WorldWideScience

Sample records for radioactive nuclei capture

  1. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  2. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  3. Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lazauskas, R.; Volpe, C. [Institut de Physique Nuclueaire, 91 - Orsay (France); Vogel, P. [Kellogg Radiation Lab., Caltech, Pasadena, California (United States)

    2007-07-01

    We discuss the cross section formula both for massless and massive neutrinos on stable and radioactive nuclei. The latter could be of interest for the detection of cosmological neutrinos whose observation is one of the main challenges of modern cosmology. We analyze the signal to background ratio as a function of the ratio m{nu}/{delta}, i.e. the neutrino mass over the detector resolution and show that an energy resolution {delta} {<=} 0.5 eV would be required for sub-eV neutrino masses, independently of the gravitational neutrino clustering. Finally we mention the non-resonant character of neutrino capture on radioactive nuclei. (authors)

  4. Reentrainment of radioactive nuclei from filters

    International Nuclear Information System (INIS)

    Dincklage, R.-D. von

    1982-01-01

    The possible relevance of atomic phenomena for the reentrainment of radioactive nuclei is discussed. The considerations are based on the coulombic fragmentation mechanism. Nuclei of potential interest in reprocessing technology are identified. Future experiments have been shown to be of definite need in this field. (author)

  5. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  6. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  7. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  8. Possibility of a crossed-beam experiment involving slow-neutron capture by unstable nuclei - ``rapid-process tron''

    Science.gov (United States)

    Yamazaki, T.; Katayama, I.; Uwamino, Y.

    1993-02-01

    The possibility of a crossed beam facility of slow neutrons capturing unstable nuclei is examined in connection with the Japanese Hadron Project. With a pulsed proton beam of 50 Hz repetition and with a 100 μA average beam current, one obtains a spallation neutron source of 2.4 × 10 8 thermal neutrons/cm 3/spill over a 60 cm length with a 3 ms average duration time by using a D 2O moderator. By confining radioactive nuclei of 10 9 ions in a beam circulation ring of 0.3 MHz revolution frequency, so that nuclei pass through the neutron source, one obtains a collision luminosity of 3.9 × 10 24/cm 2/s. A new research domain aimed at studying rapid processes in nuclear genetics in a laboratory will be created.

  9. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    OpenAIRE

    Tornow W.; Bhike Megha

    2015-01-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar...

  10. Radiative muon capture on nuclei and protons

    International Nuclear Information System (INIS)

    Azuelos, G.; Gorringe, T.P.; Henderson, R.; Macdonald, J.A.; Poutissou, J.M.; Azuelos, G.; Depommier, P.; Poutissou, R.; Ahmad, S.; Burnham, A.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E.; Wright, D.H.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Bertl, W.; Chen, C.Q.; Zhang, N.S.; McDonald, S.C.; Taylor, G.N.; Robertson, B.C.

    1990-01-01

    A brief review is made of the study of gp, the induced pseudoscalar coupling constant, in radiative muon capture on light nuclei, and of motivations for a measurement on hydrogen, with particular emphasis on recent and ongoing experiments at TRIUMF [fr

  11. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    Science.gov (United States)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  12. Microscopic study of proton emission from heavy nuclei

    International Nuclear Information System (INIS)

    Sahu, B.B.; Patra, S.K.; Agarwalla, S.K.

    2011-01-01

    In recent years many theoretical calculations have been employed to explain the observed lifetimes of proton radioactivity and alpha decay processes in the region of proton rich nuclei. These data are very promising for the analysis of possible irregularities in the structure of these proton-rich nuclei. They are also of great interest in rapid proton capture processes. Some new results for proton radioactivity in this region of proton-rich nuclei have indicated that the proton emission mode is rather competitive with the alpha decay one. In the energy domain of radioactivity, proton can be considered as a point charge having highest probability of being present in the parent nucleus

  13. Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae

    Science.gov (United States)

    Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.

    2018-01-01

    The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.

  14. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    Science.gov (United States)

    Tornow, W.; Bhike, Megha

    2015-05-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  15. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    Directory of Open Access Journals (Sweden)

    Tornow W.

    2015-01-01

    Full Text Available A program is underway at the Triangle Universities Nuclear Laboratory (TUNL to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  16. Capturing device for radioactive corrosion products

    International Nuclear Information System (INIS)

    Ono, Kiyoshi.

    1987-01-01

    Purpose: To render the flow channel area uniform for each of coolants over the entire capturing device and reduce the corrosion of capturing materials due to coolants. Constitution: Most of radioactivity caused by radioactive corrosion products are due to Mn-54 radioactive nuclides and it has been known that the nuclides are readily deposited to the surface of nickel material in sodium at high temperature. It is difficult in a conventional capturing device constituted by winding a nickel plate fabricated with protrusions in a multiple-coaxial configuration, that the flow channel area is reduced in a portion of the flow channel and it is difficult to make the flow of the coolants uniform. In view of the above, by winding a nickel plate having a plurality of protrusions at the surface formed integrally by way of an electrolytic process into a multiple-coaxial or spiral shape, those having high resistance to the coolant corrosion can be obtained. (Takahashi, M.)

  17. New aspects of the neutron capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, A. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    Several neutron capture cross sections of light nuclei (A {<=} 40) for neutron energies up to the MeV region have been recently calculated. Examples are (target nuclei): {sup 12}C, {sup 13}C, {sup 16}O and {sup 10}Be. The results of these calculations will be shown together with a comparison with the most recent experimental data. In the case of n + {sup 10}Be case, the cross section of the inverse process (Coulomb dissociation of {sup 11}Be) is considered and compared with the measurement. A discussion on the relevant nuclear structure information required for the evaluation of nuclear data of light nuclei is given. (author)

  18. Precise mass measurements of exotic nuclei--the SHIPTRAP Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Herfurth, F.; Ackermann, D.; Block, M.; Dworschak, M.; Eliseev, S.; Hessberger, F.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Rauth, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Neidherr, D.; Chaudhuri, A.; Marx, G.; Schweikhard, L.; Neumayr, J.

    2007-01-01

    The SHIPTRAP Penning trap mass spectrometer has been designed and constructed to measure the mass of short-lived, radioactive nuclei. The radioactive nuclei are produced in fusion-evaporation reactions and separated in flight with the velocity filter SHIP at GSI in Darmstadt. They are captured in a gas cell and transfered to a double Penning trap mass spectrometer. There, the cyclotron frequencies of the radioactive ions are determined and yield mass values with uncertainties ≥4.5·10 -8 . More than 50 nuclei have been investigated so far with the present overall efficiency of about 0.5 to 2%

  19. Device of capturing for radioactive corrosion products

    International Nuclear Information System (INIS)

    Ohara, Atsushi; Fukushima, Kimichika.

    1984-01-01

    Purpose: To increase the area of contact between the capturing materials for the radioactive corrosion products contained in the coolants and the coolants by producing stirred turbulent flows in the coolant flow channel of LMFBR type reactors. Constitution: Constituent materials for the nuclear fuel elements or the reactor core structures are activated under the neutron irradiation, corroded and transferred into the coolants. While capturing devices made of pure metal nickel are used for the elimination of the corrosion products, since the coolants form laminar flows due to the viscosity thereof near the surface of the capturing materials, the probability that the corrosion products in the coolants flowing through the middle portion of the channel contact the capturing materials is reduced. In this invention, rotating rolls and flow channels in which the balls are rotated are disposed at the upstream of the capturing device to forcively disturb the flow of the liquid sodium, whereby the radioactive corrosion products can effectively be captured. (Kamimura, M.)

  20. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    Science.gov (United States)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  1. A note on total muon capture rates in heavy nuclei

    International Nuclear Information System (INIS)

    Parthasarathy, R.

    1978-03-01

    The results of calculations of the total capture rates in heavy nuclei, into account the nucleon velocity-dependent terms in the Fujii-Primakoff Hamiltonian and the effective mass of nucleons inside the nucleus, are presented along with the recent experimental data. The results are in general agreement with experiment. However, they indicate a possible deviation from SU(4) symmetry and, in some nuclei, support the Salam-Strathdee idea of the vanishing of the Cabibbo angle at large magnetic fields.

  2. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  3. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  4. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  5. Nuclear moments of radioactive nuclei. Final report

    International Nuclear Information System (INIS)

    Greenlees, G.W.

    1985-01-01

    An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126 Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs

  6. Decay schemes of the radioactive nuclei A = 225 to 229. Skhemy raspada radioaktivnykh yader A = 225 - 229

    Energy Technology Data Exchange (ETDEWEB)

    Dzhelepov, B S; Ivanov, R B; Mikhailova, M A

    1976-01-01

    This monograph is devoted to properties of atomic nuclei with mass numbers A = 225 to 229. The book collects and systematizes all of the experimental data characterizing properties of radioactive isotopes: information concerning masses of nuclei, magnetic and electric moments, lifetimes of nuclear states, the most reliable information on characteristics of radiations, quantum characteristics of levels and other properties of the studied nuclei. On basis of a critical analysis of the totality of information, decay schemes of radioactive nuclei with mass numbers A = 225 to 229 were constructed, as well as the series of excited states of the isotopes which lie in this region of nuclei.

  7. Neutron emission study after muon capture by nuclei

    International Nuclear Information System (INIS)

    Bouyssy, Alain.

    1974-01-01

    Muon capture by nuclei, used in the beginning for checking the weak interaction, is now a method of investigation of nuclear structure. Study of spectrum, asymmetry and polarization of emitted neutrons after polarized muon capture has been done in three directions: weak coupling constants, final state interaction, nuclear wave functions. The neutron intensity and helicity are very dependent of the neutron - residual nucleus interaction, while the asymmetry is sensitive to the wave functions used for the proton. Moreover if the induced tensor coupling constant is different from zero the asymmetry is increased. Longitudinal polarization experiments, with those for neutron intensity, would be of great interest to give informations on neutron asymmetry [fr

  8. Storage ion trap of an 'In-Flight Capture' type for precise mass measurement of radioactive nuclear reaction products and fission fragments

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    2001-01-01

    Data on nuclear masses provide a basis for creating and testing various nuclear models. A tandem system of FLNR comprised of the U-400M cyclotron, the COMBAS magnetic separator and the mass-spectrometric ion trap of an 'in-flight capture' type is considered as a possible complex for producing of the short-lived nuclei in fragmentation reactions by heavy ions and for precise mass measurement of these nuclei. The plan of scientific and technical FLNR research includes a project DRIBs for producing beams of accelerated radioactive nuclear reaction products and photofission fragments. This project proposes also precise mass measurements of the fission fragment with the help of the ion trap. The in-flight entrance of the ions and their capture in the mass-spectrometric ion trap using the monochromatizing degrader, the static electric and magnetic fields and a new invention, a magnetic unidirectional transporting ventil, is considered

  9. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  10. The radiative capture of fast nucleons in the mass area of medium and heavy nuclei

    International Nuclear Information System (INIS)

    Rigaud, F.

    1978-01-01

    The radiative capture of 14 MeV neutrons cross-sections on the 59 Co, 93 Nb, 103 Rh, 133 Cs, 139 La, Ce and 159 Tb nuclei were investigated by the integration method and by the activation method on the 27 Al, 50 Ti, 51 V, 103 Rh, 127 I and 139 La nuclei. The gamma-ray spectra following the capture of 8-22 MeV protons on 110 Cd and 115 In nuclei were measured and the single-particle states capture cross-sections deduced. The 110 Cd(p,γ 0 ) 111 In angular distribution was also measured at 13 MeV. The direct and semi-direct processes explained the experimental results. The volume form of the coupling interaction was adequate to account the neutrons results and the surface form to account the 110 Cd(p,γ 0 ) 111 In results. The 110 Cd nuclei electric quadrupole excitation was formed negligible compared with the electric dipole excitation which is adequate to explain the 110 Cd(p,γ 0 ) 111 In excitation function [fr

  11. Studies of the neutron single-particle structure of exotic nuclei at the HRIBF

    International Nuclear Information System (INIS)

    Thomas, J.S.; Bardayan, D.W.; Blackmon, J.C.; Cizewski, J.A.; Greife, U.; Gross, C.J.; Johnson, M.S.; Jones, K.L.; Kozub, R.L.; Liang, J.F.; Livesay, R.J.; Ma, Z.; Moazen, B.H.; Nesaraja, C.D.; Shapira, D.; Smith, M.S.

    2004-01-01

    The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a 82 Ge beam will be presented

  12. Decay of giant resonances states in radiative pion capture by 1p shell nuclei

    International Nuclear Information System (INIS)

    Dogotar, G.E.

    1978-01-01

    The decay of the giant resonance states excited in tthe radiative pion capture on the 9 Be, 11 B, 13 C and 14 N nuclei is considered in the shell model with intermediate coupling. It is shown that the excited states in the daughter nuclei (A-1, Z-1) are mainly populated by intermediate states with spin by two units larger than the spin of the target nuclei. Selected coincidence experiments are proposed

  13. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  14. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  15. Polarization of stable and radioactive noble gas nuclei by spin exchange with laser pumped alkali atoms

    International Nuclear Information System (INIS)

    Calaprice, F.; Happer, W.; Schreiber, D.

    1984-01-01

    The nuclei of noble gases can be strongly polarized by spin exchange with sufficiently dense optically pumped alkali vapors. Only a small fraction of the spin angular momentum of the alkali atoms is transferred to the nuclear spin of the noble gas. Most of the spin angular momentum is lost to translational angular momentum of the alkali and noble gas atoms about each other. For heavy noble gases most of the angular momentum transfer occurs in alkali-noble-gas van der Waals molecules. The transfer efficiency depends on the formation and breakup rates of the van der Waals molecules in the ambient gas. Experimental methods to measure the spin transfer efficiencies have been developed. Nuclei of radioactive noble gases have been polarized by these methods, and the polarization has been detected by observing the anisotropy of the radioactive decay products. Very precise measurements of the magnetic moments of the radioactive nuclei have been made. 12 references, 9 figures

  16. Near and sub-barrier fusion studies with radioactive nuclei: an overview

    International Nuclear Information System (INIS)

    Majumdar, Harashit

    2004-01-01

    Full text: Understanding of the reaction mechanism with radioactive nuclei, e.g., halo nuclei, at near barrier energies appears to be a challenging problem at present. Recent experimental and theoretical investigations of fusion of exotic nuclei with stable targets have yielded new insights into the structure of these nuclei and its effects on the fusion reaction dynamics. One interesting and intriguing result of this type of study is the controversy over fusion enhancement in the presence of strong break-up channels. Other novel information include an increase of break-up cross-sections and weakening or absence of threshold anomaly, related to energy dependence of optical model potentials, in the neighbourhood of the barrier. It is believed that the coupling of the entrance channel to different non-elastic channels (including break-up) is responsible for the above phenomena and these aspects are more prominent in the near barrier region. An overview of the experimental studies of fusion excitation function with RIB will be presented

  17. Near and sub-barrier fusion studies with radioactive nuclei: an overview

    International Nuclear Information System (INIS)

    Majumdar, Harashit

    2004-01-01

    Full Text: Understanding of the reaction mechanism with radioactive nuclei, e.g., halo nuclei, at near barrier energies appears to be a challenging problem at present. Recent experimental and theoretical investigations of fusion of exotic nuclei with stable targets have yielded new insights into the structure of these nuclei and its effects on the fusion reaction dynamics. One interesting and intriguing result of this type of study is the controversy over fusion enhancement in the presence of strong break-up channels. Other novel information include an increase of break-up cross-sections and weakening or absence of threshold anomaly, related to energy dependence of optical model potentials, in the neighbourhood of the barrier. It is believed that the coupling of the entrance channel to different non-elastic channels (including break-up) is responsible for the above phenomena and these aspects are more prominent in the near barrier region. An overview of the experimental studies of fusion excitation function with RIB will be presented

  18. Studies of nuclei using radioactive beams

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden

  19. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  20. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  1. Electron scattering off short-lived radioactive nuclei

    International Nuclear Information System (INIS)

    Wang, S.; Emoto, T.; Furukawa, Y.

    2009-01-01

    We have established a novel method which make electron scattering off short-lived radioactive nuclei come into being. This novel method was named SCRIT (Self-Confining RI ion Target). It was based on the well known "ion trapping" phenomenon in electron storage rings. Stable nucleus, 133 Cs, was used as target nucleus in the R&D experiment. The luminosity of interaction between stored electrons and Cs ions was about 1.02(0.06) × 10 26 cm -2 s -1 at beam current around 80 mA. The angular distribution of elastically scattered electrons from trapped Cs ions was measured. And an online luminosity monitor was used to monitor the change of luminosity during the experiment. (author)

  2. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    Science.gov (United States)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A theoretical methods.

  3. Measurement of proton capture reactions in the hot cycles: an evaluation of experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Leleux, P [Inst. de Physique Nucleaire, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1998-06-01

    In the hot cycles, most of the proton capture reactions involve radioactive nuclei in the entrance and exit channels. This paper evaluates the specific methods that were designed to measure such reactions. (orig.)

  4. Fast and slow radioactive beams in study of light nuclei far from stability

    International Nuclear Information System (INIS)

    Lewitowicz, M.

    2003-01-01

    Several examples of results of recent experiments performed with the SPIRAL ISOL-type and GANIL high energy radioactive beams on the properties of nuclei far from stability are presented. Future plans of the GANIL/SPIRAL facility related to the SPIRAL II project are shortly discussed. (orig.)

  5. Form coexistence in light krypton nuclei. Isomeric spectroscopy of 72,74Kr nuclei and Coulomb excitation of the 76Kr radioactive beam

    International Nuclear Information System (INIS)

    Bouchez, Emmanuelle

    2003-01-01

    The first part of this research thesis proposes an overview of the different theoretical calculations elaborated in the region of light krypton nuclei, and of published experimental results. The second part reports the electron and gamma isomeric spectroscopy of 72,74 Kr nuclei after fragmentation of the projectile by a magnetic separator (experimental installation, experimental results, discussion). The third part reports the study of the Coulomb excitation of the 76 Kr radioactive beam (method and experimental installation, data analysis and results in terms of germanium and silicon spectra, and form of the 76 Kr)

  6. Two-proton radioactivity with 2p halo in light mass nuclei A=18–34

    Directory of Open Access Journals (Sweden)

    G. Saxena

    2017-12-01

    Full Text Available Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A=18–34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far. Keywords: Relativistic mean-field theory, Nilson Strutinsky approach, Two-proton radioactivity, One- and two-proton separation energy, Halo nuclei, Proton drip-lines

  7. Photon strength in spherical and deformed heavy nuclei

    International Nuclear Information System (INIS)

    Grosse, E.; Junghans, A.; Birgersson, E.; Massarczyk, R.; Schramm, G.; Becvar, F.

    2010-01-01

    Information on the photon strength in heavy nuclei with mass A>150 will be given and compared to respective data. The photon strength function is a very important ingredient for statistical model calculations - especially when these are used to describe neutron capture. Several schemes for a transmutation of radioactive waste favor nuclear reactions with fast neutrons and these also influence the performance of various reactor types proposed to deliver nuclear energy together with only small quantities of such waste. Reactions with fast neutrons are far less studied as compared to those induced by thermal neutrons. As they are not easily accessible experimentally, reference is often made to calculations using the statistical model. Photon emission probabilities are needed as input to such calculations aiming for predictions on fission to capture ratios. From the favorable comparison of our parameterization to the experimental data for photon induced as well radiative capture processes in nuclei with various shapes and level densities we conclude what follows. First, the giant dipole resonance has very much the same properties in all heavy nuclei when their deformation is properly accounted for and its spreading width varies only smoothly with the resonance energies E k and not with the photon energy E γ . The radiative neutron capture results presented confirm strength data found in the literature. We also learn that our parameterization is at least a good approximation for photon energies below 4 MeV that dominate this process

  8. Precision Gamma-Ray Branching Ratios for Long-Lived Radioactive Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tonchev, Anton [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    Many properties of the high-energy-density environments in nuclear weapons tests, advanced laser-fusion experiments, the interior of stars, and other astrophysical bodies must be inferred from the resulting long-lived radioactive nuclei that are produced. These radioactive nuclei are most easily and sensitively identified by studying the characteristic gamma rays emitted during decay. Measuring a number of decays via detection of the characteristic gamma-rays emitted during the gamma-decay (the gamma-ray branching ratio) of the long-lived fission products is one of the most straightforward and reliable ways to determine the number of fissions that occurred in a nuclear weapon test. The fission products 147Nd, 144Ce, 156Eu, and certain other long-lived isotopes play a crucial role in science-based stockpile stewardship, however, the large uncertainties (about 8%) on the branching ratios measured for these isotopes are currently limiting the usefulness of the existing data [1,2]. We performed highly accurate gamma-ray branching-ratio measurements for a group of high-atomic-number rare earth isotopes to greatly improve the precision and reliability with which the fission yield and reaction products in high-energy-density environments can be determined. We have developed techniques that take advantage of new radioactive-beam facilities, such as DOE's CARIBU located at Argonne National Laboratory, to produce radioactive samples and perform decay spectroscopy measurements. The absolute gamma-ray branching ratios for 147Nd and 144Ce are reduced <2% precision. In addition, high-energy monoenergetic neutron beams from the FN Tandem accelerator in TUNL at Duke University was used to produce 167Tm using the 169Tm(n,3n) reaction. Fourtime improved branching ratio of 167Tm is used now to measure reaction-in-flight (RIF) neutrons from a burning DT capsule at NIF [10]. This represents the

  9. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  10. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  11. Statistical properties of warm nuclei: Investigating the low-energy enhancement in the $\\gamma$- strength function of neutron-rich nuclei

    CERN Multimedia

    We propose to start a program to study the $\\gamma$-ray strength function of neutron rich nuclei in inverse kinematics with radioactive beams at HIE-ISOLDE. An unexpected increase in the $\\gamma$-strength function at low energy has been observed in several stable nuclei using the Oslo method. This year these results were confirmed with a different experimental technique and model independent analysis developed by iThemba/Livermore. If this enhancement of the $\\gamma$-strength function is also present in neutron-rich nuclei, it will strongly affect the neutron capture cross sections, which are important input in stellar models of synthesis of heavier elements in stars. We propose to start with an experiment using a $^{66}$Ni beam of 5.5 MeV /u, where the data will be analyzed using both methods independently, and we are sure to get enough statistics, before moving to more neutron-rich nuclei. When/if neutron-rich Ti, Fe or Mo beams will be available at ISOLDE, we will submit additional proposals.

  12. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  13. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  14. Neutron-captures in Low Mass Stars and the Early Solar System Record of Short-lived Radioactivities

    Science.gov (United States)

    Busso, Maurizio; Vescovi, Diego; Trippella, Oscar; Palmerini, Sara; Cristallo, Sergio; Piersanti, Luciano

    2018-01-01

    Noticeable improvements were recently introduced in the modelling of n-capture nucleosynthesis in the advanced evolutionary stages of giant stars (Asymptotic Giant Branch, or AGB, stars). Two such improvements are closely linked together and concern the introduction of non-parameterized, physical models for extended mixing processes and the adoption of accurate reaction rates for H- and He-burning reactions, including the one for the main neutron source 13C(α,n)16O. These improvements profited of a longstanding collaboration between stellar physicists and C. Spitaleri's team and of his seminal work both as a leader in the Nuclear Astrophysics scenario and as a talent-scout in the recruitment of young researchers in the field. We present an example of the innovative results that can be obtained thanks to the novelties introduced, by estimating the contributions from a nearby AGB star to the synthesis of short-lived (t1/2 ≤ 10 Myr) radioactive nuclei which were alive in early Solar System condensates. We find that the scenario indicating an AGB star as the source of such radioactivities, discussed for many years by researchers in this field, appears now to be no longer viable, when the mentioned improvements of AGB models and nuclear parameters are considered.

  15. The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment

    Energy Technology Data Exchange (ETDEWEB)

    Dzhioev, Alan A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru [JINR, Bogoliubov Laboratory of Theoretical Physics (Russian Federation); Stoyanov, Ch., E-mail: stoyanov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria)

    2016-11-15

    We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, {sup 56}Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT{sub +} transitions which dominate electron capture at E{sub e} ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.

  16. Functionalized metal organic frameworks for effective capture of radioactive organic iodides

    KAUST Repository

    Li, Baiyan

    2017-06-27

    Highly efficient capture of radioactive organic iodides (ROIs) from off-gas mixtures remains a substantial challenge for nuclear waste treatment. Current materials utilized for ROI sequestration suffer from low capacity, high cost (e.g. use of noble metals), and poor recyclability. Recently, we have developed a new strategy to tackle this challenge by functionalizing MOF materials with tertiary amines to create molecular traps for the effective capture and removal of ROIs (e.g. radioactive methyl iodide) from nuclear wastes. To further enhance the uptake capacity and performance of CH3I capture by ROI molecular traps, herein, we carry out a systematic study to investigate the effect of different amine molecules on ROI capture. The results demonstrate a record-high CH3I saturation uptake capacity of 80% for MIL-101-Cr-DMEDA at 150 °C, which is 5.3 times that of Ag0@MOR (15 wt%), a leading adsorbent material for capturing ROIs during nuclear fuel reprocessing. Furthermore, the CH3I decontamination factors (DFs) for MIL-101-Cr-DMEDA are as high as 5000 under simulated reprocessing conditions, largely exceeding that of facility regulatory requirements (DF = 3000). In addition, MIL-101-Cr-DMEDA can be recycled without loss of capacity, illustrating yet another advantage compared to known industrial adsorbents, which are typically of a

  17. A specific and correlative study of natural atmospheric radioactivity, condensation nuclei and some electrical parameters in marine or urban sites

    International Nuclear Information System (INIS)

    Le Gac, Jacqueline.

    1980-02-01

    In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222 Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air [fr

  18. Functionalized metal organic frameworks for effective capture of radioactive organic iodides

    KAUST Repository

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Shi, Zhan; Chabal, Yves J.; Han, Yu; Li, Jing

    2017-01-01

    Highly efficient capture of radioactive organic iodides (ROIs) from off-gas mixtures remains a substantial challenge for nuclear waste treatment. Current materials utilized for ROI sequestration suffer from low capacity, high cost (e.g. use of noble

  19. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  20. Some thoughts on opportunities with reactions using radioactive beams

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1990-01-01

    I was asked to talk about the use of radioactive beams for nuclear reactions. My overall perspective is that the scientific justification for such studies must be done carefully. To go to the added complexity of radioactive beams one must clearly demonstrate the need for obtaining information about nuclear structure or processes, information that is not otherwise available. On the other hand, much of what we know about nuclear structure comes from nuclear reactions with stable nuclear beams and targets. While a certain amount of information about far from stability nuclei may be obtained from the study of their radioactive decays, this is limited. Our knowledge and understanding of nuclear structure comes from stable nuclei: energy levels, their spins and parties, and very importantly the matrix elements characterizing them. These are largely determined by reaction studies with normal stable nuclei. The extension of such studies to unstable nuclei, far from stability, may well hold qualitative surprises, or at the very least give a firmer basis to our understanding of nuclear structure. Perhaps it is a matter of taste, but if one wishes to start on this endeavor then it is best to begin with simple, easily accessible features. The ''simplest'' nuclei are the ones that form doubly-closed shells and the easiest features to explore initially are the single-particle states and the collective excitations that one can build on these. I would like to emphasize that a unique facility for this type of study is about to come into operation in Darmstadt where the ESR storage ring will capture radioactive beams from fragmentation products and cool them to useful energies for reaction studies

  1. Effect of chemical structure on the radioactive decay rate of 71Ge

    International Nuclear Information System (INIS)

    Makariunas, K.; Makariuniene, E.; Dragunas, A.

    1979-01-01

    The influence of the chemical structure on the electron capture radioactive decay rate of 71 Ge was observed. 71 Ge nuclei in bivalent sulphide GeS decay faster than in quadrivalent sulphide GeS 2 . The relative change Δlambda/lambda of the decay constant lambda is + (11.4 +- 1.7) X 10 -4 . A possibility to use the experimental values of Δlambda/lambda to determine the chemical changes in the electron density at germanium nuclei in germanium chemical compounds is discussed. Quantitative determination of the changes in the electron density is complicated because of insufficient reliability of the published values of exchange and overlap corrections to the electron capture probabilities. (Auth.)

  2. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  3. An example of capturing a hotspot of man-made radioactive 152Eu

    International Nuclear Information System (INIS)

    Hu Mingkao; Fang Jiangqi; Gu Renkang

    2002-01-01

    The author presents an example of successfully capturing a hotspot of man-made radioactive 152 Eu in Dayuan when the authors carried out airborne survey for radioactivity levels in north China. The hotspot was on the front of the gate of a concrete pipe factory in Dayuan. The activity of the source was estimated roughly 4.25 x 10 8 -7.53 x 10 8 Bq. The longitudinal positioning error was less than 15 m

  4. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  5. Nuclear chemistry research and spectroscopy with radioactive nuclei: Twenty-third annual progress report

    International Nuclear Information System (INIS)

    Fink, R.W.

    1987-01-01

    Research supported in part by this contract has become totally devoted to the study of far-from-stable radioactive nuclei with the UNISOR facility [University Isotope Separator at Oak Ridge] on-line with HHIRF [Holifield Heavy Ion Research Facility]. The purpose of these UNISOR studies is to investigate the low-spin ( - γt, Xγt, and αγt multiparameter coincidence measurements are carried out, and soon measurements of singles γ-ray angular distributions and magnetic moments of mass-separated, low-temperature oriented nuclei will begin using the helium dilution refrigerator on-line to the isotope separator. In particular, what is reported centers on two neutron-deficient regions of interest, one around the Z = 82 closed shell (from Z = 77 to 85) and the other in the rare earths around the new region of deformation at N 56. 30 refs., 15 figs., 8 tabs

  6. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  7. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  8. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Morel P.

    2011-10-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  9. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Tassan-Got L.

    2012-02-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  10. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  11. Description of proton radioactivity using the Coulomb and proximity potential model for deformed nuclei

    Science.gov (United States)

    Santhosh, K. P.; Sukumaran, Indu

    2017-09-01

    Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.

  12. Astrophysical r- and rp-processes, and radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    1998-01-01

    The modern description of the r-process follows naturally from α-rich freezeout, thought to occur in the hot neutrino wind just beyond the nascent neutron star in a type II supernova. Initially, all pre-existing nuclei are reduced to α-particles and neutrons. As the environment cools, nuclei up to about mass 90 to 100 u are synthesized, in nuclear statistical equilibrium, in about 1 s. In the next few seconds, the remaining neutrons are captured to form the r-process progenitors, which then decay to the r-process nuclides. The rp-process occurs in a high-temperature H-rich environment. It is one of the processes that synthesize the p-process nuclei, the most neutron-poor nuclei in the periodic table. It is thought to occur during the explosion of a C-O white dwarf in a type Ia supernova or in a binary system during accretion onto a white dwarf or a neutron star. It appears to be capable of forming the p-nuclei up to about mass 90 u. Both processes pass through nuclei that are far from stability. Thus, their description requires the masses, half-lives, decay modes, and structure of these nuclei. The next generation of radioactive beam facilities promises to allow the study of many such nuclei. (author)

  13. Radioactivity measurements on migrating birds (Turdus philomelos) captured in the Comunidad Valenciana (Spain)

    International Nuclear Information System (INIS)

    Navarro, E.; Roldan, C.; Cervera, J.; Ferrero, J.L.

