WorldWideScience

Sample records for radioactive substances act

  1. Radioactive Substances Act 1948

    International Nuclear Information System (INIS)

    1948-01-01

    This Act regulates the use of radioactive substances and radiation producing devices in the United Kingdom. It provides for the control of import, export, sale, supply etc. of such substances and devices and lays down the safety regulations to be complied with when dealing with them. (NEA) [fr

  2. Charging scheme for Radioactive Substances Act regulation 1998-1999

    International Nuclear Information System (INIS)

    1998-03-01

    The Environment Act 1995 provides for the Environment Agency ('the Agency') to recover the costs and expenses incurred by the Agency and by the Minister of Agriculture, Fisheries and Food (MAFF) in carrying out their functions in relation to the Radioactive Substances Act 1993 ('the Act'). The Act deals with the keeping and use of radioactive substances, and with the accumulation and disposal of radioactive waste

  3. Radioactive Substances Act 1960

    International Nuclear Information System (INIS)

    1960-01-01

    This Act regulates the keeping and use of radioactive material and makes provision for the disposal and storage of radioactive waste in the United Kingdom. It provides for a licensing system for such activities and for exemptions therefrom, in particular as concerns the United Kingdom Atomic Energy Authority. The Act repeals Section 4(5) of the Atomic Energy Authority Act, 1954 which made temporary provision for discharge of waste on or from premises occupied by the Authority. (NEA) [fr

  4. Radioactive Substances Act 1960. Keeping and use of radioactive materials; list of registrations in England and Wales issued under the Radioactive Substances Act 1960 for the keeping and use of radioactive materials and mobile

    International Nuclear Information System (INIS)

    1989-05-01

    Through the Radioactive Substances Act 1960 (RSA 60), Her Majesty's Inspectorate of Pollution (Radioactive Substances) (HMIP) exercises control, on behalf of the Secretary of State for the Environment, over the keeping and use of radioactive material and the accumulation and disposal of radioactive waste in England. HMIP also provides technical advice to the Secretary of State for Wales in connection with the enforcement of RSA 60 in Wales. Registrations under RSA 60 for the keeping and use of radioactive materials in England and Wales are issued respectively by the Secretaries of State for the Environment and Wales, following careful assessment of the radiological consequences for members of the public. Registrations impose strict limits and conditions and premises and apparatus are subject to scrutiny by HMIP Inspectors to ensure compliance. A list contains names and addresses of those registered in England and Wales for the keeping and use of radioactive materials and mobile apparatus

  5. Radioactive Substances Act, 1957, No 5

    International Nuclear Information System (INIS)

    1982-01-01

    This Act as amended regulates the possession, sale and use of radioactive materials and irradiating apparatus. It sets up a Radiological Advisory Council to advise the competent authorities on questions within the scope of the Act, also with a view to radiation protection. The Council's rules of procedure are laid down. The Act also provides that, subject to prescribed exemptions, no person may hold, use or sell radioactive materials without a licence. (NEA) [fr

  6. An Act to regulate the keeping and use of radioactive substances, irradiating apparatus and certain electronic products, and for matters incidental thereto (No. 440 of 1975)

    International Nuclear Information System (INIS)

    1975-01-01

    This Radiation Safety Act 1975 which applies to radioactive substances and irradiating apparatus is a framework Act governing activities involving their possession and applications including their disposal. It makes provision for the duties and powers of the authorities responsible for administering the Act (the Radiological Council), licensing requirements and exemptions therefrom, registration of such substances and apparatus, inspection procedures and liability under the Act. The Radioactive Substances Act 1954, the Radioactive Substances Act Amendment Acts 1960 and 1964 are repealed. (NEA) [fr

  7. An interpretation of schedule 1 of the Radioactive Substances Act 1993 and related issues

    International Nuclear Information System (INIS)

    Hill, M.; Wakerley, M.W.

    2000-09-01

    Schedule 1 of the UK's Radioactive Substances Act 1993 was originally Schedule 3 of the 1960 Act of the same name. It is possible that different methods are currently being employed to interpret how Schedule 1 should be used. This report provides an interpretation and guidance on this and related issues. It is primarily for technical specialists already familiar with the workings of the Act. This report covers the period 1999/2000

  8. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1982-04-01

    The law relating to atomic energy and radioactive substances in the United Kingdom is summarized under the following headings: the Common Law; legislation (Atomic Energy Act 1946; Radioactive Substances Acts 1948 and 1960; Electricity (Amendment) Act 1961; Nuclear Installations Act 1965 and 1969 (and subordinate legislation); Secretary of State for Trade and Industry Order 1970; Radiological Protection Act 1970 (as amended); Air Navigation (Restriction of Flying)(Atomic Energy Establishments) Regulations 1981; Nuclear Safeguards and Electricity (Finance) Act 1978; legislation relating to the UK Atomic Energy Authority); Regulations under the Factories Act 1961; Regulations relating to educational establishments; Regulations and Orders relating to food and medicines; Regulations, etc., affecting the transport of radioactive materials; Regulations under the Social Security Act 1975; control of import and export; the Euratom Treaty; important non-statutory Codes of Practice, etc.; international conventions, etc., relating to the peaceful use of atomic energy and radioactive substances, in which the United Kingdom is interested; foreign legislation. (U.K.)

  9. Applicability of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) to releases of radioactive substances

    International Nuclear Information System (INIS)

    Miller, S.R.

    1987-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), commonly called Superfund, provided a $1.6 billion fund (financed by a tax on petrochemical feedstocks and crude oil and by general revenues) for the cleanup of releases of hazardous substances, including source, special nuclear or byproduct material, and other radioactive substances, from mostly inactive facilities. The US Environmental Protection Agency (EPA) is authorized to require private responsible parties to clean up releases of hazardous substances, or EPA, at its option, may undertake the cleanup with monies from the Fund and recover the monies through civil actions brought against responsible parties. CERCLA imposes criminal penalties for noncompliance with its reporting requirements. This paper will overview the key provisions of CERCLA which apply to the cleanup of radioactive materials

  10. The draft Radioactive Substances (Natural Gas) Exemption Order (Northern Ireland) 2002. Consultation paper

    International Nuclear Information System (INIS)

    2002-01-01

    Natural gas, and products made from it such as liquefied petroleum gas, may contain small amounts of naturally occurring radioactive substances. The use, accumulation and disposal of radioactive substances by organisations is regulated by the Radioactive Substances Act 1993 (RSA 93) and in Northern Ireland the regulatory authority is the Chief Radiochemical Inspector in the Environment and Heritage Service, which is part of the Department of the Environment (the Department). RSA 93 ensures the control of radioactive wastes by requiring registration of use of radioactive substances and authorisation of disposal of radioactive waste. It sets out the levels at which certain naturally occurring radioelements eg. uranium in gases, liquids and solids, and radon in gases, should be regarded as radioactive

  11. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  12. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1981-04-01

    A summary is given of the law relating to atomic energy and radioactive substances revised as at 31 March 1981 under the following headings: (1) The common law. (2) The legislation. (3) Regulations under the factories act 1961. (4) Regulations relating to educational establishments. (5) Regulations and orders relating to food and medicines. (6) Regulations, rules, etc. affecting the transport of radioactive materials. (7) Regulations under the social security act 1975. (8) Control of import and export. (9) The Euratom treaty. (10) Important nonstatutory codes of practice, etc.. (11) International conventions, regulations, etc. relating to the peaceful use of atomic energy and radioactive substances, in which the United Kingdom is interested. (12) Foreign legislation. (U.K.)

  13. Summary of the law relating to atomic energy and radioactive substances as at March 1979

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1979-01-01

    This summary is intended to be a 'signpost' to the relevant law in the United Kingdom, but does not cover any aspect in detail. It falls under the following headings: common law; legislation (Atomic Energy Act 1946 and subordinate legislation; Radioactive Substances Act 1948 and subordinate legislation; Radioactive Substances Act 1960; Electricity (Amendment) Act 1961; Nuclear Installations Acts 1965 and 1969 and subordinate legislation; the Secretary of State for Trade and Industry Order 1970; Radiological Protection Act 1970 as amended by the Health and Safety at Work etc. Act 1974; Air Navigation (Restriction of Flying)(Atomic Energy Establishments) Regulations 1976; Nuclear Safeguards and Electricity (Finance) Act 1978; legislation relating to the United Kingdom Atomic Energy Authority); regulations under the Factories Act 1961; regulations relating to educational establishments; regulations and orders relating to food and medicines; regulations, rules etc. affecting the transport of radioactive materials; regulations under the Social Security Act 1975; control of import and export; the Euratom Treaty; important non-statutory codes of practice etc.; international conventions, regulations etc. relating to the peaceful use of atomic energy and radioactive substances, in which the United Kingdom is interested; foreign legislation. (U.K.)

  14. SI 1985 No. 1048 - The Radioactive Substances (Luminous Articles) Exemption Order 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Order, which came into force on 17 September 1985, is concerned with exemptions and exclusions under the Radioactive Substances Act 1960 in respect of radioactive luminous instruments and indicators. (NEA) [fr

  15. Code of practice for the design of laboratories using radioactive substances for medical purposes

    International Nuclear Information System (INIS)

    1981-01-01

    This Code has been prepared to supplement the radioactive substances acts and regulations implemented in Australia. It is intended as a guide to safe practices but is not legislation. Areas covered include siting, layout, surface finishes, laboratory furniture and fittings, ventilation, containment and release of airborne effluent and storage of radioactive substances

  16. The Medicines (Radioactive Substances) Order 1978 (S.I. no.1004)

    International Nuclear Information System (INIS)

    1978-01-01

    This Order extends the application of specified provisions of the Medicines Act 1968 to certain articles and substances that are, contain or generate radioactive substances. These provisions include section 60 of that Act which enables regulations to be made prohibiting the sale, supply or administration of medicinal products specified in the regulations except by practitioners holding a certificate issued for the purposes of section 60. The Order also modifies the definition of 'administer' for the purposes of the Order [fr

  17. Radioactive substances monitoring programme. Report for 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The Radioactive Substances Act 1993 provides for controls to be exercised over the use and keeping of radioactive materials and the accumulation and disposal of radioactive wastes. The Environment Agency (the Agency) has been responsible for administration and enforcement of the Act in England and Wales since its formation on 1 April 1996. Prior to this date the work was undertaken by Her Majesty's Inspectorate of Pollution (HMIP). In support of its regulatory functions HMIP commissioned independent monitoring. This report presents the results from monitoring undertaken in 1995. The 1995 HMIP programme required operators of certain sites to provide samples of their liquid effluents for independent radiochemical analysis. The results provide checks on site operators' returns and insights into their quality assurance (QA) procedures and analytical techniques. The analyses were undertaken by the Laboratory of the Government Chemist (LGC) at its laboratories in Teddington, Middlesex. The programme also included checks on solid low level radioactive waste destined for land disposal at the site operated by British Nuclear Fuels plc (BNFL) at Drigg in Cumbria. (author)

  18. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1983-01-01

    This summary is an updated version of a previous revision of the summary of the United Kingdom's legislation on atomic energy and reviews the main texts in that field. Reference is made to the regulations on atomic energy, nuclear installations, radioactive substances, transport of such substances, radiation protection etc. The Energy Act 1983 amends the third party liability provisions of the nuclear installations Act 1965 in particular by raising the limits of compensation for nuclear damage. (NEA) [fr

  19. Environmental safety of the disposal system for radioactive substance-contaminated wastes

    International Nuclear Information System (INIS)

    Oosako, Masahiro

    2012-01-01

    In accordance with the full-scale enforcement of 'The Act on Special Measures concerning the Handling of Radioactive Pollution' in 2012, the collective efforts of entire Japan for dealing with radioactive pollutants began. The most important item for dealing with radioactive pollution is to control radioactive substances that polluted the global environment and establish a contaminated waste treatment system for risk reduction. On the incineration system and landfill disposal system of radioactive waste, this paper arranges the scientific information up to now, and discusses the safety of the treatment / disposal systems of contaminated waste. As for 'The Act on Special Measures concerning the Handling of Radioactive Pollution,' this paper discusses the points of the Act and basic policy, roadmap for the installation of interim storage facilities, and enforcement regulations (Ordinance of the Ministry of the Environment). About the safety of waste treatment system, it discusses the safety level of technical standards at waste treatment facilities, safety of incineration facilities, and safety of landfill disposal sites. (O.A.)

  20. Abstract of the law relating to the nuclear industry and radioactive substances

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This summary of the law relating to Atomic Energy and Radioactive substances as at March 1980 is divided into sections headed: (1) The common law. (2) Legislation. (3) Regulations under the Factories Act 1961. (4) Regulations, rules etc. affecting the transport of radioactive materials. (5) The Euratom treaty. (U.K.)

  1. Radioactive Substances and Irradiating Apparatus Regulations 1962-1979 (South Australia)

    International Nuclear Information System (INIS)

    1980-01-01

    These regulations are a consolidation of regulations made under the Health Act 1935-1978, which cover such topics as licensing, registration and record-keeping procedures, prevention of injury by radiation and methods of storage, labelling, transport and packaging of radioactive substances. (NEA) [fr

  2. A method and apparatus for preparing the storage of noxious substances, in particular radioactive substances

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to the storage of radioactive substances. It deals with a method for storing a substance, in particular a noxious or radioactive substance, comprising trapping said substance in a solid substance by bombarding said solid substance with ions of the above substance, so that the latter reaches a certain concentration level in the solid substance. This is applicable to the storage of radioactive wastes [fr

  3. A container for containing and protecting a radioactive substance

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a container adapted to contain and protect a radio-active substance. That container comprises a heat sensitive device for automatically (and, preferably, sealingly) enclosing and protecting the radio-active substance, should room temperature reach a predetermined level. Thus, the radio-active substance cannot escape in case of fire. Preferably, a bolt is also provided, capable of being actuated at a temperature slightly above the temperature actuating the protective device so as to maintain the radioactive substance protected. This can be applied to containers containing a radio-active substance such as polonium 210 [fr

  4. Longitudinal dispersion of radioactive substances in Federal waterways

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.J. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany); Speer, W.; Luellwitz, T.; Cremer, M.; Tolksdorf, W.

    2007-08-15

    In the context of radioactivity monitoring in German Federal Waterways (BWStr) by the Federal Institute of Hydrology (BfG) according to the Precautionary Radiation Protection Act (StrVG), the prediction of the dispersion of radioactive substances in water is one of the key tasks. The aim is the forecasting of the longitudinal dispersion of concentrations of soluble hazardous substances in flowing water. These predictions are based on the so-called dispersion tests with tritium as a tracer that the BfG has performed since 1980. Characteristic parameters like discharge-dependent flow velocities, dispersion and elimination constants related to emission sources or selected river sections are determined. They will serve as basis for a mathematical model to forecast discharge-dependent flow velocities, expected impact times, concentration maxima, and the duration of critical increases in concentrations. In the following, the results obtained till now from three investigation campaigns on the River Weser and its source rivers Werra and Fulda are described. (orig.)

  5. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1983-04-01

    Intended as a signpost to the relevant law no aspect is covered in detail but a full summary is given. For further details reference has to be made to Acts or regulations themselves. The summary covers the Common Law, the laws in force, regulations under the Factories Act 1961, regulations and orders relating to food and medicines, those concerned with the transport of radioactive materials, regulations under the Social Security Act 1975, Control of Import and Export, the Euratom treaty, important non-statutory codes of practice etc., international conventions, regulations etc. relating to the peaceful use of atomic energy and radioactive substances in which the UK is interested and finally, foreign legislation. The details have been revised as at 31 March 1983. (U.K.)

  6. Transport of radioactive substances; Der Transport radioaktiver Stoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  7. The existing state of sewage sludge containing radioactive substances

    International Nuclear Information System (INIS)

    Shirasaki, Makoto; Hisaoka, Natsuki

    2012-01-01

    Radioactive substances were discharged over a wide range from the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company. As a result, in sewer system, especially in the combined sewer system that jointly collects rainwater and sewage, radioactive substances accumulated on the surface of urban areas were transferred together with rainwater to sewage plants and accumulated there. In the process of further treatment, radioactive substances were transferred to and concentrated in sewage sludge, and a high concentration of radioactive substances were detected in incineration ash. For this reason, some sewage plants still continuously store dewatered sludge, incinerator ash, etc. This paper introduces the current state of waste treatment from the published data from each local government in Tohoku and Kanto districts. As for the sewer, which is essential as a lifeline, the Ministry of Land, Infrastructure, Transport and Tourism, together with the Japan Sewage Works Association, established 'Investigative Commission on Radioactive Substance Countermeasures in Sewerage System.' This group grasped the damage situation due to radioactive substances, and summarized the measures to be taken by sewage managers, such as the storage method for sewage sludge containing radioactive substances as well as the method for the volume reduction of sewage sludge. (O.A.)

  8. An action plan for radioactive substances regulation

    International Nuclear Information System (INIS)

    1998-01-01

    This document sets out an action plan for the Agency's Radioactive Substances Regulation function. Our vision is to secure continuous improvement in the protection of the public and the environment from the harmful effects of radioactive substances. Radioactive Substances Regulation will work with others to realise this vision and contribute to the Agency's role in achieving sustainable development. We will also work to ensure that the Agency achieves its objectives in an efficient, consistent and integrated way. The main elements of our Action Plan are as follows: establishing indicators of sustainability and the means and methods of monitoring them; establishing performance indicators and a programme of targets and objectives to be achieved; establishing a database of all premises subject to RSA93 and to use it for work planning, resource targeting, and improvement to radioactive waste management; provision of systems of procedures and technical guidance to ensure nationally consistent and cost- effective regulation; establishing systems to audit the implementation of the procedures and guidance; ensuring quality of regulation by defining technical competencies of inspectors and the training programmes to secure them; an R and D programme targeted on improving radioactive waste management and radioactive substances regulation; and full and effective participation in development of national policy

  9. Access device for transferring toxic or radioactive substances between a flanged flask and a containment

    International Nuclear Information System (INIS)

    Winnett, G.F.

    1980-01-01

    This invention concerns the transfer of toxic or radioactive substances between a containment and a flask in which such substances are transported. When toxic or radioactive substances are being transferred, it is important to ensure that such substances cannot excape into the surrounding atmosphere and, preferably, the appliance utilized has to be capable of making a misuse impossible, whether accidental or calculated. The flask to which this invention applies is of the type comprising lugs, near its open ends, which act in combination with a groove made around an access opening to hold and maintain the flask in position against the wall of the containment, so that its open end is aligned with an access opening provided in the containment wall [fr

  10. Collection of ministerial circulars on the transport of radioactive substances

    International Nuclear Information System (INIS)

    1977-10-01

    This publication by the CNEN reproduces the full texts of Ministerial Circulars on the transport by road, rail, air and sea of radioactive substances, made in implementation of Act No. 1860 on the peaceful uses of nuclear energy of 1962, as amended by Decree No. 1704 of 1965, laying down that regulatory standards should be elaborated for such transport in accordance with the Euratom basic radiation protection standards and the IAEA Regulations on the Safe Transport of Radioactive Materials. These Circulars are set out in chronological order with reference to the national and international provisions under which they were made. (NEA) [fr

  11. Sim and Ritchie's summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    Grazebrook, D.; Turner, M.

    1984-12-01

    The law is summarised under the headings: the Common Law; the Legislation; Regulations under the Factories Act 1961; Regulations relating to educational establishments; Regulations and Orders relating to food and medicines; Regulations, Rules, etc. affecting the transport of radioactive materials; Regulations under the Social Security Act 1975; control of import and export; the Euratom Treaty; important non-statutory Codes of Practice, etc.; international Conventions, Regulations, etc. relating to the peaceful use of atomic energy and radioactive substances, in which the United Kingdom is interested; foreign legislation. (U.K.)

  12. Monitoring programme. Radioactive substances - report for 1994

    International Nuclear Information System (INIS)

    1995-09-01

    The monitoring of radioactive substances in the vicinity of nuclear sites in the United Kingdom by Her Majesty's Inspectorate of Pollution, acts as an independent check on the operator's returns, on the environmental impact of radioactive waste disposal at authorised sites and on radiation doses to critical groups of the public. In 1994 the programme included the analysis of 160 effluent samples, the analysis of low-level solid radioactive waste destined for the British Nuclear Fuels site at Drigg, and the analysis of a total of 290 environmental samples and direct monitoring at over 150 locations. The materials monitored are those that might result in exposure of the public to radiation by non-food pathways and complements monitoring by the Ministry of Agriculture, Food and Fisheries. Radiation exposures by these pathways which may have been incurred in 1994 are similar to those in previous years and, in all cases, fall substantially below the International Commission on Radiological Protection's recommended principal dose limit of 1mSv per year. (UK)

  13. Act No. 84 amending the decision of the Ministry of Communications on Transport of Dangerous Substances by Road

    International Nuclear Information System (INIS)

    1987-01-01

    This Act amends Decision No. 610 of 1978 of the Ministry of Communications on the Transport of Dangerous Substances by Road, which also covers radioactive substances; the amendments in their respect set out in the Annexes are of a technical nature. The Act entered into force on 1 April 1987. (NEA) [fr

  14. HMIP Monitoring Programme radioactive substances report for 1990

    International Nuclear Information System (INIS)

    1992-03-01

    The programme of environmental monitoring of radioactive substances in England and Wales during 1990, was completed satisfactorily under the auspices of Her Majesty's Inspectorate of Pollution. The programme concentrates on monitoring activity levels in environmental materials which might result in radiation exposure of the public from non-food pathways. The programme acts as a check on site operator's returns and provides independent data on the environmental impact of authorised disposals of radioactive wastes and on radiation doses to critical groups of the public. This report presents the data from this continuing monitoring programme. The monitoring was carried out at installations controlled by British Nuclear Fuels PLC, Nuclear Electric the United Kingdom Atomic Energy Authority, Amersham International PLC, the Ministry of Defence, at two non-nuclear sites which use tritium, the works of Capper Pass Ltd who carry out lead smelting and at several landfill sites where controlled buried of low-level radioactive wastes is carried out. (Author)

  15. Radioactive Substances Regulations, 1959 under the Radioactive Substances Act 1957

    International Nuclear Information System (INIS)

    1983-01-01

    These Regulations as amended lay down maximum permissible concentrations and doses and prescribe radiation protection measures for personnel. They provide for the licensing procedures for radioactive materials and irradiating apparatus and the conditions to be complied with for their handling, packaging, transport and disposal. The Schedules to the Regulations contain tables of maximum permissible radionuclide concentrations, models of licence application forms and labels. (NEA) [fr

  16. The administration of radioactive substances

    International Nuclear Information System (INIS)

    Bourdillon, P.J.; Godfrey, B.E.; O'Brien, R.

    1983-01-01

    A brief history is given of the evolution of a system to approve the licensing of doctors and dentists to use radioactive medicinal products in man. Currently, the Administration of Radioactive Substances Advisory Committee (ARSAC) is appointed by UK Health Ministers to advise them on the granting, renewal, suspension, revocation and variation of certificates. The type of information requested on the application form for a certificate is outlined. (UK)

  17. Proposals for the Radioactive Substances (Basic Safety Standards) (England and Wales) Regulations 2000 and the Radioactive Substances (Basic Safety Standards) (England and Wales) Direction 2000. Consultative document

    International Nuclear Information System (INIS)

    2000-01-01

    This document contains proposals for changes to the Radioactive Substances Act 1993 (RSA 93) and proposals for a Direction to be given to the Environment Agency in order to implement aspects of the European Directive 96/29/Euratom concerned with the control of radioactive waste. The Directive lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation. With the Government pledged to making government more accessible and responsive, an important feature of this approach is effective consultation with all interested organisations. This leads to more realistic and robust proposals, which is particularly important when dealing with proposed legislation. In March this year, the Government published a consultation paper 'The Radioactive Substances Act 1993: Implementing the Revised Basic Safety Standards Directive Euratom 96/29.' This sought comments on the basic principles for change - including the setting of levels of radioactivity below which radioactive material should be considered outside the framework of regulatory control. This document forms the second stage of the consultation process with the aim of gathering views on the proposed legal instruments to implement the Directive. This document: explains the background to the proposed regulations (paragraphs 8-13); summarises the results of the consultation on principles (paragraphs 14-24); describes the proposed changes (paragraphs 25-36); includes draft Regulations (paragraphs 27-29); includes a draft Direction to the Environment Agency (paragraphs 30-36); describes the next steps (paragraphs 37-39); includes a draft Regulatory Impact Assessment (paragraphs 40-41). In general, the devolved administrations in Scotland, Wales and Northern Ireland have assumed responsibility for environmental issues and hence management of radioactive waste policies and legislation affecting their respective countries. However, this

  18. Code of Practice for the safe transport of radioactive substances 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This Federal Code revises an earlier Code on the same subject issued in 1982 and was formulated under the Environment Protection (Nuclear Codes) Act 1978. The purpose of the Code is to establish uniform safety standards, applicable throughout the Commonwealth of Australia, to provide for the protection of persons and the environment, against any dangers associated with the transport of radioactive substances. The Code uses as a basis the IAEA Regulations for the Safe Transport of Radioactive Materials. This new edition takes into account the 1985 Edition of the Regulations incorporating the 1988 Supplement and provides, furthermore, that radiation protection standards will also be subject to recommendations of the Australian National Health and Medical Research Council [fr

  19. Radiological consequences of radioactive substances in building materials

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1982-01-01

    A review of radiological consequences of radioactive substances in building materials is given. Where the other contributing papers are dealing with technical problems and measuring techniques, this paper is going beyond the term dose and is considering the risk by radioactive substances in building materials in relation to conventional risks. The present state of international standards is also discussed. If a limit of 1 mSv is adopted, it is shown that this limit is just met at present conditions. (Author) [de

  20. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  1. Factories Act 1961, Ionizing Radiations (Unsealed Radioactive Substances) Regulations 1968, Certificate of Approval No.1 (General)

    International Nuclear Information System (INIS)

    1969-01-01

    Under the Ionising Radiations (Unsealed Radioactive Substances) Regulations No. 780 of 1968, the Chief Inspector of Factories has wide powers to ensure the protection of workers. By this Certificate he approved, for the purpose of measuring radiation doses, any radiation dosemeter, based on the phenomenon of radiation-induced thermoluminescence, supplied by an approved laboratory. (NEA) [fr

  2. Radiation Safety Act 1975 - No 44 of 1975

    International Nuclear Information System (INIS)

    1975-01-01

    This Act regulates the use of radioactive substances and irradiating apparatus, including particle accelerators as well as certain specified electronic products. The Act lays down a licensing and registration system for such substances and apparatus; it sets up a Radiological Council to administer the Act and to advise the Minister responsible for public health on matters of radiation safety. The radioactive Substances Act 1954 and the Amending Acts of 1960 and 1964 are repealed. (NEA) [fr

  3. Act No. 68 of 17 March 1975 amending Act No. 93 of 20 February 1958 and successive amendments thereto, on compulsory insurance of physicians against disease or injury caused by X-rays and radioactive substances

    International Nuclear Information System (INIS)

    1975-01-01

    This Act amends Sections 8, 11 and 12 of Act No. 93 of 20th February 1958, previously amended by Act No. 47 of 30th January 1968. The amendments concern the setting of indemnities for medical staff, based on the compulsory insurance for occupational accidents and diseases, in case of death or injury caused by X-rays or radioactive substances. It is provided that a physician who, during the course of his duties, shows signs of radiation-induced injury or disease, must momentarily suspend work, such period being assimilated to a normal working period when the relevant injury or disease does not enable him to pursue that specific activity. Furthermore, his authorities must assign him to duties which are, hierarchically and administratively similar to his previous ones, except in case of permanent invalidity. This Act came into force the day it was published. (N.E.A.)

  4. Measurement and analysis of radioactive substances; Mesure et analyse de substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Here are gathered the abstracts presented to the 3. summer university of the year 2001 whose main themes were the destructive (5 conferences) and nondestructive (8 conferences) analyses applied to nuclear industry. The points of view of different organisms (as DSIN: Directorate for the Safety of Nuclear Installations, IPSN: Institute of Nuclear Protection and Safety, OPRI: Office of Protection against Ionizing Radiations, TUI: Institute for Transuranium Elements, COGEMA, EDF: Electric Utilities, ANDRA: French National Agency for Radioactive Waste Management, CRLC Val d'Aurelle, France) concerning the needs involved in nuclear facilities control, the methods of radionuclide speciation in use internationally, the measurements and analyses of radioactive substances are given too as well as some general concepts concerning 1)the laser-matter interaction 2)the ions production 3)the quality applied to the measurements and analyses 4)the standard in activity metrology. (O.M.)

  5. Radioactive substance solidifying device

    International Nuclear Information System (INIS)

    Sakoda, Kotaro.

    1979-01-01

    Purpose: To easily solidify radioactive substances adhering to the surfaces of solid wastes without scattering in the circumference by paints, and further to reduce surface contamination concentrations. Constitution: Solid wastes are placed on a hanging plate, and dipped in paints within a paint dipping treatment tank installed at the lower part of a treatment tank by means of a monorail hoist, and the surfaces of said solid wastes are coated with paints, thereby to solidify the radioactivity on the surfaces of the solid wastes. After dipping, the solid wastes are suspended up to a paint spraying tank to dry the paints. After drying, non-contaminated paints are atomized to apply through an atomizing tube onto the solid wastes. After drying the atomized paints, the solid wastes are carried outside the treatment tank by means of the monorail hoist. (Yoshino, Y.)

  6. Environments with elevated radiation levels from natural radioactive substances

    International Nuclear Information System (INIS)

    Sohrabi, M.

    2000-01-01

    Some areas in the world have elevated levels of radioactive substances in the environment forming elevated radiation areas (ERAs) where public potential annual effective doses can exceed even the dose limit of radiation workers. Such radioactive substances are either terrestrial natural radioactivity added naturally in the soil or natural and/or man-made radioactivity from human activities added into the environment. If radioactivity is added naturally, elevated natural radiation areas (ENRAs) are formed. Based on the classification criteria introduced by the author, such regions are divided into static and dynamic areas. They are also classified in accordance with their level of potential effective dose to the public. Some main ENRAs are classified. Highlights are presented of the results of activity studies carried out in selected areas. The concepts discussed can also be applied to areas formed by human activities. The author suggests some guidelines for future studies, regulatory control and decision making, bearing in mind the need for harmonization of policies for regulatory control and remedial actions at sites to protect the public from environmental chronic exposures. (author)

  7. Method for electrolytic decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Tanaka, Akio; Horita, Masami; Onuma, Tsutomu; Kato, Koji

    1991-01-01

    The invention relates to an electrolytic decontamination method for radioactive contaminated metals. The contaminated sections are eluted by electrolysis after the surface of a piece of equipment used with radioactive substances has been immersed in an electrolyte. Metal contaminated by radioactive substances acts as the anode

  8. Workshop meeting on State accounting and control system for radioactive substances and waste

    International Nuclear Information System (INIS)

    Evseev, V.F.

    2012-01-01

    On 2-6 July 2012, the fifth All-Russian workshop meeting of State Accounting and Control System for Radiation Substances (RS) and Radioactive Wastes (RAW) was conducted. The objective of the workshop was to discuss development of the State Accounting and Control System for RS and RAW in the Russian Federation, current changes to legal acts and regulations that pertain to management of RS and RAW, as well as other issues related to organisation of RS and RAW management activities and promotion of international cooperation [ru

  9. Natural occurring radioactive substances. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Emara, A E [National Center for radiation Research and Technology Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Naturally occurring radioactive substances produced by cosmic rays of those of terrestrial origin are surveyed. The different radioactive decay series are discussed. Special emphasis is given to the element radium as regards its properties and distribution in different environmental samples. The properties of naturally occurring k-40 and its distribution in different natural media are also outlined. Induced radionuclides which are formed as a result of the interaction of cosmic rays with the constituents of the atmosphere are mentioned. In this respect the intensity of natural background radiation and the dose at different locations and levels is surveyed. Some regions of exceptionally high radioactivity which result in high exposure rates are mentioned. Monazite deposits and water springs are mentioned in some detail. The Oklo phenomenon as a natural reactor is also discussed. 8 tabs.

  10. Natural occurring radioactive substances. Vol. 1

    International Nuclear Information System (INIS)

    Emara, A.E.

    1996-01-01

    Naturally occurring radioactive substances produced by cosmic rays of those of terrestrial origin are surveyed. The different radioactive decay series are discussed. Special emphasis is given to the element radium as regards its properties and distribution in different environmental samples. The properties of naturally occurring k-40 and its distribution in different natural media are also outlined. Induced radionuclides which are formed as a result of the interaction of cosmic rays with the constituents of the atmosphere are mentioned. In this respect the intensity of natural background radiation and the dose at different locations and levels is surveyed. Some regions of exceptionally high radioactivity which result in high exposure rates are mentioned. Monazite deposits and water springs are mentioned in some detail. The Oklo phenomenon as a natural reactor is also discussed. 8 tabs

  11. Measurements of radioactive and xenobiotic substances in the biosphere in the Netherlands 1983

    International Nuclear Information System (INIS)

    1983-01-01

    In this annual report the results and conclusions are given of measurements of radioactive and xenobiotic substances in the biosphere of the Netherlands. The measurements are coordinated by the Coordinating Committee for the Monitoring of Radioactive and Xenobiotic Substances (CCRX)

  12. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1982-01-01

    This Summary is an updated version of a previous revision of the Summary of the United Kingdom's legislation on atomic energy and reviews the main texts in that field. Reference is made to the regulations on atomic energy, nuclear installations, radioactive substances, transport of such substances, radiation protection etc. It is intended to be a signpost to the relevant law, but does not cover any aspect in detail. The Summary also refers to international agreements in the nuclear field: conventions and regulations on the transport of radioactive substances and nuclear material, nuclear third party liability, radiation protection and environmental protection. (NEA) [fr

  13. Radioactive Material (Road Transport) Act 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This Act came into force on 27 August 1991. It replaces earlier legislation dating from 1948 and enables the United Kingdom to give effect to the International Atomic Energy Agency's (IAEA) latest recommended Regulations for the Safe Transport of Radioactive Material. The new Act clarifies and extends the power of the Secretary of State to make regulations regarding, among other things, the design, labelling, handling, transport and delivery of packages containing radioactive material and the placarding of vehicles transporting such packages. The Act gives the Secretary of State the power to appoint inspectors to assist him in enforcing the regulations. (NEA)

  14. Increasing for effectiveness of inspection of the use of radioactive substances well logging

    International Nuclear Information System (INIS)

    Hesty Rimadianny

    2015-01-01

    One of the utilization of nuclear power is the use of radioactive substances for well logging. To ensure the achievement of radiation safety and security in the use of radioactive substances for well logging activities BAPETEN carries out inspections in accordance with the mandate as sepulated in the Government Regulation No. 29 of 2008 on the Licensing Resource Utilization Ionizing Radiation and Nuclear Materials. Besides referring to the implementation of Government Regulation inspection also refers to BAPETEN Chairman Regulation No. 5 of 2009 on Radiation Safety in the Use of Radioactive material for well logging. In 2014, of 18 facilities inspected the most significant findings include the availability of equipment safety and security of radioactive substances, as well as the availability and suitability of documents and records of safety and security of radioactive substances for well logging activities. Based on these findings BAPETEN needs to make efforts to increase the effectiveness of inspections on the use of radioactive substances for well logging. Increasing the effectiveness of these inspections include a commitment for the frequency of well logging inspection, the number of qualified of inspectors in accordance with the established procedures and optimizing the law enforcement process which includes the application of administrative sanctions in the form of a written warning, license suspension, revocation until reporting to law enforcement. Besides, BAPETEN need to improve the effectiveness of outreach programs and legal guidance as a precaution in the long run. (author)

  15. [The main directions of improving the system of state accounting and control of radioactive substances and radioactive waste products].

    Science.gov (United States)

    2012-01-01

    This paper describes a modification of the basic directions of state accounting and control of radioactive substances and radioactive waste products, whose implementation will significantly improve the efficiency of its operation at the regional level. Selected areas are designed to improve accounting and control system for the submission of the enterprises established by the reporting forms, the quality of the information contained in them, as well as structures of information and process for collecting, analyzing and data processing concerning radioactive substances and waste products.

  16. Approaches to assign security levels for radioactive substances and radiation sources

    International Nuclear Information System (INIS)

    Ivanov, M.V.; Petrovskij, N.P.; Pinchuk, G.N.; Telkov, S.N.; Kuzin, V.V.

    2011-01-01

    The article contains analyzed provisions on categorization of radioactive substances and radiation sources according to the extent of their potential danger. Above provisions are used in the IAEA documents and in Russian regulatory documents for differentiation of regulatory requirements to physical security. It is demonstrated that with the account of possible threats of violators, rules of physical protection of radiation sources and radioactive substances should be amended as regards the approaches to assign their categories and security levels [ru

  17. Implementation vigenere algorithm using microcontroller for sending SMS in monitoring radioactive substances transport system

    International Nuclear Information System (INIS)

    Adi Abimanyu; Nurhidayat; Jumari

    2013-01-01

    Aspects of safety and security of radioactive substances from the sender to the receiver is to be secured for not to harm humans. In general, monitoring the transport of radioactive materials is done by communication with a telephone conversation to determine the location and rate of exposure radioactive substances. From the aspect of safety, communication through telephone conversations easily interpreted by others, in addition the possibility of human-error is quite high. SMS service is known for its ease in terms of use so that SMS can be used as a substitute for communication through telephone conversations to monitor the rate of radiation exposure and the position of radioactive substances in the transport of radioactive substances. The system monitors the transport of radioactive materials developed by implement vigenere algorithms using a microcontroller for sending SMS (Short Message Service) to communicate. Tests was conducted to testing encryption and description and computation time required. From the test results obtained they have been successfully implemented vigenere algorithm to encrypt and decrypt the messages on the transport of radioactive monitoring system and the computational time required to encrypt and decrypt the data is 13.05 ms for 36 characters and 13.61 for 37 characters. So for every single character require computing time 0.56 ms. (author)

  18. Act No. 11/87 of 7 april - Basic environment act

    International Nuclear Information System (INIS)

    1987-04-01

    The purpose of this Act is to provide the basis for an environmental policy in Portugal. Section 25 of the Act deals with radioactive substances. It provides that any contamination likely to be caused by these substances should be controlled with a view to preventing its effects on the health and welfare of the population and specifies the methods for such control [fr

  19. Radiation environmental impact assessment of radioactive substances of an airport transit storage construction projects

    International Nuclear Information System (INIS)

    Zhang Baozeng; Xia Zitong; Zou Zhaozhuang

    2014-01-01

    Radioactive substances belong to dangerous goods transport aviation. Radioactive substances impoundments construction purpose is to ensure that the radioactive material during transport to transport and the public to achieve full or isolation, the effects of radiation on the human body, property and the environment caused by the control to an acceptable level. According to the relevant national standards and norms, for radiation protection evaluation of project construction of an airport radioactive impoundments, feasibility of the construction project radiation environment. (authors)

  20. Artificial neural network models' application for radioactive substances' migration forecasting in soil

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Khil'ko, O.S.; Kundas, S.P.

    2009-01-01

    The work is indicated to the use of artificial neural network (ANN) models in program complex SPS for radioactive substances' migration forecasting in soil. For the problem solution two ANN models are used. One of them forecasts radioactive substances' migration, another carries out forecasting of physical and chemical soil properties. Program complex SPS allows to achieve a low error of forecasting (no more than 5 %) and high training speed. (authors)

  1. Regulations under the Radioactive Substances Act of 1958, No. 115, 1961

    International Nuclear Information System (INIS)

    1961-01-01

    These very detailed regulations lay down the licensing system for the use of radioactive materials. They provide for monitoring and control of radiation and radiation contamination, storage, labelling and transport of radioactive materials and also for the disposal of radioactive waste. (NEA) [fr

  2. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  3. Radiation consequences of combatant radioactive substances tests on the Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Strilchuk, Yu.G.; Osintsev, A.Yu.; Kuzin, D.E.; Bryantseva, N.V.; Bozhko, V.V.; Tonevitskaya, O.V.; Panitskaya, D.S.; Lukashenko, S.N.; Georgievskij, V.; Murley, R.; Wells, D.

    2008-01-01

    Nuclear explosions were not the only type of tests carried out on the STS territory. In 1953 - 1957 the STS territory was the area of testing of combatant radioactive substances (CRS). Combatant radioactive substances were liquid or powder-like combatment radioactive mixtures manufactured either from the wastes of radiochemical industry or by neutron irradiation of specally selected substances in nuclear reactor. Their specific activity ranged from tenths of Curie to several Curie per liter. CRS tests were made on testing grounds ''4'' and ''4A'' situated near northern outpost beyond the Opytnoye Pole (Experimental field). Dispersion of CRS was achieved by blasting of individual shells, bombardment of the area by mortar shells, bombardment from aircraft bombers or dispersion of CRS from airplanes. Investigations carried out in the past years on the territory of the testing grounds discovered fragments of metal products used in the CRS tests and over 30 areas of local radioactive contamination. 90 Sr was the main radioactive pollutant, whose specific activity in upper soil is as high as 5*10 8 Bq/kg; other radionuclides are presented by isotopes: 239+240 Pu, 152 Eu, 154 Eu, 137 Cs, 241 Am, 60 Co. The areas of radioactively-contaminated soil range from hundreds to hundreds of thousands of square meters with some of them expanding to distances of several kilometers. Concentration of radionuclides in soil and vegetation may be compared with that of radioactive waste

  4. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Science.gov (United States)

    2010-07-01

    ... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for... involves exposure to ionizing radiations in excess of 0.5 rem per year. (b) Definitions. As used in this...

  5. Study of boletus edulis mushrooms in south- western Bulgaria for the presence of natural and technogenic radioactive substances

    International Nuclear Information System (INIS)

    Direkov, Lubomir; Gaberov, Vladimir; Vakova, Violeta

    2015-01-01

    Boletus includes in its composition natural and technogenic radioactive elements such as potassium - 40, carbon - 14, rubidium - 87 uranium - 238, thorium - 232, radium - 226, as well as anthropogenic radioactive substances: iodine - 131, cesium - 137, strontium - 90. Therefore, these fungi can be used as bio-indicators for the presence of radioactive substances in the wild species, the identification of areas with a higher content in the soils of natural radioactive substances, examination areas around uranium mines, and also in case of transboundary transport of anthropogenic radioactive substances as a result of accidents in nuclear power plants - Chernobyl - 1986 Fukushima - 2011 Zaporozhian NPP - 2014 and others.

  6. Criteria of acceptability relating to the approval of consumer goods containing radioactive substances

    International Nuclear Information System (INIS)

    Paynter, R.A.

    1992-01-01

    The criteria are described which the Board intends to use when considering goods containing radioactive substances for approval under the regulations that the Government intends to make with respect to such goods. Some products are deemed unacceptable in principle because there would appear to be no justification for the use of radioactive substances in them. Examples of such products are given. Other products may be approved for supply to the public depending on the doses likely to be received by individuals, principally those who use the products. A lower dose is considered acceptable from products that do not contribute to safety than from products that do. In the interim, before the regulations are made, the criteria will be used as the basis of the Board's advice to suppliers and manufacturers of goods containing radioactive substances. (Author)

  7. Measurement and analysis of radioactive substances

    International Nuclear Information System (INIS)

    2001-01-01

    Here are gathered the abstracts presented to the 3. summer university of the year 2001 whose main themes were the destructive (5 conferences) and nondestructive (8 conferences) analyses applied to nuclear industry. The points of view of different organisms (as DSIN: Directorate for the Safety of Nuclear Installations, IPSN: Institute of Nuclear Protection and Safety, OPRI: Office of Protection against Ionizing Radiations, TUI: Institute for Transuranium Elements, COGEMA, EDF: Electric Utilities, ANDRA: French National Agency for Radioactive Waste Management, CRLC Val d'Aurelle, France) concerning the needs involved in nuclear facilities control, the methods of radionuclide speciation in use internationally, the measurements and analyses of radioactive substances are given too as well as some general concepts concerning 1)the laser-matter interaction 2)the ions production 3)the quality applied to the measurements and analyses 4)the standard in activity metrology. (O.M.)

  8. Countermeasure technology for environmental pollution due to radioactive substances

    International Nuclear Information System (INIS)

    Shimizu, Hideki

    2014-01-01

    This paper introduces the progress of challenges by Maeda Corporation toward the countermeasures for the environmental pollution caused by radioactive substances that covers the whole areas of Naraha Town in Fukushima Prefecture. It also introduces in full detail the environmental pollution countermeasure technologies against radioactive substances challenged by the said company. These technologies are as follows; (1) porous block kneaded with zeolite, (2) Aqua-filter System (technique to automatically and continuously purify construction work water to the level of tap water), (3) super vacuum press (dehydration unit to realize the dehydration, volume reduction and solidification, and insolubilization at the same time), (4) mist blender (technique to manufacture bentonite-mixed soil), (5) wet-type classification washing technique for contaminated soil, (6) soil sorting technique (continuous discrimination technique to sort soil depending on radiation level), and (7) speedy construction technique for dam body using CSG (cemented sand and gravel). (A.O.)

  9. Radiation Control Act 1977 - No 66 of 1977

    International Nuclear Information System (INIS)

    1977-01-01

    This Act regulates the use of radioactive materials and radiation-emitting devices. It sets up a Radiation Advisory Council to advise the competent authorities on questions within the scope of the Act, also with a view to radiation protection. The Act also lays down a licensing system for such materials and devices. The Radioactive Substances Acts 1954 and 1966 are repealed. (NEA) [fr

  10. The monitoring of radioactive substances in biological food chains by the veterinary service in Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, O [Central State Veterinary Institute, Prague, Czechoslovakia (Czech Republic)

    1986-07-01

    Czechoslovakia has established an environmental monitoring system to protect the hygienic conditions of the environment from the radiation hazard. The control authorities of the Ministry of Agriculture and Food take part in this system in order to collect information on the contamination with radioactive substances of soil, plants, game, food animals, foodstuffs and raw materials, i.e. information on all links of the food chain which extends from animals to man. A radioactive substances detection programme has been launched by the appropriate authorities in agriculture, animal husbandry and veterinary service. The programme includes a two-stage laboratory analysis of radioactive substances. The majority of laboratories covering the programme are already in operation.

  11. The monitoring of radioactive substances in biological food chains by the veterinary service in Czechoslovakia

    International Nuclear Information System (INIS)

    Pawel, O.

    1986-01-01

    Czechoslovakia has established an environmental monitoring system to protect the hygienic conditions of the environment from the radiation hazard. The control authorities of the Ministry of Agriculture and Food take part in this system in order to collect information on the contamination with radioactive substances of soil, plants, game, food animals, foodstuffs and raw materials, i.e. information on all links of the food chain which extends from animals to man. A radioactive substances detection programme has been launched by the appropriate authorities in agriculture, animal husbandry and veterinary service. The programme includes a two-stage laboratory analysis of radioactive substances. The majority of laboratories covering the programme are already in operation

  12. A kinematic model to estimate effective dose of radioactive substances in a human body

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-05-01

    The great earthquake occurred in the north-east area in Japan in March 11, 2011. Facility system to control Fukushima Daiichi nuclear power station was completely destroyed by the following giant tsunami. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and diffused in the vicinity of this station. Radiological internal exposure became a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplifying the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed a sophisticated model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that ICRP method is fine, it is rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional tank model in hydrology. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of the present method is to estimate the energy radiated in the radioactive nuclear disintegration of an atom by using classical theory of β decay and special relativity for various kinds of radioactive atoms. The parameters used in this model are only physical half-time and biological half-time, and there are no operational parameters or coefficients to adjust our theoretical runoff to ICRP. Figure shows the time-varying effective dose with ingestion duration, and we can confirm the validity of our model. The time-varying effective dose with

  13. Toxic Substances Control Act

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-15

    This Reference Book contains a current copy of the Toxic Substances Control Act and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  14. Radioactive substances detection at solid waste incinerators entrance

    International Nuclear Information System (INIS)

    Bourjat, V.; Carre, J.; Perrier-Rosset, A.

