for the store, compared to the repository concept, were highlighted. For example, FEPs related to long-term groundwater transport of radionuclides are considered to be of less significance for a store than a repository. On the other hand, structural damage from severe weather, accident or human interference is more likely for a store. The FEPs analysis has enabled the scientific research skills required for the inter-disciplinary project team to be specified. The outcomes of the research will eventually be utilised in developing the design, and assessing the performance, of the future facility. It is anticipated that a more detailed application of the FEPs methodology will be undertaken to develop the safety case for the proposed radioactive waste management facility. (authors)

  2. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  3. ANSTO`s radioactive waste management policy. Preliminary environmental review

    Energy Technology Data Exchange (ETDEWEB)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs.

  4. Latest developments in the predisposal of radioactive waste at the radioactive waste management department from ifin-hh

    International Nuclear Information System (INIS)

    Dragolici, F.; Dogaru, G.; Neacsu, E.

    2016-01-01

    The Radioactive Waste Management Department (DMDR) from IFIN-HH has a wide experience in the management of the non-fuel cycle radioactive wastes from all over Romania generated from nuclear techniques and technologies application, assuring the radiological safety and security of operators, population and environment. During 2011-2015 was implemented a major upgrading programme applied both on the technological systems of the building and on equipment. The paper describes the facility developments having the scope to share to the public and stakeholders the radioactive waste predisposal capabilities available at DMDR-IFIN-HH. As a whole, today DMDR-IFIN-HH represents a complete and complex infrastructure, assuring high quality services in all the steps related to the management of the institutional radioactive waste in Romania. (authors)

  5. Retrieval of fluidizable radioactive wastes from storage facilities

    International Nuclear Information System (INIS)

    2006-08-01

    This report provides guidance for strategic planning and implementation of resuspension and retrieval of stored fluid or fluidizable radioactive wastes. The potential risks associated with preparation and realization of these processes are included in the report, and lessons learned from previous applications are highlighted. Technological procedures and equipment used in various countries for resuspension and remobilization of stored fluidizable radioactive wastes are described in the attached annexes as potential options. Waste retrieval is a maturing technology of major importance now that Member States are moving forward in the responsible management of wastes by removal to safe interim storage or disposal. Retrieval of fluidizable wastes is a four-phase operation: (1) access to the waste, (2) mobilize the waste, (3) remove the waste; and (4) transfer the waste.This report divides successful retrieval of radioactive waste into two areas. The first area applies the concept of the waste retrieval as being the final component of a systematic process of old waste management. It also encompasses characterization as it applies to waste retrieval and downstream processes, including acceptance of wastes for treatment, conditioning, storage or disposal. It should be in conformity with national policy, as well as complying with international safety standards and environmental agreements. The second area of the report focuses on implementation of waste retrieval in a wide range of scenarios and using a wide range of retrieval approaches, equipment and technologies. Technical processes are further explained as part of the experience gained in advanced countries on the subject. A set of detailed retrieval technology descriptions by country is included as Annexes to this report. Thirteen experts from seven Member States that previously implemented, or have planned for the near future, significant resuspension and remobilization operations were involved in the preparation of

  6. Summary of radioactive solid waste received in the 200 areas during calendar year 1997

    International Nuclear Information System (INIS)

    Hagel, D.L.

    1998-01-01

    Waste Management Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1997. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Cafeteria, liquid waste data are not included in this document

  7. Summary of radioactive solid waste received in the 200 areas during calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hagel, D.L.

    1998-06-25

    Waste Management Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1997. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Cafeteria, liquid waste data are not included in this document.

  8. The Spanish general radioactive waste plan

    International Nuclear Information System (INIS)

    Redondo, J.M.

    2007-01-01

    The author summarized the current status of Spain's general radioactive waste management plan. This plan forms the basis for a national radioactive waste management policy and decommissioning strategy. It is updated periodically, the current 5. plan was approved in 1999. The most important element of the current strategy is the development of a centralized interim HLW storage facility by 2010. (A.L.B.)

  9. 77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues

    Science.gov (United States)

    2012-07-11

    ...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... regulatory time of compliance for a low-level radioactive waste disposal facility, allowing licensees the... system, and revising the NRC's licensing requirements for land disposal of radioactive waste. DATES: The...

  10. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy's (DOE's) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act

  11. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  12. Management of radioactive wastes from non-power applications. The Cuban experience

    International Nuclear Information System (INIS)

    Benitez, J.C.; Salgado, M.; Jova, L.

    2001-01-01

    Full text: Origin of Radioactive Wastes. The wastes arisen from the applications of radioisotopes in medicine are mainly liquids and solid materials contaminated with short lived radionuclides and sealed sources used in radiotherapy and for sterilization of medical materials. Radioactive wastes from industrial applications are generally disused sealed sources used in level detection, quality control, smoke detection and non-destructive testing. The principal forms of wastes generated by research institutes are miscellaneous liquids, trash, biological wastes, and scintillation vials, sealed sources and targets. Solid radioactive wastes are mainly produced during research works, cleaning and decontamination activities and they consist of rags, paper, cellulose, plastics, gloves, clothing, overshoes, etc. Laboratory materials such as cans, polyethylene bags and glass bottles also contribute to the solid waste inventory. Small quantities of non-compactable wastes are also collected and received for treatment. They include wood pieces, metal scrap, defective components and tools. Radioactive Waste Management Policy and Infrastructure. Since 1994 the Cuban integral policy of nuclear development is entrusted to the Nuclear Energy Agency of the Ministry of Science, Technology and Environment (CITMA). The National Center for Nuclear Safety (CNSN) is responsible for the licensing and supervision of radioactive and nuclear installations. The CPHR is in charge of waste management policy and therefore is responsible for centralized collection, transportation, treatment, conditioning, long term storage, and disposal of radioactive waste, as well as for developing new waste conditioning and containment methods. Radioactive Waste Management Facilities. Waste Treatment and Conditioning Plant (WTCP). The present facility is a building that includes a technological area of 100 m 2 and a laboratory area with a surface of around 30 m 2 . Other areas to be distinguished inside the

  13. Implementation of a management applied program for solid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the Post-irradiated Fuel Examination Facility, the Irradiated Material Examination Facility, the Research Reactor, and the laboratories at KAERI. A data collection of a solid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material balance and inventory study.

  14. Success in siting low-level radioactive waste management facilities

    International Nuclear Information System (INIS)

    Brown, P.; McCauley, D.

    2001-01-01

    Full text: The Government of Canada is about to conclude a legal agreement with three municipalities that will result in a $260-million 10-year multi-phase project to cleanup low-level radioactive wastes and contaminated soils and establish long-term low-level radioactive waste management facilities. Over the last two decades, numerous efforts were undertaken to resolve this long-standing environmental issue. Finally, the communities where the wastes are located came forward with resolutions that they were willing to develop local solutions to the problem. All three municipalities, facilitated by Government funding and assistance, put forward their own local solution to their own waste problem. Government accepted the municipalities' proposals as the basis of a comprehensive approach for dealing with the local problem. Negotiations ensued on Principles of Understanding under which the cleanup would proceed and new long-term waste management facilities would be established. Government's acceptance of the negotiated Principles led to the preparation of a legal agreement that was subsequently signed by each of the municipalities and is now about to be ratified by the Government of Canada. Resolution of the issue will be a major milestone in the Government's environmental agenda. The project will result in an environmentally-responsible, safe, and publicly-accepted approach to the long-term management of the wastes and remove one of the largest contaminated sites issues from the Government's agenda. It also advances the Government's nuclear waste policy and indicates to waste producers that the Government is developing and implementing solutions for wastes for which it is responsible. A key lesson for the Government of Canada in this process has been the advantages of a locally-generated solution. Through the process, the Government empowered the local municipalities to develop their own solution to the local waste problem. It facilitated and supported that effort

  15. Environmental safety of the disposal system for radioactive substance-contaminated wastes

    International Nuclear Information System (INIS)

    Oosako, Masahiro

    2012-01-01

    In accordance with the full-scale enforcement of 'The Act on Special Measures concerning the Handling of Radioactive Pollution' in 2012, the collective efforts of entire Japan for dealing with radioactive pollutants began. The most important item for dealing with radioactive pollution is to control radioactive substances that polluted the global environment and establish a contaminated waste treatment system for risk reduction. On the incineration system and landfill disposal system of radioactive waste, this paper arranges the scientific information up to now, and discusses the safety of the treatment / disposal systems of contaminated waste. As for 'The Act on Special Measures concerning the Handling of Radioactive Pollution,' this paper discusses the points of the Act and basic policy, roadmap for the installation of interim storage facilities, and enforcement regulations (Ordinance of the Ministry of the Environment). About the safety of waste treatment system, it discusses the safety level of technical standards at waste treatment facilities, safety of incineration facilities, and safety of landfill disposal sites. (O.A.)

  16. Management of radioactive materials and wastes: status, stakes and perspectives

    International Nuclear Information System (INIS)

    Champion, Didier; Devin, Patrick; Tanguy, Loic; Bernard, Herve; Minon, Jean-Paul; Leclaire, Arnaud; Gilli, Ludivine; Lheureux, Yves; Pescatore, Claudio; Barbey, Pierre; Schneider, Thierry; Gay, Didier; Forest, Isabelle; Hemidy, Pierre-Yves; Baglan, Nicolas; Desnoyers, Bruno; Pieraccini, Michel; Poncet, Philippe; Seguin, Bertille; Calvez, Marianne; Leclerc, Elisabeth; Bancelin, Estelle; Fillion, Eric; Segura, Yannick; Vernaz, Etienne; Granier, Guy; De Preter, Peter; Petitfrere, Michael; Laye, Frederic; Nakamura, Takashi; Gin, Stephane; Lebaron-Jacobs, Laurence; Dinant, Sophie; Vacquier, Blandine; Crochon, Philippe; Griffault, Lise; Smith, Graham

    2013-10-01

    studies - Safety and continuous improvements (Estelle BANCELIN - EDF, Eric FILLION - CEA); - Comparative analysis between a very-low level waste storage facility and a conventional waste storage facility (Yannick SEGURA - ANDRA); - Research on nuclear wastes (Etienne VERNAZ - CEA); - Wastes characterization and intercomparison exercise (Guy GRANIER - CETAMA); - Belgium situation with respect to the long-term management of radioactive wastes (Peter DE PRETER - ONDRAF); - Wastes management in post-accident situation - the CODIRPA works (Frederic LAYE - ASN); - Wastes management in contaminated areas: Japanese situation and experience feedback 2 years after the Fukushima accident (Takashi NAKAMURA - JANUS); Radioactive waste management in the USA (Stephane GIN - CEA) - Monitoring and environmental impact of radioactive waste storage sites (Sophie DINANT - ANDRA); - Lessons learnt from a mortality and cancer impact study in the vicinity of the Aube storage facility (Blandine VACQUIER - InVS); - Evaluation of dosimetric impacts of uranium mine tailings using modeling and comparison with environmental monitoring results (Philippe CROCHON - AREVA); - Cigeo's long-term impact - methodology and presentation of the biosphere approach (Lise GRIFFAULT - ANDRA); - Evaluation of long-term impacts of radioactive waste storage facilities - Lessons learnt and perspectives of the BIOPROTA program (Graham SMITH - GMS Abingdon Ltd)

  17. Radioactive waste management in Brazil: a realistic view

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador; Xavier, Ana Maria

    2014-01-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  18. Radioactive waste management in Brazil: a realistic view

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador, E-mail: paulo@cnen.gov.br, E-mail: jperez@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana Maria, E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil)

    2014-07-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  19. Decontamination and disposal of radioactive wastes from nuclear facilities

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1978-01-01

    A survey and characteristics are given of the main sources of wastes from the operation of nuclear installations. The amounts are compared of liquid and gaseous wastes from PWR and BWR reactors. The main trends of radioactive waste processing in the world are described. In Czechoslovakia, two methods of waste fixation have been developed: vacuum cementation and bituminization. The demands are summed up on radioactive waste storage sites and it is stated that there are a number of suitable localities, namely abolished granite quarries with a very deep ground water level and a low-permeable overburden and exhausted quarries of kaolinitic clays, which meet all criteria and secure the safe disposal of wastes from Czechoslovak nuclear power plants up to the year 2020. (Z.M.)

  20. Low-level radioactive wastes. AMA Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them

  1. Radioactive waste management policy in the UK of best practicable environmental options for waste disposal and storage

    International Nuclear Information System (INIS)

    Johnson, P.D.; Feates, F.S.