    1998-01-01

    The radionuclides 137 Cs, 134 Cs and 90 Sr have been measured in edible tissues and bones of migratory birds (song-thrushes, Turdus philomelos) from central and northern Europe and captured in the Comunidad Valenciana, Spain in the 1994 autumn-winter season. Eight years after the Chernobyl accident, extensive agricultural lands in Europe are still contaminated and this study shows that there was a transfer of radioactive isotopes to the captured migratory song-thrushes. The whole-body dose commitment to humans consuming these birds is estimated

  14. Nuclear Structure Studies On Exotic Nuclei With Radioactive Beams - Present Status And Future Perspectives At FAIR

    International Nuclear Information System (INIS)

    Peter Egelhof

    2011-01-01

    The investigation of nuclear reactions using radioactive beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The basic concept and the methods involved are briefly discussed, and an overview including some selected examples of recent results obtained with radioactive beams from the present fragment separator at GSI Darmstadt is presented. The experimental conditions expected at the future international facility FAIR will, among others, allow for a substantial improvement in intensity and quality of radioactive beams as compared to present facilities. Therefore, it is expected that FAIR will provide unique opportunities for nuclear structure studies on nuclei far off stability, and will allow to explore new regions in the chart of nuclides of high interest for nuclear structure and nuclear astrophysics. A brief overview on the new facility, and on the experimental setups planned for nuclear structure research with radioactive beams is given. For nuclear reaction studies several complex, highly efficient, high resolution, and universal detection systems such as R 3 B, EXL, ELISe, etc. are presently under design and construction. A brief overview on the research objectives and the technical realization will be presented. (author)

  15. Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  16. Beyond designed functional margins in CANDU type NPP. Radioactive nuclei assessment in an LOCA type accident

    Directory of Open Access Journals (Sweden)

    Budu Andrei Razvan

    2015-01-01

    Full Text Available European Union's energy roadmap up to year 2050 states that in order to have an efficient and sustainable economy, with minimum or decreasing greenhouse gas emissions, along with use of renewable resources, each constituent state has the option for nuclear energy production as one desirable option. Every scenario considered for tackling climate change issues, along with security of supply positions the nuclear energy as a recommended option, an option that is highly competitive with respect to others. Nuclear energy, along with other renewable power sources are considered to be the main pillars in the energy sector for greenhouse gas emission mitigation at European level. European Union considers that nuclear energy must be treated as a highly recommended option since it can contribute to security of energy supply. Romania showed excellent track-records in operating in a safe and economically sound manner of Cernavoda NPP Units 1&2. Both Units are in top 10 worldwide in terms of capacity factor. Due to Romania's need to ensure the security of electricity supply, to meet the environmental targets and to move to low carbon generation technologies, Cernavoda Units 3&4 Project appears as a must. This Project was started in 2010 and it is expected to have the Units running by 2025. Cost effective and safety operation of a Nuclear Power Plant is made taking into consideration functional limits of its equipment. As common practice, every nuclear reactor type (technology used is tested according to the worse credible accident or equipment failure that can occur. For CANDU type reactor, this is a Loss of Cooling Accident (LOCA. In a LOCA type accident in a CANDU NPP, using RELAP/SCDAP code for fuel bundle damage assessment the radioactive nuclei are to be quantified. Recently, CANDU type NPP accidents are studied using the RELAP/SCDAP code only. The code formerly developed for PWR type reactors was adapted for the CANDU geometry and can assess the

  17. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system.

    Science.gov (United States)

    Stimson, D H R; Pringle, A J; Maillet, D; King, A R; Nevin, S T; Venkatachalam, T K; Reutens, D C; Bhalla, R

    2016-09-01

    The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated 18 F radiosynthesis modules and individual automated 11 C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.

  18. Semileptonic weak and electromagnetic interactions in nuclei: recoil polarization in muon capture

    International Nuclear Information System (INIS)

    Rosenfelder, R.

    1979-01-01

    An analysis of the polarization of the recoiling nucleus following the capture of polarized muons by nuclei is performed. New general expressions for arbitrary nuclear spin are obtained in terms of the same reduced matrix elements which govern inelastic electron scattering and β-decay. As an application the A = 12 system is considered and uncertainties in the nuclear structure are studied by using different sets of one-body density matrices. With the canonical values of the weak form factors (i.e. absence of second-class currents) a fairly good agreement with the experimental data is achieved including the inelastic form factor at high momentum transfers and the recently measured average 12 B polarization. Implications of the new corrected value of the average polarization on weak form factors and nuclear structure are discussed. (Auth.)

  19. Probing the density tail of radioactive nuclei with antiprotons

    CERN Document Server

    Obertelli, Alexandre; Uesaka, Tomohiro; Corsi, Anna; Pollacco, Emmanuel; Flavigny, Freddy

    2017-01-01

    We propose an experiment to determine the proton and neutron content of the radial density tail in short-lived nuclei. The objectives are to (i) to evidence new proton and neutron halos, (ii) to understand the development of neutron skins in medium-mass nuclei, (iii) to provide a new observable that characterises the density tail of short-lived nuclei.

  20. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    Science.gov (United States)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  1. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  2. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.

    2015-01-01

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125

  3. The astrophysical r-process and its dependence on properties of nuclei far from stability beta strength functions and neutron capture rates

    CERN Document Server

    Klapdor-Kleingrothaus, H V; Metzinger, J; Oda, T; Thielemann, F K

    1981-01-01

    It is shown that the astrophysical r-process and the question of its site are very sensitive to 'standard' nuclear physics parameters like the beta decay properties and neutron capture rates. Since for these quantities in almost all r-process calculations up to now, and also in all estimates of the production rates of chronometric pairs, only very rough assumptions have been made, it is attempted to present procedures which put the calculation of these quantities for nuclei far from stability on a reliable physical basis. This is done by a microscopic description of the beta strength function and by using a statistical model based on a 'next to first principles' optical potential including effects of deformation for the neutron capture rates. The beta -decay rates for approximately 6000 nuclei between the beta -stability line and the neutron drip line are calculated. The heavy element synthesis by explosive He burning then is calculated using these beta -rates and using realistic star models treating the supe...

  4. Synthesis and radioactive properties of the heaviest nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    1996-01-01

    Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs

  5. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  6. Meson exchange second class currents and the neutrino mass in the muon capture by light nuclei

    International Nuclear Information System (INIS)

    Katkhat, Ch.L.

    1988-01-01

    Influence of the Kubodera-Delorme-Rho model parameters (ζ and ξ), the scalar form factor (F s ) and the muonic neutrino rest mass (m νμ ) on the asymmetry coefficient (α μν ) of neutrino emission with respect to the muon spin orientation in the muon capture by light nuclei is analyzed. It is shown, that the mass m νμ , the parameters of ζ and ξ, and the form factor F s may be estimated by studying the coefficient α μν in O -> O, Gamov-Teller, and mixed transitions, respectively

  7. The astrophysical r-process and its dependence on properties of nuclei far from stability: Beta strength functions and neutron capture rates

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Metzinger, J.; Oda, T.; Thielemann, F.K.; Hillebrandt, W.

    1981-01-01

    The question of the astrophysical site of the rapid neutron capture (r-) process which is believed to be responsible for the production of the heavy elements in the universe has been a problem in astrophysics for more than two decades. The solution of this problem is not only dependent on the development of realistic astrophysical supernova models, i.e. correct treatment of the hydrodynamics of gravitational collapse and supernova explosion and the equation of state of hot and dense matter, but is shown in this paper to be very sensitive also to 'standard' nuclear physics properties of nuclei far from stability such as beta decay properties and neutron capture rates. For both of the latter, strongly oversimplifying assumptions, not applying the development in nuclear physics during the last decade, have been made in almost all r-process calculations performed up to now. A critical discussion of the state of the art of such calculations seems therefore to be indicated. In this paper procedures are described which allow one to obtain: 1) β-decay properties (decay rates, β-delayed neutron emissions and fission rates); 2) neutron capture rates for neutron-rich nuclei considerably improved over what has been used up to now. The beta strength functions are calculated for approx. equal to6000 nuclei between beta stability line and neutron drip line. By hydrodynamical supernova explosion calculations using realistic stellar models it is shown that as a consequence of the improved β-rates explosive He burning is a convincing alternative site to the 'classical' r-process whose existence still is questionable. The new β-rates will be important also for the investigation of further astrophysical sites producing heavy elements such as the r(n)-processes in explosive C or Ne burning. (orig.)

  8. p-process nucleosynthesis via proton-capture reactions in thermonuclear supernovae explosions

    Directory of Open Access Journals (Sweden)

    Endres Anne

    2015-01-01

    Full Text Available Model calculations within the framework of the so-called γ process show an underproduction of the p nucleus with the highest isotopic abundace 92Mo. This discrepancy can be narrowed by taking into account the alternative production site of a type Ia supernova explosion. Here, the nucleus 92Mo can be produced by a sequence of proton-capture reactions. The amount of 92Mo nuclei produced via this reaction chain is most sensitive to the reactions 90Zr(p,γ and 91Nb(p,γ. Both rates have to be investigated experimentally to study the impact of this nucleosynthesis aspect on the long-standing 92Mo-problem. We have already measured the proton-capture reaction on 90Zr using high-resolution in-beam γ-ray spectroscopy. In this contribution, we will present our preliminary results of the total cross sections as well as the partial cross sections. Furthermore, we plan to measure the 91Nb(p,γ reaction soon. Due to the radioactive target material, the 91Nb nuclei have to be produced prior to the experiment. The current status of this production will be presented in this contribution.

  9. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  10. Direct neutron capture and related mechanisms

    International Nuclear Information System (INIS)

    Lynn, J.E.; Raman, S.

    1990-01-01

    We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs

  11. Studies of nuclei using radioactive beams. [Space Astronomy Lab. , Univ. of Florida, Gainesville, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  12. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    International Nuclear Information System (INIS)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  13. FANAC - a shape analysis program for resonance parameter extraction from neutron capture data for light and medium-weight nuclei

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1977-11-01

    A least-squares shape analysis program is described which is used at the Karlsruhe Nuclear Research Center for the extraction of resonance parameters from high-resolution capture data. The FORTRAN program was written for light to medium-weight or near-magic target nuclei whose cross sections are characterized on one hand by broad s-wave levels with negligible Doppler broadening but pronounced multi-level interference, on the other hand by narrow p-, d- ... wave resonances with negligible multi-level interference but pronounced Doppler broadening. Accordingly the Reich-Moore multi-level formalism without Doppler broadening is used for s-wave levels, and a single-level description with Doppler braodening for p-, d- ... wave levels. Calculated capture yields are resolution broadened. Multiple-collision events are simulated by Monte Carlo techniques. Up to five different time-of-flight capture data sets can be fitted simultaneously for samples containing up to ten isotopes. Input and output examples are given and a FORTRAN list is appended. (orig.)

  14. Exotic nuclei and radioactive beams; Noyaux exotiques et faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P.

    1996-12-31

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs.

  15. New radioactivities

    International Nuclear Information System (INIS)

    Greiner, W.; Sandulescu, A.

    1996-01-01

    Some atomic nuclei reorganize their structure by ejection of big protons and neutrons aggregates. The observation of these new radioactivities specifies the theories of the nuclear dynamics. (authors)

  16. Masses of nuclei close to the dripline

    International Nuclear Information System (INIS)

    Herfurth, F.; Blaum, K.; Audi, G.; Lunney, D.; Beck, D.; Kluge, H.J.; Rodriguez, D.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Kellerbauer, A.

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (orig.)

  17. Measurements of gamma rays from keV-neutron resonance capture by odd-Z nuclei in the 2s-1d shell region

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki; Lee, Sam Yol; Mizuno, Satoshi; Hori, Jun-ichi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Kitazawa, Hideo

    1998-03-01

    Measurements of gamma rays from keV-neutron resonance capture by {sup 19}F, {sup 23}Na, and {sup 27}Al, which are odd-Z nuclei in the 2s-1d shell region, were performed, using an anti-Compton HPGe spectrometer and a pulsed neutron source by the {sup 7}Li(p,n){sup 7}Be reaction. Capture gamma rays from the 27-, 49-, and 97-keV resonances of {sup 19}F, the 35- and 53-keV resonances of {sup 23}Na, and the 35-keV resonance of {sup 27}Al were observed. Some results are presented. (author)

  18. A novel experimental scheme of electron scattering off unstable nuclei with a self-confining radioactive ion target (SCRIT)

    International Nuclear Information System (INIS)

    Wakasugi, Masanori

    2005-01-01

    We proposed a new experimental scheme of an electron scattering off unstable nuclei using a Self-Confining Radioactive Ion Target (SCRIT). The SCRIT is an unstable ion target formed in the electron storage ring, and is based on completely new idea. We constructed prototype of the SCRIT device and installed it in the electron storage ring KSR in Kyoto University. In the test experiment, 10 7 -Cs ions are confined in the SCRIT with the lifetime of about 2 s and the feasibility of the SCRIT as the target has been confirmed. (author)

  19. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Jazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but also for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energy part of the resonance 1320 keV onto the cross section. Last experimental data for a wider energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E P = (320 - 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E P = 991 - 365 keV, the accuracy is not worse than 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The theoretical investigation of the given reaction included calculation of cross sections. The cross sections were calculated within the framework of model of direct capture with the using of optical potentials for the description of a channel of scattering. The wave functions of a bound state were generated in a potential reproducing binding energy of a proton in 14 N nucleus. Results of calculations were compared with the experimental data. (author)

  20. Metabolism of neutral lipids in nuclei and chromatin of thymocytes from normal and γ-irradiated rats

    International Nuclear Information System (INIS)

    Kulagina, T.P.; Shuruta, S.A.; Kolomijtseva, I.K.

    1993-01-01

    The levels ans specific radioactivities of cholesterol and free fatty acids in nuclei and chromatin of thymocytes from normal and γ-irradiated (10 Gy) rats have been studied. The radioactivity of the total lipid fraction of γ-irradiated cells was decreased significantly in the absence of inhibition of [2- 14 C]acetete incorporation into the total proteil and lipid reactions and the [ 3 H]uracyl incorporation into the acid-insoluble RNA. The concentration of free fatty acids in the nuclei increased significantly after irradiation. The specific radioactivity of cholesterol in chromatin was higher than in the nuclei. The differences in specific radioactivities of free fatty acids were less pronounced. After irradiation the ratio of specific radioactivities of free fatty acids in chromatin to that in the nucleai showed a tendency to increase

  1. Nucleon transfer reactions with radioactive beams

    Science.gov (United States)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  2. Study of the on line radioactive multicharged ion production

    International Nuclear Information System (INIS)

    Lecesne, N.

    1997-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) which will start at GANIL at the end of 1998. The aim of the thesis was to study the on line radioactive multicharged ion beam production stages, i.e. the production and diffusion of the radioactive nuclei in a thick target, their possible transfer up to an ECR ion source and their ionisation. Production cross sections of radioactive neutron rich nuclei, formed by fragmentation of a heavy ion beam in a thick target, were measured. An external target-ECR source system, dedicated to the radioactive noble gases production, and two internal target-ECR source systems, dedicated to the radioactive condensable element production, were built and tested on the SIRa tests bench (Separateur d'Ions Radioactifs). Different detection configurations were elaborated in order to identify the radioactive nuclei and estimate their production yields. Finally, a new method for measuring the overall efficiency of the separator was developed and allowed to study the diffusion properties of radioactive noble gases in various targets. (author)

  3. Antiprotonic Radioactive Atom for Nuclear Structure Studies

    International Nuclear Information System (INIS)

    Wada, M.; Yamazaki, Y.

    2005-01-01

    A future experiment to synthesize antiprotonic radioactive nuclear ions is proposed for nuclear structure studies. Antiprotonic radioactive nuclear atom can be synthesized in a nested Penning trap where a cloud of antiprotons is prestored and slow radioactive nuclear ions are bunch-injected into the trap. By observing of the ratio of π+ and π- produced in the annihilation process, we can deduce the different abundance of protons and neutrons at the surface of the nuclei. The proposed method would provide a unique probe for investigating the nuclear structure of unstable nuclei

  4. Muon capture by the 1p shell of 10B, 12C and 14N nuclei. Experiments and interpretation

    International Nuclear Information System (INIS)

    Moura Goncalves, A.C. de.

    1980-12-01

    The main elements necessary to treat weak interactions in a nucleus including the contributions of exchange meson currents are presented. The case of a transition between an initial (Z,A) nucleus and a final (Z-1,A) nucleus in a well defined bound state is treated. The form of the single body operator taking into account the nucleonic degrees of freedom (impulse approximation) is recalled. The construction of a two-body operator taking mesonic degrees of freedom into account is outlined. Measurements of partial capture rates in 10 B, 12 C and 14 N target nuclei leading to excited bound states of 10 Be, 12 B and 14 C residual nuclei are described. Results are given and comparisons made with the calculations performed, nuclear states being described by various wave functions. Measurements of the polarization of the 1 + ground state of 12 B after N capture in 12 C are briefly described. An attempt is made to interpret the 0 + 1 + transition occurring in the A = 12 triad. A convenient parametrization is obtained from the expression for these observable quantities as a function of the nuclear shape factors. This analysis enables a strict choice to be made from the available wavefunctions. It demonstrates that experimental data are well reproduced by the microscopy approach performed using the effective Sussex potential and single pion exchange currents. Finally, the hitherto unexplored domain of muon capture is tackled. A high energy transfer is involved in which the neutrino remains practically at rest. In this case, the vector part is not very important and the axial current time part contributes as much is the space part. The (μ - ,pn) reaction was used for exploratory measurements in this domain. Practical limits are determined [fr

  5. Aerial spraying to capture released radioactivity from NPP in a severe accident

    International Nuclear Information System (INIS)

    Younus, Irfan; Yim, Man Sung; Medard, Thiphaine

    2016-01-01

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na_2S_2O_3) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  6. Review of the neutron capture process in fission reactors

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1981-07-01

    The importance of the neutron capture process and the status of the more important cross section data are reviewed. The capture in fertile and fissile nuclei is considered. For thermal reactors the thermal to epithermal capture ratio for 238 U and 232 Th remains a problem though some improvements were made with more recent measurements. The capture cross section of 238 U in the fast energy range remains quite uncertain and a long standing discrepancy for the calculated versus experimental central reaction rate ratio C28/F49 persists. Capture in structural materials, fission product nuclei and the higher actinides is also considered

  7. Simple description of cluster radioactivity

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.

    2012-05-01

    The partial half-life of radioactive decay of nuclei by the emission of fragments heavier than the alpha particle, such as the emission of carbon, oxygen, neon, magnesium, and silicon isotopes from translead nuclei (known as cluster radioactivity), is re-evaluated in the framework of a semiempirical, one-parameter model based on the quantum mechanical tunneling mechanism through a potential barrier where the Coulomb, centrifugal, and overlapping contributions to the barrier are considered within the spherical nucleus approximation. This treatment has shown not only very adequate to t all the existing half-life data, but also to give more reliable half-life predictions for new, yet unmeasured cases of spontaneous emission of massive nuclear fragments both from heavy and intermediate-mass parent nuclei as well. (author)

  8. Are there superheavy atomic nuclei

    International Nuclear Information System (INIS)

    Herrmann, G.

    1982-04-01

    The author presents a populary introduction to the formation of nuclei with special regards to superheavy nuclei. After a general description of the methods of physics the atomic hypothesis is considered. Thereafter the structure of the nucleus is discussed, and the different isotopes are considered. Then radioactivity is described as an element transmutation. Thereafter the thermonuclear reactions in the sun are considered. Then the synthesis of elements using heavy ion reactions is described. In this connection the transuranium elements and the superheavy elements are considered. (orig./HSI) [de

  9. Renormalization of the γ-ray strength functions of light nuclei

    International Nuclear Information System (INIS)

    Canbula, B.; Ersan, S.; Babacan, H.

    2015-01-01

    γ-ray strength function is the key input for the photonuclear reactions, which have a special astrophysical importance, and should be renormalized by using the nuclear level density for calculating the theoretical average radiative capture width, but performing such renormalization is challenging for light nuclei. With this motivation, recently introduced level density parameter formula including collective effects is used to calculate the average radiative capture width of light nuclei, and therefore to renormalize their γ-ray strength functions. Obtained normalization factors are tested in (n, γ) reactions for the necessity of renormalization for light nuclei. (author)

  10. Possibilities at LAMPF for studying nuclei of astrophysical interest

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Bunker, M.E.

    1985-01-01

    Nuclear data needs in astrophysics range from neutron capture cross sections of a number of stable or near-stable nuclei to decay and neutron binding-energy data for highly neutron-rich nuclei. LAMPF has the potential to contribute significantly to these needs. The new Los Alamos Neutron Scattering Center (LANSCE, aka WNR/PSR) offers world-class capabilities for neutron capture studies up to an MeV or so. The study of nuclei far from stability could be extended into some regions of astrophysical interest using a proposed He-jet coupled mass separator system with a target/production chamber in the LAMPF beam stop area. Specific examples of possible studies at each facility are presented

  11. Electron-microscope study of cloud and fog nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, S; Okita, T

    1952-01-01

    Droplets of clouds on a mountain and of fog in an urban area were captured and the form, nature and size of their nuclei were studied by means of an electron-microscope and by a chamber of constant humidity. These nuclei have similar form and nature to the hygroscopic particles in haze and to the artificially produced combustion particles. No sea-salt nuclei were found in our observations, therefore, sea-spray appears to be an insignificant source of condensation nuclei. It was found that both the cloud and the fog nuclei originated in combustion products which were the mixture of hygroscopic and non-hygroscopic substances, and that the greater part of the nuclei did not contain pure sulfuric acid.

  12. TeV gamma-UHECR anisotropy by decaying nuclei in flight: First neutrino traces?

    Directory of Open Access Journals (Sweden)

    Fargion Daniele

    2013-06-01

    Full Text Available Ultra High Cosmic Rays made by He-like lightest nuclei might solve the AUGER extragalactic clustering along Cen A. Moreover He like UHECR nuclei cannot arrive from Virgo because the light nuclei fragility and opacity above a few Mpc, explaining the Virgo UHECR absence. UHECR signals are spreading along Cen A as observed because horizontal galactic arms magnetic fields, bending them on vertical angles. Cen A events by He-like nuclei are deflected as much as the observed clustered ones; proton will be more collimated while heavy (iron nuclei are too much dispersed. Such a light nuclei UHECR component coexist with the other Auger heavy nuclei and with the Hires nucleon composition. We foresaw (2009 that UHECR He from Cen-A AGN being fragile should partially fragment into secondaries at tens EeV multiplet (D,He3,p nearly as the recent twin multiplet discovered ones (AUGER-ICRC-2011, at 20 EeV along Cen A UHECR clustering. Their narrow crowding occur by a posteriori very low probability, below 3 ⋅ 10−5. Remaining UHECR spread group may hint for correlations with other gamma (MeV − Al26 radioactive maps, mainly due to galactic SNR sources as Vela pulsar, the brightest, nearest GeV source. Other nearest galactic gamma sources show links with UHECR via TeV correlated maps. We suggest that UHECR are also heavy radioactive galactic nuclei as Ni56, Ni57 and Co57,Co60 widely bent (tens degree up to ≥ 100o by galactic fields. UHECR radioactivity (in β and γ channels and decay in flight at hundreds keV is boosted (by huge Lorentz factor ΓNi ≃ 109 − 108 leading to PeVs electrons and consequent synchrotron TeVs gamma offering UHECR-TeV correlated sky anisotropy. Moreover also rarest and non-atmospheric τ, and e neutrinos secondaries at PeVs, as the first two rarest shower just discovered in ICECUBE, maybe the first signature of such expected radioactive secondary tail.

  13. Preparation of a radioactive boron compound (B-I-131-lipiodol) for neutron capture therapy of hepatoma

    International Nuclear Information System (INIS)

    Chou, F.I.; Chung, H.P.; Chung, R.J.; Wen, H.W.; Wei, Y.Y.; Kai, J.J.; Lui, W.Y.; Chi, C.W.

    2000-01-01

    In our research, a radioactive boron compound, B-I-131-lipiodol, that can be selectively retained in hepatoma cells was prepared. Combining the effect of α particles produced by boron neutron capture reaction with the β particles released by radionuclides in the radioactive boron compounds will produce a synergistic killing effect on cancer cells. Human hepatoma HepG2 cell cultures were used to examine the stability and the intracellular distribution of the radioactive boron drug. Microscopes were used to examine the interaction and retention of B-I-131-lipiodol globules in the individual hepatoma cell. Moreover, ICP-AES and NaI scintillation counter were performed to determine boron concentrations and I-131 radioactivity, respectively. Results showed that B-I-131-lipiodol with a boron concentration and a specific radioactivity ranged from 500-2000 ppm and 0.05-10 mCi/mL respectively was stably retained in serum. The radiochemical purity of B-I-131-lipiodol was 98%. After supplement with a medium containing B-I-131-lipiodol, the HepG2 cells had intracellular B-I-131-lipiodol globules in the cytoplasm as seen by inverted light microscope, the I-131 and boron can be stably retained in HepG2 cells. (author)

  14. Aerial spraying to capture released radioactivity from NPP in a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Younus, Irfan; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of); Medard, Thiphaine [Ecole des Mines de Saint-Etienne, Daejeon (Korea, Republic of)

    2016-05-15

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na{sub 2}S{sub 2}O{sub 3}) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  15. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.

    2014-03-01

    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  16. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  17. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    International Nuclear Information System (INIS)

    Schroeder, W. Udo

    2016-01-01

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  18. ISOL science at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Beene, James R [ORNL; Bardayan, Daniel W [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gross, Carl J [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK); Liang, J Felix [ORNL; Nazarewicz, Witold [ORNL; Stracener, Daniel W [ORNL; Tatum, B Alan [ORNL; Varner Jr, Robert L [ORNL

    2011-01-01

    The Holi eld Radioactive Ion Beam Facility, located in Oak Ridge, Tennessee, is operated as a National User Facility for the U.S. Department of Energy, producing high quality ISOL beams of short-lived, radioactive nuclei for studies of exotic nuclei, astrophysics research, and various societal applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25-MV Tandem, accelerated, and used in experiments. This article reviews HRIBF and its science.

  19. Formation of nuclear molecules in cluster radioactivity. On interpretation of the cluster radioactivity mechanism

    International Nuclear Information System (INIS)

    Volkov, V.V.; Cherepanov, E.A.

    2012-01-01

    The basis for cluster radioactivity is the property of nuclei of light isotopes of elements heavier than lead to spontaneously form clusters - nuclei of light elements - from valence nucleons, which gives rise to asymmetric nuclear molecules. The cluster formation proceeds through successive excitation-free transfer of valence nucleons to the particle and to subsequent light nuclei. Nuclear molecule formation is accompanied by a considerable amount of released energy, which allows quantum-mechanical penetration of the cluster through the exit Coulomb barrier

  20. Sub-barrier capture with quantum diffusion approach

    Directory of Open Access Journals (Sweden)

    Scheid W.

    2011-10-01

    Full Text Available With the quantum diffusion approach the behavior of capture cross sections and mean-square angular momenta of captured systems are revealed in the reactions with deformed and spherical nuclei at sub-barrier energies. With decreasing bombarding energy under the barrier the external turning point of the nucleus-nucleus potential leaves the region of short-range nuclear interaction and action of friction. Because of this change of the regime of interaction, an unexpected enhancement of the capture cross section is found at bombarding energies far below the Coulomb barrier. This effect is shown its worth in the dependence of mean-square angular momentum on the bombarding energy. From the comparison of calculated capture cross sections and experimental capture or fusion cross sections the importance of quasifission near the entrance channel is demonstrated for the actinidebased reactions and reactions with medium-heavy nuclei at extreme sub-barrier energies.

  1. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  2. A new route to the stable capture and final immobilization of radioactive cesium.

    Science.gov (United States)

    Yang, Jae Hwan; Han, Ahreum; Yoon, Joo Young; Park, Hwan-Seo; Cho, Yung-Zun

    2017-10-05

    Radioactive Cs released from damaged fuel materials in the event of nuclear accidents must be controlled to prevent the spreading of hazardous Cs into the environment. This study describes a simple and novel process to safely manage Cs gas by capturing it within ceramic filters and converting it into monolithic waste forms. The results of Cs trapping tests showed that CsAlSiO 4 was a reaction product of gas-solid reactions between Cs gas and our ceramic filters. Monolithic waste forms were readily prepared from the Cs-trapping filters by the addition of a glass frit followed by thermal treatment at 1000°C for 3h. Major findings revealed that the Cs-trapping filters could be added up to 50wt% to form durable monoliths. In 30-50wt% of waste fraction, CsAlSiO 4 was completely converted to pollucite (CsAlSi 2 O 6 ), which is a potential phase for radioactive Cs due to its excellent thermal and chemical stability. A static leaching test for 28 d confirmed the excellent chemical resistance of the pollucite structure, with a Cs leaching rate as low as 7.21×10 -5 gm -2 /d. This simple scheme of waste processing promises a new route for radioactive Cs immobilization by synthesizing pollucite-based monoliths. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  4. Radiative muon capture in light nuclei

    International Nuclear Information System (INIS)

    Hasinoff, M.D.; Ahmad, S.; Armstrong, D.S.; Burnham, R.A.; Gorringe, T.P.; Larabee, A.J.; Waltham, C.E.; Azuelos, G.; Macdonald, J.A.; Poutissou, J.M.; Egidy, T. von; Bertl, W.; Blecher, M.; Serne-angel, A.; Wright, D.H.; Clifford, E.T.H.; Numano, T.; Summhammer, J.; Chen, C.Q.; Ding, Z.H.; Zhang, N.S.; Henderson, R.; McDonald, S.C.; Taylor, G.N.; Mes, H.; Robertson, B.C.

    1989-01-01

    This paper reports on radiative muon capture rates measured for carbon, oxygen and calcium targets. The carbon and oxygen rates yield large values for g p when compared to detailed microscopic calculations but the conventional Goldberger-Treiman value when compared to phenomenological model calculations. A progress report on the TRIUMF RMC measurements on hydrogen is also given

  5. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  6. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    Science.gov (United States)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  7. Radioactive substance removing device

    International Nuclear Information System (INIS)

    Takeuchi, Jun; Tayama, Ryuichi; Teruyama, Hidehiko; Hikichi, Takayoshi.

    1992-01-01

    If inert gases are jetted from a jetting device to liquid metals in a capturing vessel, the inert gases are impinged on the inner wall surface of the capturing vessel, to reduce the thickness of a boundary layer as a diffusion region of radioactive materials formed between the inner wall surface of the capturing vessel and the liquid metals. Further, a portion of the boundary layer is peeled off to increase the adsorption amount of radioactive materials by the capturing vessel. When the inert gases are jetted on the inner or outer circumference of the capturing vessel to rotate the capturing vessel, the flow of the liquid metals is formed along with the rotation, and the thickness of the boundary layer is reduced or the boundary layer is peeled off to increase the absorption amount of the radioactive materials. If gas bubbles are formed in the liquid metals by the inert gases, the liquid metals are stirred by the gas bubbles to reduce the thickness of the boundary layer or peel it off, thereby enabling to increase the adsorption amount of the radioactive materials. Since it is not necessary to pass through the rotational member to the wall surface of the vessel, safety and reliability can be improved. (N.H.)

  8. Measurement of the absolute activity of alpha or beta emitters by measuring product nuclei (daughter) activity increase or by studing its radioactive decay

    International Nuclear Information System (INIS)

    Campos, L.C. de.

    1981-01-01

    A new method for determining absolute activity of alpha or beta emitters by measuring daughter product radioactive decay is presented. The separation method of UX from hexahydrated uranyl nitrate UO 2 (NO 3 ) 2 6H 2 O based on its dissolution in ethyl ether is described and the accuracy of this method is shown. The factors which accuate on total efficiency of a Geiger Mueller detector for beta particles are determined. The possibility to determine the mass of precursor element by daughter nuclei activity is shown. The results are compared with the one obtained by direct measurement of the mass (or number of atoms) of precursor radioactive substance and with theoretical values calculated for isotopes in secular equilibrium. (Author) [pt

  9. Alpha decay and cluster decay of some neutron-rich actinide nuclei

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... Abstract. Nuclei in the actinide region are good in exhibiting cluster radioactivity. In the present work, the half-lives of α-decay and heavy cluster emission from certain actinide nuclei have been calculated using cubic plus Yukawa plus exponential model (CYEM). Our model has a cubic potential for the ...