    2001-01-01

    SYCTOM'S incinerators, operated by TIRU will soon be fitted out with radioactivity control systems to prevent entrance of radioactive waste. Such implementation aims at reducing health risks due to exposition of operators working in incinerators or in sites receiving incineration residues. Radioactive wastes are supposed to be well managed: in the case where the radioactive elements period is short, they have to be stored for a precise time; in all the other cases, a statutory organism dealing with radioactive waste (ANDRA) has to take charge of them. Meanwhile they may arrived in incinerators by mistake. It's difficult to regulate radioactivity control systems for technical reasons; the measured values can be really different from these in the truck because of radiation decreasing; moreover it can't be correlated to an activity, hence it can't be compared to exemption values or to the limits that characterise a radioactive substance. It can explain why regulated documents don't indicate the way to fix alarm threshold. Implementing such a system is not sufficient: when the alarm sound, the following steps can be applied: checking the missing of interference, potential truck return to sender, putting the truck in quarantine, information of authorities and main actors, calling on a specialize company to locate, extract and package the radiation source, storage of this source and spectrometric analysis to identify and quantify the radioactive elements in order to determinate its way of elimination. (authors)

  15. Hazardous and radioactive substances in Danish marine waters. Status and temporal trends

    Energy Technology Data Exchange (ETDEWEB)

    Dahlloef, I; Andersen, Jesper H

    2009-07-15

    This book fulfils the Danish reporting obligations in relation to the OSPAR Trend Assessment on Dangerous Substances, and describes the degree of contamination from hazardous and radioactive substances and their temporal trends, as well as the effects of some of these hazardous substances, in the Danish marine environment. The assessment is based on existing information, primarily data collected via national and regional Danish monitoring activities until 2004. (author)

  16. Hazardous and radioactive substances in Danish marine waters. Status and temporal trends

    International Nuclear Information System (INIS)

    Dahlloef, I.; Andersen, Jesper H.

    2009-07-01

    This book fulfils the Danish reporting obligations in relation to the OSPAR Trend Assessment on Dangerous Substances, and describes the degree of contamination from hazardous and radioactive substances and their temporal trends, as well as the effects of some of these hazardous substances, in the Danish marine environment. The assessment is based on existing information, primarily data collected via national and regional Danish monitoring activities until 2004. (author)

  17. S.I. No 249 of 1972, Factories Ionising Radiations (Unsealed Radioactive Substances) Regulations, 1972

    International Nuclear Information System (INIS)

    1972-12-01

    The Regulations which entered into force on 1 December 1972 apply to factories in which a process involving the use of unsealed radioactive substances is carried on and where the total activity of the unsealed radioactive substances exceeds specified levels, or where there are objects contaminated in excess of certain levels. The Schedules specify the maximum radiation doses and the maximum permissible levels of contamination and provide for a classification of radionuclides [fr

  18. Original jurisdiction in matters relating to transport of radioactive substances

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Decisions on actions for avoidance of government supervision in matters of transport of radioactive substances are placed under the original jurisdiction of administrative courts. (Kassel Administrative Court, decision of 20 December 1988 - 8 A 699/88). (orig.) [de

  19. Radioactive Substances Act 1993. Explanatory document and draft authorisation prepared by the Environment Agency to Assist public consultation on application by Devonport Royal Dockyard Limited to dispose of radioactive wastes from Devonport Royal Dockyard Plymouth Devon

    International Nuclear Information System (INIS)

    2000-01-01

    The Environment Agency (the Agency) is the independent public body responsible for regulating the use of radioactive substances and accumulation and disposal of radioactive wastes in order to ensure protection of people and the environment. Anyone who is proposing activities involving the use of radioactive substances or disposal of radioactive waste must apply for permission from the Agency. In 1993, the Government decided to locate all nuclear submarine refit work at Devonport. This will lead to increased amounts of radioactive waste arisings at Devonport and a decreased amount of waste arisings at Rosyth, where refit work was also previously carried out. In May 2000 Devonport Royal Dockyard Limited (DML) applied to the Agency for a variation to its authorisations under the Radioactive Substances Act 1993 to dispose of gaseous, liquid, and solid radioactive wastes from its site at Devonport in Plymouth. Once the application was received, the Agency made the information publicly available and held a well attended public meeting in Plymouth to highlight the issues. Since then the Agency has required DML to provide additional information in support of its application. Six rounds of questions were asked and responded to, and these responses have also been made publicly available. The application and responses from the company have been made publicly available. The Agency is now consulting widely on this information to assist its decision making. This Explanatory Document and the accompanying draft authorisation has been prepared by the Agency to assist the consultation process. They are intended to help members of the public and other consultees to understand the application and the Agency's considerations so far. The consultation is being carried out to enable the public and other consultees to draw the Agency's attention to any matters they would wish it to consider when reaching its decisions on this application. The Agency has not made any decisions on the DML

  20. Methodological guide: management of industrial sites potentially contaminated by radioactive substances; Guide methodologique: gestion des sites industriels potentiellement contamines par des substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    At the request of the Ministries of Health and the Environment, IPSN is preparing and publishing the first version of the methodological guide devoted to managing industrial sites potentially contaminated by radioactive substances. This guide describes a procedure for defining and choosing strategies for rehabilitating such industrial sites. (author)

  1. Radiation Protection and Control Act, 1982 (South Australia) No.49 of 29 April 1982

    International Nuclear Information System (INIS)

    1982-01-01

    This Act provides for the control of activities related to radioactive substances and radiation apparatus as well as for protection against the harmful effects of ionizing radiation. It also amends the Health Act, 1935-1980 by deleting certain provisions concerning, inter alia, radioactive substances and radiation apparatus. The Act states as its general objective that the competent authorities in the exercise of their duties and any person carrying on activities involving radioactive substances and equipment emitting ionizing radiation shall try to ensure that exposure of persons to ionizing radiation is kept as low as reasonably achievable, social and economic factors being taken into account (the ALARA principle recommended by the International Commission on radiological Protection). (NEA) [fr

  2. Statutory Instruments - 1984 No. 863 and 1985 No. 708. Public Health, England and Wales - Public Health Scotland. The Control of Pollution (Radioactive Waste) Regulations 1984, The Control of Pollution (Radioactive Waste) Regulations 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The Regulations provide that radioactive waste is to be treated as any other waste for pollution control purposes as opposed to special radioactive control purposes. In the former respect, radioactive waste is subject to Part II of the Control of Pollution Act 1974, but in the latter, it remains subject to the Radioactive Substances Act 1960. (NEA) [fr

  3. Upper parameters of toxicity (LDsub(50/30)) of some radioactive and chemical substances

    International Nuclear Information System (INIS)

    Rodionova, L.F.; Kupriyanova, V.M.; Zasedatelev, A.A.

    1978-01-01

    The toxicities of radioactive ( 90 Sr, 210 Po) and chemical (lead nitrate, mercuric chloride) substances were compared using equivalent procedures. Ninety six doses of toxic substances in various concentrations were tested on mice to which these substances were administered by intragastric intubation. The material was processed and analyzed by conventional methods used in toxicology. The upper limits of toxicity for the tested substances were determined from their LDsub(50/30) values by various methods of calculation

  4. Working rules for medical application of radioactive substances

    International Nuclear Information System (INIS)

    Gloebel, B.

    1982-01-01

    After incorporation of radioactive substances radiation exposure is detectable only in case of iodine 125 and iodine 131. Organizational measures should improve the protection of personnel. According to the experience gained decontamination successes are possible between 1 and 99%, however they evade forecasting. With iodine 131 it is necessary to make for accelerated discharge resp. prevent further penetration from the extrathydroidal space into the thyroid gland. (DG) [de

  5. Ocean Dumping Control Act

    International Nuclear Information System (INIS)

    1975-01-01

    This Act provides for the control of dumping of wastes and other substances in the ocean in accordance with the London Convention of 1972 on Prevention of Marine Pollution by the Dumping of Wastes and other Matter to which Canada is a Party. Radioactive wastes are included in the prohibited and restricted substances. (NEA)

  6. The radioactive waste regulation in the new Czech Nuclear Energy Act

    International Nuclear Information System (INIS)

    Kucerka, M.

    1995-01-01

    Recently, in the Czech Republic, there is in the phase of development the Act on Peaceful Use of Nuclear Energy and Ionizing Radiation, so called the Nuclear Energy Act. This Act has to replace existing regulations and fulfill some not yet covered fields of that area. The act is developed as so called ''umbrella act'' and has to cover all aspects of the nuclear energy and ionizing radiation use, from uranium mining or isotopes use in medicine, to the power generation in nuclear power plants. It will include among others also provisions on registration and licensing, liability for nuclear damage, decommissioning and radioactive waste management funding, and some other topics, that were missing in the regulations up to today. The paper describes recent state policy in the field of radioactive waste management and the main provisions of proposed Nuclear Energy Act, concerning the radioactive waste management

  7. [Acting out and psychoactive substances: alcohol, drugs, illicit substances].

    Science.gov (United States)

    Gillet, C; Polard, E; Mauduit, N; Allain, H

    2001-01-01

    In humans, some psychotropic agents (alcohol, drugs, illicit substances) have been suggested to play a role in the occurrence of major behavioural disorders, mainly due to the suppression of psychomotor inhibition. Behavioural disinhibition is a physiological mechanism which allows humans to behave appropriately according to a given environmental situation. The behavioural disinhibition induced by either therapeutic dosage or misuse involves the loss of restraint over certain types of social behaviour and may increase the risk of auto or hetero-aggression and acting out. The increased use of psychotropic agents in recent years and the occurrence of unwanted effects are worrying and must be detected and evaluated. The objective of the present study was to establish a causal relationship between psychoactive substance use and occurrence of major behavioural disorders, such as paradoxical rage reactions and suicidal behaviour, based on a literature analysis. It consisted of reviewing reports of drug-induced violent reactions in healthy volunteers and demonstrating, where possible, a cause-effect relationship. Patients with schizophrenia and psychopathic personalities were not included in our study since psychiatric comorbidity could influence behavioural responses. Psychotropic agents included drugs, licit and illicit substances already associated with violence in the past. Many reports used the "Go/No Go test" to evaluate the disinhibiting effect of psychotropic substances; this allows the "cognitive mapping" of drugs. The results suggest that only alcohol, antidepressants, benzodiazepines and cocaïne are related to aggressive behaviour. The best known precipitant of behavioural disinhibition is alcohol, which induces aggressive behaviour. However, there are large differences between individuals, and attentional mechanisms are now recognised as being important in mediating the effects of alcohol. Suicidal tendency as an adverse antidepressant reaction is rare

  8. Radioactive substances found on the contaminated fish

    Energy Technology Data Exchange (ETDEWEB)

    Kiba, T; Ohashi, S; Shibata, M; Mizube, T

    1954-01-01

    Radiochemical investigation of the substance collected from the surface of tuna fish which were brought back by the No. 5 Fukuryu Maru was performed. Most of the radioactivity was found on the scales which could not be decontaminated by treating with H/sub 2/O; 80% of the activity was removed by washing the dried scales with 3N HCl. Paper chromatographic separation of the HCl fraction showed the presence of /sup 140/Ba, /sup 89/Sr, /sup 132/Te, and probably /sup 95/Zr, /sup 140/La, and rare earths.

  9. 16 CFR 1500.129 - Substances named in the Federal Caustic Poison Act.

    Science.gov (United States)

    2010-01-01

    ... Poison Act. 1500.129 Section 1500.129 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL... REGULATIONS § 1500.129 Substances named in the Federal Caustic Poison Act. The Commission finds that for those substances covered by the Federal Caustic Poison Act (44 Stat. 1406), the requirements of section 2(p)(1) of...

  10. A guide for controlling consumer products containing radioactive substances

    International Nuclear Information System (INIS)

    1985-01-01

    Consumer products are considered regardless of the purpose for which the radionuclide is added. For example, the purpose may be to make use of the ionising radiation emitted by the substance in the product itself (e.g. radioluminescent devices antistatic devices and ionisation chamber smoke detectors), or to make use of some other property of the material where the presence of radiation in the final product is merely adventitious (e.g. thorium gas mantles, ceramics with uranium glazes, and products containing radioactive tracers added to facilitate manufacturing and inspection processes). The Guide does not cover some products containing natural radioactive substances which have not been intentionally added, such as building materials. The Guide does not cover medicinal products and pharmaceuticals, nuclear powered cardiac pacemakers, or electronic equipment, such as television receivers, that emit X-rays. Unlike the 1970 Guide, this Guide does not consider those products, such as EXIT signs, containing gaseous tritium light sources, that would not be supplied directly to members of the public. The Guide is concerned mainly with the exposure arising from consumer products of those persons who are not subject to any regulatory controls for purposes of radiation protection in normal circumstances. Members of the public come under this heading, but not workers involved in the manufacture of consumer products. These workers will normally be subject to separate control. Radiological protection concepts and policy for the control of radioactive consumer products and licensing and post-licensing surveillance are developed

  11. Various possible ways to express the toxicity of radioactive substances in relation with the involved practical problems; Diverses expressions possibles de la toxicite des substances radioactives en fonction des problemes pratiques poses

    Energy Technology Data Exchange (ETDEWEB)

    Jammet, H; Vacca, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Radioelements have at the same time physico-chemical and radioactive properties. It is then possible to establish two types of toxicological classifications: one in function of the weight of the radioelement, another in function of its activity. More often, the maximum permissible amounts (MPA) in the human body and the maximum permissible concentrations (MPC) in air and water are expressed in microcuries by millilitre ({mu}c/ml), less frequently in micrograms by millilitre ({mu}g/ml). The comparison of these tables of MPA and MPC shows important differences in the classification of radioactive substances by order of decreasing toxicity. Plutonium and radium, being among the most toxic products when the activity is considered are far from being the most dangerous when the weight is considered. On the other hand, {sup 131}I and {sup 56}Mn, for instance appear to be among the most hazardous substances in this eventuality. This twofold consideration corresponds to two aspects of the problems of the toxicity of radioisotopes. The classification by activity is almost exclusively utilised because the toxicological measurements are based on the radioactive properties of the radioisotopes. In general, only these measurements allow to detect the very small amounts of substance usually involved. On the other hand, the toxicity related to internal contamination by radioisotopes depends mostly from their metabolism which is exclusively a function of their physico-chemical properties. Therefore the classification by weight gives the best representation of the hazards encountered when radioactive substances are inhaled or ingested. As a result, the relative toxicity of radioisotopes cannot be based on the classification by activity only. The present division of radioisotopes into different classes: very hazardous, moderately hazardous, slightly hazardous must be revised. (author) [French] Les radioelements presentent a la fois des proprietes physico-chimiques banales et des

  12. An Act to Control and Regulate the Possession, Sale, Transport and Use of Radioactive Substances and the Possession and Use of Certain Apparatus capable of producing Radiation

    International Nuclear Information System (INIS)

    1958-01-01

    This Act covers all activities involving radioactive materials and radiation sources. It sets up a Radiological Advisory Council to advise the Minister responsible for health in Queensland on administration of the Act, regulations made thereunder and on preventing and minimising dangers arising from radioactive materials and radiation sources. It lays down the Council's composition and rules of procedure. The Act also provides for the licensing, control and registration of such materials and sources, including sanctions in case of non-compliance with its provisions. (NEA) [fr

  13. Process and device for determining the spatial distribution of a radioactive substance

    International Nuclear Information System (INIS)

    1977-01-01

    This invention describes a process for determining the spatial distribution of a radioactive substance consisting in determining the positions and energy losses associated to the interactions of the Compton effect and the photoelectric interactions that occur owing to the emission of gamma photons by the radioactive material and in deducing an information on the spatial distribution of the radioactive substance, depending on the positions and energy losses associated to the interactions of the Compton effect of these gamma photons and the positions and energy losses associated to the subsequent photoelectric interactions of these same photons. The invention also concerns a processing system for identifying, among the signals representing the positions and energy losses of the interactions of the Compton effect and the photoelectric interactions of the gamma photons emitted by a radioactive source, those signals that are in keeping with the gamma photons that have been subjected to an initial interaction of the Compton effect and a second and last photoelectric interaction. It further concerns a system for determining, among the identified signals, the positions of the sources of several gamma photons. This detector of Compton interaction can be used with conventional Auger-type imaging system (gamma camera) for detecting photoelectric interactions [fr

  14. Method and apparatus for the purification of a liquid contaminated with radioactive substances

    International Nuclear Information System (INIS)

    Mende, H.

    1976-01-01

    A method of and apparatus for the purification of a liquid contaminated with radioactive substances is described, wherein the liquid is infed to an evaporator in or with which there is connected a column having a multiplicity of superposed plates or floors. The vapor generated in the evaporator is guided through a washing or scrubbing liquid uniformly distributed at the floors and flowing in crosswise counterflow with regard to the vapor. The washing liquid at the floors is deflected a number of times in such a manner that the washing liquid itself together with the droplets entrained by the vapor are uniformly admixed and the washing liquid subjected to a constant intake of the radioactive substance

  15. The safety of consumer goods containing radioactive substances

    International Nuclear Information System (INIS)

    Wrixon, A.D.

    1980-01-01

    Consideration is given to the arguments used in the formulation of proposals which have been incorporated into a consultative document published by the National Radiological Protection Board (Criteria Relating to the Approval of Consumer Goods Containing Radioactive Substances: A Consultative Document, HMSO, London). The proposals are summarized. They were based on the classification of these consumer goods into different categories, and details are given of the suggested dose limits for these categories. Comments on the proposals are invited. (U.K.)

  16. Atomic Energy Authority Act 1954

    International Nuclear Information System (INIS)

    1954-01-01

    This Act provides for the setting up of an Atomic Energy Authority for the United Kingdom. It also makes provision for the Authority's composition, powers, duties, rights and liabilities, and may amend, as a consequence of the establishment of the Authority and in connection therewith, the Atomic Energy Act, 1946, the Radioactive Substances Act 1948 and other relevant enactments. (NEA) [fr

  17. Governance relative to radioactive waste management - the Act of 28 June 2006

    International Nuclear Information System (INIS)

    Chevet, P.F.

    2011-01-01

    In France, the Act of 30 December 1991, relative to research on radioactive waste management, known as the 'Bataille Act' (Act No.91-1381) can be thought of as the legislative act that provided the foundations for implementation of a long-term management policy regarding high-level nuclear waste, the most radio toxic type of waste. To begin with, this involved establishing the framework for a research programme based on three possible long-term management solutions: deep geological repositories, long-term surface storage and advanced partitioning and transmutation of radioactive waste. The Act sets a deadline in 2006, the end of a period of fifteen years of research, to draw up a review and draft a new legislative framework for the future. Nonetheless, this only covered high-level radioactive waste. A table reports all the decrees taken within the framework of the Bataille Act

  18. Road surface washing system for decontaminating radioactive substances. Experiment of radioactive decontamination

    International Nuclear Information System (INIS)

    Endo, Mitsuru; Endo, Mai; Kakizaki, Takao

    2015-01-01

    The Great East Japan Earthquake that occurred on March 11, 2011 resulted in the explosion of the TEPCO Fukushima 1st Nuclear Power Plant and the global dispersion of a large quantity of radioactive substances. A high radiation dose was particularly recorded in Fukushima prefecture several weeks after the accident, although the level is presently sufficiently low. However, considering that the adverse effects of low but extended exposure to radiation are yet to be negated, there is the urgent need for further decontamination. In our study, we focused on the efficient decontamination of radioactive substances in residential areas, for which we propose a high-pressure water jet system for washing road surfaces. The system differs from conventional systems of its type that were initially designed for use in the immediate environment of the nuclear reactors of the TEPCO Fukushima 1st Nuclear Power Plant. The proposed system consists of multiple washing, transporter, and server robots. The washing robots decontaminate the road surface using high-pressure water jets and are transported between washed and unwashed areas by the transporter robots. The server robots supply the water used for washing and absorb the polluted water together with ground dust. In this paper, we describe the concept of the system and present the results of decontamination experiments. Particular attention is given to the washing robot and its mechanism and control method. The results of the integration of the washing robot in an experimental system confirmed the feasibility of the proposed system. (author)

  19. Radiation control act 1990 no. 13 (7/6/1990) New South Wales

    International Nuclear Information System (INIS)

    1990-01-01

    The object of the Act is to ensure the protection of persons and the environment against exposure to ionizing radiation and harmful non-ionizing radiation, taking into account social and economic factors and recognising that radiation is needed for therapeutic purposes. The Act regulates and controls the sale, use, keeping and disposal of radioactive substances and radiation apparatus, but does not apply to radioactive ores as defined by the Mines Inspection Act 1901. It provides for a licensing system for such substances and apparatus, the licensing authority being the Director-General of the Department of Health, under the overall authority of the Minister for Health. No person may sell or use the substances or apparatus without a licence granted by the Director-General. A licence is granted only following the recommendation of the Radiation Advisory Council set up under this Act [fr

  20. Methodological guide: management of industrial sites potentially contaminated by radioactive substances

    International Nuclear Information System (INIS)

    2001-01-01

    At the request of the Ministries of Health and the Environment, IPSN is preparing and publishing the first version of the methodological guide devoted to managing industrial sites potentially contaminated by radioactive substances. This guide describes a procedure for defining and choosing strategies for rehabilitating such industrial sites. (author)

  1. Comparative animal studies for the determination of the extracellular space with several radioactively labelled substances

    International Nuclear Information System (INIS)

    Pippart, S.

    1973-01-01

    The volume of the total extracellular space and of the extracellular space of the organs (liver, lungs, heart, spleen, brain) was determined with the aid of 5 radioactively labelled substances, each in 10 rats. The test substances (inulin- 3 H, 51 Cr-EDTA, thiosulfate- 35 S, NH 4 - 82 Br, 60 Co-vitamin B 12 ) are described in the relevant literature as substances for the determination of the extracellular space and as clearance substances. (BSC/AK) [de

  2. Licence template for mobile handling and storage of radioactive substances for the nondestructive testing of materials

    International Nuclear Information System (INIS)

    Lange, A.; Schumann, J.; Huhn, W.

    2016-01-01

    The Technical Committee ''Radiation Protection'' (Fachausschuss ''Strahlenschutz'') and the Laender Committee ''X-ray ordinance'' (Laenderausschuss ''Roentgenverordnung'') have appointed a working group for the formulation of licence templates for the nationwide use of X-ray equipment or handling of radioactive substances. To date, the following licence templates have been adopted: - Mobile operation of X-ray equipment under technical radiography to the coarse structural analysis in material testing; - Mobile operation of a handheld X-ray fluorescence system; - Mobile operation of a flash X-ray system; - Operation of an X-ray system for teleradiology The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is scheduled for publication. The licence template ''Practices in external facilities and installations'' is currently being revised. The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is used as an example to demonstrate the legal framework and the results of the working group.

  3. A method for purifying air containing radioactive substances resulting from the disintegration of radon

    International Nuclear Information System (INIS)

    Stringer, C.W.

    1974-01-01

    The invention relates to the extraction of radioactive isotopes from air. It refers to a method for withdrawing the radioactive substances resulting from the disintegration of radon from air, said method of the type comprising filtrating the air contaminated by the radon daughter products in a filter wetted with water in order to trap said substances in water. It is characterized in that it comprises the steps of causing the water contaminated by the radon daughter products to flow through a filtrating substance containing a non hydrosoluble granular substrate, the outer surface of which has been dried then wetted by a normally-liquid hydrocarbon, and of returning then wetted by a normally-liquid hydrocarbon, and of returning the thus filtrated water so that it wets again the air filter and entraps further radon daughter products. This can be applied to the purification of the air in uranium mines [fr

  4. Experiences from the exercise ''MERLIN'' for the detection of radioactive substances with the participation of special-purpose vehicles

    International Nuclear Information System (INIS)

    Griesbach, M.

    2009-01-01

    Experiences of an exercise with hazardous goods, in particular with radioactive substances (measurements and taking environmental samples) are described. Several special-purpose vehicles with equipment and specially trained crews were used together with radiation protection experts according to the concept of Hesse. It has been the greatest exercise in Hesse with regard to hazardous goods and in particular with regard to ''incidents with radioactive substances''. (orig.)

  5. Comparative animal studies for the determination of the extracellular space with several radioactively labelled substances

    Energy Technology Data Exchange (ETDEWEB)

    Pippart, S

    1973-01-01

    The volume of the total extracellular space and of the extracellular space of the organs (liver, lungs, heart, spleen, brain) was determined with the aid of 5 radioactively labelled substances, each in 10 rats. The test substances (inulin-/sup 3/H, /sup 51/Cr-EDTA, thiosulfate-/sup 35/S, NH/sub 4/-/sup 82/Br, /sup 60/Co-vitamin B/sub 12/) are described in the relevant literature as substances for the determination of the extracellular space and as clearance substances.

  6. The Control of Pollution (Radioactive Waste) Regulations 1976 of 10 June 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The discharge into a public sewer of trade effluent is governed by the Control of Pollution Act 1974, under which water authorities in England and Wales have certain powers to regulate such discharges. These provisions have not however applied hitherto to radioactive waste, the disposal of which required mainly authorisation by the Minister of State for the Environment. Under the present Regulations, the 1974 Act will apply to radioactive waste so as to give water authorities control over liquid discharges into their sewers, notwithstanding that they contain radioactive waste while the powers of the Minister of State are maintained regarding control and disposal of the radioactive parts of such waste under the 1960 act on Radioactive substances. (N.E.A.) [fr

  7. Sample taking device for toxic and/or radioactive substances

    International Nuclear Information System (INIS)

    Finsterwalder, L.; Zeh, H.; Schaarschmidt, U.

    1979-01-01

    An apparatus for taking samples of toxic and/or radioactive liquid substances by introducing such substances into sample vessels includes a holder for holding such a vessel, at least one needle head filling system composed of upwardly pointing hollow needles for introducing a sample of one such substance into such a vessel at a filling position, and inlet and outlet conduits for pneumatically conveying vessels to or from the holder at a transfer position. The holder is composed of a turntable having a sleeve for accommodating such vessel and is mounted to undergo rotary movement to convey a sample vessel held in the sleeve between the filling and transfer positions. The apparatus further includes a stand supporting the filling system below the holder and a lifting device connected for imparting a translational movement to the holder to bring a vessel in the holder to operative association with the filling system. The lifting device is arranged so that the translational movement which it produces is independent of the rotary movement of the turntable

  8. National plan for achieving the objectives of the OSPAR strategy with regard to radioactive substances

    International Nuclear Information System (INIS)

    2002-06-01

    This report describes the Swedish plans for implementation of the OSPAR strategy with regard to radioactive substances. Revised release regulations for nuclear facilities are the primary tool in the work for achieving the objectives of the OSPAR strategy. The limitation of releases of radioactive substances shall be based on optimisation of radiation protection (ALARA) and the use of best available technique (BAT). Technical improvements to reduce discharges from the nuclear facilities include changes of daily routines in the waste management. Plans for the future include the introduction of new purification techniques and modernisation of waste facilities. The implementation of the new regulations, and in particular the introduction of BAT in terms of reference and target values for nuclear power reactors indicates the foreseen reductions of releases for the forthcoming five years. After that time, new reference and target values will be established. The regulations stipulate that monitoring of releases of radioactive substances shall be reported to the authorities. These reports will fulfil the demand for following-up of the progress of implementing the strategy. In particular, in yearly reports the progress towards reaching the target values will be monitored

  9. Proposed Radiation Control Act: discussion paper

    International Nuclear Information System (INIS)

    1989-01-01

    The history and nature of the present NSW Radioactive Substances Act passed in 1957 is outlined. The direction of reform is suggested and some options for changes presented. These include the extension of controls to cover non-ionising radiation, the introduction of controls over the mining and milling of radioactive ores, and improved licensing provisions. Professional and public comment is sought

  10. Method for removal of decay heat of radioactive substances

    International Nuclear Information System (INIS)

    Hesky, H.; Wunderer, A.

    1981-01-01

    In this process, the decay heat from radioactive substances is removed by means of a liquid carried in the coolant loop. The liquid is partially evaporated by the decay heat. The steam is used to drive the liquid through the loop. When a static pressure level equivalent to the pressure drop in the loop is exceeded, the steam is separated from the liquid, condensed, and the condensate is reunited with the return flow of liquid for partial evaporation. (orig.) [de

  11. Radiological Protection Act 1970

    International Nuclear Information System (INIS)

    1970-01-01

    This Act provides for the establishment of a Radiological Protection Board to undertake research and advise on protection from radiation hazards. Its functions include provision of advice to Government departments with responsibilities in relation to protection of sectors of the community or the community as a whole against the hazards of ionizing radiation. The Act, which lays down that the Board shall replace certain departments concerned with radiation protection, repeals several Sections of the Radioactive Substances Act 1948 and the Science and Technology Act 1965. (NEA) [fr

  12. Handling of radioactive substances containing ionization smoke detectors found in debris

    International Nuclear Information System (INIS)

    Kratz, M.; Lorenz, F.

    1992-01-01

    In many commercial buildings, ionization smoke detectors are installed which contain radioactive substances such as Ra-226 or Am-241 and are subject to regularoty control. The obligations of plant owners having installed such devices are laid down in Annex III of the Radiation Protection Ordinance of June 30, 1989. In the event of a fire, the public trade inspection offices are the competent authorities for examining the radioactivity level of the debris to be managed after a fire. The radioactivity level is determined in accordance with Annex IV of the Radiation Protection Ordinance, defining the MPA data for every nuclide. If the specific activity measured per gramme of debris is in excess of the 10 -4 -fold maximum permissible activity, waste management requires a permit according to section 3 of the Radiation Protection Ordinance. (orig.) [de

  13. Nuclear power plant providing a function of suppressing the deposition of radioactive substance

    International Nuclear Information System (INIS)

    Honda, T.; Kawakami, T.; Izumiya, M.; Minato, A.; Ohsumi, K.

    1988-01-01

    In a nuclear power plant having a cooling system and radioactive coolant in the cooling system, the cooling system is described including ferrous structural material in contact with the radioactive coolant, wherein the ferrous structural material has a preliminary oxide film formed thereon, by oxidation of the bare surface portion thereof, by contacting bare surfaces of the structural material with flowing water containing an oxidizing agent and no metallic ions. The preliminary oxide film is formed at those portions of the ferrous structural material to be in contact with the radioactive coolant. The preliminary oxide film is formed prior to the structural material contacting the radioactive coolant. The preliminary oxide film consists essentially of Fe/sub 2/O/sub 3/ and having a thickness of at least 300 A, whereby later formation of new oxide film while the structural material is in contact with the radioactive coolant is suppressed to thereby suppress deposition of the radioactive substances on the ferrous structural material

  14. Flask for highly radioactive substances

    International Nuclear Information System (INIS)

    1980-01-01

    The flask for highly radioactive substances described in this invention comprises a thick steel cylinder with leak proof closures at both ends and made up of several coaxial rings in rolled sheet steel, fitted into each other and welded to each other along their edges. The inner ring is preferably in sheet steel with a lining on its internal side, for instance a stainless steel lining. Likewise the outer ring is preferably in sheet steel with a covering on its outer side. The cylindrical body of the flask is welded by its lower end to a forged steel bottom and by its upper end to a forged steel ring. The bottom can also be made with several partitions. This forged steel ring has an inside peripheral shoulder and the upper end of the flask is closed in a leak proof manner by an initial forged steel plus resting on this shoulder and bolted to it and by a second plug bolted to the free end of this ring [fr

  15. Express control of migration processes of radioactive substances during drilling works in 'Ukryttya' object local zone

    International Nuclear Information System (INIS)

    Pravdivyj, A.A.

    2003-01-01

    Technical proposals are prepared to create a procedure for operative control of drilling works. Such a procedure will permit detecting the displacement of radioactively contaminated ground along borehole bore and correcting the drilling work procedure, which would prevent radioactive substance spreading, in boreholes of 'Ukryttya' object local zone and those of Exclusion Zone

  16. Study of casks shielded with heavy metal to transport highly radioactive substances

    International Nuclear Information System (INIS)

    Lucchesi, R.F.; Hara, D.H.S.; Martinez, L.G.; Mucsi, C.S.; Rossi, J.L.

    2014-01-01

    Nowadays, Brazil relies on casks produced abroad for transportation in its territory of substances that are sources of high radioactivity, especially the Mo-99. The product of the radioactive decay of the Mo-99 is the Tc-99m, which is used in nuclear medicine for administration to humans in the form of injectable radioactive drugs for the image diagnosis of numerous pathologies. This paper aims to study the existing casks in order to propose materials for the construction of the core part as shielding against gamma radiation. To this purpose, the existing literature on the subject was studied, as well as evaluation of existing and available casks. The study was focused on the core of which is made of heavy metals, especially depleted uranium for shielding the emitted radiation. (author)

  17. Method to decontaminate radioactive water in the presence of impurity substances

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H; Hepp, H; Kluger, W; Geisel, R

    1978-08-24

    The method ensures the removal of radioactive substances from hard-to-decontaminate water. Before decontamination proper, ozone or chlorine is added to the water for demasking. The daughter products (oxidized radionuclides) of ozone are gaseous while the decay products of the chlorine remain in the water in the form of salts. In both cases, complex or chelate formation during the subsequent decontamination process is avoided.

  18. Method to decontaminate radioactive water in the presence of impurity substances

    International Nuclear Information System (INIS)

    Krause, H.; Hepp, H.; Kluger, W.; Geisel, R.

    1978-01-01

    The method ensures the removal of radioactive substances from hard-to-decontaminate water. Before decontamination proper, ozone or chlorine is added to the water for demasking. The daughter products (oxidized radionuclides) of ozone are gaseous while the decay products of the chlorine remain in the water in the form of salts. In both cases, complex or chelate formation during the subsequent decontamination process is avoided. (DG) [de

  19. Safety in transports of civil radioactive substances on the French territory. Lessons learned by the IRSN from the analysis of significant events declared in 2012 and 2013. Safety of transports of civil radioactive substances in France

    International Nuclear Information System (INIS)

    2016-11-01

    After a presentation of some general elements regarding transports of radioactive substances in France, this report proposes a synthetic overview of the main lessons learned by the IRSN from the analysis of transport-related events in 2012 and 2013. Then, the body of this report presents the context of transports of radioactive substances: legal framework, main safety elements, nature and flows of these transports in France, transports per activity sector. It proposes a global analysis of significant events, with a comparison with previous years. The four main significant events are described. Some transverse issues are finally addressed: return on experience on crisis management in relationship with transport events, IRSN study on the behaviour of packagings during long duration fire

  20. Criteria relating to the approval of consumer goods containing radioactive substances: a consultative document

    International Nuclear Information System (INIS)

    1980-05-01

    The National Radiological Protection Board currently provides manufacturers and suppliers of consumer goods containing radioactive substances with advice on the acceptability of their products. Examples of such goods available to the public include radioluminous devices such as clocks, watches and compasses, products containing gaseous tritium light sources, ionisation chamber smoke detectors and thorium gas mantles. In the present document, detailed proposals are put forward for criteria which the Board may use when considering applications for the approval of goods containing radioactive substances to ensure that they are safe. The proposals relate to the radiation doses to consumers and others who may be exposed as a consequence of their activities, and also consider the benefits to consumers. They are concerned with doses arising during normal use, through accidents and misuse, and as a consequence of uncontrolled disposal. (U.K.)

  1. Method of treating the waste liquid of a washing containing a radioactive substance

    International Nuclear Information System (INIS)

    Sawaguchi, Yusuke; Tsuyuki, Takashi; Kaneko, Masato; Sato, Yasuhiko; Yamaguchi, Takashi.

    1975-01-01

    Object: To separate waste liquid resulting from washing and which contains a radioactive substance and surface active agent into high purity water and a solid waste substance containing a small quantity of surface active agent. Structure: To waste liquid from a waste liquid tank is added a pH adjusting agent for adjusting the pH to 5.5, and the resultant liquid is sent to an agglomeration reaction tank, in which an inorganic agglomerating agent is added to the waste liquid to cause a major proportion of the radioactive substance and surface active agent to form flocks produced through agglomeration. Then, the waste liquid is sent from the agglomeration reaction tank to a froth separation tank, to which air is supplied through a perforated plate to cause frothing. The over-flowing liquid is de-frothed, and then the insoluble matter is separated as sludge, followed by hydroextraction and drying for solidification. The treated liquid extracted from a froth separation tank is sent to an agglomerating agent recovery tank for separation of the agglomeration agent, and then the residual surface active agent is removed by adsorption in an active carbon adsorption tower, followed by concentration by evaporation in an evaporating can. The concentrated liquid is extracted and then solidified with cement or asphalt. (Kamimura, M.)

  2. Regulatory aspects of underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    It is a basic principle of radioactive waste management in the U.K. to comply with the system of dose limitations laid down by the International Commission on Radiological Protection. The Radioactive Substances Act, 1960, prohibits the disposal of radioactive waste on or from all premises (except those belonging to the Crown) unless authorised by the appropriate authority. Consultation, as necessary, with local and public authorities is provided for. Under the Nuclear Installations Act, 1965, nuclear installations, with some exceptions, require to be licensed by the Health and safety executive. Installations for the disposal of radioactive waste are not, as such, prescribed as nuclear installations under the Nuclear Installations Act, 1965 (and thereby governed by the licensing procedure under the Act), but they may be, if they involve the storage of bulk quantities of radioactive waste. The Secretary of State for the Environment, together with the Secretaries of State for Scotland and Wales are responsible for the development of a nuclear waste management policy, helped in this task by the newly-formed Radioactive Waste Management Advisory Committee. (NEA) [fr

  3. Health (Radiation Safety) Act 1983 (Victoria) No. 9889 of 17 May 1983

    International Nuclear Information System (INIS)

    1983-01-01

    This Act amends the Health Act 1958 by adding a new Section entitled ''Radiation Safety''. In addition to establishing guidelines for the registration and licensing of certain radiation apparatus and sealed radioactive sources, this new Section authorises the Governor in Council to make regulations concerning, inter alia, transport and disposal of radioactive substances and public health and safety. The Act also sets up a Radiation Advisory Committee and a Radiographers and Radiation Technologists Registration Board of Victoria and amends the Nuclear Activities (Prohibitions) Act 1983 in respect of certain licensing provisions. (NEA) [fr

  4. Radioactive hazards

    International Nuclear Information System (INIS)

    Gill, J.R.

    1980-01-01

    The use of radioactive substances in hospital laboratories is discussed and the attendant hazards and necessary precautions examined. The new legislation under the Health and Safety at Work Act which, it is proposed, will replace existing legal requirements in the field of health and safety at work by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare already established, is considered with particular reference to protection against ionising radiations. (UK)

  5. Radioactive materials and waste. Planning act of 28 jun 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The English translation contained in this booklet is based on Planning Act No. 2006-739 of 28 June 2006 and on articles L. 542-1 and following of the Environmental Code (as modified). It gathers all articles of the French law dealing with the activities of the ANDRA, the French national agency of radioactive wastes, and with the sustainable management of radioactive materials and waste. It is provided for convenience purposes only. The French version remains the only valid and legally binding version. In order to enhance readability, all articles relating to ANDRA's activities are consolidated in this self-supporting document. The original French version of the new Act and of the Environmental Code, already published in the 'Journal officiel', are the only authentic biding texts

  6. Ward Valley and the Federal Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1996-01-01

    In his State of the Union Address delivered on 23 January 1996, President Clinton said, speaking generally, open-quotes Passing a law - even the best possible law - is only a first step. The next step is to make it work.close quotes The president is right, of course; faithful execution of any law is the key. Unfortunately, this lesson appears lost on his own administration when it comes to making the Low-Level Radioactive Waste Policy Act work. That act is one of the most important environmental laws of the 1980s. It was designed by Congress and the state governors to assure both sufficient disposal capacity for low-level radioactive waste (LLRW) and regional equity in the siting of new disposal facilities. Former Congressman Morris Udall (D-Ariz.), who was chairman of the House Interior Committee and a congressional environmental leader, was author of the act. No state has done more to make the law work than California. No state has made more progress toward developing a new disposal facility for low-level radioactive waste as mandated by the act. But further progress, that is, actual construction and operation of a disposal facility, has been stymied by the federal administration, which has refused to convey federal desert lands to California for use as the site of the proposed disposal facility

  7. The Belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources

    International Nuclear Information System (INIS)

    Braeckeveldt, Marnix; Preter, Peter De; Michiels, Jan; Pepin, Stephane; Schrauben, Manfred; Wertelaers, An

    2007-01-01

    Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium's federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port's alarm goes off. Following the publication of the European guideline 2003/122/EURATOM of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund. (authors)

  8. Regulatory requirements for the use of consumer products containing radioactive substances

    International Nuclear Information System (INIS)

    Mason, G.C.; Paynter, R.A.; Schmitt-Hannig, A.; Sztanyik, L.B.

    1996-01-01

    In almost 100 years since the discovery of radioactivity, the properties of radioactive materials have been exploited in products such as clocks and watches incorporating luminous paint which are freely available to members of the public. Over time, regulatory authorities have felt it necessary to apply some degree of control to the supply and use of such products in order to protect public health. In many areas of radiation protection, national authorities take note of international recommendations when developing national standards, but the existing detailed guidance of the International Atomic Energy Agency (IAEA) for consumer products is incomplete and out of date. Recently, a thorough revision of the International Basic Safety Standards (BSS) has occurred, which has prompted a review and revision of the related guidance published by the IAEA. A draft Guide on Regulatory Requirements for the Use of Consumer Products Containing Radioactive Substances has now been completed and is currently under review within the IAEA's system for development of documents in its Safety Series of publications. (author)

  9. Inconsistency... or why differentiate, where prevention is concerned, between radioactive substances and carcinogenic chemicals

    International Nuclear Information System (INIS)

    Choquet, R.; Vinit, J.

    1982-01-01

    Radiotracers, low-activity unsealed radioactive sources, and certain chemical products belong to the list of substances and agents known to promote cancers in humans. The dangers of radiotracers and carcinogenic chemicals being very similar, or even identical, it is inadmissible that preventive measures have not been equally developed and are not viewed in the same way in our country. It should be noted that the International Labour Bureau has long since included radioactive products in the list of carcinogenic substances and agents and treated preventive measures as a whole by proceeding in this way it would be easier to account for the possible combined effects of ionising radiations and chemical molecules. After a review of some facts about cancer the present situation is examined with regard to statutory measures applied on the one hand to radioelements and on the other to chemicals recognised as carcinogenic by international organisations. Proposals are made to remedy this illogical situation [fr

  10. The Application and Regulation of Non-Medical radioactive Substances in Taiwan, China

    International Nuclear Information System (INIS)

    Chang, Chihchien; Chou, Keiden; Wang, Songfeng

    1998-01-01

    Based on the Atomic Energy Law of Taiwan and regulations regarding radiation protection, an operating system has been established for the approval and regulation of import (production), installation, licensing, safety inspection, record keeping, storage, transfer, transportation and abandonment of nonmedical radioactive materials and equipment capable of producing ionizing radiation. In order to ensure that all equipment capable of producing ionizing radiation can meet the respective standard of radiation protection in accordance with the ALARA principle, nonmedical equipment capable of producing ionizing radiation is divided into six categories depending on its inherent shielding ability, operation limit, characteristics of the radiation and the required degree of surveillance for achieving the purpose of radiation protection. The six categories are: 1. Protective equipment, 2. Immobile closed equipment, 3. Automatic operating equipment, 4. Mobile equipment, 5. Unsealed radioactive substances, 6. Consumer products and other radioactive sources with different properties. Each category has its specific requirements in radiation protection. (author)

  11. Radioactive materials and waste. Planning act of 28 jun 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The English translation contained in this booklet is based on Planning Act No. 2006-739 of 28 June 2006 and on articles L. 542-1 and following of the Environmental Code (as modified). It gathers all articles of the French law dealing with the activities of the ANDRA, the French national agency of radioactive wastes, and with the sustainable management of radioactive materials and waste. It is provided for convenience purposes only. The French version remains the only valid and legally binding version. In order to enhance readability, all articles relating to ANDRA's activities are consolidated in this self-supporting document. The original French version of the new Act and of the Environmental Code, already published in the 'Journal officiel', are the only authentic biding texts.

  12. Legal Analysis of the Korea Radioactive Waste Management Act in the aspect of IAEA Principles

    International Nuclear Information System (INIS)

    Lee, D. S.; Chung, W. S.; Yang, M. H.; Yun, S. W.; Lee, J. H.

    2009-01-01

    According to the Principles of Radioactive Waste Management, the IAEA SAFETY SERIES NO-111-F, IAEA declared 9 doctrines. The IAEA advised a country that operates nuclear power plant to adopt the principles. As a member of the IAEA, Korea has also discussed about a unified policy and enacting law for radioactive waste management to follow the doctrines. This study analyzed the recently enacted Korea Radioactive Waste Management Act and verified whether the Act successfully follows the doctrine or not

  13. Specific activity isolation and determination of radioactive Estrogenic Substances in White Clover

    International Nuclear Information System (INIS)

    Pupiales T, G.; Mejia M, G.

    1986-01-01

    Due to high number of leguminous that exhibit estrogenic activity, subterranean clover between others, which causes infertility in sheep that eat it. It has been considered that white clover (Trifolium repens, variety Ladino, is an specie of low estrogenic activity, however at Bogota City (Colombia) it has high estrogenic activity and may cause reduction in the dairy cattle fertility. Research done in the IAN (today Ingeominas) over this clover variety, showed that the radioactivity substances presents in the white clover have high activity for stradiol, affecting organs from mouse females; Isoflavonoids from vegetables have an anabolism and utero tropic action; estrogenic activity of clover leaves, was exponentially proportional to the amount of ultraviolet radioactivity, falling upon plants during leaves development stage

  14. 78 FR 64210 - Extension of Review Periods Under the Toxic Substances Control Act; Certain Chemicals and...

    Science.gov (United States)

    2013-10-28

    ... Under the Toxic Substances Control Act; Certain Chemicals and Microorganisms; Premanufacture... 325 and 324110), e.g., chemical manufacturing and petroleum refineries. The North American Industrial... Agency under section 5 of the Toxic Substances Control Act (TSCA), received by EPA on or before October 1...

  15. Testing of TSCA [Toxic Substances Control Act] incinerator for destruction of PCBs in uranium contaminated wastes

    International Nuclear Information System (INIS)

    Anderson, R.W.