    1986-01-01

    The organisations which produce radioactive waste carry the direct responsibility for safe and effective management of the wastes and for meeting the costs. UK Nirex Ltd., the Nuclear Industry Radioactive Waste Executive, has been set up to develop and operate new disposal facilities. Individual producers of radioactive waste undertake research related to the treatment of their own wastes, and UK Nirex Ltd. commissions research related to the disposal facilities it wishes to develop. Whatever new disposal facilities are developed and used, UK Nirex Ltd. will have to show that any proposed facilities comply with the principles for assessment of proposals for the protection of the human environment issued by the Government Authorising Departments in 1984, and which incorporate basic radiological safety requirements

  2. Treatment and disposal of radioactive wastes from nuclear power plants. Research programs

    International Nuclear Information System (INIS)

    1992-09-01

    The report presents programs for research, development and demonstration concerning radioactive waste disposal in underground facilities. The main topics are: Radioactive waste management, radioactive waste storage, capsules, environmental impacts, risk assessment, radionuclide migration, radioactive waste disposal, decommissioning, cost, and international cooperation. (129 refs.)

  3. Environmental impact assessment for a radioactive waste facility: A case study

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1990-01-01

    A 77-ha site, known as the Niagara Falls Storage Site and located in northwestern New York State, holds about 190, 000 m 3 of soils, wastes, and residues contaminated with radium and uranium. The facility is owned by the US Department of Energy. The storage of residues resulting from the processing of uranium ores started in 1944, and by 1950 residues from a number of plants were received at the site. The residues, with a volume of about 18,000 m 3 , account for the bulk of the radioactivity, which is primarily due to Ra-226; because of the extraction of uranium from the ore, the amount of uranium remaining in the residues is quite small. An analysis of the environmental impact assessment and environmental compliance actions taken to date at this site and their effectiveness are discussed. This case study provides an illustrative example of the complexity of technical and nontechnical issues for a large radiative waste facility. 11 refs., 7 figs., 2 tabs

  4. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  5. Summary of radioactive solid waste received in the 200 areas during calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-05-21

    Rust Federal Services of Hanford Inc. manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office under contract DE-AC06-87RL10930. These facilities include storage areas and disposal sites for radioactive solid waste. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1996. This report does not include backlog waste, solid radioactive wastes in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, liquid waste data are not included in this document.

  6. New Low-Level Radioactive Waste Storage/Disposal Facilities at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities, and alternative operations are described for a new low-level solid radioactive waste storage/disposal operation at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented. Appendix G contains an intensive archaeological survey of alternative waste disposal areas in the Savannah River Plant area. 117 refs., 99 figs., 128 tabs

  7. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  8. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  9. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  10. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  11. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  12. Non-fuel cycle radioactive waste policy in Turkey

    International Nuclear Information System (INIS)

    Izmir, A.I.; Uslu, I.

    2001-01-01

    2000. By categorizing the disposal of 'solid', 'liquid' and 'gaseous' waste, an efficient management system is achieved. Solid radioactive waste consists mainly of protective clothing, plastic sheets and bags, gloves, masks, organs and tissues, animal carcasses, filters, overshoes, paper wipes, towels, metal and glass, hand tools, discarded radiopharmaceuticals containers and discarded equipment. It generally contains a relatively low level of radioactivity when compared to liquid wastes. Special consideration should always be given to the management of contaminated sharp objects, such as needles and syringes, scalpel blades, blood lancets, glass ampoules, etc. Short-lived solid radioactive wastes are stored in the waste storage rooms of the facilities until their activities reduce to an acceptable level to be released to the municipal waste disposal area. The liquid waste can be discharged to sewage system when its activity concentration come down to permissible discharge level which is based on IAEA S S-70. The liquid waste from iodine therapy patients is mostly collected and stored in storage tanks. If the treated patient number is low the waste should be collected separately in shielded drums and stored in waste storage rooms of the facilities until its activity concentration level decreases to an acceptable level. b) Management of Sealed Sources. Sealed radiation sources are widely used in industry, medicine and research in Turkey. Sealed sources have a life cycle, which begins with manufacture and culminates in disposal. Each source life cycle comprises a number of potential stages. A source life cycle can involve individuals in the following key organisations: regulator, manufacturer, Original Equipment Manufacturer, distributor, user (one or subsequent users), waste management organisation, and operator of storage or disposal facility. The large number of organisations potentially involved and their interactions mean that life cycles tend to be complex and can

  13. Radioactive waste management at nuclear power plant Cernavoda

    International Nuclear Information System (INIS)

    Raducea, D.

    2002-01-01

    Many human activities generate waste, but people are worried about wastes produced in nuclear power plants (NPPs). Their concern is an unjustified fear toward the hazards from radioactive waste, probably because in any country generating electric power by NPPs a lot of attention is paid to relevant parties involved in radioactive waste management. Significant attention is also given to the management of radioactive waste at the Cemavoda NPP. The general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment, is conceptually established. The overall programme provides the necessary facilities to adequately manage solid radioactive waste from Cemavoda NPP Unit 1 and will be capable of expansion when other units are brought into service. (author)

  14. Results of questionaire survey for the measurement of radioactivity in waste water

    International Nuclear Information System (INIS)

    1992-01-01

    A questionaire for radioactivity in waste water was sent to 388 facilities, including 158 medical facilities, and all (100%) answered. Information requested included: (1) kinds and annual usage of unsealed RI, (2) measuring method of radioactivity in waste water, (3) kinds of measuring instruments and the detection limits, (4) prior treatment of measurement materials, (5) level of radioactive waste exhausted during 3 months, (6) personnel and time per month required for radioactivity measurement, (7) problems and comments in waste water management, and (8) kinds of facilities. A total of 36 unsealed RI were used. The most commonly used RI was I-125 (n=240), followed by H-3 (n=189) and P-32 (n=179). Annual level of RI was 4 GBq or less in 90% of the facilities. The most common method for measuring radioactivity was sampling method (n=241). The most common instrument for measuring radioactivity was a gamma counter for I-125 (45% of the facilities), and a liquid scintillation counter for P-32 (80%) and for C-14 and H-3 (90%). The detection limits for I-125 exceeded the radioactivity limits in 24% of the facilities. The amount of sampler was 5 cc or less in 80% of the facilities. Prio treatment was not carried out in 62.7%. Prior treatment methods reported were enrichment, evaporation, pH adjustment, and sedimentation. Half of the facilities exhausted 10 cm 3 or less of waste water during 3 months. The number of persons engaging in radioactivity measurement per month was reported to be one in 282 facilities (87%). (N.K.)

  15. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    Directory of Open Access Journals (Sweden)

    Schulz F.M.

    2013-07-01

    Full Text Available The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  16. Opting for cooperation: A case study in siting a low level radioactive waste management facility

    International Nuclear Information System (INIS)

    Armour, A.

    1991-01-01

    In 1976, the Canadian federal government called a halt to efforts by a crown corporation to site a low-level radioactive waste management facility when it became apparent that continuation of the siting process would likely result in significant social disruption and political conflict. It established an independent six-person Task Force to advise it on how to proceed. Twelve months later, the Task Force put forward a radically different siting process based on the voluntary participation of communities and collaborative, joint problem-solving and decision making. Cabinet endorsed the approach and in September 1988 authorized the Task Force to begin implementing the recommended process. The first three phases of the process have been implemented and so far it appears to be achieving its desired objective -- to encourage less confrontation and more cooperation in the siting of the low-level radioactive waste management facility

  17. Decision Assessment of Clearance Level on Radioactive Waste Management

    International Nuclear Information System (INIS)

    Zainus Salimin; Gunandjar

    2007-01-01

    Radioactive waste on the safe level activity containing very small radioactive material gives small radiology influence to the human, it is not necessary to control by regulatory body. The radioactive waste on the safe level activity is safe to release as the common waste. For exemption of the control, it is required the safe activity level limits in which the value of clearance level is fulfilled by regulatory body, however until now it is not decided yet. The exemption decision is obtained if its activity is lower than or same with clearance level based on the annual effective dose receiving by public on the value is lower than or same with 0,01 mSv. The exposure pathways of radioactive waste to the human have important role for determination of clearance level. The decision assessment of clearance level on the radioactive waste management has been done by analysis of radioactive exposure pathways to the human for activities of the disposal and the recycle of solid wastes, also the release of liquid and gas effluent. For solid waste disposal, the exposure pathway was evaluated since the transportation of packed waste from the treatment facility to the disposal facility and during its operation. Exposure pathways for solid waste recycle consist of the pathways for handling and transportation of cleared material to the recycling facility, the fabrication and the utilization of its product. Exposure pathways for liquid and gas releases occur since its releases to the environment up to the human (public) by specific traffic lane. (author)

  18. Method and equipment of processing radioactive laundry wastes

    International Nuclear Information System (INIS)

    Shirai, Takamori; Suzuki, Takeo; Tabata, Masayuki; Takada, Takao; Yamaguchi, Shin-ichi; Noda, Tetsuya.

    1985-01-01

    Purpose: To effectively process radioactive laundry wastes generated due to water-washing after dry-cleaning of protective clothings which have been put on in nuclear facilities. Method: Dry cleaning soaps and ionic radioactive materials contained in radioactive laundry wastes are selectively adsorbed to decontaminate by adsorbents. Then, the adsorbents having adsorbed dry cleaning soaps and ionic radioactive materials are purified by being removed with these radioactive materials. The purified adsorbents are re-used. (Seki, T.)

  19. Operation of Temporary Radioactive waste stoprage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kinseem, A A; Abulfaraj, W H; Sohsah, M A; Kamal, S M; Mamoon, A M [Nuclear Engineering Department, Faculty of Engineering, King Abdelazizi University jeddah-21413, Saudi Arabia (Saudi Arabia)

    1997-12-31

    Radionuclides of various half lives have been in use for several years years at different Departments of king Abdulaziz university, the university hospital, and research center. The use of unsealed radionuclides in many laboratories, resulted in considerable amounts of solid and liquid radwaste, mainly radiopharmaceuticals. To avoid accumulation of radwastes in working areas, a temporary radioactive waste storage facility was built. Segregation of radwastes according to type was carried out, followed by collection into appropriate containers and transfer to the storage facility. Average radiation dose rate inside the store was maintained at about 75 {mu} h{sup -1} through use of appropriate shielding. The dose rates at points one meter outside the store walls were maintained at about 15-20 {mu}Sv h{sup -1}. Utilization of radioisotopes during the period of 1991-1995 resulted in a volume of about 1.8 m{sup 3} of solid radwaste and about 200 L of liquid radwaste. Records of the store inventory are maintained in a computer database, listing dates, types, activities and packaging data pertinent to the radwastes delivered to the store. Quality assurance procedures are implemented during the different stages of the radwaste collection, transportation, and storage. Construction and operation of the storage facility comply with radiation safety requirements for the workers handling the radwastes, the public and the environment. The capacity of the storage facility is such that it will accommodate storage of generated radwastes of long half life up to year 2016. Permanent disposal of such radwastes may be indicated afterwards. 2 figs., 3 tabs.

  20. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  1. Environmental justice: Implications for siting of Federal Radioactive Waste Management Facilities

    International Nuclear Information System (INIS)

    Easterling, J.B.; Poles, J.S.

    1994-01-01

    Environmental justice is a term that has developed as a result of our need to address whether some of the environmental decisions we have made -- and others we will make -- are fair. The idea of environmental justice has been actively pursued by the Clinton Administration, and this consideration has resulted in Executive Order 12898, which was signed by President Clinton on February 11, 1994. The Executive Order calls for adverse impacts of Federal actions on minority or low-income populations to be identified before decisions implementing those actions are made. Numerous studies show that noxious facilities, such as incinerators and landfills, have been constructed in minority or low-income communities. And since the Department has not yet decided on sites for high-level waste storage or disposal facilities, it will have to take the new Executive Order into consideration as another piece in the complicated quilt of requirements that cover facility siting. An interesting twist to this is the fact that twenty Native American Indian Tribes expressed interest in voluntarily hosting a high-level radioactive waste management facility for temporary storage. They made these expressions on their own initiative, and several Tribes continue to pursue the idea of negotiations with either the Federal Government or private entities to locate a temporary storage site on Tribal land. The Executive Order goes beyond simply studying the effect of siting a facility and addresses in spirit a criticism that the Federal Government has been guilty of open-quotes environmental racismclose quotes in its siting policies -- that it has intentionally picked minority or low-income communities for waste management facilities. What Department of Energy staff and others may have considered foregone conclusions in terms of interim storage facility siting and transportation options will have to be reevaluated for compatibility with provisions of the new Executive Order

  2. On barrier performance of high compaction bentonite in facilities of disposing high level radioactive wastes in formation

    International Nuclear Information System (INIS)

    Ikeda, Hidefumi; Komada, Hiroya

    1989-01-01

    As for the method of disposing high level radioactive wastes generated in the reprocessing of spent fuel, at present formation disposal is regarded as most promising. The most important point in this formation disposal is to prevent the leak of radioactive nuclides within the disposal facilities into bedrocks and their move to the zone of human life. As the method of formation disposal, the canisters containing high level radioactive wastes are placed in the horizontal or vertical holes for disposal dug from horizontal tunnels which are several hundreds m underground, and the tunnels and disposal holes are filled again. For this filling material, the barrier performance to prevent and retard the leak of radioactive nuclides out of the disposal facilities is expected, and the characteristics of low water permeability, the adsorption of nuclides and long term stability are required. However, due to the decay heat of wastes just after the disposal, high temperature and drying condition arises, and this must be taken in consideration. The characteristics required for filling materials and the selection of the materials, the features and classification of bentonite, the properties of high compaction bentonite, and the move of water, heat and nuclides in high compaction bentonite are reported.(Kako, I.)