  10. Nuclear-physical investigations with oriented nuclei and polarized neutrons

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1980-01-01

    Several experiments with oriented nuclei and polarized neutrons are considered, as well as some methods of polarization of neutrons and nuclei. Experiments on the study of spin dependence of neutron cross sections for fissionable and nonfissionable nuclei interaction of polarized neutrons with polarized nuclei as well as measurement of magnetic momenta of compound-states of rare-earth nuclei. Described are some investigations with thermal neutrons: study on spin dependence of neutron scattering length with nuclei and gamma radiation of neutron radiation capture. Difficulties of production of high-intensive polarized neutron beams and construction of oriented targets are noted. Neutron polarization by transmission of them through a polarized proton target is the most universal method (out of existing methods) in the energy range under consideration [ru

  11. Study of biodistribution of lipidic nanospheres charged with cis-diaminedichloroplatinum (II) and labelled with radioactive nuclei of Indium-111

    International Nuclear Information System (INIS)

    Lopez R, V.; Juarez O, C.; Medina L, A.; Perez C, E.; Garcia L, P.

    2007-01-01

    The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)

  12. Radioactive waste removing device

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1982-01-01

    Purpose: To cleanup primary coolants for LMFBR type reactors by magnetically generating a high speed rotational flow in the flow of liquid metal, and adsorbing radioactive corrosion products and fission products onto capturing material of a complicated shape. Constitution: Three-phase AC coils for generating a rotational magnetic field are provided to the outside of a container through which liquid sodium is passed to thereby generate a high speed rotational stream in the liquid sodium flowing into the container. A radioactive substance capturing material made of a metal plate such as of nickel and stainless steel in the corrugated shape with shape edges is secured within a flow channel. Magnetic field at a great slope is generated in the flow channel by the capturing material to adsorb radioactive corrosion products and fission products present in the liquid sodium onto the capturing material and removing therefrom. This enables to capture the ferri-magnetic impurities by adsorption. (Moriyama, K.)

  13. Studies of isovector excitations in nuclei by neutron-induced reactions

    International Nuclear Information System (INIS)

    Nilsson, L.

    1987-01-01

    In this paper isovector excitations in nuclei, in particular the giant isovector quadrupole resonance in spherical nuclei, will be discussed. Several methods to investigate this excitation have been used, e.g. inelastic electron scattering and charge-exchange reactions. An alternative method to study isovector E2 resonances in nuclei, based on the radiative capture of fast neutrons, will be presented. Results from such experiments performed at the tandem accelerator laboratories in Los Alamos and Uppsala will be presented and discussed in terms of the direct-semidirect capture model. As a separate issue, the preparations being undertaken at Uppsala for studies of isovector excitations in nuclei by means of the (n,p) reaction will be described. A schematic lay-out of the experiment will be presented together with some relevant neutron beam parameters. Among isovector excitations to be studied by this method are the isovector monopole resonance and the Gamow-Teller resonance. 54 references, 6 figures, 1 table

  14. IGRIS for characterizing low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Peters, C.W. [Nuclear Diagnostic Systems, Springfield, VA (United States); Swanson, P.J. [Concord Associates, Knoxville, TN (United States)

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  15. Measurement of recoil nuclei of Ta photofission

    International Nuclear Information System (INIS)

    Amroyan, K.A.; Barsegyan, S.A.; Demekhina, N.A.

    1993-01-01

    The results of measuring the characteristics of nuclei leaving the Ta target bombarded by 4,5 GeV bremsstrahlung photons are presented. The thick-target-trap technique is used. The radioactive residual nuclei were detected by the induced activity with the help of the Ge(Li) detector. The forward-backward nucleus ratio is measured, and the kinematical characteristics are calculated in the framework of the two-step vector model of velocities. The data analysis and systematization is carried out in comparison with the results of hardon-nuclear interactions

  16. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  17. Nuclear Data on Unstable Nuclei for Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Meyer, Richard A; Lingerfelt, Eric; Scott, J.P.; Hix, William Raphael; Ma, Zhanwen; Bardayan, Daniel W.; Blackmon, Jeff C.; Guidry, Mike W.; KOZUB, RAYMOND L.; Chae, Kyung YuK.

    2004-01-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. We discuss these evaluations, as well as the development of a new computational infrastructure to enable the rapid incorporation of the latest nuclear physics results in astrophysics models. This infrastructure includes programs that simplify the generation of reaction rates, manage rate databases, and visualize reaction rates, all hosted at a new website http://www.nucastrodata.org

  18. EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE

    International Nuclear Information System (INIS)

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi

    2013-01-01

    We provide progenitor models for electron capture supernovae (ECSNe) with detailed evolutionary calculation. We include minor electron capture nuclei using a large nuclear reaction network with updated reaction rates. For electron capture, the Coulomb correction of rates is treated and the contribution from neutron-rich isotopes is taken into account in each nuclear statistical equilibrium (NSE) composition. We calculate the evolution of the most massive super asymptotic giant branch stars and show that these stars undergo off-center carbon burning and form ONe cores at the center. These cores become heavier up to the critical mass of 1.367 M ☉ and keep contracting even after the initiation of O+Ne deflagration. Inclusion of minor electron capture nuclei causes convective URCA cooling during the contraction phase, but the effect on the progenitor evolution is small. On the other hand, electron capture by neutron-rich isotopes in the NSE region has a more significant effect. We discuss the uniqueness of the critical core mass for ECSNe and the effect of wind mass loss on the plausibility of our models for ECSN progenitors.

  19. Maris polarization in neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2018-03-01

    Full Text Available We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon–nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  20. MAGIC NUCLEI: Tin-100 turns up

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the same way as the Periodic Table of chemical elements reflects the successive filling of orbital electron shells, in nuclear physics the socalled 'magic' numbers correspond to closed shells of 2, 8, 20, 28, 50, 82, 126,... neutrons and/or protons. More tightly bound than other nuclei, these are the nuclear analogues of the inert gases. 'Doubly magic' nuclei have closed shells of both neutrons and protons. Examples in nature are helium-4 (2 protons and 2 neutrons), oxygen-16 (8 and 8), calcium-40 (20 and 20) and calcium-48 (20 and 28). Radioactive tin-132 (50+82) has been widely studied

  1. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  2. Nuclear muon capture

    CERN Document Server

    Mukhopadhyay, N C

    1977-01-01

    Our present knowledge of the nuclear muon capture reactions is surveyed. Starting from the formation of the muonic atom, various phenomena, having a bearing on the nuclear capture, are reviewed. The nuclear reactions are then studied from two angles-to learn about the basic muon+nucleon weak interaction process, and to obtain new insights on the nuclear dynamics. Future experimental prospects with the newer generation muon 'factories' are critically examined. Possible modification of the muon+nucleon weak interaction in complex nuclei remains the most important open problem in this field. (380 refs).

  3. Folding model analysis of alpha radioactivity

    International Nuclear Information System (INIS)

    Basu, D N

    2003-01-01

    Radioactive decay of nuclei via emission of α-particles has been studied theoretically in the framework of a superasymmetric fission model using the double folding (DF) procedure for obtaining the α-nucleus interaction potential. The DF nuclear potential has been obtained by folding in the density distribution functions of the α nucleus and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction has been used for calculating the nuclear interaction potential which has been supplemented by a zero-range pseudo-potential for exchange along with the density dependence. The nuclear microscopic α-nucleus potential thus obtained has been used along with the Coulomb interaction potential to calculate the action integral within the WKB approximation. This subsequently yields calculations for the half-lives of α decays of nuclei. The density dependence and the exchange effects have not been found to be very significant. These calculations provide reasonable estimates for the lifetimes of α-radioactivity of nuclei

  4. α decay and cluster radioactivity of nuclei of interest to the synthesis of Z =119 , 120 isotopes

    Science.gov (United States)

    Poenaru, D. N.; Gherghescu, R. A.

    2018-04-01

    Super-heavy nuclei of interest for the forthcoming synthesis of the isotopes with Z =119 , 120 are investigated. One of the very interesting latest experiments was performed at the velocity filter SHIP (GSI Darmstadt) trying to produce 299120 in a fusion reaction 248Cm(54Cr,3 n )299120 . We report calculations of α -decay half-lives using four models: AKRA (Akrawy), ASAF (analytical superasymmetric fission), UNIV (universal formula), and semFIS (semi-empirical formula based on fission theory). The released energy, Q , is calculated using the theoretical model of atomic masses, WS4. For Sr,9492 cluster radioactivity of 120,302300 we predict a branching ratio relative to α decay of -0.10 and 0.49, respectively, meaning that it is worth trying to detect such kinds of decay modes in competition with α decay.

  5. Neutron induced reaction of light nuclei and its role in nuclear astrophysics

    International Nuclear Information System (INIS)

    Nagai, Y.

    2000-01-01

    Recently, much interest has arisen in the abundance of the s-process isotopes in stars of various metallicity to construct models of the chemical evolution of the Galaxy. Efforts involving both observations and yield estimations of these isotopes are being made for a wide range of metallicities and stellar masses to compare the chemical evolution models with the observational data. So far, in the models of the chemical evolution of the s-isotopes the yields of the isotopes versus the abundance of either 56 Fe (seed) nuclei or 16 O (source) nuclei have been suggested to be linear. However, it has now been shown to be nonlinear for low-metallicity massive stars. The nonlinearity was due to neutron poison by abundant light nuclei. Namely, if the neutron capture cross sections of the light nuclei would be large, the yields of heavier s-isotopes would decrease; the relationship of the yields versus the abundance of either 56 Fe (seed) or 16 O (source) nuclei becomes nonlinear; furthermore, the yields of p-process nuclei would decrease, since the s-process nuclei are the immediate predecessors of the p-nuclei. Therefore, in order to construct models to predict the s- and p-isotope productions as functions of the metallicity and stellar mass, it is necessary to know the neutron capture cross sections of light nuclei at stellar neutron energy. In the lecture, I discuss detailed motive of the study, together with results recently obtained. (author)

  6. Wien filter using in exploring on low-energy radioactive nuclei

    International Nuclear Information System (INIS)

    Bobyleva, L.V.; Kuznetsov, I.V.; Perel'shtejn, Eh.A.; Perel'shtejn, O.Eh.

    2002-01-01

    The possibility of using the Wien filter as a mass separator for the neutron enriched nuclei study is under discussion. The nuclei are produced as a result of 238 U fission within the frame of the 'DRIBs' project. The main ion-optics characteristics of the Wien filter are obtained using the moment method. Parameter optimization has been fulfilled to obtain the maximum resolution. The ion beam dynamics and heavy ion separation have been illustrated using the macroparticle simulation for the chosen optimal filter parameter. It is shown that the resolution can be obtained on the level higher than 10 2 . It provides an effective separation of the fission fragments with the high atomic numbers

  7. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  8. Radiative capture of nucleons at astrophysical energies with single-particle states

    International Nuclear Information System (INIS)

    Huang, J.T.; Bertulani, C.A.; Guimaraes, V.

    2010-01-01

    Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A<20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data.

  9. Proton radioactivity lifetimes using Skyrme interactions

    International Nuclear Information System (INIS)

    Routray, T.R.; Tripathy, S.K.; Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The phenomena of proton radioactivity is recent and has been possible with the advent of the radioactive ion beams facilities. The neutron deficient nuclei lying above the proton drip line has positive Q values for protons and are spontaneous proton emitters. This limits the possibilities of the creation of ever more exotic nuclei in the proton rich side of the β stability valley. Limited number of works have been done in calculating the half lives of proton emitting nuclei using different models. But calculation of lifetimes of the proton emitting nuclei using Skyrme interaction has not yet been reported. More than 110 Skyrme sets are available, constructed for different purposes, all having the common feature of giving finite nuclei ground state properties and saturation conditions in nuclear matter. Skyrme sets constructed in the late 90's, particularly the construction of SLy sets and others Skyrme sets developed thereafter, have additional care in constraining the parameters for applications to nuclear matter under extreme conditions. Stone et al. have analyzed the Skyrme sets on the basis of available constraints and have sorted out finally 27 Skyrmes sets which can be admitted for calculation of isospin rich dense nuclear matter. The objective of the work is to examine the predictions of the Skyrme sets on the half lives of the proton emitters

  10. Electron scattering and reactions from exotic nuclei

    International Nuclear Information System (INIS)

    Karataglidis, S.

    2017-01-01

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  11. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  12. Released radioactivity reducing device

    International Nuclear Information System (INIS)

    Miyamoto, Yumi.

    1995-01-01

    A water scrubber is disposed in a scrubber tank and a stainless steel fiber filter is disposed above the water scrubber. The upper end of the scrubber tank is connected by way of a second bent tube to a capturing vessel incorporating a moisture removing layer and an activated carbon filter. The exit of the capturing vessel is connected to a stack. Upon occurrence of an accident of a BWR-type power plant, gases containing radioactive materials released from a reactor container are discharged into the water scrubber from a first bent tube through a venturi tube nozzle, and water soluble and aerosol-like radioactive materials are captured in the water. Aerosol and splashes of water droplets which can not be captured thoroughly by the water scrubber are captured by the stainless steel fiber filter. Gases passing through the scrubber tank are introduced to a capturing vessel through a second bent tube, and organic iodine is captured by the activated carbon filter. (I.N.)

  13. Electron-capture ratios in radio-active decay

    International Nuclear Information System (INIS)

    Pelt, J. van.

    1978-01-01

    A review of the theory of electron capture is given and expressions for the electron-capture ratios derived. Attention is paid to the calculations of exchange and overlap correction factors. The theoretical results are then compared with experimental values on the basis of two recently published compilations. The experimental set-up used in this investigation is described and the analysis of the scintillation spectra discussed. Measurements on 131 Ba, 106 Agsup(m) and 196 Au are described and values derived for the exchange and overlap corrections and for the atomic electron-capture transition energy Qsub(EC). (Auth.)

  14. Monte Carlo approaches to light nuclei

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs

  15. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  16. Electron capture rate of a composite of partially ionized atomic nuclei

    International Nuclear Information System (INIS)

    Yokoi, K.; Takahashi, K.

    1979-01-01

    Electron captures (or more generally β-transitions) are known to play key roles at various stages of stellar evolution and in many nucleosynthesis processes. With decreasing temperatures and densities, the bound electron captures start to compete with the free electron captures, and eventually in the low-temperature, low-density limit the total capture rate shall converge to that of the orbital electrons observed in laboratory. The authors calculate the occupation probabilities of the electron orbits and the electron capture rates in a mixture of atoms and ions which are supposedly under a chemical equilibrium. (orig./AH)

  17. Effects of deformations and orientations on neutron-halo structure of light-halo nuclei

    International Nuclear Information System (INIS)

    Sawhney, Gudveen; Gupta, Raj K.; Sharma, Manoj K.

    2013-01-01

    The availability of radioactive nuclear beams have enabled to study the structure of nuclei far from the stability line, which in turn led to the discovery of neutron-halo nuclei. These nuclei, located near the neutron drip-line exhibit a high probability of presence of one or two loosely bound neutrons at a large distance from the rest of nucleons. The fragmentation behavior is studied for 13 cases of 1n-halo nuclei, which include 11 Be, 14 B, 15 C, 17 C, 19 C, 22 N, 22 O, 23 O, 24 O, 24 F, 26 F, 29 Ne and 31 Ne, using the cluster-core model (CCM) extended to include the deformations and orientations of nuclei

  18. Recent results in the study of exotic nuclei using the 'Radioactive Ion Beams in Brazil' (RIBRAS) facility

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V.; Alcantara Nunez, J.; Benjamim, E.A.; Faria, P.N. de; Leistenschneider, E.; Gasques, L.R.; Morais, M.C.; Pampa Condori, R.; Pires, K.C.C.; Scarduelli, V.; Zamora, J.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Mendes Junior, D.R.; Morcelle, V. [Universidade Federal Fluminense (IF/UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Descouvemont, P. [Universite Libre de Bruxelles (Belgium). Physique Nucleaire Theorique et Physique Matematique; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Moro, A.M. [Universidad de Sevilla (Spain). Fac. de Fisica. Dept. de Fisica Atomica, Molecular y Nuclear (FAMN); Arazi, A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Lab. TANDAR; Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    Full text: The 'Radioactive Ion Beams in Brasil' (RIBRAS) facility consists of two super-conducting solenoids of maxi- mum magnetic field B 6.5T, coupled to the 8UD-Pelletron tandem Accelerator installed at the University of Sao Paulo Physics Institute. It is the first radioactive beam facility of the Southern Hemisphere. The production mechanism of the radioactive ions is by transfer reactions, using {sup 9}Be, {sup 3}He, LiF and other production targets, and the forward focused reaction products are selected and focalized by the solenoids into a scattering chamber. Low energy (3-5 MeV/u) radioactive beams of {sup 6}He, {sup 8}Li, {sup 7,10}Be and {sup 8,12}B are produced currently and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy ({sup 9}Be, {sup 12}C, {sup 27}Al, {sup 51}V and {sup 120}Sn) secondary targets. The data are analyzed, using most of the time, the Sao Paulo Potential (SPP) and compared to optical model and continuum discretized coupled-channels (CDCC) calculations. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Some examples of reactions recently studied are {sup 1}H({sup 8}Li,{sup 4}He){sup 5}He, {sup 1}H({sup 8}Li,{sup 1}H){sup 8}Li using thick (CH{sub 2}){sub n} targets to measure their excitation functions. The transfer reaction {sup 12}C({sup 8}Li,{sup 4}He){sup 16}N, leading to well defined excited states of {sup 16}N, through the transfer of {sup 4}H or the sequential decay {sup 3}H+n, is also being studied. (author)

  19. Proceedings of the workshop nuclear structure of light nuclei far from stability experiment and theory

    International Nuclear Information System (INIS)

    Klotz, G.

    1991-01-01

    The volume discuss nuclear structure of light and nuclei far from stability. The discussions took place in five sessions. In session 1 β decay, in session 2 nuclei near N=20, in session 3 radioactive ion beams' study with help of electromagnetic separators, in session 4 beta decay of light nuclei, in session 5 further papers were discussed in shell models, binding energy and chart of nuclides. (G.P.)

  20. Process to produce excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment

  1. The Importance of Electron Captures in Core-Collapse Supernovae

    International Nuclear Information System (INIS)

    Langanke, K.; Sampaio, J.M.; Martinez-Pinedo, G.

    2004-01-01

    Nuclear physics plays an essential role in the dynamics of a type II supernova (a collapsing star). Recent advances in nuclear many-body theory allow now to reliably calculate the stellar weak-interaction processes involving nuclei. The most important process is the electron capture on finite nuclei with mass numbers A > 55. It is found that the respective capture rates, derived from modern many-body models, differ noticeably from previous, more phenomenological estimates. This leads to significant changes in the stellar trajectory during the supernova explosion, as has been found in state-of-the-art supernova simulations. (author)

  2. Estimates of the astrophysical S-factors for proton radiative capture by 10B and 24Mg nuclei using the ANCs from proton transfer reactions

    International Nuclear Information System (INIS)

    Artemov, S.V.; Igamov, S.B.; Karakhodzhaev, A.A.; Nie, G.K.; Yarmukhamedov, R.; Zaparov, E.A.; Burtebaev, N.; Rehm, K.E.

    2010-01-01

    The contribution of the direct radiative capture of protons by 10 B and 24 Mg nuclei at low energies to the astrophysical S-factors in the reactions 10 B(p,γ) 11 C and 24 Mg(p,γ) 25 Al have been calculated within the R-matrix formalism by using empirical proton asymptotical normalization coefficients (ANC). The ANCs for bound proton configurations { 10 B+p} and { 24 Mg+p} were obtained from the analysis of the reactions ( 3 He, d). The ANCs were also estimated from the values of the neutron ANCs in the mirror nucleus 25 Mg following the suggestion that the neutron and the proton in the mirror states have equivalent nuclear potentials. It has been found that the S-factor for the reaction 10 B(p,γ) 11 C extrapolated to zero energy contributes ~100 keV b to the radiative capture to the ground state of 11 C. For the reaction 24 Mg(p,γ) 25 Al the value S(0) gives 58 keV b with a direct capture contribution of 41 keV b. (author)

  3. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Dzazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    Full text: The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but and for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energetical part of the resonance 1320 keV onto the cross section. Last experimental data for more wide energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E ρ = (320 † 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E p = 991, 558 and 365 keV, the accuracy is not worse then 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The 13 C (99%) targets, used in the experiment, were sprayed onto copper base. The target thickness was determined by incident protons energy losses in the target. The energy losses were clearly reflected in the corresponding spreading of transitions of radiation capture. The statement about the gamma-lines spreading is valid in this case, because energy losses in the target are here significantly more, than the energetical resolution of the detector. The peak width of the radiation capture gamma-line at half-height corresponds to energy losses of incident protons in the target. From the Table of brake values for protons in carbon [2] there was determined that the thickness of the target was 140 ± 5% μg/cm 2 . The upper part of gamma-lines in the spectrum repeats the

  4. Determination of protein content in grains by radioactive thermal neutron capture prompt gamma rays analysis

    International Nuclear Information System (INIS)

    Carbonari, A.W.

    1983-01-01

    The radioactive thermal neutron capture prompt gamma rays technique can be used to determinate the nitrogen content in grains without chemical destruction, with good precision and relative rapidity. This determination is based on the detection of prompt gamma rays emitted by the 14 N(n,γ) 15 N reaction product. The samples has been irradiated the tanGencial tube of the IEA-R1 research reator and a pair spectrometer has been used for the detection of the prompt gamma rays. The nitrogen content is determinated in several samples of soybean, commonbean, peas and rice, and the results is compared with typical nitrogen content for each grain. (Autor) [pt

  5. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  6. Capturing characteristics of beryllium-7 in selected tree species

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Karube, Yoshiharu.

    1997-01-01

    With regard to 7 Be, a natural radioactive nuclide, the botanical capturing characteristics were compared between eight species of those trees which grow in a local district. The mechanism of such botanical capture by their leaves was discussed. The amounts of captured 7 Be were different by tree species. Higher radioactivities were found in the coniferous trees than in the broadleaf trees. The seasonal change of 7 Be radioactivity in leaves was significantly higher in winter and spring and lower in summer. Since airborne or fallout 7 Be particles stay on the upper face of leaves, the deposited amount depended on the surface area per weight of leaves particularly for evergreen trees. Because the 7 Be amount in leaves depended on the fallout capturing ability of leafs superficial skin as well as the cleaning effect of rain and the like, the radioactivity on the surface can change depending on the surface condition of leaves even in the case the levels of 7 Be fallout stayed the same. (author)

  7. From the discovery of radioactivity to the production of radioactive beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1999-01-01

    The evolution of the projectiles used to explore the nucleus influenced strongly the development of Nuclear Physics. The alpha particles from radioactivity were the projectiles mostly used up to the second world war. This period was marked by fundamental discoveries, as those of artificial radioactivity and of fission. From the 1930's to 1070, light accelerated particles (electrons, protons, deuterons, isotopes of helium) became universally used. A third period began in the 1960's with the emergence of heavy ion accelerators, the use of which led to a true revolution in the study of nuclear matter. Finally, the fourth period started in 1985 when the first secondary beams of radioactive nuclei were produced, and opened new ways in physics. (authors)

  8. Radiative proton-capture nuclear processes in metallic hydrogen

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo

    2001-01-01

    Protons being the lightest nuclei, metallic hydrogen may exhibit the features of quantum liquids most relevant to enormous enhancement of nuclear reactions; thermonuclear and pycnonuclear rates and associated enhancement factors of radiative proton captures of high-Z nuclei as well as of deuterons are evaluated. Atomic states of high-Z impurities are determined in a way consistent with the equations of state and screening characteristics of the metallic hydrogen. Rates of pycnonuclear p-d reactions are prodigiously high at densities ≥20 g/cm 3 , pressures ≥1 Gbar, and temperatures ≥950 K near the conditions of solidification. It is also predicted that proton captures of nuclei such as C, N, O, and F may take place at considerable rates, owing to strong screening by K-shell electrons, if the densities ≥60-80 g/cm 3 , the pressures ≥7-12 Gbar, and the temperatures just above solidification. The possibilities and significance of pycnonuclear p-d fusion experiments are specifically remarked

  9. In-target rare nuclei production rates with EURISOL single-stage configuration

    CERN Document Server

    Chabod, S P; Ene, D; Doré, D; Blideanu, V; David, J.-Ch; Ridikas, D

    2010-01-01

    We conducted calculations of exotic nuclei production rates for 320 configurations of EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) direct spallation targets. The nuclei yields were evaluated using neutron generation-transport codes, completed with evolution calculations to account for nuclei decays and low energy neutron interactions. The yields were optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes, as function of the target compositions and geometries as well as the incident proton beam energies. For the considered elements, we evaluated the yield distributions as functions of the charge and mass numbers using two different spallation models.

  10. Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70

    International Nuclear Information System (INIS)

    Longour, Christophe

    1999-01-01

    Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78 Y, 82 Nb and 86 Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72 Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)

  11. Two-proton decays from light to heavy nuclei - Comparison of theory and experiment

    International Nuclear Information System (INIS)

    Grigorenko, L. V.; Zhukov, M. V.

    2009-01-01

    Two-proton (2p) radioactivity was predicted by V.I. Goldansky in 1960 [1] as an exclusively quantum-mechanical phenomenon. True three-body decay, in his terms, is a situation where the sequential emission of the particles is energetically prohibited from the ground state of a nucleus and all the final-state fragments are emitted simultaneously. Since the experimental discovery of the 4 6F e two-proton radioactivity in 2002 [2,3], this field has made fast progress. New cases of 2p radioactivity were found for 6 4Z n [4], 1 9M g [5], and, maybe, 4 8N i [6]. The 2p correlations were recently measured for the ground state decays of 4 6F e [7], 1 9M g [5,8], 1 6N e [8], and 6 B e [9]. All these decays exhibit complex correlation patterns. These correlation patterns are well described within the three-cluster theory of two-proton radioactivity (see Ref. [9] and Refs. therein); the example of the 6 B e ground state decay is provided in Fig. 1. The correlations are shown to be sensitive to the details of structure and nuclear interactions. Thus experimental studies of correlations can provide important information about the structure of decaying nuclei. With lifetimes and correlations well described by the theory in a broad range of nuclear masses (6 B e, 1 9M g, and 4 6F e belong to p, s-d, and p-f shells respectively) understanding of the nature of 2p radioactivity is getting now a solid empirical support. This is specially important in the view of astrophysical implementations of the three-body decay theory for the inverse processes of the three-body radiative capture in astrophysics, which seem to be not completely understood so far.(author)

  12. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, D., E-mail: dimitri-alexandre.rochman@psi.ch [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland); Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Koning, A.J. [Nuclear Data Section, IAEA, Vienna (Austria); Uppsala University, Uppsala (Sweden); Ferroukhi, H. [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland)

    2017-01-10

    The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF) reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS). The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the “High Fidelity Resonance” (HFR) method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  13. Modeling level structures of odd-odd deformed nuclei

    International Nuclear Information System (INIS)

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-01-01

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs

  14. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    Science.gov (United States)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of

  15. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  16. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  17. Beta decay of polarized nuclei and the decay asymmetry of 8Li

    International Nuclear Information System (INIS)

    Bigelow, R.; Freedman, S.J.; Napolitano, J.; Quin, P.A.

    1985-01-01

    Under certain conditions, it is possible to produce vector-polarized radioactive nuclei in reactions with a polarized projectile and an unpolarized target. Using the intense polarized beams at the University of Wisconsin, the authors have begun a program to study the weak interaction through the beta decay of polarized nuclei produced in this way. Such experiments bear on tests of CVC in light nuclei, sensitive searches for second-class weak currents, and measurements of the weak vector-coupling constant. One may also deduce the values of certain matrix elements. Our effort is presently centering on a study of the energy dependence of the beta-decay asymmetry of 8 Li

  18. Moderation of the 119mSn isomer radioactive decay

    International Nuclear Information System (INIS)

    Godovikov, S.K.

    1999-01-01

    The evaluation of the constant of the braked 119m Sn nuclei decay in the Moessbauer source, being for a long time in contact with a resonance shield, is carried out. The high stability of these nuclei relative to decay is established. The 119m Sn subjected to prolonged impact of the standing electromagnetic wave field become resistant to radioactive decay [ru

  19. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  20. Nuclear astrophysics and nuclei far from stability

    International Nuclear Information System (INIS)

    Schatz, H.

    2003-01-01

    Unstable nuclei play a critical role in a number of astrophysical scenarios and are important for our understanding of the origin of the elements. Among the most important scenarios are the r-process (Supernovae), Novae, X-ray bursters, and Superbursters. For these astrophysical events I review the open questions, recent developments in astronomy, and how nuclear physics, in particular experiments with radioactive beams, needs to contribute to find the answers. (orig.)

  1. Atmospheric ice nuclei: No detectable effects from a coal-fired powerplant plume

    International Nuclear Information System (INIS)

    Schnell, R.C.; Van Valin, C.C.; Pueschel, R.F.

    1976-01-01

    Atmospheric ice nuclei were measured upwind and within the effluent plume of a coalfired powerplant during February 1976. Aerosol particles were captured on two types of membrane filters (Nuclepore and Millipore) and processed in two different thermal diffusion chambers, one calibrated to produce a 100% saturation relative to water and the other to produce a slight supersaturation relative to water. Consequently, the ice nuclei measured were active in the modes that are dominant in diffusion chambers, viz., deposition nucleation and condensation-followed-by-freezing nucleation. Results indicate that plume particles do not act as ice nuclei between the temperatures of -10 and -20degreeC, nor do combustion gases in the plume deactivate natural ice nuclei

  2. Measurements of astrophysical reaction rates for radioactive samples

    International Nuclear Information System (INIS)

    Koehler, P.E.; O'Brien, H.A.; Bowman, C.D.

    1987-01-01

    Reaction rates for both big-bang and stellar nucleosynthesis can be obtained from the measurement of (n,p) and (n,γ) cross sections for radioactive nuclei. In the past, large backgrounds associated with the sample activity limited these types of measurements to radioisotopes with very long half lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Results of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) measurements. However, with a properly designed detector, and with the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several weeks. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 25 refs., 3 figs., 1 tab

  3. Supernovae and nuclear structure: Electron capture and the nuclear incompressibility

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1985-01-01

    The author considers the effects of electron capture and the high density equation of state on supernovae. Electron captures on nuclei with 60 s it is helpful for supernovae to have a soft equation of state. Present knowledge of the nuclear matter parameters is considered and implications for supernovae are drawn. (orig.)

  4. General decay law for emission of charged particles and exotic cluster radioactivity

    International Nuclear Information System (INIS)

    Sahu, Basudeb; Paira, Ramkrishna; Rath, Biswanath

    2013-01-01

    For the emission of charged particles from metastable nuclei, a general decay formula is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of monopole radioactive decays with the Q-values of the outgoing elements in different angular momentum states as well as the masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in α radioactivity and it explains well all known emission of charged particles including clusters, alpha and proton carrying angular momenta

  5. RIPL starter file parameter validation for actinide nuclei

    International Nuclear Information System (INIS)

    Maslov, V.M.; Porodzinskij, Yu.V.

    1999-01-01

    Nuclear reaction theory calculations are of particular importance for actinide nuclei data evaluation. Measured data base for 238-U provides a unique possibility to compare calculated data with measured total, elastic, inelastic, fission, capture, (n,2n), (n,3n) and (n,4n) cross section data up to 40 MeV

  6. Physics with energetic radioactive ion beams

    International Nuclear Information System (INIS)

    Henning, W.F.

    1996-01-01

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized

  7. Negative pion capture in chemical compounds

    International Nuclear Information System (INIS)

    Butsev, V.S.; Chultem, D.; Gavrilov, Yu.K.; Ganzorig, Dz.; Norseev, Yu.V.; Presperin, V.