    1987-01-01

    A Toxic Substances Control Act (TSCA) incinerator for environmentally safe destruction of PCBs and hazardous organic materials contaminated with low level radioactive wastes from seven DOE facilities has been constructed at the Oak Ridge Gaseous Diffusion Plant, and has undergone performance testing with PCB surrogates. The system incorporates state-of-the-art off-gas treatment, a highly instrumented kiln and secondary combustion chamber, and an inert atmosphere solids handling feed system. Release of organic during an upset event, which triggers opening of the secondary combustion chamber relief vent, will be prevented by maintaining excess oxygen in the kiln and a high temperature in the secondary combustion chamber with an operating burner. Mixtures of chlorinated benzenes used in performance testing to simulate destruction of PCB, worst case studies to satisfy regulatory concerns, and implications of performance test results will be discussed. 4 refs

  16. Radioactivity in the environment. A summary and radiological assessment of the Environment Agency's monitoring programmes; report for 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Radioactive Substances Act 1993 provides for controls to be exercised over the keeping and use of radioactive materials and, in particular, on the accumulation and disposal of radioactive wastes. The Environment Agency is responsible for administration and enforcement of the Act in England and Wales. In support of these regulatory functions and as part of the UK Government's arrangements for providing information to the European Commission under the Euratom Treaty, the Agency commissions independent monitoring of radioactive waste disposals and their impact on the environment, and monitoring of radioactivity in air, rainwater and drinking water sources. This report presents the data from these monitoring programmes and provides a commentary on their radiological significance. It includes assessments of radiation exposure of members of the public for compliance with the annual dose limit recommended by the International Commission on Radiological Protection. Concentrations of radioactivity in water are also assessed in relation to the guidelines on drinking water quality recommended by the World Health Organisation. This report for 1997 is one of an annual series published by the Agency. It is being distributed to local authorities as part of the arrangements under the Radioactive Substances Act 1993 for provision of access to environmental information. The monitoring programmes and preparation of this report are managed by the Agency's National Compliance Assessment Service. (author)

  17. Toxic Substances Control Act (TSCA) 8(e) Notices and FYI Submissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Section 8(e) of the Toxic Substances Control Act (TSCA) requires U.S. chemical manufacturers, importers, processors and distributors to notify EPA within 30 calendar...

  18. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  19. Atomic Energy (Miscellaneous Provisions) Act 1981

    International Nuclear Information System (INIS)

    1981-01-01

    This Act extends the power of the United Kingdom Atomic Energy Authority to dispose of shares held by it in any company, and the power of the Secretary of State for Energy to dispose of shares held by him in companies engaged in activities in the field of atomic energy or radioactive substances. (NEA) [fr

  20. Radioactive Ores and Concentrates (Packaging and Transport) Act 1980. No 26 of 1980

    International Nuclear Information System (INIS)

    1980-01-01

    This Act, which regulates the packaging, storage and transport of radioactive ores and concentrates lays down a detailed licensing system for such materials and prescribes the duties of the Chief Inspector responsible for implementation of the Act. (NEA) [fr

  1. Analysis of determination modalities concerning the exposure and emission limits values of chemical and radioactive substances

    International Nuclear Information System (INIS)

    Schieber, C.; Schneider, T.

    2002-08-01

    This document presents the generic approach adopted by various organizations for the determination of the public exposure limits values to chemical and radioactive substances and for the determination of limits values of chemical products emissions by some installations. (A.L.B.)

  2. Development of Radioactive Substance Contamination Diffusion Preventive Equipment for a Hot cell

    International Nuclear Information System (INIS)

    Choo, Yong Sun; Kim, Do Sik; Baik, Seung Je; Yoo, Byung Ok; Kim, Ki Ha; Lee, Eun Pyo; Ahn, Sang Bok; Ryu, Woo Seok

    2009-01-01

    The hot cell of irradiated materials examination facility (IMEF), which has been operating since 1996, is generally contaminated by the radioactive nuclides of irradiated nuclear fuels and structural steels like Cs-137, Co-60, Co-134 and Ru-106. Especially Cs-137 is a main contaminated radioactive isotope which is easily moved here and there due to air flow in the hot cell, water-soluble, extremely toxic, and has a half-life of 30.23 years. To repair or fix the abnormal function of test apparatus installed in the hot cell, the maintenance door, so called a rear door and located at an intervention area, is opened to enter the hot cell inside. In a moment of opening the maintenance door, dirty air diffusion from the hot cell to an intervention area could be occurred in spite of increasing the rpm of exhaust fan to maintain much low under pressure, but an adjacent area to a maintenance door, i.e. intervention area, is very severely contaminated due to the unpredictable air flow. In this paper, the development of the radioactive substance contamination diffusion preventive equipment for a hot cell is studied to prevent dirty and toxic gaseous radioactive nuclides diffusion from a hot cell and installed at an intervention area of IMEF

  3. Toxic Substances Control Act Test Submissions 2.0 (TSCATS 2.0)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxic Substances Control Act Test Submissions 2.0 (TSCATS 2.0) tracks the submissions of health and safety data submitted to the EPA either as required or...

  4. Analysis of determination modalities concerning the exposure and emission limits values of chemical and radioactive substances; Analyse des modalites de fixation des valeurs limites d'exposition et d'emission pour les substances chimiques et radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, C.; Schneider, T

    2002-08-01

    This document presents the generic approach adopted by various organizations for the determination of the public exposure limits values to chemical and radioactive substances and for the determination of limits values of chemical products emissions by some installations. (A.L.B.)

  5. Radioactive substance removing device

    International Nuclear Information System (INIS)

    Takeuchi, Jun; Tayama, Ryuichi; Teruyama, Hidehiko; Hikichi, Takayoshi.

    1992-01-01

    If inert gases are jetted from a jetting device to liquid metals in a capturing vessel, the inert gases are impinged on the inner wall surface of the capturing vessel, to reduce the thickness of a boundary layer as a diffusion region of radioactive materials formed between the inner wall surface of the capturing vessel and the liquid metals. Further, a portion of the boundary layer is peeled off to increase the adsorption amount of radioactive materials by the capturing vessel. When the inert gases are jetted on the inner or outer circumference of the capturing vessel to rotate the capturing vessel, the flow of the liquid metals is formed along with the rotation, and the thickness of the boundary layer is reduced or the boundary layer is peeled off to increase the absorption amount of the radioactive materials. If gas bubbles are formed in the liquid metals by the inert gases, the liquid metals are stirred by the gas bubbles to reduce the thickness of the boundary layer or peel it off, thereby enabling to increase the adsorption amount of the radioactive materials. Since it is not necessary to pass through the rotational member to the wall surface of the vessel, safety and reliability can be improved. (N.H.)

  6. Ministerial Order appointing the Customs Offices through which radioactive substances or devices containing such substances subject to licensing must be imported

    International Nuclear Information System (INIS)

    1977-01-01

    Under the royal Order of 28 February 1963 regulating protection of the population and workers against the hazards of ionizing radiation, this Order by the Minister of Public Health and the Family designates the Customs Offices through which radioactive substances and devices containing them may be imported. It lists for each type of transport (land, sea etc) the authorised points of access into Belgium. (NEA) [fr

  7. Requirements for a long-term safety certification for chemotoxic substances stored in a final storage facility for high radioactive and heat-generating radioactive waste in rock salt formations

    International Nuclear Information System (INIS)

    Tholen, M.; Hippler, J.; Herzog, C.

    2007-01-01

    Within the scope of a project funded by the German Federal Ministry of Economics and Technology (Bundesministerium fuer Wirtschaft und Technologie, BMWi), a safety certification concept for a future permanent final storage for high radioactive and heat-generating radioactive waste (HAW disposal facility) in rock salt formations is being prepared. For a reference concept, compliance with safety requirements in regard to operational safety as well as radiological and non-radiological protection objectives related to long-term safety, including ground water protection, will be evaluated. This paper deals with the requirements for a long-term safety certification for the purpose of protecting ground water from chemotoxic substances. In particular, longterm safety certifications for the permanent disposal of radioactive waste in a HAW disposal facility in rock salt formations and for the dumping of hazardous waste in underground storage facilities in rock salt formations are first discussed, followed by an evaluation as to whether these methods can be applied to the long-term safety certification for chemotoxic substances. The authors find it advisable to apply the long-term safety certification for underground storage facilities to the long-term safety certification for chemotoxic substances stored in a HAW disposal facility in rock salt formations. In conclusion, a corresponding certification concept is introduced. (orig.)

  8. 48 CFR 1552.235-78 - Data Security for Toxic Substances Control Act Confidential Business Information (DEC 1997).

    Science.gov (United States)

    2010-10-01

    ...: Data Security for Toxic Substances Control Act Confidential Business Information (DEC 1997) The... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Data Security for Toxic Substances Control Act Confidential Business Information (DEC 1997). 1552.235-78 Section 1552.235-78 Federal...

  9. Radioactivity and food

    International Nuclear Information System (INIS)

    Olszyna-Marzys, A.E.

    1990-01-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references

  10. Nuclear plant refurbishment calls for patience. [Construction of radioactive effluent plant

    Energy Technology Data Exchange (ETDEWEB)

    Henly, Anna

    1989-08-01

    All nuclear power plants produce a small quantity of liquid effluent from wash hand basins, showers and surface drains on the site. The effluent is termed low-level radioactive waste and under the 'Radioactive Substances Act' can be discharged into estuaries or the sea. Before a controlled discharge can be made the effluent has to be chemically treated and have any radioactive particulate matter removed. The replacing of the radioactive effluent plant at the Berkeley nuclear power station in the United Kingdom is described, with particular reference to the vigorous safety standards and quality assurance programme operated by the Central Electricity Generating Board. (author).

  11. Radioactive substances

    International Nuclear Information System (INIS)

    Butler, G.C.; Hyslop, C.

    1980-01-01

    The purpose of this chapter is to show how to assess the detriment resulting from the release of radioactive materials to the environment. The minimum information required for the assessments is given for seven radionuclides of interest from the point of view of environmental contamination. The seven radionuclides are tritium, krypton-85, strontium-90, iodine-131, cesium-137, radium-226 and plutonium-239. Information is given on the radiation doses and the radiation effects on man due to these radioisotopes. (AN)

  12. Validation of radioactivity measurements under the Safe Drinking Water Act

    International Nuclear Information System (INIS)

    Goldin, Abraham S.

    1978-01-01

    Radioactivity measurements are made under the Safe Drinking Water Act to obtain information on the potential radiological hazard of water and to institute regulatory action when water quality does not meet requirements. Measurements must be both precise and accurate if these goals are to be met. Regulations issued under the act require that analyses be performed by approved (certified) laboratories, which must carry out quality assurance programs. This paper briefly describes the certification requirements and discusses the components of an effective quality assurance program. The Environmental Protection Agency has established procedures for the certification of laboratories making radioactivity measurements of drinking water. These procedures recommend minimum laboratory qualifications for personnel, facilities, equipment, and procedures; proficiency testing by analysis of samples provided by the Agency; and operation of a quality assurance program. A major function of a quality assurance program is to provide the Laboratory Director an ongoing flow of information on laboratory analytical performance. A properly designed and conducted program provides this information in a timely manner, indicates areas where discrepancies exist, and often suggests ways of correcting the discrepancies. Pertinent aspects of radioactivity measurements for drinking water are discussed, including how analyses of blanks, blind duplicates, and reference samples contribute needed information, and evaluations by control charts and statistical analyses. Examples of the usefulness of quality control in correcting both procedural and background problems are given. (author)

  13. California's response to the Low-Level Radioactive Waste Policy Act of 1980: policy and progress

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1985-01-01

    The public and private corporations and institutions in California that use radioactive materials and generate low-level radioactive waste have played a major role in shaping and guiding California's response to the federal Low-Level Radioactive Waste Policy Act of 1980. Working together as the California Radioactive Materials Management Forum (CAL RAD FORUM), these organizations carry out legislative and public education programs with the objective of establishing, in California, a low-level radioactive waste disposal facility and maintaining access to existing disposal facilities in other states until the California facility is licensed and operating

  14. Radiation Protection and Control Act 1982. No 49 of 1982

    International Nuclear Information System (INIS)

    1982-01-01

    This Act provides for radiation protection in the State of South Australia. It controls activities related to radioactive substances and irradiating apparatus and lays down a licensing system to this effect. The South Australia Health Commission is responsible for administering the Act and is advised by the Radiation Protection Committee created for this purpose. The powers and duties of both bodies are set out in detail. (NEA) [fr

  15. Conducting the personal subsidiary plot at the territory, contaminated with radioactive substances

    International Nuclear Information System (INIS)

    Borovikov, A.N.; Kulazhenko, V.G.; Kovalev, S.D.; Milyuta, B.I.; Basalaeva, Z.N.

    1993-01-01

    As a result of Chernobyl NPP accident large amount of radioactive substances fell at agricultural areas and its production became the source of additional irradiation of population. One of the task is to get food with the content of radionuclides not exceeding the fixed norms. The rules of working hygiene which provide safe living of population at the territories with different level of contamination are described. Recommendations for processing the fruit and market gardens are given, suitable from the point of view of accumulation of radionuclides vegetables and fruits, kinds and sorts cultures are presented. The rules of keeping and feeding the animals, bees and fur-bearing animals are developed. The rules for primary processing of products of plant-growing and stock-breeding, which permit to decrease radioactive contamination 2-10 and more times are presented. Methods of using the products of forest - material and fuel wood, meet of wild animals, mushrooms and berries - are proposed. 5 tabs

  16. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.

    Science.gov (United States)

    Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon

    2011-12-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  17. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste

    International Nuclear Information System (INIS)

    Wilson, James C; Towler, George; Thorne, Michael C; Norris, Simon

    2011-01-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source–pathway–receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  18. Toxic Substances Control Act test submissions database (TSCATS) - comprehensive update. Data file

    International Nuclear Information System (INIS)

    1993-01-01

    The Toxic Substances Control Act Test Submissions Database (TSCATS) was developed to make unpublished test data available to the public. The test data is submitted to the U.S. Environmental Protection Agency by industry under the Toxic Substances Control Act. Test is broadly defined to include case reports, episodic incidents, such as spills, and formal test study presentations. The database allows searching of test submissions according to specific chemical identity or type of study when used with an appropriate search retrieval software program. Studies are indexed under three broad subject areas: health effects, environmental effects and environmental fate. Additional controlled vocabulary terms are assigned which describe the experimental protocol and test observations. Records identify reference information needed to locate the source document, as well as the submitting organization and reason for submission of the test data

  19. Structural models of public risk perception of radioactive substances in food. An analysis of the data from internet survey

    International Nuclear Information System (INIS)

    Kito, Yayoi; Niiyama, Yoko

    2012-01-01

    In risk communication of food contamination by radioactive substances derived from the accident at Fukushima Daiichi nuclear power plant, it is required that experts, government and the public exchange information and opinions and establish a mutual understanding. To meet these requirements, it is necessary to investigate public risk perception and the structure of perception. We conducted a series of internet surveys in 2011-2012, two times in Kanto- and Kansai-area on men and women aged from 30 to 49 who have children, and once in all parts of Japan on women aged from 20 to 59. From the data analysis, we identified the feature of risk perception of radioactive substances and buying behavior, and moreover, we analyzed the relationship among the perceived risks and other factors using Structural Equation Modeling. (author)

  20. Portugal's 2001 Drugs Liberalisation Policy: A UK Service Provider's Perspective on the Psychoactive Substances Act (2016)

    Science.gov (United States)

    Banbury, Samantha; Lusher, Joanne; Guedelha, Francisco

    2018-01-01

    The Misuse of Drugs Act (1971) and the Psychoactive Substances Act (2016) both reinforce the criminalisation of drug use in the UK. The Psychoactive Substances Act (2016) has been developed to control and monitor the use of legal highs, particularly in institutions. This study aimed to establish drug service providers' viewpoints on how effective…

  1. Exemption and clearance of radioactive waste from non-nuclear industry: A UK regulator's perspective

    International Nuclear Information System (INIS)

    McHugh, J.O.

    1997-01-01

    In the UK radioactive substances are regulated by means of registrations and authorizations issued under the Radioactive Substances Act. For certain practices and types of radioactive materials, there are orders which allow exemption from registration/authorization, conditionally or unconditionally. The seventeen Exemption Orders in force cover a wide variety of types of radioactive materials and practices. Conditional Exemption Orders allow a degree of regulatory control without imposing undue burdens on users of radioactivity. For most orders, radiation doses to individuals would be about 1OμSv or less, and collective doses would be less than 1 man - Sievert. The UK is reviewing the exemption orders against the requirements of the 1996 Euratom Basic Safety Standards Directive. It intends to develop a coherent strategy for exemption and to rationalize the current orders. Recently there has been a degree of public concern over the release of items from the nuclear industry. Careful presentation of exemption and clearance concepts is necessary if public confidence in the regulatory system is to be maintained. (author)

  2. Models for environmental impact assessments of releases of radioactive substances from CERN facilities

    CERN Document Server

    Vojtyla, P

    2005-01-01

    The document describes generic models for environmental impact assessments of releases of radioactive substances from CERN facilities. Except for few models developed in the Safety Commission, the models are based on the 1997 Swiss directive HSK-R-41 and on the 2001 IAEA Safety Report No. 19. The writing style is descriptive, facilitating the practical implementation of the models at CERN. There are four scenarios assumed for airborne releases: (1) short-term releases for release limit calculations, (2) actual short-term releases, (3) short-term releases during incidents/accidents, and (4) chronic long-term releases during the normal operation of a facility. For water releases, two scenarios are considered: (1) a release into a river, and (2) a release into a water treatment plant. The document shall be understood as a reference for specific environmental studies involving radioactive releases and as a recommendation of the Safety Commission.

  3. Assessment of Application Example for a Sodium Fire Extinguishing Facility using Safety Control of Dangerous Substances Act

    International Nuclear Information System (INIS)

    Jung, Minhwan; Jeong, Ji-Young; Kim, Jongman

    2014-01-01

    Sodium is under regulation of four kinds of laws including the Safety Control of Dangerous Substances Act and it is under categorized as Class 3(pyrophoric material, water-prohibiting substance). To obtain a license for a sodium experiment facility, the codes and regulations must be satisfied in the Safety Control of Dangerous Substance Act. However, there are some parts that need to be discussed in related regulations in the Safety Control of Dangerous Substance Act because there are differences with the actual features of sodium. To apply for an actual sodium facility, it is necessary to give a supplementary explanation regarding the regulations. The objective of this study is to assess the application example of a sodium experiment facility using the above mentioned laws and to propose the necessity of an amendment for conventional laws in regard to fire extinguishing systems and agents. In this work, an application example of a sodium experiment facility using the Safety Control of Dangerous Substances Act, and the necessity of amending the existing laws in regard to fire extinguishing systems including the agent used, was assessed. The safest standard was applied for cases in which the consideration of a sodium fire is not mentioned in conventional regulations. For the construction of the PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor), the described regulations in this work should be reviewed and improved carefully by the fire safety regulatory body

  4. Deposition of high-level radioactive waste products in bore-holes with buffer substance

    International Nuclear Information System (INIS)

    Jacobsson, A.; Pusch, R.

    1977-05-01

    The present investigation comprised a compilation of available literature data concerning the possible use of clayey masses as buffer substances in bore-holes (in rock) with canisters containing radioactive waste products. The aim was to find a suitable composition of the buffer mass and to recommend a suitable storing technique. The criteria concerning the function of the buffer substance were: Sufficient mechanical supporting power, suitable mechanical properties, prevention of free circulation of ground water, ion-adsorption ability, sufficiently good heat conduction properties. These criteria suggest that a buffer substance containing Na-montmorillonite would be suitable. Literature studies and own experience show that montmorillonite is permanently stable at 100 degrees C temperature and 5 MPa pressure when pH is within the range of 6.5-10 while quartz is stable at pH <9. The authors conclude that the suggested principle of storing the canisters in sealed bore-holes filled with a 10 percent bentonite/90 percent quartz (silt, sand) mass is suitable provided that the tunnel system, from which the holes are bored, is sealed with a dense buffer mass consisting of quartz (silt, sand) and 20-50 percent bentonite powder. (author)

  5. Radioactive substance separation systems

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1981-01-01

    Purpose: To enable separation of fission products, radioactive corrosion products and the likes in primary coolants with no requirement for the replacement of separation system during plant service life, by providing protruded magnetic pole plates in a liquid metal flow channel to thereby form slopes magnetic fields. Constitution: A plurality of magnetic pole plates are disposed vertically in a comb-like arrangement so as not to contact with each other along the direction of flow in a rectangular primary coolant pipeway at the exit of the reactor core in an LMFBR type reactor. Large magnetic poles are provided to the upper and lower sides of the pipeway and coils are wound on the side opposed to the pipeway. When electrical current is supplied to the coils, the magnetic pole is magnetized intensely and thus the magnetic pole plates are also magnetized intensely and thus the magnetic pole plates are also magnetized intensely to form large gradient in the magnetic fields between the upper and lower magnetic plates, whereby ferromagnetic and ferrimagnetic fission products and radioactive corrosion products in the coolants are intensely adsorbed and not detached by the flow of the coolants. Accordingly, the fission products and the radioactive corrosion products can surely be removed with no requirement for the exchange of separation system during plant service life. (Horiuchi, T.)

  6. Royal Order of 27 July 1966 relating to the reciprocal recognition of licences for the import, transport, transit, and distribution of radioactive substances between the countries of the Benelux Economic Union

    International Nuclear Information System (INIS)

    1966-01-01

    This Royal Order made taking into account the 1958 Act on protection of the population against the hazards of ionizing radiations, the 1963 Royal Order embodying the general regulations on protection of the population and workers against the hazards of ionizing radiations and the 1966 recommendation of the Committee of Ministers of the Benelux Economic Union lays down that, notwithstanding Section 38 and 57 of the 1963 Royal Order, licences for the import, transport and transit of radioactive substances or devices containing them which are issued by the competent authorities of the Netherlands or Luxembourg are valid in Belgium. Also, a Belgia distributor of such substances or devices containing them must ensure that a consignee residing in either of these countries holds the licences required by his national law. (NEA) [fr

  7. Analysis gives the penal treatment in Cuba to the tied infractions to the use and conservation gives radioactive substances

    International Nuclear Information System (INIS)

    Perez Gonzalez, F.; Perez Velazquez, R.S.; Fornet, R.O.; Reyes Fajardo, E.

    1998-01-01

    The work refers the realized analysis to the Law 62 the Cuban penal code that with establishing to the treatment of the infractions referred standard's to the uses and conservation the radioactive substances and other ionizing radiations sources

  8. Device for ray diagnosis for determining the distribution of radioactive substances

    International Nuclear Information System (INIS)

    Heinz, L.

    1976-01-01

    A ray diagnosing device for determining the distribution of radioactive substances in a body has a measuring head containing the ray probe, means for moving the head for a scanning line by line of the part to be examined, a setting device for the line distance and a printer actuated by the ray probe for inscribing an image corresponding to the activity distribution upon a writing sheet. The invention is particularly characterized in that the printer has a number of printing keys each of which is made to correspond to a specific line spacing and that there is an adjusting device for selectively switching on and off each one of the keys

  9. No 12 of 1971, Nuclear Energy (An Bord Fuinnimh Nuicleigh) Act, 1971

    International Nuclear Information System (INIS)

    1971-07-01

    This Act sets up a Nuclear Energy Board and provides for its duties and composition. The Board advises the Government on nuclear energy matters, prepares safety codes and regulations on fissile or other radioactive substances and irradiating apparatus. It is the licensing authority for activities involving ionizing radiation [fr

  10. Challenges in ensuring radiological safety and nuclear forensic for malicious acts involving nuclear and other radioactive material

    International Nuclear Information System (INIS)

    Sharma, Ranjit; Chatterjee, M.K.; Singh, Rajvir; Pradeepkumar, K.S.

    2010-01-01

    Nuclear and other radioactive materials may get smuggled into the country aimed at malicious acts. Radioactive material detected accidentally or during inspection at the entry points/national borders may indicate illicit trafficking for the purpose of nuclear/radiological terrorism. As country requires prevention and preparedness for response to these malicious acts, nuclear forensic techniques are to be developed incorporating radiological safety aspects. Nuclear forensics helps in determining the origin, intended use, legal owner and the smuggled route etc. by using fingerprinting as well as comparison with reference data. The suggested sequence of methods for analysis of radioactive material/samples will be radiological assessment, physical characterization, traditional forensic analysis, isotope analysis along with elemental/chemical analysis

  11. 40 CFR 261.8 - PCB wastes regulated under Toxic Substance Control Act.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false PCB wastes regulated under Toxic... (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.8 PCB wastes regulated under Toxic Substance Control Act. The disposal of PCB-containing dielectric fluid and electric...

  12. Radioactive substances in the Danish building materials

    International Nuclear Information System (INIS)

    Ulbak, K.

    1986-01-01

    Building materials as any other materials of natural occurrence contain small concentrations of natural radioactive elements. This natural radioactivity affects people inside buildings. This publiccation refers measurements of the Danish building materials, and radiation doses originating from this source affecting the Danish population are related to the other components of background radioactivity. (EG)

  13. Determination of the potential radiation exposure of the population close to the Asse II mine caused by deduction of radioactive substances with the discharge air in the normal operation using the ''Atmospheric Radionuclide-Transport-Model'' (ARTM)

    International Nuclear Information System (INIS)

    Esch, D.; Wittwer, C.

    2014-01-01

    Between 1967 and 1978 125.787 packages filled with low-level and intermediate-level radioactive waste were emplaced in the mining plant Asse II. Volatile radioactive substances like H-3, C-14 and Rn-222 are released from the emplaced waste. These substances reach the ventilated parts of the mine and are released with the discharge air. The potential radiation exposure of the population caused by deduction of radioactive substances with the discharge air in the normal operation is determined by the ''Atmospheric Radionuclide-Transport-Model'' (ARTM). As result the maximal deductions of volatile radioactive substances with the discharge air in the normal operation of the Asse II mine lead to radiation exposure of the population, which is considerably lower than the permissible values of application rate.

  14. State implementation of the Low-Level Radioactive Waste Policy Amendments Act of 1985: Progress and issues

    International Nuclear Information System (INIS)

    Tait, T.D.

    1987-03-01

    The 1980 Low-Level Radioactive Waste Policy Act (Public Law 96-573) assigned each state the responsibility for providing disposal capacity for the low-level radioactive waste (LLW) generated within its borders, except for certain LLW generated by the activities of the federal government. The law also authorized and encouraged states to enter into interstate compacts to provide for the establishment and operation of regional LLW disposal facilities. The January 1986 enactment of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA), resolved an impasse that had delayed congressional consent to seven interstate compacts formed for the regional disposal of LLW. The Act ensures that LLW generators will have continued access to the three existing commercial LLW disposal sites through 1992 as long as their states or regions are in compliance with milestones prescribed in the Act for development of new disposal facilities. Furthermore, the LLRWPAA assigned several responsibilities to the Department of Energy. The objective of the Low-Level Radioactive Waste Policy Amendments Act of 1985 is to ensure the development of an effective, safe, and environmentally acceptable nationwide system for the disposal of LLW by 1993. The Department of Energy is assisting the states and regions to achieve that objective and ensure that the system that is developed provides for the safe management and disposal of LLW at reasonable costs. Furthermore, the Department is working with the states and regions to ensure that while the new system is being developed, there are not disruptions in the current LLW management and disposal practices and that the public continues to receive the benefits of the industries that rely on nuclear materials to deliver their services

  15. 48 CFR 1552.235-75 - Access to Toxic Substances Control Act Confidential Business Information (APR 1996).

    Science.gov (United States)

    2010-10-01

    ... Control Act Confidential Business Information (APR 1996). 1552.235-75 Section 1552.235-75 Federal... Confidential Business Information (APR 1996). As prescribed in 1535.007(b), insert the following provision: Access to Toxic Substances Control Act Confidential Business Information (APR 1996) In order to perform...

  16. Proposed new regulations for the limitation of releases of radioactive substances from nuclear power stations with light water reactors

    International Nuclear Information System (INIS)

    1975-07-01

    In this publication the Swedish National Institute of Radiation Protection presents a proposed version of new regulations concerning the way in which the release of radioactive substances from nuclear power stations is to be limited. The regulations come into force on 1st January 1976. (Auth.)

  17. Toxic Substances Control Act. Environmental Guidance Program Reference Book: Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-15

    This Reference Book contains a current copy of the Toxic Substances Control Act and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  18. Environmental Guidance Program reference book: Toxic substances control act. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This Reference Book contains a current copy of the Toxic Substances Control Act and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE staff for informational purposes only and should not be interpreted as legal guidance. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  19. Probable Cause for Maritime Interdictions Involving Illicit Radioactive Materials

    Science.gov (United States)

    2008-12-01

    as a load of bananas ,21 the portable monitors need to have not only the ability to detect radiation but also to identify specific sources. Thus...unauthorized acts and physical storage, in order to uncover propensity to mask SNMs. Last, naturally occurring radioactive material (NORM) such as potassium ...40 (40K), which is largely used in agriculture as a fertilizer91 and exists abundantly in a great variety of natural substances, such as bananas , or

  20. Determination of substances by radiothermometric titration

    International Nuclear Information System (INIS)

    Tolgyessy, J.; Lesny, J.

    1976-01-01

    For determination, nitrogen is bubbled through a solution containing radioactive Kr, Xe, Rn or another aerogen in addition to the substance determined. A continuous or intermittent addition of the titrating solution results in the release of reaction heat, thus increasing the temperature of the reaction mixture, which releases a radioactive gas. Upon reaching the equivalence point, the cold titrating reagent cools the reaction mixture, thus reducing the radioactive substance release. The equivalence point lies at the point of intersection of the extended linear parts of the curve of the dependence of released radioactivity on the volume of the titrating solution added. (M.K.)

  1. Regulatory requirements for the transport of radioactive materials in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garg, R. [Canadian Nuclear Safety Commission, Ottawa (Canada)

    2004-07-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and

  2. Regulatory requirements for the transport of radioactive materials in Canada

    International Nuclear Information System (INIS)

    Garg, R.

    2004-01-01

    Canada is a major producer and shipper of radioactive material. Each year more than a million packages are transported in Canada. The safety record with the transport of RAM in Canada has historically been excellent. There have never been any serious injuries, overexposure or fatality or environmental consequences attributable to the radioactive nature of such material being transported or being involved in a transport accident. In Canada, the Canadian Nuclear Safety Commission (CNSC) is the prime agency of the federal government entrusted with regulating all activities related to the use of nuclear energy and nuclear substances including the packaging and transport of nuclear substances. The mission of the CNSC is to regulate the use of nuclear energy and materials to protect health, safety, security of the person and the environment and to respect Canada's international commitments on the peaceful use of nuclear energy. The division of responsibility for the regulation of transport of radioactive material has been split between Transport Canada and the CNSC. The governing Transport Canada's regulations are Transport of Dangerous Goods (TDG) Regulations and the CNSC regulations are Packaging and Transport of Nuclear Substances Regulations (PTNSR). Canada has actively participated in the development of the IAEA regulations for the safe transport of radioactive material since 1960. As an IAEA member state, Canada generally follows the requirements of IAEA regulations with few deviations. The Nuclear Safety and Control Act (NSCA) strongly supports Canada's international obligations to ensure safe packaging, transport, storage and disposal of nuclear substances, prescribed equipment and prescribed information. Prescribed equipment and prescribed information are defined in the CNSC General Nuclear Safety and Control Regulations. This paper presents the current CNSC regulatory requirements and initiatives taken by the CNSC to improve its effectiveness and efficiency

  3. Los Alamos Controlled Air Incinerator for hazardous chemical and mixed radioactive wastes

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Koenig, R.A.; Warner, C.L.

    1986-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is currently the only radioactive waste incineration facility in the US permitted to treat polychlorinated biphenyls (PCBs). The CAI was developed in the mid-1970's as a demonstration system for volume reduction of transuranic (TRU) contaminated combustible solid wastes. It has since undergone additions and modifications to accommodate hazardous chemical wastes in response to a need within the Department of Energy (DOE) to treat mixed radioactive/chemical wastes. An overview of these additions which include a liquid feed system, a high intensity liquid injection burner, and an activated carbon adsorption unit is presented here. Also included is a discussion of the procedures required for Toxic Substances Control Act (TSCA) and Resource Conservation and Recovery Act (RCRA) permitting of the CAI

  4. Radioactive substances in tap water.

    Science.gov (United States)

    Atsuumi, Ryo; Endo, Yoshihiko; Suzuki, Akihiko; Kannotou, Yasumitu; Nakada, Masahiro; Yabuuchi, Reiko

    2014-01-01

    A 9.0 magnitude (M) earthquake with an epicenter off the Sanriku coast occurred at 14: 46 on March 11, 2011. TEPCO Fukushima Daiichi Nuclear Power Plant (F-1 NPP) was struck by the earthquake and its resulting tsunami. Consequently a critical nuclear disaster developed, as a large quantity of radioactive materials was released due to a hydrogen blast. On March 16(th), 2011, radioiodine and radioactive cesium were detected at levels of 177 Bq/kg and 58 Bq/kg, respectively, in tap water in Fukushima city (about 62km northwest of TEPCO F-1 NPP). On March 20th, radioiodine was detected in tap water at a level of 965 Bq/kg, which is over the value-index of restrictions on food and drink intake (radioiodine 300 Bq/kg (infant intake 100 Bq/kg)) designated by the Nuclear Safety Commission. Therefore, intake restriction measures were taken regarding drinking water. After that, although the all intake restrictions were lifted, in order to confirm the safety of tap water, an inspection system was established to monitor all tap water in the prefecture. This system has confirmed that there has been no detection of radioiodine or radioactive cesium in tap water in the prefecture since May 5(th), 2011. Furthermore, radioactive strontium ((89) Sr, (90)Sr) and plutonium ((238)Pu, (239)Pu+(240)Pu) in tap water and the raw water supply were measured. As a result, (89) Sr, (238)Pu, (239)Pu+(240)Pu were undetectable and although (90)Sr was detected, its committed effective dose of 0.00017 mSv was much lower than the yearly 0.1 mSv of the World Health Organization guidelines for drinking water quality. In addition, the results did not show any deviations from past inspection results.

  5. Use of Formal Procedures in Developing Dialogue Between Operator and Regulator on Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Yearsley, Roger; Duerden, Susan; Bennett, David

    2001-01-01

    The Environment Agency (the Agency) is responsible, in England and Wales, for authorisation of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorised to dispose of solid low level radioactive waste at its Drigg site near Sellafield in Cumbria. Drigg is the primary site for the disposal of solid low level radioactive waste generated by the UK nuclear industry. A small facility operated by United Kingdom Atomic Energy Authority (UKAEA) at Dounreay on the north coast of Scotland is used solely for wastes arising on the UKAEA site. Drigg also offers a disposal route for smaller users of radioactive substances, such as hospitals and universities. Significant benefits have been derived from implementing a formal Issue Resolution Procedure as part of a soundly based process for dialogue between the Agency and BNFL. Benefits include improved understanding of the Agency's expectations, which has in turn led to improvements in BNFL's documentation and technical approach. The Agency considers the use of a formal Issue Resolution Procedure has placed the dialogue with BNFL on firm foundations for the planned assessment of the PostClosure Safety Case for Drigg when it is submitted in September 2002

  6. Radioactive Substances Act 1993 - annex document. To accompany the explanatory document and draft authorisation prepared by the Environment Agency to assist public consultation on the application by Devonport Royal Dockyard Limited to dispose of radioactive wastes from Devonport Royal Dockyard Plymouth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document constitutes Devonport Royal Dockyard Limited' s (DML) application to vary its authorisations to dispose of radioactive wastes from Devonport Royal Dockyard (DRD). The document describes the radioactive waste arisings from existing and future facilities at DRD and the way these wastes are handled and treated on site from generation to disposal. It also serves to present to a wider audience DML's activities and plans for radioactive waste management, and the 'benefits and detriments of the activities giving rise to radioactive wastes. DML's current Authorisations, granted in 1997, cover its refuelling, refitting and general maintenance activities on the so-called 'Hunter-killer' nuclear powered submarines. Following Ministerial approval, DRD is being modernised and enhanced. This will bring existing dock structures, refuelling facilities, and services in line with latest standards, and also provide new facilities to support the refit and refuel of the new Vanguard class ballistic missile carrying nuclear powered submarines. To cover these additional activities, revised authorisations - which in some cases include increased disposal limits - are being requested tinder the Radioactive Substances Act 1993. The current DML Authorisations were also due for review and so this Application covers both continuing and new operations and facilities. It is Government policy that the UK should maintain and operate a fleet of nuclear powered submarines. It is also Government policy to have a single dockyard for the refitting of nuclear powered submarines at DRD. DML owns the DRD site, and carries out work for the Ministry of Defence (MoD) and other customers. The radiation from the operation of a submarine's nuclear reactor causes some of the materials of the reactor core - and the Water used to cool it - to become radioactive. As a consequence of DML's work on these submarines, radioactive wastes are generated; these wastes

  7. Regulatory control of radiation sources and radioactive materials in Ireland

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fenton, D.; O'Flaherty, T.

    2001-01-01

    The primary legislation governing safety in uses of ionizing radiation in Ireland is the Radiological Protection Act, 1991. This Act provided for the establishment in 1992 of the Radiological Protection Institute of Ireland, and gives the Institute the functions and powers which enable it to be the regulatory body for all matters relating to ionizing radiation. A Ministerial Order made under the Act in 2000 consolidates previous regulations and, in particular, provides for the implementation in Irish law of the 1996 European Union Directive which lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Under the legislation, the custody, use and a number of other activities involving radioactive substances and irradiating apparatus require a licence issued by the Institute. Currently some 1260 licences are in force. Of these, some 850 are in respect of irradiating apparatus only and are issued principally to dentists and veterinary surgeons. The remaining licences involve sealed radiation sources and/or unsealed radioactive substances used in medicine, industry or education. A schedule attached to each licence fully lists the sealed sources to which the licence applies, and also the quantities of radioactive substances which may be acquired or held under the licence. It is an offence to dispose of, or otherwise relinquish possession of, any licensable material other than in accordance with terms and conditions of the licence. Disused sources are returned to the original supplier or, where this is not possible, stored under licence by the licensee who used them. Enforcement of the licensing provisions relies primarily on the programme of inspection of licensees, carried out by the Institute's inspectors. The Institute's Regulatory Service has a complement of four inspectors, one of whom is the Manager of the Service. The Manager reports to one of the Institute's Principal

  8. Regulation on the manufacture of radioactive medicines

    International Nuclear Information System (INIS)

    1977-01-01

    This is the latest revision of the regulation which provides for the control of the manufacture of the said medicines in accordance with the Medical Drugs Act (Law No. 145, 1960). Schedule 1 to Article 1 which specifies the items of the radioactive medicines has been modified: several substances including their compounds and medicines made from them are added to, or omitted from the Schedule, such as; (added to) 11 C, 13 N, 15 O, sup(85m)Kr, 81 Rb and 123 I, (omitted from) 89 Sr, 91 y and 137 Cs. (Matsushima, A.)

  9. Approval of radioactive consumer goods

    International Nuclear Information System (INIS)

    Paynter, R.A.

    1992-01-01

    The 1980 Euratom Directive obliges the UK to draw up a system of prior authorization for the use of radioactive substances in a range of consumer products, and the Government intends to make regulations to fulfil the requirements of the Directive. These regulations will empower NRPB to approve such products prior to their supply to the public. In this brief article, the NRPB reviews the criteria against which to consider any proposed use of radioactive substances, considers radiological production standards for products and discusses the questions of the labelling of radioactive consumer goods. (UK)

  10. The NSW Radiation Control Act and regulation

    International Nuclear Information System (INIS)

    Towson, J.

    1994-01-01

    The legal control of radiation safety in New South Wales has undergone substantial change in recent years. The long-awaited Regulation to the 1990 Radiation Control Act came into effect on 1 September 1993 (of necessity, as the Regulation to the previous 1957 Radioactive Substances Act expired on that date). It has not met with unanimous acclaim. The Regulation addresses three broad areas, namely - (a) legal controls - licensing, registration, radiation 'experts'; (b) safety matters - workplace management, monitoring, research exposures, transport/disposal, accidents; and (c) miscellaneous -radiation safety officers, committees, penalties, records, This article offers a personal view of the implications for nuclear medicine practice in New South Wales

  11. Act of 14 July 1983 amending Act of 29 March 1958 relating to the protection of the population against the hazards of ionizing radiation

    International Nuclear Information System (INIS)

    1983-01-01

    The Act of 29 March 1958 on protection of the population against the hazards of ionizing radiation has been amended by an Act of 14 July 1983. The amendments concern, in particular, the non-involvement of communal authorities in decisions taken under the Act, the inclusion of the concept of the environment as a complement to public safety, and the extension of the powers of officials responsible for supervising certain aspects of the transport of radioactive materials. Finally, a new Section has been added which empowers the King to suspend or cancel decisions by decentralised administrations which affect the transport of nuclear substances. (NEA) [fr

  12. Age-dependent dose factors and dose limits of annual radioactivity uptake with unsealed radioactive substances by occupationally exposed persons

    International Nuclear Information System (INIS)

    Kaul, A.; Nosske, D; Elsasser, U; Roedler, H.D.; Henrichs, K.

    1986-01-01

    The dose factors have been calculated on the basis of the ICRP models for dosimetric and metabolistic assessment, and are laid open in accordance with Annex XI ( to sec. 45 sub-section (2)) of the amended version of the Radiation Protection Ordinance. The contribution in hand explains the scientific fundamentals and results of the calculations of dose factors relating to inhalation and ingestion of unsealed radioactive substances by adult reference man, and age-dependent factors calculated for children and adolescents. Further, annual limits of uptake by occupationally exposed persons, as calculated on the basis of primary dose limits pursunant to the draft amendment presented by the Federal Interior Minister, are compared with relevant data given by the ICRP and EC institutions. (orig./DG) [de

  13. Review of organic nitrile incineration at the Toxic Substances Control Act Incinerator

    International Nuclear Information System (INIS)

    1997-10-01

    Lockheed Martin Energy Systems, Inc. (LMES) operates the East Tennessee Technology Park (ETTP), formerly called the Oak Ridge K-25 Site, where uranium was enriched under contract with the US Department of Energy (DOE). Currently, ETTP missions include environmental management, waste management (WM), and the development of new technologies. As part of its WM mission, ETTP operates the TSCA (Toxic Substances Control Act) Incinerator (TSCAI) for treatment of hazardous waste and polychlorinated biphenyls (PCBs) contaminated with low-level radioactivity. Beginning in the autumn of 1995, employees from diverse ETTP buildings and departments reported experiencing headaches, fatigue, depression, muscle aches, sleeplessness, and muscle tremors. These symptoms were judged by a physician in the ETTP Health Services Department to be consistent with chronic exposures to hydrogen cyanide (HCN). The National Institute for Occupational Safety and Health (NIOSH) was called in to perform a health hazard evaluation to ascertain whether the employees' illnesses were in fact caused by occupational exposure to HCN. The NIOSH evaluation found no patterns for employees' reported symptoms with respect to work location or department. NIOSH also conducted a comprehensive air sampling study, which did not detect airborne cyanides at the ETTP. Employees, however, expressed concerns that the burning of nitrile-bearing wastes at the TSCAI might have produced HCN as a combustion product. Therefore, LMES and DOE established a multidisciplinary team (TSCAI Technical Review Team) to make a more detailed review of the possibility that combustion of nitrile-bearing wastes at the TSCAI might have either released nitriles or created HCN as a product of incomplete combustion (PIC)

  14. Management of sites potentially polluted by radioactive substances - Methodological guidebook; Gestion des sites potentiellement pollues par des substances radioactives - Guide methodologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    This document is the update of the 'methodological guidelines for the management of industrial areas potentially contaminated by radioactive substances', published in 2001 by IRSN. Revisions intended to bring coherence between management of areas polluted by radioactive substances and the general policy applied to polluted sites described in a document published in Feb. 2007 by the French Ministry in charge of Environment. Requirements introduced both by the law relative to waste management of June 28, 2006 and the ministerial order of 17 November 2008 were introduced. The involvement of all stakeholders during the process was stressed. The updating mainly lead to introduce a clear distinction between polluted areas where uses are established and those without use or at redevelopment stage. When the uses are established, an 'Interpretation of the condition of environment' is conducted. Alternatively, the remediation process follows a 'management plan'. The revision also led to the disappearance of the 'doubt removal' phase which has been incorporated as an entire part in the site characterisation. Among other significant changes, it may be noted the evolution of the 'risk assessment' tools from simplified risk assessment and detailed risk assessment to a single tool allowing the quantitative assessment of exposure (EQER). Finally, the guidelines highlight stakeholder involvement in identifying the different participants and in reminding the benefits of a consultative approach. Whatever the remediation process: interpretation of the condition of environment or management plan; site characterisation is required as soon as a pollution is suspected. It includes literature reviews and field investigations primarily to confirm or deny the presence of pollution and, where appropriate, to determine its location, nature and level. The effort accorded to site characterisation must be proportionate to identified issues. The

  15. Application of radioactive substances in research in nuclear medicine: current trends and radiation exposure to the study subjects

    International Nuclear Information System (INIS)

    Minkov, V.; Schwarz, E.R.; Bauer, B.; Nosske, D.; Erzberger, A.; Brix, G.

    2001-01-01

    Aim: Analysis of the application of radioactive substances in research in the field of nuclear medicine in human beings and of the resulting radiation exposure to study subjects. Methods: Assessment of applications for approval submitted in accordance with Paragraph 41 of the Radiation Protection Ordinance, evaluated by the Federal office for Radiation Protection together with the Federal Institute for Pharmaceuticals and Medical Products, within the period from 1997 to 1999. Results: The focus of the studies on the diagnostic application of radioactive substances in medicine evaluated has, since 1998, shifted from oncological to neurological and psychological aspects, while, at the same time, the number of PET studies increased constantly The proportion of healthy study subjects included in the diagnostic studies increased from 7 to 22%. The number of therapeutic applications of radioactive substances has, since 1997, undergone a three-fold increase, and in the process of this, the focus of attention lay within the area of radioimmuno-therapy and endovascular brachytherapy. The effective dose was, among up to 49% of the investigated healthy study subjects higher than 5 mSv, and among up to 6% of these subjects was at levels of over 20 mSv. Up to 22% of the patients received, within the scope of diagnostic studies, an effective dose of between 20 and 50 mSv. An exceeding of the 50 mSv limit occurred among up to 3% of the patients. Conclusions: In spite of the increasing numbers of PET applications, conventional nuclear medicine has maintained its importance in the field of medical research. Further developments in the areas of radiochemistry and molecular biology led to an increase in the importance of radio-immuno therapy. The evaluation of new radiopharmaceuticals and the extension of basic biomedical research, resulted in an increase in the proportion of healthy study subjects included in the studies. The radiation exposure among subjects resulting directly from

  16. Field testing of particulate matter continuous emission monitors at the DOE Oak Ridge TSCA incinerator. Toxic Substances Control Act.

    Science.gov (United States)

    Dunn, James E; Davis, Wayne T; Calcagno, James A; Allen, Marshall W

    2002-01-01

    A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.

  17. Regulatory control of radiation sources and radioactive materials: The UK position

    International Nuclear Information System (INIS)

    Englefield, C.; Holyoak, B.; Ledgerwood, K.; Littlewood, K.