  3. Chapter 7. Radioactive wastes

    International Nuclear Information System (INIS)

    2000-01-01

    The inspection and assessment activities of Nuclear Regulatory Authority of the Slovak Republic (UJD) focused on minimization of activity and the quantity of produced radioactive waste (RAW), and on increasing safety of waste management. The general scheme of rad-waste management in the Slovak Republic is presented. The radioactive wastes produced during the operation of NPP V-1, NPP V-2 and NPP Mochovce in 1999 are listed.Liquid RAW was treated and conditioned into a solid form at the nuclear facility Technology for treatment and conditioning of RAW. In 1999 combustible solid waste was treated at the nuclear facility Incinerator of VUJE Trnava. Produced liquid and solid RAW are stored at designed equipment at individual nuclear installations (in case of NPP V-1, NPP V-2 Bohunice and NPP Mochovce in compliance with the Regulation No. 67/1987 Coll. law).The status of free capacity of these storages as of 31.121999 is presented. Storage solidified product built the SE-VYZ was fully filled at the end of 1999. In 1999 there was a significant improvement in the process of radioactive waste management by: (A) issuing approval for commissioning the National Repository for RAW, (B) issuing approval for commissioning the Treatment and Conditioning Center for RAW, (C) having the application for approval to transport conditioned RAW to the National repository Mochovce in the final stage of evaluation. At the beginning of 2000 it is realistic to expect that RAW conditioned in the Conditioning center of RAW will start to be disposed at the National repository of RAW in Mochovce

  4. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  5. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  6. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    International Nuclear Information System (INIS)

    Mersereau, M.; McIntyre, K.

    2006-01-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  7. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    Energy Technology Data Exchange (ETDEWEB)

    Mersereau, M.; McIntyre, K. [Point Lepreau Generating Station, Lepreau, New Brunswick (Canada)]. E-mail: MMersereau@nbpower.com; KMcIntyre@nbpower.com

    2006-07-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  8. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  9. Ontario hydro waste storage concepts and facilities

    International Nuclear Information System (INIS)

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  10. 1991 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1992-11-01

    This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan's membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the ''take-title'' provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities

  11. Meeting performance objectives for Low-Level Radioactive Disposal Waste Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Taylor, G.E.

    1992-01-01

    A new Low-Level Radioactive Waste (LLW) disposal facility at the Savannah River Site is presently being constructed. The facility was designed to meet specific performance objectives (derived from DOE Order 5820.2A and proposed EPA Regulation 40CFR 193) in the disposal of containerized Class A and B wastes. The disposal units have been designed as below-grade concrete vaults. These vaults will be constructed using uniquely designed blast furnace slag + fly as concrete mix, surrounded by a highly permeable drainage layer, and covered with an engineered clay cap to provide the necessary environmental isolation of the waste form to meet the stated performance objectives. The concrete mix used in this facility, is the first such application in the United States. These vaults become operational in September 1992 and will become the first active facility of its kind, several years ahead of those planned in the commercial theater. This paper will discuss the selection of the performance objectives and conceptual design

  12. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    International Nuclear Information System (INIS)

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities

  13. Aspects of nuclear safety in the management of the radioactive wastes

    International Nuclear Information System (INIS)

    Popescu, D.; Iliescu, E.

    1997-01-01

    The paper reviews aspects of nuclear safety which should be taken into account in the management of the radioactive wastes. The paper considers underlying criteria concerning the management, collecting, sorting transportation and treatment of radioactive wastes as well as safety engineering measures taken when designing a facility for the treatment of radioactive wastes. The paper also brings forward the removal radioactive wastes and some points on the policy of radioactive wastes management in Romania. (authors)

  14. Amount of radioactive wastes in the Federal Republic of Germany. Waste inventory for the year 1984

    International Nuclear Information System (INIS)

    Brennecke, P.; Schuhmacher, J.

    1986-03-01

    On December 31, 1984, about 53 200 waste packages were stored in intermediate storage facilities. The unconditioned radioactive wastes amounted to about 7 000 m 3 . The volume of the conditioned radioactive wastes amounted to about 25 100 m 3 . Thereof the waste from nuclear research establishments made up about 10 000 m 3 , the waste from the operation of nuclear power plants about 7 400 m 3 and the waste from spent fuel reprocessing about 5 100 m 3 . In addition the future amount of conditioned radioactive wastes with negligible heat generation was prognosticated. Due to this forecast an amount of about 238 000 m 3 of these wastes is expected in the year 2000. In 1984 a capacity of about 87 800 m 3 for the intermediate storage of radioactive wastes was available. On December 31, 1984, this capacity was utilized by unconditioned and conditioned radioactive wastes to about 37%. It may be concluded from the data on the expected amount of radioactive wastes with negligible heat generation and on the utilization factor of the intermediate storage facilities that no bottlenecks are to be assumed up to the planned operation of the Konrad repository. (orig./HP) [de

  15. JET experience on managing radioactive waste and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Stephen, E-mail: Stephen.reynolds@ccfe.ac.uk [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Newman, Mark; Coombs, Dave; Witts, David [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • We describe the current waste management structure and processes in place for managing radioactive waste generated as part of JET operations. • We detail the key lessons to be learnt for future fusion experiments and specifically ITER. • Early involvement of specialist waste management advisors and representatives are recommended. • Implementation of a complete integrated electronic waste tracking system will streamline the waste management process. - Abstract: The reduced radiotoxicity and half-life of radioactive waste arisings from nuclear fusion reactors as compared to current fission reactors is one of the key benefits of nuclear fusion. As a result of the research programme at the Joint European Torus (JET), significant experience on the management of radioactive waste has been gained which will be of benefit to ITER and the nuclear fusion community. The successful management of radioactive waste is dependent on accurate and efficient tracking and characterisation of waste streams. To accomplish this all items at JET which are removed from radiological areas are identified and pre-characterised, by recording the radiological history, before being removed from or moved between radiological areas. This system ensures a history of each item is available when it is finally consigned as radioactive waste and also allows detailed forecasting of future arisings. All radioactive waste generated as part of JET operations is transferred to dedicated, on-site, handling facilities for further sorting, sampling and final streaming for off-site disposal. Tritium extraction techniques including leaching, combustion and thermal treatment followed by liquid scintillation counting are used to determine tritium content. Recent changes to government legislation and Culham specific disposal permit conditions have allowed CCFE to adopt additional disposal routes for fusion wastes requiring new treatment and analysis techniques. Facilities currently under

  16. Radioactive-waste isolation pilot plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1977-01-01

    The objective of the Waste Isolation Pilot Plant (WIPP) program is to demonstrate the suitability of bedded salt, specifically, the bedded salt deposits in the Los Medanos area of southeastern New Mexico, as a disposal medium for radioactive wastes. Our program responsibilities include site selection considerations, all aspects of design and development, technical guidance of facility operation, environmental impact assessment, and technical support to ERDA for developing public understanding of the facility

  17. Radioactive waste management for a radiologically contaminated hospitalized patient

    International Nuclear Information System (INIS)

    Pina Jomir, G.; Michel, X.; Lecompte, Y.; Chianea, N.; Cazoulat, A.

    2015-01-01

    Radioactive waste management in the post-accidental phase following caring for a radiologically contaminated patient in a hospital decontamination facility must be anticipated at a local level to be truly efficient, as the volume of waste could be substantial. This management must comply with the principles set out for radioactive as well as medical waste. The first step involves identification of radiologically contaminated waste based on radioactivity measurement for volume reduction. Then, the management depends on the longest radioactive half-life of contaminative radionuclides. For a half-life inferior to 100 days, wastes are stored for their radioactivity to decay for at least 10 periods before disposal like conventional medical waste. Long-lived radioactive waste management implies treatment of liquid waste and special handling for sorting and packaging before final elimination at the French National Agency for Radioactive Waste Management (ANDRA). Following this, highly specialized waste management skills, financial responsibility issues and detention of non-medical radioactive sources are questions raised by hospital radioactive waste management in the post-accidental phase. (authors)

  18. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  19. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1994-01-01

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility's compliance with criteria identified in the RAP. The criteria are based upon the open-quotes Core Requirementsclose quotes listed in DOE Order 5480.31, open-quotes Startup and Restart of Nuclear Facilitiesclose quotes

  20. Management of radioactive waste from the use of radionuclides in medicine

    International Nuclear Information System (INIS)

    2000-11-01

    The main objective of this publication is to review the different options and provide practical guidance on the management of biomedical radioactive waste that may arise in health care facilities, clinics, laboratories and other associated medical institutions. It outlines the advanced practices used in different facilities around the world that handle radionuclides for biomedical applications and therefore deal with management of the associated waste. Biomedical radioactive waste management includes handling, packaging, treatment, conditioning, storage, transportation and disposal of the radioactive waste that is produced in medical facilities. When radioisotopes are to be used in a biomedical facility, proper consideration should be given to the design of the facility to ensure safe use of the material in accordance with the requirements of the regulatory organizations. Such consideration should include planning for processing, storage and disposal of all generated radioactive waste. While this publication is directed primarily to developing Member States, it also reflects the practices applied in countries with extensive nuclear programmes. Therefore this publication should be useful for any biomedical establishment dealing with medical applications of radioisotopes and consequently with the wastes associated with such applications

  1. Management of radioactive waste from the use of radionuclides in medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The main objective of this publication is to review the different options and provide practical guidance on the management of biomedical radioactive waste that may arise in health care facilities, clinics, laboratories and other associated medical institutions. It outlines the advanced practices used in different facilities around the world that handle radionuclides for biomedical applications and therefore deal with management of the associated waste. Biomedical radioactive waste management includes handling, packaging, treatment, conditioning, storage, transportation and disposal of the radioactive waste that is produced in medical facilities. When radioisotopes are to be used in a biomedical facility, proper consideration should be given to the design of the facility to ensure safe use of the material in accordance with the requirements of the regulatory organizations. Such consideration should include planning for processing, storage and disposal of all generated radioactive waste. While this publication is directed primarily to developing Member States, it also reflects the practices applied in countries with extensive nuclear programmes. Therefore this publication should be useful for any biomedical establishment dealing with medical applications of radioisotopes and consequently with the wastes associated with such applications.

  2. Development of a facility for fabricating nuclear waste canisters from radioactively contaminated steel

    International Nuclear Information System (INIS)

    Logan, J.A.; Larsen, M.M.

    1986-01-01

    This paper describes design of a facility and processes capable of using radioactively contaminated waste steel as the principal raw material for fabricating stainless steel canisters to be used for disposal of nuclear high-level waste. By such action, expenditure (i.e., permanent loss to society) of thousands of tons of uncontaminated chromium and nickel to fabricate such canisters can be avoided. Moreover, the cost and risks involved in disposing of large accumulations of radioactively contaminated steel as low-level radioactive waste (LLRW), that would otherwise be necessary, can also be avoided. The canister fabrication processes (involving centrifugal casting) described herein have been tested and proven for this application. The performance characteristics of stainless steel canisters so fabricated have been tested and agreed to by the organizations that have been involved in this development work (Battelle Memorial Institute, DuPont, EGandG and the Savannah River Laboratory) as equivalent to the performance characteristics of canisters fabricated of uncontaminated wrought stainless steel. It is estimated that the production cost for fabricating canisters by the methods described will not differ greatly from the production cost using uncontaminated wrought steel, and the other costs avoided by not having to dispose of the contaminated steel as LLRW could cause this method to produce the lowest ultimate overall costs

  3. 1989 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1990-10-01

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs

  4. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  5. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information

  6. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  7. Spanish program on disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.; Ramos Salvador, L.; Martines Martinez, A.