    1976-01-01

    The results are reported of an experiment of determination of the probability of capture of resting negative pions by iodine nuclei in alkali metal iodides (LiI, NaI, KI, RbI, CsI). The yield of an isomer sup(116m)(Sb/8 - ) with a high spin number, formed in the reaction 127 I(π - , lp 10n) allows to determine the relative probability of the nuclear capture of pions in the above compounds. The results obrained are compared with the predictions of the Fermi-Teller Z-law

  8. Resonance scattering of 12C nuclei on protons in the Maya active target

    CERN Document Server

    Khodery, Mohammad

    This work is related to the realm of exotic nuclei. These are nuclei that exist far from the valley of stability. Study of these nuclei introduced many interesting phenomena and changed our understanding about the nuclear structure. As exotic nuclei are very short lived, their study has to be at the time of their production using radioactive beams of the exotic nuclei. The goal of the experiment was to study the $^{13}$Be low-lying energy levels. The experiment was performed at ISOLDE at CERN as $^{12}$Be beams are produced at this facility with suitable intensity and energy. The method used to study $^{13}$Be was elastic resonance reactions. This is a powerful tool to study unbound states. This thesis concentrates on the $^{12}$C nuclei that are present in the beam as isobaric contamination. $^{12}$C in the beam is scattered on the protons which is the target. The protons are introduced in the form of isobutene gas. The aim of this work is to prove the principle of the technique of elastic resonance scatteri...

  9. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  10. Atomic nuclei decay modes by spontaneous emission of heavy ions

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Ivascu, M.; Sandulescu, A.

    1984-01-01

    The great majority of the known nuclei, including the so-called stable nuclides, are in fact metastable with respect to several modes of spontaneous superasymmetric splitting. If the lifetime against these processes is larger than 10 30 s, the phenomenon is not detectable with available experimental techniques, hence one can admit stability from the practical point of view. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relatively to the alpha decay for these natural radioactivities. From a huge amount of systematical calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained for parent nuclei - heavy clusters leading to a magic ( 208 Pb) or almost daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-life n the 10 10 -10 30 s range. The shell structure and pairing effects are clearly manifested in these new decay modes

  11. History of radioactivity

    International Nuclear Information System (INIS)

    Minder, W.

    1981-01-01

    The author describes the historical development of the physics of atoms and nuclei. After a consideration of the ancient Greek philosophy concerning atoms the behaviour of gases is discussed with regards to statistical mechanics. Then the developement of chemistry from alchemy is described. Thereafter the early studies of gas discharges are described with regards to the electronic structure of atoms. In this connection the periodic system of elements is considered. Then the detection of the α-radiation of Uranium by Becquerel and the detections of M. and P. Curie are described. Thereafter the radiactive decay of nuclei is discussed. Then a popular introduction into nuclear structure is given with special regards to artificial radioactivity and nuclear fission. Finally nuclear reactors, the atomic bombs, applications of radionuclides, and problems of radiation protection are described. (HSI) [de

  12. Heavy ions as probes of nuclei far from stability

    International Nuclear Information System (INIS)

    Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A.; Toth, K.S.

    1989-01-01

    Nuclei located far from stability provide us with an opportunity for studying nuclear matter existing under unusual conditions. In these regions of instability, radioactive decay becomes the predominant technique by which one can obtain structure information. We have been involved in the investigation of nuclear properties of nuclei close to the proton drip line. In our explorations we have utilized heavy-ion fusion, followed by particle evaporation, to produce the extremely neutron-deficient nuclei of interest. In our studies, single-particle states near the 82-neutron shell, populated in the β decay of short-lived nuclides, have been examined and their excitation energies determined. Numerous new isotopes, isomers, and β-delayed-proton and α-particle emitters have been discovered. This contribution will discuss our particle-decay investigations. These decay modes provide us with a convenient means of discovering new isotopes whose identification opens the way for further, more extensive explorations. Also, particle-decay energies in many instances can be used to determine mass differences between parent and daughter ground states. Such measurements are therefore used to test mass formulae and to obtain estimates of masses for proton rich nuclei. 19 refs., 13 figs

  13. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-18F-fluoro-phenylalanine (FBPA) PET study.

    Science.gov (United States)

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2- 18 F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of 10 B to target tumor and surrounding normal tissue after administering 10 B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of 10 B in tumor has been estimated by multiplying 10 B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left ventricle after 30 min of FBPA

  14. The deterministic computational modelling of radioactivity

    International Nuclear Information System (INIS)

    Damasceno, Ralf M.; Barros, Ricardo C.

    2009-01-01

    This paper describes a computational applicative (software) that modelling the simply radioactive decay, the stable nuclei decay, and tbe chain decay directly coupled with superior limit of thirteen radioactive decays, and a internal data bank with the decay constants of the various existent decays, facilitating considerably the use of program by people who does not have access to the program are not connected to the nuclear area; this makes access of the program to people that do not have acknowledgment of that area. The paper presents numerical results for typical problem-models

  15. Proton capture to the ground and excited states in light nuclei

    International Nuclear Information System (INIS)

    Anghinolfi, M.; Corvisiero, P.; Guarnone, M.; Ricco, G.; Sanzone, M.; Taiuti, M.; Zucchiatti, A.

    1984-01-01

    Proton capture experiments, when performed with good resolution, generally provide two different kinds of physical information; the ground-state pγ/sub o/ cross section, which is related, through the detailed balance, to the inverse photonuclear γp/sub o/ reaction; the advantage of capture experiments is the definite kinematics, corresponding to monochromatic photons in γp reactions, and a more precise beam monitoring. The pγ/sub x/ cross section to the various excited states of the final nucleus; this information is typical of capture experiments, since excited nuclear targets are not available. Many laboratories performed extensive capture experiments at excitation energies up to the GDR region, but only recently few groups (Ohio, Triangle and Genova Universities) extended the investigation to energies above the GDR. In fact more severe experimental problems arise at higher energies: since the pγ differential cross sections range in this energy region between 0.1 and 1Γb/sr, while competitive reactions have two or three order of magnitude higher cross sections, the signal-to-background ratio is very low. The data analysis strongly depends on the detector line shape, scarsely known at photon energies above 20 MeV; a very accurate knowledge of the detector response function is therefore necessary

  16. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  17. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.

    Science.gov (United States)

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J; Han, Yu; Li, Jing

    2017-09-07

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH 3 I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag 0 @MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  18. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan

    2017-09-01

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  19. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2013-01-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes

  20. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    Science.gov (United States)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  1. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  2. Synthesis and investigation of superheavy elements - perspectives with radioactive beams

    International Nuclear Information System (INIS)

    Muenzenberg, G.

    1997-09-01

    The perspectives for the investigation of heavy and superheavy elements with intense beams of radioactive nuclei available from the new generation of secondary beam facilities in combination with modern experimental developments are the subject of this paper. The nuclear properties of the recently discovered shell nuclei centered at Z=108 and N=164 and predictions on the location of the superheavy region with improved theoretical models will be discussed. (orig.)

  3. The creation of new nuclei

    International Nuclear Information System (INIS)

    Armbruster, P.; Hessberger, F.P.

    1998-01-01

    In the last 60 years physicists have created 20 artificial elements beyond uranium. In 1934 Enrico Fermi predicted the creation of new elements by bombarding atoms with neutrons. This method led to the discovery of neptunium (Z=93), plutonium, americium, curium, berkelium, californium, einsteinium and fermium (Z=100). In fact the capture of a neutron is followed by a beta-decay which increases the atomic number (Z) by one unit. Beyond Z=100 beta-decay no more occurs so a new approach was necessary. Between the American Lawrence Berkeley Laboratory and the Russian Dubna Institute a fierce competition broke out to produce new elements by bombarding transuranium nuclei with light elements such as helium, carbon, nitrogen. This new method required heavy equipment: ion accelerator and detectors but led to the creation of all the elements from Z=101 to Z=106. A new idea was to provoke the fusion of heavy nuclei such as lead and bismuth with colliding argon, nickel or zinc ion beams. This method called 'cold fusion' opened the way to reach the nuclei beyond Z=107. In 1996 the element Z=112 was the last discovered. The next step could be the element Z=114 for which a particular stability is expected. (A.C.)

  4. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1989-01-01

    Following the ''First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop

  5. The natural radioactivity of the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pertsov, L A

    1967-07-01

    Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spontaneously emitting ionizing gamma-, alpha- or beta-radiation. The overwhelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radioactive isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. The purpose of the book, in contrast to some recent review works, is to present, in addition to a summary of reference data characterizing the radioactivity levels of various components of the biosphere, a description of those phenomena and regularities which will apparently make it possible to understand more completely the basic dynamics of the natural radioactivity of the biosphere and, consequently, contribute to a more correct interpretation of radiation-hygiene in each specific case.

  6. The natural radioactivity of the biosphere

    International Nuclear Information System (INIS)

    Pertsov, L.A.

    1967-01-01

    Of the approximately 1200 isotopes presently known more than 900 are radioactive. The nuclei of these isotopes are unstable and decay spontaneously emitting ionizing gamma-, alpha- or beta-radiation. The overwhelming majority of known radioactive isotopes have been obtained artificially; only a few are natural. Numerous investigations have shown that many of the natural radioactive isotopes can be grouped into three radioactive families. Each such family is characterized by the existence of one long-lived isotope - the family parent, one gaseous isotope of radon, intermediate radioactive decay products and final stable isotopes of atomic weights 206, 207 and 208. No such generic relationship has been established among the remaining natural radioactive isotopes. The purpose of the book, in contrast to some recent review works, is to present, in addition to a summary of reference data characterizing the radioactivity levels of various components of the biosphere, a description of those phenomena and regularities which will apparently make it possible to understand more completely the basic dynamics of the natural radioactivity of the biosphere and, consequently, contribute to a more correct interpretation of radiation-hygiene in each specific case

  7. New type of natural radioactivity

    International Nuclear Information System (INIS)

    Rubchenya, V.A.; Chechev, V.P.; Yavshits, S.G.

    1987-01-01

    Consideration is being given in popular form to investigations of a new type of natural radioactivity - spontaneous emission of fragments, more massive than α-particles, by heavy element nuclei, called f-decay by analogy with known α and γ decays. Some data on radioactivity, origin of the decay are presented. Possibilities of f-decay, predictions and hypotheses are discussed. The reason of late discovery of f-decay lies in low f-decay probability 10 -9 with respect to α-decay and in a certain sluggishness of settled knowledge about possible types of radioactive decay. The idea of f-decay is presented. It differs from the idea about a new type of decay as modification of asymmetric fission and contains an attempt to explain the intermediate position of f-decay between α-decay and

  8. The quest for novel modes of excitation in exotic nuclei

    Science.gov (United States)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  9. Summary -- Experiments with Radioactive Beams Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.J. [Los Alamos National Lab., NM (United States); Wiescher, M. [Notre Dame Univ., IN (United States)

    1992-12-31

    During the course of the workshop, a wide range of futuristic radioactive-beam experiments were discussed. These extended from the study of electroweak interactions in nuclei to materials science, nuclear astrophysics, and a host of nuclear physics investigations. Emphasis was placed on illustrating how these prototypical experiments could be done, discussing what types of detection systems would be needed, exploring the new problems which would be confronting the radioactive beam experimenter, and better defining the beam requirements. Contained herein is a summary of these discussions.

  10. The structure of nuclei far from stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1993-01-01

    Studies on nuclei near Z=82 contributed to the establishment of a new region of nuclear deformation and a new class of nuclear structure at closed shells. A important aspect of this work is the establishment of the connection between low-lying 0 + states in even endash even nuclei and the occurrence of shape coexistence in the odd-mass neighbors (E0 transitions in 185 Pt, shape coexistence in 184 Pt and 187 Au). A new type of picosecond lifetime measurement system capable of measuring the lifetime of states that decay only by internal conversion was developed and applied to the 186,188 Tl decay to determine the lifetime of the 0 2 + and 2 2 + deformed states in 186,188 Hg. A search for the population of superdeformed states in 192 Hg by the radioactive decay of 192 Tl was accomplished by using a prototype internal pair formation spectrometer

  11. Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk

    Directory of Open Access Journals (Sweden)

    J. Konki

    2017-01-01

    Full Text Available The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n240Es. Half-lives of 6(2s and 22−6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα=8.19(3MeV and 8.09(3MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6 and 0.04(2 were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.

  12. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  13. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  14. Nuclear receptors for triiodothyronine. Part 1. Binding of triiodothyronine (T3) in rat liver nuclei after in vivo administration of labelled hormone

    International Nuclear Information System (INIS)

    Kubica, A.; Nauman, A.; Witkowska, E.; Nauman, J.

    1977-01-01

    The binding of T 3 ( 125 I) has been studied in liver nuclei prepared after in vivo administration of hormone to male Wistar rats. The preliminary study revealed that 30 minutes after administration of T 3 ( 125 I) in doses varied from 5 ng to 200 ng/100 g of body weight about 20% of total radioactivity was accumulated in the liver. The ratio of T 3 in serum to T 3 in liver was found to be almost stable (regardless of dose injected) with its value between 0.2 to 0.3. To purified nuclear fraction (prepared from liver homogenates made in 0.32 M sucrose + 1 mM magnesium chloride and ultracentrifuged through 2.4 M sucrose density gradient) contained about 4% of radioactivity present in liver. When distribution of in vivo administrated T 3 ( 125 I) in the nuclear fraction was examined it was found that 2.4 - 8.2% of radioactivity present in nuclei is unspecifically bound in external nuclear membrane. The remaining part of hormone was bound specifically to nuclei. About 10% of radioactivity in nuclei without outer membrane was presented in nucleoli. Saturation study and Scatchard analysis of results obtained revealed the presence of two classes of T 3 binding sites in the liver nuclei. The first class posses high affinity and limited maximal capacity being 2.4 ng of T 3 /g of liver tissue. The second class of binding sites have had lower affinity and maximal capacity around 20 ng of T 3 /g of liver tissue. The nuclear receptors were extracted with 0.4 M KCl - the procedure known to extract non-histone proteins and nucleic acids. Further study shown the presence of one class of specific T 3 binding sites in KCl extract with maximal capacity 800 pg T 3 /mg of protein. (author)

  15. Vaporization of comet nuclei: Light curves and life times

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J J [Harvard Univ., Cambridge, MA (USA). Center for Astrophysics; A' Hearn, M F [Maryland Univ., College Park (USA)

    1979-10-01

    The authors have examined the effects of vaporization from the nucleus of a comet and show that a latitude dependence of vaporization can, in some cases, explain asymmetries in commetary light curves. They also find that a non-uniform distribution of solar radiation over a comet can considerably shorten the vaporization lifetime compared to the results normally obtained by assuming that the nuclear surface is isothermal. Independent of any latitude effects, comets with CO/sub 2/-dominated nuclei and with periherlion distances less than 0.5 AU have vaporization lifetimes less than or comparable to their dynamical ejection times. This may explain the observed deficit of comets with small perihelion distances. Similarly comets with CO/sub 2/-dominated nuclei and perihelia near Jupiter's orbit have vaporization lifetimes that are shorter than the time for capture into short-period orbits. They suggest, therefore, that at least some new comets are composed in large part of CO/sub 2/, while only H/sub 2/O-dominated comets, with lower vaporization rates, can survive to be captured into short-period orbits.

  16. Investigations for the use of the fast digitizers with C6D6 detectors for radiative capture measurements at GELINA

    International Nuclear Information System (INIS)

    Mihailescu, L.C.; Borella, A.; Massimi, C.; Schillebeeckx, P.

    2009-01-01

    The relatively long dead time in conventional data acquisition systems that provide simultaneously the pulse height and the time information for the detected events hinders cross-section measurements with high count rates. This is the case for capture cross-section measurements at the time-of-flight facility GELINA using high radioactive samples or thick samples of materials having strong resonances. Either the high average count rate (e.g. due to the radioactivity of the sample) or the high instantaneous count rate for strong resonances results in a large dead time correction. One solution to reduce the impact of the dead time is the use of a data acquisition system based on fast digitizers. The performances of two commercial digitizers (CAEN N172B and Acqiris DC282), coupled to a C 6 D 6 scintillator, have been tested in terms of pulse height linearity and resolution, dead time and time resolution. The signal processing was done on-line obtaining simultaneously the pulse height and time information for each detected event. With both digitizers a comparable pulse height linearity and resolution has been obtained as with a conventional system. The total dead time of both digital systems is at least a factor 5 shorter than the one for the conventional system. The main difference in performance between the two digitizers is the time resolution. For a relatively large scintillator, a time resolution of about 2 ns has been achieved with the DC282 module and the conventional system while the time resolution was limited to 15 ns with the CAEN N1728B module. For most nuclei a 15 ns time resolution is sufficient to perform resonance shape analysis. Therefore, the CAEN N1728B module can be used for the majority of capture cross-section measurements at GELINA. However, for nuclei with low level density, for which the resolved resonance region extends to the keV-region, a better time resolution is required and the Acqiris DC282 module has to be used.

  17. Study of two-proton radioactivity within the relativistic mean-field plus BCS approach

    International Nuclear Information System (INIS)

    Singh, D.; Saxena, G.

    2012-01-01

    Inspired by recent experimental studies of two-proton radioactivity in the light-medium mass region, we have employed relativistic mean-field plus state-dependent BCS approach (RMF+BCS) to study the ground state properties of selected even-Z nuclei in the region 20 ≤ Z ≤ 40. It is found that the effective potential barrier provided by the Coulomb interaction and that due to centrifugal force may cause a long delay in the decay of some of the nuclei even with small negative proton separation energy. This may cause the existence of proton-rich nuclei beyond the proton drip-line. Nuclei 38 Ti, 42 Cr, 45 Fe, 48 Ni, 55 Zn, 60 Ge, 63, 64 Se, 68 Kr, 72 Sr and 76 Zr are found to be the potential candidates for exhibiting two-proton radioactivity in the region 20 ≤ Z ≤ 40. The reliability of these predictions is further strengthened by the agreement of the calculated results for the ground state properties such as binding energy, one- and two-proton separation energy, proton and neutron radii, and deformation with the available experimental data for the entire chain of the isotopes of the nuclei in the region 20 ≤ Z ≤ 40. (author)

  18. Partial radiative capture of resonance neutrons

    International Nuclear Information System (INIS)

    Samour, C.

    1969-01-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. 195 Pt + n and 183 W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of γ i > with E γ . The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in 195 Pt + n, 197 Au + n and 59 Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [fr

  19. Measurement of the radiative capture cross section of the s-process branching points 204Tl and 171Tm at the n_TOF facility (CERN)

    Science.gov (United States)

    Casanovas, A.; Domingo-Pardo, C.; Guerrero, C.; Lerendegui-Marco, J.; Calviño, F.; Tarifeño-Saldivia, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Quesada, J. M.; Schumann, D.; Aberle, O.; Alcayne, V.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Barbagallo, M.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Busso, M.; Caamaño, M.; Caballero-Ontanaya, L.; Calviani, M.; Cano-Ott, D.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Cristallo, S.; Damone, L. A.; Diakaki, M.; Dietz, M.; Dupont, E.; Durán, I.; Eleme, Z.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Gunsing, F.; Heyse, J.; Jenkins, D. G.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kimura, A.; Kokkoris, M.; Kopatch, Y.; Krtička, M.; Kurtulgil, D.; Ladarescu, I.; Lederer-Woods, C.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Michalopoulou, V.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Ogállar, F.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Persanti, L.; Porras, I.; Praena, J.; Radeck, D.; Ramos, D.; Rauscher, T.; Reifarth, R.; Rochman, D.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Simone, S.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Talip, T.; Tassan-Got, L.; Tsinganis, A.; Ulrich, J.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Woods, P. J.; Wright, T.; Žugec, P.; Köster, U.

    2018-05-01

    The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,γ) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei.

  20. Method of treatment in a system passing radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Kinoshita, M; Asakura, Y

    1976-05-14

    A method to ensure the safety of the reactor and reduce radiation exposure dose by preventing oxygen hydrogen reaction of the reactor off-gas and accumulation of the radioactive material is described. Substances which are accumulated in an off-gas duct and are likely to capture radioactive material (for instance Pd catalyst falling from a recombiner) is changed into a stable material (for instance, PdI/sub 2/) which is hot likely to capture radioactive material through reaction with a stabilizer (for instance, I/sub 2/, Cl/sub 2/, HCl, etc.). This stabilized material is washed off the atomic power plant system.

  1. Prompt γ-ray data evaluation of thermal-neutron capture for A = 1-25

    International Nuclear Information System (INIS)

    Zhou Chunmei

    1999-01-01

    The method of prompt γ-ray data evaluation for thermal-neutron capture has been briefly presented. The prompt capture γ-ray data of stable nuclei for A = 1 - 25 are evaluated. The evaluated data have been changed into the ENSDF format and the checks of physics and format have been made

  2. Density functional theory of nuclei

    International Nuclear Information System (INIS)

    Terasaki, Jun

    2008-01-01

    The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)

  3. Dynamics of multiple nuclei in Ashbya gossypii hyphae depend on the control of cytoplasmic microtubules length by Bik1, Kip2, Kip3, and not on a capture/shrinkage mechanism.

    Science.gov (United States)

    Grava, Sandrine; Philippsen, Peter

    2010-11-01

    Ashbya gossypii has a budding yeast-like genome but grows exclusively as multinucleated hyphae. In contrast to budding yeast where positioning of nuclei at the bud neck is a major function of cytoplasmic microtubules (cMTs), A. gossypii nuclei are constantly in motion and positioning is not an issue. To investigate the role of cMTs in nuclear oscillation and bypassing, we constructed mutants potentially affecting cMT lengths. Hyphae lacking the plus (+)end marker Bik1 or the kinesin Kip2 cannot polymerize long cMTs and lose wild-type nuclear movements. Interestingly, hyphae lacking the kinesin Kip3 display longer cMTs concomitant with increased nuclear oscillation and bypassing. Polymerization and depolymerization rates of cMTs are 3 times higher in A. gossypii than in budding yeast and cMT catastrophes are rare. Growing cMTs slide along the hyphal cortex and exert pulling forces on nuclei. Surprisingly, a capture/shrinkage mechanism seems to be absent in A. gossypii. cMTs reaching a hyphal tip do not shrink, and cMT +ends accumulate in hyphal tips. Thus, differences in cMT dynamics and length control between budding yeast and A. gossypii are key elements in the adaptation of the cMT cytoskeleton to much longer cells and much higher degrees of nuclear mobilities.

  4. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  5. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes

  6. Muon capture on nuclei and the induced pseudoscalar coupling constant

    International Nuclear Information System (INIS)

    Hasinoff, M.D.

    1996-11-01

    Ordinary and radiative muon capture reactions are reviewed with regards to the evidence for a renormalization of the induced pseudoscalar coupling constant inside the nucleus. Emphasis is placed on the new results which have become available since the WEIN-92 conference. (authors)

  7. Systematical calculations on the ground state properties of heavy and superheavy nuclei

    International Nuclear Information System (INIS)

    Ren, Z.Z.; Center of Theoretical Nuclear Physics, Lanzhou; Mao, Y.C.; Zhi, Q.J.; Xu, C.; Dong, T.K.

    2007-01-01

    The synthesis of superheavy elements is now a hot topic in nuclear physics. Alpha-decay and spontaneous fission are two main decay modes in heavy and superheavy regions. Theoretical studies on alpha radioactivity and spontaneous fission can provide useful information for experiments. We investigate the alpha-decay and spontaneous fission of heavy and superheavy nuclei with different models. This includes the alpha-decay energies, alpha decay half-lives, and half-lives of spontaneous fission. The theoretical alpha-decay half-lives are in good agreement with experimental ones. The calculated half-lives of spontaneous fission are in reasonable agreement with present data. The properties of unknown nuclei are predicted. (author)

  8. Cluster radioactivity and very asymmetric fission through quasi-molecular shapes

    International Nuclear Information System (INIS)

    Royer, G.

    1997-01-01

    The decay of radioactive nuclei which emit heavy clusters like C, O, Ne, Mg and Si has been studied in the fission valley which leads one spherical nucleus towards two spherical touching nuclei before crossing the barrier. Assuming volume conservation, the deformation energy has been calculated within a generalized liquid drop model taking into account the proximity effects between the cluster and the daughter nucleus. The theoretical partial half-lives obtained within the WKB barrier penetration probability are in good agreement with the experimental data for the heaviest clusters. The Ne, Mg and Si emission looks like a very-asymmetric spontaneous fission. The 14 C radioactivity is not correctly described within the fission hypothesis. The 14 C and apparently also the 20 O are probably pre-born in the parent nucleus, the emission being similar to the α decay process. (author)

  9. Universal correlations of nuclear observables and the structure of exotic nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Zamfir, N.V.

    1996-01-01

    Despite the apparent complexity of nuclear structural evolution, recent work has shown a remarkable underlying simplicity that is unexpected, global, and which leads to new signatures for structure based on the easiest-to-obtain data. As such they will be extremely valuable for use in the experiments with low intensity radioactive beams. Beautiful correlations based either on extrinsic variables such as N p N n or the P-factor or correlations between collective observables themselves have been discovered. Examples to be discussed include a tri-partite classification of structural evolution, leading to a new paradigm that discloses certain specific classes of nuclei, universal trajectories for B(E2: w 1 + → 0 1 + ) values and their use in extracting hexadecapole deformations from this observable alone, the use of these B(E2) values to identify shell gaps and magic numbers in exotic nuclei, the relationship of β and γ deformations, and single nucleon separation energies. Predictions for nuclei far off stability by interpolation will also be discussed

  10. Muon capture by helium-3

    International Nuclear Information System (INIS)

    Pascual de Sanz, R.

    1966-01-01

    In this paper we study the capture of a negative muon by H e 3 in the channel μ-+H e 3 +V. Following Primakoff we use the V-A theory of the weak interactions. We include also first order relativistic terms. To describe the initial and final nuclei we have used the most general wave function allowed by the Paul is exclusion principle, assuming that these nuclei are a mixture of an isospin doublet and quadruplet. For the part of the wave function depending on the inter nucleonic distances, we have taken four different function without hard-core, a gaussian and three kinds of Irving type. We present in several tables the results obtained varying g p /g v and g A /g y as well as the amplitudes of the fourteen terms forming the nuclear wave function. (Author) 35 refs

  11. Radioactivity of fish II

    Energy Technology Data Exchange (ETDEWEB)

    Obo, F; Wakamatsu, C; Hiwatashi, Y; Tamari, T; Yoshitake, N; Tajima, D

    1955-01-01

    Various tissues of fish captured east of Formosa after the Bikini H-Bomb experiment had radioactivities (detected on May 27, 1954) in counts/min/ash from 5 g. fresh tissues: blood 2414, eyeball 49, heart muscle 111, white muscle 11, red muscle (chiai) 123, bone 46, skin 28, pancreas 131, liver 522, stomach muscle 106, stomach contents 52, spermatozoa 47, and spleen 504. High radioactivities in blood and blood synthesizing organs (liver and spleen) were emphasized. The radioactivity in the blood had a half-life of 34 to 35 days and the maximum energy of ..beta..-ray of approximate 0.4 m.e.v.

  12. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J.; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J.; Han, Yu; Li, Jing

    2017-01-01

    capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li

  13. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    CERN Document Server

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  14. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  15. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-first annual progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Fink, R.W.

    1985-01-01

    The nuclear chemistry group in the School of Chemistry continues investigating the radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility [HHIRF] and studied on-line with the University Isotope Separator at Oak Ridge [UNISOR]. Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, etc., multiparameter coincidence spectrometry; (2) on-line laser hyperfine structure [hfs] and isotope shift measurements for the determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei; and (3) theoretical calculations of predictions of nuclear models for comparison with experimental level structures in nuclei studied at UNISOR. 20 refs., 9 figs., 2 tabs

  16. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-second annual progress report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Fink, R.W.

    1986-01-01

    The nuclear chemistry group in the School of Chemistry continues investigations of radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research interest encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, αγt multiparameter coincidence spectrometry; (2) measurements of single γ-ray angular distributions and magnetic moments of mass separated low-temperature oriented nuclei, using the helium dilution refrigerator ''ORIENT'' being installed on-line to the isotope separator; and (3) on-line laser hyperfine structure (hfs) and isotope shift measurements for determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei. 35 refs., 8 figs., 1 tab

  17. β-Decay half-lives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2016-03-01

    We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.

  18. Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei

    Directory of Open Access Journals (Sweden)

    Chowdhury P.

    2016-01-01

    nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154, we have populated high angular momentum states in a series of Pu (Z = 94, Cm (Z = 96 and Cf (Z = 98 nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.

  19. New research discovery may mean less radioactive contamination, safer nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-20

    Murph has now made another nanoparticle breakthrough that could benefit various work environments such as nuclear power plants. Murph and her team have created nanoparticle treated stainless steel filters that are capable to capturing radioactive vapor materials. Just like air filters capture dust and dirt, these filters are capable of capturing large amounts of radioactive vapors. The new research may one day mean that nuclear power plant workers, and other workers in related fields, will have a safer working environment.

  20. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    International Nuclear Information System (INIS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Highlights: • There are radioactively contaminated soils having a radioactive cesium transfer of 0.01. • Micro-PIXE analysis has revealed an existence of phosphorus in a contaminated soil. • Radioactive cesium captured by phosphorus compound would be due to radioactive transfer. -- Abstract: Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ∼0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds

  1. Heavy accelerated nuclei in biomedical research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1987-01-01

    Accelerated atomic nuclei in physics accelerators have been used in basic biological research and in applied medical diagnostic and therapeutic studies for the past 50 years. The passage of single heavy particles through the cell nucleus is capable of producing multiple DNA double-strand scission and chromatin breaks. According to the Repair-Misrepair model, the high biological effectiveness of high-LET particles is due to misrepair and misrejoining of the breaks. The Bragg depth ionization effect allows heavy particles to deposit considerably more energy deep in tissue than at the surface, and this property has been used for great improvements in the radiation therapy of localized tumors. Recent advances in producing radioactive beams will allow verification of therapeutic administration of such beams. The radioactive beams also open a new field of Nuclear Medicine. There is increasing interest in building special biomedical light and heavy-ion accelerators. These will be used not only for therapy but also for diagnosis, for the study of radiation hazards in space flight, and for basic molecular and cellular understanding of the mechanisms of radiation effect

  2. Nuclear structure/nuclei far from stability

    International Nuclear Information System (INIS)

    Casten, R.F.; Garrett, J.D.; Moller, P.; Bauer, W.W.; Brenner, D.S.; Butler, G.W.; Crawford, J.E.; Davids, C.N.; Dyer, P.L.; Gregorich, K.; Hagbert, E.G.; Hamilton, W.D.; Harar, S.; Haustein, P.E.; Hayes, A.C.; Hoffman, D.C.; Hsu, H.H.; Madland, D.G.; Myers, W.D.; Penttila, H.T.; Ragnarsson, I.; Reeder, P.L.; Robertson, G.H.; Rowley, N.; Schreiber, F.; Seifert, H.L.; Sherrill, B.M.; Siciliano, E.R.; Sprouse, G.D.; Stephens, F.S.; Subotic, K.; Talbert, W.; Toth, K.S.; Tu, X.L.; Vieira, D.J.; Villari, A.C.C.; Walters, W.B.; Wildenthal, B.H.; Wilhelmy, J.B.; Winger, J.A.; Wohn, F.K.; Wouters, J.M.; Zhou, X.G.; Zhou, Z.Y.