    2001-01-01

    The paper presents the organizations involved in the regulation of the safety of radiation sources and the security of radioactive materials across the UK. The safety of radiation sources is within the regulatory remit of the Health and Safety Executive, under the Health and safety of Work Act 1974 and associated regulations. Any employer using radiation sources has a statutory duty to comply with this legislation, thereby protecting workers and the public from undue risk. From a radioactive waste management perspective, the storage and use of radioactive materials and the accumulation and disposal of radioactive waste are regulated by the environment agencies of England and Wales, Scotland, and Northern Ireland, under the Radioactive Substances Act 1993. Special regulatory arrangements apply to nuclear sites, such as power stations and fuel cycle plants, and some additional bodies are involved in the regulation of the security of fissile materials. An explanation is given in the paper as to how these organizations to work together to provide a comprehensive and effective regulatory regime. An overview of how these regulators have recently started to work more closely with other enforcement bodies, such as the Police and Customs and Excise is also given, to illustrate the approach that is being applied in the UK to deal with orphan sources and illicit trafficking. (author)

  18. Radioactive Substances Act 1993 - annex document. To accompany the explanatory document and draft authorisation prepared by the Environment Agency to assist public consultation on the application by Devonport Royal Dockyard Limited to dispose of radioactive wastes from Devonport Royal Dockyard Plymouth

    International Nuclear Information System (INIS)

    2000-01-01

    This document constitutes Devonport Royal Dockyard Limited' s (DML) application to vary its authorisations to dispose of radioactive wastes from Devonport Royal Dockyard (DRD). The document describes the radioactive waste arisings from existing and future facilities at DRD and the way these wastes are handled and treated on site from generation to disposal. It also serves to present to a wider audience DML's activities and plans for radioactive waste management, and the 'benefits and detriments of the activities giving rise to radioactive wastes. DML's current Authorisations, granted in 1997, cover its refuelling, refitting and general maintenance activities on the so-called 'Hunter-killer' nuclear powered submarines. Following Ministerial approval, DRD is being modernised and enhanced. This will bring existing dock structures, refuelling facilities, and services in line with latest standards, and also provide new facilities to support the refit and refuel of the new Vanguard class ballistic missile carrying nuclear powered submarines. To cover these additional activities, revised authorisations - which in some cases include increased disposal limits - are being requested tinder the Radioactive Substances Act 1993. The current DML Authorisations were also due for review and so this Application covers both continuing and new operations and facilities. It is Government policy that the UK should maintain and operate a fleet of nuclear powered submarines. It is also Government policy to have a single dockyard for the refitting of nuclear powered submarines at DRD. DML owns the DRD site, and carries out work for the Ministry of Defence (MoD) and other customers. The radiation from the operation of a submarine's nuclear reactor causes some of the materials of the reactor core - and the Water used to cool it - to become radioactive. As a consequence of DML's work on these submarines, radioactive wastes are generated; these wastes - to which MoD retains title - are managed

  19. Radioactive substances in foodstuffs and drinking water in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Vaaramaa, K.; Vesterbacka, P.; Solatie, D. [STUK - Radiation and Nuclear Safety Authority (Finland)

    2014-07-01

    The concentrations of radioactive substances in the environment and foodstuffs are continuously monitored in Finland. Radiation and Nuclear Safety Authority (STUK) publishes the annual report of Surveillance of Environmental Radiation which shows the activity levels of artificial radionuclides in Finland. Based on the results the radiation dose to Finnish people is estimated. Natural radioactive elements will be included in the surveillance program in future years. The aim of the foodstuffs monitoring program is to obtain information from the intake of radionuclides through ingestion. The radioactivity in foodstuffs is monitored by collecting foodstuffs on market, drinking water and daily meals offered at hospitals over one week. The sampling sites are located in southern, central and northern Finland, representing the main population centres and areal differences in the consumption of foodstuffs. One of these sampling sites is located in the highest {sup 137}Cs deposition area in Finland originating from the Chernobyl accident. The foodstuff samples on market are, for example, wild game, wild berries, wild mushrooms and fish. {sup 137}Cs and {sup 90}Sr are analysed from mixed diet samples and {sup 137}Cs from foodstuffs samples on market. The concentrations of {sup 137}Cs and {sup 90}Sr in daily meals are low because the agricultural products used as raw material are almost free of artificial radionuclides. The small variation in the results is caused by the differences in the types of meals that were prepared on the sampling dates and in the areal origins of raw materials. {sup 137}Cs concentration is remarkably higher in such food which contains a lot of natural products like wild berries, freshwater fish, wild mushrooms and game. As an example, the concentrations of {sup 137}Cs in the solid food in 2012 ranged from 0.06 - 1.0 Bq/kg, and in the drinks from 0.27 - 0.40 Bq/l, respectively. The radiation dose to Finnish people is estimated based on an analysis of

  20. Delisting efforts for mixed radioactive and chemically hazardous waste at the Oak Ridge Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Goodpasture, S.T.

    1987-01-01

    Presently, there are four hazardous wastes at the Oak Ridge Gaseous Diffusion Plant that are candidates for the delisting from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations. These candidates are the sludges from K-1407-B and C ponds, Central Neutralization Facility sludges, mixed sludges from Y-12 and the ash generated by the RCRA/Toxic Substances Control Act (TSCA) Incinerator. All of these hazardous wastes contain radioactive constituents as well as hazardous constituents. The delisting will be based upon the nonradioactive constituents. Whether the delisting petition is granted or not, the wastes will be handled according to the Department of Energy guidelines for radioactive wastes. The presentation discusses the methodologies for delisting these wastes and the rationale behind the processes

  1. Radiation Protection and Control Act, 1982, No. 47 of 1985

    International Nuclear Information System (INIS)

    1985-01-01

    These regulations provide for the control, administration, possession and use of radiating substances and irradiating apparatus. They contain detailed provisions concerning the licensing, sale, registration and maintenance of irradiating apparatus and radioactive substances. Provisions address the therapeutic and research purposes of radioactive substances and irradiating apparatus, as well as requirements for monitoring, record-keeping and medical examinations. Also included are detailed procedures for radiation accidents and emergencies. These Regulations revoke the Radioactive Substances and Irradiating Apparatus Regulations, 1962, and the Ionizing Radiation (radioactive ores) Regulations, 1982. (NEA) [fr

  2. A comparative study of changes in immunological reactivity during prolonged introduction of radioactive and chemical substances into the organism with drinking water

    International Nuclear Information System (INIS)

    Shubik, V.M.; Nevstrueva, M.A.; Kalnitskij, S.A.; Livshits, R.E.; Merkushev, G.N.; Pilshchik, E.M.; Ponomareva, T.V.

    1978-01-01

    A comparative study was conducted into the factors of non-specific protection and specific immunity, allergic and autoallergic reactivities during prolonged exposure of experimental animals to 6 different radioactive and 7 harmful chemical substances. Qualitative and quantitative peculiarities were found in the changes in immunological reactivity during the exposure of the organism to radionuclides and stable chemical compounds. Impairment of immunity plays an essential role in the course and the outcome of effects induced by chronic action of the substances examined. (author)

  3. Radioactivity in surface and coastal waters of the British Isles, 1987

    International Nuclear Information System (INIS)

    Hunt, G.J.

    1988-01-01

    This report presents the results of the environmental monitoring programme carried out during 1987 by staff of the Directorate of Fisheries Research, Lowestoft. The monitoring programme supports the Ministry's functions under the Radioactive Substances Act, 1960 (Great Britain-Parliament, 1960). The programme is set up to verify the satisfactory control of liquid radioactive waste discharges to the aquatic environment, and to ensure that the resulting public radiation exposure is within nationally-accepted limits. The monitoring is independent of similar programmes carried out by nuclear site operators as a condition of their authorisations to discharge radioactive wastes. This report also includes results of monitoring carried out on behalf of departments of the Scottish Office, the Welsh Office, the Department of the Environment for Northern Ireland [DOE (NI)] and the Channel Islands States. Where appropriate, the information presented is supplemented by results from our extensive programme of research into the behaviour of radioactivity in the aquatic environment. (author)

  4. Analysis of the utilization of existing test data for phase-in substance registration under the Act on the Registration and Evaluation, etc. of Chemical Substances.

    Science.gov (United States)

    Choi, Bong-In; Kwak, Yeong-Don; Jung, Yu-Mi; Ryu, Byung-Taek; Kim, Chang Gyun

    2015-01-01

    Approximately 2000 phase-in substances are subject to registration according to the Act on the Registration and Evaluation, etc. of Chemical Substances (KREACH), and the expected testing cost is 2.06 trillion Korean won assuming all the test data required for registration are acquired. The extent to which these enormous test costs can be reduced depends on the availability of existing data that can be used to meet the requirements of the K-REACH we examined the current availability of test data that can be used for chemical substance registration. We analyzed the possibility of utilizing the existing test data obtained from 16 reference databases for 369 of 518 kinds of phase-in substances subject to registration that were reported in last October 2014. The physical and chemical properties were available for 57.1% of substances, whereas data regarding human hazards and environmental hazards were available at considerably lower rates, 8.5% and 11.8%, respectively. Physical and chemical properties were available for a fairly high proportion, whereas human hazards and environmental hazards were reported for considerably fewer substances.

  5. Long-term management of radioactive waste - will the Price-Anderson system work for third party liability issues arising from the Nuclear Waste Policy Act of 1982

    International Nuclear Information System (INIS)

    Kuznick, S.K.

    1985-01-01

    Two pieces of legislation have been enacted in the United States to provide a framework for the management of radioactive waste and spent nuclear fuel: the Low-level Radioactive Waste Policy Act (1980) and the Nuclear Waste Policy Act of 1982. Neither of these statutes provide a means for resolving third party liability issues arising out of radioactive waste management. However, the Price Anderson Act (originally enacted in 1957) provides a system of financial protection that can be applied to waste management activities and that can resolve most issues pertaining to liability for nuclear damage that may result from long-term management of radioactive waste and spent nuclear fuel. (NEA) [fr

  6. Commentary on guidelines for radiation measurement and treatment of substances including naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Sakurai, Naoyuki; Ishiguro, Hideharu

    2007-01-01

    Study group on safety regulation on research reactors in Ministry of Education, Culture, Sports, Science and Technology (MEXT) reported the guidelines of 'Guidelines on radiation measurement and treatment of naturally occurring radioactive materials (NORM)' on 6 February 2006. RANDEC made the website contents 'Study on use and safety of the substances including uranium or thorium', based on the contract with MEXT to make theirs contents. This paper describes the outline of the website in MEXT homepage, background and contents of NORM guidelines in order to understand easily and visually the NORM guidelines, adding in some flowcharts and figures. (author)

  7. Survey of the authorities competent for licensing and supervision in the field of radiation protection under the terms of the Atomic Energy Act (As of January 1980)

    International Nuclear Information System (INIS)

    1980-01-01

    Contents: 1. Portfolio of the Federal Minister of Defence. 2. Handling of other radioactive substances, equipment for the generation of ionizing radiation and activities in installations owned by third parties: 2.1 Licensing authorities; 2.2 competent authorities for the acception and documentation of notifications required under sections 4, sub-section 1, 17 sub-section 1, of the Radiation Protection Ordinance; 2.3 authorities competent for the registration of radiation records; 2.4 supervisory authorities. 3. Carriage of radioactive substances: 3.1 Federal authorities responsible for licensing and supervisions; 3.2 Land authorities responsible for licensing; 3.3 Land authorities responsible for supervision. 4. Permits concerning the design of equipment. 5. Import and export of radioactive substances: 5.1 Licensing authorities; 5.2 supervisory authorities. 6. Competent authorities in accordance with section 63 sub-section 3 paragraph 1 of the Radiation Protection Ordinance (monitoring stations) and according to the provisions of Land legislation. 7. Licensing and supervisory authorities for the treatment, processing or any other use of nuclear fuels under section 9 of the Atomic Energy Act. 8. Competences of the Laender in the implementation of the Atomic Energy Act and the Radiation Protection Ordinance. (orig.) [de

  8. Financial consequences of illicit movements of metallic substances contaminated by radioactivity

    International Nuclear Information System (INIS)

    Montmayeul, J.-P.

    1999-01-01

    It is increasingly frequent for States to have to deal with illicit movements of metallic substances contaminated by radioactivity. Steps taken in the areas of safety and health protection necessarily have financial implications . Except in cases of special urgency, a financial evaluation is vital before such decisions are taken. Specific actions must be initiated. Aside from action by the industries directly involved in self-regulation procedures, checks must be imposed in cases of fraudulent trafficking which has no connection with fair commercial activity. Customs administrations may take specific steps to restore order to legitimate markets. International organizations have a special role to play in disseminating information and promoting international cooperation. The paper outlines the financial impact of fraudulent trafficking, and methods of ensuring that those responsible for such activities bear the financial costs incurred. It underlines the roles that can be played by those involved in the traffic in contaminated products. (author)

  9. Safety of transport of radioactive substances for civil use on the French territory. Lessons learned by the IRSN from the analysis of significant events reported in 2012 and 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The first part of this report proposes an overview of significant aspects and events related to the transport of radioactive substances in France, and a comment on lessons learned by the IRSN. The second and main part first presents some aspects of this specific transport: regulatory framework, main safety issues, nature and flow of these transports, transports of radioactive substances per sector. The second part proposes an analysis of significant events: elements related to the reporting of an event, assessment of events and analysis of main trends noticed in 2012 and 2013 with respect to previous years, analysis of the main types of events which occurred in 2013 and 2013 with respect with those which occurred during the previous years. The next chapter describes significant events: damage of a parcel during its handling, a non conformal content, loss of a parcel on a public road, derailment of a car in Le Bourget. Some transverse topics are finally addressed: return on experience of crisis management in relationship with events in radioactive substance transport, IRSN study on the behaviour of packaging during long duration fires

  10. Measures to ensure safety of radioactive materials in India

    International Nuclear Information System (INIS)

    Ghosh, P.K.; Sonawane, A.U.; Rane, D.M.

    2001-01-01

    In India, the use of ionizing radiation sources in industry, medicine, agriculture and research registered a significant increase during recent years. The basis of legislative control of the use of radiation in India is the Atomic Energy Act from 1962, which empowers the central Government to provide control over radioactive substances. Exercising these powers, the central Government has promulgated several radiation safety rules, which specify the requirements of licensing, the duties and responsibilities of radiation safety officers, powers of inspection, etc. Later in 1983, by the Act, the Atomic Energy Regulatory Board (AERB) was constituted by the central Government to exercise regulatory and safety functions. The report describes the existing system of regulatory control of radiation sources in India and in particular, refers to the regulatory documents prepared by the AERB, the type approval of radiation equipment, the regulatory consent for every person handling radioactive sources, and the inspection activities and enforcement of regulatory actions. The report also explains how management of disused sources is carried out in India, including the handling of accidents and emergency activities. (author)

  11. Safety in the management of radioactive substances

    International Nuclear Information System (INIS)

    Balter, Henia; Rey, Ana; Leon, Alba; Jelen, Miguel

    1994-01-01

    A brief explanation of radiation protection,external irradiation,internal contamination,risk factors, active laboratory design,localization,ventilation,working surfaces,area distribution,classification of active laboratory.Radiopharmacy laboratory,shielding, area monitoring,personal dosimetry,rules for management of open sources,maximum admitted limits for radionuclides currently used in radiopharmacy.Decontamination of active areas and materials,surfaces,equipment s.Decontamination of hands.Waste disposal.Radioactive materials transportation.Reception of radioactive materials.Bibliography

  12. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  13. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  14. Control of trafficking of radioactive sources/substances on European Community eastern border

    International Nuclear Information System (INIS)

    Lovjagina, Irina; Graveris, Visvaldis

    2008-01-01

    . Conclusions: Applied qualitative containment and surveillance procedures on transported goods in general strengthen system for control of radioactive sources and substances within European Community Member States, and shall have systematically approach. Hence we may conclude that the total amount of orphaned sources decreases accordingly. (author)

  15. Andra - Everything you ever wanted to know about radioactive waste management

    International Nuclear Information System (INIS)

    2014-08-01

    Andra is a publicly owned industrial and commercial body, set up by the French act of 30 December 1991. Its role was expanded by the 2006 Planning Act on the long-term management of radioactive materials and waste. Andra is independent of the producers of radioactive waste, and is under the supervision of the ministries responsible for energy, research and the environment. Andra is responsible for identifying, implementing and guaranteeing safe management solutions for all French radioactive waste, in order to protect present and future generations from the risks inherent in such substances. Andra's role involves a number of activities: running the two existing above-ground disposal facilities in the Aube, the first one for low- and intermediate- level, short-lived waste (LILW-SL) and the other one for very-low-level waste (VLLW), the Cires facility; monitoring the Manche disposal facility, the CSM, France's first above-ground disposal facility for low- and intermediate-level waste, which is now closed; studying and designing disposal facilities for waste as yet without a special facility, that is: Low-level, long-lived waste (LLW-LL), High-level and intermediate-level long-lived waste (HLW, ILW-LL) - the Cigeo project; taking in radioactive waste from hospitals, research laboratories, universities and radioactive objects owned by private individuals (old luminous clocks and watches, health care equipment containing radium, natural laboratory salts, certain minerals, etc.); at the request of the owner or the authorities, cleaning up sites polluted by radioactivity; surveying and listing French radioactive waste and issuing the National Inventory of Radioactive Materials and Waste every three years; informing all members of the public by means of documents, exhibitions, visits to its facilities, etc.; preserving the memory of its centers; promoting and disseminating its know-how outside France. Contents: 1 - Andra, its role, its activities, its funding; 2

  16. The low-level waste handbook: A user's guide to the Low-Level Radioactive Waste Policy Amendments Act of 1985

    International Nuclear Information System (INIS)

    Brown, H.

    1986-11-01

    This report provides a detailed, section-by-section analysis of the Low-Level Radioactive Waste Policy Amendments Act of 1985. Appendices include lists of relevant law and legislation, relevant Congressional committees, members of Congress mentioned in the report, and exact copies of the 1980 and 1985 Acts

  17. Statutory instruments: 1984 No. 1261 Medicines - The Medicines (Committee on Radiation from Radioactive Medicinal Products) (Revocation) Order 1984

    International Nuclear Information System (INIS)

    1984-01-01

    This Order, which came into force on 6 September 1984, revokes the Medicines (Committee on Radiation from Radioactive Medicinal Products) Order 1978 thereby abolishing the Committee, which was established for the purpose of giving advice on safety, quality and efficacy in relation to radiation involving any substance or article for human use to which the Medicins Act 1968 is applicable. (NEA) [fr

  18. Licence template for mobile handling and storage of radioactive substances for the nondestructive testing of materials; Mustergenehmigung zur ortsveraenderlichen Verwendung und Lagerung radioaktiver Stoffe im Rahmen der zerstoerungsfreien Materialpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Lange, A. [Niedersaechsisches Ministerium fuer Umwelt, Energie und Klimaschutz (Germany); Schumann, J. [Landesamt fuer Arbeitsschutz, Gesundheitsschutz und technische Sicherheit, Berlin (Germany); Huhn, W.

    2016-07-01

    The Technical Committee ''Radiation Protection'' (Fachausschuss ''Strahlenschutz'') and the Laender Committee ''X-ray ordinance'' (Laenderausschuss ''Roentgenverordnung'') have appointed a working group for the formulation of licence templates for the nationwide use of X-ray equipment or handling of radioactive substances. To date, the following licence templates have been adopted: - Mobile operation of X-ray equipment under technical radiography to the coarse structural analysis in material testing; - Mobile operation of a handheld X-ray fluorescence system; - Mobile operation of a flash X-ray system; - Operation of an X-ray system for teleradiology The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is scheduled for publication. The licence template ''Practices in external facilities and installations'' is currently being revised. The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is used as an example to demonstrate the legal framework and the results of the working group.

  19. The action and problem of the decontamination work of the radioactive contamination soil starting in earnest

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2011-01-01

    At the stage of just eight months after the time when a large amount of radioactivity was discharged by the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company associated with the Great East Japan Earthquake, countermeasures for pollution due to radioactive substances have become the biggest challenge. The government made a cabinet decision on basic policy based on 'The Act on Special Measures concerning the Handling of Environmental Pollution by Radioactive Materials Discharged by the Nuclear Power Station Accident Associated with the Tohoku District - Off the Pacific Ocean Earthquake that Occurred on March 11, 2011 (The Act on Special Measures concerning the Handling of Radioactive Pollution).' By this, fiscal measures, regulatory measures, and role-sharing required for promoting the treatment of radioactivity-contaminated disaster waste and the decontamination measures of soil were clarified. At the same time as the enactment of the bill, 'Basic Policy for Emergency Response on Decontamination Work' and 'Guidelines for Municipal Decontamination Work' were issued, which helped a step toward full-scale decontamination activities with the backup of budgetary measures. This paper explains the following efforts of the government in implementing these actions. Installation of temporary storage sites for decontaminated soil, implementation of interim storage facilities, development of final disposal sites, and budgetary support. (O.A.)

  20. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki

    1984-01-01

    Purpose: To enable complete curing even when radioactive wastes contain those materials hindering the curing reaction, for example, copper hydroxide. Method: After admixing an alkaline substance to radioactive concentrated liquid wastes containing copper hydroxide or other amphoteric substances, they are dried, powderized and then cured with thermosetting resins. The thermosetting resins usable herein include, for example, those prepared by mixing an unsaturated polyester with a monomer such as styrene. When a polymerization initiator such as methyl ethyl ketone peroxide and a polymerization promotor are added to the mixture, it takes places curing reaction at normal temperature. Suitable alkaline substances usable herein are those which are insoluble to the liquid wastes and do not change the chemical form under heating and drying. (Yoshihara, H.)

  1. National All Schedules Prescription Electronic Reporting Act (NASPER): balancing substance abuse and medical necessity.

    Science.gov (United States)

    Manchikanti, Laxmaiah; Brown, Keith R; Singh, Vijay

    2002-07-01

    The National All Schedules Prescription Electronic Reporting Act, or NASPER, is a bill proposed by the American Society of Interventional Pain Physicians to provide and improve patient access with quality care, and protect patients and physicians from deleterious effects of controlled substance misuse, abuse and trafficking. Controlled prescription drugs, including narcotic analgesics, anxiolytics, anti-depressants, stimulants, and sedative-hypnotics play a significant and legitimate role in interventional pain management practices in managing chronic pain and related disorders. Based on the 1997 household survey on drug abuse it is estimated that 76.9 million Americans had used an illicit drug at least once in their life. In 1997, 4.2 million people used analgesics, 2.1 million used tranquillizers, and an additional 2.3 million people used various other drugs, including sedatives, tranquillizers, etc. The non-medical use of prescription drugs exceeds that of all illicit substances except for marijuana and hashish. The report on epidemiology trends in drug abuse, based on community epidemiology work group analysis showed continued increase of abuse of prescription drugs in urban, suburban, and rural areas. The most commonly abused drugs include oxycodone, hydrocodone, hydromorphone, morphine, codeine, clonazepam, alprazolam, lorazepam, diazepam and carisoprodol. The diversion of prescription controlled substances to illicit channels is a public health and safety issue. This review describes the role of controlled substances in chronic pain management, prevalence and economic impact of controlled substance abuse, prescription accountability, effectiveness of prescription monitoring programs, and rationale for national controlled substance electronic reporting system.

  2. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  3. Privacy Impact Assessment for the Confidential Business Information Records Access System for the Toxic Control Substances Act

    Science.gov (United States)

    This system collects submission data from the Toxic Substances Control Act (TSCA) and contact information for EPA contractors and employees who are CBI cleared. Learn how this data is collected, how it will be used, and the purpose of data collection.

  4. Removal of high-level radioactive substances contained with water from the Fukushima No. 1 Nuclear Power Stations. Some technical problems in waste treatment

    International Nuclear Information System (INIS)

    Amano, Osamu; Mimura, Hitoshi; Sato, Nobuaki; Kirishima, Akira; Hattori, Toshio

    2011-01-01

    The Japanese government and plant operator Tokyo Electric Power Co. announced to process the highly radioactive water amounting to about 250,000 cubic meters by the end of fiscal year 2011. Radiation-contaminated water will be moved to the waste facility to remove oil and radioactive cesium using zeolite. The process using Prussian Blue is expected for the effectiveness. Other radioactive substances will be removed through precipitation using special chemicals and radioactivity in the water will be reduced to 10 -6 of its original level. The water will be then be returned to the reactors and used to cool them after going through a desalination process. The facility can process about 1,200 tons of contaminated water a day. TEPCO will store radioactive materials and other waste from the cleansing process at the Fukushima plant. They need to decide how the waste will finally be disposed of and to figure out what to do with the highly radioactive waste produced in the above process. Kurion Inc., Areva SA, and some domestic firms provide equipment and technology, but all the Japanese facilities and institutions should join to settle the problems. (S. Ohno)

  5. Transport of proximity nuclear radioactive materials

    International Nuclear Information System (INIS)

    2010-01-01

    This brief publication gives an overview of the international and national regulatory framework for the transport of radioactive substances, outlines progress orientations identified by the French Nuclear Safety Authority (ASN), indicates the parcel classification and shipment radiological criteria, and how to declare events occurring during the transport of radioactive substances, which number to phone in case of a radiological incident. Finally, the role of the ASN and its field of activity in matters of control are briefly presented with a table of its office addresses in France

  6. Tenth anniversary of the Chemical Substances Act. 10 Jahre Chemikaliengesetz; Bilanz und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, J. (Umweltbundesamt, Berlin (Germany)); Arndt, R. (Bundesanstalt fuer Arbeitsschutz, Dortmund (Germany)); Bulling, W.B. (Bundesgesundheitsamt, Berlin (Germany)); Drescher, R.D. (Umweltbundesamt, Berlin (Germany)); Elstner, P. (Bundesgesundheitsamt, Berlin (Germany)); Heinemeyer, G. (Bundesgesundheitsamt, Berlin (Germany)); Kayser, D. (Bundesgesundheitsamt, Berlin (Germany)); Lange, A.W. (

    1992-11-01

    The chemical substances act is ten years old. These ten years have witnessed a stormy development in legislation on chemicals: what was new ground still at the beginning of the eighties, is now a vast area of law complemented by detailed individual regulations at the administrative level, firmly interlocked with the other areas of environmental law, and part of an overall concept for the safety of chemicals enjoying an international reputation. Currently, the chemical substances act is in a phase of inner consolidation and completion. This phase was ushered in by the proposed amendment of 1990, an amendment aimed to eliminate weak points on the basis of first experiences with the implementation of legal requirements existing under EC law. In the second part of this phase, revisions or completions which have meanwhile been effected or are being effected in community law must be integrated. Further legal regulations are to be expected in the area of prohibitions and restrictions. These are, so far, mainly attuned to individual cases and reactive in nature. Most important of all is the development of a uniform and appropriate catalogue of criteria. The aim must be to create the necessary boundary conditions for the use of chemicals in our industrial society ensuring sustainable, environmentally compatible development for a long time to come. (orig./HSCH)

  7. Radioactivity and environment

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, R N [Fertilizer Association of India, New Delhi

    1977-12-01

    Power generation from radioisotopes is one of the major applications of nuclear energy for peaceful purposes and is in practice in over twenty countries including India. Other well-known applications of radioactive substances are in medicine, industry, scientific and industrial research programs, and nuclear weapons. The only serious disadvantage with the radioisotopes and their waste products is the constant release of radiation energy which contaminates the environment and endangers the life. An attempt has been made to identify the major sources of radioactivity in the environment and assess its potential impact on the environment. Recent developments in safety measures for prevention of contamination and control of radioactivity and in radioactive wastes management are also discussed.

  8. Transporting radioactive rock

    International Nuclear Information System (INIS)

    Pearce, G.

    1990-01-01

    The case is made for exempting geological specimens from the IAEA Regulations for Safer Transport of Radioactive Materials. It is pointed out that many mineral collectors in Devon and Cornwall may be unwittingly infringing these regulations by taking naturally radioactive rocks and specimens containing uranium ores. Even if these collectors are aware that these rocks are radioactive, and many are not, few have the necessary equipment to monitor the activity levels. If the transport regulations were to be enforced alarm could be generated and the regulations devalued in case of an accident. The danger from a spill of rock specimens is negligible compared with an accident involving industrial or medical radioactive substances yet would require similar special treatment. (UK)

  9. Report on the evaluation under the Act No 24/2006 of Coll. Environmental Impact Assessment Law Extension of National Radioactive Waste Repository in Mochovce for disposal low-level radioactive waste and construction of very low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Hanusik, V.; Moravek, J.; Kusovska, Z.

    2011-01-01

    The report elaborated assessment of the environmental impact of extension of the National Radioactive Waste Repository in Mochovce for disposal of low and intermediate level radioactive wastes. Within this repository also the premises for very low level radioactive waste deposition should be built. The assessment report was prepared according to the Act no. 24/2006 Coll, as amended 'On the assessment of environmental impacts' Annex No. 11 upon The scope of assessment issued by the competent authority on the basis of assessment of Intent for this action. The report was prepared in VUJE, Inc. Trnava for Nuclear and Decommissioning Company, Inc. Bratislava (JAVYS).

  10. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  11. Why the toxic substances control act needs an overhaul, and how to strengthen oversight of chemicals in the interim.

    Science.gov (United States)

    Vogel, Sarah A; Roberts, Jody A

    2011-05-01

    The Toxic Substances Control Act gives the Environmental Protection Agency (EPA) the authority to regulate industrial chemicals not covered by other statutes. Today there are more than 83,000 such chemicals. However, the law is widely perceived as weak and outdated, and various stakeholders have called for its reform, citing the EPA's inability to regulate the use of asbestos, among other substances. We analyze the flaws in the act and suggest ways in which the EPA might better position itself to manage chemical risks and protect the public's health. In addition to the new tools and technologies it is adopting, the agency needs new allies-both inside and outside the government-in its efforts to identify and control hazardous chemicals.

  12. Best Available Technique (BAT) as an Instrument for the Limitation of Radioactive Substances from Nuclear Power Reactors in Sweden

    International Nuclear Information System (INIS)

    Moberg, L.; Sundell-Bergman, S.; Sandwall, J.

    2004-01-01

    Traditionally, the concept of ALARA has been the basis for limitation and optimisation of releases of radioactive substances from nuclear power reactors in order to protect human health. In recent years, it has been discussed whether the ALARA principle can be applied also to protect the environment. For the protection of the environment, in particular for non-nuclear pollutants, the precautionary principle and the concept of Best Available Technique (BAT) have been applied. New Swedish regulations concerning the protection of human health and the environment from radioactive discharges from certain nuclear installations entered into force January 1st, 2002. The prime purpose of the regulations is to limit the radioactive releases. This limitation shall be based on the optimisation of radiation protection and shall be achieved by using BAT. In order to show compliance with the regulation and BAT, the concepts of reference values and target values have been introduced for nuclear power reactors. The reference value should be the release that is representative for optimum use and full functioning of systems of importance to the occurrence and limitation of radioactive releases from nuclear power reactors. The target value should show the level to which radioactive releases from nuclear power reactors can be reduced during a certain given period of time. Reference and target values have been determined for each nuclear power reactor in Sweden. Each year, the reactor licensees shall report to the Swedish Radiation Protection Authority (SSI) the measures that have been adopted or that are planned to be adopted to limit radioactive releases with the aim of achieving the target values. The first report has been submitted to the SSI in 2003. (Author) 8 refs

  13. Management of sites potentially polluted by radioactive substances - Methodological guidebook

    International Nuclear Information System (INIS)

    2011-12-01

    This document is the update of the 'methodological guidelines for the management of industrial areas potentially contaminated by radioactive substances', published in 2001 by IRSN. Revisions intended to bring coherence between management of areas polluted by radioactive substances and the general policy applied to polluted sites described in a document published in February 2007 by the French Ministry in charge of Environment. Requirements introduced both by the law relative to waste management of June 28, 2006 and the ministerial order of 17 November 2008 were introduced. The involvement of all stakeholders during the process was stressed. The updating, mainly lead to introduce a clear distinction between polluted areas where uses are established and those without use or at redevelopment stage. When the uses are established, an 'Interpretation of the condition of environment' is conducted. Alternatively, the remediation process follows a 'management plan'. The revision also led to the disappearance of the 'doubt removal' phase which has been incorporated as an entire part in the site characterisation. Among other significant changes, it may be noted the evolution of the 'risk assessment' tools from simplified risk assessment and detailed risk assessment to a single tool allowing the quantitative assessment of exposure (EQER). Finally, the guidelines highlight stakeholder involvement in identifying the different participants and in reminding the benefits of a consultative approach. Whatever the remediation process: interpretation of the condition of environment or management plan; site characterisation is required as soon as a pollution is suspected. It includes literature reviews and field investigations primarily to confirm or deny the presence of pollution and, where appropriate, to determine its location, nature and level. The effort accorded to site characterisation must be proportionate to identified issues. The first step consists in comparing the

  14. Oak Ridge Toxic Substances Control Act (TSCA) Incinerator test bed for continuous emissions monitoring systems (CEMS)

    International Nuclear Information System (INIS)

    Gibson, L.V. Jr.

    1997-01-01

    The Toxic Substances Control Act (TSCA) Incinerator, located on the K-25 Site at Oak Ridge, Tennessee, continues to be the only operational incinerator in the country that can process hazardous and radioactively contaminated polychlorinated biphenyl (PCB) waste. During 1996, the US Department of Energy (DOE) Environmental Management Office of Science and Technology (EM-50) and Lockheed Martin Energy Systems established a continuous emissions monitoring systems (CEMS) test bed and began conducting evaluations of CEMS under development to measure contaminants from waste combustion and thermal treatment stacks. The program was envisioned to promote CEMS technologies meeting requirements of the recently issued Proposed Standards for Hazardous Waste Combustors as well as monitoring technologies that will allay public concerns about mixed waste thermal treatment and accelerate the development of innovative treatment technologies. Fully developed CEMS, as well as innovative continuous or semi-continuous sampling systems not yet interfaced with a pollutant analyzer, were considered as candidates for testing and evaluation. Complementary to other Environmental Protection Agency and DOE sponsored CEMS testing and within compliant operating conditions of the TSCA Incinerator, prioritization was given to multiple metals monitors also having potential to measure radionuclides associated with particulate emissions. In August 1996, developers of two multiple metals monitors participated in field activities at the incinerator and a commercially available radionuclide particulate monitor was acquired for modification and testing planned in 1997. This paper describes the CEMS test bed infrastructure and summarizes completed and planned activities

  15. Classification of two steroids, prostanozol and methasterone, as Schedule III anabolic steroids under the Controlled Substance Act. Final rule.

    Science.gov (United States)

    2012-07-30

    With the issuance of this Final Rule, the Administrator of the DEA classifies the following two steroids as "anabolic steroids'' under the Controlled Substances Act (CSA): prostanozol (17[beta]-hydroxy-5[alpha]-androstano[3,2-c]pyrazole) and methasterone (2[alpha],17[alpha]-dimethyl-5[alpha]-androstan-17[beta]-ol-3-one). These steroids and their salts, esters, and ethers are Schedule III controlled substances subject to the regulatory control provisions of the CSA.

  16. Tenth act amending the German atomic energy act

    International Nuclear Information System (INIS)

    Heller, W.

    2009-01-01

    On January 14, 2009, the German federal government introduced into parliament the 10th Act Amending the Atomic Energy Act. In the first reading in the federal parliament, Federal Minister for the Environment Gabriel emphasized 2 main points: Intensified protection of nuclear facilities and of transports of radioactive substances against unauthorized interventions; transfer by law to the Federal Office for Radiological Protection (BfS) of decommissioning of the Asse mine. Reliability review: The amendment to Sec.12 b of the Atomic Energy Act is to meet the different safety and security conditions after the terrorist attacks on September 11, 2001 in the United States and other terrorist activities afterwards (London, Madrid) also with respect to hazards arising to nuclear facilities and nuclear transports. The bill must be seen in conjunction with the Ordinance on Reliability Reviews under the Atomic Energy Act dated July 1, 1999 which covers reviews of reliability of persons holding special responsibilities. Asse II mine: The competence of the Federal Office for Radiological Protection is achieved by an amendment to Sec.23, Para.1, Number 2, Atomic Energy Act, in which the words ''and for the Asse II mine'' are added after the word ''waste.'' Further proceedings depend on the additional provision in a new Sec.57 b, Atomic Energy Act. Accordingly, the operation and decommissioning of the Asse II mine are subject to the regulations applicable to facilities of the federation pursuant to Sec.9a, Para.3. In this way, Asse II is given the same legal status as the federal waste management facilities. Moreover, it is stipulated that the mine is to be shut down immediately. (orig.)

  17. Solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Cluchet, J.; Desroches, J.

    1977-01-01

    The problems raised by the solid and liquid radioactive wastes from the CEA nuclear centres are briefly exposed. The processing methods developed at the Saclay centre are described together with the methods for the wastes from nuclear power plants and reprocessing plants. The different storage techniques used at the La Hague centre are presented. The production of radioactive wastes by laboratories, hospitals and private industry is studied for the sealed sources and the various radioactive substances used in these plants. The cost of the radioactive wastes is analysed: processing, transport, long term storage [fr

  18. A dissent from the many dissents from Attorney General Ashcroft's interpretation of the Controlled Substances Act.

    Science.gov (United States)

    Spindelman, Marc

    2003-01-01

    In this essay, Professor Marc Spindelman examines the states' rights arguments that have been deployed in the Oregon v. Ashcroft litigation to challenge Attorney General John Ashcroft's interpretation of the federal Controlled Substances Act. Professor Spindelman criticizes those arguments as reflecting bad politics--politics of complicity--that self-styled liberals should resist and reject.

  19. Summary of the Law relating to Atomic Energy and Radioactive Subtances as at March 1979

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1979-01-01

    This Note contains summaries of new laws and regulations on atomic energy and radioactive substances and amendments made to previous ones in the United Kingdom as at March 1979, including international regulations and agreements. New materials referred to includes the Nuclear Installations (Excepted Matter) Regulations 1978, the Medicines (Radioactive Substances) Order 1978, the Medicines (Committee on Radiation from Radioactive Medicinal Products) Order 1978 and the Medicines (Administration of Radioactive Substances) Regulations 1978. The Note also reproduces other amendments in nuclear legislation, already referred to in a previous Note dated March 1978. (NEA) [fr

  20. Processing method for radioactive liquid waste

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1991-01-01

    Drainages, such as water after used for washing operators' clothes and water used for washing hands and for showers have such features that the radioactive concentration is extremely low and detergent ingredients and insoluble ingredients such as waste threads, hairs and dirts are contained. At present, waste threads are removed by a strainer. Then, after measuring the radioactivity and determining that the radioactivity is less than a predetermined concentration, they are released to circumstances. However, various organic ingredients such as detergents and dirts in the liquid wastes are released as they are and it is not preferred in respect of environmental protection. Then, in the present invention, activated carbon is filled in a container orderly so that the diameter of the particles of the activated carbon is increased in the upper layer and decreased in the lower layer, and radioactive liquid wastes are passed through the container. With such a constitution. Both of soluble substances and insoluble substances can be removed efficiently without causing cloggings. (T.M.)

  1. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  2. Experiences from the exercise ''MERLIN'' for the detection of radioactive substances with the participation of special-purpose vehicles; Erfahrungen aus der Uebung ''MERLIN'' zur Detektion radioaktiver Stoffe unter Beteiligung verschiedenen Einsatzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Griesbach, M. [Hessisches Ministerium des Innern und fuer Sport, Wiesbaden (Germany)

    2009-08-15

    Experiences of an exercise with hazardous goods, in particular with radioactive substances (measurements and taking environmental samples) are described. Several special-purpose vehicles with equipment and specially trained crews were used together with radiation protection experts according to the concept of Hesse. It has been the greatest exercise in Hesse with regard to hazardous goods and in particular with regard to ''incidents with radioactive substances''. (orig.)

  3. Background radioactivity in environmental materials

    International Nuclear Information System (INIS)

    Maul, P.R.; O'Hara, J.P.

    1989-01-01

    This paper presents the results of a literature search to identify information on concentrations of 'background' radioactivity in foodstuffs and other commonly available environmental materials. The review has concentrated on naturally occurring radioactivity in foods and on UK data, although results from other countries have also been considered where appropriate. The data are compared with established definitions of a 'radioactive' substance and radionuclides which do not appear to be adequately covered in the literature are noted. (author)

  4. Radiation protection of the public in respect of consumer goods containing radioactive substances

    International Nuclear Information System (INIS)

    1984-01-01

    The use of consumer goods containing radioactive substances makes a contribution to the total exposure of man to ionizing radiation. This contribution is explicitly recognized in Section II of the Basic Safety Standards established pursuant to Article 30 of the Euratom Treaty for the health protection of the general public and workers against the dangers of ionizing radiation, first published in 1959 and most recently revised 15 July 1980. Nevertheless, the Standards are of a general nature and need to be expanded on to be of practical application in this field. National authorities must have additional information in order to attain in full the objectives stated in them. This guide has been prepared with these considerations in mind. The guide is not a set of regulations but is better described as a code of practice, drawn up by specialists and approved by the scientific experts in the field of radiological protection and public health appointed under Article 31 of the Euratom Treaty

  5. Some points in legal regulation of radioactive waste management

    International Nuclear Information System (INIS)

    Tikhankin, Anatoly; Levin, Alexander

    1999-01-01

    In Russia, the system of the legal acts regulating radioactive waste management is now in progress. Development of the federal norms and regulations on the use of atomic energy is a responsibility of Gosatomnazdor. This presentation describes in detail the work done by Gosatomnadzor in 1997/1998 on the development of the legal documents regulating the management of radioactive waste and spent nuclear material. A document of special importance is ''Burial of Radioactive Wastes. Principles, Criteria and Basic Safety Requirements''. This is discussed in some detail. For all stages of radioactive waste management, safety criteria for population and personnel are set up in strict analogy with current legislation for any other type of radiological hazard. A combined, or hybrid, safety criterion is suggested for estimation of long-term safety of radioactive waste repository systems, for the period upon termination of the established administrative monitoring after closing the repository. A dose criterion is accepted for normal radiation exposure and a risk criterion for potential radiation exposure. The safety of radioactive waste repository should be ensured by means of graded safeguard throughout the entire period of burial. Graded safeguard is based on independent barriers on the way of ionising radiation and emission of radioactive substances into the environment and protection and maintenance of these barriers. Examples show how the provisions of the document are applied in practice in the permafrost area of Russia. Permafrost soil has low water permeability, which is significant because underground water is the main transport medium in case of a leakage from a repository

  6. Assessment of the toxicity of a substance under Canadian environmental protection act, a case study. Polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nadon, B.; Germain, A.; Coillie, R. van [Environment Canada, Montreal (Canada)

    1995-12-31

    The Canadian Environmental Protection Act (CEPA) proclaimed in 1988 requires the Canadian Ministers of the Environment and of National Health and Welfare to assess the toxicity of different substances. A Priority Substances List containing 44 substances was developed and their assessments had to determine if they were `toxic`, according to the CEPA definition. This definition states that `a substance is toxic if it is entering or may enter the environment in a quantity or concentration or under conditions (a) having or that may have an immediate or long-term harmful effect on the environment, (b) constituting or that may constitute a danger to the environment on which human life depends; or (c) constituting or that may constitute a danger in Canada to human life of health.` This presentation use the assessment of the polycyclic aromatic hydrocarbons (PAHs) as an example of this procedure. (author)

  7. Assessment of the toxicity of a substance under Canadian environmental protection act, a case study. Polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nadon, B; Germain, A; Coillie, R van [Environment Canada, Montreal (Canada)

    1996-12-31

    The Canadian Environmental Protection Act (CEPA) proclaimed in 1988 requires the Canadian Ministers of the Environment and of National Health and Welfare to assess the toxicity of different substances. A Priority Substances List containing 44 substances was developed and their assessments had to determine if they were `toxic`, according to the CEPA definition. This definition states that `a substance is toxic if it is entering or may enter the environment in a quantity or concentration or under conditions (a) having or that may have an immediate or long-term harmful effect on the environment, (b) constituting or that may constitute a danger to the environment on which human life depends; or (c) constituting or that may constitute a danger in Canada to human life of health.` This presentation use the assessment of the polycyclic aromatic hydrocarbons (PAHs) as an example of this procedure. (author)

  8. Contents of management plans for incidents and accidents involving the transport of radioactive substances. Guide no. 17, Version of 22/12/2014

    International Nuclear Information System (INIS)

    2014-01-01

    This guide presents the essential topics to be developed in a management plan for incidents and accidents involving the transport of radioactive substances for civil use. It does not aim to be exhaustive and could be added to by each party involved in the transport, who can make the necessary adaptations and additions, taking account of the particularities of its shipments and its organisation, as well as those of the company or group to which it belongs. The radioactive substances transport incident and accident management plan is a document comprising a descriptive part and an operational part. It presents the overall response of the party involved in the transport operation to an incident or accident situation concerning one of its shipments and the steps it intends to make in order to support the authorities in charge of this situation, in the best possible conditions. This response is designed to cover the cases of incidents or accidents whether or not they lead to a radiological emergency situation. The guide exclusively concerns: - road transport; - rail transport; - the 'road' and 'rail' parts of multimodal transport operations. The case of an incident or an accident occurring during a particular stop such as a transit site, in a transhipment area (port, airport, railway station, etc.), or in a transport infrastructure, is also covered by the radioactive substances transport incident and accident management plan, which then supports the entities in charge of managing this situation (operator of the transhipment area or the transport infrastructure and - as applicable - their supervisory authorities). The level of risk associated with transport incidents and accidents varies widely, according to the nature and quantities of the materials being carried, the number of shipments made and the package model used. The incident and accident management plan must therefore be tailored to the specific nature of the shipments by the party concerned. The radioactive

  9. Monitoring programme. Radioactive substances report for 1994

    International Nuclear Information System (INIS)

    1995-09-01

    In the United Kingdom, Her Majesty's Inspectorate of Pollution commissions independent monitoring of radioactive discharges to the environment. This report presents the results of such monitoring for 1994. It covers nuclear sites, two non-nuclear sites which use large amounts of tritium and several landfill sites which receive low-level radioactive waste for controlled burial. The monitoring programme concentrates on activity levels in environmental materials that might result in exposure of the public to radiation from non-food pathways. The results show that exposures from these pathways in 1994 remain similar to those in previous years and in all cases are estimated to have been substantially lower than the International Commission on Radiological Protection's recommended dose limit of 1mSv per year. (6 figures; 20 tables; 29 references) (UK)

  10. Monitoring of covering model of the National radioactive waste repository

    International Nuclear Information System (INIS)

    Jezikova, M.

    2009-01-01

    The subject of this rigorous report is justification of cover model building at radioactive waste repository in Mochovce as a very important engineering barrier preventing significant release of radioactive substances into the environment and providing protection against ionizing radiation. This rigorous report includes a theoretical part, which describes radioactive waste characterization, radioactive waste management and summary of the preliminary activities prior to the building cover model, particularly involving the selection of appropriate variables and parameters and creation of monitoring plan during the long term monitoring for evaluation of this barrier in order to ensure minimization of any leak of radioactive substances from RAW. The next part includes evaluation of the values of parameters and variables to build cover model of RAW in Mochovce during 2006-2008 (author)

  11. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    International Nuclear Information System (INIS)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-01-01

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme

  12. An experimental interactive risk communication on the effect of radioactive substance on health through food

    International Nuclear Information System (INIS)

    Niiyama, Yoko; Kito, Yayoi; Kudo, Haruyo

    2011-01-01

    Risk communication, an interactive process of exchange of information and opinion on risk among stakeholders is the important element in Risk Analysis. However, we haven't effective model yet. We have tried experimental Interactive risk communication on the effect of radioactive substance on health through food related the accident of Fukushima Daiichi nuclear power plant. The model is consist of some process for making scientific information and discussion among consumer groups on the information; making and providing first step scientific information by scientists and communicator for consumers, first step group discussions on the information by consumers, making second step scientific information based critical questions in the first step group discussions, and second step group discussions on the second step information by consumers. We had organized 8 discussion groups, 50 subjects in Tokyo and Kyoto. (author)

  13. Radioactivity measurements principles and practice

    CERN Document Server

    Mann, W B; Spernol, A

    2012-01-01

    The authors have addressed the basic need for internationally consistent standards and methods demanded by the new and increasing use of radioactive materials, radiopharmaceuticals and labelled compounds. Particular emphasis is given to the basic and practical problems that may be encountered in measuring radioactivity. The text provides information and recommendations in the areas of radiation protection, focusing on quality control and the precautions necessary for the preparation and handling of radioactive substances. New information is also presented on the applications of both traditiona

  14. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  15. Morsleben repository for radioactive waste (ERAM). Operational safety, radiation protection and environmental monitoring. Release: December 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The report overviews the monitoring activities of the Federal Office for Radiation Protection at the Morsleben repository for radioactive waste (ERAM), focussing the ERAM inventory of radioactive waste and the measures and results of geomechanical and hydrogeological monitoring, operational radiation protection, the monitoring of discharges of radioactive substances, environmental monitoring, and the dose levels expected from discharges of radioactive substances. (orig.)