    1977-01-01

    The Spanish Energetic Program assumes an installed nuclear electrical power of 23.000 MWe by the year 1985. Therefore, Spain is making an effort in the managment of radioactive wastes, that can be synthesized in the following points: 1.- Make-up and review of the regulation on the management of radioactive wastes. 2.- Development of the processes and equipment for the treatment of solid, liquid and gaseous wastes from the CNEN ''Juan Vigon'', as well as those from the Nuclear Center of Soria. Solidification studies of RAA wastes arisen from the reprocessing. 3.- Evaluation of radioactive waste treatment systems of the new installed nuclear power plants. Assistance to the nuclear and radioactive facilities operators. 4.- Increase the storage capacity of the pilot repository for solid radioactive wastes of categories 1 and 2 IAEA, located in Sierra Albarrana. Studies of adequate geological formation for storage of solid wastes of IAEA categories 3 and 4. 5.- Studies about long term surface storage systems for solidified RAA wastes arisen from the reprocessing [es

  8. Radioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) includes: examining, assaying, characterizing, treating, and repackaging solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), transuranic (TRU) waste, TRU mixed wastes, and low-level mixed wastes (LLMW). Airborne releases from the WRAP 1 facility will be primarily in particulate forms (99.999 percent of total unabated emissions). The release of two volatilized radionuclides, tritium and carbon-14 will contribute less than 0.001 percent of the total unabated emissions. Table 2-1 lists the radionuclides which are anticipated to be emitted from WRAP 1 exhaust stack. The Clean Air Assessment Package 1988 (CAP-88) computer code (WHC 1991) was used to calculate effective dose equivalent (EDE) from WRAP 1 to the maximally exposed offsite individual (MEI), and thus demonstrate compliance with WAC 246-247. Table 4-1 shows the dose factors derived from the CAP-88 modeling and the EDE for each radionuclide. The source term (i.e., emissions after abatement in curies per year) are multiplied by the dose factors to obtain the EDE. The total projected EDE from controlled airborne radiological emissions to the offsite MEI is 1.31E-03 mrem/year. The dose attributable to radiological emissions from WRAP 1 will, then, constitute 0.013 percent of the WAC 246-247 EDE regulatory limit of 10 mrem/year to the offsite MEI

  9. The international legal position on transboundary shipments of radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.C.

    1997-01-01

    The recent decision not to grant planning permission for construction of a Rock Characterisation Facility near Sellafield has reopened the question of long-term radioactive waste disposal policy in the UK. One possible solution would be the construction and operation of a small number of international radioactive waste disposal facilities, taking waste from several countries. Such an approach would allow pooling of international expertise; would allow the choice of excellent sites from geological and demographical standpoints; and may be economically attractive depending on economies of scale. However, the approach would also increase the amount of waste transport, and may reduce the pressure on producers to reduce the volumes of waste arising. This paper traces the development of international legal attitudes to transboundary transport of radioactive and other hazardous waste. It concludes that as international law now stands it would be very difficult to establish a network of international waste disposal facilities, and therefore strategies which are developed will be nationally based. (Author)

  10. Development of a regulatory guide about the content and criteria for the elaboration of the radioactive waste management plans in Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Lopez de la Higuera, Julia; Alvarez Alonso, M. Angeles; Simon Cirujano, Maria I.; Suarez Llorente, Beatriz

    2008-01-01

    Full text:The Spanish legislation requires the licensees to develop, among other documents, a Radioactive Waste Management Plan (RWMP) as an official report in the application for the operation and for the dismantling and decommissioning of a nuclear facility. These Plans should describe the types of waste, inventory, characterization, treatment, conditioning and storage of wastes. The Spanish regulatory body, Consejo de Seguridad Nuclear (CSN), promoted a working group to analyze the content and scope of the RWMP, bringing together the electric power industry association (UNESA), the waste management organisation (ENRESA) and the nuclear fuel industry (ENUSA). The objective of the RWMP is to establish the criteria and instructions to ensure a safe and optimized management, taking into account the normative and technological developments. The Plan is based on support Studies that contain the basic information for the analysis of the waste management options and deals with: (1) Actual generation and management options in the facility; (2) Classification of the facility in waste generation zones; (3) Experience analysis and identification of potential management improvements; (4) Selection, justification and introduction of new management modes. The RWMP will develop the following issues: a) Waste generation and management (for each waste type, information in terms of the origin, physico-chemical and radiological properties, volume of production and implemented management routes); b) Classification of the facility in waste zones. The facility will differentiate those areas where contaminated or activated wastes can be produced (Radioactive Waste Zone - RWZ) or not (Conventional Waste Zone - CWZ). To avoid mixing and allow this separation, two lines of defense will be established. The first one is the classification and setting marks in the Zones and the second one the controls on the non-radioactive wastes at the exit of the facility: a) Selection of foreseen lines

  11. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    International Nuclear Information System (INIS)

    Dziewinska, K.M.

    1998-01-01

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities

  12. Future radioactive liquid waste streams study

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  13. Future radioactive liquid waste streams study

    International Nuclear Information System (INIS)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL

  14. Radiological impact assessment of the domestic on-road transportation of radioactive isotope wastes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Myung Hwan; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Technology Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Radioactive Waste Agency (KORAD) began to operate the low and intermediate level radioactive waste disposal facility in Gyeongju and to transport the radioactive waste containing radioactive isotopes from Daejeon to the disposal facility for the first time at 2015. For this radioactive waste transportation, in this study, radiological impact assessment is carried out for workers and public. The dose rate to workers and public during the transportation is estimated with consideration of the transportation scenarios and is compared with the Korean regulatory limit. The sensitivity analysis is carried out by considering both the variation of release ratios of the radioactive isotopes from the waste and the variation of the distances between the radioactive waste drum and worker during loading and unloading of radioactive waste. As for all the transportation scenarios, radiological impacts for workers and public have met the regulatory limits.

  15. The study of the container types used for transport and final disposal of the radioactive wastes resulting from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Postelnicu, C.

    1998-01-01

    The purpose of the present paper is to select from a variety of package forms and capacities some containers which will be used for transport and disposal of the radioactive wastes resulting from decommissioning of nuclear facilities into the National Repository for Radioactive Waste - Baita, Bihor county. Taken into account the possibilities of railway and / or road transport and waste disposal in our country, detailed container classification was given in order to use them for radioactive waste transport and final disposal from decommissioning of IFIN-HH Research Reactor. (author)

  16. A case study in low-level radioactive waste storage

    International Nuclear Information System (INIS)

    Broderick, W.; Rella, R.J.

    1984-01-01

    Due to the current trend in Federal and State legislation, utilities are faced with the invitable problem of on-site storage of radioactive waste. Recognizing this problem, the New York Power Authority has taken measures to preclude the possibility of a plant shutdown due to a lack of space allocation for waste disposal at commercial burial sites coincident with an inability to safely store radioactive waste on-site. Capital funds have been appropriated for the design, engineering, and construction of an interim low-level radioactive waste storage facility. This project is currently in the preliminary design phase with a scheduled engineering completion date of September 1, 1984. Operation of the facility is expected for late 1985. The facility will provide storage space solidified liners, drums, and low specific activity (LSA) boxes at the historic rate of waste generation at the James A. Fitzpatrick Nuclear Power Plant, which is owned and operated by the New York Power Authority. Materials stored in the facility will be suitable for burial at a licensed burial facility and will be packaged to comply with the Department of Transportation regulations for shipment to a licensed burial ground. Waste shipments from the facility will normally be made on a first-in, first-out basis to minimize the storage time of any liner, drum or

  17. New treatment centers for radioactive waste from Russian designed VVER-reactors

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1997-01-01

    The nuclear power plants using Russian designed VVER-type reactors, were engineered and designed without any wastes treatment facilities. The liquid and solid waste were collected in storage tanks and shelters. After many years of operation, the storage capabilities are exhausted. The treatment of the stored and still generated waste represents a problem of reactor safety and requires a short term solution. NUKEM has been commissioned to design and construct several new treatment centers to remove and process the stored waste. This paper describes the process and lessons learned on the development of this system. The new radioactive waste treatment center (RWTC) includes comprehensive systems to treat both liquid and solid wastes. The process includes: 1) treatment of evaporator concentrates, 2) treatment of ion exchange resins, 3) treatment of solid burnable waste, 4) treatment of liquid burnable waste, 5) treatment of solid decontaminable waste, 6) treatment of solid compactible waste. To treat these waste streams, various separate systems and facilities are needed. Six major facilities are constructed including: 1. A sorting facility with systems for waste segregation. 2. A high-force compactor facility for volume reduction of non-burnable waste. 3. An incinerator facility for destruction of: 1) solid burnable waste, 2) liquid burnable waste, 3) low level radioactive ion exchange resins. 4. A facility for melting of incineration residue. 5. A cementation facility for stabilization of: 1) medium level radioactive ion exchange resins, 2) solid non compactible waste, 3) compacted solid waste. 6. Separation of radionuclides from evaporator concentrates. This presentation will address the facilities, systems, and lessons learned in the development of the new treatment centers. (author)

  18. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  19. Better safe than sorry: Increasing safety in radioactive waste management

    International Nuclear Information System (INIS)

    Gaspar, Miklos; Mutluer, Adem

    2015-01-01

    Abderrahim Bouih used to be worried about space. In charge of managing Morocco’s radioactive waste since 2006, he had long projected that the country’s sole radioactive waste facility would fill up by 2019. Thanks to a new methodology he and his colleagues learned through an IAEA project, they can now dismantle smoke detectors, lightning rods and other waste that contains radioactive material, safely separating the radioactive components from the metal, and significantly reducing the amount of radioactive waste they need to store.

  20. Developing Capacities in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Yusuf, Omar

    2014-01-01

    As the Agency’s main service-delivery mechanism, the IAEA’s technical cooperation (TC) programme plays a large part in supporting radioactive waste management around the world, helping to share information on the topic, and training personnel in the proper treatment and disposal of radioactive waste. The TC programme supports the development of policies and strategies, the assessment and upgrading (if necessary) of existing facilities, and the implementation of new management facilities, especially for near surface disposal. The programme also helps to develop competence in geological disposal for Member States operating nuclear power plants. This article presents just a few project examples to illustrate the scope of the programme

  1. 'Hydrotechnical' problems of burying radioactive waste

    International Nuclear Information System (INIS)

    Nagy, Z.; Buday, G.

    2008-01-01

    The paper describes the design and construction problems of an underground storage facility of nuclear wastes. Special attention ids paid to the role of underground water. After detailed surveys the construction works of the Hungarian Radioactive Waste Storage Facility at Bataapati begun in 2005. The construction of the two 1700 m long inclines are near to the level of the planned storage chambers, today. (TRA)

  2. Reducing the potential for conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities

    International Nuclear Information System (INIS)

    Rogers, B.G.

    1984-01-01

    Sources of potential conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities are identified and analyzed. Programs and policies are suggested that could reduce conflict over the siting and operation of such facilities

  3. Reconstruction and modernization of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Kolev, I.; Dralchev, D.; Spasov, P.; Jordanov, M.

    2000-01-01

    This report presents briefly the most important issues of the study performed by EQE - Bulgaria. The objectives of the study are the development of conceptual solutions for construction of the following facilities in the Novi Han radioactive waste repository: an operational storage for unconditioned high level spent sources; new temporary buildings over the existing radioactive waste storage facilities; a rain-water draining system ect. The study also includes the engineering solutions for conservation of the existing facilities, currently full with high level spent sources. A 'Program for reconstruction and modernization' has been created, including the analysis of some regulation aspects concerning this program implementation. In conclusions the engineering problems of Novi Han repository are clear and appropriate solutions are available. They can be implemented in both cases of 'small' or 'large' reconstruction. The reconstruction project anyway should start with the construction of a new site infrastructure. Reconstruction and modernization of Novi Han radioactive waste repository is the only way to improve the management and safety of radioactive waste from medicine, industry and scientific research in Bulgaria

  4. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Cotton, T.

    1985-01-01

    With the passage of the Nuclear Waste Policy Act of 1982 (NWPA), Congress for the first time established in law a comprehensive Federal policy for commercial high-level radioactive waste management, including interim storage and permanent disposal. NWPA provides sufficient authority for developing and operating a high-level radioactive waste management system based on disposal in mined geologic repositories. Authorization for other types of waste facilities will not be required unless major problems with geologic disposal are discovered, and studies to date have identified no insurmountable technical obstacles to developing geologic repositories. The NWPA requires the Department of Energy (DOE) to submit to Congress three key documents: (1) a Mission Plan, containing both a waste management plan with a schedule for transferring waste to Federal facilities and an implementation program for choosing sites and developing technologies to carry out that plan; (2) a monitored retrievable storage (MRS) proposal, to include a site-specific design for a long-term federal storage facility, an evaluation of whether such an MRS facility is needed and feasible, and an analysis of how an MRS facility would be integrated with the repository program if authorized by Congress; and (3) a study of alternative institutional mechanisms for financing and managing the radioactive waste system, including the option of establishing an independent waste management organization outside of DOE. The Mission Plan and the report on alternative institutional mechanisms were submitted to the 99th US Congress in 1985. The MRS proposal is to be submitted in early 1986. Each of these documents is discussed following an overview of the Nuclear Waste Policy Act of 1982

  5. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  6. Radioactive waste with 14C in Argentina

    International Nuclear Information System (INIS)

    Di Lello, D.S.