    1990-01-01

    This report outlines some of the nuclear structure topics discussed at the Los Alamos Workshop on the Science of Intense Radioactive Ion Beams (RIB). In it we also tried to convey some of the excitement of the participants for utilizing RIBs in their future research. The introduction of radioactive beams promises to be a major milestone for nuclear structure perhaps even more important than the last such advance in beams based on the advent of heavy-ion accelerators in the 1960's. RIBs not only will allow a vast number of new nuclei to be studies at the extremes of isospin, but the variety of combinations of exotic proton and neutron configurations should lead to entirely new phenomena. A number of these intriguing new studies and the profound consequences that they promise for understanding the structure of the atomic nucleus, nature's only many-body, strongly-inteacting quantum system, are discussed in the preceeding sections. However, as with any scientific frontier, the most interesting phenomena probably will be those that are not anticipated--they will be truly new

  3. Role of shell corrections in the phenomenon of cluster radioactivity

    Science.gov (United States)

    Kaur, Mandeep; Singh, Bir Bikram; Sharma, Manoj K.

    2018-05-01

    The detailed investigation has been carried out to explore the role of shell corrections in the decay of various radioactive parent nuclei in trans-lead region, specifically, which lead to doubly magic 208Pb daughter nucleus through emission of clusters such as 14C, 18,20O, 22,24,26Ne, 28,30 Mg and 34S i. The fragmentation potential comprises of binding energies (BE), Coulomb potential (Vc) and nuclear or proximity potential (VP) of the decaying fragments (or clusters). It is relevant to mention here that the contributions of VLDM (T=0) and δU (T=0) in the BE have been analysed within the Strutinsky renormanlization procedure. In the framework of quantum mechanical fragmentation theory (QMFT), we have investigated the above mentioned cluster decays with and without inclusion of shell corrections in the fragmentation potential for spherical as well as non-compact oriented nuclei. We find that the experimentally observed clusters 14C, 18,20O, 22,24,26 Ne, 28,30 Mg and 34Si having doubly magic 208 Pb daughter nucleus are not strongly minimized, they do so only after the inclusion of shell corrections in the fragmentation potential. The nuclear structure information carried by the shell corrections have been explored via these calculations, within the collective clusterisation process of QMFT, in the study of ground state decay of radioactive nuclei. The role of different parts of fragmentation potentials such as VLDM, δU, Vc and Vp is dually analysed for better understanding of radioactive cluster decay.

  4. Neutron-capture reactions by stable and unstable neutron-rich nuclei and their relevance for nucleosynthesis in hot and explosive astrophysical scenarios

    International Nuclear Information System (INIS)

    Hofinger, R.

    1997-10-01

    This thesis deals on the one hand with neutron-capture reactions by carbon-, nitrogen-, oxygen- and sulfur-isotopes, and on the other hand with the two-step processes 4 He(2n, γ) 6 He and 9 Li(2n, γ) 11 Li. Some of the involved carbon-, nitrogen- and oxygen-isotopes possess neutron-halos characterized by the unexpected large radial extension of the nuclear matter density distribution. Special attention is paid to the halo properties in the calculation of the direct neutron capture cross section. For the determination of the nuclear structure, models are used, when no experimental information is available. The results for the reaction rates are compared to previously used rates. The rates obtained in this work are partly orders of magnitude higher than the previously used reaction rates. The reaction rates for the two-step processes are on the one hand calculated assuming a two-step process, on the other hand from genuine three-body models for the process of photodisintegration of the nuclei 6 He and 11 Li. It turns out that the calculations assuming a trio-step process underestimate the reaction rates by orders of magnitude. The influence of the reaction rate for the reaction 4 He(2n, γ) 6 He and the formation of 12 C is examined in a nuclear reaction network under conditions which are typical for the α- process in supernovae of type II. It turns out that under these conditions the influence of the reaction 4 He(2n, γ) 6 He is negligible on the formation of 12 C. (author)

  5. RIKEN radioactive isotope beam factory project – Present status and ...

    Indian Academy of Sciences (India)

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis ... RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ...

  6. Investigation of nuclei near N = 82 and Z = 64 VIA radioactive decay of high-spin isomers

    International Nuclear Information System (INIS)

    Toth, K.S.

    1979-01-01

    An island of very high spin isomers was found recently in neutron-deficient Gd-Lu nuclei near the N = 82 closed shell in (H.I.,xn) measurements. This exciting discovery has led to a large number of experiments trying to identify the structures of these isomers and the nuclei in which they occur. These attempts have been helped in many instances by available spectroscopic information at low excitation energies. A systematic investigation of the low-lying structure of nuclei near N = 82 and Z greater than or equal to 64 was carried out. Heavy-ion beams were used to produce proton-rich isotopes which were then transported, with the use of gas-jet systems, to shielded areas where singles and coincidence γ-ray measurements could be made. Earlier investigations dealt with the decay of terbium ( 146-149 Tb) and dysprosium ( 147-152 Dy) nuclei. During the past two years the research program was extended to holmium nuclides (A less than or equal to 152) produced in 10 B bombardments of samarium. Two new isotopes, 149 Ho and 148 Ho, were identified. The decay data of 21-s 149 Ho supplement in-beam results and locate the hg/ 2 neutron state in 149 Dy to be at 1091 keV. The most intense γ-ray associated with 9-s 148 Ho has an energy of 1688 keV. It is possibly the first-excited to ground-state transition in 148 Dy. Recent in-beam measurements have shown that the first-excited state in 146 Gd is, unespectedly, 3 - in contrast to doubly evenN = 82 nuclei below gadolinium where it is 2 + . It would be interesting to determine whether the 1688-keV level in 148 Dy, the next nucleus in this isotonic series, is 2reverse arrow or 3 - in character. 12 references

  7. Evidence for valence neutron capture in s-wave neutron capture in 38Ar and 54Fe

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    1975-01-01

    The valence and channel neutron model of Lane and Lynn remarkably account for partial radiative widths of neutron resonances in the 3p-giant resonance. Evidence is presented for valence neutron capture at and in the neighborhood of the 3s-giant resonance in target nuclei 36 Ar and 54 Fe. In addition, the variation of the correlation coefficient rho with the reduction power factor n of the γ ray energy is studied. (4 figures, 1 table) (U.S.)

  8. Fusion probability and survivability in estimates of heaviest nuclei production

    International Nuclear Information System (INIS)

    Sagaidak, Roman

    2012-01-01

    A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation

  9. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Takahashi, Toshihiko; Maruko, Morihisa; Takamura, Yoshiyuki.

    1981-01-01

    Purpose: To effectively separate radioactive claddings from the slurry of wasted ion exchange resins containing radioactive claddings. Method: Wasted ion exchange resins having radioactive claddings (fine particles of iron oxides or hydroxide adhered with radioactive cobalt) are introduced into a clad separation tank. Sulfuric acid or sodium hydroxide is introduced to the separation tank to adjust the pH value to 3 - 6. Then, sodium lauryl sulfate is added for capturing claddings and airs are blown from an air supply nozzle to generate air bubbles. The claddings are detached from the ion exchange resins and adhered to the air bubbles. The air bubbles adhered with the claddings float up to the surface of the liquid wastes and then forced out of the separation tank. (Ikeda, J.)

  10. Nuclear spectroscopy using the neutron capture reaction

    International Nuclear Information System (INIS)

    Egidy, T.

    1982-01-01

    Experimental methods using neutron spectroscopy as a means to study the nucleus structure are described. Since reactions of neutron capture (n, γ) are non-selective, they permit to study the nature of excitation (monoparticle and collective) of nuclear levels, the nature of vibrational excitations, to check the connection between shell model and liquid drop model etc. In many cases (n, γ) reactions are the only way to check the forecast of nuclear models. Advantages of (n, γ) spectroscopy, possessing a high precision of measurement and high sensitivity, are underlined. Using neutron spectroscopy on facilities with a high density of neutron flux the structures of energy levels of a large group of nuclei are studied. In different laboratories complete schemes of energy levels of nuclei are obtained, a great number of new levels are found, the evergy level densities are determined, multipolarities of γ-transitions, spins, level parities are considered. StrUctures of rotational bands of heavy deformed nuclei are studied. The study of the structure of high-spin states is possible only using the methods of (n, γ) spectroscopy Investigation results of the nuclei 24 Na, 114 Cd, 154 Eu, 155 Cd, 155 Sm, 233 Th are considered as examples. The most interesting aspects of the investigations using neutron spectroscopy are discUssed

  11. Radiative muon capture and induced pseudoscalar coupling constant in nuclear matter

    International Nuclear Information System (INIS)

    Cheoun, Myung Ki; Kim, K S; Choi, T K

    2003-01-01

    Radiative muon capture is studied to investigate the induced pseudoscalar coupling constant g P in nuclear matter. According to the recent TRIUMF experiment for μ - p → nν μ γ, the g P was surprisingly larger than the value obtained from μ - p → nν μ experiment by as much as 44%. The result may affect seriously theoretical interpretations of the experimental results for the radiative muon captures in finite nuclei. In view of the recent TRIUMF result, the radiative muon capture in nuclear matter is revisited in a framework of the relativistic mean field theory

  12. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  13. Effect of a neutron skin on collective dipoles modes in nuclei

    International Nuclear Information System (INIS)

    Warner, D.D.; Van Isacker, P.; Nagarajan, M.A.

    1992-01-01

    One of the principal motivations for accelerated radioactive beams is to probe nuclear structure at the limits of nuclear stability. For neutron-rich nuclei, an indication of the new phenomena which may occur has already appeared, in the guise of the neutron halo discovered in very light nuclei. More generally, a steadily increasing neutron skin thickness is expected as the neutron excess increases. The presence of such a mantle of dominantly neutron matter will then particularly affect the properties of collective modes involving the out-of-phase motion of neutrons and protons. This paper explores the effect of the neutron skin thickness on the isovector M1 and E1 modes in medium and heavy mass nuclei. A simple model is used, couched in terms of classical oscillations of neutron and proton densities. The treatment includes the open-quotes pygmyclose quotes E1 mode, which corresponds to motion of the core against the loosely-bound neutrons in the mantle and predicts a significant lowering of this mode, even at relatively modest values of the skin thickness

  14. NRI's research on radioactive wastes

    International Nuclear Information System (INIS)

    Alexa, J.; Dlouhy, Z.; Kepak, F.; Kourim, V.; Napravnik, J.; Razga, J.; Ralkova, J.; Uher, E.; Vojtech, O.

    1976-01-01

    A survey is given (including 41 references) of work carried out at the Nuclear Research Institute. Discussed are sorption processes (a selective sorbent for 90 Sr based on BaSO 4 , etc.), sorption on inorganic ion exchangers (heteropolyacid salts, ferrocyanides for 137 Cs capture), on organic cation exchangers (separation of lanthanides), electrocoagulation. The process is described of vitrification of highly radioactive wastes, the arrest of emissions, the deposition of radioactive wastes and surface decontamination. (M.K.)

  15. Study of the Beta-Decay Properties of Extremely Proton-Rich Nuclei

    CERN Multimedia

    2002-01-01

    The most proton-rich nuclei known to date have isospin projections $ T _{Z} $ ~=~-3/2, -2 and -5/2. \\\\ \\\\ We propose to carry out a study of their superallowed beta decays, a phenomenon that can only be studied in this region of the nuclear chart. The main aim is to determine the ``effective charge'' in nuclei of the axial vector coupling, the quantity $ ( g'_{A} / g _{A} ) ^{2} $ , which in a recent first experiment on a ~~ $ T _{Z} $~~=~-2 nucleus was determined to be 0.49~$\\pm$~0.05. \\\\ \\\\ Because of the problems connected with the production and acceleration of radioactive ions, our proposal aims at selected elements: neon, argon and rubidium (production runs), magnesium (test and production runs) and calcium (test). Data have so far been taken for $^1

  16. Mechanism of f-decay - spontaneous emission of fragments by heavy nuclei

    International Nuclear Information System (INIS)

    Rubchenya, V.A.; Ehjsmont, V.P.; Yavshits, S.G.

    1987-01-01

    A new type of model of radioactive decay - spontaneous emission of fragments by heavy nuclei, for which f-decay has been suggested, is formulated. The consideration is based on representation about a disintegrating configuration, for which the probability of f-cluster formation is close to 1. The moments method is used to determine the parameters of the disintegrating configuration. The probability of disintegrating configuration formation is determined by collective properties of a disintegrating nucleus. Effect of nucleon shells of the daughter nucleus and fragment leads to more compact disintegrating configuration and to decay energy increase, that's why at f-decay magic nuclei are formed. Probable spontaneous f-decay values calculated agree satisfactorily with experimental data. The calculational results testify to considerable decrease of f-decay probability at Z≥94

  17. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chatterjee, A.; Llacer, J.

    1981-01-01

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11 C and 19 Ne beams, but the short half-life of 19 Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  18. Radioactive ion beams - A tool to study structure of nuclei far from stability

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Zdeněk

    2006-01-01

    Roč. 56, č. 2 (2006), s. 91-94 ISSN 0323-0465 R&D Projects: GA ČR GA202/04/0791 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron-rich nuclei * elactic-scattering * N=20 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.647, year: 2006

  19. Study of radio-active ions in the atmosphere

    International Nuclear Information System (INIS)

    Renoux, A.

    1965-01-01

    A comparative study is made of active, deposits of radon and thoron in suspension in the atmosphere by means of α radiation counting, using ZELENY tubes, scattering equipment, filter papers or membranes. It has been possible to show the existence of small and large ions which are negative and positive, as well as of neutral radio-active nuclei; their properties are studied. A theoretical interpretation of the results is presented. The average content of radon (using the Ra A concentration) and of Th B in the air has been determined. The radioactive equilibrium between radon and its daughter products in atmospheric air are examined. The techniques developed for active radon and thoron deposits are applied to the study of artificial radio-activity, the analyses being carried out by means of γ spectrometry. (author) [fr

  20. Status of radioactive ion beams at the HRIBF

    CERN Document Server

    Stracener, D W

    2003-01-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using sup 1 sup 7 F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include sup 2 sup 5 Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  1. Studies of new modes of radioactive decay by spontaneous emission of complex nuclei

    International Nuclear Information System (INIS)

    Barwick, S.W.; Hulet, E.K.; Moody, K.; Price, P.B.; Ravn, H.L.

    1990-01-01

    Impressive progress has been made in the two years since Rose and Jones first reported the novel spontaneous decay mode 223 Ra → 14 C + 209 Pb. Since then, the isotopes 222 Ra, 224 Ra, and 226 Ra have been observed to emit 14 C, and stringent upper limits have been set on branching ratios B( 14 C/α) for 221 Ra and 225 Ac. The discoveries of emission of 24 Ne from 232 U, and 231 Pa, and 233 U show that the phenomenon of heavy ion emission is a general one. A goal of recent experiments by the authors collaboration is to test models that differ by as much as 10 5 in predicted half-lives for the emission of complex nuclei with Z ≥ 12. Due to small branching ratios B approx-lt 10 -14 , and large fission background, they are developing new techniques to insure reliable identification of such rare decay modes. Experimental support for the unified models of alpha decay, complex nuclei emission, and spontaneous fission are addressed

  2. Electron capture Auger aftereffect of ammine cobalt complex

    International Nuclear Information System (INIS)

    Harada, Masayuki; Sano, Hirotoshi

    1976-01-01

    The study of ammine cobalt complex by luminescent Moessbauer spectrometry method was performed. The method was compared with hot atom chemistry method. The electron states in atoms are changed by the aftereffect on Auger emission following the electron capture process. The state of oxidation of disintegration products is usually higher than that of parent nuclei. However, sometimes, lower oxidation is seen in Fe-57, the daughter nuclei of Co-57. This phenomenon may be due to radiation chemistry process, and this effect can be observed by the luminescent Moessbauer spectrometry method. However, the range of the effect can not be seen by the Moessbauer method. Estimation showed that the Auger electrons stay within the surrounding area of the disintegration atom, and the effect does not reach to distant places. The yield of Fe-57 in the electron capture process of Co-57 in cobalt complex, the G-value, and the hot atom chemical yield were obtained. It is concluded that the aftereffect of the Auger process is the localized radiation chemistry effect. Good correlation was seen between the present method and the hot atom chemistry method. (Kato, T.)

  3. Nuclear chemistry project. Progress report, January 1, 1978--December 31, 1978

    International Nuclear Information System (INIS)

    Naumann, R.A.

    1978-01-01

    Research on the nuclear chemistry project is summarized including Coulomb capture of negative muons by atoms and molecules, nuclear structure and spectroscopy, and the preparation and use of radioactive targets both to study the internal electric fields acting on the nuclei of foreign atoms introduced in metallic solids by radioactive decay and determination of nuclear moments by optical hyperfine spectroscopy

  4. Nucleon-nucleon momentum correlation function for light nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.

    2007-01-01

    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics

  5. Direct capture of low-energy neutrons by {sup 16}O

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Hideo [Tokyo Inst. of Tech., Nagatsuta, Yokohama (Japan). Interdisciplinary Graduate School of Science; Igashira, Masayuki

    1998-03-01

    A dispersive optical potential for the interaction between low-energy neutrons and {sup 16}O-nuclei is derived from a dispersion relation based on the Feshbach generalized optical model. This potential is applied to direct-capture model calculations in explaining the observed off-resonance capture transitions to the ground (5/2{sup +}) and 871 keV(1/2{sup +}) levels in {sup 17}O at neutron energies of 20-70 keV. The model calculations take account of the spatial nonlocality of the neutron-nucleus interaction potential. (author)

  6. Investigations of the neutron halo by radioactive beam experiments

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    Recently, a new tool has become available to study the behaviour of nuclei at the limits of particle stability. Heavy-ion projectile fragmentation, in combination with efficient recoil spectrometers, allows to prepare 'exotic' beams which can be used to induce secondary nuclear reactions. First experiments have revealed surprising features in the reactions of the most neutron-rich light nuclei. There is now conclusive evidence that the observed effects are due to long-tail matter distributions ('neutron halo') which occur for the last, very weakly bound neutrons. The results of some recent radioactive beam experiments, made by means of the spectrometer LISE3 at GANIL, are presented. (author) 24 refs.; 7 figs

  7. Asymmetric capture of Dirac dark matter by the Sun

    International Nuclear Information System (INIS)

    Blennow, Mattias; Clementz, Stefan

    2015-01-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models

  8. Asymmetric capture of Dirac dark matter by the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias; Clementz, Stefan [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center,106 91, Stockholm (Sweden)

    2015-08-18

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  9. Asymmetric capture of Dirac dark matter by the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias; Clementz, Stefan, E-mail: emb@kth.se, E-mail: scl@kth.se [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91, Stockholm (Sweden)

    2015-08-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  10. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  11. Sizes and shapes of short-lived nuclei via laser spectroscopy. Final report

    International Nuclear Information System (INIS)

    Lewis, D.A.

    1985-10-01

    This project, a collaboration involving Iowa State University, Argonne National Lab., and the University of Minnesota, was aimed at the determination of properties of short-lived nuclei through their atomic hyperfine structure and optical isotope shifts. The basic approach was to use a cryogenic He-jet system to thermalize, neutralize, and transport radioactive nuclei produced online into a region suitable for laser spectroscopy. The photon burst method was then used for high sensitivity with the resulting continuous atomic beam. The experiment was located on beamline of the ANL superconducting heavy-ion accelerator. The He-jet system developed would reliably transport approx.10 2 nuclei into phase space useful for high resolution laser spectroscopy. The laser system developed could accurately and reproducibly sweep small frequency ranges for periods greater than or equal to1 day and sensitivity limits less than or equal to1 atom/s were achieved. However the nuclei were not transported as free atoms precluding nuclear determinations. Attempts to obtain free atoms by eliminating turbulence and contamination were not successful. Some of the high sensitivity spectroscopy techniques developed in this work are now being applied in a search for nuclear relics of the Big Bang and in studies of the photon statistics of light scattered by a single atom. 3 refs., 4 figs

  12. Neutron capture cross section of $^{93}$Zr

    CERN Document Server

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  13. Alpha-cluster transfer process in colliding S-D shell nuclei using the energy density formalism

    International Nuclear Information System (INIS)

    Puri, R.K.; Gupta, R.K.

    1992-01-01

    The energy density formalism is used for the first time to study the resonance-like behaviour of the α-cluster transfer process, observed for collisions between the s-d shell nuclei. Within the dynamical fragmentation theory, this formalism is shown to give better the observed alpha resonance-like mass spectrum of colliding α-particle nuclei and its suppression on adding neutrons to either of the α-particle reaction partners, compared with the earlier calculations of one of us and collaborators using the proximity pocket formula. For composite systems with N>>Z, these calculations predict an explicit preference for transfer of those clusters that are observed in recent cluster radioactivity. (Author)

  14. Beta decay and muon capture rates in a self-consistent relativistic framework

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav; Paar, Nils; Niksic, Tamara; Vretenar, Dario [Physics Department, Faculty of Science, University of Zagreb (Croatia); Ring, Peter [Physik-Department, Technische Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A fully consistent calculation of muon capture and beta decay rates is presented, based on a microscopic theoretical framework describing the semileptonic weak interaction processes. Nuclear ground state is determined using the Relativistic Hartree-Bogolyubov (RHB) model with density dependent meson-nucleon coupling constants, and transition rates are calculated via proton-neutron relativistic quasiparticle RPA using the same interaction as in the RHB equations. Muon capture rates are calculated for a wide range of nuclei along the valley of stability, from {sup 12}C to {sup 244}Pu, with accuracy of approximately 30%, using the interaction DD-ME2. Previous studies of beta decay rates have only taken into account Gamow-Teller transitions. We extend this approach by including forbidden transitions and systematically study their contribution to decay rates of exotic nuclei along the r-process path, which are important for constraining the conditions in which nucleosynthesis takes place.

  15. Effect of extraction of histones and their reconstitution on [3H] actinomycin D binding to isolated nuclei of the roots of Pinus silvestris

    International Nuclear Information System (INIS)

    Michniewicz, H.

    1976-01-01

    The purpose of the study presented was to investigate the effect of the extraction of histones on the template activity of DNA, measured by the autoradiographically evaluated intensity of [ 3 H] actinomycin D([ 3 H]AMD) binding. The study was carried out on nuclei isolated from the root meristem of Pinus silvestris. Histones were removed selectively from them and reconstituted in the nuclei deprived of these proteins. The greatest rise in radioactivity was found after the extraction of the arginine fraction and that of lysine-rich and moderately lysine-rich fractions removed together, whereas the extraction of the lysine-rich fraction does not cause such a considerable increase in radioactivity. The reconstitution of particular histone fractions induced a fall in radioactivity to the level of controls in all the cases examined. No [ 3 H]AMD binding to the nucleolus was found. The extraction of lysine histones results in the decondensation of chromatin and their reconstitution in the formation of complexes of compact chromatin. (author)

  16. On the discovery of artificial radioactivity

    International Nuclear Information System (INIS)

    Guillaumont, R.; Trubert, D.

    1997-01-01

    A review is presented of the elegant Joliot-Curie physical experiments which showed for the first time the possibility of producing artificial radioactive nuclei. An attempt has been made to explain the results of their equally elegant chemical experiments that unequivocally demonstrated the chemical change of elements by nuclear processes. These experiments are discussed in the light of present-day radiochemistry, keeping in mind the scientific and historical context in which they were originally performed. (author)

  17. Proceedings of the specialists' meeting on 'nuclear spectroscopy and condensed matter physics using short-lived nuclei'

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Shibata, Michihiro; Ohkubo, Yoshitaka

    2016-02-01

    The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 2nd symposium under the title of 'Nuclear Spectroscopy and Condensed Matter Physics Using Short-lived Nuclei' was held at the Institute for two days on November 4 and 5 in 2015. We are pleased that many hot discussions were made. The talks were given on the followings: 1) Nuclear spectroscopic experiments, 2) TDPAC (time-differential perturbed angular correlation), 3) β-NMR (nuclear magnetic resonance), 4) Moessbauer spectroscopy, 5) muon, etc. This issue is the collection of 17 papers presented at the entitled meeting. The 6 of the presented papers are indexed individually. (J.P.N.)

  18. Investigation of capture reactions far off stability by β-delayed neutron emission

    International Nuclear Information System (INIS)

    Wiescher, M.; Leist, B.; Ziegert, W.; Gabelmann, H.; Steinmueller, B.; Ohm, H.; Kratz, K.h.; Thielemann, F.h.; Hillebrandt, W.

    1985-01-01

    Beta-delayed neutron spectroscopy is applied to determine reaction rates of neutron capture on several neutron rich nuclei. The results of these experiments are presented and discussed in the light of their astrophysical implications. Furthermore, the experimental possibilities and limits of planned measurements are advertised

  19. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  20. Systematics of half-lives for proton radioactivity

    International Nuclear Information System (INIS)

    Medeiros, E.L.; Rodrigues, M.M.N.; Duarte, S.B.; Tavares, O.A.P.

    2007-01-01

    Half-life measurements for both ground-state and isomeric transitions in proton radioactivity are systematized by using a semiempirical, one-parameter model based on tunneling through a potential barrier, where the centrifugal and overlapping effects are taken into account within the spherical nucleus approximation. This approach, which has been successfully applied to alpha decay cases covering ∼ 30 orders of magnitude in half-life, has shown, in addition, very adequate at fitting all existing data on partial half-life, T 1/2p , of proton emission from nuclei. Nearly 70 measured half-life values have been analysed, and the data could be described by two straight lines relating the pure Coulomb contribution to half life with the quantity Z d (μ 0 /Q p ) 1/2 (Z d is the atomic number of the daughter nucleus, μ 0 is the reduced mass, and Q p is the total nuclear energy available for decay). These straight lines are shown to correspond to different degrees of deformation, namely, very prolate (δ> approx. 0.1), and other shaped (delta < approx. 0.1) parent nuclei. The goodness in reproducing the data attained in the present systematics allows for half-life predictions for a few possible cases of proton radioactivity not yet experimentally accessed. (author)

  1. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  2. Measurements of keV-neutron capture γ rays of fission products. 2

    International Nuclear Information System (INIS)

    Igashira, Masayuki

    1996-01-01

    γ rays from the keV-neutron capture reactions by 140 Ce, 141 Pr, and 147,148,149,150 Sm have been measured in a neutron energy region of 10 to 550 keV, using a large anti-Compton NaI(Tl) γ-ray spectrometer and the 7 Li(p,n) 7 Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and γ-ray spectra of those nuclei are presented and discussed. (author)

  3. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  4. Fred Hoyle, primary nucleosynthesis and radioactivity

    Science.gov (United States)

    Clayton, Donald D.

    2008-10-01

    Primary nucleosynthesis is defined as that which occurs efficiently in stars born of only H and He. It is responsible not only for increasing the metallicity of the galaxy but also for the most abundant gamma-ray-line emitters. Astrophysicists have inappropriately cited early work in this regard. The heavily cited B2FH paper (Burbidge et al., 1957) did not effectively address primary nucleosynthesis whereas Hoyle (Hoyle, 1954) had done so quite thoroughly in his infrequently cited 1954 paper. Even B2FH with Hoyle as coauthor seems strangely to not have appreciated what Hoyle (Hoyle, 1954) had achieved. I speculate that Hoyle must not have thoroughly proofread the draft written in 1956 by E.M. and G.R. Burbidge. The clear roadmap of primary nucleosynthesis advanced in 1954 by Hoyle describes the synthesis yielding the most abundant of the radioactive isotopes for astronomy, although that aspect was unrealized at the time. Secondary nucleosynthesis has also produced many observable radioactive nuclei, including the first gamma-ray-line emitter to be discovered in the galaxy and several others within stardust grains. Primary gamma-ray emitters would have been even more detectable in the early galaxy, when the birth rate of massive stars was greater; but secondary emitters, such as 26Al, would have been produced with smaller yield then owing to smaller abundance of seed nuclei from which to create them.

  5. Close collisions between light nuclei: Orbiting and fusion

    International Nuclear Information System (INIS)

    Shapira, D.; Shivakumar, B.; Harmon, B.A.; Ayik, S.

    1987-01-01

    Our data have demonstrated that in close collisions the two nuclei first form a rotating dinuclear complex (DNC) which can break up into two complex fragments (Orbiting) or evolve into a compound nucleus. The binary fragment yield was found to be significant in contradiction with earlier views which held that whenever nucleus-nucleus capture occurs fusion is a certainty. The time duration of the dinuclear stage and the nature of its evolution into a compound nucleus were studied and a model which describes these processes will be presented. 25 refs., 14 figs

  6. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  7. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  8. Radioactive Beam Measurements to Probe Stellar Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael Scott [ORNL

    2010-01-01

    Unique beams of unstable nuclei from the Holi eld Radioactive Ion Beam Facility at Oak Ridge National Laboratory are being used to measure the thermonuclear reactions that occur in novae, X-ray bursts, and supernovae. The astrophysical impact of these measurements is determined by synergistic nuclear data evaluations and element synthesis calculations. Results of recent measurements and explosion simulations are brie y described, along with future plans and software research tools for the community.

  9. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    Science.gov (United States)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  10. Spectroscopy on neutron-rich nuclei at RIKEN. Present and future

    International Nuclear Information System (INIS)

    Sakurai, H.

    2003-01-01

    Recent studies on nuclear structure by using radioactive isotope beams available at the RIKEN projectile-fragment separator (RIPS) are introduced. Special emphasis is given to experiments selected from the recent programs that highlight studies at N=20-28; on the large deformation of 30 Ne and 34 Mg via the in-beam gamma spectroscopy, and on the particle stability of very neutron-rich nuclei, 34 Ne, 37 Na and 43 Si. The RI Beam Factory (RIBF) project is illustrated through review of such present research activities at RIPS. (author)

  11. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  12. Radioactive nuclear beam facilities based on projectile fragmentation

    International Nuclear Information System (INIS)

    Sherrill, B.M.

    1992-01-01

    The production of radioactive beams using direct separation techniques is discussed. The reaction mechanisms which can be used to produce radioactive beams with these techniques can be broadly divided into three groups, projectile fragmentation, nucleon transfer, and Coulomb disassociation. Radioactive nuclei produced in these ways have large forward momenta with relatively sharp angular distributions peaked near zero degrees which are suitable for collection with magnetic devices. Secondary beam intensities of up to a few percent of the primary beam intensity are possible, although depending on the production mechanism the beam emittance may be poor. Further beam purification can be achieved using atomic processes with profiled energy degraders. The features of the production reaction mechanism, separation techniques, and a review of world wide efforts are presented. The advantages and disadvantages of the method are presented, with discussion of techniques to overcome some of the disadvantages. (Author)

  13. Charge breeding of intense radioactive beams

    CERN Document Server

    Kester, O

    2001-01-01

    The efficient transformation of radioactive beams by charge breeding devices will critically influence the lay-out of the post accelerator of presently built first generation radioactive ion beam (RIB) facilities as well as new second generation facilities. The size of the post-accelerator needed to bring the unstable nuclei to the energies required to study nuclear reactions depends on the charge state of the radioactive ions. The capability to raise that charge state from 1+ to n+, where n may correspond to a charge-to- mass ratio of 0.15 or higher, will therefore produce an enormous reduction in cost as well as the possibility to accelerate heavier masses. Thus the efficiency of the charge breeding scheme in comparison to the stripping scheme will be explored in the frame of the EU-network charge breeding. The two possible charge breeding schemes using either an Electron Beam Ion Source (EBIS) or an Electron Cyclotron Resonance Ion Source (ECRIS), the demands to the sources and the present status of existi...

  14. Experimental study on pion capture by hydrogen bound in molecules

    International Nuclear Information System (INIS)

    Horvath, D.; Aniol, K.A.; Entezami, F.; Measday, D.F.; Noble, A.J.; Stanislaus, S.; Virtue, C.J.