  16. The 'new' Radiation Protection Ordinance - marking the difference between application of 'radioactive substances in medical research' (Section 41 StrlschV) and 'radioactive substances or ionizing radiation in medicine and dental medicine' (Section 42 StrlschV)

    International Nuclear Information System (INIS)

    Roedern, P.

    1983-01-01

    The main differences in the provisions are to be found under the following aspects: - Observation of dose limits; - Necessity of physical radiation protection surveillance; - Obligation to apply for approval in individual cases; - Selection of test persons/patients; - Scope of conditions governing approval; - Obligation to inform about hazards. The unambiguous definition of procedures and purposes allowed in the field of medical research, and of those in the field of medical therapy (including dental medicine) is of crucial importance, due to its significance with regard to radiation protection, civil law and penal law. Marking the limits between these two fields subject to supervision is a precondition allowing the proper application of relevant laws in the field of use and handling of radioactive substances or ionizing radiation for medical purposes. (orig./HSCH) [de

  17. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    Science.gov (United States)

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  18. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land

    International Nuclear Information System (INIS)

    Nancarrow, D J; White, M M

    2004-01-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950 000 m 3 ). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  19. Some bioindicators of radioactive contamination

    International Nuclear Information System (INIS)

    Cosma, C.; Cozmuta, I.; Micu, C.

    1996-01-01

    The lessons that could be learned from the Chernobyl accident were numerous and encompassed all areas. One of those lead to the discovery of new monitoring methods which also supply to cost-effective solutions to control contaminant radioactive discharges in the environment. Through the measurements performed, we discovered that some samples, because of their radioactive content restrained also for long periods of time, can be used as bioindicators. Hen eggs between May 1-30 1986 were analysed (identification of radionuclides with a Ge(Li) detector and measuring of total gamma activity with NaI(T1)). Various aspects pursued revealed that eggs are precious witness of vegetable food contamination with fission products, especially Ba-140 and I-131, behaving as radionuclide separators (Ba-140 in egg shell -301 Bq/egg and I-131 in the content - 182 Bq/egg). Some of the most important pharmaceutical plants from Transylvania measured during 1986-1994 period presents high cesium radioactivity. The perennial plants (as Lichen Islandicus) for the same period accumulated a greater activity that the annual ones. Especially the lichen, because of the their slow decreasing activity are suitable as biological detectors also in retrospective measurements. Measuring the activity of some pollen samples was rediscovered. The pollen grains, during their transport in air by the bees, are acting like a filter for radionuclides so that we could use they to monitor the deliverance of these substances in air. (author)

  20. Impacts and Compliance Implementation Plans and Required Deviations for Toxic Substance Control Act (TSCA) Regulation of Double Shell Tanks (DST)

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    2000-01-01

    In May 2000, the U.S. Department of Energy, Office of River Protection (DOE-ORP) and the U.S. Environmental Protection Agency (EPA) held meetings regarding the management of polychlorinated biphenyls (PCBs) in the Hanford tank waste. It was decided that the radioactive waste currently stored in the double-shell tanks (DSTs) contain waste which will become subject to the Toxic Substance Control Act (TSCA) (40 CFR 761). As a result, DOE-ORP directed the River Protection Project tank farm contractor (TFC) to prepare plans for managing the PCB inventory in the DSTs. Two components of the PCB management plans are this assessment of the operational impacts of TSCA regulation and the identifications of deviations from TSCA that are required to accommodate tank farm unique limitations. This plan provides ORP and CH2M HILL Hanford Group, Inc. (CHG) with an outline of TSCA PCB requirements and their applicability to tank farm activities, and recommends a compliance/implementation approach. Where strict compliance is not possible, the need for deviations from TSCA PCB requirements is identified. The purpose of assembling this information is to enhance the understanding of PCB management requirements, identify operational impacts and select impact mitigation strategies. This information should be useful in developing formal agreements with EPA where required

  1. Instruction No. 108, on handling of radioactive materials at Ministry of public health establishments

    International Nuclear Information System (INIS)

    1975-01-01

    The regulation applies to the design, construction, reconstruction, and operation of any medical establishment, facilities using radioactive substances for diagnostic, therapeutic, or research purposes. Designs for nuclear medicine laboratories (or departments) must be approbated by, and commissioning performed with the participation of representatives of the State Sanitary Control. Use of radioactive materials is licensed by the Ministry of Public Health and the Committee for Peaceful Uses of Atomic Energy. Radiation safety responsibility is assigned to a specific staff member of the laboratory (or department). Any receipt or transfer of radioactive material is entered into appropriate records, acts, or requests. Special storage facilities must be available; their design and equipment have to meet the particular requirements for the corresponding class of work, as determined by the activity levels, radiotoxicities, and physical conditions of the radioactive substances used. With storage of unsealed sources, the class is at least second. Sealed source treatment requires primarily protection from external exposure. In such cases provisions are made for one basic and one intermediate storage facility; an applicator preparation room; and application room; a sterilization room; a surgery room; wards; toilets and washrooms for patients treated; a routine manipulation room; and a stock room. A number of safety rules in handling sealed sources are listed. A detailed system of radiation protection safeguards and rules is prescribed with regard to ventilation, sewer systems, remote control devices, work clothing and gloves, etc. Handling of unsealed radioactive materials used for diagnostic or research purposes should meet the requirements placed upon the respective radioisotope laboratory class, which has to be at least second. (G.G.)

  2. Decree of 11 August 1973 amending the Radioactive Materials (Nuclear Energy Act) Decree (Bulletin of Acts, Orders and Decrees 404/1969)

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    This Decree amends the Radioactive Materials (Nuclear Energy Act) Decree of 1969 in order to insert special regulations for the use of radioactive luminous paint in timepieces. The amendment, which consists of a new Part 4a and an Annex to the 1969 Decree incorporates in Netherlands legislation the Radiation Protection Standards for Radioluminous Timepieces recommended for adoption by the OECD Council on 19th July 1966 and by the IAEA Board of Governors on 19th September 1966. An Explanatory Memorandum is also attached to the Decree. The new provisions specify the permissible nuclides as well as their activity limits for the different categories of timepieces, the markings, the requirements for the cases. The Annex lays down the tests and inspections to be carried out during manufacture of the timepieces; finally, the Explanatory Memorandum states that these standards have been incorporated with national legislation, in view of the increasing use of such products and analyses the new provisions. (N.E.A.) [fr

  3. Guidance on accidents involving radioactivity

    International Nuclear Information System (INIS)

    1989-01-01

    This annex contains advice to Health Authorities on their response to accidents involving radioactivity. The guidance is in six parts:-(1) planning the response required to nuclear accidents overseas, (2) planning the response required to UK nuclear accidents a) emergency plans for nuclear installations b) nuclear powered satellites, (3) the handling of casualties contaminated with radioactive substances, (4) background information for dealing with queries from the public in the event of an accident, (5) the national arrangements for incident involving radioactivity (NAIR), (6) administrative arrangements. (author)

  4. Using radioactive tracer technique in municipal hygiene

    International Nuclear Information System (INIS)

    Yurasova, O.I.

    1974-01-01

    Work of the A. N. Syrsin Institute of General and Municiapl Hygiene using raidoactive tracers is reviewed. The studies include research on protein metabolism in the living organism following action of unfavorable factors of the environment; determination of the paths of introduction into the organism of substances with an alien composition; and study of the rate of resorption of subcutaneous papuli. Results are shown of radioactive-tracer studies on the mechanism of action of poisonous substances on the living organism and of migration of alien chemical compounds in the organism and in objects in the environment. It is concluded that the radioactive tracer method has wide application in municipal hygiene and sanitary microbiology. The absence of laborious operations, economy of time, precision of the experiments, and the possibility of obtaining additional information on the mechanism of action of poisonous substances on the organism and the low cost of such studies compared with other methods makes the radioactive tracer method economically attractive. The studies made show the various types of use of the method in municipal hygiene and sanitary microbiology

  5. Using radioactive tracer technique in municipal hygiene

    Energy Technology Data Exchange (ETDEWEB)

    Yurasova, O I [Institut Obshchej i Kommunal' noj Gigieny, Moscow (USSR)

    1974-01-01

    Work of the A. N. Syrsin Institute of General and Municiapl Hygiene using raidoactive tracers is reviewed. The studies include research on protein metabolism in the living organism following action of unfavorable factors of the environment; determination of the paths of introduction into the organism of substances with an alien composition; and study of the rate of resorption of subcutaneous papuli. Results are shown of radioactive-tracer studies on the mechanism of action of poisonous substances on the living organism and of migration of alien chemical compounds in the organism and in objects in the environment. It is concluded that the radioactive tracer method has wide application in municipal hygiene and sanitary microbiology. The absence of laborious operations, economy of time, precision of the experiments, and the possibility of obtaining additional information on the mechanism of action of poisonous substances on the organism and the low cost of such studies compared with other methods makes the radioactive tracer method economically attractive. The studies made show the various types of use of the method in municipal hygiene and sanitary microbiology.

  6. Bases for safety of shipping radioactive materials

    International Nuclear Information System (INIS)

    Frejman, Eh.S.; Shchupanovskij, V.D.; Kaloshin, V.M.

    1986-01-01

    Classification is presented and design of packaging containers for radioactive substance shipment is described. Standard documents and the main activities related to the shipment radiation safety provision are considered. Practical recommendations on environment and personnel protection during radioactive cargo shipment by all types of vehicles are presented

  7. Study on hazardous substances contained in radioactive waste

    International Nuclear Information System (INIS)

    Kuroki, Ryoichiro; Takahashi, Kuniaki

    2008-01-01

    It is necessary that the technical criteria is established concerning waste package for disposal of the TRU waste generated in Japan Atomic Energy Agency. And it is important to consider the criteria not only in terms of radioactivity but also in terms of chemical hazard and criticality. Therefore the environmental impact of hazardous materials and possibility of criticality were investigated to decide on technical specification of radioactive waste packages. The contents and results are as following. (1) Concerning hazardous materials included in TRU waste, regulations on disposal of industrial wastes and on environmental preservation were investigated. (2) The assessment methods for environmental impact of hazardous materials included in radioactive waste in U.K, U.S.A. and France were investigated. (3) The parameters for mass transport assessment about migration of hazardous materials in waste packages around disposal facilities were compiled. And the upper limits of amounts of hazardous materials in waste packages to satisfy the environmental standard were calculated with mass transport assessment for some disposal concepts. (4) It was suggested from criticality analysis for waste packages in disposal facility that the occurrence of criticality was almost impossible under the realistic conditions. (author)

  8. TSCA Chemical Substance Inventory

    Science.gov (United States)

    Section 8 (b) of the Toxic Substances Control Act (TSCA) requires EPA to compile, keep current, and publish a list of each chemical substance that is manufactured or processed in the United States for TSCA uses.

  9. No. 434 - Radiation Control Regulation 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This Regulation, made under the Radiation Control Act 1990, replaces the Radioactive Substances Regulation 1959, repealed by the 1990 Act. It deals with licensing of the use of radioactive substances and radiation apparatus, regulates their use, disposal and transport. It also provides for radiation monitoring and emergency planning. (NEA)

  10. Modelling of Transport of Radioactive Substances in the Primary Circuit of Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    coordinated research project (CRP) was proposed to determine the accuracy of existing computer codes and to identify how they could be improved through application of this body of work. Specifically, the CRP was expected to: - Build a database for selected pressurized water reactor (PWR) plants that would contain the design information suitable for their description within a computer code, as well as give the operating history of the plant, which would include the water chemistry data over several refuelling cycles; - Show the contamination of selected out-of-core surfaces such as circulating loops and steam generator channel heads versus operating history and compare the prediction of surface contamination versus time from modern radioactivity transport codes with actual plant data in a blind benchmarking exercise; - Determine how current codes, as well as new ones, could be improved and encourage the development of accurate new codes in Member States using the recommendations from the present work. This report uses as its basis the results of this CRP on 'Modelling of Transport of Radioactive Substances in the Primary Circuit of Water Cooled Reactors', which was conducted over the period 1996-2001 for PWR type reactors. The report also describes the significant progress demonstrated in this field in the period that followed.

  11. Levels of surface contamination with radioactive materials at workplaces of nuclear research centre at Rez

    International Nuclear Information System (INIS)

    Hoelgye, Z.; Nemcova, I.; Kasikova, M.; Popper, J.; Chysky, J.

    1983-01-01

    A hygiene supervision unit at workplaces of the nuclear Research Institute in Rez monitored on a long-term basis surface contamination with radioactive substances. Surface contamination was found at workplaces with open sources. Of the 4343 monitored places action levels were only exceeded in 13 cases. The obtained data were used for typifying workplaces with the highest level of surface contamination, to determine in certain instances the mechanism of the escape of radioactive substances from insulating facilities and to determine the rate of the spread of the radioactive substance into adjacent non-active workplaces. (author)

  12. [Responsibilities of enterprises introducing new dangerous chemical substances and preparations].

    Science.gov (United States)

    Cieśla, Jacek; Majka, Jerzy

    2004-01-01

    The paper reviews the responsibilities of producers, importers and distributors set in a new Act of January 2001 on chemical substances and preparations (Off. J. 2001, No. 11, item 84, with subsequent amendments). This Act together with executive provisions is aimed at harmonizing Polish legislation with EU requirements. The Act sets conditions, restriction and bans of production placing on the market and use of chemical substances and preparations in order to protect human health and environment against their harmful effects. The Act together with a number of executive provisions render those who introduce dangerous chemicals and chemical preparations, including distributors responsible for: classification and labelling of dangerous chemical substances and preparations; possessing, making available and up-dating safety data sheets; supplying packages containing certain dangerous substances with child-proof fastenings; notifying the Inspector for Chemical Substances and Preparations about placing a dangerous preparation on the market; notifying the Inspector about a new substance and conducting required studies; being properly qualified to handle dangerous substances. The Act strictly defines the term "placing a substance or a preparation on the market"--it means making a substance or a preparation available to third parties on the territory of The Republic of Poland, territories of the Member States of the European Union or the territory of Iceland, Liechtenstein and Norway, unless the Act provides otherwise; it also means introduction of a substance or a preparation from outside of the territory referred to above on the customs territory of The Republic of Poland, or that of the member states of the European Union and other states listed above. In addition, some of the responsibilities defined by the provisions of the law on chemical substances and preparations are also applicable to handling of biocidals, which are classified as dangerous substances. The Act

  13. Visualization of the thymus by substance P receptor scintigraphy in man

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, P.M. van [Department of Immunology, Erasmus University, Rotterdam (Netherlands)]|[Department of Internal Medicine III, Erasmus University, Rotterdam (Netherlands); Breeman, W.A.P. [Department of Nuclear Medicine, Erasmus University, Rotterdam (Netherlands); Reubi, J.C. [Department of Pathology, University of Berne (Switzerland); Postema, P.T.E. [Department of Internal Medicine III, Erasmus University, Rotterdam (Netherlands); Anker-Lugtenburg, P.J. van den [Department of Hematology, Erasmus University, Rotterdam (Netherlands); Kwekkeboom, D.J. [Department of Nuclear Medicine, Erasmus University, Rotterdam (Netherlands); Laissue, J. [Department of Pathology, University of Berne (Switzerland); Waser, B. [Department of Pathology, University of Berne (Switzerland); Lamberts, S.W.J. [Department of Internal Medicine III, Erasmus University, Rotterdam (Netherlands); Visser, T.J. [Department of Internal Medicine III, Erasmus University, Rotterdam (Netherlands); Krenning, E.P. [Department of Internal Medicine III, Erasmus University, Rotterdam (Netherlands)]|[Department of Nuclear Medicine, Erasmus University, Rotterdam (Netherlands)

    1996-11-01

    In this study we present the results concerning the metabolism of the substance P analogue [{sup 111}In-DTPA-Arg{sup 1}]-substance P in man, as well as the visualization of the thymus in patients with immune-mediated diseases. Twelve selected patients were investigated, comprising five with inflammatory bowel disease, one with ophthalmic Graves` disease, one with sclerosing cholangitis, one with Sjoegren`s syndrome, one with rheumatoid arthritis, one with systemic lupus erythematosus and two with myasthenia gravis. After intravenous administration of 150-250 MBq (2.5-5.0 {mu}g) [{sup 111}In-DTPA-Arg{sup 1}]-substance P, radioactivity was measured in blood, urine and faeces for 48 h. Planar and single-photon emission tomographic images were obtained 4 and 24 h after injection. After administration of [{sup 111}In-DTPA-Arg{sup 1}]-substance P, a transient flush was observed in all patients. Degradation of [{sup 111}In-DTPA-Arg{sup 1}]-substance P started in the first minutes after administration, resulting in a half-life of 10 min for the total plasma radioactivity, and of 4 min for the intact radiopharmaceutical. Urinary excretion accounted for >95% of the radioactivity within 24 h post injection, and up to 0.05% was found in the faeces up to 60 h. In all patients uptake of radioactivity was found in the areolae mammae (in women), liver, spleen, kidneys and urinary bladder. In eight patients a high uptake of [{sup 111}In-DTPA-Arg{sup 1}]-substance P was observed in the thymus. We conclude that, despite its short half-life, [{sup 111}In-DTPA-Arg{sup 1}]-substance P can be used to visualize the thymus. This may contribute to the investigation of the role of thymus in immune-mediated diseases. In addition, inflammatory sites in various diseases could be visualized. (orig.). With 6 figs., 1 tab.

  14. Visualization of the thymus by substance P receptor scintigraphy in man

    International Nuclear Information System (INIS)

    Hagen, P.M. van; Breeman, W.A.P.; Reubi, J.C.; Postema, P.T.E.; Anker-Lugtenburg, P.J. van den; Kwekkeboom, D.J.; Laissue, J.; Waser, B.; Lamberts, S.W.J.; Visser, T.J.; Krenning, E.P.

    1996-01-01

    In this study we present the results concerning the metabolism of the substance P analogue [ 111 In-DTPA-Arg 1 ]-substance P in man, as well as the visualization of the thymus in patients with immune-mediated diseases. Twelve selected patients were investigated, comprising five with inflammatory bowel disease, one with ophthalmic Graves' disease, one with sclerosing cholangitis, one with Sjoegren's syndrome, one with rheumatoid arthritis, one with systemic lupus erythematosus and two with myasthenia gravis. After intravenous administration of 150-250 MBq (2.5-5.0 μg) [ 111 In-DTPA-Arg 1 ]-substance P, radioactivity was measured in blood, urine and faeces for 48 h. Planar and single-photon emission tomographic images were obtained 4 and 24 h after injection. After administration of [ 111 In-DTPA-Arg 1 ]-substance P, a transient flush was observed in all patients. Degradation of [ 111 In-DTPA-Arg 1 ]-substance P started in the first minutes after administration, resulting in a half-life of 10 min for the total plasma radioactivity, and of 4 min for the intact radiopharmaceutical. Urinary excretion accounted for >95% of the radioactivity within 24 h post injection, and up to 0.05% was found in the faeces up to 60 h. In all patients uptake of radioactivity was found in the areolae mammae (in women), liver, spleen, kidneys and urinary bladder. In eight patients a high uptake of [ 111 In-DTPA-Arg 1 ]-substance P was observed in the thymus. We conclude that, despite its short half-life, [ 111 In-DTPA-Arg 1 ]-substance P can be used to visualize the thymus. This may contribute to the investigation of the role of thymus in immune-mediated diseases. In addition, inflammatory sites in various diseases could be visualized. (orig.). With 6 figs., 1 tab

  15. Study of casks shielded with heavy metal to transport highly radioactive substances; Estudo de embalados com blindagem em metal pesado para transporte de substancias altamente radioativas

    Energy Technology Data Exchange (ETDEWEB)

    Lucchesi, R.F.; Hara, D.H.S.; Martinez, L.G.; Mucsi, C.S.; Rossi, J.L., E-mail: rflguimaraes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    Nowadays, Brazil relies on casks produced abroad for transportation in its territory of substances that are sources of high radioactivity, especially the Mo-99. The product of the radioactive decay of the Mo-99 is the Tc-99m, which is used in nuclear medicine for administration to humans in the form of injectable radioactive drugs for the image diagnosis of numerous pathologies. This paper aims to study the existing casks in order to propose materials for the construction of the core part as shielding against gamma radiation. To this purpose, the existing literature on the subject was studied, as well as evaluation of existing and available casks. The study was focused on the core of which is made of heavy metals, especially depleted uranium for shielding the emitted radiation. (author)

  16. Agency practice and future policy in decay storage of radioactive wastes

    International Nuclear Information System (INIS)

    Mitchell, N.G.

    2002-01-01

    The Environment Agency issues authorisations under the Radioactive Substances Act 1993 for the accumulation of radioactive waste at non-nuclear sites prior to disposal. Radioactive decay during the accumulation period reduces the radioactive content of waste packages and provides a waste management option that has become known as decay-in-storage or decay storage. The project brief excluded nuclear licensed sites. A database of information in authorisations and application forms has been constructed. This information has been used alongside a literature review, international contacts, input from the Small Users Liaison Group and a dose assessment to look at the practice of decay storage. The basic principles behind decay storage are presented with specific sections on general safety, waste characterisation and segregation, storage containers, waste stores, and waste treatment and conditioning. The regulatory approach in seven other countries is described. The information collected from Agency public registers is summarised with particular attention given to storage periods of greater than 60 days and the corresponding information available from application forms. Operational experiences are presented. IAEA recommendations are compared with current practice based on the conditions found in authorisations, on the information from application forms and details provided by the Small Users Liaison Group

  17. Smuggling of radioactive substances. Swedish capacity to detect and analyze; Smuggling av radioaktivt material. Sveriges foermaaga till detektion och analys

    Energy Technology Data Exchange (ETDEWEB)

    Ringbom, A.; Spjuth, L. [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2001-04-01

    This report is the result of a survey of the existing Swedish national capability to detect an attempt to smuggle nuclear material or other radioactive substances. The capacity to perform a more thorough analysis of a seized sample has also been investigated. The study shows that Sweden today has a small capacity to disclose a smuggling attempt of such materials. The limited detection capacity that exists is not sensitive enough for this purpose, and is not used in an optimal way. Furthermore, relevant education of the custom officers is needed. Today, a national capability for an initial analysis of seized material exists, but action plans describing the handling of the material should be resolved. The high number of seizures of radioactive material in countries having a better detection capability indicates that illicit trafficking of radioactive materials is still a problem. In Sweden, we so far do not have many reported incidents of illicit trafficking - partly due to our limited capacity to detect radioactive material - however, we do not know how many incidents that really have occurred. Fixed installations for detection at the border controls are the most efficient way to improve our capacity for detecting nuclear material. An initial pilot study is suggested to be able to estimate the need. Increased education of the custom officers, establishment of formal routines for handling and analysis of seized materials, and to formalise the contacts with international analysis laboratories are also identified as important factors to be improved.

  18. Radioactivity levels in surface water of lakes around Izmir / Turkey

    International Nuclear Information System (INIS)

    Doyurum, S.; Turkozu, D. A.; Aslani, M. A. A.; Aytas, S.; Eral, M.; Kaygun, A. K.

    2006-01-01

    Radioactivity presents in surface continental waters is mainly due to the presence of radioactive elements in the earth's crust, other artificial radionuclides have appeared due to such human activities as nuclear power plants, nuclear weapons testing and manufacture and use of radioactive sources It is well known that natural radionuclides can be effective as tracers for the different processes controlling the distribution of elements among dissolved and particulate phases in aquatic systems. The detection of high radionuclide concentrations was proposed as a public health problem in several areas and consequently studies into the risks of radionuclides were started in the 2000s. Especially, these radioactive substances in groundwater are an unwanted and involuntary risk factor from natural sources, not artificial sources. These radioactive substances include uranium, radon found in uranium series, and other radioactive substances such as radium and gross alpha. Uranium present in rock, soil, and natural materials, and is found in small quantities in air, water, and food that people always contact. In this project, lake water samples were collected from three lakes around Izmir-Turkey. In surface lake water samples, pH, mV and conductivity values were measured and alkaline content was determined titrimetrically. The uranium concentrations in the lake water samples were measured using uranium analyzer. The radioactivity concentrations related to gross radium isotopes, gross-? and gross-? activities in the surface lake water were determined. The correlation among some parameters for water samples and concentrations of uranium, activity concentration of gross radium isotopes, gross alpha and gross beta radioactivity are also discussed

  19. Radioactivity analysis of food and accuracy control

    International Nuclear Information System (INIS)

    Ota, Tomoko

    2013-01-01

    From the fact that radioactive substances have been detected from the foods such as agricultural and livestock products and marine products due to the accident of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, the Ministry of Health, Labour and Welfare stipulated new standards geared to general foods on radioactive cesium by replacing the interim standards up to now. Various institutions began to measure radioactivity on the basis of this instruction, but as a new challenge, a problem of the reliability of the data occurred. Therefore, accuracy control to indicate the proof that the quality of the data can be retained at an appropriate level judging from an objective manner is important. In order to consecutively implement quality management activities, it is necessary for each inspection agency to build an accuracy control system. This paper introduces support service, as a new attempt, for establishing the accuracy control system. This service is offered jointly by three organizations, such as TUV Rheinland Japan Ltd., Japan Frozen Foods Inspection Corporation, and Japan Chemical Analysis Center. This service consists of the training of radioactivity measurement practitioners, proficiency test for radioactive substance measurement, and personal authentication. (O.A.)

  20. The Nuclear Waste Policy Act, as amended, with appropriations acts appended. Revision 1

    International Nuclear Information System (INIS)

    1995-02-01

    This act provides for the development of repositories for the disposal of high-level radioactive wastes, low-level radioactive wastes, and spent nuclear fuels. In addition, it establishes research and development programs, as well as demonstration programs regarding the disposal of these wastes. This Act consists of the Act of Jan. 7, 1983 (Public Law 97-425; 96 Stat. 2201), as amended by Public Law 100-203 and Public Law 102-486

  1. Decontamination of radioactively contaminated surfaces

    International Nuclear Information System (INIS)

    1986-10-01

    By this standard objective conditions to evaluate and test the ease of decontamination of surfaces under laboratory conditions are to be laid down. Ease of decontamination in this context denotes the summed-up effect of two material properties: a) the capacity of the material for retaining radioactive substances at its surface; b) the ease with which these substances are given off again in the course of cleaning processes. (orig./HP) [de

  2. Radioactive materials and waste. Planning Act of 28 June 2006. Consolidated version established by Andra

    International Nuclear Information System (INIS)

    2013-07-01

    This document is the English translation of the Articles of the Planning Act No. 2006-739 of 28 June 2006 and of the articles L. 542-1 and following of the Environmental Code (as modified) concerning the Sustainable Management of Radioactive Materials and Waste. This translation is provided for convenience purposes only, the French version remaining the only valid and legally-binding version. In order to enhance readability, all articles relating to Andra's activities are consolidated in this self-supporting document

  3. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  4. Assessment of people exposure to contamination with radioactive substances removed to the atmosphere from nuclear objects of Swierk Centre, Poland, in the period of 1987-1992

    International Nuclear Information System (INIS)

    Filipiak, B.; Nowicki, K.

    1995-01-01

    The exposure of particular persons, living in the near surroundings of Nuclear Centre - Swierk near Warsaw, Poland, to radioactive substances removed to the atmosphere during the period 1987-1992 has been assessed. The effective dose equivalent for statistically critical groups of persons has been estimated. The results have been compared with maximum permitted dose limits. 17 refs, 12 tabs

  5. Radiation Control Regulation 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This Regulation (No. 434-1993) was made in pursuance of the Radiation Control Act 1990 and replaces the Active Substances Regulations 1959 repealed by the Act. It entered into force on 1 September 1993. The Regulation specifies that the technical radiation protection definitions have the same meaning as in the 1990 recommendations. The Regulation provides for the licensing of persons to use radioactive substances and radiation apparatus. It prescribes activities which may only be carried out by an accredited radiation expert and regulates the use of radiation apparatus and radioactive substances as well as the disposal and transport of radiation apparatus and radioactive substances. (NEA)

  6. Radioactive Waste Repositories Administration - SURAO

    International Nuclear Information System (INIS)

    Kucerka, M.

    1998-01-01

    The Atomic Act specifies, among other things, responsibilities of the government in the field of safe disposal of radioactive wastes. To satisfy this responsibility, the Ministry of Industry and Trade has established the Radioactive Waste Repositories Administration (SURAO). SURAO's major responsibilities include: (a) the preparation, construction, commissioning, operation, and decommissioning of radioactive waste repositories and the monitoring of their environmental impacts; (b) radioactive waste management; (c) spent or irradiated nuclear fuel processing into a form suitable for storage/disposal or reuse; (d) record-keeping of received radioactive wastes and their producers; (e) administration of fund transfers as stipulated by the Atomic Act, Article 27; (f) development of proposals for specification of fees to be paid to the Nuclear Account; (g) responsibility for and coordination of research and development in the field of radioactive waste handling and management; (h) supervision of licensees' margin earmarked for the decommissioning of their facilities; (i) providing services in radioactive waste handling and management; (j) handling and management of radioactive wastes that have been transferred to the Czech Republic from abroad and cannot be sent back; (k) interim administration of radioactive wastes that have become state property. The Statute of the Administration is reproduced in full. (P.A.)

  7. Guideline for the assessment of radioactive substances in drinking water in the frame of the implementation of the drinking water regulation. Recommendation by BMUB, BfS, UBA and the responsible state authorities and DVGW and BDFW; Leitfaden zur Untersuchung und Bewertung von radioaktiven Stoffen im Trinkwasser bei der Umsetzung der Trinkwasserverordnung. Empfehlung von BMUB, BMG, BfS, UBA und den zustaendigen Landesbehoerden sowie DVGW und BDEW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-01-15

    The guidelines on the assessment of radioactive substances in drinking water cover the following issues: terms, symbols and units concerning radioactivity, radioactivity in the drinking water and radiation exposure, requirements for drinking water with respect to radioactive substances, fundamentals of the assessment concept according to the drinking water regulation, practical application of the assessment concept, analytical determination of radioactivity related parameters.

  8. The use of fast and thermal neutron detectors based on oxide scintillators in inspection systems for prevention of illegal transportation of radioactive substances

    International Nuclear Information System (INIS)

    Ryzhikov, V. D.; Grinyov, B. V.; Piven, L. A.; Pochet, T.; Onyshchenko, G. M.; Lysetska, O. K.; Nagornaya, L. L.

    2009-01-01

    We present results of our studies aimed at practical application of an efficient method for detection of fast and thermal neutrons, which uses the process of inelastic scattering on atom nuclei present in inorganic scintillators. Due to energy transformation in inelastic scattering, the main fraction of gamma-radiation energy falls into the low-energy range (below 0.3 MeV). Detection in this range ensures efficiency that reaches up to 70% (as compared with 1% using conventional LiI(E)-techniques) and depends on the effective atomic number of the scintillator. The most evident practical application field for this method is inspection systems for prevention of illegal transportation of radioactive substances. Especially promising is the creation of a small-sized neutron detector for portable radioactive materials detection systems using the 'scintillator-avalanche photodiode' technology

  9. Entrapment process of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Gagneraud, Francis; Gagneraud, Michel.

    1981-01-01

    Process for collecting chemically inert gaseous radioactive waste in melted substances, whereby the gaseous waste is injected under pressure in a molten substance to its saturation point followed by fast cooling. This substance is constituted of glass, ceramics, metallurgical drosses and slag masses in fusion. Its cooling is carried out by quenching by means of running water or a gas fluid, or by casting into vessels with great thermal inertia such as cast iron or similar, before recovery and confinement in receptacles for storage [fr

  10. Use of a radioactive substance, the depleted uranium, for the fabrication of enamels and usual things and jewels decoration

    International Nuclear Information System (INIS)

    1999-01-01

    This open letter to the ministers and State Secretaries of the public health, the environment and the consumers protection, deals with a complaint against X, lodged by the CRII-RAD. This complaint concerns the use of depleted uranium for the fabrication of enamels and the decoration of usual things and jewels. This utilization constitutes a breach of the decree 66-450, which forbids since 1966 the addition of radioactive substances in food, cosmetic and domestic products. The letter takes into account the hazards for the workers and the consumers, the uranium powder origin and discusses the guaranties forecast under the legislation eye. (A.L.B.)

  11. Investigation to radioactive contamination of pool water in IMEF

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Lee, J. H.; Lee, H. K.

    2003-06-01

    The pool (3x6x10) in irradiated materials examination facility is usually used for the purpose of taking the specimen out of cask loaded into the pool, and carrying in/out the specimen to/ from the hot cell. Always, it must be cared for the water into the pool to be fine condition because all operation are worked with the naked eye during taking an irradiated materials out of the cask and plunging them in the bucket-elevator. In the aspects of the radioactive remained substances in the water must be controlled so that the amount of substances to be lower than the standard amount prescribed by RCA Korea Activity in a part of radioactive contamination control. In consequence, an expertness of status and a practical use of skill make possible the prevention of radioactive material's diffusion or the radioactive contamination of pool water and safety work

  12. Authorization procedure for containers and modalities of transport of radioactive substances within the EC Member States

    International Nuclear Information System (INIS)

    Amaducci, S.

    1977-02-01

    In all EC Member States, the transport of radioactive substances, the activity of which is higher than a specific level, is subject to regulatory requirements. Most of these requirements demand an administrative authorization before starting transport. In Belgium, authorization may take the form of a general, particular or special authorization, and in Luxembourg of a general or particular authorization. The latter applies in France and Italy but in these countries specific provisions also exist depending on the means of transport used. The latter specific provisions also exist in Germany and in the Netherlands. On the contrary in the United Kingdom, no administrative authorization is needed for such transport, except for special consignments. Finally, it is to be noted that neither in Denmark nor in Ireland have regulatory requirements been laid down with respect to such authorization procedure

  13. Remediation of sites with mixed contamination of radioactive and other hazardous substances

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States with the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the management of the legacies of past practices and accidents. In response to this, the IAEA has initiated a comprehensive programme of work covering all aspects of environmental remediation. Mixed radioactive and hazardous substances contamination poses a particular challenge because of the combination of types of hazards and potential exposures. While radionuclides and toxic (heavy) metals pose similar and mostly compatible challenges, organic contaminants often require different approaches that may not be compatible with the former. Additional complexity is introduced into the problem by a different and sometimes conflicting regulatory framework for radiological and non-radiological contamination, including the prescribed waste management routes. In consideration of the added complexities of remediating (mixed) contamination, the IAEA has determined that this subject sufficiently warrants the development of a specialized report for assisting Member States. Topics discussed are types of sites, hazards and contaminant behaviour; regulatory implications; implications for worker health and safety; implications for sampling and analysis; elements of the remediation process; technology evaluation and selection; monitored non-intervention; blocking of pathways; removal of the source term; ex-situ treatment followed by case studies and a glossary

  14. Radioactive preparations. Determination of radiochemical purity by thin-layer chromatography

    International Nuclear Information System (INIS)

    1986-01-01

    The standard sets the data which must be attached to every sample, and the equipment, chemicals and auxiliary substances used in the determination of radiochemical purity of substances by chromatography. Described are preparation of the sample, the procedure of sample deposition, the development, drying and detection of the radioactive preparation. The qualitative and quantitative assessment of the radiochromatogram is described as are the calculation of radiochemical purity and the determination of the reproducibility of measurement of radiochemical purity of radioactive preparations. (E.S.)

  15. The German system to prevent, detect and respond to illicit uses of nuclear materials and radioactive sources

    International Nuclear Information System (INIS)

    Fechner, J.B.

    2001-01-01

    cover requirements for security guards, physical protection commissioners and escort personnel, for reporting of security relevant events, and for advance notifications of shipment of nuclear material. The relevant national legislation for the licensing and supervision of all nuclear activities and activities with radioactive sources are the German Atomic Energy Act and the Ordinance on the Protection Against Damage and Injuries caused by Ionising Radiation; a specific ordinance covers the security clearance for trustworthiness. The following activities need a license or authorization by the competent authorities: import/export of nuclear material, transportation of all radioactive substances, storage and use of nuclear and other radioactive substances, construction and operation of all nuclear facilities. Physical protection, including trustworthiness of all personnel, and safeguards measures are licensing conditions as far as nuclear materials are concerned; for radioactive sources security measures are required, including trustworthiness of relevant personnel. The respective licensee is responsible to ensure the implementation of the licensing conditions at any time; he is subject to permanent regulatory supervision by the competent authorities; for cases of non-compliance sanctions are specified in the national legislation, including administrative penalties, amendment or revocation of the license. Additional legislation and regulations covering the export of nuclear materials and technology are the German Foreign Trade Act and the Foreign Trade Ordinance, supplemented by the Zanger Committee Trigger List and by the NSG Guidelines, Parts 1 and 2, as published in the IAEA document INFCIRC/254. The War Arms Control Act pertains to the export of weapons components and items usable for weapons construction. The export licensing authority is the Federal Office for Foreign Trade; it is supported by an interdepartmental advisory group. Compliance control of nuclear import

  16. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  17. Regulations for the disposal of radioactive waste in the Konrad repository - 59105

    International Nuclear Information System (INIS)

    Jung, Hagen G.; Bandt, Gabriele

    2012-01-01

    In Germany low / medium level waste, which is classified here as radioactive waste with negligible heat generation, will be disposed of in the Konrad underground repository. The construction and the operation of this nuclear facility required authorization by different fields of law, i.e., by nuclear law, mining law and water law. Whereas the nuclear law considers solely radiological aspects, the relevant permit issued according to the water law considers the impact of radioactive as well as non-radioactive harmful substances. The Federal Office for Radiation Protection (BfS) as operator of the repository and permit holder has (a) to record the disposed of radioactive and non-radioactive harmful substances and (b) to balance them. To meet these requirements BfS has developed a concept, which led to a site specific solution. Threshold values were defined for recording and for balancing the harmful substances. It had to be verified that by disposal of radioactive waste packages according to these values an adverse effect on the near-surface groundwater can be excluded. The Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency (NLWKN) as the responsible water law regulatory authority approved the operator's concept as appropriate to comply with the requirements of the Water Law Permit. Nonetheless, collateral clauses were imposed to assure this. (authors)

  18. The low-level radioactive waste crisis

    International Nuclear Information System (INIS)

    Bord, R.J.

    1988-01-01

    According to the author, the goals of the 1980 Low-Level Radioactive Waste Policy Act have not been met. That act stipulated that regional disposal sites were to be established by 1986. To date, no new sites have been established and none are anywhere near the construction phase. Congress, responding to existing impasse, has extended the deadline to the end of 1992 with the passage of the Low-Level Radioactive Waste Policy Act. The reasons for the impasse are no mystery: local intransigence regarding waste of any kind, public fears of radiation hazards, and politicians' anxieties about their constituents' fears. The focus of this paper is the viability of ongoing attempts to overcome public intransigence in the case of disposal siting for low-level radioactive waste (LLRW)

  19. Low-level radioactive waste management: federal-state cooperation or confusion

    International Nuclear Information System (INIS)

    Choi, Y.H.

    1984-01-01

    This paper describes and analyzes the legislative history of the Low-Level Radioactive Waste Policy Act of 1980 and discusses major issues and problems resulting from the implementation of the Act. Five specific issues addressed in this paper are: what radioactive waste constitutes ''low-level radioactive waste'' within the meaning of the Act; what responsibilities, if any, do the states have to dispose of federal radioactive waste; what liabilities and protections govern the disposal of waste not generated in a disposal-site state (hereafter, the ''host state''); to what standards of care should generators of low-level radioactive waste be held, and by what authority should such generators be licensed and inspected; which disposal-site activities should be considered ''disposal,'' and which activities should be considered ''management,'' within the meaning of the Act, and what authority do the states have, under the Act, to engage in each activity, respectively. The federal government and state governments must solve these problems in order to implement the Act, and thus, to establish equity among the 50 states, and the interstate regional compacts

  20. Environmental radioactive intercomparison program and radioactive standards program

    Energy Technology Data Exchange (ETDEWEB)

    Dilbeck, G. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  1. Third ordinance amending the ordinance on the approval of drugs treated with ionising radiation or drugs containing radioactive substances

    International Nuclear Information System (INIS)

    1985-01-01

    Amendments: 1) Section 2, sub-section (2), no. 1 - Cr-51, Fe-59, Ga-67, In-111, J-123, J-125, J-13, Co-57, Co-58, P-32, Se-75, Th-201, Xe-127, Xe-133; 2) Section 3, sub-section (2), no. 2 - Mo-99, Hg-195m, Rb-81, Su-113, Tc-99m, Au-195m, Kr-81m, In-113m; 3) Section 3a: The prohibitory provisions of section 7, sub-section (1) of the Medical Preparation Act do not apply to radioactive medical preparations which are drugs within the purview of section 2, sub-section (2), no. 4, item (a) of said act. (HP) [de

  2. Can the same principles be used for the management of radioactive and non-radioactive waste?

    International Nuclear Information System (INIS)

    Bengtsson, Gunnar.

    1989-01-01

    Non-radioactive waste has a much more complex composition than radioactive waste and appears in much larger quantities. The two types of waste have, however, some properties in common when it comes to their longterm impact on health and the environment. The occurrence in both of substances that may exist for generations and may cause cancer provides one example. Both types of waste also always occur together. It is therefore proposed that the same basic principles could be applied for the management of radioactive and non-radioactive waste. By doing so one may increase the efficiency of policy development, research and practical management. This is particurlarly importand for the very costly restoration of old disposal sites which have earlier been poorly managed. (author)

  3. Radiological testing of products containing radioactivity

    International Nuclear Information System (INIS)

    Dixon, D.W.; Knight, A.

    1980-01-01

    Consumer products containing radioactive substances are tested by NRPB to determine how much radioactive material is likely to be released from a product if it is misused or accidentally damaged. Such testing is briefly described with particular reference to ionisation chamber smoke detectors, liquid crystal display watches illuminated with gaseous tritium light sources and anti-static brushes containing polonium-210 in the form of ceramic microspheres. (U.K.)

  4. Organisation of the disposal of radioactive sources from Scottish hospitals

    International Nuclear Information System (INIS)

    Corrigall, R S; Martin, C J; Watson, I

    2004-01-01

    An amnesty for disposal of sealed radioactive sources from Scottish hospitals has been funded by the Scottish Executive to address problems arising from accumulation of sources. The contract was awarded to a company involved in radioactive source recycling. Coordination of uplifts from several hospitals allowed considerable financial savings to be made, so source amnesties could offer monetary advantages to Health and Education Departments elsewhere in the UK, as well as alleviating the problem from security and storage of sources that are no longer required. The sources originated in 14 hospitals, but were uplifted from five pick-up points. There were a total of 246 sources with 167 of these being caesium-137. The total activity was 16.2 TBq with one large 16.1 TBq blood irradiator source and the activities of all the other sources adding up to 167 GBq. This paper describes organisation of the collection. Options for achieving compliance with the Radioactive Substances Act 1993 are discussed, although in the event, special authorisations were obtained for each hospital. Arrangements for transport of the sources and source security were drawn up including emergency procedures for dealing with foreseeable incidents. The police provided secure overnight storage for the loaded truck and assistance in directing and monitoring progress of the load

  5. A review of the justification for exemption orders, and for other low-level radioactive waste disposal practices

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Sweeney, B.J.

    1987-04-01

    The historical background and philosophy underlying the Radioactive Substances Act (RSA) and the system of Authorisation and Exemption is examined and the radiological protection criteria contemporary with the introduction of the RSA and those now current are reviewed. The potential radiological impact (maximum individual doses and collective doses to disposal workers and to members of the public) from ''dustbin limit'' disposals, special precautions burial, disposal of demolition wastes, incineration of H-3 and C-14 and from disposals under each of the current Exemption Orders with waste disposal implications are calculated. (author)

  6. The radioactive waste dilemma and the issues for local government: the legal framework

    International Nuclear Information System (INIS)

    Woolley, J.

    1991-01-01

    The regulatory framework applying to the development of a deep depository is explained and some uncertainties are highlighted. The framework's apparent distinction between the ''open'' planning process and the ''closed'' processes of authorisation under the Radioactive Substances Act 1960 and licensing under the Nuclear Installations Act 1965 is considered. The traditional potential for local authority and public involvement in the ''open'' process is contrasted with the traditional absence of such involvement in the ''closed'' process. Legal arguments supporting fuller involvement in the ''open'' process and greater involvement in the ''closed'' process are presented and existing powers are mentioned. The viability of the continued distinction between the ''open'' process and the ''closed'' process of the framework is questioned and the potentially far-reaching impact of the European Directives on environmental assessment and freedom of access to environmental information is discussed in this context. (author)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  8. Compilation of data on the release of radioactive substances in the vent air of nuclear power plants in the Federal Republic of Germany in 1975

    International Nuclear Information System (INIS)

    Winkelmann, I.; Endrulat, H.J.; Haubelt, R.; Westpfahl, U.

    1976-04-01

    The present compilation of data on the release of radioactive substances in the vent air of nuclear power plants in the FRG is a continuation of a report series on aerosol filter and iodine filter samples from the exhaust air control systems of the nuclear power plants Gundremmingen, Obrigheim, Wuergassen, Stade, Lingen and Biblis A. The reports have been issued by the Federal public health office since 1972. This report is supplemented by annual release values on radioactive noble gases, on short- and long-lived aerosols, and on gaseous 131 I, supplied by the individual nuclear power plants as in previous years on uniform questionnaires. Data on the release of tritium are also available from some nuclear power plants. (orig.) [de

  9. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki; Kageyama, Hisashi; Kobori, Junzo.

    1984-01-01

    Purpose: To perform the curing sufficiently even when copper hydroxide that interferes the curing reaction is contained in radioactive wastes. Method: Solidification of radioactive wastes containing copper hydroxide using thermoset resins is carried out under the presence of an alkaline material. The thermoset resin used herein is an polyester resin comprising unsaturated polyester and a polymerizable monomer. The alkaline substance usable herein can include powder or an aqueous solution of hydroxides or oxides of sodium, magnesium, calcium or the like. (Yoshino, Y.)

  10. Preparation of radioactive ''mixed'' waste samples for measurement of RCRA [Resource Conservation and Recovery Act] organic compounds

    International Nuclear Information System (INIS)

    Tomkins, B.A.; Caton, J.E.