    2009-01-01

    14 C is a long half-life radioisotope, which is present in radioactive waste generated during the operation and decommissioning of nuclear power plants. 14 C can also be found in waste generated by medical diagnostic laboratories or any one generated by fields that deal with research and development (mainly connected with the biochemists area). According to international precedents the disposal of 14 C based on the final amount found in radioactive waste and its chemical form have conditioned the design and operation of the facilities (either because of the amount of it or the chemical form in which 14 C was present). We have to take into account that the design of facilities for radioactive waste disposal is included among the obligations of the National Radioactive Waste Management Program (PNGRR). It is absolutely necessary to count with enough information about the characteristics of any waste containing 14 C that is generated in Argentina, in order to be able to fulfil the requirements previously mentioned. The main characteristics of interest in the frame of the present project are: a) the principal reactions that take place for the formation of 14 C; b) The specific concentration of activity in materials where this radio nuclei is formed or is accumulated; c) To know which is the current step in the process of managing these wastes (in Argentina and all over the world). Either if it refers to bulk or conditioned storage, inside the generating facility; d) Transportation possibilities of 14 C under these conditions; e) The accumulated volume and the generation rate of this kind of waste in Argentina. This paper presents an initial collection and evaluation of the information related to the characteristics already mentioned, having gathered published material from the literature and information in the PNGRR up to this moment. The description of the characteristics of the radioactive waste containing 14 C from nuclear power plants, hospitals and research and

  7. Reference biospheres for the long term safety assessment of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Crossland, I.G.; Torres, C.

    2002-01-01

    Regulatory guidance on the safety assessment of radioactive waste disposals usually requires the consequences of any radionuclide releases to be considered in terms of their potential impact on human health. This requires consideration of the prevailing biosphere and the habits of the potentially exposed humans within it. However, it could take many thousands of years for migrating radionuclides to reach the surface environment. In these circumstances, an assessment model that was based on the present-day biosphere could be inappropriate while future biospheres would be unpredictable. These and other considerations suggest that a standardised, or reference biosphere, approach may be useful. Theme 1 of the IAEA BIOMASS project was established to develop the concept of reference biospheres into a practical system that can be applied to the assessment of the long term safety of geological disposal facilities for radioactive waste. The technical phase of the project lasted for four years until November 2000 and brought together disparate interests from many countries including waste disposal agencies, regulators and technical experts. Building on the experience from earlier BIOMOVS projects, a methodology was constructed for the logical and defensible construction of mathematical biosphere models that can be used in the total system performance assessment of radioactive waste disposal. The methodology was then further developed through the creation of a series of BIOMASS Example Reference Biospheres ('Examples'). These are stylised biosphere models that, in addition to illustrating the methodology, are intended to be useful assessment tools in their own right. (author)

  8. Requirements for a long-term safety certification for chemotoxic substances stored in a final storage facility for high radioactive and heat-generating radioactive waste in rock salt formations

    International Nuclear Information System (INIS)

    Tholen, M.; Hippler, J.; Herzog, C.

    2007-01-01

    Within the scope of a project funded by the German Federal Ministry of Economics and Technology (Bundesministerium fuer Wirtschaft und Technologie, BMWi), a safety certification concept for a future permanent final storage for high radioactive and heat-generating radioactive waste (HAW disposal facility) in rock salt formations is being prepared. For a reference concept, compliance with safety requirements in regard to operational safety as well as radiological and non-radiological protection objectives related to long-term safety, including ground water protection, will be evaluated. This paper deals with the requirements for a long-term safety certification for the purpose of protecting ground water from chemotoxic substances. In particular, longterm safety certifications for the permanent disposal of radioactive waste in a HAW disposal facility in rock salt formations and for the dumping of hazardous waste in underground storage facilities in rock salt formations are first discussed, followed by an evaluation as to whether these methods can be applied to the long-term safety certification for chemotoxic substances. The authors find it advisable to apply the long-term safety certification for underground storage facilities to the long-term safety certification for chemotoxic substances stored in a HAW disposal facility in rock salt formations. In conclusion, a corresponding certification concept is introduced. (orig.)

  9. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  10. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  11. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Snyder, K.E.; Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E.

    1995-02-01

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period

  12. Amount of radioactive wastes in the Federal Republic of Germany - waste inquiry for the year 1985

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.

    1986-09-01

    On December 31, 1985, about 61 400 waste packages were stored in intermediate storage facilities. The unconditioned radioactive wastes amounted to about 6 300 m 3 . The volume of the conditioned radioactive wastes amounted to about 29 600 m 3 . Thereof the waste from nuclear research establishments made up about 11 200 m 3 , the waste from the operation of nuclear power plants about 9 900 m 3 and the waste from reprocessing of spent fuel elements about 5 800 m 3 . In addition the future amount of conditioned radioactive wastes with negligible heat generation was prognosticated. Due to this forecast an amount of about 227 600 m 3 of these wastes is expected in the year 2000. In 1985 a capacity of about 88 700 m 3 for the intermediate storage of radioactive wastes was available in the Federal Republic of Germany. On December 31, 1985, this capacity was utilized by unconditioned and conditioned radioactive wastes at an average of about 40%. It may be concluded from the data on the expected amount of radioactive wastes with negligible heat generation and on the utilization factor of the intermediate storage facilities that no bottlenecks are to be assumed up to the planned operation of the Konrad repository. (orig./HP) [de

  13. Yield of radioactive wastes in the Federal Republic of Germany - waste survey for the year 1986

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.

    1987-05-01

    On December 31, about 67600 waste packages were stored in interim storage facilities. The unconditioned radioactive wastes amounted to about 6600 m 3 . The volume of the conditioned radioactive wastes amounted to about 33900 m 3 . Thereof the waste from nuclear research establishments made up about 13300 m 3 , the waste from the operation of nuclear power plants about 10700 m 3 and the waste from reprocessing of spent fuel elements about 6700 m 3 . In addition the future amount of conditioned radioactive wastes with negligible heat generation was prognosticated. According to this forecast, the waste package volume will be approximately in the order of 218200 m 3 up to the year 2000. In 1986 a capacity of about 97500 m 3 for the interim storage of radioactive wastes was available in the Federal Republic of Germany. On December 31, 1986, this capacity was utilized by unconditioned and conditioned radioactive wastes at an average of about 38%. It may be concluded from the data on the expected amount of radioactive wastes with negligible heat generation and on the utilization factor of the interim storage facilities that no bottlenecks are to be assumed up to the planned operation of the Konrad repository. (orig./RB) [de

  14. Public involvement in radioactive waste management decisions

    International Nuclear Information System (INIS)

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE's Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government's decision to study Yucca Mountain. The state's opposition reflects public opinion in Nevada, and has considerably slowed DOE's progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada's opposition -- its ability to thwart if not outright derail DOE's activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE's radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE's low level of credibility among the general public as the product, in part, of the department's past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials

  15. Safety assessment of radioactive wastes storage 'Mironova Gora'

    International Nuclear Information System (INIS)

    Serbryakov, B.; Karamushka, V.; Ostroborodov, V.

    2000-01-01

    A project of transforming the radioactive wastes storage 'Mironova Gora' is under development. A safety assessment of this storage facility was performed to gain assurance on the design decision. The assessment, which was based on the safety assessment methods developed for radioactive wastes repositories, is presented in this paper. (author)

  16. First days of R and D in radioactive waste management

    International Nuclear Information System (INIS)

    1993-01-01

    The first meeting of R and D in radioactive waste management was organized by ENRESA on 21,22,23 April 1993. The main objective was to disseminate the most relevant works within the 2nd R and D plan, and to establish and adequate form involved for discussion R and D radioactive waste management. (Author) The meeting was articulated in 50 sessions: I.- Low and medium radioactive wastes II.- High level radioactive wastes: activities of ENRESA III.- High level radioactive wastes: near field. IV.- Biosphere, radiological protection, behaviour evaluation V.- Dismantling and decommissioning nuclear facilities VI.- Geosphere

  17. Radioactive Waste Management at the New Conversion Facility of 'TVEL'{sup R} Fuel Company - 13474

    Energy Technology Data Exchange (ETDEWEB)

    Indyk, S.I.; Volodenko, A.V. [JSC ' TVEL' , Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation); Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V. [JSC ' Siberian Group of Chemical Enterprises' , Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)

    2013-07-01

    The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL{sup R} Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

  18. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  19. Economics of a small-volume low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    1993-04-01

    This report was prepared by the US Department of Energy National Low-Level Waste Management Program to present the results of a life-cycle cost analysis of a low-level radioactive waste disposal facility, including all support facilities, beginning in the preoperational phase and continuing through post-closure care. The disposal technology selected for this report is earth-covered concrete vaults, which use reinforced concrete vaults constructed above grade and an earth cover constructed at the end of the operational period for permanent closure. The report develops a design, cost estimate, and schedule for the base case and eight alternative scenarios involving changes in total disposal capacity, operating life, annual disposal rate, source of financing and long-term interest rates. The purpose of this analysis of alternatives is to determine the sensitivity of cost to changes in key analytical or technical parameters, thereby evaluating the influence of a broad range of conditions. The total estimated cost of each alternative is estimated and a unit disposal charge is developed

  20. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    International Nuclear Information System (INIS)

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-01-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  1. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    Energy Technology Data Exchange (ETDEWEB)

    Freihammer, Till; Chaput, Barb [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada); Vandergaast, Gary [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Arey, Jimi [Public Works and Government Services Canada, Ontario (Canada)

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  2. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  3. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  4. 77 FR 20077 - Request for a License To Export Radioactive Waste

    Science.gov (United States)

    2012-04-03

    ... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR..., 2012, radioactive waste tons of or disposal by a February 16, 2012, XW019, in the form of ash radioactive waste licensed facility 11005986. and non-conforming as contaminated in Mexico. material. ash and...

  5. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  6. Krsko NPP radioactive waste characteristics

    International Nuclear Information System (INIS)

    Skanata, D.; Kroselj, V.; Jankovic, M.

    2007-01-01

    In May 2005 Krsko NPP initiated the Radioactive Waste Characterization Project and commissioned its realization to the consulting company Enconet International, Zagreb. The Agency for Radwaste Management was invited to participate on the Project. The Project was successfully closed out in August 2006. The main Project goal consisted of systematization the existing and gathering the missing radiological, chemical, physical, mechanical, thermal and biological information and data on radioactive waste. In a general perspective, the Project may also be considered as a part of broader scope of activities to support state efforts to find a disposal solution for radioactive waste in Slovenia. The operational low and intermediate level radioactive waste has been structured into 6 waste streams that contain evaporator concentrates and tank sludges, spent ion resins, spent filters, compressible and non-compressible waste as well as specific waste. For each of mentioned waste streams, process schemes have been developed including raw waste, treatment and conditioning technologies, waste forms, containers and waste packages. In the paper the main results of the Characterization Project will be briefly described. The results will indicate that there are 17 different types of raw waste that have been processed by applying 9 treatment/conditioning technologies. By this way 18 different waste forms have been produced and stored into 3 types of containers. Within each type of container several combinations should be distinguished. Considering all of this, there are 34 different types of waste packages altogether that are currently stored in the Solid Radwaste Storage Facility at the Krsko NPP site. Because of these findings a new identification system has been recommended and consequently the improvement of the existing database on radioactive waste has been proposed. The potential areas of further in depth characterization are indicated. In the paper a brief description on the

  7. Radioactive Waste Management Research Program Plan for high-level waste: 1987

    International Nuclear Information System (INIS)

    1987-05-01

    This plan will identify and resolve technical and scientific issues involved in the NRC's licensing and regulation of disposal systems intended to isolate high level hazardous radioactive wastes (HLW) from the human environment. The plan describes the program goals, discusses the research approach to be used, lays out peer review procedures, discusses the history and development of the high level radioactive waste problem and the research effort to date and describes study objectives and research programs in the areas of materials and engineering, hydrology and geochemistry, and compliance assessment and modeling. The plan also details the cooperative interactions with international waste management research programs. Proposed Earth Science Seismotectonic Research Program plan for radioactive waste facilities is appended

  8. The regulatory function in radioactive waste management

    International Nuclear Information System (INIS)

    Duncan, A.; Pescatore, C.

    2008-01-01

    Allan Duncan, expert to NEA and former Chief Inspector for Pollution (United Kingdom), elaborated on the regulatory function in the domain of radioactive waste management. The preparation of a document and a brochure on the subject has been one of the main tasks of the Regulators' Forum since its creation in 2001. He stressed that management of NORM waste was generally subject to different standards than similar radioactive waste from a nuclear source, for no obvious reason than that of public perception. He also pointed out the large number of 'regulatory bodies' involved in the regulation of radioactive waste management facilities and particularly geological disposal facilities, and their links to the Government. He gave the example of the United Kingdom. He stressed the fact that, since there will not be continuous control, licensing of geological disposal is an act of trust in the regulatory system. A. Duncan gave the position of two Commissions in England on deep geological disposal. The UK Sustainable Development Commission says, 'it is impossible to guarantee safety over long-term disposal of (nuclear) waste' which implies that nuclear fission power should be shut down; CoRWM, the Committee on Radioactive Waste Management, recommends instead geological disposal for existing wastes as a broadly acceptable solution. As a concluding remark A. Duncan focused the attention on the general question of what current society needs to do in order to meet its obligations to future generations with respect to disposal of long-lived wastes. (authors)

  9. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  10. Radonclose - the system of Soviet designed regional waste management facilities

    International Nuclear Information System (INIS)

    Horak, W.C.; Reisman, A.; Purvis, E.E. III.