    1988-08-01

    An experiment was performed at TRIUMF to study the formation of pionic hydrogen atoms and molecules in solids, particularly in groups of organic molecules of slightly different structure in order to help further clarify the problem. The nuclear capture of pions by hydrogen was measured using the charge exchange of stopped pions. The coincident photons emitted by the decaying π 0 mesons were detected by TRIUMF's two large NaI spectrometers. New experimental results were obtained for the capture probability of stopped π - mesons in the nuclei of hydrogen atoms, chemically bound in molecules of some simple hydrides, acid anhydrides, and sugar isomers. A linear relation was found between pion capture in hydrogen and melting point in sugar isomers. The pion capture probability in acid anhydrides is fairly well described by a simple atomic capture model in which the capture probability on the hydrogen dramatically increases as the hydrogen atom is separated from the strongly electronegative C 2 O 3 group. Both effects are consistent with a correlation between pion capture and electron density on hydrogen atoms. (Author) (38 refs., 4 tabs., 7 figs.)

  15. Radioactive nuclide adsorption

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1982-01-01

    Purpose: To improve the efficiency of a radioactive nuclide adsorption device by applying a nickel plating on a nickel plate to render the surface active. Constitution: A capturing device for radioactive nuclide such as manganese 54, cobalt 60, 58 and the like is disposed to the inside of a pipeway provided on the upper portion of fuel assemblies through which liquid sodium as the coolant for LMFBR type reactor is passed. The device comprises a cylindrical adsorption body and spacers. The adsorption body is made of nickel and applied with a nickel plating on the surface thereof. The surface of the adsorption body is unevened to result in disturbance in the coolant and thereby improve the adsorptive efficiency. (Kawakami, Y.)

  16. Thermalization time scales for WIMP capture by the Sun in effective theories

    Energy Technology Data Exchange (ETDEWEB)

    Widmark, A., E-mail: axel.widmark@fysik.su.se [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden)

    2017-05-01

    I study the process of dark matter capture by the Sun, under the assumption of a Weakly Interacting Massive Particle (WIMP), in the framework of non-relativistic effective field theory. Hypothetically, WIMPs from the galactic halo can scatter against atomic nuclei in the solar interior, settle to thermal equilibrium with the solar core and annihilate to produce an observable flux of neutrinos. In particular, I examine the thermalization process using Monte-Carlo integration of WIMP trajectories. I consider WIMPs in a mass range of 10–1000 GeV and WIMP-nucleon interaction operators with different dependence on spin and transferred momentum. I find that the density profiles of captured WIMPs are in accordance with a thermal profile described by the Sun's gravitational potential and core temperature. Depending on the operator that governs the interaction, the majority of the thermalization time is spent in either the solar interior or exterior. If normalizing the WIMP-nuclei interaction strength to a specific capture rate, I find that the thermalization time differs at most by 3 orders of magnitude between operators. In most cases of interest, the thermalization time is many orders of magnitude shorter than the age of the solar system.

  17. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  18. Particle transfer spectroscopy using radioactive targets

    CERN Document Server

    Naumann, R A

    1976-01-01

    The practicality of general use of radioactive targets to study nuclei off the stability line by transfer spectroscopy is examined. Some advantages of this spectroscopic technique are illustrated with recent results from (p, t) and (t, p) stable target studies of negative parity core-coupled states systematically occurring in 4 adjacent odd silver isotopes. Preliminary results from the study of the /sup 205/Pb (t, p)/sup 207/Pb reaction using reactor produced 3*10/sup 7/ year lead 205 are given. (3 refs).

  19. A study of triton radiative capture in some light nuclei

    International Nuclear Information System (INIS)

    Schaeffer, Michel.

    1975-01-01

    The aim of this work is to complete the knowledge of the nucleon Giant Dipole Resonance (G.D.R.) by means of the study of radiative capture of complex particles: tritons. The following reactions were studied: 12 C(t,γ 0 ) 15 N, 16 O(t,γ) 19 F, 20 Ne(t,γ) 23 Na, 24 Mg(t,γ 0 ) 27 Al, 24 Mg(t,γ 1 ) 27 Al*, 23 Na(t,γ 0 ) 26 Mg, 23 Na(t,γ) 26 Mg* between between 1.5 and 3.5MeV incident triton energy. The detector was a 25x30cm NaI(Tl) crystal [fr

  20. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  1. Capture of muons with high energy transfer (μ-,pn) on the 2040Ca

    International Nuclear Information System (INIS)

    Arques, Marc

    1978-01-01

    As several Russian experiments had shown that the capture of mesons of negative charge in some target nuclei (Si, S, Ca, Cu, Pb) could lead to the emission of high energy protons and neutrons (a kinetic energy higher than 30 MeV), the author reports a preliminary measurement of the capture or a negatively charged muon in a K orbit around a nucleus, actually a capture with a simultaneous emission of a proton and a neutron, and of a neutrino with an as low as possible energy. After having outlined the interest of such an experiment, the author describes the kinematics of capture of a resting muon, the production of muons, the experimental assembly, the experiment and the associated electronics. Results are interpreted

  2. Study of 2 proton radioactivity of 54Zn with a time projection chamber

    International Nuclear Information System (INIS)

    Ascher, P.

    2011-11-01

    The study of nuclei at the proton drip-line is a recent and efficient tool to prove the nuclear structure far from stability. In particular, the two-proton radioactivity phenomenon predicted in 1960 has been discovered in 2002. This work concerns an experiment performed at GANIL, in order to study the two-proton radioactivity of 54 Zn with a time projection chamber, developed for the individual detection of each proton and the reconstruction of their tracks in three dimensions. The data analysis allowed to determine the correlations in energy and angle between the two protons. They have been compared to a theoretical model, which takes into account the dynamics of the emission, giving information about the structure of the emitter. However, due to the very low statistics, the interpretation of the results is limited but these results open very interesting prospects for further studies of nuclei at the limits of the existence. (author)

  3. Variational Monte Carlo studies of electromagnetic structure of few-body nuclei

    International Nuclear Information System (INIS)

    Schiavilla, R.

    1990-01-01

    The electromagnetic structure and dynamic response of A = 2, 3 and 4 nuclei are studied with the Variational Monte Carlo method by using wave functions based on realistic nuclear interactions. Recent results obtained for the elastic form factors of 2 H, 3 H, 3 He and 4 He, the radiative neutron capture on 3 He at thermal energies, and the reaction 4 He(e,e'p) 3 H are reported. 24 refs., 5 figs

  4. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  5. Development of lithium target for accelerator based neutron capture therapy

    International Nuclear Information System (INIS)

    Taskaev, Sergey; Bayanov, Boris; Belov, Victor; Zhoorov, Eugene

    2006-01-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is now of the threshold of its operation at the BINP, Russia. One of the main elements of the facility is lithium target producing neutrons via threshold 7 Li(p,n) 7 Be reaction at 25 kW proton beam with energies 1.915 MeV or 2.5 MeV. The main problems of lithium target were determined to be: 7 Be radioactive isotope activation keeping lithium layer solid, presence of photons due to proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal test of target prototype were presented as previous NCT Congress. It becomes clear that water is preferable for cooling the target, and that lithium target 10 cm in diameter is able to run before melting. In the present report, the conception of optimal target is proposed: thin metal disk 10 cm in diameter easy for detaching, with evaporated thin layer of pure lithium from the side of proton beam exposure, its back being intensively cooled with turbulent water flow to maintain lithium layer solid. Design of the target for the neutron source constructed at BINP is shown. The results of investigation of radiation blistering and lithium layer are presented. Target unit of facility is under construction now, and obtaining neutrons is expected in nearest future. (author)

  6. Decay spectroscopy of neutron-rich nuclei around {sup 37,38}Al

    Energy Technology Data Exchange (ETDEWEB)

    Steiger, Konrad [Physik-Department E12, Technische Universitaet Muenchen (Germany); Collaboration: CAITEN-Collaboration

    2013-07-01

    An experiment at RIBF (Radioactive Isotope Beam Factory at RIKEN, Japan) investigated N=20 nuclei above {sup 29}F and the midshell region around {sup 37}Al. These nuclei were produced by relativistic projectile fragmentation of a 345 AMeV {sup 48}Ca primary beam from the superconducting ring cyclotron SRC with an average intensity of 70 pnA. The secondary cocktail beam was separated and identified with the BigRIPS fragment separator and the ZeroDegree spectrometer. The identified fragments were implanted in the CAITEN detector (Cylindrical Active Implantation Target for Efficient Nuclear-decay study). The main part of this detector is a highly segmented plastic scintillator with the shape of a hollow cylinder. To reduce background decay events the scintillator was moved axially and vertically similar to a tape-transport system. Implantations and decays were correlated in time and space. For the first time β-delayed γ-rays were measured in the neutron-rich isotopes {sup 37,38}Si (with three germanium clover detectors). From β-γ-γ coincidences partial level schemes could be constructed. The results were compared to shell model calculations and a tentative assignment for spins and parities of the experimental level schemes was possible. Significantly more precise half-lives for the implanted nuclei were measured.

  7. Review of Livermore-Led Neutron Capture Studies Using DANCE

    International Nuclear Information System (INIS)

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O'Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-01-01

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,γ) reactions on 94,95 Mo, 152,154,157,160,nat Gd, 151,153 Eu and 242m Am for neutron energies from 94,95 Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei 95,96 Mo. Future plans include measurements on actinide targets; our immediate interest is in 242m Am

  8. Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei

    CERN Document Server

    Ramayya, A V; ICFN5

    2014-01-01

    These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.

  9. Reactions and single-particle structure of nuclei near the drip lines

    International Nuclear Information System (INIS)

    Hansen, P.G.; Sherrill, B.M.

    2001-01-01

    The techniques that have allowed the study of reactions of nuclei situated at or near the neutron or proton drip line are described. Nuclei situated just inside the drip line have low nucleon separation energies and, at most, a few bound states. If the angular momentum in addition is small, large halo states are formed where the wave function of the valency nucleon extends far beyond the nuclear radius. We begin with examples of the properties of nuclear halos and of their study in radioactive-beam experiments. We then turn to the continuum states existing above the particle threshold and also discuss the possibility of exciting them from the halo states in processes that may be thought of as 'collateral damage'. Finally, we show that the experience from studies of halo states has pointed to knockout reactions as a new way to perform spectroscopic studies of more deeply bound non-halo states. Examples are given of measurements of l values and spectroscopic factors

  10. Alpha radioactivity for proton-rich even Pb isotopes

    Indian Academy of Sciences (India)

    Alpha radioactivity; proton-rich nuclei; half-life. PACS Nos 23.60.+e; 23.90. ... Z/N ∼= 0.65 to the region close to proton drip line with Z/N ∼= 0.82. The existing ... In the present work we have studied the systematic for alpha emission ..... 80. 0.200. 0.402. 0.497. 8.0. 320.51. 0.333. 0.754. 0.441. 16.0. 1300.72. 0.414. 0.927.

  11. Approach synthesis of superheavy nuclei from some aspects of cross section calculations

    International Nuclear Information System (INIS)

    Liu Zuhua

    2003-01-01

    Several important aspects in the cross section calculations for the synthesis of superheavy nuclei have been inquired. They are the effects of the coupled-channels, the damping of shell correction energy, the collective enhancements in the level density and the spin distributions of evaporation residues. The channel coupling of relative motion with internal degrees of freedom will enhance significantly the capture cross section at sub-barrier energies. However, recent measurements of spin distributions for the survived compound nucleus show that only low partial waves contribute to the evaporation residues, which should at least partially cancel out the enhancement due to the effects of the channel coupling. The fission barriers are determined mainly by the shell correction energy in the case of superheavy nuclei. Therefore, it is especially important to determine as accurate as possible the damping parameter which describes the decrease of the shell effects influence. In addition, the collective enhancement factor in the level density also plays a very important role in the synthesis of heavy spherical nuclei

  12. What we have learned so far on reactions and scattering with weakly bound nuclei at near barrier energies

    International Nuclear Information System (INIS)

    Gomes, P.R.S.

    2011-01-01

    Reactions involving weakly bound nuclei, especially halo nuclei, at near barrier energies, are an important subject not yet fully understood. Due to the low threshold energy for breakup, this process is particularly important and may affect significantly the fusion process and elastic scattering. In this talk I will show the systematic of results so far available in this field, concerning static and dynamical effects of halo and breakup on fusion and total reaction cross sections, the energy dependence of the optical potential on the elastic scattering and coupling effects on quasi-elastic scattering barrier distributions involving weakly bound nuclei, both stable and radioactive. The data to be discussed are new data from our group and from the literature, together with some older data. I will also present some experimental challenges for the development of this field. (author)

  13. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    Taylor, R.D.

    1990-01-01

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  14. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    Science.gov (United States)

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  15. Decay spectroscopy of neutron-rich nuclei with the CAITEN detector

    Energy Technology Data Exchange (ETDEWEB)

    Steiger, Konrad [Physik-Department E12, Technische Universitaet Muenchen (Germany); Collaboration: CAITEN-Collaboration

    2012-07-01

    An experiment in fall 2010 at the RIBF (Radioactive Ion Beam Factory at RIKEN, Japan) investigated the neutron-rich nuclei in the neighborhood of {sup 30}Ne and {sup 36}Mg. These nuclei were produced by relativistic projectile fragmentation of a 345 AMeV {sup 48}Ca primary beam which was delivered from the superconducting ring cyclotron SRC with an average intensity of 70 pnA. The secondary cocktail beam was separated and identified with the BigRIPS fragment separator and the ZeroDegree spectrometer. The unambiguous particle identification was achieved by measuring the energy loss, time of flight and magnetic rigidity event-by-event. The identified fragments were implanted in the CAITEN detector (Cylindrical Active Implantation Target for Efficient Nuclear-decay study). The main part of this detector is a 4 x 10{sup 4}-fold segmented plastic scintillator with the shape of a hollow cylinder. To reduce background events the scintillator was moved continuously in axial and vertical direction (similar to a tape-transporting system). Implantations and decays were correlated in time and space. {gamma}-rays were detected with three germanium clover detectors. For the first time {beta}-delayed gammas were measured in the neutron-rich isotopes {sup 36-38}Si. The status of the analysis and preliminary results including new half-life values and tentative level schemes for these very exotic nuclei are presented.

  16. Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, Richard B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF has been used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy an is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We use CASINO, a version of DICEBOX that is modified for this purpose. This can be used to simulate the neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modelling of unknown assemblies.

  17. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  18. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  19. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-01-01

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de

  20. An Antiproton Ion Collider (AIC) for Measuring Neutron and Proton Distributions in Stable and Radioactive Nuclei

    International Nuclear Information System (INIS)

    Kienle, Paul

    2005-01-01

    An antiproton-ion collider is proposed to independently determine mean square radii for protons and neutrons in stable and short lived nuclei by means of antiproton absorption at medium energies. The experiment makes use of the electron ion collider complex (ELISE) of the GSI FAIR project with appropriate modifications of the electron ring to store, cool and collide antiprotons of 30 MeV energy with 740A MeV energy ions.The total absorption cross-section of antiprotons by the stored ions will be measured by detecting their loss by means of the Schottky noise spectroscopy method. Cross sections for the absorption on protons and neutrons, respectively, will be studied by detection of residual nuclei with A-1 either by the Schottky method or by analysing them in recoil detectors after the first dipole stage of the NESR following the interaction zone. With a measurement of the A-1 fragment momentum distribution, one can test the momentum wave functions of the annihilated neutron and proton, respectively. Furthermore by changing the incident ion energy the tails of neutron and proton distribution can be measured.The absorption cross section is at asymptotic energies in leading order proportional to the mean square radius of the nucleus. Predicted cross sections and luminosities show that the method is applicable to nuclei with production rates of about 105 s-1 or lower, depending on the lifetime of the ions in the NESR, and for half-lives down to 1 second

  1. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  2. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  3. Accumulation of Long-lived activity in heavy metal liquid targets

    International Nuclear Information System (INIS)

    Shubin, Y. N.; Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.

    1997-01-01

    The calculations and analysis of the accumulation of radioactive nuclei and long-lived activity in heavy metal liquid targets were performed. The dominating contributions to the total radioactivity of radionuclides resulting from fission, spallation reactions and radiative capture by target nuclei for various irradiation and cooling times were calculated and analyzed. The most important parts of neutron and proton spectra were determined that give the dominant contributions to the total and partial activity of the targets. The contributions of fission products to the target activity and partial activities of main long-lived fission products were evaluated. The results of the calculations are compared with the data on Energy Amplifier Project. (Author) 12 refs

  4. Level structures in Yb nuclei far from stable nuclei

    International Nuclear Information System (INIS)

    Hashizume, Akira

    1982-01-01

    Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)

  5. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  6. The Peculiarities of the Production and Decay of Superheavy Nuclei

    International Nuclear Information System (INIS)

    Itkis, M. G.; Bogachev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rusanov, A. Ya.; Sagaidak, R. N.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Behera, B. R.; Corradi, L.; Fioretto, E.

    2006-01-01

    The interest in the study of the fission process of superheavy nuclei mainly deals with the opportunity to obtain information about the cross-section of the compound nucleus (CN) formation at excitation energies E*≅15-30 MeV. It allows one to estimate the survival probability of the superheavy composite system after evaporation of 1-3 neutrons, i.e. in 'cold' or 'warm' fusion reactions. However, in order to solve this problem deeper understanding of the coalescence processes between colliding nuclei, the competition between fusion-fission and quasi-fission processes is needed. The characteristics of both processes, their manifestation in the experimental observables and the relative contribution to the capture cross-section in dependence on the excitation energies, reaction entrance channel etc were investigated for a wide range of target-projectile combinations. Results of the experiments devoted to the study of the fusion-fission and quasi-fission processes in the reactions of the formation of the superheavy nuclei with Z = 102-122 are presented. The heavy ions 26Mg, 48Ca, 50Ti, 58Fe and 64Ni were used as projectiles. The choice of the reactions with 48Ca and actinide-targets was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 in Dubna using the same reactions. The 50Ti, 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia) and the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) using the time-of-flight spectrometer of fission fragments CORSET. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed. The recent results on synthesis of

  7. Structure and reactions of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, P.G. [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    Secondary radioactive beams produced at intermediate-energy heavy-ion accelerators have in a short time span added a new dimension to the research on nuclear species at the limits of particle stability, and new detection techniques have made it possible to study reactions caused by incident beams of as little as one particle per second. Imminent developments such as the M.S.U. Coupled-Cyclotron Facility are expected to extend the range and to permit the observation of many previously inaccessible species. For a perspective on the progress in this area one only needs to go about fifteen years back to a time when it had just become possible to study the radioactivity of rare nuclear species such as {sup 11}Li. In presenting early experiments with secondary beams produced in fragmentation James Symons said {open_quotes}... In the introduction to this paper we questioned the applicability of high-energy heavy-ion accelerators to this field. Our experience at the Bevalac leads us to believe that this question does indeed have a positive answer. If the physics interest justifies it, then high-energy heavy-ion beams can certainly be expected to play a role in the study of nuclei at the limits of stability.{close_quotes} At the time, very few, if any, realized how prophetic this remark was. In the present paper the interpretation of the longitudinal-momentum distributions from the nuclear fragmentation of single-nucleon halos is discussed. It is pointed out that these measurements, at least for the cases studied so far, directly reflect the halo wave function, and that there is no direct contribution from the reaction mechanism. This is an important difference from the radial momentum distributions, for which diffractive processes play an important role. The author discusses stripping reactions of {sup 11}Be and {sup 8}B on light nuclei yielding {sup 10}Be and {sup 7}Be.

  8. Low-lying dipole strength of neutron-rich 'island of inversion' nuclei around n ∼ 20

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Ray, I.

    2009-01-01

    Magic numbers are the basic building blocks of nuclear structure since last fifty years. Recently, through various experimental results using Radioactive Ion Beam (RIB) facilities, it has been observed that those long cherished magic numbers are not valid anymore in the neutron rich nuclei like 32 Mg etc. The breakdown of magic number was hinted in the late 1980 's by Thibault et. al. in sodium nuclei ( 31,32 Na). Motobayashi et. al. showed large deformation for 32 Mg which leads to the failure of magic number at N = 20. Exploration into the cause of this breakdown shows the filling of higher pf orbitals rather than the pure lower sd orbitals in the ground state of the neutron-rich nuclei like Ne, Na, Mg in the region N∼20. Thus there is obviously an inversion in nuclear orbitals and hence the so called name 'island of inversion'. This year, we have performed an experiment at GSI, Darmstadt. The measurement of dipole threshold strength of neutron-rich nucleus (N∼20) through electromagnetic excitation was done using LAND-FRS setup. Through this dipole strength, we would like to probe directly the quantum numbers of the valence neutrons in neutron rich nuclei like 31-33 Mg, 33-35 Al, 29-30 Na, 25-27 Ne, 24 F etc.

  9. Nuclear structure and astrophysics with accelerated beams of radioactive ions: A new multidisciplinary research tool

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1995-01-01

    After a brief discussion of the techniques for producing accelerated radioactive ion beams (RIBs), several recent scientific applications are mentioned. Three general nuclear structure topics, which can be addressed using RIBs, are discussed in some detail: possible modifications of the nuclear shell structure near the particle drip lines; various possibilities for decoupling the proton and neutron mass distributions for weakly bound nuclei; and tests of fundamental nuclear symmetries for self-conjugate and nearly self-conjugate nuclei. The use of RIBs to study r- and rp-process nucleosynthesis also is discussed

  10. Invasion of the atmosphere by radioactivity of atomic explosive origin and its influence on atmospheric precipitation. [In French

    Energy Technology Data Exchange (ETDEWEB)

    Garrigue, H

    1951-01-01

    Aerial observations on the rapid increase of the 20- to 30-h radioactive substance (labelled A) on February 3, 1951 leave no doubt as to its origin in atomic explosions. A large part of the radioactive cloud must enter the stratosphere and fall back to earth very slowly. The portion of the cloud diffusing into the troposphere supplies abundant condensation nuclei which profoundly affect the processes of precipitation.

  11. Deformation effects in "3"6Mg(n, γ)"3"7Mg radiative capture reaction

    International Nuclear Information System (INIS)

    Shubhchintak; Chatterjee, R.; Shyam, R.

    2016-01-01

    Most of the formation of heavy elements in the universe is generally accepted to be via the r-process at high temperatures and neutron densities. Such conducive environments can be found in post collapse phase of a type-II or type-Ib supernova. However uncertainties remain in determining the actual path of the r-process, more so because it passes through the neutron rich region of the nuclear chart where a large proportion of the nuclei are unknown. Other known sources of uncertainty are the seed nuclei for the r-process and their abundances. That would critically depend on the path followed through lighter elements while creating these seed nuclei. In fact, the r-process path involving neutron-rich nuclei can, in principle, go upto the drip-line isotope once equilibrium between (n, γ) and (γ, n) nuclei is established. If, however, the (α, n) reaction becomes faster than the (n, γ) reaction on some 'pre-drip-line' neutron-rich isotope, then r-process flow of radiative neutron capture followed by the A(e"-υ) reaction is broken and the reaction path will skip the isotope on the drip-line

  12. Contributions to the theory of alpha disintegration of heavy and superheavy nuclei

    International Nuclear Information System (INIS)

    Tarnoveanu, G.I.

    1977-01-01

    Alpha disintegration of heavy and super-heavy spherical nuclei is studied. When the new calculation technique for alpha intensities dependent on the shell-model has been applied, a technique which allows the use of a more complex structure of the alpha particle, the detailed calculation of the alpha half-times is performed for both radioactive alpha nuclei in the lead area and for the super-heavy nuclei, by using the R matrix theory of alpha disintegration independent of the channel radius. The relative values of overlap integrals calculated by means of the intrinsic function for the Gauss and Moshinsky type alpha particle are presented, as well as a comparison between them and the experiment values for 8.6, 9.00 and 9.6 fm channel radii in the case of Po, Ra, Rn and Th isotopes. Original contributions to the alpha disintegration theory are represented by the generalization of the Taylor series method expressing the transformations to the centre of mass, and the relative distance from two particles to four particles in the same harmonic oscillator potential, and by the development of the R matrix theory for alpha disintegration independent of the channel radius in the case of complex structured alpha particles. (author)

  13. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Seki, Shuji.

    1992-01-01

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  14. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Chongkum, S.

    1987-10-01

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 10 11 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.) [de

  15. Apparatus for filtering radioactive fluids

    International Nuclear Information System (INIS)

    Gischel, E.H.

    1975-01-01

    Apparatus is provided for filtering radioactive particles from the cooling and/or auxiliary process water of a nuclear reactor, or nuclear fuel processing plant, or other installations wherein radioactive fluid systems are known to exist. The apparatus affords disposal of the captured particles in a manner which minimizes the exposure of operating personnel to radioactivity. The apparatus comprises a housing adapted to contain a removable filter cartridge assembly, a valve normally closing the lower end of the housing, an upwardly-open shipping cask located below the valve, and an elongated operating rod assembly projecting upwardly from the filter cartridge assembly and through the upper end of the housing to enable a workman to dismount the filter cartridge assembly from its housing and to lower the filter cartridge assembly through the valve and into the cask from a remote location above the housing. (U.S.)

  16. Coulomb excitation of radioactive 20, 21Na

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-12-01

    The low-energy structures of the radioactive nuclei 20, 21Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ˜ 5×106 ions/s were accelerated to 1.7MeV/A and Coulomb excited in a 0.5mg/cm^2 natTi target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for γ -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For 21Na , Coulomb excitation from the 3/2+ ground state to the first excited 5/2+ state was observed, while for 20Na , Coulomb excitation was observed from the 2+ ground state to the first excited 3+ and 4+ states. For both beams, B ( λ L) values were determined using the 2+ rightarrow 0+ de-excitation in 48Ti as a reference. The resulting B( E2) ↓ value for 21Na is 137±9 e^2fm^4, while the resulting B( λ L) ↓ values for 20Na are 55±6 e^2fm^4 for the 3+ rightarrow 2+ , 35.7±5.7 e^2 fm^4 for the 4+ rightarrow 2+ , and 0.154±0.030 μ_ N^2 for the 4+ rightarrow 3+ transitions. This analysis significantly improves the measurement of the 21Na B( E2) value, and provides the first experimental determination of B( λ L) values for the proton dripline nucleus 20Na .-1

  17. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  18. Exotic nuclei: production, properties and specificity

    International Nuclear Information System (INIS)

    Van Duppen, Piet

    1998-01-01

    In this paper we will put the production of energetic radioactive ion beams of exotic nuclei in perspective and describe the two complementary production processes that are used nowadays: Isotope Separation On-Line (ISOL) followed by post-acceleration, and In-Flight Separation (IFS). After a general description of the process we will focus on recent technical developments in the field. In the subsequent section we give some 'typical' examples of physics cases that are addressed with exotic beams. The examples are chosen not only because their physics importance but also to demonstrate the complementary aspects in the production process and the detection systems. This overview will not be complete and the reader is referred to literature for further information, nor is the lecture intended to give an overview of all the efforts that are taking place in the field by mentioning every project separately. (author)

  19. Fast-neutron capture cross sections for the most important fission-product nuclei

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1982-01-01

    The main activity of the fission-product (FP) Working Group was the discussion of the current status of neutron capture knowledge of the most important FP nuclides, including the formulation of recommendations toward improved understanding. The results of the discussion are summarized. General conclusions and recommendations are given. The status of integral data is summarized by R. Anderl; and nuclear models and calculations are reviewed by D. Gardner and G. Reffo

  20. Identification and systematical studies of the electron-capture delayed fission (ECDF) in the lead region

    CERN Multimedia

    Pauwels, D B; Lane, J

    2008-01-01

    In our recent experiment (March 2007) at the velocity filter SHIP(GSI) we observed the electron-capture delayed fission of the odd-odd isotope $^{194}$At. This is the first unambiguous identification of this phenomenon in the very neutron-deficient nuclei in the vicinity of the proton shell closure at Z=82. In addition, the total kinetic energy (TKE) for the daughter nuclide $^{194}$Po was measured, despite the fact that this isotope does not decay via spontaneous fission. Semi-empirical analysis of the electron-capture Q$_{EC}$ values and fission barriers B$_{f}$ shows that a relatively broad island of ECDF must exist in this region of the Nuclide Chart, with some of the nuclei having unusually high ECDF probabilities. Therefore, this Proposal is intended to initiate the systematic identification and study of $\\beta$-delayed fission at ISOLDE in the very neutron-deficient lead region. Our aim is to provide unique low-energy fission data (e.g. probabilities, TKE release, fission barriers and their isospin dep...

  1. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    Science.gov (United States)

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  2. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B. W.; Summers, N.; Escher, J.; Firestone, R. B.; Basunia, S.; Hurst, A.; Krticka, M.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  3. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, R.B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  4. Radioactivity, radionuclides, radiation

    CERN Document Server

    Magill, Joseph

    2005-01-01

    RADIOACTIVITY – RADIONUCLIDES – RADIATION is suitable for a general audience interested in topical environmental and human health radiological issues such as radiation exposure in aircraft, food sterilisation, nuclear medicine, radon gas, radiation dispersion devices ("dirty bombs")… It leads the interested reader through the three Rs of nuclear science, to the forefront of research and developments in the field. The book is also suitable for students and professionals in the related disciplines of nuclear and radiochemistry, health physics, environmental sciences, nuclear and astrophysics. Recent developments in the areas of exotic decay modes (bound beta decay of ‘bare’ or fully ionized nuclei), laser transmutation, nuclear forensics, radiation hormesis and the LNT hypothesis are covered. Atomic mass data for over 3000 nuclides from the most recent (2003) evaluation are included.

  5. Emission of exotic clusters by nuclei and discovery of a fine structure in the 14C decay of 223Ra

    International Nuclear Information System (INIS)

    Vergnes, M.

    1992-01-01

    This paper is intended as a broad, mainly experimental, survey of the recent field of exotic cluster radioactivity in heavy nuclei. The first part summarizes the development of the field since the first experimental finding in 1984, insisting on 14 C emission, and giving a schematic status of the corresponding models. The second part describes in detail the 1989 discovery, in Orsay, of a fine structure of the 14 C decay of 223 Ra and the search for a similar effect in even-even neighboring nuclei 222 Ra and 224 Ra. A possible qualitative interpretation of the 'hindrance' of the transition to the ground state of 209 Pb is proposed

  6. Emission of exotic clusters by nuclei and discovery of a fine structure in the 14C decay of 223Ra

    International Nuclear Information System (INIS)

    Vergnes, M.

    1992-01-01

    This paper is intended as a broad, mainly experimental, survey of the recent field of exotic cluster radioactivity in heavy nuclei. The first part summarizes the development of the field since the first experimental finding in 1984, insisting on 14 C emission, and giving a schematic status of the corresponding models. The second part describes in detail the 1989 discovery, in Orsay, of a fine structure of the 14 C decay of 223 Ra and the search for a similar effect in even-even neighboring nuclei 222 Ra and 224 Ra. A possible qualitative interpretation of the ''hindrance'' of the transition to the ground state of 209 Pb is proposed

  7. Comparison of neutron capture cross sections obtained from two Hauser-Feshbach statistical models on a short-lived nucleus using experimentally constrained input

    Science.gov (United States)

    Lewis, Rebecca; Liddick, Sean; Spyrou, Artemis; Crider, Benjamin; Dombos, Alexander; Naqvi, Farheen; Prokop, Christopher; Quinn, Stephen; Larsen, Ann-Cecilie; Crespo Campo, Lucia; Guttormsen, Magne; Renstrom, Therese; Siem, Sunniva; Bleuel, Darren; Couture, Aaron; Mosby, Shea; Perdikakis, George

    2017-09-01

    A majority of the abundance of the elements above iron are produced by neutron capture reactions, and, in explosive stellar processes, many of these reactions take place on unstable nuclei. Direct neutron capture experiments can only be performed on stable and long-lived nuclei, requiring indirect methods for the remaining isotopes. Statistical neutron capture can be described using the nuclear level density (NLD), the γ strength function (γSF), and an optical model. The NLD and γSF can be obtained using the β-Oslo method. The NLD and γSF were recently determined for 74Zn using the β-Oslo method, and were used in both TALYS and CoH to calculate the 73Zn(n, γ)74Zn neutron capture cross section. The cross sections calculated in TALYS and CoH are expected to be identical if the inputs for both codes are the same, however, after a thorough investigation into the inputs for the 73Zn(n, γ)74Zn reaction there is still a factor of two discrepancy between the two codes.