    1987-01-01

    A radioactive ''mixed'' waste typically contains alpha-, beta-, or gamma-emitting radionuclides and varying quantities of semivolatile or volatile organic species, some or all of which may be named specifically by the Resource Conservation and Recovery Act (RCRA). Because there are no acceptable means available currently for disposing of these mixed wastes, they are presently stored above-ground in sealed drums. For this reason, analytical procedures which can determine RCRA organics in radioactive waste are necessary for deciding the proper approach for disposal. An important goal of this work is the development of methods for preparing mixed waste samples in a manner which allows the RCRA organics to be measured in conventional organic analysis laboratories without special precautions. Analytical procedures developed for handling mixed waste samples must satisfy not only the usual constraints present in any trace-level organic chemical determination, but also those needed to insure the protection of the operator from radioactive contamination. Consequently, procedures should be designed to use the least amount of radioactive sample commensurate with achieving acceptable sensitivity with the RCRA analytical methods. Furthermore, the unusual laboratory glassware which would normally be used should be replaced with disposable materials wherever possible, in order to reduce the ''clean-up'' time required, and thereby reduce the operator's exposure to radioactivity. Actual sample handling should be reduced to the absolute minimum. Finally, the final isolate must exhibit a sufficiently low level of alpha, beta, or gamma activity to permit detailed characterization in a conventional organic analysis laboratory. 4 refs., 5 tabs

  11. X rays and radioactivity: a complete surprise

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1995-01-01

    The discoveries of X rays and of radioactivity came as complete experimental surprises; the physicists, at that time, had no previous hint of a possible structure of atoms. It is difficult now, knowing what we know, to replace ourselves in the spirit, astonishment and questioning of these years, between 1895 and 1903. The nature of X rays was soon hypothesized, but the nature of the rays emitted by uranium, polonium and radium was much more difficult to disentangle, as they were a mixture of different types of radiations. The origin of the energy continuously released in radioactivity remained a complete mystery for a few years. The multiplicity of the radioactive substances became soon a difficult matter: what was real and what was induced ? Isotopy was still far ahead. It appeared that some radioactive substances had ''half-lifes'': were they genuine radioactive elements or was it just a transitory phenomenon ? Henri Becquerel (in 1900) and Pierre and Marie Curie (in 1902) hesitated on the correct answer. Only after Ernest Rutherford and Frederick Soddy established that radioactivity was the transmutation of one element into another, could one understand that a solid element transformed into a gaseous element, which in turn transformed itself into a succession of solid radioactive elements. It was only in 1913 - after the discovery of the atomic nucleus -, through precise measurements of X ray spectra, that Henry Moseley showed that the number of electrons of a given atom - and the charge of its nucleus - was equal to its atomic number in the periodic table. (authors)

  12. X rays and radioactivity: a complete surprise

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P. [Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Bordry, M. [Institut du Radium, 75 - Paris (France)

    1995-12-31

    The discoveries of X rays and of radioactivity came as complete experimental surprises; the physicists, at that time, had no previous hint of a possible structure of atoms. It is difficult now, knowing what we know, to replace ourselves in the spirit, astonishment and questioning of these years, between 1895 and 1903. The nature of X rays was soon hypothesized, but the nature of the rays emitted by uranium, polonium and radium was much more difficult to disentangle, as they were a mixture of different types of radiations. The origin of the energy continuously released in radioactivity remained a complete mystery for a few years. The multiplicity of the radioactive substances became soon a difficult matter: what was real and what was induced ? Isotopy was still far ahead. It appeared that some radioactive substances had ``half-lifes``: were they genuine radioactive elements or was it just a transitory phenomenon ? Henri Becquerel (in 1900) and Pierre and Marie Curie (in 1902) hesitated on the correct answer. Only after Ernest Rutherford and Frederick Soddy established that radioactivity was the transmutation of one element into another, could one understand that a solid element transformed into a gaseous element, which in turn transformed itself into a succession of solid radioactive elements. It was only in 1913 - after the discovery of the atomic nucleus -, through precise measurements of X ray spectra, that Henry Moseley showed that the number of electrons of a given atom - and the charge of its nucleus - was equal to its atomic number in the periodic table. (authors).

  13. Hazard of radioactive releases resulted from coal burning

    International Nuclear Information System (INIS)

    Gabbard, V.

    1995-01-01

    Consideration is given to the data, pointing to the fact, that coal-burning power plants release of radioactive substances, contained in gaseous wastes, is not less, than the same one of nuclear power plants. The necessity of regulating emission of these substance in atmosphere by analogy with nuclear power industry is shown. 1 fig

  14. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  15. Design of position monitor module in radioactive material transport monitoring system

    International Nuclear Information System (INIS)

    Adi Abimanyu; Dwi Yuliansari N

    2013-01-01

    Aspects of safety and security of radioactive substances from the sender to the receiver is to be secured so as not to harm humans. In general, monitoring is done through conversation by telephone to determine the location and rate of exposure of radioactive substances. Through the development of science and technology makes it possible to develop a system of monitoring the transport of radioactive substances in real time by combining radiation monitor module, position monitors module and sending information nir-cable. Position monitor module developed using GPS-receiver and a micro controller ATMega8 based serial interrupts communication. Testing is done by testing communication between micro controller and GPS and also testing reading position by GPS receiver. From the test results concluded that the developed modules is good in serial communication is based on serial interrupts, good position measurement to be used outdoors and is not good enough for measurements indoors because the GPS receiver used is not using an outdoor antenna. (author)

  16. Legal aspects of the use of radiography in N.S.W

    International Nuclear Information System (INIS)

    Dawes, W.D.

    1981-01-01

    Legal aspects related to the use of irradiating apparatus and radioactive substances in New South Wales, Australia, are covered. The Radioactive Substances Act is in essence an occupational health and safety legislation. The Act, regulations, administration of the Act, the powers of inspectors appointed to implement the requirements of the Act and licensing procedures are discussed. It is the intention of the review to show the destructive effects of radiation prior to the introduction of acceptable limits of exposure and control by way of legislation

  17. Act of 21 February 1963, Stb. 82, concerning the release of nuclear energy and the use of radioactive materials and of devices emitting ionizing radiations (Nuclear Energy Act) as amended by the Act of 30 June 1967, Stb. 337, and the Act of 8 May 1974, Stb. 291

    International Nuclear Information System (INIS)

    1963-01-01

    This basic Act governs all nuclear activities in the Netherlands and determines the Government's competence and the obligations of those involved in the nuclear field. It establishes definitions and sets up bodies to advise the Government in the different nuclear sectors and covers nuclear installations, fissionable materials, ores, radioactive materials, radiation-emitting devices and their licensing. It was brought into force progressively by decrees made in implementation of its provisions, which lay down detailed regulations for the activity concerned. The chapters of the Act not yet in force were brought into operation on 1 January 1970 by the Nuclear Energy Act (Implantation) Decree of 12 November 1969. (NEA) [fr

  18. Trasmar: automated vehicle for transport of radioactive materials

    International Nuclear Information System (INIS)

    Segovia R, J.A.; Martinez J, L.

    2001-01-01

    Traditionally robots have been used for industrial applications, even though area in which these devices had a deep impact is in the nuclear industry. The ININ is an Institute that must to manage and to work with radioactive substances. The ININ is also responsible of the storage and supervision of radioactive wastes in the country, therefore the applications of the automated systems in the Institute have as the main objective to reduce the exposure and the contact of personnel with the radioactive material. Here to, it has been proposed the project called Assisted Transportation of Radioactive Material (TRASMAR). (Author)

  19. The Radioactive Waste Management Advisory Committee's advice to ministers on the problems of 'small users' of radioactive materials

    International Nuclear Information System (INIS)

    2000-09-01

    difficulties finding the resources for their long-term management. Another issue is the dated system of Exemption Orders under the Radioactive Substances Act which needs to be reviewed and modernised. We have found that, in general, Small Users now experience fewer difficulties in relation to the controls exercised by the regulators, namely the environment agencies, than they did during the early and middle part of the 1990s. This is significantly due to the efforts of these agencies, who should be commended for promoting improvements in their regulatory practice. Nevertheless, there remain a number of areas discussed in our advice that continue to require attention, notably the need to review staff training and other internal arrangements so as to ensure greater consistency of regulation. (author)

  20. Radioactive elements in Pennsylvania waters

    International Nuclear Information System (INIS)

    Rose, A.W.

    1990-01-01

    The first recognition of radioactive elements in natural waters dates back many years, but interest has accelerated in recent years with the advent of concern about the health effects of radioactivity. At the present time, extensive monitoring of public water supplies for radioactive substances is mandated by federal and state law, and monitoring near nuclear facilities is required by federal regulations, so that a great deal of information is accumulating on the amount and distribution of radioactivity in natural waters. These results reveal that small amounts of radioactive elements are universally present in natural waters, and that the concentration vary over an appreciable range as a result of natural processes and human activities. The purpose of this paper is to summarize the origin, behavior, abundance and hazard of the main radioactive species in Pennsylvania surface and ground waters. This treatment is intended to provide background to the interested reader in comprehending questions such as the hazard of radon in homes with private wells and pollution related to the nuclear power cycle

  1. Advance in radioactive decontamination

    International Nuclear Information System (INIS)

    Basteris M, J. A.; Farrera V, R.

    2010-09-01

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  2. Radioactive kryptonates in the analysis of environmental samples

    International Nuclear Information System (INIS)

    Tolgyessy, J.

    1986-01-01

    The term ''radioactive Kryptonates'' is used for substances into which atoms or ions of the radioactive nuclide 85 Kr are incorporated. The basis of the use of radioactive Kryptonates in analytical chemistry is that during a chemical reaction the crystalline lattice of the kryptonated carrier is destroyed, the carrier consumed, and the radioactive krypton released (radio-release method). Analysis can be made with a calibration curve or by comparison with a standard. Radio-release methods with the aid of radioactive Kryptonates as analytical reagents are very useful for the analysis of environmental samples, e.g. for the determination of air pollutants (ozone, sulphur dioxide, fluorine, hydrogen fluoride, mercury); and water pollutants (oxygen, dichromate, vanadium, hydrochloric acid, sulphur dioxide). (author)

  3. Current state of the technology measures of accident from contamination by the radioactive substance. 2. Overall management of radioactive material contaminated waste in the off-site

    International Nuclear Information System (INIS)

    Endo, Kazuto

    2015-01-01

    This paper focuses on the disposal standards of the Act on Special Measures Concerning the Handling of Environmental Pollution by Radioactive Materials by the NPS Accident Associated with the Tohoku District - off the Pacific Ocean Earthquake that Occurred on March 11, 2011, which was promulgated on August 30, 2011 as a framework for the management of radioactively contaminated waste and removed soil. It stipulated that the byproducts of water/sewage treatment, major ash, and fly ash up to the radiation of 8,000 Bq/kg can be reclaimed in land. However, fly ash has a limit in landfill conditions, due to very high leaching rate of radioactive cesium. Later, incineration ash with between 8,000 Bq/kg and 100,000 Bq/kg became possible to be buried at disposal sites corresponding to leachate-controlled type. The specified waste with 100,000 Bq/kg or above is reclaimed in land with specified method at a site provided with outer peripheral partition facilities and cut off from the public water and groundwater. In Fukushima Prefecture, the specified waste with 100,000 Bq/kg or above is to be stored in provisional storage facilities, and later sent to final disposal sites outside the prefecture after the volume has been reduced. The decontaminated waste composed of vegetation is covered totally with a breathable waterproof sheet, and stored at a provisional yard. According to the characteristics of each provisional storage yard, there are needs for patrol and management. (A.O.)

  4. Report of radioactivity survey research in fiscal year 1989

    International Nuclear Information System (INIS)

    1990-12-01

    In the National Institute of Radiological Sciences, as a part of the radioactivity survey and research of Science and Technology Agency, the survey of environmental radioactivity level due to the radioactive fallout accompanying nuclear explosion experiments and the radioactive substances released from nuclear facilities and others and the safety analysis of these have been carried out. The radioactivity and dose survey for environment, foods and human bodies, the survey of the level around nuclear facilities, the business of radioactivity data center, the basic investigation for the evaluation of the results of radioactivity survey, the training of environmental radiation monitoring technicians and the investigation and research of the measurement of emergency radiation exposure and countermeasures were carried out. Those results are summarized. (K.I.)

  5. Radioactive waste disposal: Regulations and Application

    International Nuclear Information System (INIS)

    Hebert, Jean.

    1977-01-01

    The regulation of radioactive discharges, i.e. solid radioactive waste resulting from operation of nuclear installations and liquid and gazeous effluents released by them may be dealt with from two angles: the receiving environment and the polluting agent. French law covers both. Law on atmospheric pollution is based mainly on the Act of 2 August 1961 while the Act of 16 December 1964 governs water pollution. Both Acts have been the subject of a great number of implementing decrees, certain of which contain standards specific to radioactive pollution. Regulations on the polluting agent, namely its activity, comply with the generally established distinction between large nuclear installations and others. There again, there are many applicable texts, in particular, the Act of 19 July 1976 for classified installations, and the Decree of 11 December 1963, supplemented by the Decrees of 6 November 1974 and 31 December 1974 for large nuclear installations. This detailed analysis of national regulations is followed by a presentation of the applicable provisions in the Communities law and in international public law. (N.E.A.) [fr

  6. Schedules of controlled substances: extension of temporary placement of UR-144, XLR11, and AKB48 in schedule I of the Controlled Substances Act. Final order.

    Science.gov (United States)

    2015-05-15

    The Administrator of the Drug Enforcement Administration (DEA) is issuing this final order to extend the temporary placement of (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144), [1-(5-fluoro-pentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (5-fluoro-UR-144, XLR11) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA, AKB48), including their salts, isomers, and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible, in schedule I of the Controlled Substances Act. The current final order temporarily placing UR-144, XLR11, and AKB48 in schedule I is due to expire on May 15, 2015. This final order will extend the temporary scheduling of UR-144, XLR11, and AKB48 to May 15, 2016, or until the permanent scheduling action for these three substances is completed, whichever occurs first.

  7. Terms and definitions in the field of radiological technique. Radioactivity. Draft. Begriffe und Benennungen in der radiologischen Technik. Radioaktivitaet. Entwurf

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Nuclides and their symbols: Nuclide, symbol for nuclides; Nuclear processes: Nuclear transformation, isomeric transition; Radioactive substances; Radiation of radioactive substances: Alpha radiation, beta radiation, k radiation, gamma radiation, conversion electrons, annihilation radiation, neutron radiation; Activity, specific activity, and activity concentration; Characteristic constants of radio nuclides: Decay constant, lifetime, half-life, specific gamma-ray constant, conversion coefficient; Decay series: Radioactive decay series, radioactive equilibrium; Nuclides with special names and symbols: Hydrogen isotopes, nuclides of the natural decay series.

  8. On safety of radioactive waste carrier

    International Nuclear Information System (INIS)

    Kondo, Toshikazu

    1995-01-01

    The waste generated by reprocessing the spent fuel from Japanese nuclear power stations in France and U.K. is to be returned to Japan. The first return transport was carried out from February to April when the waste management facility in Rokkasho, Aomori Prefecture, was completed. Most of this return transport was the sea transport using the exclusively used carrier, Pacific Pintail, from Cherbourg, France, to Mutsu Ogawara, Japan. Ministry of Transport carried out the examination on the safety of this method of transport including the safety of the carrier based on the rule for the sea transport and storage of dangerous substances. The international rule on the sea transport of high level radioactive waste, the course of adopting the INF code and its outline, and the Japanese safety standard for the carriers exclusively used for high level radioactive waste are explained. The Pacific Pintail is the ship of 5087 GT, which was built in 1987 as the carrier exclusively used for radioactive substances, owned by Pacific Nuclear Transport Ltd. of U.K. The main features related to the safety of the Pacific Pintail are explained, and the sufficient countermeasures are taken. (K.I.)

  9. The role of chemistry in the history of radioactivity (1897-1939)

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1997-01-01

    Chemical research on radioactivity started in 1898. That year, Pierre and Marie Curie discovered in pitchblende polonium and radium. Rutherford and Soddy showed that radioactivity is an atomic phenomenon accompanied by transmutation of elements and established the basic laws of radioactive changes. The existence of isotopes was postulated after the discovery of many radioactive substances. Major discoveries in nuclear science, i.e. the atomic nucleus, the neutron and artificial radioactivity, were made with radiation sources elaborated bu chemists. Finally, in 1939, radiochemists on the search for transuranium elements, discovered nuclear fission. (authors)

  10. Disposal facilities on land for low and intermediate-level radioactive wastes: draft principles for the protection of the human environment

    International Nuclear Information System (INIS)

    1983-10-01

    This document gives the views of the authorising [United Kingdom] Departments under the Radioactive Substances Act 1960 about the principles which those Departments should follow in assessing proposals for land disposal facilities for low and intermediate-level radioactive wastes. It is based on relevant research findings and reports by international bodies; but has been prepared at this stage as a draft on which outside comments are sought, and is subject to revision in the light of those comments. That process of review will lead to the preparation and publication of a definitive statement of principles, which will be an important background document for public inquiries into proposals to develop sites for land disposal facilities. Headings are: authorisation of disposal; other legislation governing new disposal facilities; basic radiological requirements; general principles; information requirements. (author)

  11. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the Enforcement Regulation for the Law on Aviation. Terms are explained, such as exclusive loading and containers. Spontaneously ignitable liquid radioactive materials and the radioactive substances required to be contained in special vessels and others particularly operated during the transport, are excluded from the radioactive materials permissible for transport. The radioactive substances required to be transported as radioactive loadings don't include empty vessels used to contain radioactive materials and other things contaminated by such materials, when they conform to the prescriptions. The technical standards on radioactive loadings are defined, such as maximum radiation dose rate of 0.5 millirem per hour on the surface of L type loadings, 200 millirem per hour for A, and 1000 millirem per hour at the distance of 1 m for BM and BU types, respectively. Confirmation of the safeness of radioactive loadings may be made through the written documents prepared by the competent persons acknowledged by the Minister of Transport. The requisite of fissile loadings is that such loadings shall not reach critical state during the transport in the specified cases. Radioactive loadings or the containers with such loadings shall be loaded so that the safeness of such loadings is not injured by movement, overturn and fall during the transport. The maximum radiation dose rate of the containers with radioactive loadings shall not be more than 200 millirem per hour on the surface. The written documents describing the handling method and other matters for attention and the measures to be taken on accidents shall be carried with for the transport of radioactive loadings. (Okada, K.)

  12. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    International Nuclear Information System (INIS)

    Hartnett, C.

    1994-01-01

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act (open-quotes CERCLAclose quotes) and the Atomic Energy Act (open-quotes AEAclose quotes) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission (open-quotes NRCclose quotes) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency (open-quotes EPAclose quotes) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA's liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites

  13. Teaching concepts in the field of radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Bleichroth, W.

    1982-01-01

    This issue of 'Naturwissenschaften im Unterricht', dealing with the subjects of physics and chemistry, gives an account of the fundamentals of radioactivity, nuclear fission, controlled nuclear fission, nuclear power plants, dosimetry, safety engineering, shielding measures to prevent the release of radioactive substances, pressure engineering, emergency core cooling systems, waste disposal and natural and artificial environmental radioactivity. Teachers will find helpful hints as to the method of instruction and the explanation of problems. (DG) [de

  14. Act No 91 of 25 February 1976 amending amounts and limits of the Civil Law

    International Nuclear Information System (INIS)

    1974-01-01

    The Federal Act of 29th April 1964 on Liability for Nuclear Damage - Atomic Liability Act - was amended by Section XXXIII of the Federal Act of 25th February 1976 Amending Amounts and Limits of the Civil Law; the latter Act entered into force on 1st April 1976. The Atomic Liability Act establishes maximum amounts of liability of operators of nuclear installations and carriers of nuclear substances, as well as of holders of radioisotopes. With respect to operators of nuclear installations and carriers, this amount is fixed at 500 million Austrian Schillings. In the case of installations for nuclear fusion and particle accelerators, this sum is reduced to AS 3 million. Compensation for death and personal injury, which was originally limited to AS 600,000 per person, has now been raised to AS 1.2 million. As regards the holder of radioisotopes, the maximum amount of his liability depends on the radioactivity and radiotoxicity of the radioisotopes and on whether they are in open or sealed form. The penal provisions were equally amended. (NEA) [fr

  15. Substance use - phencyclidine (PCP)

    Science.gov (United States)

    PCP; Substance abuse - phencyclidine; Drug abuse - phencyclidine; Drug use - phencyclidine ... a result, you may act strangely or become aggressive and violent. PCP's other harmful effects include: It ...

  16. Transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    The increasing use of radioactive substances, not only in reactor operations but also in medicine, industry and other fields, is making the movement of these materials progressively wider, more frequent and larger in volume. Although regulations for the safe transport of radioactive materials have been in existence for many years, it has now become necessary to modify or supplement the existing provisions on an international basis. It is essential that the regulations should be applied uniformly by all countries. It is also desirable that the basic regulations should be uniform for all modes of transport so as to simplify the procedures to be complied with by shippers and carriers

  17. New DEA rules expand options for controlled substance disposal.

    Science.gov (United States)

    Peterson, David M

    2015-03-01

    Prescription drug abuse and overdose are rapidly growing problems in the United States. The United States federal Disposal of Controlled Substances Rule became effective 9 October 2014, implementing the Secure and Responsible Drug Disposal Act of 2010 (Disposal Act). These regulations target escalating prescription drug misuse by reducing accumulation of unused controlled substances that may be abused, diverted or accidentally ingested. Clinical areas that can now participate in collecting unused controlled substances include retail pharmacies, hospitals or clinics with an onsite pharmacy, and narcotic treatment programs. Collection methods include placing a controlled substance collection receptacle or instituting a mail-back program. Because prompt onsite destruction of collected items is required of mail-back programs, collection receptacles are more likely to be used in clinical areas. Retail pharmacies and hospitals or clinics with an onsite pharmacy may also place and maintain collection receptacles at long-term care facilities. The Act and Rule are intended to increase controlled substance disposal methods and expand local involvement in collection of unused controlled substances. Potential barriers to participating in controlled substance collection include acquisition of suitable collection receptacles and liners, lack of available space meeting the necessary criteria, lack of employee time for verification and inventory requirements, and program costs.

  18. Biological effects of concomitant influence of radioactive and chemical factors. (Experimental research)

    International Nuclear Information System (INIS)

    Meshkov, N.A.

    1995-01-01

    Remote consequences of concomitant influence of radioactive and chemical hazards substances, modeling the ecological situation at the territory of the Altaj region after the nuclear tests at the Semipalatinsk test site is studied on the mice. Negative effect of the concomitant impact of radioactive and hazardous chemical substances on the basic morpho-functional systems of animals is revealed; the reproduction function proved to be the most sensitive one. It is noted that the radiation factor constitutes the basis of all violations of bone marrow blood-producing function by concomitant influence

  19. Radioactive waste: show time? - 16309

    International Nuclear Information System (INIS)

    Codee, Hans; Verhoef, Ewoud

    2009-01-01

    Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. For the situation in the Netherlands, it is obvious that a period of long term storage is needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. An organisation such as COVRA - the radioactive waste organisation in the Netherlands - can only function when it has good, open and transparent relationship with the public and particularly with the local population. If we tell people that we safely store radioactive waste for 100 years, they often ask: 'That long?' How can we explain the long-term aspect of radioactive waste management in a way people can relate to? In this paper, an overview is given of the activities of COVRA on the communication of radioactive waste management. (authors)

  20. Radioactive materials in scrap metal, the situation in Switzerland

    International Nuclear Information System (INIS)

    Jossen, H.

    2005-01-01

    About 10 years ago, different happenings in the Swiss and international metal scrap recycling scene created a sensibility to unwanted radioactive substances in scrap metal. Italy, one of the main buyers for scrap metals, started at its borders with systematic checks, arranged by authorities. As a consequence, in Switzerland a concept was elaborated under cooperation of the recycling companies, the Italian authorities, the Federal Office of Public Health (BAG), Swiss Federal Nuclear Safety Inspectorate (HSK) and the Swiss National Accident Insurance Fund (Suva) to fulfil the different requirements. Individual radioprotection, protection of environment, protection of work yard and machinery and the quality assurance of the recycled metals and the resulting products requires adapted solutions with the main issues: training, suitable measuring equipment and an intervention-and waste management. Detected radioactive substances are professionally recovered, stored and submitted to the radioactive waste collection. The investigation of the happenings can lead to useful hints on gaps and on chances for improvements in general radioprotection. (orig.)

  1. Radiation Act, promulgated on May 8,1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Radiation Act was passed by the Estonian Parliament on 23 Apr 1997 and promulgated by the President on 8 May 1997. It is the principal legal instrument in the field of radiation protection for workers, the public and the environment. The Act is based on the concepts, principles, terminology and dose limits stipulated in the Basic Safety Standards (IAEA Safety Series No. 115-1) and the EC Directive 96/29/EURATOM. The Radiation Act defines the institutional framework for, and establishes the rules applicable to, the use of ionising radiation, the detention of radiation sources, the transport of radioactive materials, radioactive waste disposal and other activities which cause or may cause harm to health or to the environment. It also contains some general provisions on radioactive waste management, import and export of such wastes and the prohibition against importing radioactive waste for disposal purposes. The Act deals solely with radiation protection; all other nuclear activities are to be covered by other specific laws. The Estonian Radiation Protection Centre is empowered under the Act to inspect sources of radiation exposure and to register dose and source data. It is generally responsible for enforcing the provisions of the Act, although the details of the medical checks for radiation workers are governed by rules established by the Minister for Social Affairs. Chapter 3 of the Radiation Act contains detailed provisions on dose limits for the following categories of exposure to ionising radiation. The Act provides that Government and nominated Ministers be empowered to enact implementing regulations on exemption levels, requirements to ensure observance of the stipulated dose limits, qualification procedures for radiation workers, medical checks of radiation workers, medical applications of ionising radiation, packaging and safety procedures for radiation sources and rules for handling radioactive waste

  2. Releases of radioactive substances from Swedish nuclear power plants (RAKU)

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, T.; Bergstroem, C. [ALARA Engineering AB, Skultuna (Sweden)

    1997-04-01

    Releases of radioactivity to air and water from Swedish nuclear power plants have been studied and compared with those from foreign reactors. Averaged over the years from commissioning of the reactors to the last year data are available, the release of radioactive noble gas from the Swedish BWRs has been about the same as from comparable foreign reactors. The oldest Swedish BWRs, Oskarshamn 1 and 2 (O1 and O2) and Ringhals 1 (R1), have simple off-gas systems with only one delay volume. All BWRs in US, Germany, Japan and Switzerland are equipped with more sophisticated off-gas systems. It can be expected that O1, O2 and R1 therefore will have the highest release of noble gas activity at an international comparison if they do not modernize their off-gas system. BWRs in US, Germany and Japan are today equipped with recombiners and with one exception also charcoal columns. Japanese BWRs report zero releases to air. Releases of radioactivity to water after commissioning was about the same for most of the studied reactors. Some of the newest German plants have had low annual releases already at commissioning. Improvements of the treatment systems at old German, Swiss and US reactors have significantly lowered the releases. For most of the Swedish plants the annual releases to water have remained at the initial level. Forsmark 3 has succeeded in decreasing the release of radionuclides to water by a factor of almost one hundred compared to other Swedish reactors. Also O3 has managed to decrease the liquid effluents. Japanese plants have zero release of radioactivity excluding tritium to water. The release of tritium is about the same for all reactors of the same type in the world. 35 refs, 31 figs, 24 tabs.

  3. Radioactivity in coal, ashes and selected wastewaters from Canadian coal-fired steam electric generating stations

    International Nuclear Information System (INIS)

    1985-09-01

    Coal is known to contain naturally occurring radioactive elements and there has been speculation that as a results, coal-fuelled power generation stations may be significant emitters of these substances. In this report, the subject of radioactivity is introduced. The kinds of radioactive substances which occur naturally in coal formations, the nature of their emissions and the existing information on their behaviour and their effects on environmental organisms are also reviewed. The results of an examination of levels of alpha, beta and gamma radiaton levels, and the substances which produce them in coals, fly ashes, bottom ashes and related wastewaters at six Canadian coal-fuelled power stations are presented. Difficulties in studies of this nature and the potential effects of these releases on organisms in the adjacent aquatic environment are discussed. Existing and potential technologies for the removal of these substances from wastewaters are examined. In general the releases in wastewaters from the six stations were found to be lower than those known to cause short-term or acute biological effects. The potential for long-term effects from such low-level releases could not be accurately assessed because of the paucity of information. A number of recommendations for: improvements in further studies of this nature; the further examination of the fate of naturally occurring radionuclides in the environment; and the determination of the long-term effects of low levels of naturally occurring radioactive substances on aquatic organisms, are made

  4. Impacts and issues of the radioactive substances due to the nuclear disaster. Cases of municipalities and elementary schools in Fukushima prefecture

    International Nuclear Information System (INIS)

    Murayama, Takehiko; Itaya, Sohei

    2012-01-01

    While all stakeholders make efforts by all means for mitigating impacts induced by radioactive substances after the accident, we would have to have a long way to restore the situation. Particularly, it would be difficult to promote meaningful communication about various risks. For making clear of current situation and issues to be resolved, we conducted a questionnaire survey for local governments and elementary schools in Fukushima prefecture. While local governments' officials and schools' teachers are willing to promote communication with public, they have substantial difficulties to do so. One reason is insufficient volume of information dissemination from national and prefectural governments. It would be important to increase manpower to promote better communication. (author)

  5. Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials

    International Nuclear Information System (INIS)

    Bell, J.T.; Haas, P.A.; Rudolph, J.C.

    1993-01-01

    The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies

  6. Report of radioactivity survey research in fiscal year 1996

    International Nuclear Information System (INIS)

    1997-12-01

    In National Institute of Radiological Sciences, a survey was made on radioactivities in the environment due to the substances released from nuclear installations and radioactive fall-out brought out by nuclear explosion tests since 1959. As the marked progress of non-military utilization of nuclear energy the national concern on environmental radioactivity has been increasing in Japan and thus it has become more and more important to make a survey research of radioactivities, which might affect the environment and human health. In these situations, the institute attempted to make the following six surveys in the fiscal year of 1996; 'a survey on radioactive levels in environment, foods and human bodies', 'survey on the radioactive level in the regions around nuclear installations', 'works in radioactive data center', 'fundamental survey on the evaluation of the results from radioactivity survey', 'workshop for technical experts of environmental radioactivity monitoring' and 'survey research on the measurement and countermeasures for emergency exposure'. (M.N.)

  7. Report of radioactivity survey research in fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    In National Institute of Radiological Sciences, a survey was made on radioactivities in the environment due to the substances released from nuclear installations and radioactive fall-out brought out by nuclear explosion tests since 1959. As the marked progress of non-military utilization of nuclear energy the national concern on environmental radioactivity has been increasing in Japan and thus it has become more and more important to make a survey research of radioactivities, which might affect the environment and human health. In these situations, the institute attempted to make the following six surveys in the fiscal year of 1997; `a survey on radioactive levels in environment, foods and human bodies`, `survey on the radioactive level in the regions around nuclear installations`, `works in radioactive data center`, `fundamental survey on the evaluation of the results from radioactivity survey`, `workshop for technical experts of environmental radioactivity monitoring` and `survey research on the measurement and countermeasures for emergency exposure`. (J.P.N.)

  8. Method of burning flammable radioactive wastes

    International Nuclear Information System (INIS)

    Yahata, Taneaki.

    1980-01-01

    Purpose: To completely oxidize flammable radioactive wastes such as organic compounds, ion exchange materials or oils. Method: Contaminated flammable radioactive wastes are heated and pyrolytically decomposed in the range 400 0 to 500 0 C in the presence of oxygen under lower pressure than atmospheric pressure. Volatile organic substance, hydrogen and soot subsequently produced are passed over oxidation catalyst. The catalysts such as copper oxide, iron oxide, cobalt oxide, nickel oxide, chromium oxide are heated in the range 600 0 to 700 0 C to produce stable oxides. (J.P.N.)

  9. Contamination and decontamination of vehicles driven in radioactive areas

    International Nuclear Information System (INIS)

    Ulvsand, T.; Nygren, U.

    1999-03-01

    There is reason to ask whether it is beneficial to decontaminate vehicles, in view of the great effort applied. If the level of contamination is low before the decontamination process, then the cost is not motivated, even if the decontamination is shown to be effective in relative terms. The report describes two trials at the National NBC Defence School in Umeaa and one trial at the French test site in Bourges. The aim is to investigate how vehicles are contaminated and at which ground deposition levels troublesome levels of contamination will arise. In the trials, a non-radioactive agent substituting real radioactivity was used. The trials in Sweden so far have used the oversnow vehicle BV 206, during both winter and summer conditions. The vehicles were driven a specific distance along a road on which a known amount of the test substance had been dispersed. Samples were taken on pre-determined areas on one side of the vehicles to measure the amount of test substance. Later, the vehicles continued along a 'clean' road where additional samples were taken, but on the other side of the vehicles. The largest amount of test substance was collected on the tracks and on the back of the vehicle. The tracks and mud-flaps were effectively decontaminated when the vehicles were driven along a clean road, while most of the contamination remained on the backside. The purpose of the trials in France was to compare the results from our non-radioactive and their radioactive method, based on the radioactive La-140. Due to ground conditions, the level of contamination on the vehicles was much less than in the trials in Umeaa, but the effect decontamination could be measured after all

  10. 1996 annual report on low-level radioactive waste management progress. Report to Congress

    International Nuclear Information System (INIS)

    1997-11-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal

  11. Possibilities for action in the case of radioactive pollution, problems and perspectives

    International Nuclear Information System (INIS)

    Mutaf, V.

    2009-01-01

    This article describes basic threats with the use of radioactive substances typical for Republic of Moldova. The main tasks of the network of observation and laboratory control in the case of radioactive pollution are listed. Prospects of development of radiological protection units in the country are determined.

  12. Radioactive substances in wild mushrooms and other bioindicators. Inventory, Lower Saxony. As of April 1991

    International Nuclear Information System (INIS)

    Rohleder, K.

    1991-04-01

    The studies performed on wild mushrooms and other indicators were continued in 1990. Lower Saxony forestry authorities and food monitoring athorities co-operated in sampling. 153 wild mushroom samples and 14 samples of other bioindicators were examined in 1990. Activity values were corrected for decay and related to May 1986. The curves of Cesium-134 as a measure for contimination caused by the reactor accident, and of the sum of Cesium-137 and Cesium-134 run in parallel which means that the previous Cesium-137 contamination load does not affect the course of the curve. The maximum was found for chestnut boletus in 1987 and for cep in 1989. When comparing the means of the other mushroom with those of 1989, a slight rise was found for same-species mushrooms which grow in symbiosis with trees e.g. honey mushroom. No statement can be made on the other same-species mushrooms because of their low sample numbers. In 1990, some forestry authorities also sent samples of grass, beech leaves and spruce needles to be tested for radioactive substances. The means of 1989 and 1990 are compared. (orig./Uhe) [de

  13. Accountability of Radioactive Materials in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Noor Fadilla Ismail; Wan Saffiey Wan Abdullah; Khairuddin Mohamad Kontol; Azimawati Ahmad; Suzilawati Muhd Sarowi; Mohd Fazlie Abdul Rashid

    2016-01-01

    Radioactive materials possessed in Malaysian Nuclear Agency have many beneficial applications for research and development, calibration, tracer and irradiation. There are two types of radioactive materials which consist of sealed sourced and unsealed sourced shall be accounted for and secured at all the times by following the security aspect. The Health Physics Group in the Department of Radiation Safety and Health Division is responsible to manage the issues related to any accountability for all radioactive material purchased or received under the radioactive material protocol. The accountability of radioactive materials in Malaysian Nuclear Agency is very important to ensure the security and control the radioactive materials to not to be lost or fall into the hands of people who do not have permission to possess or use it. The accountability of radioactive materials considered as a mandatory to maintaining accountability by complying the requirements of the Atomic Energy Licensing Act 1984 (Act 304) and regulations made thereunder and the conditions of license LPTA / A / 724. In this report describes the important element of accountability of radioactive materials in order to enhances security standard by allowing tracking of the locations of sources and to reduce the risk of radioactive materials falling into the wrong hands. (author)

  14. State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan

    International Nuclear Information System (INIS)

    1993-12-01

    The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites

  15. Radioactive dust in the air

    Energy Technology Data Exchange (ETDEWEB)

    Yano, N

    1956-01-01

    An electric precipitator is used to collect dust in the air because its collection efficiency for radioactive substances is up to 10 times that of the impactor of filter-paper types. About 10 cu m of air is filtered during 5 hours, and the trapped dust is measured more than 24 hours after collection to avoid the influence of naturally active substances. The average radioactivity of the air is approximately 10/sup -16/ c/cc. During the period of observation 4 peaks occurred. The dates and maximum levels of artificial activity, respectively, are November 4 to 10, 1954, 1.2 x 10/sup -7/ uc/l; April 11 to 13, 1955, 4.3 x 10/sup -8/ uc/l; November 25 to 28, 1955, maximum unknown; and March 22 to 25, 1956, 1.- x 10/sup -7/ uc/l. The presumed dates and places of detonation corresponding to the peaks are October 31, 1954 northwest of Japan; March 29, 1955, Nevada, US; November 22, 1955, near L. Baikal, USSR; and March 13 to 15, 1956 unknown.

  16. Licensing of radioactive materials and facilities in the Philippines

    International Nuclear Information System (INIS)

    Mateo, A.J.

    1976-12-01

    The importation, acquisition, possession, use, sale and/ or transfer of radioactive materials need to be regulated and controlled in order to safeguard the importer, possessor, user or seller and the general public as well. The Philippine Atomic Energy Commission pursuant to Republic Act No. 2067, as amended and Republic Act No. 5207, has been charged by the government to control, regulate and license all the radioactive materials and facilities in the Philippines. Licensing and control is accomplished through a system of rules and regulations applicable to all importers, possessors, users or sellers of radioactive materials

  17. The support for a purification of water contaminated with radioactivity, and problems of the radioactivity standard in an emergency situation at the stricken area 2011 Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Maeda, Yoshiaki

    2011-01-01

    The accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company associated with the Great East Japan Earthquake incurred severe situation, where lifeline was cut off due to the discharge of a large amount of radioactive substances. In particular, the supply of safe foods and drinking water in radiation-polluted areas is urgently required. The authors have been developing up to now Crystal Valley water purifier and CV-Rescue water purifier that can purify well-water unsuitable for drinking due to contamination with toxic substances and produce drinkable water with safety without anxiety. This paper introduces the processes, in which verification test was performed to confirm that the above purifiers can be used for the removal of radioactivity discharged from the Great East Japan Earthquake this time, the validity of these purifiers was clarified, and these purifiers have actually been used for supporting water supply. This paper especially points out that a problem exists in the various standards on radioactivity that were temporarily determined in face of emergency of radiation pollution due to the nuclear power station accident this time. In these standards, the temporary standard on radioactive iodine 131 in drinking water is too high compared with the standards of WHO and those of advanced countries like U.S.A. It also points out the problem that radioactive substances in drinking water have not been removed yet. (O.A.)

  18. Technical feasibility of a Dutch radioactive waste repository in Boom Clay : Tunnel crossings

    NARCIS (Netherlands)

    Yuan, Jun; Vardon, P.J.; Hicks, M.A.; Hart, J; Fokker, PA

    2017-01-01

    OPERA-PU-TUD321b
    Radioactive substances and ionizing radiation are used in medicine, industry, agriculture, re- search, education and electricity production. This generates radioactive waste. In the Neth- erlands, this waste is collected, treated and stored by COVRA (Centrale Organisatie Voor

  19. Environment assessing for airborne radioactive particulate release-introduction of methods in IAEA safety report series No.19

    International Nuclear Information System (INIS)

    Meng, Dan; Yang, Liu; Shen, Fu; Yang, Yi; Ma, Yinghao; Ma, Tao; Zhang, Zhilong; Fu, Cuiming

    2016-01-01

    Airborne radioactive particulate in many important nuclear facilities (particularly nuclear power plants) will have a strong impact on the relative public dose if they are released into the corresponding environment traversing the stack or vents. The radiation protection researchers have regarded the relative environment assessing and estimation of public doses. And the model of assessing impact of discharges radioactive substance to the environment have been recommended by many international organizations (e.g. IAEA) with the nuclear energy safety and radiation protection. This paper introduced the generic models that were suggested by International Atomic Energy Agency (IAEA), for use in assessing the impact of discharges of radioactive substances to the environment (e.g. IAEA Safety Report Series No.19). The writers of this paper, based on the recommend methods, assessed the discharge limits in some airborne radioactive substances discharging standards. The reasons that IAEA method are introduced are mainly the following considerations: IAEA is one of international organizations with some authorities in the nuclear energy safety and radiation protection; and, more important, the recommend modes are operational methods rather than the methods having little operations such as that have used by some researchers. It is wish that the introduced methods in this paper can be referenced in draft or revise of the standards related to discharges of radioactive substances to the environment

  20. Environment assessing for airborne radioactive particulate release-introduction of methods in IAEA safety report series No.19

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Dan; Yang, Liu; Shen, Fu; Yang, Yi; Ma, Yinghao; Ma, Tao; Zhang, Zhilong; Fu, Cuiming [China Institute for Radiation Protection, Taiyuan (China)

    2016-12-15

    Airborne radioactive particulate in many important nuclear facilities (particularly nuclear power plants) will have a strong impact on the relative public dose if they are released into the corresponding environment traversing the stack or vents. The radiation protection researchers have regarded the relative environment assessing and estimation of public doses. And the model of assessing impact of discharges radioactive substance to the environment have been recommended by many international organizations (e.g. IAEA) with the nuclear energy safety and radiation protection. This paper introduced the generic models that were suggested by International Atomic Energy Agency (IAEA), for use in assessing the impact of discharges of radioactive substances to the environment (e.g. IAEA Safety Report Series No.19). The writers of this paper, based on the recommend methods, assessed the discharge limits in some airborne radioactive substances discharging standards. The reasons that IAEA method are introduced are mainly the following considerations: IAEA is one of international organizations with some authorities in the nuclear energy safety and radiation protection; and, more important, the recommend modes are operational methods rather than the methods having little operations such as that have used by some researchers. It is wish that the introduced methods in this paper can be referenced in draft or revise of the standards related to discharges of radioactive substances to the environment.

  1. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  2. Determination of the potential radiation exposure of the population close to the Asse II mine caused by deduction of radioactive substances with the discharge air in the normal operation using the ''Atmospheric Radionuclide-Transport-Model'' (ARTM); Ermittlung der potenziellen Strahlenexposition der Bevoelkerung in der Umgebung der Schachtanlage Asse II infolge Ableitung radioaktiver Stoffe mit den abwettern im bestimmungsgemaessen Betrieb mittels des ''atmospaerischen Radionuklid-Transport-Modells'' ARTM

    Energy Technology Data Exchange (ETDEWEB)

    Esch, D.; Wittwer, C. [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2014-01-20

    Between 1967 and 1978 125.787 packages filled with low-level and intermediate-level radioactive waste were emplaced in the mining plant Asse II. Volatile radioactive substances like H-3, C-14 and Rn-222 are released from the emplaced waste. These substances reach the ventilated parts of the mine and are released with the discharge air. The potential radiation exposure of the population caused by deduction of radioactive substances with the discharge air in the normal operation is determined by the ''Atmospheric Radionuclide-Transport-Model'' (ARTM). As result the maximal deductions of volatile radioactive substances with the discharge air in the normal operation of the Asse II mine lead to radiation exposure of the population, which is considerably lower than the permissible values of application rate.

  3. Ministerial Order of 24 April 1964 on the approval of types of devices containing radioactive substances, made in implementation of Section 3.1 d/2 of the Royal Order of 28 February 1963 embodying the General Regulations for the Protection of the Population and Workers against the Hazards of Ionizing Radiations

    International Nuclear Information System (INIS)

    1964-01-01

    This Order lays down that approval of devices containing radioactive substances and referred to in the Royal Order of 28 February 1963 embodying the General Regulations on Protection of the Population and Workers against the Hazards of Ionizing Radiations will only be granted if the total quantity of radioisotopes contained therein does not exceed certain values laid down by the 1963 Royal Order, and the radioactive substances are adequately shielded. It also lays down the procedure to be complied with for obtaining such approval and the conditions the applicant must meet to obtain the certificate of approval, which is valid for six years and may be renewed. The Ministry of Employment and Labour, Institute of Hygiene and Epidemiology, and the Ministry of Public Health and the Family are the competent authorities in respect of applications for a certificate of approval. Finally, suspension or withdrawal of the certificate or confiscation of the radioactive substances or devices do not give rise to compensation. (NEA) [fr

  4. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part...

  5. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  6. Development of closure criteria for inactive radioactive waste-disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) specifies that the U.S. Department of Energy shall comply with the procedural and substantive requirements of CERCLA regarding cleanup of inactive waste-disposal sites. Remedial actions require a level of control for hazardous substances that at least attains legally applicable or relevant and appropriate requirements (ARAR). This requirement may be waived if compliance with ARAR results in greater risk to human health and the environment than alternatives or is technically impractical. It will review potential ARAR for cleanup of inactive radioactive waste-disposal sites and propose a set of closure criteria for such sites at Oak Ridge National Laboratory. Important potential ARAR include federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. Proposed criteria for cleanup of inactive radioactive waste-disposal sites are: (1) a limit of 0.25 mSv on annual effective dose equivalent for offsite individuals; (2) limits of 1 mSv for continuous exposures and 5 mSv for occasional exposures on annual effective dose equivalent for inadvertent intruders, following loss of institutional controls over disposal sites; and (3) limits on concentrations of radionuclides in potable ground and surface waters in accordance with federal drinking-water standards, to the extent reasonably achievable

  7. Safe management of radioactive waste in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2000-01-01

    The Ghana Atomic Energy Commission was established in 1963 by an Act of Parliament, Act 204 for the Promotion, Development and Peaceful Application of Nuclear Techniques for the Benefit of Ghana. As in many developing countries the use of nuclear application is growing considerably in importance within the national economy. The Radiation Protection Board was established as the national regulatory authority and empowered by the Radiation Protection Instrument LI 1559 (1993). The above regulations, Act 204 and LI 1559 provided a minimum legal basis for regulatory control of radioactive waste management as it deals with waste management issues in a very general way and is of limited practical use to the waste producer. Hence the National Radioactive Waste Management Centre was established in July 1995 to carry out waste safety operations in Ghana. This paper highlights steps that have been taken to develop a systemic approach for the safe management of radioactive waste in the future and those already in existence. (author)

  8. Technical feasibility of a Dutch radioactive waste repository in Boom Clay : Plugs and seals

    NARCIS (Netherlands)

    Yuan, Jun; Vardon, P.J.; Hicks, M.A.; Hart, J; Fokker, PA

    2017-01-01

    Radioactive substances and ionizing radiation are used in medicine, industry, agriculture, re- search, education and electricity production. This generates radioactive waste. In the Neth- erlands, this waste is collected, treated and stored by COVRA (Centrale Organisatie Voor Radioactief Afval).

  9. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  10. Transport of radioactive material in Bangladesh: a regulatory perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2004-01-01

    Radioactive material is transported in Bangladesh in various types of packages and by different modes of transport. The transport of radioactive materials involves a risk both for the workers and members of the public. The safe transport of radioactive material is ensured in Bangladesh by compliance with Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97. The Bangladesh Atomic Energy Commission (BAEC) is the competent authority for the enforcement of the NSRC act and rules. The competent authority has established regulatory control at each stage to ensure radiation safety to transport workers, members of general public and the environment. An overview is presented of the activities related to the transport of radioactive material in Bangladesh. In particular, the applicable legislation, the scope of authority and the regulatory functions of the competent authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  11. Influence of humic substances of fixation of fission products in silicate media

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, I S; Macasek, F [Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, Bratislave, Slovakia (Slovakia)

    1997-12-31

    Clay minerals are exploited in both the land and sea emplacement and as backfill materials for the storage of radioactive waste to increase their radioactive safety. In addition, the influence of inorganic constituents, humic substances may modify the speciation of pollutant cations by solubilization of metal ions and formation of organic coating which may block the ion-exchange sites of clays. The objective of the present work was to characterize the effect of humic acid addition on the capacity of inorganic sorbents to radioactive caesium and strontium. Montmorillonite has been particular studied because the high cation exchange capacity and swelling properties make them sutiable for waste disposal. However, an accumulation of humic acid on disposal containers during the time of waste treatment may change the mobility of fission products. The results are treated in respect of sorption isotherms both of humic substances and sorbed ions. 3 figs., 3 tabs.