    1997-01-01

    The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30 years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities

  11. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  12. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  13. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant

  14. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  15. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  16. The management of radioactive wastes produced by radioisotope users

    International Nuclear Information System (INIS)

    1965-01-01

    This code of practice deals with the problem of handling the relatively small quantities of waste arising from the use of radionuclides in laboratories, hospitals and industry when no special facilities for radioactive waste disposal are available on the site. It stresses the need for proper governmental control of the arrangements made for receiving, using and disposing of radioactive materials. The document discusses waste management that can be left to the individual user, waste management in a central facility serving a number of users, and waste storage and environmental containment. A table showing the types of waste associated with some of the more common uses of a number of radionuclides is appended.

  17. An assessment of radioactivity level in 51Cr-contaminated dry solid waste generated from a research facility for verification of clearance levels

    International Nuclear Information System (INIS)

    Nagamatsu, Tomohiro; Yamaoka, Kiyonori; Hanafusa, Tadashi; Ono, Toshiro

    2010-01-01

    Radioactive waste generated from research laboratories and other facilities is regulated by the Law Concerning Prevention from Radiation Hazards due to Radioisotopes etc. (Prevention Law). However, the Prevention Law does not provide the level of clearance or the procedures to follow for compliance monitoring. To assess radioactivity amounts for making decisions about clearance levels, the radioactivity levels in dry solid semi-combustible wastes generated from biomedical research, such as 51 Cr-release assays, were measured and evaluated. Radioactivity of semi-combustible waste was 1.42-6.32% of the initial level. In comparison, records for the past 8 years in the Shikata Laboratory, Department of Radiation Research, Okayama University Advanced Science Research Center, indicated 7% to 90% of the initial radioactivity remained in the waste and was differed widely among researchers. This study determined an accurate radioactivity level in dry solid waste, which could lead to savings in disposal costs. (author)

  18. The management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Teng Lijun

    2001-01-01

    Full text: This paper wants to introduce the management of radioactive wastes in China. The Management System. The management system of radioactive waste consists of the institutional system and the regulatory system. During the recent 30 years, more than 50 national standards and trades standards have been issued, will be published, or are being prepared, covering essentially all the process of wastes management. State Environmental Protection Administration (SEPA) is in charge of not only the environmental protection view but also nuclear safety surveillance of radioactive waste management, especially in the aspect of HLW disposal. China Atomic Energy Authority (CAEA) is a centralized management of the government responsible. China National Nuclear Corp. (CNNC) is responsible for the management work of radioactive wastes within its system, implementing national policies on wastes management, and siting, construction and operation of LILW repositories and HLW deep geological repository. The Policies of Radioactive Waste Management. The LILW for temporary storage shall be solidified as early as possible. Regional repository for disposal of low-and intermediate-level wastes shall be built. HLW is Centralized disposal in geological repository. The radioactive wastes and waste radioisotope sources must be collected to the signified place (facilities) for a relatively centralized management in each province, The Accompanying Mineral radioactive wastes can be stored in the tailing dumps or connected to the storage place for a temporal storage, then transported to the nearby tailing dumps of installation or tailing dumps of mineral-accompanying waste for an eventual storage. Activities in the Wastes Management Radioactive wastes treatment and conditioning Since 1970, the study on the HLLW vitrification has been initiated. In 1990, a cold test bench for the vitrification (BVPM), introduced from Germany, was completed in Sichuan Province. As for the LILW, the cementation

  19. Study on hazardous substances contained in radioactive waste

    International Nuclear Information System (INIS)

    Kuroki, Ryoichiro; Takahashi, Kuniaki

    2008-01-01

    It is necessary that the technical criteria is established concerning waste package for disposal of the TRU waste generated in Japan Atomic Energy Agency. And it is important to consider the criteria not only in terms of radioactivity but also in terms of chemical hazard and criticality. Therefore the environmental impact of hazardous materials and possibility of criticality were investigated to decide on technical specification of radioactive waste packages. The contents and results are as following. (1) Concerning hazardous materials included in TRU waste, regulations on disposal of industrial wastes and on environmental preservation were investigated. (2) The assessment methods for environmental impact of hazardous materials included in radioactive waste in U.K, U.S.A. and France were investigated. (3) The parameters for mass transport assessment about migration of hazardous materials in waste packages around disposal facilities were compiled. And the upper limits of amounts of hazardous materials in waste packages to satisfy the environmental standard were calculated with mass transport assessment for some disposal concepts. (4) It was suggested from criticality analysis for waste packages in disposal facility that the occurrence of criticality was almost impossible under the realistic conditions. (author)

  20. Characterization and classification of radioactive waste from the accelerator facilities at PSI

    International Nuclear Information System (INIS)

    Teichmann, S.; Wohlmuther, M.; Zuellig, J.

    2005-01-01

    At the accelerator facilities of PSI, with a 1 MW ring cyclotron that accelerates protons to 590 MeV as essential part, various components are removed regularly that need to be disposed as radioactive waste. As principal part of the characterisation of this waste, the nuclide inventory is determined using a specially devised calculation method. For this calculation, nuclide production cross sections from a specifically developed data bank are folded with neutron spectra typical for the particular radiation environment, and normalized with a measured dose rate. After separating materials needing special treatment, the waste components (mainly steel, copper and concrete items) are placed in a concrete container and temporarily stored. For the solidification with cement (final conditioning), a specification of the waste container has to be submitted on the basis of which the responsible institutions Nagra and HSK issue a certificate concerning the suitability for a final repository and a license for final conditioning. The relevant data of the waste containers are documented in container data sheets and in an electronic data bank. Some properties of filled waste containers are described. (orig.)

  1. Installation of a radioactive waste disposal facility. The necessity of building up durable links between the general public and radioactive waste. Feedback from experience in France

    International Nuclear Information System (INIS)

    Comte, Annabelle; Farin, Sebastien

    2015-01-01

    2013 has been a banner year for Andra with widespread discussions on the question of long-term management of radioactive waste: a nationwide public discussion about the planned Cigeo deep disposal facility has been organized and national discussions on the energy source transition had inevitably brought up the question of what to do with future radioactive waste to be produced under the various scenarios put forward. In spite of an open institutional framework, with numerous legal provisions for citizen participation, 2013 showed that creation of a radioactive waste disposal facility is not, and cannot be, a question dealt with like breaking news, within a given temporal or spatial perimeter. Any attempts to bring up the subject under the spotlight of public scrutiny inevitably shift the discussions away from their central theme and abandon the underlying question - what should be done with the existing radioactive waste and the waste that is bound to be produced? - to move on to the other major question: ''Should we stop using nuclear power or not?'', which takes us away from our responsibilities towards future generations. Daring to face the question, anchor it in citizen discussions, and create awareness of our duties towards coming generations: this is the challenge that Andra had already set itself several years ago. Our position is a strong one; rather than seeking to mask the problem of radioactive waste, we must face up to our responsibilities: the waste is already there, and we have to do something with it. It will take time to be successful here. Long-term management of radioactive waste is clearly a really long-term matter. All the experience in the field has shown that it involves patience and careful listening, and requires building up a basis for solid trust among the potential neighboring population, who are the most directly concerned. Durable proximity human investment is one of the key factors of success. For over 20 years now

  2. Installation of a radioactive waste disposal facility. The necessity of building up durable links between the general public and radioactive waste. Feedback from experience in France

    Energy Technology Data Exchange (ETDEWEB)

    Comte, Annabelle; Farin, Sebastien [Andra, Chatenay-Malabry (France)

    2015-07-01

    2013 has been a banner year for Andra with widespread discussions on the question of long-term management of radioactive waste: a nationwide public discussion about the planned Cigeo deep disposal facility has been organized and national discussions on the energy source transition had inevitably brought up the question of what to do with future radioactive waste to be produced under the various scenarios put forward. In spite of an open institutional framework, with numerous legal provisions for citizen participation, 2013 showed that creation of a radioactive waste disposal facility is not, and cannot be, a question dealt with like breaking news, within a given temporal or spatial perimeter. Any attempts to bring up the subject under the spotlight of public scrutiny inevitably shift the discussions away from their central theme and abandon the underlying question - what should be done with the existing radioactive waste and the waste that is bound to be produced? - to move on to the other major question: ''Should we stop using nuclear power or not?'', which takes us away from our responsibilities towards future generations. Daring to face the question, anchor it in citizen discussions, and create awareness of our duties towards coming generations: this is the challenge that Andra had already set itself several years ago. Our position is a strong one; rather than seeking to mask the problem of radioactive waste, we must face up to our responsibilities: the waste is already there, and we have to do something with it. It will take time to be successful here. Long-term management of radioactive waste is clearly a really long-term matter. All the experience in the field has shown that it involves patience and careful listening, and requires building up a basis for solid trust among the potential neighboring population, who are the most directly concerned. Durable proximity human investment is one of the key factors of success. For over 20 years now

  3. Progress report on the design of a Low-Level Waste Pilot Facility at ORNL

    International Nuclear Information System (INIS)

    Hensley, L.C.; Turner, V.L.; Pruitt, A.S.

    1980-01-01

    All low-level radioactive solid wastes, excluding TRU wastes, are disposed of by shallow land burial at the Oak Ridge National Laboratory. Contaminated liquids and sludges are hydrofractures. The TRU wastes are stored in a retrievable fashion in concrete storage facilities. Currently, the capacity for low-level radioactive waste burial at the Oak Ridge National Laboratory is adequate for another six years of service at the current solids disposal rate which ranges between 80,000 and 100,000 cu ft per year. Decontamination and decommissioning of a number of ORNL facilities will be a significant activity in the next few years. Quantities of radioactive materials to be stored or disposed of as a result of these activities will be large; therefore, the technology to dispose of large quantities of low-level radioactive wastes must be demonstrated. The UCC-ND Engineering Division, in concert with divisions of the Oak Ridge National Laboratory, has been requested to prepare a conceptual design for a facility to both dispose of the currently produced low-level radioactive waste and also to provide a test bed for demonstration of other processes which may be used in future low-level radioactive wastes disposal facilities. This facility is designated as the Low-Level Waste Pilot Facility (LLWPF). This paper describes the status of the conceptual design of a facility for disposal of the subject radioactive waste

  4. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    Science.gov (United States)

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.

  5. Achievements of research and development of Kajima on radioactive waste disposal

    International Nuclear Information System (INIS)

    Hironaka, Yoshikazu; Morikawa, Seiji; Okutsu, Kazuo; Furuichi, Mitsuaki; Toida, Masaru; Yamamoto, Takuji

    2004-01-01

    Kajima Corporation has been committed to the construction of nuclear power plant for a long time as a construction company. In 1957 Kajima made its first construction of the main building for the JRR-1 (Japan Research Reactor No.1) of JAERI, which was the first and historical one in Japan. Since then the company has been involved in many projects related to nuclear power generation. In addition to the construction, Kajima has been playing an important role in the technology development of decommissioning system as well as radioactive waste waste disposal facilities, both of which are now having an increasing importance. In a sense of technology development, the technology of civil engineering is commonly applicable to the construction of radioactive waste disposal facilities, however, some other technology developments have to be made due to the unique characteristics of radioactive waste disposal. Kajima has promoted many research and development projects related to radioactive waste disposal in order to improve the reliability and the feasibility of the nuclear recycling process. This report introduces some of the achievements as follows made by Kajima: Construction of radioactive waste disposal facilities, Natural barrier, Engineering barrier, Monitoring. (author)

  6. Amount of radioactive wastes in the Federal Republic of Germany - waste survey for the year 1988

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.

    1989-06-01

    On December 31, 1988, about 69 800 waste packages - about 40 700 m 3 - were stored in interim storage facilities. The unconditioned radioactive wastes amounted to about 11 700 m 3 . The volume of the conditioned radioactive wastes amounted to about 40 700 m 3 . Of this, the waste from nuclear research centres made up about 16 300 m 3 , the waste from the operation of nuclear power plants about 12 900 m 3 and that from the reprocessing of spent fuel elements about 8 300 m 3 . A prognosis was also made of the future amount of conditioned radioactive wastes. According to this forecast, the cumulated waste package volume of radioactive wastes with negligible heat generation will be approximately in the order of 173 400 m 3 up to the year 2000, whereas for heat-generating radioactive wastes a volume of about 5 800 m 3 is estimated. These figures already express the waste volume reduction according to modern conditioning techniques. In 1988 a capacity of about 123 800 m 3 for the interim storage of radioactive wastes was available in the Federal Republic of Germany. On December 31, 1988, an average of about 37% of this capacity was utilized by unconditioned and conditioned radioactive wastes. From the data on the expected amount of radioactive wastes and on the utilization factor of the interim storage facilities, it may be concluded that, taking an overall view, no bottlenecks in the interim storage of radioactive wastes with negligible heat generation are to be anticipated up to the planned operation of the Konrad repository in 1994. (orig./HP) [de

  7. Safety of radioactive waste management in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Radioactive waste produced in France vary considerably by their activity level, their half lives, their volume or even their nature. In order to manage them safely, the treatment and final disposal solution must be adapted to the type of waste considered by setting up specific waste management channels. A strong principle in France is that it is the responsibility of the nuclear operators as waste producers to dispose of their waste or have them disposed of in a suitable manner. The competent authorities regulate and control the radioactive waste management activities. At present, only short-lived low and intermediate level waste have a definitive solution, the surface repository, where adequate waste packages are disposed of in concrete structures. Other types of radioactive waste are in interim storage facilities at the production sites. For very low level waste coming mainly from dismantling of nuclear facilities a dedicated repository is planned to be built in the coming years. Dedicated repositories are also planned for radiferous, tritiated and graphite waste. As for high level waste and long-lived waste coming mainly from reprocessing of spent nuclear fuel the disposal options are being sought along the lines specified by law 91-1381 concerning research on radioactive waste management, passed on December 30, 1991: research of solutions to partition and transmute long-lived radionuclides in the waste; studies of retrievable and non retrievable disposal in deep geological layers with the help of underground laboratories; studies of processes for conditioning and long term surface storage of these waste. In 2006, the French Parliament will assess the results of the research conducted by ANDRA relative to deep geological disposal as well as the work conducted by CEA in the two other areas of research and, if this research is conclusive, pass a law defining the final disposal option. (author)

  8. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  10. Startup of the remote laboratory-scale waste-treatment facility

    International Nuclear Information System (INIS)

    Knox, C.A.; Siemens, D.H.; Berger, D.N.