  8. Exotic nuclei arena in Japanese Hadron Project

    International Nuclear Information System (INIS)

    Nomura, T.

    1990-04-01

    A description is given on the radioactive beam facility proposed as one of the research arenas in Japanese Hadron Project. The facility consists of a 1 GeV proton linac, an isotope separator on-line (ISOL) and a series of heavy-ion (HI) linacs. Various exotic nuclei produced by 1 GeV proton beam mainly via spallation processes of a thick target, are mass-separated by the ISOL with a high mass-resolving power and are injected into the HI linac with the energy of 1 keV/u. The acceleration is made in three stages using different types of linacs, i.e., split-coaxial RFQ. Interdigital-H, and Alvarez, the maximum energy in each stage being 0.17, 1.4 and 6.5 MeV/u, respectively. A few examples of scientific interests realized in this facility will be briefly discussed. (author)

  9. Highly multiplexed targeted DNA sequencing from single nuclei.

    Science.gov (United States)

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  10. Formation of heavy compound nuclei, their survival and correlation with longtime-scale fission

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Yakushev, A.B.

    2006-01-01

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z c 110-118 nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94 Kr or 100 Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed

  11. Relativistic QRPA calculation of β-decay rates of r-process nuclei

    International Nuclear Information System (INIS)

    Marketin, T.; Paar, N.; Niksic, T.

    2009-01-01

    The rapid neutron-capture process (r-process) is responsible for the creation of many nuclei heavier than iron. To describe the r-process, precise data is needed on a large number of neutron-rich nuclei, most of which are not experimentally reachable. One crucial parameter in modeling the nucleosynthesis are the half-lives of the nuclei through which the r-process runs. Therefore, it is of great importance to develop a reliable predictive model which can be applied to the decay of exotic nuclei. A fully self-consistent calculation of β-decay rates is presented, based on a microscopic theoretical framework. Nuclear ground state is determined using the Relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-nucleon coupling constants. Momentum dependent terms are also included to improve the density of single-particle states around the Fermi level via an increase of the effective nucleon mass [1]. Transition rates are calculated within the proton-neutron relativistic quasiparticle RPA using the same interaction that was used in the RHB equations. In this way no additional parameters are introduced in the RPA calculation. Weak interaction rates are calculated using the current-current formalism previously employed in the study of other astrophysically significant weak processes [2,3], which systematically includes the contributions of forbidden transitions. This theoretical framework will be utilized to study the contributions of forbidden transitions to the total decay rate in several mass regions. We will compare the calculated half-lives for several isotopic chains with previous calculations and experimental data and discuss possible improvements to the model.(author)

  12. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  13. Passages of high energy hadrons through atomic nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    2001-01-01

    The subject matter in this paper are descriptions of more important results of investigations of the intranuclear matter properties by means of hadronic probes (pionic, e.g.). The projectile-nucleus collisions occurred in liquid xenon in the 180 litre xenon bubble chamber. The chamber in the experiments was practically a total 4π angle aperture for detection of the secondary products from the hadron-nucleus collision reactions. All the π +-0 mesons were practically registered with an efficiency near to 100 %. The hadron passages through nuclei (through layers of intranuclear matter) in their pure sort, when multiparticle creation does not occur, were observed. Conclusive information, obtained on the hadron passages, is presented here. It may be used for new nuclear power technology, in radioactive waste neutralization, in other works on intranuclear matter properties

  14. Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

    International Nuclear Information System (INIS)

    Shaughnessy, Dawn A.

    2000-01-01

    Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. 242 Es was produced via the 233 U( 14 N,5n) 242 Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 ± 3 seconds. The ECDF of 242 Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 ± 18 MeV. The probability of delayed fission (P DF ) was measured to be 0.006 ± 0.002. In conjunction with this experiment, the excitation functions of the 233 U( 14 N,xn) 247-x Es and 233 U( 15 N,xn) 248-x Es reactions were measured for 243 Es, 244 Es and 245 Es at projectile energies between 80 MeV and 100 MeV

  15. Neutron capture therapy. Principles and applications

    International Nuclear Information System (INIS)

    Sauerwein, Wolfgang A.G.; Moss, Raymond; Wittig, Andrea; Nakagawa, Yoshinobu

    2012-01-01

    State of the art report on neutron capture therapy. Summarizes the progress made in recent decades. Multidisciplinary approach. Written by the most experienced specialists Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter. This in principle allows for tumor cell-selective high-LET particle radiotherapy. NCT is exciting scientifically but challenging clinically, and a key factor in success is close collaboration among very different disciplines. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.

  16. Negative pion capture in atomic nuclei near the closed neutron shell at N=82

    International Nuclear Information System (INIS)

    Butsev, V.S.; Chultem, D.; Zhivotov, I.N.

    1981-01-01

    The results of studies of the excitation of high spin states in stopped π - -absorption in Nd, Pr, Ce, La and Ba nuclei are reported. States with spins 7 - , 8 - and 19/2 - have been identified. The isomeric ratios for the isotopes 131 Ba and 133 Ba have been determined to be equal to σsub(m)/σsub(g)=(5.1+-0.5) and (2.2+-0.3), respectively. For the isomers sup(134m)Cs and sup(135m)Cs the isotopic ratio is found to be σsub(msub(1))/σsub(msub(2))=8.2+-2.3. The distinguishing features of the mechanisms of excitation of high spin states by stopped π - and fast protons are discussed [ru

  17. Relativistic quasiparticle random-phase approximation calculation of total muon capture rates

    International Nuclear Information System (INIS)

    Marketin, T.; Paar, N.; Niksic, T.; Vretenar, D.

    2009-01-01

    The relativistic proton-neutron quasiparticle random phase approximation (pn-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from 12 C to 244 Pu, for which experimental values are available. The microscopic theoretical framework is based on the relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the pn-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the pn-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value g A =1.262 by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  18. Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14

    Science.gov (United States)

    Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-02-01

    Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening

  19. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  20. Serial interactome capture of the human cell nucleus.

    Science.gov (United States)

    Conrad, Thomas; Albrecht, Anne-Susann; de Melo Costa, Veronica Rodrigues; Sauer, Sascha; Meierhofer, David; Ørom, Ulf Andersson

    2016-04-04

    Novel RNA-guided cellular functions are paralleled by an increasing number of RNA-binding proteins (RBPs). Here we present 'serial RNA interactome capture' (serIC), a multiple purification procedure of ultraviolet-crosslinked poly(A)-RNA-protein complexes that enables global RBP detection with high specificity. We apply serIC to the nuclei of proliferating K562 cells to obtain the first human nuclear RNA interactome. The domain composition of the 382 identified nuclear RBPs markedly differs from previous IC experiments, including few factors without known RNA-binding domains that are in good agreement with computationally predicted RNA binding. serIC extends the number of DNA-RNA-binding proteins (DRBPs), and reveals a network of RBPs involved in p53 signalling and double-strand break repair. serIC is an effective tool to couple global RBP capture with additional selection or labelling steps for specific detection of highly purified RBPs.

  1. Investigating proton emitters at the limits of stability with radioactive beams from the Oak Ridge facility

    Energy Technology Data Exchange (ETDEWEB)

    Toth, K.S. [Oak Ridge National Lab., TN (United States); Batchelder, J.C.; Zganjar, E.F. [Louisiana State Univ., Baton Rouge, LA (United States); Bingham, C.R.; Wauters, J. [Tennessee Univ., Knoxville, TN (United States); Davinson, T.; MacKenzie, J.A.; Woods, P.J. [Edinburgh Univ. (United Kingdom)

    1996-10-01

    By using beams from the Holifield Radioactive Ion Beam Facility at ORNL, it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. In these investigations nuclei produced in fusion-evaporation reactions will be separated from incident ions and dispersed in mass/charge with a recoil mass separator and then implanted into a double-sided Si strip detector for study of proton (and {alpha}-particle) radioactivity. This paper summarizes data presently extant on proton emitters and then focuses on tests and initial experiments that will be carried out with stable beams and with radioactive ions as they are developed at the Oak Ridge facility.

  2. Fine structure in the cluster decays of the translead nuclei

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Cioaca, C.

    1994-06-01

    Within the one level R-matrix approach several hindrance factors for the radioactive decays in which are emitted α and other nuclei (such as 14 C and 20 O) are calculated. The interior wave functions are supposed to be given by the shell model with effective residual interactions. The exterior wave functions are calculated from a cluster - nucleus double - folding model potential with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 255 Fm, 14 C - decay of 223 Ra and 20 O - decay of 229 Th and 225 Fm. Good agreement with the experimental data is obtained. (author). 38 refs, 6 tabs

  3. Neutron-capture reactions with the R{sup 3}B-CaveC setup

    Energy Technology Data Exchange (ETDEWEB)

    Heine, Marcel [IKP, TU Darmstadt (Germany)

    2014-07-01

    Recent research has shown that the (n,γ) transition-rates on light nuclei can have an influence on the neutron-balance during the r-process. Especially neutron rich carbon isotopes play an important role in r-process nucleo synthesis network calculations which include light nuclei, since these nuclei are aligned along major flow-paths. In particular {sup 18}C is of interest, because it can be interpreted as a waiting point. The {sup 17}C(n,γ){sup 18}C rate could so far only be estimated theoretically and has an uncertainty of a factor of ten [1]. At the R{sup 3}B-CaveC setup at GSI we have measured the (n,γ) time reversed reaction, i.e. {sup 18}C(γ,n){sup 17}C for the above mentioned nucleus, via the Coulomb-breakup of {sup 18}C beam. The kinematically complete measurement allows extracting energy dependent neutron-capture cross section with respect to the excitation energy by using the invariant-mass method. Experimental results are presented in comparison to theoretical calculations.

  4. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  5. Uranium and radium geochemistry. Radioactive disequilibrium in natural waters

    International Nuclear Information System (INIS)

    Beaucaire, C.

    1987-09-01

    Rock-water interactions play a primary part in uranium-series disequilibrium either by different chemical behavior or by recoiling alpha emitting nuclei in solution. Three series of thermal water containing CO 2 (Vichy, Vals and Cezallier) and one from Lodeve uranium deposit are studied to define parameters (pH, Eh, pCO 2 , T,...) controlling studied nuclei. For U complexation by carbonates is in competition with redox conditions. Ra is coprecipitated by barium. For thermal waters keeping their deep characteristics there is a low disequilibriums 234 U- 238 U between 1 and 2. On the contrary important disequilibrium (up to 12) in Vichy Saint Yorre water are due to secondary remobilization. In the same way for these waters 234 U and 226 Ra are correlated. Then leaching is essential for the radioactive disequilibrium but alpha recoil of 234 Th is of secondary importance in this case [fr

  6. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  7. CDW (continuum distorted wave) type approximation for electron capture at large angles

    International Nuclear Information System (INIS)

    Fojon, O.A.; Maidagan, J.M.

    1990-01-01

    A calculation is made for the probability of electron capture in shell K at great angles using a second order symmetrical model used related to the continuum distorted wave (CDW) approximation. The influence of Coulomb distortion of nuclei is studied and compared with OBK and CIS type calculations. Numerical results are compared with experimental results of the collision of H + on C at intermediate energies. (Author). 19 refs., 2 figs

  8. Study of biodistribution of lipidic nanospheres charged with cis-diaminedichloroplatinum (II) and labelled with radioactive nuclei of Indium-111; Estudio de biodistribucion de nanoesferas lipidicas cargadas con cis-diaminodicloroplatino (II) y marcadas con nucleos radioactivos de Indio-111

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, V.; Juarez O, C.; Medina L, A. [Unidad de Investigacion Biomedica en Cancer INCAN-UNAM, Mexico D.F. (Mexico); Perez C, E.; Garcia L, P. [Instituto nacional de cancerologia, Mexico D.F. (Mexico)

    2007-07-01

    The general objective of the study was to evaluate the lipidic nanospheres biodistribution charged with cis-diaminedichloroplatinum (II) (cis-DDP) and labelled with radioactive nuclei of Indium-111 (Lip-Cis-in-111) in Wistar rats and in a tumoral model of CaCu. The conclusions were: 1. The system Lip-Cis-in-111 it presents a very fast elimination probably, to a fast recognition response of the reticuloendothelial system (RES). 2. It is planned to make modifications to the formulation to increase the quantity of the hydrophilic polymer (PEG), so that its time of residence in the blood is bigger and allow a bigger accumulation in the tumor. (Author)

  9. ISINN-5. 5. International seminar on interaction of neutrons with nuclei. Neutron spectroscopy, nuclear structure, related topics

    International Nuclear Information System (INIS)

    1997-01-01

    The materials submitted at the fifth in a series of annual international seminar on interaction of neutrons with nuclei Neutron Spectroscopy, Nuclear Structure, Related Topics (ISINN-5) are given. The Seminar is organized by the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research and took place in Dubna on May 14-17, 1997. About 130 specialists from Belgium, China, Germany, France, Japan, Korea, Latvia, Netherlands, Ukraine, 7 Russian research institutes and a number of JINR laboratories took part in the Seminar. The scope of the problems discussed is traditionally wide. It includes the problems of violation of fundamental symmetries in the interaction of neutrons with nuclei, the properties of the neutron as the fundamental particle, nonstatistical aspects of the radiation capture of neutrons by nuclei, topical problems of the theory of nucleus, and the fission mechanism of heavy nuclei. The latest results obtained with ultracold neutrons (UCN), in particular, different approaches to understanding of the cause of UCN anomalous leakage through the walls of the trap are considered as well. The wide spectrum of methodological aspects of neutron-aided experiments is also discussed in details

  10. Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities

    International Nuclear Information System (INIS)

    Singh, BirBikram; Patra, S. K.; Gupta, Raj K.

    2010-01-01

    We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988), p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we have deduced empirically the preformation probability P 0 emp from the experimental data on both the α- and exotic cluster-decays, specifically of parents in the trans-lead region having doubly magic 208 Pb or its neighboring nuclei as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for both the α and heavier clusters in radioactive nuclei. P 0 α(emp) for α decays is almost constant (∼10 -2 -10 -3 ) for all the parent nuclei considered here, and P 0 c(emp) for cluster decays of the same parents decrease with the size of clusters emitted from different parents. The results obtained for P 0 c(emp) are reasonable and are within two to three orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.

  11. Critical evaluation of radioactive decay constants for 99Mo, 144Ce, 144Pr and 144Pm

    International Nuclear Information System (INIS)

    Grigor'yan, Yu.I.; Sokolovskij, L.L.; Chukreev, F.E.

    1976-01-01

    The decay schemes of 99 Mo, 144 Ce, 144 Pr, 144 Pm are reviewed on the basis of analysis of a large number of published experimental works. A knowledge of the decay constants of the first three nuclei, which are fission products, is of great importance in developing safeguards methods. Quantities characterizing the β-decay of 99 Mo, 144 Ce, 144 Pr and K-electron capture ( 144 Pm) are evaluated. Level schemes are plotted for the daughter nuclei. Evaluations are made in respect of the energies and intensities of γ-rays and conversion electrons accompanying β-decay and K-electron capture, internal conversion coefficients and transition multipolarities, level energies, spins, parities, and lifetimes of the ground and excited states of 99 Tc, 144 Pr, and 144 Nd. From the results obtained the 99 Mo- 99 Tc mass difference can be deduced and a new value of 1358.0 +- 3.0 keV is established instead of the previously used value of 1372.2 +- 3.9 keV. The analagous quantity for the nuclei 144 Pr- 144 Nd is taken as 2994.6 +- 3.2 keV instead of the value 2997.0 +- 3.0 keV. (author)

  12. Peculiarities of the excited J{sup p} = 1{sub +} states in heavy nuclei from two-step gamma-decay cascades. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M A [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Sukhovoj, A M; Khitrov, V A [Joint institute for nuclear research Frank laboratory of Neutron physics, Dubna, (Russian Federation)

    1996-03-01

    The compound state gamma-decays, after thermal neutron capture, in the {sup 156,158} Gd, {sup 164} Dy, and {sup 174} Yb deformed nuclei and the {sup 196} Pt transitional nucleus were measured and analysed in a search for giant magnetic dipole resonances (GMDR) levels built on the ground states of these nuclei. The two-step cascade intensities for these nuclei are given and the level densities are deduced. The results obtained are compared with theoretical predictions. For the deformed nuclei, the analysis shows that these GMDR levels built on the ground state are not or probably very weakly populated. The enhancements experimentally observed in the two-step gamma-decay of the compound state of the {sup 196} Pt nucleus to its ground state can be explained qualitatively by the presence of GMDR states at an energy of about 2.8 MeV, with a full width at half maximum of about 1 MeV. 3 tabs.

  13. Role of shell corrections in doubly magic "2"0"8Pb radioactivity within quantum mechanical fragmentation theory

    International Nuclear Information System (INIS)

    Mandeep Kaur; Singh, BirBikram; Sukhmanpreet Kaur

    2017-01-01

    The liquid drop energy (V_L_D_M) along with shell corrections (δU) plays an important role to give the proper understanding of binding energies of atomic nuclei. It is relevant mention here that to study the excited state decay of nuclear systems Gupta and collaborators developed dynamical cluster decay model (DCM) by refitting the binding energies at T=0, to get temperature dependent binding energies with shell corrections included, for the same. Also, in literature different types of temperature dependent binding energies formulas are available. In DCM, the temperature dependent binding energies have been included as given by Davidson et al. In the process, shell corrections, δU were also calculated along with VLDM to reproduce the available experimental binding energies at T=0. It is relevant to mention here that the nuclear shell structure plays main role in the process of cluster radioactivity (CR) as very well explored by the quantum mechanical fragmentation theory (QMFT)-based preformed cluster decay model (PCM), which is the special case of DCM at T=0. Within PCM, Gupta and collaborators also studied the role of deformations or orientations in the decay of number of radioactive nuclei in trans-lead region, specifically, which lead to doubly magic "2"0"8Pb daughter nucleus through emission of clusters i.e. "1"4C, "1"8","2"0O, "2"2Ne, "2"3F, "2"4","2"6 Ne, "2"8","3"0Mg and "3"2","3"4Si, along with many other CR decays. As mentioned earlier, the nuclear shell structure plays an important role in the decay of radioactive nuclei to doubly magic "2"0"8Pb through cluster

  14. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  15. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  16. Possibilities of determining the main peculiarities of {gamma}-decay cascades in heavy nuclei. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M A [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt); Khitrov, V A; Sukhovoj, A M; Vojnov, A V [Joint Institute for Nuclear Research Frank Laboratory of Neutron Physics, Dubna, (Russian Federation)

    1996-03-01

    The main results of an analysis of the average parameters for {gamma}-decay cascades of compound states in complex nuclei, after thermal neutron capture are presented. The experimental data of nuclear level densities, for certain J{pi}, at excitation energies above 2 MeV are compared with that predicted by two different theoretical models. Cascade intensities measured over the entire excitation energy range, from the ground state up to the neutron binding energy, are compared with different model predictions. Conclusions about the radiative partial width enhancements for transitions between the compound state and high-lying excited states are given. The problems of estimating the actual temperature of excited nuclei, and of the experimental possibilities to observe phase transitions and their influence on gamma-decay modes are discussed. 12 figs., 2 tabs.

  17. Possibilities of determining the main peculiarities of γ-decay cascades in heavy nuclei. Vol. 2

    International Nuclear Information System (INIS)

    Ali, M.A.; Khitrov, V.A.; Sukhovoj, A.M.; Vojnov, A.V.

    1996-01-01

    The main results of an analysis of the average parameters for γ-decay cascades of compound states in complex nuclei, after thermal neutron capture are presented. The experimental data of nuclear level densities, for certain Jπ, at excitation energies above 2 MeV are compared with that predicted by two different theoretical models. Cascade intensities measured over the entire excitation energy range, from the ground state up to the neutron binding energy, are compared with different model predictions. Conclusions about the radiative partial width enhancements for transitions between the compound state and high-lying excited states are given. The problems of estimating the actual temperature of excited nuclei, and of the experimental possibilities to observe phase transitions and their influence on gamma-decay modes are discussed. 12 figs., 2 tabs

  18. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa,

  19. Confusion noise from LISA capture sources

    International Nuclear Information System (INIS)

    Barack, Leor; Cutler, Curt

    2004-01-01

    Captures of compact objects (COs) by massive black holes (MBHs) in galactic nuclei will be an important source for LISA, the proposed space-based gravitational wave (GW) detector. However, a large fraction of captures will not be individually resolvable - either because they are too distant, have unfavorable orientation, or have too many years to go before final plunge - and so will constitute a source of 'confusion noise', obscuring other types of sources. In this paper we estimate the shape and overall magnitude of the GW background energy spectrum generated by CO captures. This energy spectrum immediately translates to a spectral density S h capt (f) for the amplitude of capture-generated GWs registered by LISA. The overall magnitude of S h capt (f) is linear in the CO capture rates, which are rather uncertain; therefore we present results for a plausible range of rates. S h capt (f) includes the contributions from both resolvable and unresolvable captures, and thus represents an upper limit on the confusion noise level. We then estimate what fraction of S h capt (f) is due to unresolvable sources and hence constitutes confusion noise. We find that almost all of the contribution to S h capt (f) coming from white dwarf and neutron star captures, and at least ∼30% of the contribution from black hole captures, is from sources that cannot be individually resolved. Nevertheless, we show that the impact of capture confusion noise on the total LISA noise curve ranges from insignificant to modest, depending on the rates. Capture rates at the high end of estimated ranges would raise LISA's overall (effective) noise level [fS h eff (f)] 1/2 by at most a factor ∼2 in the frequency range 1-10 mHz, where LISA is most sensitive. While this slightly elevated noise level would somewhat decrease LISA's sensitivity to other classes of sources, we argue that, overall, this would be a pleasant problem for LISA to have: It would also imply that detection rates for CO captures

  20. Secondary beams and the synthesis of exotic nuclei

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1985-09-01

    With the advent of modern fast cycling synchrotrons capable of delivering high intensity heavy ion beams up to uranium, the production of secondary radioactive ion beams (RIBs) with sufficient intensity has become feasible. The basic production mechanism is the fragmentation of near relativistic heavy ion beams on light targets. The physical facts underlying the efficient conversion of stable beams into RIBs are: (1) at beam energies of several 100 MeV/A thick conversion targets (1 to 10 g/cm 2 ) can be used, which, for nuclei near stability, convert on the order of .1 to 1% of the primary beam into secondary beams, (2) the secondary beams are emitted into a narrow phase space (small transverse and longitudinal emittances), and (3) these emittances are of the correct magnitude to match the acceptances of suitably designed storage and accumulator rings. 14 refs

  1. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  2. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  3. Discovery of the radioactive decay of 223Ra by 14C emission and experiments with the magnetic spectrometer Soleno

    International Nuclear Information System (INIS)

    Hourani, E.; Hussonnois, M.

    1987-01-01

    The aim of this report is to review the experiment of Rose and Jones (discovery in 1984 of radioactive decay of 223 Ra by 14 C nuclei emission) with the subsequent one of Alexandrov (et al) performed with the same technique. The experiments performed by the group at Orsay on 14 C radioactivity of radium isotopes with the magnetic spectrometer Soleno are also reviewed. This review comprises the presentation and comments of the original results and arguments taken in their historical context

  4. Isomer depletion as experimental evidence of nuclear excitation by electron capture

    Science.gov (United States)

    Chiara, C. J.; Carroll, J. J.; Carpenter, M. P.; Greene, J. P.; Hartley, D. J.; Janssens, R. V. F.; Lane, G. J.; Marsh, J. C.; Matters, D. A.; Polasik, M.; Rzadkiewicz, J.; Seweryniak, D.; Zhu, S.; Bottoni, S.; Hayes, A. B.; Karamian, S. A.

    2018-02-01

    The atomic nucleus and its electrons are often thought of as independent systems that are held together in the atom by their mutual attraction. Their interaction, however, leads to other important effects, such as providing an additional decay mode for excited nuclear states, whereby the nucleus releases energy by ejecting an atomic electron instead of by emitting a γ-ray. This ‘internal conversion’ has been known for about a hundred years and can be used to study nuclei and their interaction with their electrons. In the inverse process—nuclear excitation by electron capture (NEEC)—a free electron is captured into an atomic vacancy and can excite the nucleus to a higher-energy state, provided that the kinetic energy of the free electron plus the magnitude of its binding energy once captured matches the nuclear energy difference between the two states. NEEC was predicted in 1976 and has not hitherto been observed. Here we report evidence of NEEC in molybdenum-93 and determine the probability and cross-section for the process in a beam-based experimental scenario. Our results provide a standard for the assessment of theoretical models relevant to NEEC, which predict cross-sections that span many orders of magnitude. The greatest practical effect of the NEEC process may be on the survival of nuclei in stellar environments, in which it could excite isomers (that is, long-lived nuclear states) to shorter-lived states. Such excitations may reduce the abundance of the isotope after its production. This is an example of ‘isomer depletion’, which has been investigated previously through other reactions, but is used here to obtain evidence for NEEC.

  5. Critical-point nuclei

    International Nuclear Information System (INIS)

    Clark, R.M.

    2004-01-01

    It has been suggested that a change of nuclear shape may be described in terms of a phase transition and that specific nuclei may lie close to the critical point of the transition. Analytical descriptions of such critical-point nuclei have been introduced recently and they are described briefly. The results of extensive searches for possible examples of critical-point behavior are presented. Alternative pictures, such as describing bands in the candidate nuclei using simple ΔK = 0 and ΔK = 2 rotational-coupling models, are discussed, and the limitations of the different approaches highlighted. A possible critical-point description of the transition from a vibrational to rotational pairing phase is suggested

  6. Experiments with SIRA - the radioactive ion separator

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1998-01-01

    There are two main techniques to obtain radioactive ion beams. One, consisting in the fragmentation of projectile in a thin target followed by a separation carried out with LISE or SISSI type spectrometers or by an alpha spectrometer is used currently at GANIL. The second one, the ISOL (Isotope Separator One-Line) is presently under study on the SIRa benchmark, as part of the SPIRaL (Source de Production d'Ions Radioactifs en Ligne). A high energy light ion beam is stopped by a thick target to produce radioactive nuclei by various reactions in the target. The target, usually of carbon, is heated at around 1800 deg. C in order to accelerate the migration of the atoms produced at the target surface. These atoms are then diffused by a transfer tube up to plasma region where they are ionized and then accelerated. As projectiles the GANIL project makes use of a large variety of heavy ions. A table containing the radioactive ion beam characteristics (charge state and lifetime), the primary beams, the yields and the expected intensities to be obtained with SPIRaL is presented. Also, data concerning the production rates of rare gases obtained during 1993 to 1994 are given

  7. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  8. The Array for Nuclear Astrophysics Studies with Exotic Nuclei

    Science.gov (United States)

    Linhardt, L. E.; Blackmon, J. C.; Matos, M.; Mondello, L. L.; Zganjar, E. F.; Johnson, E.; Rogachev, G.; Wiedenhover, I.

    2010-11-01

    The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN) is a charged-particle detector array that is targeted primarily towards reaction studies with radioactive ion beams at FSU and the NSCL. ANASEN consists of 40 double-sided silicon-strip detectors backed with CsI scintillators and an innovative gas counter design that allows operation in a gas target/detector mode and experiments covering a broad range of center-of-mass energies simultaneously. Electronics based on ASIC components are being implemented to achieve a high channel count at low cost. Prototypes of all the detector components have been fabricated and are currently being tested. Performance of the individual components and plans for the first experiments that aim to improve our knowledge of the nuclear reactions important in stellar explosions will be reported.

  9. Inelastic collisions of neon-22 nuclei with nuclei in photoemulsion at 90 GeV/c momentum

    International Nuclear Information System (INIS)

    Vokalova, A.; Krasnov, S.A.; Tolstov, K.D.

    1985-01-01

    The experimental data obtained according to the analysis of 4303 inelastic interactions of the relativistic neon-22 nuclei with the nuclei in photoemulsion are presented. The multiplicities and angular distributions are shown as the functions of the disintegration degree of the colliding nuclei. It is shown that the same number of interacting nucleons of the projectile neon and carbon nuclei are connected with the different impact parameters with the target nucleus

  10. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    International Nuclear Information System (INIS)

    Cherry, M.L.; Denes-Jones, P.

    1994-03-01

    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab

  11. Nuclear structure of weakly bound radioactive nuclei through elastic and and inelastic scattering on proton. Impacts of the couplings induced by these exotic nuclei on direct reactions

    International Nuclear Information System (INIS)

    Lapoux, V.

    2005-09-01

    Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C 10 , C 11 and on direct reactions with the He 8 beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)

  12. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  13. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  14. Internal contamination assessment, with regard to 90Sr, 134Cs, and 137Cs nuclei during nuclear accident

    International Nuclear Information System (INIS)

    Ayad, M.; Hanna, K.M.

    2000-01-01

    In case of nuclear reactor accident leading to the release of some radioactive isotopes in the plume, the sedimentation of its constituents on the ground causes surface contamination which consequently can be observed in the form of an internal contamination in the living biosphere. The migration of the radio nuclei from the soil to the plant root, stem, and the other edible parts is considered the main source for the contaminated foodstuffs used by the general public. In this work we have calculated the total accumulative internal dose for 9 0Sr, 1 34Cs, and 1 37Cs radio contaminants with regard to different public age groups (infant, child, and adult) due to an unexpected nuclear accident. In our calculations we have applied the protective measure inequality for the chosen standard group of foodstuffs, with respect to each age group of the public as well as the three indicated above radio nuclei. Our results indicated that the values of the calculated protective measures with regard to 9 0Sr, 1 37Cs, and 1 34Cs radio nuclei are increasing respectively for all age groups. In addition, we found that the ratio of the total protection measure values of all radio nuclei for different age groups still less than one which requires no intervention level procedures

  15. Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, Dawn A. [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. 242Es was produced via the 233U(14N,5n)242Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 ± 3 seconds. The ECDF of 242Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 ± 18 MeV. The probability of delayed fission (PDF) was measured to be 0.006 ± 0.002. In conjunction with this experiment, the excitation functions of the 233U(14N,xn)247-xEs and 233U(15N,xn)248-xEs reactions were measured for 243Es, 244Es and 245Es at projectile energies between 80 MeV and 100 MeV.

  16. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  17. Validating (d,p gamma) as a Surrogate for Neutron Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A. [Rutgers University; Cizewski, J. A. [Rutgers University; Pain, S. [Oak Ridge National Laboratory (ORNL); Adekola, A. S. [Rutgers University; Burke, J. T. [Lawrence Livermore National Laboratory (LLNL); Casperson, R.J. [Lawrence Livermore National Laboratory (LLNL); Fotiades, N. [Los Alamos National Laboratory (LANL); McCleskey, M. [Texas A& M University; Burcher, S. [Rutgers University; Shand, C. M. [Rutgers Univ./Univ. of Surrey, UK; Austin, R. A. E. [Saint Mary’s University, Halifa, Canada; Baugher, T. [Rutgers University; Carpenter, M. P. [Argonne National Laboratory (ANL); Devlin, M. [Los Alamos National Laboratory (LANL); Escher, J. E. [Lawrence Livermore National Laboratory (LLNL); Hardy, S. [Rutgers Univ./Univ. of Surrey, UK; Hatarik, R. [Lawrence Livermore National Laboratory (LLNL); Howard, M. [Rutgers University; Hughes, R. [University of Richmond, VA; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kozub, R. L. [Tennessee Technological University (TTU); Lister, C. J. [University of Massachusetts, Lowell; Manning, B. [Rutgers University; O' Donnell, J. M. [Los Alamos National Laboratory (LANL); Peters, W. A. [Oak Ridge Associated Universities (ORAU); Ross, T.J. [University of Richmond, VA; Scielzo, N.D. [Lawrence Livermore National Laboratory (LLNL); Seweryniak, D. [Argonne National Laboratory (ANL); Zhu, S. [Argonne National Laboratory (ANL)

    2015-01-01

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the rprocess may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,py) reaction at low energies was identified as a promising surrogate for the (n,y) reaction, as both reactions share many characteristics. We report on a program to validate (d,py) as a surrogate for (n,y) using 95Mo as a target. The experimental campaign includes direct measurements of the y-ray intensities from the decay of excited states populated in the 95Mo(n,y) and 95Mo(d,py) reactions.