  12. Atomic Energy Amendment Act 1978, No. 31

    International Nuclear Information System (INIS)

    1978-01-01

    This Act amends certain Sections of the Atomic Energy Act 1953. The principal modifications concern the definitions of atomic energy, prescribed substances, the provision and supply of uranium in relation to the functions of the Atomic Energy Commission, compliance with the agreement with the IAEA on the application of safeguards under the Non-Proliferation Treaty as well as with any agreement with any other international organization or another country. The Act also amends the 1953 Act in respect of the control of prescribed substances and repeals the section concerning jurisdiction of courts. (NEA) [fr

  13. Radioactive waste removing device

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1982-01-01

    Purpose: To cleanup primary coolants for LMFBR type reactors by magnetically generating a high speed rotational flow in the flow of liquid metal, and adsorbing radioactive corrosion products and fission products onto capturing material of a complicated shape. Constitution: Three-phase AC coils for generating a rotational magnetic field are provided to the outside of a container through which liquid sodium is passed to thereby generate a high speed rotational stream in the liquid sodium flowing into the container. A radioactive substance capturing material made of a metal plate such as of nickel and stainless steel in the corrugated shape with shape edges is secured within a flow channel. Magnetic field at a great slope is generated in the flow channel by the capturing material to adsorb radioactive corrosion products and fission products present in the liquid sodium onto the capturing material and removing therefrom. This enables to capture the ferri-magnetic impurities by adsorption. (Moriyama, K.)

  14. Implementation of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Health Authority by the Agency for Toxic Substances and Disease Registry

    International Nuclear Information System (INIS)

    Siegel, M.R.

    1990-01-01

    The Superfund Amendments and Reauthorization Act (SARA) of 1986 greatly expanded the health authority of the Comprehensive Environmental Response, Compensation, and Liability Act. One of the federal agencies most affected by SARA is the Agency for Toxic Substances and Disease Registry (ATSDR) of the U.S. Public Health Service. Among other responsibilities, ATSDR was mandated to conduct health assessments within strict time frames for each site on or proposed for the U.S. Environmental Protection Agency's National Priorities List. The author will review ATSDR's efforts to address this new statutory mandate, especially for federal facilities, and will focus on different conceptual frameworks for implementing the health assessment program

  15. 48 CFR 245.7310-5 - Controlled substances.

    Science.gov (United States)

    2010-10-01

    ... (Bureau of Narcotics and Dangerous Drugs) to buy controlled substances as a medical practitioner, dealer... hallucinogenic drugs, shall be subject to the following special conditions: (a) Controlled Substances. Bids will... represents and warrants that it is registered under The Comprehensive Drug Abuse Prevention and Control Act...

  16. Studies on the radioactivity of the atmosphere. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1951-01-01

    The existence in the atmosphere of a radioactive substance, labeled A, of several hours half life has been confirmed in flights at 3300 m, and at a ground station at 1460 m. Concentrations of Rn, Tn, A, and A' observed from March 15 to August 14, 1951, are tabulated. The concentration of substance A, of 20- to 30- hr half life, is related to atomic explosions and precipitation.

  17. The management of low-level radioactive and mixed wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1991-01-01

    The management of low-level radioactive wastes at Oak Ridge National Laboratory (ORNL) is complicated because of several factors: (1) some of the waste that had been disposed previously does not meet current acceptance criteria; (2) waste is presently being generated both because of ongoing operations as well as the remediation of former disposal sites; and (3) low-level radioactive waste streams that also contain chemically toxic species (mixed wastes) are involved. As a consequence, the waste management activities at ORNL range from the application of standard practices to the development of new technologies to address the various waste management problems. Considerable quantities of low-level radioactive wastes had been disposed in trenches at the ORNL site, and the trenches subsequently covered with landfill. Because the vadose zone is not very extensive in the waste burial area, many of these trenches were located partially or totally within the saturated zone. As a result, considerable amounts of radioactive cesium have been leached from the wastes and have entered the groundwater system. Efforts are currently underway to remediate the problem by excluding groundwater transport through the burial site. A number of waste streams have also been generated that not only contain low levels of radioactive species, but chemically noxious species as well. These ''mixed wastes'' are currently subject to storage and disposal restrictions imposed on both low-level radioactive materials and on substances subject to the Resource Conservation and Recovery Act (RCRA). Technologies currently under development at ORNL to treat these mixed wastes are directed toward separating the RCRA components from the radioactive species, either through destruction of the organic component using chemical or biochemical processes, or the application of solvent extraction or precipitation techniques to effect separation into dependent waste forms. 8 refs., 3 figs

  18. Contamination and decontamination of vehicles when driven in radioactive areas

    International Nuclear Information System (INIS)

    Ulvsand, T.; Nygren, U.

    1999-10-01

    There is reason to ask whether it is beneficial to decontaminate vehicles, in view of the great effort applied. If the level of contamination is low before the decontamination process, then the cost is not motivated, even if the decontamination is shown to be effective in relative terms. The report describes two trials at the National NBC Defence School in Umeaa and one trial at the French test site in Bourges. The aim is to investigate how vehicles are contaminated and at which ground deposition levels troublesome levels of contamination will arise. In the trials, a non-radioactive agent substituting real radioactivity was used. The trials in Sweden so far have used the oversnow vehicle BV 206, during both winter and summer conditions. The vehicles were driven a specific distance along a road on which a known amount of the test substance had been dispersed. Samples were taken on pre-determined areas on one side of the vehicles to measure the amount of test substance. Later, the vehicles continued along a 'clean' road where additional samples were taken, but on the other side of the vehicles. The largest amount of test substance was collected on the tracks and on the back of the vehicle. The tracks and mud-flaps were effectively decontaminated when the vehicles were driven along a clean road, while most of the contamination remained on the backside. The purpose of the trials in France was to compare the results from our non-radioactive and their radioactive method, based on the radioactive La-140. Due to ground conditions, the level of contamination on the vehicles was much less than in the trials in Umeaa, but the effect decontamination could be measured after all

  19. Malicious acts involving radioactive sources: prevention and preparedness for response

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.

    2008-01-01

    Full text: The increasing concern over the malevolent use of radioactive sources and radiological terrorism demands strengthening the preparedness for response to radiological emergencies. In spite of various security measures adopted internationally, availability of orphan sources cannot be completely ruled out. The trends in terrorism also indicates the possibility of various means which may be adopted by terrorists especially if they are aware of the challenges of radioactive contamination in public domain and the capability of 'denial of area' and the fear factor which can be injected during such radiological emergencies. It is to be well understood that whatever measures are taken by some countries in preventing the sources from getting stolen or smuggled in/out of their country are not adequate to eliminate radiological terrorism in a global level unless all nations collectively address and ensure the security of radioactive sources, hence preventing the generation of any orphan sources. While preparedness for response to various radiological emergency scenario have many common factors, the challenges involved in responding to radiological terrorism involves understanding the fear factor due to the presence of radioactive contamination after the blast and thermal effects on the victims and issues like handling of contaminated and seriously injured persons, restriction on the movement of responders and forensic teams in a contaminated field etc. Hence an understanding and anticipation of all possible means of radiological terrorism is very essential to prevent and to reduce the consequences. There are many deterrents, which are to be developed and maintained by all nations collectively which should include intelligence, wide usage of radiation monitors by customs, police and other security agencies, installation of state of the art high sensitive radiation monitors and systems etc to prevent and deter stealing and illicit trafficking of radioactive sources

  20. Study on radioactivity in consumer goods

    International Nuclear Information System (INIS)

    1976-01-01

    Consumer goods containing radionuclides are increasingly utilized, sometimes for having chemical or technological properties which nonradioactive materials cannot fulfill (e.g. uranium paints) or it may be that radioactivity is especially required (e.g. fluorescent paints, fire-alarm-boxes, electronic instruments). The present study makes a compilation of consumer goods containing radioactive substances which are available to the general public in the nine countries of the Community, carries out a medium and long term study to assess how accumulated radiation from these goods could affect the population as a whole, and proposes measures to minimize the effects of such accumulation

  1. Actions of a protocol for radioactive waste management

    International Nuclear Information System (INIS)

    Sousa, Joyce Caroline de Oliveira; Andrade, Idalmar Gomes da Silva; Frazão, Denys Wanderson Pereira; Abreu, Lukas Maxwell Oliveira de; França, Clyslane Alves; Macedo, Paulo de Tarso Silva de

    2017-01-01

    Radioactive wastes are all those materials generated in the various uses of radioactive materials, which can not be reused and which have radioactive substances in quantities that can not be treated as ordinary waste. All management of these wastes must be carried out carefully, including actions ranging from its collection to the point where they are generated to their final destination. However, any and all procedures must be carried out in order to comply with the requirements for the protection of workers, individuals, the public and the environment. The final product of the study was a descriptive tutorial on the procedures and actions of a standard radioactive waste management protocol developed from scientific publications on radiation protection. The management of radioactive waste is one of the essential procedures in the radiological protection of man and the environment where the manipulation of radioactive materials occurs. The standard radioactive management protocol includes: collection, segregation of various types of wastes, transport, characterization, treatment, storage and final disposal. The radioactive wastes typology interferes with sequencing and the way in which actions are developed. The standardization of mechanisms in the management of radioactive waste contributes to the radiological safety of all those involved

  2. Latest movements associated with radioactive contamination and disaster waste management (2)

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2012-01-01

    As for the radioactive contamination countermeasures and disaster waste countermeasures taken for the accidents of the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company, this paper introduces in the digest version the following movements from mid-April to May 15, 2012. (1) Radioactive substance countermeasures such as decontamination. (a) Decontamination operations under direct control of the Ministry of the Environment, (b) Establishment of compensation benchmarks by the Ministry of the Environment for the garden plants and land use in Special Decontamination Area, (c) Publication of technical guidelines by the Ministry of Agriculture, Forestry and Fisheries, on the removal and diffusion suppression of radioactive substances in forests, (d) Announcement of research center development / promotion idea by the government in the policy making for Fukushima reconstruction, (e) Request of the government for the interim storage facility site in the opinion exchange meetings in Futaba district towns and villages in Fukushima Prefecture, (f) Announcement of radioactive substance forecast map in Fukushima City for the first time by the government, and (g) Action plan development at the Health Anxiety Countermeasure Coordination Council for nuclear victims. (2) Disaster waste countermeasures. (a) Introduction of challenges in each of Miyagi Prefecture and Iwate Prefecture on the acceleration of the secondary temporary storage field development for disaster waste treatment, and (b) Introduction of progress in new interim incinerator construction plan for disaster waste treatment in Fukushima Prefecture. (O.A.)

  3. Federal Act of 29 April 1964 on Liability for Nuclear Damage (Atomic Liability Act)

    International Nuclear Information System (INIS)

    Under this Act, the operator of a nuclear installation is liable for any nuclear incident occurring in such installation or which is caused by nuclear substances in his charge. If an incident is caused by a radioisotope, the person in possession of the radioisotope at the time of the incident is liable therefore. When an incident occurs during transport of nuclear substances, the carrier is liable in three cases only: when such substances are neither despatched to nor originating from installations on Austrian territory; when they are despatched without the written consent of the Austrian operator who is to receive them; and when they are not destined for a nuclear installation. Other provisions of the Act fix liability ceilings, a basis for apportionment of compensation when several victims are involved and the amount of security for coverage of the operators liability. The Act came into force on 1 September 1964. (NEA) [fr

  4. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  5. Method of treatment in a system passing radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Kinoshita, M; Asakura, Y

    1976-05-14

    A method to ensure the safety of the reactor and reduce radiation exposure dose by preventing oxygen hydrogen reaction of the reactor off-gas and accumulation of the radioactive material is described. Substances which are accumulated in an off-gas duct and are likely to capture radioactive material (for instance Pd catalyst falling from a recombiner) is changed into a stable material (for instance, PdI/sub 2/) which is hot likely to capture radioactive material through reaction with a stabilizer (for instance, I/sub 2/, Cl/sub 2/, HCl, etc.). This stabilized material is washed off the atomic power plant system.

  6. A study on environmental pollution caused by radioactive substances and its countermeasure techniques. Part 2. Present situation of radioactive pollution and decontamination

    International Nuclear Information System (INIS)

    Nozaki, Atsuo; Kakuma, Takayuki; Narita, Yasunori; Yoshino, Hiroshi

    2012-01-01

    In present research, in order to clarify the actual condition of contamination, the radioactive concentration of the soil and the plant in Koriyama city was measured. It turned out that the radioactive concentration of soil or plants were heavily polluted by caesium-134 and 137, and iodine-131 was already disappeared by its lifetime. Especially, cesium-134 + 137 was ranged 3400 Bq/kg at the surface of soil in garden, however, it was remarkably decreased in the deeper point at 10 cm and ranged 23 Bq/kg, and we cannot detect the cesium at 15 cm. It is necessary for people in Fukushima to decontaminate for reducing radioactivity level. And it turned out that the evergreen plants have been polluted at high radioactive concentration and decontamination by cutting down the plant was decreased by 14% average. Most of radioactive material is removed by removing soils. (author)

  7. Method of processing nitrate-containing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Ogawa, Norito; Nagase, Kiyoharu; Otsuka, Katsuyuki; Ouchi, Jin.

    1983-01-01

    Purpose: To efficiently concentrate nitrate-containing low level radioactive liquid wastes by electrolytically dialyzing radioactive liquid wastes to decompose the nitrate salt by using an electrolytic cell comprising three chambers having ion exchange membranes and anodes made of special materials. Method: Nitrate-containing low level radioactive liquid wastes are supplied to and electrolytically dialyzed in a central chamber of an electrolytic cell comprising three chambers having cationic exchange membranes and anionic exchange membranes made of flouro-polymer as partition membranes, whereby the nitrate is decomposed to form nitric acid in the anode chamber and alkali hydroxide compound or ammonium hydroxide in the cathode chamber, as well as concentrate the radioactive substance in the central chamber. Coated metals of at least one type of platinum metal is used as the anode for the electrolytic cell. This enables efficient industrial concentration of nitrate-containing low level radioactive liquid wastes. (Yoshihara, H.)

  8. 75 FR 4983 - Significant New Use Rules on Certain Chemical Substances

    Science.gov (United States)

    2010-02-01

    ... this substance (see Unit V. of the proposed rule). Use of most flammable refrigerants, including the... 2070-AB27 Significant New Use Rules on Certain Chemical Substances AGENCY: Environmental Protection...) under section 5(a)(2) of the Toxic Substances Control Act (TSCA) for 15 chemical substances which were...

  9. Relevant aspects in licensing of radioactive installations at petroleum and gas well logging

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria da E. Sa

    2002-01-01

    The importance of the various factors considered during the process of licensing of radioactive installation for petroleum and gas well logging. This process involves the issuing of some public power acts, the co called Administrative Acts. For the radioactive installations the Administrative Acts are related to the Norm CNEN-NE-6.02 'Licensing of Radioactive Installation'. In the conduction of the licensing of radioactive installation of mobile nuclear measurement devices the safety evaluation of radioactive installation and equipment containing incorporated radiation source are included; certification of radioprotection supervisors; programing and evaluation of the radioprotection inspections; and the conduction of conformal inspection according to the project, safety analysis and audits. An evaluation of the impact of the importance grade attributed to each factor in the optimization of licensing process is related. Finally, the prediction of implantation of a control system for the displacement of radioactive sources in the installation is approached comprehending the up-to-date localization of each source at different work front of the Basis

  10. Issues in radioactive mixed waste compliance with RCRA [Resource Conservation and Recovery Act]: Some examples from ongoing operations at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eaton, D.L.; Smith, T.H.; Clements, T.L. Jr.; Hodge, V.

    1990-01-01

    Radioactive mixed waste is subject to regulation under both the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). The regulation of such waste is the responsibility of the Environmental Protection Agency (EPA) and either the Nuclear Regulatory Commission (NRC) or the Department of Energy (DOE), depending on whether the waste is commercially generated or defense-related. The recent application of the RCRA regulations to ongoing operations at the DOE's Idaho National Engineering Laboratory (INEL) are described in greater detail. 8 refs., 2 figs

  11. Treatment and storage of radioactive waste at a nuclear power plant

    International Nuclear Information System (INIS)

    1996-01-01

    The guide gives the general principles that shall be followed when planning and implementing the treatment, storing, transfer, activity monitoring and record keeping of radioactive wastes. The guide does not include provisions for spent fuel or for treatment and discharges of liquids or gases containing radioactive substances. Neither does the guide include any detailed design criteria for treatment facilities or storages. (4 refs.)

  12. The issue of safety in the transports of radioactive materials; Le probleme de la securite dans les transports de substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Pallier, Lucien

    1961-11-20

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel.

  13. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  14. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Schmude, J.

    1976-01-01

    Speech on the 18th March 1976 in the Bundestag by the parliamentary Secretary of State, Dr. Juergen Schmude, to substantiate the Federal government's draft to a Fourth Act amending the Atomic Energy Act. The draft deals mainly with the final storage of radioactive wastes and interrelated questions concerning waste treatment and waste collection, and with several ordinance empowerments in order to improve licensing and supervisory procedures. (orig./LN) [de

  15. Limitations on the concentration of radioactive elements substances (natural or enhanced by human activity) in building materials - a proposal for draft Israeli regulations

    International Nuclear Information System (INIS)

    Schlesinger, T.; Hareuveny, R.; Margaliot, M.

    1997-01-01

    Natural radioactive elements 40 K 228 U and 232 Th and their decay product such as 226 Ra and its short lived daughters occur in building materials in relatively high concentrations. 40 K and part of the above mentioned radionuclides cause external exposure while the inhalation of 222 Ra and its short lived progeny lead to internal exposure of the respiratory tract to alpha particles. In recent years there is a growing tendency to use new construction materials with naturally or technologically enhanced levels of radioactivity (e.g. phosphogypsum, fly ash, exotic minerals etc). This trend causes a growing health concern.The result of this concern is legislation activity and publication of guidance notes by national authorities and international professional organizations related to the radiological implications of these novel technologies. The Ministry of the Environment in Israel is authorized by Israeli legislation to control the exposure of the public to ionising radiation. The ministry asked in 1996 a professional group in the Radiation Protection Division in the Soreq NRC (the authors of this presentation) to study the radiological implications of the use of building materials with naturally or technologically enhanced concentrations of radioactive substances, and to submit draft regulations setting primary limits on excess exposure of the public to ionizing radiation from building materials, and derived limits related to concentrations of specific radionuclides in these materials.The draft regulations will be presented and the way of their derivation will be reviewed (authors)

  16. Limitation of releases of radioactive effluents for nuclear power plants in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Tolksdorf, P.; Buehling, A.

    1981-01-01

    Empirical values relating to the effluents of nuclear power plants in the Federal Republic of Germany are now available. These values cover a period of several years of operation. The measured emissions of radioactive substances are often very much below the maximum permissible values, based on the dose limits for the environment stipulated in the legal regulations. Extensive technical and administrative measures contribute to the reduction of radioactive effluents. Furthermore, additional possibilities for improvement are mentioned which may lead to a further reduction of radioactive effluents. These are derived from investigations into the release of radioactive substances in nuclear power plants. The licensing procedure in the Federal Republic of Germany in fixing discharge limits is outlined. Proposals are made concerning licence values which may be determined for the radioactive effluents in modern standardized nuclear power plants with light-water reactors. The resulting radiation exposures are quoted for a typical nuclear power plant site. (author)

  17. The work of the International Laboratory of Marine Radioactivity

    International Nuclear Information System (INIS)

    Walton, A.

    1981-01-01

    It is only during the past three decades that international interest has focused on the need to manage and nurture one of our most valued resources - the oceans. In spite of this growing recognition, however, it is only during the past ten years that international agreement has been reached on the control of dumping of wastes (including nuclear wastes) at sea. The International Laboratory of Marine Radioactivity was established in 1961 well before the international agreement came into force. Indeed the Laboratory came into existence as a result of the foresight and appreciation by the International Atomic Energy Agency of the need to attack the problem of the behaviour of radioactive substances in the oceans - a subject about which little was known prior to the 1950s. With the co-operation of the Government of Monaco and the Institut Oceanographique, the Laboratory was established in 1961 in the Musee Oceanographique, Monaco. It is appropriate that the Laboratory was established in a building created by one of the most prominent pioneers in oceanography - Prince Albert 1sup(er) of Monaco. Since 1961 the programme and activities of the Monaco Laboratory have expanded and changed with the changing emphasis in pollution problems in the oceans. Throughout the many changes in emphasis which have occurred during the past 20 years, however, it is probably fair to say that the broad objectives have remained the same. The Laboratory exists therefore: to perform research on the occurrence and behaviour of radioactive substances and other forms of pollution in the marine environment; to ensure the quality of the performance and comparability of studies of radioactive substances and other forms of pollution in the marine environment by national laboratories through inter-laboratory comparisons, calibration and standardization of methodology; to assist Member States with regard to marine radioactivity and environmental problems by training personnel, establishing co

  18. Device for treating plastic counting vials containing radioactive liquids

    International Nuclear Information System (INIS)

    Neidhart, B.; Brindoepke, H.W.; Flocke, W.; Kringe, K.P.; Lippmann, C.H.

    1985-01-01

    The treatment consists of separating the radioactive contents of the counting vial from its plastic components. The apparatus consists of a device for continuously supplying the counting vials to be treated, a means for crushing the vials into chips of plastic and a facility by means of which the radioactive contents of the counting vial and the separated plastic chips are collected separately from one another. A stirring assembly with a motor-driven stirrer and an alignment device are also provided. The radioactive substances pass through a sieve while the plastic chips slide down the sieve chute and into another container. All the metal parts of the facility are of stainless steel. The plastic chips collected in the sieve holder are washed and, after drying, are removed as negligibly radioactive solids. The weakly radioactive wash liquid is separated and collected. (orig./PW)

  19. Technical feasibility of a Dutch radioactive waste repository in Boom Clay : Thermo-hydro-mechanical behaviour

    NARCIS (Netherlands)

    Vardon, P.J.; Buragohain, Poly; Hicks, M.A.; Hart, J; Fokker, PA; Graham, C

    2017-01-01

    OPERA-PU-TUD321c
    Radioactive substances and ionizing radiation are used in medicine, industry, agriculture, re- search, education and electricity production. This generates radioactive waste. In the Neth- erlands, this waste is collected, treated and stored by COVRA (Centrale Organisatie Voor

  20. The Use of Radioactive Gases in the Evaluation of Lung Function

    International Nuclear Information System (INIS)

    Maclntyre, W.J.; Inkley, S.R.

    1970-01-01

    This paper reviews methods for the evaluation of lung ventilation and perfusion based on measurements of the uptake of radioactive substances in the lung tissues after their respective administration by inhalation and injection. Radioactive substances used for such investigations include 133 Xe administered either by inhalation as a gas or by injection as a saline solution, 15 O 2 , C 15 O and C 15 O 2 administered by inhalation as gases and macroaggregated 131 I-labelled albumin administered by injection as a suspension. Methods used for the measurement of radioactivity in the lungs include methods based on the use of fixed multiple-detector systems, methods based on the use of single- or multiple-detector scanning systems and methods based on the use of gamma camera systems. In general, only relative measurements of radioactivity are required. The main physical problems in such measurements are shown to arise from uncertainty regarding the degree of absorption of the low-energy 133 Xe γ radiation in the body tissues and from the statistical errors inherent in the recording of fast dynamic changes. The radioisotope 135 Xe is shown to offer certain advantages over 133 Xe for the evaluation of lung function. (author)

  1. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  2. Report to Congress: 1995 Annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1996-06-01

    This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal

  3. Radioactive waste and transport. Chapter 6

    International Nuclear Information System (INIS)

    1978-01-01

    A brief definition of the nature of radioactive waste is followed by a more detailed discussion of high level waste, its composition the amounts involved, storage in liquid and in solid form and the storage of non-reprocessed spent fuel. The final disposal of high level waste in deep geological structures is then described, based on the Swedish KBS study. The effectiveness of the artificial and natural barriers in preventing the radioactive substances from reaching the biosphere is discussed. American and Swedish risk analyses are briefly discussed, and practical experience presented. Low and medium level wastes are thereafter treated in a similar, though briefer manner. Transport of radioactive materials, fresh fuel, spent fuel and waste is then dealt with. Regulations for the containers and their tests are briefly presented and the risk of accidents, theft and sabotage during transport are discussed. (JIW)

  4. 1991 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1992-11-01

    This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan's membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the ''take-title'' provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities

  5. 1992 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act

  6. Methods of the conversion of radioactive wastes. Look into the past

    International Nuclear Information System (INIS)

    Rezchikov, D.

    2001-01-01

    In 1948 Government of the USSR made provisions to gear industrial complex for obtain Pu-239 in Chelyabinsk region. Making Pu-239 in metal form leaded to formation of big quantity of liquid radioactive wastes. It was impossible to provide cleaning water. The radioactive waste were put into Techa river till 1951. Many people lived near Techa and took big dose of radiation. It is very important that people did not know anything about behavior of the radioactive substances in the environment and action on the health. (authors)

  7. Measuring radioactivity in the body

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-09-15

    Techniques of measuring the total amount of radioactivity in the body of a living person as well as the principal applications of such measurements were reviewed at a Symposium on Whole Body Counting held in Vienna from 12 to 16 June 1961. The whole body counters can be divided into two broad groups: (a) counters for the radiation protection surveillance of the general public and radiation workers, capable of detecting extremely low levels of radioactivity in the human body, and (b) counters for medical research and diagnosis, designed to check the retention and excretion of radioactive substances administered to patients for metabolic and pathological studies. In both cases, the primary requirement is that the counter must be able to measure the total activity in the body. In recent years, there has been a remarkable development of the instruments and techniques for such measurements. One of the main purposes of the symposium in Vienna was to discuss how best to use these highly sophisticated instruments.

  8. Radioactivity in the Baltic Sea, 1999-2006 HELCOM thematic assessment

    International Nuclear Information System (INIS)

    Herrmann, J.; Ikaeheimonen, T.K.; Ilus, E.; Kanisch, G.; Luning, M.; Mattila, J.; Nielsen, S.P.; Osvath, I.; Outola, I.

    2009-01-01

    The report describes work carried out by HELCOM's (Helsinki Commission, Baltic Marine Environment Commission) project on the Monitoring of Radioactive Substances in the Baltic Sea (MORS-PRO) during the period 1999-2006. The main topics include: sources of man-made radioactivity in the Baltic Sea; levels of man-made radionuclides in seawater, sediments and biota; work on modelling and evaluations of the riks to man caused by radioactivity in the Baltic Sea; comparison of man-made radionuclides in the Baltic Sea with levels in other sea regions. The concequent recommendations and work on data quality are presented in the Appendix

  9. Nuclear Waste Transportation Safety Act of 1979. Hearings before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation, United States Senate, Ninety-Sixth Congress, first session on S. 535, July 18-20, 1979

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Nuclear Waste Transportation Safety Act of 1979 provides for the safe transportation of nuclear waste and nuclear fuel. The issues evaluated during the hearing included: (1) The Energy Reorganization Act of 1974 conveyed to the NRC the prior existing authority of the former Atomic Energy Commission to regulate transportation of radioactive nuclear fuel and nuclear waste. The Hazardous Material Transportation Act of 1974 consolidated within the Department of Transportation the regulatory authority for safety and transportation of all hazardous substances, including radioactive materials; should consultation and coordination between these regulating authorities continue to be used. (2) The specific areas of transportation regulation involved in this combination; (3) Should the Department of Transportation (DOT) become a separate office; (4) Is security against theft and sabotage necessary and realistically attainable; (5) Should DOT be responsible for assuring a coordinated Federal-State emergency response plan for possible nuclear related transportation emergencies; and (6) Is the Federal grant program of S. 535 necessary and adequate

  10. Compensation of damage caused by diverted nuclear substances

    International Nuclear Information System (INIS)

    Deprimoz, J.

    1981-10-01

    This paper provides a comprehensive analysis of the insurance system for nuclear liability. As a rule, if nuclear fuel, radioactive products or waste are governed by nuclear energy law providing for strict and channelled liability, their legal holder will pay for damage arising from them anywhere within 20 years after theft or diversion and 10 years after the nuclear incident. In most countries, atomic liability insurers will implicitly grant their cover through policies underwritten by legal holders. If diverted substances have a low specific radioactivity, their legal holder remains liable according to common law and insurance policies cover this conventional liability. (NEA) [fr

  11. Regulations under the Radiation Protection and Control Act, 1982, No. 27 of 1984

    International Nuclear Information System (INIS)

    1984-01-01

    These regulations provide for the control and administration of transporting, packaging and storing radioactive materials in South Australia. Such operations must be carried out in accordance with the Code of Practice for the Safe Transport of Radioactive Substances, the present Regulations and the IAEA Regulations for the Safe Transport of Radioactive Materials (1973 Edition), slightly amended for purposes of national application. (NEA) [fr

  12. Removal of organics from radioactive waste. V. 2

    International Nuclear Information System (INIS)

    Williams, J.; Kitchin, J.; Burton, W.H.

    1989-05-01

    This report reviews the available literature concerning the removal of organic substances from radioactive waste streams. A substantial portion of low level wastes generated in the various parts of the nuclear fuel cycle, nuclear laboratories and other places where radionuclides are used for research, industrial medical and defense related activities is organic (paper, wood, plastics, rubber etc.) and combustible. These combustible wastes can be processed by incineration. Incineration converts combustible wastes into radioactive ashes and residues that are non-flammable, chemically inert and more homogenous than the initial waste. (author)

  13. Radioactive contamination of workers. General recommendation and procedures

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Santos, O.R. dos; Silva, E.N.D.; Santos, A.J. dos.

    1987-09-01

    The present publication has an objective to provide data and information to be used by workers who handle with or eventually could enter in touch with radioactives substances. The authors have made a compilation of subjects got from the literature on several aspects about radiocontamination, physical and chemical characteristics of radioisotopes, main sources of radioactive contamination, biological basis and treatement of internal and external decontamination. Special attention was paid to iodine and actinides contamination, particularly to uranium and plutonium. The conclusion are presented as general recommendation and synoptic tables. (Author) [pt

  14. Methods of surveying and monitoring marine radioactivity. Report of an ad hoc panel of experts

    International Nuclear Information System (INIS)

    1965-01-01

    An effective control of the radioactive pollution of the sea depends partly on the availability of adequate technical methods for surveying and monitoring the sea and marine products with regard to the presence of radioactive substances. The purpose of this manual is to offer such methods.

  15. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  16. Management of radioactive waste generated in nuclear medicine; Gestion de los residuos radiactivos generados en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz Perez, P.

    2015-07-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  17. Regulatory requirements on management of radioactive material safe transport in China

    International Nuclear Information System (INIS)

    Chu, C.

    2016-01-01

    Since 1980s, the IAEA Regulation for safe transport of radioactive material was introduced into China; the regulatory system of China began with international standards, and walked towards the institutionalized. In 2003 the National People’s Congress (NPC) promulgated “the Act on the Prevention of Radioactive Pollution of the People's Republic of China”. In 2009 “Regulation for the Safe Transport of Radioactive Material” (Referred to “Regulation”) was promulgated by the State Council. Subsequently, the National Nuclear Safety Administration (NNSA) began to formulate executive detailed department rules, regulations guidelines and standards. The present system of acts, regulations and standards on management of safe transport of radioactive material in China and future planning were introduced in this paper. Meanwhile, the paper described the specific administration requirements of the Regulation on classification management of radioactive materials, license management of transport packaging including design, manufacture and use, licensing management of transport activities and the provisions of illegal behaviors arising in safe transport of radioactive material. (author)

  18. Handbook of radioactive medicine standard. 2. ed.

    International Nuclear Information System (INIS)

    1980-01-01

    Now, the radioactive medicine standard has been instituted (the Ministry of Health and Welfare announcement No. 28, March 13, 1979) but this is the total revision of the old standard. While the radioactive medicines are used for the treatment of malignant tumors and others, the accuracy and fastness as the diagnostic medicines have been regarded as important. Recently, more safe and convenient medicines have appeared. Since these emit radiation, prudent consideration must be given to their handling. In order to make the properties and qualities of radioactive medicines appropriate, the standard is instituted for all of them based on the Drugs, Cosmetics and Medical Instruments Act. Since the medicines which do not accord with the standard cannot be produced, imported and sold according to the Act, the users must be familiar with the contents of the standard. The Ministry of Health and Welfare announcement No. 28 and the notice concerning it by the director of the Pharmaceutical and Supply Bureau to prefectural governors are reprinted. The standard comprises common rules, the general rules on medicine production, the provisions for individual medicines (94 kinds), 14 general testing methods, and the attached table showing the characteristics of 20 radioactive nuclides contained in the radioactive medicines described in this standard. (Kako, I.)

  19. Measurements of radioactive and xenobiotic substances in the biological environment in the Netherlands 1986

    International Nuclear Information System (INIS)

    1988-01-01

    A brief survey of the results of detailed radioactivity measurements performed in the Netherlands during the period immediately after the Chernobylsk accident, and the risk analyses made on the basis of these results, are presented. The increase of the airborne radioactivity and the activity concentrations in surface water during the first week of May 1986 is demonstrated graphically. The radiation dose in 1986 due to artificial radioactivity has been calculated to be about 60 μSv for adults, 70 μSv for ten-year-old children and 110 μSv for one-year-old children. 54 figs.; 32 tabs

  20. Radioactive waste below regulatory concern

    International Nuclear Information System (INIS)

    Neuder, S.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission (NRC) published two notices in the Federal Register concerning radioactive waste below regulatory concern. The first, a Commission Policy Statement and Implementation Plan published August 29, 1986, concerns petition to exempt specific radioactive waste streams from the regulations. The second, an Advanced Notice of Proposed Rulemaking published Decemger 2, 1986, addresses the concept of generic rulemaking by the NRC on radioactive wastes that are below regulatory concern. Radioactive waste determined to be below regulatory concern would not be subject to regulatory control and would not need to go to a licensed low-level radioactive waste disposal site. The Policy Statement and Implementation Plan describe (1) the information a petitioner should file in support of a petition to exempt a specific waste stream, (2) the decision criteria the Commission intends to use for judging the petition, and (3) the internal administrative procedures to use be followed in order to permit the Commission to act upon the petition in an expedited manner

  1. Environmental Radioactivity from Natural, Industrial, and Military Sources

    International Nuclear Information System (INIS)

    Maarouf, B. H.

    2007-01-01

    This book is a translation of the fourth edition of the original book which was written as a reference source for the scientist, engineer, or administrator with a professional interest in the subject, but it may also be a value to the reader who wishes to understand the technical facts behind the public debate. The subject of environmental radioactivity has aspects of vast dimensions. The text of the book concerns primarily with the behavior of radioactive substances when they enter the environment. The important and elaborate technology by which passage of radioactive materials to the environment may be prevented and the equally important field of health physics that is concerned with protecting the atomic energy worker were thus placed beyond the bounds of this work.

  2. Order of 25 April 1979 fixing the list and the conditions for labelling and packaging certain dangerous substances and preparations

    International Nuclear Information System (INIS)

    1979-01-01

    This Order which is effective as from 1 November 1979 repeals the Order of 14 Sep 1972, as amended, fixing the list and conditions for labelling and packaging of certain dangerous substances and preparations and sets out a modified list and conditions. Such substances include certain radioactive substances. (NEA) [fr

  3. Methodology in the handling of the waste radioactive material

    International Nuclear Information System (INIS)

    Emeterio H, M.

    2013-10-01

    The methodology in the management of radioactive waste is constituted by an administrative part and seven technical stages: transport, classification, segregation, conditioning, treatment, packages qualification and final disposition (storage). In their diverse stages the management deserves a special attention, due to the increment of the use and application of the nuclear energy and radioactive substances, for such a reason should be managed in such a way that the exposed personnel safety and the public in general is guaranteed, protecting the integrity of the environment. (Author)

  4. Low-level radioactive waste management in New York State: Meeting the milestones

    International Nuclear Information System (INIS)

    White, I.L.

    1987-01-01

    The federal Low-Level Radioactive Waste Policy Act of 1980 made the states responsible for disposal of low-level radioactive waste (LLRW) generated within their borders. After extensive hearings and public participation, New York State enacted a Radioactive Waste Management Act (State LLRWMA) in July 1986. This paper describes New York's program and reviews the State's progress in complying with the milestone established by Public Law 99-240. A number of concerns about LLRW disposal and the schedule calling for a facility to be operational by January 1, 1993, are also discussed

  5. Information by the Federal Government. Report of the Federal Governement on 'Environmental radioactivity and radiation load in 1975'

    International Nuclear Information System (INIS)

    1977-01-01

    The report on environmental radioactivity and radiation load, to be published annually by the Federal government, contains data on artificial exposure from nuclear facilities, data on the application of radioactive substances and ionizing rays in research and technology, on occupational activities, medical application and special occurrences. Not only the annual release of radioactive substances from nuclear fcilities is presented but also data on the maximum permissible radiation exposures and the average gonadal exposure within the vicinity of plants. Furthermore, data is presented on the influence of X-ray investigations on the genetically significant dose as well as on the proportion in percent of the various radionuclides when applied in nuclear medicine. (ORU) [de

  6. Objectives for remediation of areas polluted by radioactive substances in France - 59300

    International Nuclear Information System (INIS)

    Cazala, Charlotte; Gay, Didier; Chabanis, Olivier; Guillevic, Jerome; Palut Laurent, Odile; Dandrieux, Geraldine; Thomassin, Alain; Chapalain, Estelle; Roy, Laurence

    2012-01-01

    Document available in abstract form only. Full text of publication follows: In the 90's, the French administration has developed several tools in order to inventory potentially polluted sites and to identify those requiring an immediate action. Concerns and needs have gradually moved on and a methodology for the management of selected areas was established. A general framework was then published by the Ministry of Ecology in 2007. The Ministry of Ecology jointly with the Nuclear Safety Authority (ASN) asked the Institute for Radiological Protection and Nuclear Safety (IRSN) to establish guidelines for the management of radioactive polluted areas. Requirements were: i) to fit with the published general framework while highlighting specificities of radioactive pollutants management; ii) to take benefit of radioactive polluted areas remediation; iii) to precise remediation objectives and iv) to develop stakeholders involvement issues. Within this general framework, two situations were identified: i) the polluted area is already used for domestic, public or industrial purposes; ii) the polluted area is an industrial site under dismantling or a polluted wasteland where a redevelopment project is under consideration. Management of a polluted site with ongoing use is based on the pollution level determination

  7. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  8. Changes is radioactive iodine metabolism in acute chemical intoxications

    International Nuclear Information System (INIS)

    Selyutitskij, G.V.; Likhtarev, I.A.; Volkova, N.V.; Zvonova, I.A.; Ostryakova, N.I.

    1978-01-01

    It is shown that the response of the endocrine system (iodine-absorbing and hormone-secreting fUnctions of the thyroid) as studied by the radioactive iodine test may be a reasonably versatile indicator of the response of the thyroid component of the endocrine system to acute intoxication of the organism. Trials of this test using seven chemical substances have confirmed that the radioiodine test is a sufficienty universal method to be used in setting sanitary and hygienic standards for permissible levels of chemical substances

  9. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  10. Radioactive fallout has different effects in Lapland

    International Nuclear Information System (INIS)

    Rissanen, K.

    1993-01-01

    The effects of radioactive fallout in Lapland differ from those in southern Finland. The subarctic area is poor in vegetation and nutrients, for which reason radioactive substances enter food chains rapidly. As potassium is low in supply in the north, plants use cesium to replace it. Thus cesium is accumulated very effectively in food chain. When in the food chain, cesium is enriched in reindeer and further in Lapp people, who eat reindeer meat frequently. The Finnish Centre for Radiation and Nuclear Safety established a regional laboratory in northern Finland in the 1970's to monitor radiation and carry out research an the area.(author)

  11. Determination of hepatic blood flow through radioactive colloidal gold in congestive heart foilure

    International Nuclear Information System (INIS)

    Papaleo Netto, M.; Carvalho, N.; Carvalho Filho, E.T.; Forti, N.A.; Giannini, S.D.; Diament, J.; Decourt, L.V.; Chiaverini, R.

    1974-01-01

    Hepatic blood flow as derermined by radioactive colloidal gold and its correlation with total blood valume are studied in 13 patients with predominantly right-side congestive heart failure. During the phase of cardiac compensation, the following events occur: 1) significant decrease of the half-life of the clearance of radioactive colloidal gold and of the total blood volume; 2) increase of the clearance constant of the radioactive substance and of hepatic blood flow; 3) significantion correlation between the clearance constant and the total blood volume [pt

  12. Radioactive material in the radiologically contaminated fishes caught in the Pacific Ocean in 1954

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, M; Okano, S; Mori, T

    1955-01-01

    The radioactivity of several samples of Coryphaena Hippyrus caught in the southern Pacific in May, 1954, after the atomic explosion at Bikini, was found, in decreasing order, in spleen, kidney, liver, pyloric ceca, heart, gill, intestine, gastric wall, ovary, testis, gastric content, red muscle, skin, vertebrae, and muscle. The red muscle of Neothunnus Macropterus showed 54.8 counts/min./0.20 g. activity on dry basis, the activity was decreased to 27.6 by soaking 25 g. muscle in 25 cc. water, and to 14.1 by soaking in 0.5% Na ethylenediaminetetraacetate solution. The radioactive substances in these fish tissues were found, upon analysis, to belong to the III group, particularly to III-B group. Examination of synchroscope patterns by scintillation counter indicated the presence of /sup 65/Zn among the radioactive substances. /sup 90/Sr was suggested to be present in very small amount.

  13. A survey of radioactive levels of agricultural products in Saitama prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Misako; Miyake, Sadaaki; Oosawa, Takashi; Nakazawa, Kiyoaki [Saitama Inst. of Public health, Saitama (Japan)

    1997-09-01

    Past atmospheric nuclear testing which have been conducted frequently, have caused environmental pollution due to the diffusion of radioactive substances into the atmosphere and from the radioactive fallout. The environmental pollution from nuclear testing into the atmosphere has resulted in the radioactive contamination in agricultural products and has continued for a long time. The radioactive contamination of agricultural products occurs through air, water and soil which were contaminated by radioactive fallout. In this paper, for the purpose of analyzing the extent of the radioactive contamination levels in the agricultural products of Saitama Prefecture, spinach, green soybeans, dried shiitake and welsh onion, were selected among products, as the amount of the harvest is abundant in all of Japan. Radioactivity concentration was investigated by gamma-ray spectrometry and radiochemical analysis. The radioactivity concentrations of artificial radioactive nuclides, cesium-137 ({sup 137}Cs) and strontium-90 ({sup 90}Sr), were detected in the range which is considered to be the result of radioactive fallout. Moreover, in order to examine the effect on radioactivity concentrations in agricultural products by culinary processing, the raw agricultural products were boiled, and their radioactivity concentrations were compared with the raw produce. The radioactivity concentrations in the boiled were lower than those in the raw produce. (author)

  14. A survey of radioactive levels of agricultural products in Saitama prefecture

    International Nuclear Information System (INIS)

    Motegi, Misako; Miyake, Sadaaki; Oosawa, Takashi; Nakazawa, Kiyoaki

    1997-01-01

    Past atmospheric nuclear testing which have been conducted frequently, have caused environmental pollution due to the diffusion of radioactive substances into the atmosphere and from the radioactive fallout. The environmental pollution from nuclear testing into the atmosphere has resulted in the radioactive contamination in agricultural products and has continued for a long time. The radioactive contamination of agricultural products occurs through air, water and soil which were contaminated by radioactive fallout. In this paper, for the purpose of analyzing the extent of the radioactive contamination levels in the agricultural products of Saitama Prefecture, spinach, green soybeans, dried shiitake and welsh onion, were selected among products, as the amount of the harvest is abundant in all of Japan. Radioactivity concentration was investigated by gamma-ray spectrometry and radiochemical analysis. The radioactivity concentrations of artificial radioactive nuclides, cesium-137 ( 137 Cs) and strontium-90 ( 90 Sr), were detected in the range which is considered to be the result of radioactive fallout. Moreover, in order to examine the effect on radioactivity concentrations in agricultural products by culinary processing, the raw agricultural products were boiled, and their radioactivity concentrations were compared with the raw produce. The radioactivity concentrations in the boiled were lower than those in the raw produce. (author)

  15. Design basis for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Lewi, J.; Kaluzny, Y.

    1990-01-01

    All radioactive waste disposal sites, regardless of disposal concept, are designed to isolate the radioactive substances contained in such waste for a period at least equal to the time it may remain potentially harmful. Isolation is achieved through the use of containment barriers. This paper summarises the function and limits of different types of barrier used in various disposal systems. For each type of barrier, the paper describes and comments on the site selection criteria and waste packaging requirements applicable in various countries. 13 refs., 1 fig [fr

  16. Pollution prevention opportunity assessment for the K-25 Site Toxic Substances Control Act Incinerator Operations, Level III

    International Nuclear Information System (INIS)

    1995-09-01

    A Level III pollution prevention opportunity assessment (PPOA) was performed for the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator to evaluate pollution prevention (P2) options for various waste streams: The main objective of this study was to identify and evaluate options to reduce the quantities of each waste stream generated by the TSCA Incinerator operations to realize significant environmental and/or economic benefits from P2. For each of the waste streams, P2 options were evaluated following the US Environmental Protection Agency (EPA) hierarchy to (1) reduce the quantity of waste generated, (2) recycle the waste, and/or (3) use alternate waste treatment or segregation methods. This report provides process descriptions, identification and evaluation of P2 options, and final recommendations

  17. Prevention of radioactive gas seeping into buildings through constructive materials

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2004-01-01

    Full text: One of possible method of realization of the terrorist acts is using gases and liquids, which easily permeate through the constructive materials of walls, floor, ceiling, roof, etc. into buildings by the capillary action of the pores. Toxic volatile organic compounds, organic and inorganic gases, radioactive elements, especially, which emits alpha particles can be used as the dangerous substances. Increased ventilation may help in removing the gases, but can actually increase the gases level by increasing the suction through the pores of concrete. If the gases and liquids are soluble in water and are easily volatilized from it, they can also get by groundwater up to underground structures and penetrate inside through opening and pores in concrete or pushed by hydrostatic pressure. The purpose of this work is creating a method to reduce concentration of toxic and radioactive gases in homes, buildings, underground buildings, tunnels, hangars, garages, bomb shelters, etc. The most effective method to prevent penetration of radionuclides into premises of buildings and underground structures through walls, roofs, floors is using special chemicals, which seal micropores inside the construction materials against gases. Worked out chemicals which consist of blend of polymeric compounds are described in the paper. Radioactive gases permeability in constructive materials after treatment by chemicals was studied. Influence of types of cement, sand and gypsum, preliminary treatment by different chemicals, different types of polymeric compounds, time between treatments, moisture of materials, time between preparation of chemicals and treatment of materials (aging of chemicals), time between treatment of concrete and testing (aging of treated concrete) were examined. Experiments have shown that our method allows reducing the coefficient of gas permeability 200 - 400 times

  18. Advance in radioactive decontamination; Avances en descontaminacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Basteris M, J. A. [Universidad Autonoma de Yucatan, Facultad de Medicina, Departamento de Diagnostico por Laboratorio y Gabinete, Av. Cupules No. 232, Col. Garcia Gineres, 97070 Merida, Yucatan (Mexico); Farrera V, R., E-mail: basteris@prodigy.net.m [Hospital de Especialidades de la UMAE, Centro Medico Nacional Ignacio Garcia Tellez, Departamento de Medicina Nuclear, Calle 34 x 41, Exterrenos el Fenix s/n, Col. Industrial, 91750 Merida, Yucatan (Mexico)

    2010-09-15

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  19. Report of radioactivity investigation and research in fiscal year 1984

    International Nuclear Information System (INIS)

    1985-11-01

    National Institute of Radiological Sciences has continuously carried out the investigation and research on the environmental radioactivity level due to the radioactive fallout accompanying nuclear explosion experiments and the radioactive substances released from nuclear facilities and on the safety analysis of those since fiscal year 1959 as a part of the radioactivity investigation and research of Science and Technology Agency. The importance of radioactivity investigation and research increases more accompanying the remarkable progress of the peaceful use of atomic energy and the emphasis placed on the safety analysis of atomic energy utilization. In such situation, in fiscal year 1984, by appropriating the total budget of about 105 million yen, the investigation of the radioactivity level and dose in environment, foods and human bodies, the investigation of the level around nuclear facilities, the business of radioactivity data center, the basic research on the evaluation of the results of radioactivity investigation, the training of environmental radiation monitoring technicians, and the investigation and research on the measurement of and countermeasures to emergency radiation exposure were carried out. In this book, the results of these investigation and research are reported. (Kako, I.)