    1981-01-01

    The Remote Laboratory-Scale Waste-Treatment Facility was designed as a system to solidify small volumes of radioactive liquid wastes. The objectives in operating this facility are to evaluate solidification processes, determine the effluents generated, test methods for decontaminating the effluents, and provide radioactive solidified waste products for evaluation. The facility consists of a feed-preparation module, a waste-solidification module and an effluent-treatment module. The system was designed for remote installation and operation. Several special features for remotely handling radioactive materials were incorporated into the design. The equipment was initially assembled outside of a radiochemical cell to size and fabricate the connecting jumpers between the modules and to complete some preliminary design-verification tests. The equipment was then disassembled and installed in the radiochemical cell. When installation was completed the entire system was checked out with water and then with a nonradioactive simulated waste solution. The purpose of these operations was to start up the facility, find and solve operational problems, verify operating procedures and train personnel. The major problems experienced during these nonradioactive runs were plugging of the spray calciner nozzle and feed tank pumping failures. When these problems were solved, radioactive operations were started. This report describes the installation of this facility, its special remote design feature and the startup operations

  11. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  12. Performance assessment review guide for DOE low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Dodge, R.L.; Hansen, W.R.; Kennedy, W.E. Jr.; Layton, D.W.; Lee, D.W.; Maheras, S.T.; Neuder, S.M.; Wilhite, E.L.; Curl, R.U.; Grahn, K.F.; Heath, B.A.; Turner, K.H.

    1991-10-01

    This report was prepared under the direction of the Performance Assessment Peer Review Panel. The intent is to help Department of Energy sites prepare performance assessments that meet the Panel's expectations in terms of detail, quality, content, and consistency. Information on the Panel review process and philosophy are provided, as well as important technical issues that will be focused on during a review. This guidance is not intended to provide a detailed review plan as in NUREG-1200, Standard Review Plan for Review of a License Application for a Low-Level Radioactive Waste Disposal Facility (January 1988). The focus and intent of the Panel's reviews differ significantly from a regulatory review. The review of a performance assessment by the Panel uses the collective professional judgment of the members to ascertain that the approach taken the methodology used, the assumptions made, etc., are technically sound and adequately justified. The results of the Panel's review will be used by Department of Energy Headquarters in determining compliance with the requirements of DOE Order 5820.2A, ''Radioactive Waste Management.''

  13. National radioactive waste repository draft EIS. 2 volumes

    International Nuclear Information System (INIS)

    2002-01-01

    Most Australians benefit either directly or indirectly from the medical, industrial and scientific use of radioactive materials. This use produces a small amount of radioactive waste, including low level and short-lived intermediate level radioactive waste such as lightly contaminated soil, plastic, paper, laboratory equipment, smoke detectors, exit signs and gauges.This waste is temporarily stored at more than 100 urban and rural locations around Australia, much of it in buildings that were neither designed nor located for the long-term storage of radioactive material and that are nearing or have reached capacity. Storage locations include hospitals, research institutions, and industry and government stores. Storing such waste in many locations in non-purpose built facilities potentially poses greater risk to the environment and people than disposing of the material in a national, purpose-built repository where the material can be safely managed and monitored. The objectives of the national repository are to: 1. strengthen Australia's radioactive waste management arrangements by promoting the safe and environmentally sound management of low level and short-lived intermediate level radioactive waste 2. provide safe containment of these wastes until the radioactivity has decayed to background levels. To meet these objectives, it is proposed to construct a national near-surface repository at either the preferred site on the Woomera Prohibited Area (WPA) or either of the two nearby alternative sites. The facility is not intended for the disposal of radioactive ores from mining. A national store for long-lived intermediate level waste will not be co-located with the national repository, and would be subject to a separate environmental assessment process.One preferred and two alternative sites have been selected for the national repository, following an extensive site selection process. All three sites are located in northern South Australia in a region known as central

  14. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    Currently, many Member States are safely operating near surface disposal facilities and some are in the initial or advanced stages of planning geological repositories. As for other nuclear facilities and their operational phase, all activities associated with the disposal of radioactive waste need to be carefully planned and systematic actions undertaken in order to maintain adequate confidence that disposal systems will meet performance as well as prescribed safety requirements and objectives. The effective development and application of a management system (integrating requirements for safety, protection of health and the environment, security, quality and economics into one coherent system) which addresses every stage of repository development is essential. It provides assurance that the objectives for repository performance and safety, as well as environmental and quality criteria, will be met. For near surface repositories, a management system also provides the opportunity to re-evaluate existing disposal systems with respect to new safety, environmental or societal requirements which could arise during the operational period of a facility. The topic of waste management and disposal continues to generate public interest and scrutiny. Implementation of a formal management system provides documentation, transparency and accountability for the various activities and processes associated with radioactive waste disposal. This information can contribute to building public confidence and acceptance of disposal facilities. The objective of this report is to provide Member States with practical guidance and relevant information on management system principles and expectations for management systems that can serve as a basis for developing and implementing a management system for three important stages; the design, construction/upgrading and operation of disposal facilities. To facilitate the understanding of management system implementation at the different stages of a

  15. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  16. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  17. Conceptual aspects of fiscal interactions between local governments and federally-owned, high-level radioactive waste-isolation facilities

    International Nuclear Information System (INIS)

    Bjornstad, D.J.; Johnson, K.E.

    1981-01-01

    This paper examines a number of ways to transfer revenues between a federally-owned high level radioactive waste isolation facility (hereafter simply, facility) and local governments. Such payments could be used to lessen fiscal disincentives or to provide fiscal incentives for communities to host waste isolation facilities. Two facility characteristics which necessitate these actions are singled out for attention. First, because the facility is federally owned, it is not liable for state and local taxes and may be viewed by communities as a fiscal liability. Several types of payment plans to correct this deficiency are examined. The major conclusion is that while removal of disincentives or creation of incentives is possible, plans based on cost compensation that fail to consider opportunity costs cannot create incentives and are likely to create disincentives. Second, communities other than that in which the facility is sited may experience costs due to the siting and may, therefore, oppose it. These costs (which also accrue to the host community) arise due to the element of risk which the public generally associates with proximity to the transport and storage of radioactive materials. It is concluded that under certain circumstances compensatory payments are possible, but that measuring these costs will pose difficulty

  18. International co-operation for safe radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  19. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  20. Method of decontaminating radioactive metal wastes

    International Nuclear Information System (INIS)

    Miyaji, Nobuyoshi.

    1985-01-01

    Purpose: To completely prevent the surface contamination of an equipment and decrease the amount of radioactive wastes to be resulted. Method: The surfaces of vessels, pipeways or the likes of nuclear reactor facilities to be contaminated with radioactive materials are appended with thin plates of metals identical or different from the constituents of the surfaces so as to be releasable after use. The material and the thickness of the plates and the method of appending then are determined depending on the state of use of the appended portions. Since only the stripped plates have to be processed as radioactive wastes, the amount of wastes can be decreased and, since the scrap materials can be reused, it is advantageous in view of the resource-saving. (Sekiya, K.)

  1. Public involvement in radioactive waste management decisions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  2. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  3. Basic principles and criteria on radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Kropikova, S.

    1980-01-01

    The basic principles are stated of radiation protection of the workers at radioactive waste disposal facilities, which must be observed in the choice of radioactive waste disposal sites. The emergency programme, the operating regulations and the safety report are specified. Workplace safety regulations are cited. (author)

  4. Future prospects for the management of radioactive waste in greece

    International Nuclear Information System (INIS)

    Savidou, A.

    2015-01-01

    In Greece, there isn.t yet any decision for construction of a disposal facility. Since the predisposal management of radioactive waste should be aligned with the disposal solutions, the determination of the disposal options is essential for the selection of the technology needed for treatment and conditioning of the wastes. The scope of the present study is the investigation of the disposal options for Greece. Firstly, the study deals with the preliminary inventory as well as the classification of the existing radioactive waste and the prediction of the expected waste from decommissioning of the open pool type at 5 MW Greek Research Reactor (GRR-1). The existing radioactive waste includes the institutional waste from the operation of GRR-1 and associated facilities as well as orphan sources and other radioactive items collected in the frame of emergency by the Greek Atomic Energy Commission (GAEC) and kept at the interim storage of the National Centre for Scientific Research ''Demokritos'' NCSR ''D''. Based on the present inventory of radioactive waste, the establishment of a small scale and LILW geological repository seems to be the appropriate and most acceptable by the public disposal solution. (authors)

  5. Issues in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Ashbrook, A.W.

    1984-01-01

    All industry finds itself today enmeshed in a morass of regulation, political apathy and public antagonism when it comes to hazardous industrial waste. Our industry is a world-class leader on all three fronts. There are no disposal facilities in Canada for radioactive wastes and the prognosis for the future is bleak. As the industry gets older, more and more facilities will be closed and require decommissioning. New facilities require plans for the long-term management of their wastes. Indeed, one major public issue with the nuclear industry is the fate of the wastes produced. In looking at the situation in which we find ourselves today with respect to the long-term management of naturally-occurring low-level radioactive wastes, one must wonder where we are going in the future, and whether indeed is an end in sight

  6. Commissioning of the very low level radioactive waste disposal facility; Mise en service du Centre de stockage de dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  7. AECL experience with low-level radioactive waste technologies

    International Nuclear Information System (INIS)

    Buckley, L.P.; Charlesworth, D.H.

    1988-08-01

    Atomic Energy of Canada Limited (AECL), as the Canadian government agency responsible for research and development of peaceful uses of nuclear energy, has had experience in handling a wide variety of radioactive wastes for over 40 years. Low-level radioactive waste (LLRW) is generated in Canada from nuclear fuel manufacturers and nuclear power facilities, from medical and industrial uses of radioisotopes and from research facilities. The technologies with which AECL has strength lie in the areas of processing, storage, disposal and safety assessment of LLRW. While compaction and incineration are the predominant methods practised for solid wastes, purification techniques and volume reduction methods are used for liquid wastes. The methods for processing continue to be developed to improve and increase the efficiency of operation and to accommodate the transition from storage of the waste to disposal. Site-specific studies and planning for a LLRW disposal repository to replace current storage facilities are well underway with in-service operation to begin in 1991. The waste will be disposed of in an intrusion-resistant underground structure designed to have a service life of over 500 years. Beyond this period of time the radioactivity in the waste will have decayed to innocuous levels. Safety assessments of LLRW disposal are performed with the aid of a series of interconnected mathematical models developed at Chalk River specifically to predict the movement of radionuclides through and away from the repository after its closure and the subsequent health effects of the released radionuclides on the public. The various technologies for dealing with radioactive wastes from their creation to disposal will be discussed. 14 refs

  8. 1994 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1995-04-01

    This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985

  9. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  10. California's response to the Low-Level Radioactive Waste Policy Act of 1980: policy and progress

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1985-01-01

    The public and private corporations and institutions in California that use radioactive materials and generate low-level radioactive waste have played a major role in shaping and guiding California's response to the federal Low-Level Radioactive Waste Policy Act of 1980. Working together as the California Radioactive Materials Management Forum (CAL RAD FORUM), these organizations carry out legislative and public education programs with the objective of establishing, in California, a low-level radioactive waste disposal facility and maintaining access to existing disposal facilities in other states until the California facility is licensed and operating

  11. Fostering a Durable Relationship between a Radioactive Waste Management Facility and its Host Community. Adding Value through Design and Process. 2015 Edition

    International Nuclear Information System (INIS)