  20. Process for dissolving the radioactive corrosion products from internal surfaces in nuclear reactors

    International Nuclear Information System (INIS)

    Brown, W.W.

    1976-01-01

    This invention concerns a process for dissolving in the coolant flowing in a reactor the radioactive substances from the corrosion of the internal surfaces of the reactor to which they cling. When a reactor is operating, the fission occurring in the fuel generates gases and fission substances, such as iodine 131 and 133, cesium 134 and 137, molybdenum 99, xenon 133 and activates the structural materials of the reactor such as nickel by giving off cobalt 58 and similar substances. Under this invention an oxygen rich solution is injected in the reactor coolant after the temperature and pressure reduction stage, during the preparation prior to refuelling and repairs. The oxygen in the solution speeds up the release of cobalt 58 and other radioactive substances from the internal surfaces of the reactor and their dissolving in the oxygenated cold coolant at the start of the cooling procedures of the installation. This allows them to be removed by an ion exchanger before the reactor is emptied. By utilising this process, about half a day may be gained in refuelling time when this has to be done once a week [fr

  1. 30 years of monitoring environmental radioactivity in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1985-01-01

    The individual sections of the report describe the development of monitoring functions and of the contamination of the atmosphere and the biosphere by radioactive substances. After environmental radioactivity due to the fallout of nuclear explosions reached a peak level in 1963, its contribution to radiation exposure today is insignificant in comparison with natural radioactivity. Moreover, monitoring by authorities of the emissions and the environmental impact of nuclear installations has been extended during the past 20 years in such a way that the existing network of measuring stations takes full account of the increased number of nuclear installations. The monitoring results show that nuclear installations do not make any considerable contribution to environmental radioactivity. (orig./PW) [de

  2. The design, construction and testing of packaging[Radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    Essentially uniform regulations, based on the IAEA Regulations for the Safe Transport of Radioactive Materials, have been adopted on a world-wide basis with the aim of ensuring safety in the transport of radioactive and fissile substances by road, rail, sea and air. The application of these regulations over a period of almost 20 years has resulted in practically complete safety in the sense that there has been no evidence of death or injury that could be attributed to the special properties of the material even when consignments were involved in serious accidents. In the regulations, reliance is placed, to the greatest extent possible, on the packaging to provide adequate shielding and containment of the contents under both normal transport and accident conditions. The Agency organized an international seminar in 1971 to consider the performance tests that have to be applied to packaging to demonstrate compliance with the regulatory requirements. The general conclusion was that the testing programme specified in the regulations was adequate for the near future, but that further consideration should be given to assessing the risks presented by the increasing volume of transport. The second international seminar, which is the subject of this report, dealt with all aspects of the design, construction and testing of packaging for the transport both of relatively small quantities of radioactive substances, which are being used to an ever increasing extent for medical and research purposes, and of the much larger quantities arising in various stages of the nuclear fuel cycle. The programme covered the general requirements for packaging; risk assessment for the transport of various radioactive and fissile substances, including plutonium; specific features of the design and construction of packaging; quality assurance; damage simulation tests, including calculational methods and scale-model testing; tests for the retention of shielding and containment after damage; and the

  3. Diagnostic value of radioactive fibrinogen and rheography in phlebitis

    International Nuclear Information System (INIS)

    Serradimigni, A.; Bory, M.; Djiane, P.; Sacerdote, P.; Mathieu, P.; Leonetti, J.; Egre, A.

    1975-01-01

    In 212 patients the diagnostic value of radioactive fibrinogen and rheography in deep venous thrombosis in the leg was studied by comparing the results from these two methods with phlebography. Radioactive fibrinogen seems the better means of diagnosis in early distal phlebitis. However, the method is expensive, the radioactive substance can only be manipulated in certain specialized centers, and is useless in the presence of hematoma. Rheography is less expensive, more easily manipulated, yet less sensitive as only proximal phlebitis can be detected especially when completely occlusive. In addition, active patient cooperation is necessary. The time needed to realize the two methods is a major obstacle; however, they can be fruitful if integrated into a specialized department for the diagnosis and treatment of thrombo-embolic disease [fr

  4. Vessel used in radiation counting to determine radioactivity levels

    International Nuclear Information System (INIS)

    Charlton, J.C.; Glover, J.S.; Shephard, B.P.

    1977-01-01

    This invention concerns the vessels used in radiation counting to determine radioactivity levels. These vessels prove to be particularly useful in analyses of the kind where a radioactive element or compound is separated into two phases and the radioactivity of one phase is determined. Such a vessel used in the counting of radiation includes an organic plastic substance tube appreciably cylindrical in shape whose upper end is open whilst the lower end is closed and integral with it, and an anti-radiation shield in metal or in metal reinforced plastic located at the lower end of the tube and extending along the wall of the tube up to a given height. The vessel contains a reaction area of 1 to 10 ml for holding fluid reagents [fr

  5. Radioactive fall out in Switzerland. Where does it come from and where does it go to

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This article describes the radioactive radiation to which the Earth is subjected by the Sun, the natural and man made radioactive substances on the Earth which are identical in their action, discusses the benefits that certain radioactive isotopes can provide in medicine, industry, agriculture and scientific research and deals with protective measures against harmful radioactive materials. After a description of the means of obtaining uranium and plutonium and their use in the production of nuclear energy the article discusses the research being performed to ensure that radioactive materials are safely handled and that unusable waste is deposited in safe places. (G.W.)

  6. Radioactive contents in water Galleries Tenerife, Canary Islands

    International Nuclear Information System (INIS)

    Lopez Perez, M.; Duarte Rodriguez, X.; Triguero Perez, M.; Hernandez Armas, J.; Catalan Acosta, A.

    2011-01-01

    Water consumption by humans leads to the possible incorporation into the body of existing radionuclides in it and can cause undesirable effects on human health. To avoid or reduce them, various agencies have established limits for the concentration of radioactive substances in the water so that it can be used for human consumption. (Author)

  7. Monitoring radioactivity in the environment: context, objectives, challenges and prospects

    International Nuclear Information System (INIS)

    Collet, J.; Jaunet, P.

    2010-01-01

    The aims of environmental radioactivity monitoring are multiples: protection of human health and environment, knowledge of the radiological status of the environment, early detection of radiological events, public information. This monitoring is ensured by several stakeholders (licensees, IRSN, ASN, state and local authorities, associations...) and in all environment compartments (air, water, soil, fauna and flora...). Within a European regulatory context, the Nuclear Transparency and Security Act 2006-686 of 13 June 2006 (TSN Act) reinforces the importance attached to consideration of safety, radiation protection and the environment. Other developments in the scope of environmental radioactivity must be noted: new stakeholders, lower background radiation, deployment of the French National Network of Environmental Radioactivity Monitoring (RNM), evolution of the ICPR thoughts to take better account of environmental protection, post-accident management doctrine, new concerns about environmental behaviour of some radionuclides. In order to maintain a quality policy in the field of environmental radioactivity measurements and to ensure the transparency of information, ASN will make sure that the strategy of environmental radioactivity monitoring will take into account these concerns. (author)

  8. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  9. Educational support programs: Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Williamson, R.C.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) currently sponsors two educationally related programs: the Radioactive Waste Management Fellowship Program and the Radioactive Waste Management Research Program for Historically Black Colleges and Universities (HBCU). The graduate fellowship program was implemented in 1985 to meet the US Department of Energy's (DOE's) expected manpower needs for trained scientists and engineers to assist in carrying out the activities of the Nuclear Waste Policy Act. It is recognized that a shortage of master's and doctoral level scientists and engineers in disciplines supportive of the nation's high-level radioactive waste management (RWM) program may impede the DOE's ability to properly carry out its mission under the act. The fellowship program encourages talented undergraduate students to enter graduate programs designed to educate and train them in fields directly related to RWM. The program supports graduate students in various disciplines, including nuclear science and engineering, health physics, and certain area of geology and chemical engineering. It also encourages universities to support and improve research activities and academic programs related to the management of spent nuclear fuel and high-level radioactive waste

  10. HMIP monitoring programme: radioactive substances report for 1990

    International Nuclear Information System (INIS)

    1992-03-01

    Discharges of radioactive wastes to the environment can only be made under authorisation from government bodies. The main potential sources of environmental contamination in England are nuclear sites (power stations, fuel fabrication and reprocessing plants), some industrial premises such as metal smelters, and landfill sites. As well as the environmental monitoring programmes undertaken by the operators of such sites various government bodies also undertake monitoring. In January 1988 Her Majesty's Inspectorate of Pollution (HMIP) initiated a programme to monitor exposure of the public from non-food pathways such as could occur from occupation of beaches, river banks etc. Radiation levels and radiochemical and gamma spectra of samples collected at specified locations near nuclear sites and industrial premises have been monitored every quarter since then. The results for 1990 are presented and discussed. (UK)

  11. Hazard of radioactive releases resulted from coal burning; Opasnost` vysvobozhdeniya radioaktivnykh produktov pri szhiganii uglya

    Energy Technology Data Exchange (ETDEWEB)

    Gabbard, V

    1995-09-01

    Consideration is given to the data, pointing to the fact, that coal-burning power plants release of radioactive substances, contained in gaseous wastes, is not less, than the same one of nuclear power plants. The necessity of regulating emission of these substance in atmosphere by analogy with nuclear power industry is shown. 1 fig.

  12. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  13. Algorithm for calculating an availability factor for the inhalation of radioactive and chemical materials

    International Nuclear Information System (INIS)

    1984-02-01

    This report presents a method of calculating the availability of buried radioactive and nonradioactive materials via an inhalation pathway. Availability is the relationship between the concentration of a substance in the soil and the dose rate to a human receptor. Algorithms presented for calculating availabiliy of elemental inorganic substances are based on atmospheric enrichment factors; those presented for calculating availability of organic substances are based on vapor pressures. The basis, use, and limitations of the developed equations are discussed. 32 references, 5 tables

  14. Radioactivity in the Rhine - the LWA controls North-Rhine-Westphalian surface waters

    International Nuclear Information System (INIS)

    Kloes, H.

    1985-01-01

    The State Authority for Water and Waste Management has been testing the Rhine and the most important surface waters of North-Rhine Westphalia for radioactivity ever since it was founded in 1969. Radiation exposure of human beings who use Rhine water is far below the permitted maximum values of the 'radiation protection ordinance'. Pollution of the Rhine and its tributaries in North-Rhine Westphalia with artificial radioactive substances has even slightly decreased over the past ten years; pollution of the River Emscher with natural radioactive material remained high, the Lippe River now contains less radium than before. (orig./PW) [de

  15. Radioactivity partitioning of oil sludge undergoing incineration process

    International Nuclear Information System (INIS)

    Muhamat Omar; Suhaimi Hamzah; Muhd Noor Muhd Yunus

    1997-01-01

    Oil sludge waste is a controlled item under the Atomic Energy Act (Act 304) 1984 of which the radioactivity content shall be subjected to analysis. Apart from that the treatment method also shall be approved by Atomic Energy Licensing Board (AELB). Thus, an analysis of the oil sludge for MSE fluidized incinerator was conducted to comply with above requirements using various techniques. Further screening analysis of fly ash as well as bed material were done to study the effect of incinerating the sludge. This paper highlights the analysis techniques and discusses the results with respect to the radioactivity level and the fate of radionuclides subjected to the processing of the waste

  16. On-line radioactivity detector for HPLC

    International Nuclear Information System (INIS)

    Kessler, M.J.

    1986-01-01

    Over the last ten years the technique of high performance liquid chromotography (HPLC) has become extensively employed for the separation and quantitation of various biological, organic, and inorganic substances. The use of HPLC for the separation of various metabolic compounds has become routine. The major problem of analyzing the metabolism process is that the quantitation is accomplished by the use of radioactive substrates. Until recently the only method to quantitate these radioactive compounds eluting from the HPLC was by collecting fractions at preset times, removing aliquots and quantitating in a liquid scintillation counter. Once the radioactivity present in each fraction was determined, the results were plotted on a graph and the area of each of the radioactive peaks was determined. This entire process required from 3-20 hours. The introduction of the flow through radioactivity detector enable the investigator to directly quantitate the radioactive peaks as they elute from the HPLC in real time and at about one-tenth the original cost of the previous methods. The detection limits of this technique are dependent on the residence time of the sample in the flow cell and the type of flow cell used for the analysis. Using a 2.5 ml liquid flow cell, (mixing with liquid scintillation solution), base line resolution can be obtained for peaks 1.5 minutes apart, and a sensitivity of 70 dpm for tritium and 30 dpm for carbon-14 can be achieved

  17. UK strategy for radioactive discharges 2001-2020. Consultation document

    International Nuclear Information System (INIS)

    2000-06-01

    This consultation draft of a strategy for radioactive discharges describes how the United Kingdom (UK) will implement the agreements reached at the 1998 Ministerial meeting of the OSPAR Commission, with regard to radioactive substances. It also provides a policy base for future reviews of discharge authorisations by the regulatory bodies and for strategic planning by the nuclear operators. The strategy sets a framework for radioactive discharges from UK installations over the next twenty years. Its aims are: progressive and substantial reductions in radioactive discharges from the UK as a whole and from each of the main sectors responsible for such discharges; progressive reduction of human exposure to ionising radiation resulting from radioactive discharges, so that no member of the general public in the UK will be exposed to a dose of more than 0.02 mSv a year, as a result of authorised radioactive discharges made from 2020 onwards; progressive reductions in concentrations of radionuclides in the marine environment resulting from radioactive discharges, such that by 2020 they add close to zero to historic levels. The scope of the UK strategy encompasses radioactive discharges from nuclear licensed sites, defence activities and other nuclear and non-nuclear sources of radioactive discharges. It covers both liquid and aerial discharges, although it is assumed that in general liquid discharges will have the largest and most measurable effects in the marine environment

  18. Automatized system of radioactive material analysis

    International Nuclear Information System (INIS)

    Pchelkin, V.A.; Sviderskij, M.F.; Litvinov, V.A.; Lavrikov, S.A.

    1979-01-01

    An automatized system has been developed for the identification of substance, element and isotope content of radioactive materials on the basis of data obtained for studying physical-chemical properties of substances (with the help of atomic-absorption spectrometers, infrared spectrometer, mass-spectrometer, derivatograph etc.). The system is based on the following principles: independent operation of each device; a possibility of increasing the number of physical instruments and devices; modular properties of engineering and computer means; modular properties and standardization of mathematical equipment, high reliability of the system; continuity of programming languages; a possibility of controlling the devices with the help of high-level language, typification of the system; simple and easy service; low cost. Block-diagram of the system is given

  19. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  20. U.S. port commerce in radioactive materials

    International Nuclear Information System (INIS)

    Marti, B.E.

    1987-01-01

    Much attention has focused on the movement of radioactive materials over land transport systems. On the other hand, maritime flow and associated throughput studies of such substances have been neglected. Although several peaks and troughs are evident between 1972 and 1981, radioactive tonnage moving through U.S. port facilities steadily increasing. In the ten-year period assessed, total radioactive materials handled at U.S. ports expanded by over 19,000 tons, which amounts to almost a 173 percent growth rate. The purpose of this exploratory research is threefold. First, it identifies all U.S. ports which were involved in loading or discharging radioactive materials. The major goal of the identification process is to broaden public awareness of these types of movement. Second, it classifies U.S. seaports based on the magnitude of radioactive tonnage handled. The function of the classification is to impose some order on the varied data, while at the same time categorizing large, medium, and small facilities. Finally, it seeks to verify whether or not a long term trend exists. The objective of the verification process is to ascertain if the distribution of radioactive materials handled at individual ports has remained constant. Port safety and contingency planning are clearly within the purview of coastal zone management. The results of this preliminary research should form a foundation for future studies which compare and evaluate local, state, and federal regulatory policy pertaining to port operations involving radioactive materials, including waste

  1. BPEO as a Guide to Decision Making in the Authorisation of Radioactive Waste Discharges

    International Nuclear Information System (INIS)

    Egan, Michael; Collier, David; Stone, Andrew; Keep, Matthew

    2003-01-01

    The Environment Agency (EA) and the Scottish Environment Protection Agency (SEPA) are the independent public bodies responsible for regulating the disposal of radioactive wastes in the UK in order to ensure protection of people and the environment. Operators at nuclear sites must obtain authorisation from the relevant Agency, granted under the Radioactive Substances Act 1993 (RSA93), in order to make disposals of radioactive waste. Draft Statutory Guidance to the EA on the Regulation of Radioactive Discharges into the Environment from Nuclear Licensed Sites was published by the Government in October 2000. The Guidance establishes an obligation on the EA to ensure that proper consideration is given to the identification and evaluation of alternatives, in order to ensure that the Best Practicable Environmental Option (BPEO) is chosen, before authorisations can be granted. Such a requirement supplements and reinforces current regulatory practice in the UK, whereby nuclear site operators may be required (under Improvement Conditions attached to existing authorisations) to review waste management strategies on a regular basis in order to demonstrate that they represent the BPEO. SEPA shares a common interest with EA in use of the BPEO concept in the regulation of radioactive waste management, for both operational licensing and decommissioning projects. There has been no single standard methodology or guidance to Agency staff on application of the BPEO concept to radioactive waste management. BPEO studies presented by nuclear site operators have therefore been considered on a case-by-case basis. In the light of this, and taking account of the specific requirements emerging from the new Statutory Guidance, EA and SEPA have jointly supported the development of guidance for use by the Agencies in reviewing and assessing BPEO studies submitted in relation to authorisations granted under RSA93. This paper describes activities that have been undertaken to support the

  2. Numerical modelling of suspended radioactive sediment transport in a stream using matlab

    International Nuclear Information System (INIS)

    Sarpong, Linda

    2017-07-01

    The use of materials that contain radioactive substances has gained grounds in Ghana due to numerous benefits derived from them. These radioactive materials can be found in the areas of medicine, agriculture and industries such as mining. Though there are strict measures to ensure such material do not find its way into the environment, improper management of the waste poses a threat to the environment. To be able to understand the impact the radioactive material has on the environment, mathematical models play a very relevant role in tracking the level of pollution in any medium. This thesis was concerned with the numerical modelling for the transport of the radioactive solute material that suspends in a stream using Matlab at different velocities as a result of flooding or an accident for research purposes. The modelling was done by using partial differential equations describing relevant physical processes evolution which includes water level, dissolved and suspended substances concentration and velocities. The equation system basis are the mass conservation and momentum laws, state equation and state transport equations. The implicit finite difference scheme was used to evaluate the transport equation, Advection-Dispersion Equation (ADE) with respect to time and space. Solution algorithms for Matlab programming were developed and implemented for generating results for analysis. The results obtained showed that the model was able to simulate accurately the various levels of suspended radioactive sediment concentration changes in the flowing stream longitudinally. (au)

  3. The common good accompaniment on the long road to the site selection. The report of the Commission Disposal of Highly Radioactive Waste and the site selection act; Die gemeinwohlorientierte Begleitung auf dem langen Weg zur Standortauswahl. Zum Bericht der Endlager-Kommission und zur Aenderung des StandAG

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Ulrike

    2016-10-15

    Almost in time, on 5 July 2016 the 'Commission Disposal of High Radioactive Waste' presented its report according to the German Site Selection Act (for disposal of radioactive waste). On July 20, 2016, the act for reorganisation of the organisational structure in the field of radioactive waste disposal entered into force. The new law raises a number of institutional, organisational and fundamental questions on the way to a final repository for high-level waste. The path continues to appear rocky and long.

  4. Radioactivity. To better manage polluted soils and sites. Pargny-sur-Saulx, more than 15 years of interventions. Chef de Baie, radioactivity mapping

    International Nuclear Information System (INIS)

    Caplin, Helene; Baumont, Genevieve; Tardieu, Laure; Brisson, Nicolas; Guillevic, Jerome; Serres, Christophe; Barrieu, Olivier

    2016-01-01

    A set of articles proposes an overview of the various actions performed by the IRSN for the management of sites and soils polluted by radioactive substances. A first article outlines the need for a national strategy to manage about forty polluted sites, the lack of a waste elimination sector (the storage is organised, but not the elimination), the action of the IRSN in mapping the radioactivity, in assessing the associated exposure, and in supporting decontamination actions. Costs, benefits, risks and actors are also evoked. A second article describes the various interventions organised over 15 years to manage a site which had been contaminated by the thorium from an ancient plant: site safety, interviews of personnel, elimination of all significant radioactivity. The last article addresses the case of another site, Chef de Baie in La Rochelle, which had been used as a deposit for contaminated materials produced by a neighbouring plant, and where the IRSN intervened to map the radioactivity

  5. Safety in the management of radioactive substances; Seguridad en el manejo de sustancias radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Balter, Henia [Centro de Investigaciones Nucleares, Montevideo (Uruguay); Rey, Ana; Leon, Alba; Jelen, Miguel [Universidad de la Republica, Montevideo (Uruguay). Facultad de Quimica

    1994-12-31

    A brief explanation of radiation protection,external irradiation,internal contamination,risk factors, active laboratory design,localization,ventilation,working surfaces,area distribution,classification of active laboratory.Radiopharmacy laboratory,shielding, area monitoring,personal dosimetry,rules for management of open sources,maximum admitted limits for radionuclides currently used in radiopharmacy.Decontamination of active areas and materials,surfaces,equipment s.Decontamination of hands.Waste disposal.Radioactive materials transportation.Reception of radioactive materials.Bibliography.

  6. Security in the transport of radioactive material: Implementing guide. Spanish edition

    International Nuclear Information System (INIS)

    2013-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks

  7. Security in the Transport of Radioactive Material. Implementing Guide (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks.

  8. Security in the Transport of Radioactive Material. Implementing Guide (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This guide provides States with guidance in implementing, maintaining or enhancing a nuclear security regime to protect radioactive material (including nuclear material) in transport against theft, sabotage or other malicious acts that could, if successful, have unacceptable radiological consequences. From a security point of view, a threshold is defined for determining which packages or types of radioactive material need to be protected beyond prudent management practice. Minimizing the likelihood of theft or sabotage of radioactive material in transport is accomplished by a combination of measures to deter, detect, delay and respond to such acts. These measures are complemented by other measures to recover stolen material and to mitigate possible consequences, in order to further reduce the risks.

  9. The Control of Pollution (Special Waste) Regulations 1980 SI 1980 No. 1709

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations give effect to certain provisions of Community Legislation in Council Directive No. 78/319/EEC concerned with toxic and dangerous waste which will be special waste. Regulation 3 deals with radioactive waste which will be special waste if it has dangerous properties other than radioactivity. Precautions against radioactivity are dealt with under the Radioactive Substances Act 1960. (NEA) [fr

  10. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  11. Establishing community trust at radioactively contaminated sites

    International Nuclear Information System (INIS)

    Simpson, E.

    1999-01-01

    Establishing community trust is an essential element in the successful remediation of a radioactively contaminated site. The US Environmental Protection Agency (EPA), Region 2 has been involved in the clean up of numerous radioactively contaminated Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Resource Conservation Recovery Act (RCRA), and Formerly Utilized Site Remedial Action Program (FUSRAP) sites in New Jersey and New York. Each site presented a unique challenge which centered around establishing and, often, re-establishing the trust of the surrounding community. Thanks to the United States government's history regarding the use of radioactive materials, people question whether governmental regulators could possibly have the public's best interests in mind when it comes to addressing radioactively contaminated sites. It has been our experience that EPA can use its position as guardian of the environment to help establish public confidence in remedial actions. The EPA can even use its position to lend credibility to remedial activities in situations where it is not directly responsible for the clean-up. Some ways that we have found to instill community confidence are: establishing radioanalytical cross-check programs using EPA's National Air and Radiation Environmental Laboratory to provide analytical quality assurance; and establishing an environmental radiation monitoring program for the contaminated site and surrounding community. (author)

  12. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon [Kyunghee Univ., Seoul (Korea, Republic of); Yim, Sanghak; Yoon, Weonseob [Ulchin Nuclear Power Site, Ulchin (Korea, Republic of)

    2006-07-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 {approx} 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  13. Decontamination of radioactive clothing using microemulsion in carbon dioxide

    International Nuclear Information System (INIS)

    Yoo, Jaeryong; Jang, Jina; Park, Kwangheon; Kim, Hongdoo; Kim, Hakwon; Yim, Sanghak; Yoon, Weonseob

    2006-01-01

    Nuclear power is intrinsically a clean energy source due to its high energy density and low generation of waste. However, as the nuclear industry grows, a variety of radioactive wastes are increased gradually. Major subjects include contaminated components, tools, equipment, containers and facilities as well as nuclear waste such as uranium scrap and radioactive clothing. The radioactive waste can be classified by its creation. There are Trans-Uranium Nuclides (TRU), Fission Products (FP) and corrosion products. Nuclear decontamination has become an important issue in the nuclear industry. The conventional methods have some problems such as the production of secondary wastes and the use of toxic solvents. We need to develop a new method of decontamination and suggest a use of microemulsion in carbon dioxide to overcome these disadvantages. The microemulsion is the clear solution that contains the water, surfactant and carbon dioxide. The surfactant surrounded the droplet into carbon dioxide and this state is thermodynamically stable. That is, the microemulsion has a structure similar to that of a conventional water-based surfactant system. Generally, the size of droplet is about 5 ∼ 10nm. The microemulsion is able to decontaminate radioactive waste so that the polar substance is removed by water and the non-polar substance is removed by carbon dioxide. After the decontamination process, the microemulsion is separated easily to surfactant and water by decreasing the pressure under the cloud point. This way, only radioactive wastes are left in the system. Cleaned carbon dioxide is then collected and reused. Thus, there are no secondary wastes. Carbon dioxide is considered an alternative process medium. This is because it is non-toxic, non-flammable, inexpensive and easy to handle. Additionally, the tunable properties of carbon dioxide through pressure and temperature control are versatile for use in extracting organic materials. In this paper, we examine the

  14. Measurement of radioactive contamination and decontamination on wooden exteriors and garden trees in Northern Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sugiura, Hiroyuki; Kawano, Keisuke; Kayama, Yukihiko

    2012-01-01

    Measurement and decontamination of surface of trees and surrounding wooden structures contaminated by radioactive substance were studied in the gardens and public parks of Northern Fukushima Prefecture which experienced radioactive contamination due to the accident at the TEPCO's Fukushima Daiichi Nuclear Power Plant. The counts per minute (CPM) above the centre surface of wooden garden tables in open air were 1.5 times higher than those of garden benches and 9 times higher than that of a garden bench in the square gazebo. Decontamination of wooden garden benches by high-pressure washing was more effective than planing. The counts per minute (CPM) above the soil around garden trees increased by 1.2 times after high-pressure washing. Radioactivity counting rate did not decrease when the leaves fallen from zelocova trees were removed; however, they decreased by about half when soil cover was installed at the base of the trees. Clearly, the upper surfaces of garden trees and wooden surrounding structures were strongly contaminated by radioactive substances, and they should be decontaminated by high-pressure washing before removing the surface soil. (author)

  15. Biokinetics and dosimetry of radioactively labelled organic C-14 compounds

    International Nuclear Information System (INIS)

    Krins, A.; Sahre, P.; Schoenmuth, T.

    2003-12-01

    The report starts with summarising research work and the resulting scientific information in connection with the dosimetry of C-14 labelled organic compounds. Biokinetic models are developed for compounds such as benzene, phenol, aniline, nitrobenzene, and a selection of pharmaceuticals, in order to show the radioactivity distribution after administration of the C-14 labelled substances. Based on the those models, dose coefficients and excretion rates are derived. The following synoptic view of the available data library leads on to a discussion of various aspects, as eg. the question of whether and how monitoring for detection of incorporation of C-14 administered with labelled organic compounds is possible. None of the questions and aspects arising in connection with this subject can be adequately dealt with in the present document, but concepts and methods are presented which permit an interpretation of radioactivity excretion data measured after incorporation of C-14 labelled organic substances. (orig./CB) [de

  16. ARPS submission to Commission of Enquiry into Occupational Safety and Health in NSW

    International Nuclear Information System (INIS)

    1980-01-01

    This ARPS submission relates to matters concerning the use of radiation in New South Wales. The N.S.W. Radioactive Substances Act 1957 and The Radioactive Substances Regulations 1959, as amended, are now significantly out of date. Recommendations for amendments to the legislation are given. Other areas included are the lack of a comprehensive policy in N.S.W. regarding the training requirements for persons who are to work with radiation, the employment of radiation protection officers, administering control over the uses of radiation and the importance of a national radioactive waste management policy

  17. The risk of storing radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Gruemm, H.

    1976-09-01

    Serious bottle-necks exist in the nuclear fuel cycle and will continue for the next decade. A total of 800 nuclear reactors are now in operation. 153 nuclear power plants represent an installed capacity of 70 GVe. Until 1985 five hundred nuclear power plants will be in operation from which up to this date 53.000 t uranium will have been discharged. Part of this will have to be reprocessed. Associated with the above mentioned amount are 500 t plutonium and 1.500 t highly radioactive wastes. Two risks for the population have to be considered: firstly, the effect of small amounts of radioactive substances released during normal operation of nuclear power plants (the annual dose is about 1 mrem per person). Secondly, the possibility of the release of great amounts of radioactivity during heavy accidents (the probability for which is extremely small). A series of feasible possibilities for conditioning are shown. Firstly, the wastes are packed in substances which are insoluble in water. Secondly, for low and medium wastes these can be mixed with concrete or bitumen and filled into stable containers. Thirdly, the wastes could also be solidified. Fourthly, the wastes could be enclosed in small glass spheres which are embedded in a metal matrix. (H.G.)

  18. Environmental policy. Ambient radioactivity levels and radiation doses in 1998

    International Nuclear Information System (INIS)

    1999-11-01

    The report contains information on the natural (background) radiation exposure (chapter II), the natural radiation exposure as influenced by anthropogenic effects (chapter III), the anthropogenic radiation exposure (chapter IV), and the radiation doses to the environment and the population emanating from the Chernobyl fallout (chapter V). The natural radiation exposure is specified referring to the contributions from cosmic and terrestrial background radiation and intake of natural radioactive substances. Changes of the natural environment resulting from anthropogenic effects (technology applications) inducing an increase in concentration of natural radioactive substances accordingly increase the anthropogenic radiation exposure. Indoor air radon concentration in buildings for instance is one typical example of anthropogenic increase of concentration of natural radioactivity, primarily caused by the mining industry or by various materials processing activities, which may cause an increase in the average radiation dose to the population. Measurements so far show that indoor air concentration of radon exceeds a level of 200 Bq/m 3 in less than 2% of the residential buildings; the EUropean Commission therefore recommends to use this concentration value as a maximum value for new residential buildings. Higher concentrations are primarily measured in areas with relevant geological conditions and abundance of radon, or eg. in mining areas. (orig./CB) [de

  19. Principles for disposal of radioactive and chemical hazardous wastes

    International Nuclear Information System (INIS)

    Merz, E. R.

    1991-01-01

    The double hazard of mixed wastes is characterized by several criteria: radioactivity on the one hand, and chemical toxicity, flammability, corrosiveness as well as chemical reactivity on the other hand. Chemotoxic waste normally has a much more complex composition than radioactive waste and appears in much larger quantities. However, the two types of waste have some properties in common when it comes to their long-term impact on health and the environment. In order to minimize the risk associated with mixed waste management, the material assigned for ultimate disposal should be thoroughly detoxified, inertized, or mineralized prior to conditioning and packaging. Good control over the environmental consequence of waste disposal requires that detailed criteria for tolerable contamination should be established, and that compliance with these criteria can be demonstrated. For radioactive waste, there has been an extensive international development of criteria to protect human health. For non-radioactive waste, derived criteria exist only for a limited number of substances

  20. The regulation concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is established on the basis of The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Law for the prevention of radiation injuries due to radioisotopes.'' The prescriptions cover the transport of radioactive materials by railway, street rail way, ropeway, trolley buses, motorcars and light vehicles. Terms are explained, such as nuclear fuel materials, radioisotopes, radioactive substances, transported radioactive things, transported fissile things, vehicles, containers, exclusive loading, surrounding inspection area. Four types of transported radioactive things are specified, L and A types being less dangerous and BM and BU being more dangerous. Transported fissile things are classified to three kinds according to the safety to criticality of such things. Transported radioactive things except those of L type and containers with transported fissile things shall not be loaded or unloaded at the places where persons other than those concerned come in usually. Loading and unloading of such things shall be carried out so that the safety of such things is not injured. The maximum dose rate of radiation of the containers with transported radioactive things shall not be more than 200 millirem per hour on the surface and 10 millirem per hour at the distance of 1 meter. Specified transported radioactive things shall be particularly marked by the letter of ''radioactive'' or other signs indicating as such. (Okada, K.)

  1. Managing liabilities which arise out of radioactive waste

    International Nuclear Information System (INIS)

    Hall, R.M. Jr.

    1986-01-01

    The Atomic Energy Act has established a comprehensive regulatory program which governs the management of most radioactive wastes. There are substantial civil and criminal penalties for violations. In addition, environmental statutes such as the Resource Conservation and Recovery Act and the Superfund law impose liabilities on managers of ''non-nuclear'' hazardous wastes. The availability of common law remedies by private parties subjects companies and their officers and employees, and in some cases the government, to liability for personal injuries or property damage. An environmental manager at any facility where radioactive materials are being handled must be aware of these potential liabilities and should engage in a regular program of environmental auditing to ensure compliance

  2. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  3. Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers - prehaptens and prohaptens.

    Science.gov (United States)

    Karlberg, Ann-Therese; Börje, Anna; Duus Johansen, Jeanne; Lidén, Carola; Rastogi, Suresh; Roberts, David; Uter, Wolfgang; White, Ian R

    2013-12-01

    Experimental and clinical studies have shown that fragrance substances can act as prehaptens or prohaptens. They form allergens that are more potent than the parent substance by activation outside or in the skin via abiotic (chemical and physical factors) and/or biotic activation, thus, increasing the risk of sensitization. In the present review a series of fragrance substances with well documented abiotic and/or biotic activation are given as indicative and illustrative examples of the general problem. Commonly used fragrance substances, also found in essential oils, autoxidize on contact with air, forming potent sensitizers that can be an important source for contact allergy to fragrances and fragranced products. Some of them can act as prohaptens and be activated in the skin as well. The experimental findings are confirmed in large clinical studies. When substances with structural alerts for acting as prohaptens and/or prehaptens are identified, the possibility of generating new potent allergens should be considered. Predictive testing should include activation steps. Further experimental and clinical research regarding activation of fragrance substances is needed to increase consumer safety. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Report on the evaluation under the Act No 24/2006 of Coll. Environmental Impact Assessment Law Extension of National Radioactive Waste Repository in Mochovce for disposal low-level radioactive waste and construction of very low-level radioactive waste repository; Sprava o hodnoteni v zmysle zakona NR SR c.24/2006 o posudzovani vplyvov na ZP. Rozsirenie RU RAO v Mochovciach pre ukladanie NSAO a vybudovanie uloziska pre VNAO

    Energy Technology Data Exchange (ETDEWEB)

    Hanusik, V; Moravek, J; Kusovska, Z [VUJE, a.s., 91864 Trnava (Slovakia)

    2011-11-30

    The report elaborated assessment of the environmental impact of extension of the National Radioactive Waste Repository in Mochovce for disposal of low and intermediate level radioactive wastes. Within this repository also the premises for very low level radioactive waste deposition should be built. The assessment report was prepared according to the Act no. 24/2006 Coll, as amended 'On the assessment of environmental impacts' Annex No. 11 upon The scope of assessment issued by the competent authority on the basis of assessment of Intent for this action. The report was prepared in VUJE, Inc. Trnava for Nuclear and Decommissioning Company, Inc. Bratislava (JAVYS).

  5. Radioactive air and surface contamination in Czechia and Slovakia

    International Nuclear Information System (INIS)

    Rumyantsev, V.V.

    1992-01-01

    Data are presented on the radioactive substance effluents into the environment in conditions of NPP normal operation and on the air contamination by 85 Kr due to operation of the European and Soviet plants for reprocessing spent nuclear fuel. Data are given on the dosage of the Czechoslovakia population due to the Chernobyl NPP accident

  6. Determination of detailed regulations concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations concerning transportation of radioactive materials by vehicles''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding the radioactive materials with not more than 15 grams of such uranium and plutonium. The permissible surface density is 1/100,000 microcurie per cm 2 for radioactive materials emitting alpha-ray and 1/10,000 microcurie per cm 2 for such materials which does not emit alpha-ray. For the radioactive materials which can be transported as L type loads, their kinds and quantities are specified in the forms of solid, liquid and gas, respectively. Transporting conditions including the quantity and leakage in A, BM and BU type loads are provided for, respectively, in the lists attached and in the particular sections. (Okada, K.)

  7. Results of measurements of the radioactive contamination of the biosphere in the Netherlands, compiled by the CCRX 1983

    International Nuclear Information System (INIS)

    1983-01-01

    In this internal annual report results are given of measurements of the radioactive contamination of the biosphere in the Netherlands. These measurements are coordinated by the Coordinating Committee for the Monitoring of Radioactive and Xenobiotic Substances (CCRX). Also samples of milk and grass from surroundings of nuclear reactors have been analysed

  8. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  9. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act.

    Science.gov (United States)

    Johnson, Matthew W; Griffiths, Roland R; Hendricks, Peter S; Henningfield, Jack E

    2018-06-05

    This review assesses the abuse potential of medically-administered psilocybin, following the structure of the 8 factors of the US Controlled Substances Act (CSA). Research suggests the potential safety and efficacy of psilocybin in treating cancer-related psychiatric distress and substance use disorders, setting the occasion for this review. A more extensive assessment of abuse potential according to an 8-factor analysis would eventually be required to guide appropriate schedule placement. Psilocybin, like other 5-HT2A agonist classic psychedelics, has limited reinforcing effects, supporting marginal, transient non-human self-administration. Nonetheless, mushrooms with variable psilocybin content are used illicitly, with a few lifetime use occasions being normative among users. Potential harms include dangerous behavior in unprepared, unsupervised users, and exacerbation of mental illness in those with or predisposed to psychotic disorders. However, scope of use and associated harms are low compared to prototypical abused drugs, and the medical model addresses these concerns with dose control, patient screening, preparation and follow-up, and session supervision in a medical facility. (1) psilocybin has an abuse potential appropriate for CSA scheduling if approved as medicine; (2) psilocybin can provide therapeutic benefits that may support the development of an approvable New Drug Application (NDA) but further studies are required which this review describes; (3) adverse effects of medical psilocybin are manageable when administered according to risk management approaches; and (4) although further study is required, this review suggests that placement in Schedule IV may be appropriate if a psilocybin-containing medicine is approved. Copyright © 2018. Published by Elsevier Ltd.

  10. Modelling migration in the marine environment of radioactive substances from Fukushima Daiichi with the use of computer code POMRad

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, A.L.; Nossov, A.V.; Kisselev, V.P. [Nuclear Safety Institute of Russian Academy of Sciences, 52, B. Tulskaya, Moscow (Russian Federation)

    2014-07-01

    Fukushima accident proved once more the necessity of computer codes for modelling of radioactive substances migration in the marine environment. Radionuclides were discharged (and leaked) into the sea with contaminated waters and fell-out from the atmosphere. Unfortunately assessments of the radioactivity sources differ significantly. The uncertainty is significant as for contamination that took place in months following the disaster as for leakages that took place in 2013. According to most researches, in the spring of 2011 the most important sources of radioactive pollution of the sea were direct inflows of contaminated water. In the long-term, due to contamination of river basins, the inflow of radioactivity with river waters may become the most significant source. Strontium, iodine and cesium tend to migrate in seas in dissolved state due to small values of K{sub d} (distribution factor water - suspended sediments). However distribution factor of Cs in fresh water is high. Thus it can be assumed that most of cesium entering the sea with a river flow will be sorbed on suspended particles. Sedimentation of the particles can lead to development of contaminated areas of bottom sediments. Thus modelling migration and transformation of radionuclides in water bodies is an important radioecological problem. The three-dimensional dynamic computer code POMRad is a tool for solution of the problem. It can be used to implement full cycle of modelling: - hydrological modelling - computation of fields of currents (and other important hydrological characteristics); - sediment transport modelling (cohesive, non-cohesive and 'hot particles' if necessary); - radioactivity transport modelling (taking into account decay, sorption, desorption, etc). The article is aimed to give a brief description of the computer code and examples of its use for modelling of migration in the sea of radionuclides from Fukushima Daiichi nuclear power plant (NPP). The base of POMRad is the

  11. Determination of detailed standards for transportation of radioactive materials by ships

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations on the transport and storage of dangerous things by ships''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials, etc., include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding such materials of not more than 15 grams. The permissible surface density of radioactive materials is 1/100,000 of one microcurie per cm 2 for the radioactive materials emitting alpha-ray and 1/10,000 of one microcurie per cm 2 for the radioactive materials not emitting alpha-ray. For the radioactive materials which can be transported as L type cargo, their quantity of radioactivity is defined in their solid, liquid and gaseous forms. The limit of quantity of such cargo is described in detail in the lists attached. Transporting conditions of A, BM and BU type cargos are specified respectively in the particular sections. (Okada, K.)

  12. Release procedures and disposal of radioactive residual substances at the Medical University Hanover (MHH)

    International Nuclear Information System (INIS)

    Scheller, F.; Behrendt, R.; Harke, H.

    2005-01-01

    The disposal of all radioactive residual packages of the MHH is regulated by the German radiation protection ordinance from 26 th July 2001; shown in appendix III, table 1, column 5: unrestricted release of solid materials and liquids. All radioactive waste packages are collected and handled by the central MHH department for radiation protection. They are sorted for type, nuclide and specific radioactivity. A few packages can directly be released as conventional waste after performing incoming measurements showing very low activity concentrations. Longer living radionuclides with specific activities above the release limits have to be delivered to the national waste disposal. For direct measurements of gamma-emitting radionuclides we use two in-situ-measuring units (ISOCS, Canberra) and a special release unit with 9 plastic scintillators in a fixed geometry (FR-9 PVT, MED Medizintechnik). Fluid beta-emitting radionuclides are measured by taking a fraction and using liquid scintillation counting (LSC). Solid beta-emitting radionuclides activity are calculated. (orig.)

  13. Device for removing radioactive solids in wet gases

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Miyo, Hiroaki.

    1981-01-01

    Purpose: To enable removal and decontamination of radioactive solids in wet gases simply, easily and securely by removing radioactive solids in gases by filteration and applying microwaves to filters to evaporate condensed moistures. Constitution: Objects to be heated such as solutions, sludges and solids containing radioactive substances are placed in an evaporation vessel and a microwave generator is operated. Microwaves are applied to the objects in the evaporation vessel through a shielding plate and filters. The objects are evaporated and exhausted gases are passed through the filters and sent to an exhaust gas processing system by way of an exhaust gas pipe. Condensed moistures deposited on the filters which would otherwise cause cloggings are evaporated being heated by the microwaves to prevent cloggings. The number of stages for the filters may optionally be adjusted depending on the extent of the contamination in the exhaust gases. (Kawakami, Y.)

  14. Act no 388 to amend Section 15 of the Nuclear Liability Act

    International Nuclear Information System (INIS)

    1986-01-01

    Finland is ratifying the Montreal Protocols Nos 3 and 4 to the Warsaw Convention concerning carriage by air; protocol No 4 contains no exclusion clause for nuclear damage. This Act amends the 1972 Nuclear Liability Act to the effect that air carriers of nuclear substances have a right of recourse against the operator liable under nuclear legislation. In this way the principle of channelling liability onto the nuclear operator is maintained. (NEA) [fr

  15. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  16. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  17. Radioactive Waste Management in A Hospital

    Science.gov (United States)

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  18. Long-lived radioactive waste and nuclear plant decommissioning a legacy to future generations

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1996-01-01

    Radioactive waste is an inevitable by-product of all uses of radioactive substances. This is the case of natural radioactivity as well as for artificially produced radioactive isotopes, and it is easy to overlook the significance of the waste problem in the case of technologically enhanced natural radioactivity. Several options are available for the disposal of radioactive waste and the paper considers these in detail from the point of view of the possible future impact of radiation doses to individuals or populations. Particular consideration is given to the use of deep disposal at stable geological sites as a means of dealing with large amounts of radioactive waste. It should not be forgotten that some of what we term waste today need not necessarily always be so. Indeed, there is a good case to make for the recycling of low activity materials rather than the uneconomic expedient of burying them. The paper will consider the possible recycling of valuable materials following suitable reprocessing and dilution and mention the dose implications of examples of such re-utilisation of radioactive materials

  19. Long-lived radioactive waste and nuclear plant decommissioning a legacy to future generations

    Energy Technology Data Exchange (ETDEWEB)

    McAulay, I R [Trinity Coll., Dublin (Ireland). Physical Lab.

    1996-10-01

    Radioactive waste is an inevitable by-product of all uses of radioactive substances. This is the case of natural radioactivity as well as for artificially produced radioactive isotopes, and it is easy to overlook the significance of the waste problem in the case of technologically enhanced natural radioactivity. Several options are available for the disposal of radioactive waste and the paper considers these in detail from the point of view of the possible future impact of radiation doses to individuals or populations. Particular consideration is given to the use of deep disposal at stable geological sites as a means of dealing with large amounts of radioactive waste. It should not be forgotten that some of what we term waste today need not necessarily always be so. Indeed, there is a good case to make for the recycling of low activity materials rather than the uneconomic expedient of burying them. The paper will consider the possible recycling of valuable materials following suitable reprocessing and dilution and mention the dose implications of examples of such re-utilisation of radioactive materials.

  20. Radioactive waste in Federal Germany

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1988-01-01

    The Physikalisch-Technische Bundesanstalt (PTB) is responsible for the long-term storage and disposal of radioactive waste according to the Federal Atomic Energy Act. On behalf of the Federal Minister of the Environment, Nature Conservation and Nuclear Safety, since 1985, the PTB has been carrying out annual inquiries into the amounts of radioactive waste produced in the Federal Republic of Germany. Within the scope of this inquiry performed for the preceding year, the amounts of unconditioned and conditioned waste are compiled on a producer- and plant-specific basis. On the basis of the inquiry for 1986 and of data presented to the PTB by the waste producers, future amounts of radioactive waste have been estimated up to the year 2000. The result of this forecast is presented. In the Federal Republic of Germany two sites are under consideration for disposal of radioactive waste. In the abandoned Konrad iron mine in Salzgitter-Bleckenstedt it is intended to dispose of such radioactive waste which has a negligible thermal influence upon the host rock. The Gorleben salt dome is being investigated for its suitability for the disposal of all kinds of solid and solidified radioactive wastes, especially of heat-generating waste. Comparing the estimated amount of radioactive wastes with the capacity of both repositories it may be concluded that the Konrad and Gorleben repositories will provide sufficient capacity to ensure the disposal of all kinds of radioactive waste on a long-term basis in the Federal Republic of Germany. 1 fig., 2 tabs