    2015-01-01

    In the field of long-term radioactive waste management, repository projects last from decades to centuries. Such projects will inevitably have an effect on the host community from the planning stage to the end of construction and beyond. The key to a long-lasting and positive relationship between a facility and its host community is ensuring that solutions are reached together throughout the entire process. The sustainability of radioactive waste management solutions can potentially be achieved through design and implementation of a facility that provides added cultural and amenity value, as well as economic opportunities, to the local community. This edition of Fostering a Durable Relationship between a Waste Management Facility and its Host Community: Adding Value through Design and Process highlights new innovations in siting processes and in facility design - functional, cultural and physical - from different countries, which could be of added value to host communities and their sites in the short to long term. These new features are examined from the perspective of sustainability, with a focus on increasing the likelihood that people will both understand the facility and its functions, and remember over very long timescales what is located at the site. This 2015 update by the NEA Forum on Stakeholder Confidence will be beneficial in designing paths forward for local or regional communities, as well as for national radioactive waste management programmes. Section 2 of this report summarises the value of developing a sustainable relationship between a community and a radioactive waste management facility through added cultural and amenity value. In Section 3, the report identifies design considerations - functional, cultural and physical - that may help facilities to fit into the community in a sustainable manner. Each design feature is illustrated with examples. Section 4 discusses the benefits that may be gained from the very process of planning radioactive

  12. Analysis of the Institutional Framework For Radioactive Waste Management in Indonesia

    Directory of Open Access Journals (Sweden)

    D.S. Wisnubroto

    2009-07-01

    Full Text Available The analysis of the infrastructure for radioactive waste management in Indonesia has been studied using several parameters, i.e. policy, regulatory authorities and their regulations, implementing organizations and financial system. By considering the international trends and the Indonesian program to utilize nuclear power, the infrastructure of radioactive waste management needs to be improved. The Act No. 10/1997 on Nuclear Energy for the future beneficence will have to be amended to incorporate several missing key points on waste management, such as definition of radioactive waste, disposal of Low and Intermediate Level Waste (LILW, and classification of waste. Full involvement of some important stakeholders, especially the State Ministry of Environment, on the radioactive waste management infrastructure is required since some radioactive waste is generated from non nuclear waste. Assigning full authority to the State Ministry of Environment for regulating radioactive waste generated by non nuclear facilities may be more effective, whereas BAPETEN is still holding onto control over the waste generated from nuclear facilities. In the near future, several regulations on clearance level, classification of waste, NORM/TENORM, and financial system are expected to be set up for urgent need. By considering the high risk for handling of radioactivity, including for transportation and storage, the liability or assurance of the safety for such activities must be accounted for. Finally, establishment of financial system for long term waste management in Indonesia needs to be implemented to ensure that the radioactive waste will not be the burden on future generations.

  13. Analysis of the Institutional Framework For Radioactive Waste Management in Indonesia

    International Nuclear Information System (INIS)

    Wisnubroto, D.S.

    2009-01-01

    The analysis of the infrastructure for radioactive waste management in Indonesia has been studied using several parameters, i.e. policy, regulatory authorities and their regulations, implementing organizations and financial system. By considering the international trends and the Indonesian program to utilize nuclear power, the infrastructure of radioactive waste management needs to be improved. The Act No. 10/1997 on Nuclear Energy for the future beneficence will have to be amended to incorporate several missing key points on waste management, such as definition of radioactive waste, disposal of Low and Intermediate Level Waste (LILW), and classification of waste. Full involvement of some important stakeholders, especially the State Ministry of Environment, on the radioactive waste management infrastructure is required since some radioactive waste is generated from non nuclear waste. Assigning full authority to the State Ministry of Environment for regulating radioactive waste generated by non nuclear facilities may be more effective, whereas BAPETEN is still holding onto control over the waste generated from nuclear facilities. In the near future, several regulations on clearance level, classification of waste, NORM/TENORM, and financial system are expected to be set up for urgent need. By considering the high risk for handling of radioactivity, including for transportation and storage, the liability or assurance of the safety for such activities must be accounted for. Finally, establishment of financial system for long term waste management in Indonesia needs to be implemented to ensure that the radioactive waste will not be the burden on future generations (author)

  14. Data base for radioactive waste management: review of low-level radioactive waste disposal history

    International Nuclear Information System (INIS)

    Clancy, J.J.; Gray, D.F.; Oztunali, O.I.

    1981-11-01

    This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 1 is a summary and analysis of the history of low level waste disposal at both commercial and government disposal facilities

  15. Prediction of radionuclide invention for low-and intermediate-level radioactive waste by considering concentration limit of waste package

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Min Seong; Jeong, Noh Gyeon; Park, Jin Beak [Korea Radioactive Waste Agency(KORAD), Daejeon (Korea, Republic of)

    2017-03-15

    The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

  16. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  17. Midwestern High-Level Radioactive Waste Transportation Project

    International Nuclear Information System (INIS)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE's development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE's Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade

  18. The social and special effects of siting a low-level radioactive waste disposal facility in rural Texas

    International Nuclear Information System (INIS)

    Murdock, S.H.; Hamm, R.R.

    1987-01-01

    As part of its assessment of the impacts of a low-level radioactive waste disposal facility in Hudspeth County, the Texas Low-Level Radioactive Waste Disposal Authority (TLLRWDA) sponsored an independent study of the social and special impacts of the facility. These impacts include ''standard'' social impacts (such as impacts on social structures and attitudes, values and perceptions and ''special'' social impacts (such as fear, anxiety, concerns related to equity, the health of future generations, etc.). This paper reports the results of this study. Personal interviews with 71 community leaders and 96 randomly selected county residents were conducted during the summer of 1986. The results suggest that the major concern relates to the contamination of ground water, but that suspicion about the equity of the siting process and about the safe management of wastes is extensive, even among the most knowledgeable respondents. Mitigation concerns center on health and safety issues for residents and on potential forms of mitigation for governmental jurisdictions for leaders. Responses were similar for leaders and residents and for persons in different parts of the county

  19. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  20. Extended storage for radioactive wastes: relevant aspects related to the safety

    International Nuclear Information System (INIS)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F.

    2013-01-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man

  1. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    International Nuclear Information System (INIS)

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement

  2. Better safe than sorry: Increasing safety in radioactive waste management

    International Nuclear Information System (INIS)

    Gaspar, Miklos; Mutluer, Adem

    2015-01-01

    Abderrahim Bouih used to be worried about space. In charge of managing Morocco’s radioactive waste since 2006, he had long projected that the country’s sole radioactive waste facility would fill up by 2019. Thanks to a new methodology he and his colleagues learned through an IAEA project, they can now dismantle smoke detectors, lightning rods and other waste that contains radioactive material, safely separating the radioactive components from the metal, and significantly reducing the amount of radioactive waste they need to store. “We have condensed 60 drums of waste into just two,” said Bouih, Head of the Radioactive Waste Collection, Treatment and Storage Unit at the Moroccan National Centre for Nuclear Energy, Sciences and Technology. “This means our site won’t fill up for another 16 years.”

  3. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2004-01-01

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  4. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  5. 1996 annual report on low-level radioactive waste management progress. Report to Congress

    International Nuclear Information System (INIS)

    1997-11-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal

  6. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  7. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.

    Science.gov (United States)

    Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon

    2011-12-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  8. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste

    International Nuclear Information System (INIS)

    Wilson, James C; Towler, George; Thorne, Michael C; Norris, Simon

    2011-01-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source–pathway–receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  9. Evaluation on construction quality of pit filler material of cavern type radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Takechi, Shin-ichi; Yokozeki, Kosuke; Shimbo, Hiroshi; Terada, Kenji; Akiyama, Yoshihiro; Yada, Tsutomu; Tsuji, Yukikazu

    2014-01-01

    The pit filler material of the underground cavern-type radioactive waste disposal facility, which is poured directly around the radioactive waste packages where high temperature environment is assumed by their decay heat, is concerned to be adversely affected on the filling behavior and its hardened properties. There also are specific issues that required quality of construction must be achieved by unmanned construction with remote operation, because the pit filler construction shall be done under radiation environment. In this paper, the mix proportion of filler material is deliberated with filling experiments simulating high temperature environment, and also the effect of temperature on hardened properties are confirmed with high temperature curing test. Subsequently, the feasibility of unmanned construction method of filler material by pumping, and by movable bucket, are comparatively discussed through a real size demonstration. (author)

  10. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    International Nuclear Information System (INIS)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment

  11. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  12. Stakeholder opinions on the use of the added value approach in siting radioactive waste management facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Matti [University of Tampere, School of ManagementTampere (Finland); Richardson, Phil [Galson Sciences Ltd, Oakham (United Kingdom)

    2013-07-01

    In some countries nuclear waste facility siting programs include social and economic benefits, compensation, local empowerment and motivation measures and other incentives for the potential host community. This can generally be referred to as an 'added value approach'. Demonstration of the safety of a repository is seen as a precondition of an added value approach. Recently much focus has been placed on studying and developing public participation approaches but less on the use of such incentive and community benefit packages, although they are becoming a more common element in many site selection strategies for nuclear waste management facilities. The primary objective of this paper is to report on an ongoing study of stakeholders' opinions of the use of an added value approach in siting a radioactive waste facility in the Czech Republic, Poland and Slovenia. The paper argues that an added value approach should adapt to the interests and needs of stakeholders during different stages of a siting process. The main question posed in the study is as follows: What are the measures which should be included in 'added value approach' according to the stakeholders? The research data consists of stakeholders' responses to a survey focusing on the use of added value (community benefits) and incentives in siting nuclear waste management facilities. The survey involved use of a questionnaire developed as part of the EU-funded IPPA* project in three countries: the Czech Republic, Poland and Slovenia. (* Implementing Public Participation Approaches in Radioactive Waste Disposal, FP7 Contract Number: 269849). The target audiences for the questionnaires were the stakeholders represented in the national stakeholder groups established to discuss site selection for a nuclear waste repository in their country. A total of 105 questionnaires were sent to the stakeholders between November 2011 and January 2012. 44 questionnaires were returned, resulting in a

  13. Stakeholder opinions on the use of the added value approach in siting radioactive waste management facilities

    International Nuclear Information System (INIS)

    Kojo, Matti; Richardson, Phil

    2013-01-01

    In some countries nuclear waste facility siting programs include social and economic benefits, compensation, local empowerment and motivation measures and other incentives for the potential host community. This can generally be referred to as an 'added value approach'. Demonstration of the safety of a repository is seen as a precondition of an added value approach. Recently much focus has been placed on studying and developing public participation approaches but less on the use of such incentive and community benefit packages, although they are becoming a more common element in many site selection strategies for nuclear waste management facilities. The primary objective of this paper is to report on an ongoing study of stakeholders' opinions of the use of an added value approach in siting a radioactive waste facility in the Czech Republic, Poland and Slovenia. The paper argues that an added value approach should adapt to the interests and needs of stakeholders during different stages of a siting process. The main question posed in the study is as follows: What are the measures which should be included in 'added value approach' according to the stakeholders? The research data consists of stakeholders' responses to a survey focusing on the use of added value (community benefits) and incentives in siting nuclear waste management facilities. The survey involved use of a questionnaire developed as part of the EU-funded IPPA* project in three countries: the Czech Republic, Poland and Slovenia. (* Implementing Public Participation Approaches in Radioactive Waste Disposal, FP7 Contract Number: 269849). The target audiences for the questionnaires were the stakeholders represented in the national stakeholder groups established to discuss site selection for a nuclear waste repository in their country. A total of 105 questionnaires were sent to the stakeholders between November 2011 and January 2012. 44 questionnaires were returned, resulting in a

  14. The state of the art on the radioactive metal waste recycling technologies

    International Nuclear Information System (INIS)

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  15. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  16. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  17. Policies and strategies for radioactive waste management

    International Nuclear Information System (INIS)

    2009-01-01

    A policy for spent fuel and radioactive waste management should include a set of goals or requirements to ensure the safe and efficient management of spent fuel and radioactive waste in the country. Policy is mainly established by the national government and may become codified in the national legislative system. The spent fuel and radioactive waste management strategy sets out the means for achieving the goals and requirements set out in the national policy. It is normally established by the relevant waste owner or nuclear facility operator, or by government (institutional waste). Thus, the national policy may be elaborated in several different strategy components. To ensure the safe, technically optimal and cost effective management of radioactive waste, countries are advised to formulate appropriate policies and strategies. A typical policy should include the following elements: defined safety and security objectives, arrangements for providing resources for spent fuel and radioactive waste management, identification of the main approaches for the management of the national spent fuel and radioactive waste categories, policy on export/import of radioactive waste, and provisions for public information and participation. In addition, the policy should define national roles and responsibilities for spent fuel and radioactive waste management. In order to formulate a meaningful policy, it is necessary to have sufficient information on the national situation, for example, on the existing national legal framework, institutional structures, relevant international obligations, other relevant national policies and strategies, indicative waste and spent fuel inventories, the availability of resources, the situation in other countries and the preferences of the major interested parties. The strategy reflects and elaborates the goals and requirements set out in the policy statement. For its formulation, detailed information is needed on the current situation in the country

  18. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  19. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  20. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.

    1992-01-01

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5