  18. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  19. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  20. Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future

    CERN Document Server

    Cano-Ott, D; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Oshima, M; Gramegna, F; Wiescher, M; Pigni, M T; Wiendler, H; Mengoni, A; Quesada, J; Becvar, F; Rosetti, M; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Griesmayer, E; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Mendoza, E; Terlizzi, R; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Dolfini, R; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Tain, J L; Belloni, F; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Meaze, M H; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Konovalov, V; Kerveno, M; Marques, L; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; De Albornoz, A C; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Moreau, C; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Audouin, L; Tassan-Got, L; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Isaev, S; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Plag, R; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports {[}1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n\\_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) {[}4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.

  1. Dynamic polarisation of nuclei

    International Nuclear Information System (INIS)

    Borghini, M.; Abragam, A.

    1961-01-01

    In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr

  2. Nuclear spectroscopy by radioactivity. Study of nuclei adjacent to the 82 neutron closed shell and application to fission

    International Nuclear Information System (INIS)

    Carraz, L.-C.

    1974-01-01

    Chemical separation techniques have been developed which make it possible to obtain a certain number of isotopes presenting anomalies in the fission efficiencies (near the magic shell N=82). A short description is given of the fission phenomenon by analysing the selection of isotopes investigated; it is shown how it was possible to explain the results by means of computers and the various chemical separations perfected are described. Thus a study was made of the 144 La direct γ spectrum. It was shown that the anomalies in the fission efficiencies of certain nuclei are apparent only. Hence, it is the presence of isomers and the distribution of the corresponding efficiency between two isomers which are the cause of the apparent weakness of the efficiency of 134 I, 136 I and 136 Cs, and of certain isotopes of Nb(Z=41). The nuclear spectrometry of nuclei of the area N=82 has made it possible to extend the existence of a metastable state to 136 Xe and 138 Ba. The value of the energies of the first 2 + , 4 + , 6 + levels and the half life duration of the 6 + metastable state are given. The discussion of the results and of the models show that the interpretation of the 0 + , 2 + , 4 + of the 82 neutron nuclei by means of a two quasi-particle (protons) model gives a fairly satisfactory description of the various experimental events: elastic scattering, gamma spectrometry and proton transfer reactions; on the other hand the interpretation of higher energy levels, requires the use of more complicated configurations [fr

  3. Diffraction scattering and disintegration of 3He nuclei by atomic nuclei

    International Nuclear Information System (INIS)

    Koval'chuk, V.I.

    2006-01-01

    Within diffraction model framework a method of cross sections calculation for scattering and disintegration of weakly-bounded two-clustered nuclei by nuclei when both of its clusters are changed has been proposed. The experimental elastic scattering cross sections of 3 He by 40 Ca, 90 Zr and coincidence spectra of disintegration products from 28 Si( 3 He,dp) have been described

  4. Studies of (p, γ) reactions with the Daresbury Recoil Separator at ORNL'S HRIBF

    International Nuclear Information System (INIS)

    Fitzgerald, R.; Abbotoy, E.; Bardayan, D.W.; Blackmon, J.C.; Champagne, A.E.; Chen, A.A.; Greife, U.; Hill, D.W.; James, A.N.; Kozub, R.L.; Lewis, T.A.; Livesay, R.; Ma, Z.; Mahan, S.L.; McConnell, J.W.; Milner, W.T.; Moazen, B.H.; Parker, P.D.; Pierce, D.E.; Roettger, M.E.; Sahin, L.; Shapira, D.; Smith, M.S.; Strieder, F.; Swartz, K.B.; Thomas, J.S.; Visser, D.W.

    2005-01-01

    The fusion of protons with radioactive nuclei is important in stellar explosions such as novae and X-ray bursts and for the production of neutrinos in the sun. The Daresbury Recoil Separator and a windowless gas target system have been installed at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) for measurements of proton capture reactions in inverse kinematics with radioactive ion beams. The performance of the system has been characterized with a number of experiments using stable ion beams. We report on results from these commissioning measurements and plans for measurements of the 1 H( 17 F, 18 Ne) and 1 H( 7 Be, 8 B) reactions

  5. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  6. Prof. Elizaveta Karamihailova - The first lady of the Bulgarian physics (The contributions of prof. E. Karamihailova in radioactive studies)

    International Nuclear Information System (INIS)

    Balabanov, N.; Stoeva, M.; Lazarova, P.

    2012-01-01

    Prof. Elizaveta Karamihailova (1897-1968) is the first Bulgarian nuclear physicist and the first Bulgarian woman with an academic degree. Prof. Karamihajlova spent a significant period of time working at the Radium Institute in Vienna (1923-1935) and at the Cavendish Laboratory in Cambridge (1935-1939). She studies the nuclear reactions and the most up-to-date problems of the nuclear physics during the 1930's - neutron discovery, artificial radioactivity, split of atom nuclei. Following her return in Bulgaria (1939), E. Karamihailova continues the studies of Prof. P. Penchev to measure radioactivity of natural objects such as drinking and mineral water, soil, rocks, mud-curing. She also studies the radioactive pollution of the uranium mining regions, radioactivity due to nuclear tests. She is the founder of the first radiation protection activities in Bulgaria. (authors)

  7. The 1+ → n+ transformation for the radioactive ion acceleration

    International Nuclear Information System (INIS)

    Chauvin, N.; Lamy, T.; Bruandet, J.F.; Bouly, J.L.; Curdy, J.C.; Geller, R.; Sole, P.; Sortais, P.; Vieux-Rochaz, J.L.

    1999-01-01

    The radioactive ions are produced as single-charge ions either starting from nuclear reactions induced by a high energy primary beam, or by neutron bombarding of a target. However, in order to obtain beams of several MeV per nucleon, il will be convenient of transforming the mono-charged ions issued from the production source, in multicharged ions. Consequently, an operation should be implemented to transform the 1+ charge state into n+ state, with a double requirement of maximal yield and minimal response time. The objectives are a particle yield of several percents and a response time below 1 second, taking into account the low lifetimes of certain radioactive nuclei. The conjoint achievement of both high charged states and maximal beam intensity forced us to make a choice for an ECR (Electron Cyclotron Resonance) type source to realize the transformation 1+ → n+

  8. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  9. Recent results on reactions with radioactive beams at RIBRAS (Radioactive Ion Beams in Brazil)

    Science.gov (United States)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Arazi, A.; Barioni, A.; Benjamim, E. A.; de Faria, P. N.; Descouvemont, P.; Gasques, L. R.; E; Leistenschneider; Mendes, D. R., Jr.; Morais, M. C.; Morcelle, V.; Moro, A. M.; Pampa Condori, R.; Pires, K. C. C.; Rodriguez-Gallardo, M.; Scarduelli, V.; Shorto, J. M. B.; Zamora, J. C.

    2015-04-01

    We present a quick description of RIBRAS (Radioactive Ion beams in Brazil), which is a superconducting double solenoid system, installed at the Pelletron Laboratory of the University of São Paulo and extends the capabilities of the original Pelletron Tandem Accelerator of 8MV terminal voltage (8UD) by producing secondary beams of unstable nuclei. The experimental program of the RIBRAS covers the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, have also been included in our recent experimental program.

  10. Isolation of Nuclei and Nucleoli.

    Science.gov (United States)

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  11. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    International Nuclear Information System (INIS)

    Oldenburg, C.; Birkholzer, J.T.

    2010-01-01

    Aside from the target storage regions being underground, geologic carbon sequestration and radioactive waste disposal share little in common in North America. The large volume of carbon dioxide (CO 2 ) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste. There is well-documented capacity in North America for 100 years or more of sequestration of CO 2 from coal-fired power plants. Aside from economics, the challenges of geologic carbon sequestration include lack of fully established legal and regulatory framework for ownership of injected CO 2 , the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for radioactive waste, the U.S. has proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level radioactive waste disposal site. The Canadian radioactive waste program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the U.S. and Canada have established legal and regulatory frameworks for radioactive waste disposal. The most challenging technical issue for radioactive waste disposal is the need to predict repository performance on extremely long time scales (10 4 - 10 6 years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening radioactive waste repositories. Because of the many significant differences between radioactive waste disposal and geologic carbon sequestration, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both geologic carbon sequestration and radioactive waste disposal

  12. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  13. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  14. Excitation of the giant resonance in the radiative pion capture on lp shell nuclei

    International Nuclear Information System (INIS)

    Dogotar', G.E.

    1978-01-01

    The spin-dipole transitions in the (π - ,γ) reaction on 6 Li, 7 Li, 9 Be, 13 C and 14 N are calculated in the framework of shell model and are compared with experiment. The discussion includes the gross structure and the quantum numbers of the resonance, relative branchings, prominent partial transitions and total yields. General findings is that the calculated (π - ,γ) yield distributions describe the data well in those cases where also the photonuclear data are well reproduced, although the amplitudes of the elementary processes are different. In the case considered, the best agreement is obtained for A=9 and 14. The configurational splitting of the resonances is clearly seen in the A=6 and 7 cases, to somewhat less extent also for A=9. For heavier nuclei the contribution from hole excitation is small and is spread out. For A=7 and 11 the calculated main peaks are at too low intrinsic excitation energies as compared with histograms

  15. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    International Nuclear Information System (INIS)

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-01-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z 0 = 82 and neutrons number around the closed shells Z 0 = 82 and Z 0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (N p ) and neutron (N n ) numbers. These linear dependencies are correlated with the closed shells core (Z 0 ,N 0 ). The same individual linear behaviors are obtained as a function of the multiplication of N p N n and the isospin asymmetry parameter, N p N n I. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function N p N n /(Z 0 +N 0 ).

  16. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  17. Design, simulations and test of a Time-of-Flight spectrometer for mass measurement of exotic beams from SPIRAL1/SPIRAL2 and γ-ray spectroscopy of N=Z nuclei close to 100Sn

    International Nuclear Information System (INIS)

    Chauveau, Pierre

    2016-01-01

    The new generation of nuclear facilities calls for new technological developments to produce, accelerate, manipulate and analyse exotic nuclei. The main topic of this thesis work was the simulation, design and test of a Multi-Reflection Time-of-Flight Mass spectrometer (MR-ToFMS) for fast mass separation and fast mass measurement of radioactive ions in the installations S3 and DESIR at SPIRAL2. Such a device could separate isobaric nuclei and provide SPIRAL2 with high purity beams. Also, its mass measurement capabilities would help to determine binding energies of exotic and superheavy nuclei with a high precision. This apparatus has been simulated with the SIMION 8.1 software and designed accordingly. First offline tests have been performed with a stable ion source at LPC Caen. In addition a low-aberration electrostatic deflector has been simulated and designed to operate with this MR-ToF-MS without spoiling its performances. This work also describes the analysis and results of the first online tests of a FEBIAD-type ion source intended to provide SPIRAL1 and SPIRAL2 radioactive beams of competitive intensities. Finally, we describe the analysis of a nuclear physics experiment, including the calibration of the different detectors and the gamma-spectroscopy of nuclei in the vicinity of the doubly magic 100 Sn. (author) [fr

  18. Analysis of radioactive fallout of the atomic bomb explosion on Bikini

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K

    1954-01-01

    The radioactive fallout was found to contain 55.2, 7.0, 11.8, and 26.0% of CaO, MgO, CO/sub 2/, and H/sub 2/O, respectively, the chief constituent being Ca(OH)/sub 2/. The electric-spark method of analysis showed the presence of Al, Fe, and Si in addition to Ca and Mg. Its decay curve followed I = ct/sup -1/ /sup 37/, where I represents radioactivity, t, time since the explosion took place, March 1, 1954, and c, const. Its specific activity measured on April 23, 1954, was 0.37 mc./g. Radioactive nuclei identified by March 26 were /sup 89/Sr, /sup 90/Sr, /sup 91/Y, /sup 95/Sr, /sup 95m/Nb, /sup 95/Nb, /sup 103/Ru, /sup 106/Rh, /sup 129m/Te, /sup 129/Te, /sup 132/Te, /sup 131/I, /sup 132/I, /sup 140/Ba, /sup 141/Ce, /sup 144/Ce, /sup 143/Pr, /sup 144/Pr, /sup 147/Nd, /sup 147/Pm, /sup 35/S, /sup 45/Ca, /sup 237/U, and /sup 239/Pu.

  19. $\\gamma$ -spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li

    CERN Multimedia

    We propose an experiment with MINIBALL coupled to T-REX to investigate n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li. The nuclei of interest will be populated by transfer of a triton into $^{94}$Kr, forming the excited $^{97}$Rb nucleus, followed by the emission of an alpha particle, which will be detected in the Si telescopes of T-REX. The $^{97}$Rb product will evaporate 1 or 2 (with the highest probability) neutrons leading to $^{96}$Rb or $^{95}$Rb, respectively. The aim of the experiment is twofold: \\\\ i) to perform a $\\gamma$- spectroscopy study of $^{95,96}$Rb nuclei with N=58,59, the structure of which is of particular interest in investigating the transition towards stable deformation at N=60, \\\\ ii) to acquire experience in using incomplete fusion reactions with the weakly bound $^{7}$Li target, in order to perform, at a later stage with HIE-ISOLDE, similar measurements induced by n-rich radioactive beams of Sn and Hg, for which at least 5 MeV/nucleon are need...

  20. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  1. Yields and spectroscopy of radioactive isotopes at LOHENGRIN and ISOLDE

    CERN Document Server

    Köster, U

    1999-01-01

    Yields of radioactive nuclei were measured at two facilities: the recoil separator LOHENGRIN at the Institut Laue Langevin in Grenoble and the on-line isotope separator ISOLDE at CERN in Geneva. At LOHENGRIN the yields of light charged particles were measured from thermal neutron induced ternary fission of several actinide targets: 233U, 235U, 239Pu, 241Pu and 245Cm. Thin targets are brought into a high neutron flux. The produced nuclei leave these with the recoil obtained in the fission reaction. They are measured at different energies and ionic charge states. After corrections for the experimental acceptance, the time behaviour of the fission rate and the ionic charge fraction, the yields are integrated over the kinetic energy distribution. Comparing these yields with the predictions of various ternary fission models shows that the most abundant nuclides are well reproduced. On the other hand the models overestimate significantly the production of more "exotic" nuclides with an extreme N/Z ratio. Therefore ...

  2. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    Science.gov (United States)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  3. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  4. Study of excited states in 48Ti, 49Ti and 50Ti by means of radiative neutron capture

    International Nuclear Information System (INIS)

    Ruyl, J.F.A.G.

    1983-12-01

    The γ radiation produced by thermal neutron capture in a natural Ti target and in enriched 47 Ti and 49 Ti targets has been investigated. In the analysis 57 excited states of 48 Ti, 28 of 49 Ti and 31 of 50 Ti have been identified. The values for the 48 Ti and 49 Ti neutron binding energy agree with previous data, the value for 50 Ti differs by five standard deviations. The nature of the neutron capture mechanism has been investigated by comparing the present results with those from previous (d,p) work. It appears that in 47 Ti capture proceeds through a doorway state and that the potential capture mechanism is valid for 48 Ti and 49 Ti. The Fermi gas model gives a good representation of the nuclear level density in all three nuclei. From a measurement of the γ-ray circular polarization resulting from the capture of polarized neutrons, combined with previous (d,p) work, the spins of five 49 Ti levels could be determined, and those of 13 other 49 Ti levels could be confirmed. The combination of nuclear orientation measurements and circular polarization measurements had yielded the unambiguous determination of the spins of one 48 Ti state and of five 50 Ti states. Further spin and parity determinations for six 48 Ti and for five 50 Ti states have been obtained from the analysis of the identified branches together with the results of previous experiments. Shell-model calculations, which yielded excitation energies, branching ratios, lifetimes and (d,p) spectroscopic factors, give a good representation of the experimental data for the low-lying states in both even-even nuclei. (Auth.)

  5. Validating (d,pγ) as a surrogate for neutron capture

    International Nuclear Information System (INIS)

    Ratkiewicz, A.; Cizewski, J. A.; Pain, S. D.; Adekola, A. S.; Burke, J. T.; Casperson, R. J.; Fotiadis, Nikolaos; McCleskey, M.; Burcher, S.; Shand, C. M; Austin, R. A. E.; Baugher, T.; Carpenter, M. P.; Devlin, Matthew James; Escher, J. E.; Hardy, S.; Hatarik, R.; Howard, M. E.; Hughes, R. O.; Jones, K. L.; Kozub, R. L.; Lister, C. J.; Manning, B.; O'Donnell, John M.; Peters, W. A.; Ross, T. J.; Scielzo, N. D.; Seweryniak, D.; Zhu, S.

    2015-01-01

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate for (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.

  6. α-decay chains and cluster-decays of superheavy 269-27110 nuclei

    International Nuclear Information System (INIS)

    Sushil Kumar; Rajesh Kumar; Balasubramaniam, M.; Gupta, Raj K.

    2001-01-01

    Due to the availability of radioactive nuclear beams (RNB) and the advancement in accelerator technology, it is now possible to synthesize very heavy elements (Z> 100), called superheavy elements. It is a well established fact that these superheavy elements, due to their shorter lifetime, decay via successive alpha emissions and at a later stage undergo spontaneous fission. Several such decay chains are now observed. An attempt is made to fit all such known decay chains and the results of the three observed α-decay chains of Z=110 ( 269-271 10) nuclei are presented. The model used is the preformed cluster model (PCM). Also, an attempt is made for the first time to find the possibility of any branching to heavy-cluster emissions in these chains

  7. Imaging plant leaves to determine changes in radioactive contamination status in Fukushima, Japan.

    Science.gov (United States)

    Nakajima, Hiroo; Fujiwara, Mamoru; Tanihata, Isao; Saito, Tadashi; Matsuda, Norihiro; Todo, Takeshi

    2014-05-01

    The chemical composition of plant leaves often reflects environmental contamination. The authors analyzed images of plant leaves to investigate the regional radioactivity ecology resulting from the 2011 accident at the Fukushima No. 1 nuclear power plant, Japan. The present study is not an evaluation of the macro radiation dose per weight, which has been performed previously, but rather an image analysis of the radioactive dose per leaf, allowing the capture of various gradual changes in radioactive contamination as a function of elapsed time. In addition, the leaf analysis method has potential applications in the decontamination of food plants or other materials.

  8. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  9. Cosmology and unstable nuclei

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1995-01-01

    Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))

  10. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  11. Differential charge transfer and continuum electron capture studies for ions in atomic hydrogen. Final report, August 1, 1979-September 31, 1983

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.

    1983-01-01

    A final technical narrative is given of progress and results obtained during the period August 1, 1979 through September 30, 1983 in a project designed to test existing theories of electron capture to continuum states of fully stripped nuclei traversing atomic hydrogen targets. 5 references

  12. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  13. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  14. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    filtration of gaseous radioactive substances. It is also necessary to capture and condition the radioactive substances in the exhaust gas from the nuclear plant and equipment and the controlled zones. The second subsystem provides effective control and management of gaseous waste in normal and accidental conditions — one of the main issues of nuclear fuel cycle facility design and operation. Many of the issues relating to air cleaning and gaseous radioactive waste management systems have been covered in several IAEA publications. This publication is an attempt to provide systematic and comprehensive information on the entire subject. This publication takes into account the increasing requirements for the protection of the public and the environment, and during the publication’s preparation, the available technical information was collected and reviewed

  15. Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum

    International Nuclear Information System (INIS)

    Bennaceur, K.

    1999-01-01

    The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)

  16. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  17. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  18. Isotope shifts in unstable nuclei

    International Nuclear Information System (INIS)

    Rebel, H.

    1980-05-01

    Current experimental investigations of isotope shifts in atomic spectra of unstable nuclei and the resulting information about size and shape of nuclei far off stability are discussed with reference to some representative examples. (orig.)

  19. A contribution to the study of the physical properties of natural and radioactive aerosols in controlled atmospheres

    International Nuclear Information System (INIS)

    Mouden, A.

    1986-01-01

    The major objective of this work was to study the properties of normal and radioactive particles produced by attachment of radon 222 daughters on environmental aerosol particles, in various and controlled atmospheres. In the first part, devoted to the radioactivity of radon 222, the influence of the number of nuclei on the radioactive equilibrium state and the size distribution of alpha radioactivity was demonstrated. In the second part, an experimental study of the C.E.A. α dosimeter was developed. We investigated the counting and the collection efficiency of the dosimeter for inlet particles in the 0.001-0.1 μm size range. The last part concerns aerosol-filtration behaviour. The comparison between experimental and theoretical procedures revealed a good agreement only in some circumstances for membrane filters. In the case of fibrous filters the agreement is quite satisfactory. Particularly, if the fiber size distribution is taken into account in the theoretical model, it results in an improved estimation of the collection efficiency [fr

  20. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  1. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  2. A novel permanently magnetised high gradient magnetic filter using assisted capture for fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.H.P. [Univ. of Southampton (United Kingdom)

    1995-02-01

    This paper describes the structure and properties of a novel permanently magnetised magnetic filter for fine friable radioactive material. Previously a filter was described and tested. This filter was designed so that the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for friable composite particles which can be broken by mechanical forces. The structure of magnetic part of the second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted-capture in which coarse particles aid the capture of the fine fragments. The technique has the unfortunate consequence that the pressure drop across the filter rises faster as capture capture proceeds than the filter described previously. These filters have the following characteristics: (1) No external magnet is required. (2) No external power is required. (3) Small is size and portable. (4) Easily interchangeable. (5) Can be cleaned without demagnetising.

  3. Metal organic framework MIL-101 for radioiodine capture and storage

    Science.gov (United States)

    Assaad, Thaer; Assfour, Bassem

    2017-09-01

    we report on the use of metal organic frameworks(MOFs) for radioiodine recovery and storage. One MOF (namely MIL-101) was prepared and investigated in detail to demonstrate the iodine removal efficiency and capacity of MOFs. The typical sorption kinetics and uptake isotherms were measured using radioactive iodine (123 I) for the first time. Our measurements indicate that MOFs can capture and store radioiodine in very high efficiency and fast kinetics.

  4. Elastic scattering, fusion, and breakup of light exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)

    2016-05-15

    The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)

  5. On the theory of beta-radioactivity IV : The polarization of beta-rays emitted by aligned nuclei in allowed transitions

    NARCIS (Netherlands)

    Tolhoek, H.A.; Groot, S.R. de

    The consequences of alignment of nuclei, which show allowed ß-transitions, are investigated. A general formula is derived for the transition probability of an allowed β-transition, in which the direction of emission of electron and neutrino, the polarization of the electron and the orientation of

  6. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Directory of Open Access Journals (Sweden)

    Leoni S.

    2016-01-01

    Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  7. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Science.gov (United States)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  8. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  9. Are there multiquark bags in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Scmatkov, M.Zh.

    1983-01-01

    Arguments are presented favouring the idea that multiquark bags do eXist in nuclei. Such hypothesis makes possible to reveal the relationship among three different scopes of phenomena: deep inelastic scattering of leptons by nUclei, large q 2 (where q 2 is a square of momentum transfer) behaviour of the form factors of light nuclei and yield of cumulative proton.s

  10. The S-Process Branching-Point at 205PB

    Science.gov (United States)

    Tonchev, Anton; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-09-01

    Accurate neutron-capture cross sections for radioactive nuclei near the line of beta stability are crucial for understanding s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. We consider photon scattering using monoenergetic and 100% linearly polarized photon beams to obtain the photoabsorption cross section on 206Pb below the neutron separation energy. This observable becomes an essential ingredient in the Hauser-Feshbach statistical model for calculations of capture cross sections on 205Pb. The newly obtained photoabsorption information is also used to estimate the Maxwellian-averaged radiative cross section of 205Pb(n,g)206Pb at 30 keV. The astrophysical impact of this measurement on s-process nucleosynthesis will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  11. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  12. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  13. Estimation of contaminant transport in groundwater beneath radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Wang, J.C.; Tauxe, J.D.; Lee, D.W.

    1995-01-01

    Performance assessments are required for low-level radioactive waste disposal facilities to demonstrate compliance with the performance objectives contained in either 10 CFR 61, open-quotes Licensing Requirements for Land Disposal of Radioactive Waste,close quotes or U.S. Department of Energy Order 5820.2A, open-quotes Radioactive Waste Management.close quotes The purpose of a performance assessment is to provide detailed, site-specific analyses of all credible pathways by which radionuclides could escape from the disposal facility into the environment. Among these, the groundwater pathway analysis usually involves complex numerical simulations. This paper demonstrates that the use of simpler analytical models avoids the complexity and opacity of the numerical simulations while capturing the essential physical behavior of a site

  14. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  15. On the distribution of quarks in nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Panebrattsev, V.S.; Stavinskij, V.S.

    1984-01-01

    On the basis of the data on cumulative proton, deuteron and nuclear fragment production in hadr on-nucleon reactions and deep inelastic muon-nucleon scattering quark distributions in light, intemediate and heavy nuclei have been investigated. Conditions of limiting fragmentation of hadrons and nuclei in the studied processes have been investigated to obtain quark-parton structure functions (Gs 2 ) of the studied hadrons or nuclei. Invariant differential cross sections of π + , π - , K + meson production on aluminium, deuterium and lead nuclei and their dependence on scale variable at the transverse momentum value Psub(T) approximately 0 have been obtained. Properties of structure functions G 2 and behaviour of different nuclei differential cross sections of limiting fragmentation have been investigated. It is concluded that considered regularities testify to the presence of multiquark states in nuclei, different by its structure from nUcleons

  16. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  17. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  18. Differential cross section measurement of radiative capture of protons by nuclei 12C

    International Nuclear Information System (INIS)

    Burtebayev, N.; Zazulin, D.M.; Buminskii, V.P.; Zarifov, R.A.; Tohtarov, R.N.; Sagindykov, Sh.Sh.; Baktibayev, M.K.

    2003-01-01

    Measurements of differential cross sections of nuclear reaction 12 C(p, γ) 13 N at 0, 45, 90, 135 Deg. to beam direction of flying protons in the field of E p = 350-1100 KeV with an error it is not worse than 10 % have been carried out. Most important was studied, from the astrophysical point of view, process of capture of protons by nucleuses 12 C on the ground state of a nucleus 13 N. It is experimentally shown isotropy of angular distribution of differential cross sections of reaction 12 C(p, γ) 13 N, in the given field energy of protons

  19. Recent results on fusion and direct reactions with weakly bound stable nuclei

    International Nuclear Information System (INIS)

    Shrivastava, A.

    2011-01-01

    Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. First section deals with deep sub-barrier fusion cross-section measurement for 67 Li + 198 Pt followed by the study of fragment capture reaction of 7 Li + 198 Pt. Deviation in the slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. This study shows the absence of fusion hindrance, suggesting modifications in models that explain deep sub-barrier fusion data to incorporate weakly bound asymmetric systems

  20. How to wrap up radioactive gases

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C

    1982-04-01

    Operating nuclear power stations produces not only solid waste. Not so well known - but they should by no means be ignored - are the radioactive gases released during fission which somehow have to be retained and 'packaged'. Gas cylinders, such as those used for oxygen or compressed air, are unsuitable for this purpose. Ingenious chemical tricks have been thought up to press the gas - especially crypton-85 - into plastic material in which it remains captured right down to its molecular structure.

  1. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O+232Th reaction

    Directory of Open Access Journals (Sweden)

    R. Léguillon

    2016-10-01

    Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.

  2. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  3. Fundamental symmetries and astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Vogt, E.

    1996-04-01

    A major new initiative at TRIUMF pertains to the use of radioactive beams for astrophysics and for fundamental symmetry experiments. Some recent work is described in which the β-decay-followed by alpha particle emission of 16 N was used to find the resonance parameters dominating the alpha particle capture in 12 C and thus to find the astrophysical S-factor of this reaction which is of crucial importance for alpha-particle burning and the subsequent collapse of stars. In some work underway trapped neural atoms of radioactive potassium atoms will be used to study fundamental symmetries of the weak interactions. Trapping has been achieved and soon 38m K decay will be used to search for evidence of scalar interactions and 37 K decay to search for right-handed gauge-bosom interactions. Future experiments are planned to look for parity non-conservation in trapped francium atoms. This program is part of a revitalization for the TRIUMF laboratory accompanied by the construction of the radioactive beam facility (ISAC). (author)

  4. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  5. TRI mu P - a radioactive isotope trapping facility under construction at KVI

    CERN Document Server

    Berg, G P; Dermois, O; Harakeh, M N; Hoekstra, R; Jungmann, Klaus; Kopecky, S; Morgenstern, R; Rogachevskiy, A; Timmermans, R; Willmann, L; Wilschut, H W

    2003-01-01

    At the Kernfysisch Versneller Instituut a new facility (TRI mu P) is under development which aims to investigate fundamental interactions using radioactive ions. A spectrum of radioactive isotopes will be produced in inverse-kinematics and fragmentation reactions using heavy-ion beams from the superconducting cyclotron AGOR. The reaction products will be separated from the primary beam in a dual-mode recoil and fragment separator. The beam of isotopes of interest will be transformed into a low-energy, high-quality, bunched beam and, after neutralization, stored in an atom trap. The emphasis will be put on studying the origin of parity violation via beta-nu angular correlations and the search for permanent electric dipole moments of atoms and nuclei. The facility will be open to outside users; suggestions for collaborations to extend the scientific program are encouraged.

  6. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Iachello, F.

    2009-01-01

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  7. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  8. Neutron-Capture Element Abundances in the Globular Cluster M15.

    Science.gov (United States)

    Sneden; Johnson; Kraft; Smith; Cowan; Bolte

    2000-06-20

    High-resolution, high signal-to-noise ratio, blue-violet spectra of three red giant branch tip stars in M15 have been obtained with the Keck I High-Resolution Echelle Spectrograph. These spectra have been analyzed to determine the abundances of several neutron-capture elements, including the radioactive chronometer element thorium. There are two principal results of this study. First, the abundances of the heavier (Z>/=56) elements for each of the three stars is well matched by a scaled solar system r-process abundance distribution. Second, a weighted mean-observed Th/Eu ratio for the stars implies an age for the neutron-capture material in M15 stars of 14+/-3 Gyr, in reasonable agreement with other recent age estimates for Galactic globular clusters.

  9. Strength of Coriolis Coupling in actinide nuclei

    International Nuclear Information System (INIS)

    Peker, L.K.; Rasmussen, J.O.; Hamilton, J.H.

    1982-01-01

    Coriolis Coupling V/sub cor/ plays an important role in deformed nuclei. V/sub cor/ is proportional to h 2 /J[j (j + 1) -Ω (Ω + 1)]/sup 1/2/ and therefore is particularly significant in the nuclei with large j and low Ω Nilsson levels close to Fermi surface: n(i/sub 13/2/) in A = 150 to 170 rare-earth nuclei and p(i/sub 13/2/) and n(j/sub 15/2/) in A greater than or equal to 224 actinide nuclei. Because of larger j (n(j/sub 15/2/) versus n(i/sub 13/2/)) and smaller deformations (β approx. = 0.22 versus β 0.28) it was reasonable to expect that in actinide nuclei Coriolis effects are stronger than in the rare earth nuclei. Recently it was realized that the strength of observed Coriolis effects depends not only on the genuine Coriolis Coupling but also on the interplay between Coriolis ad pairing forces which leads to an interference between the wave functions of two mixing rotational bands. As a consequence the effective interaction V/sub eff/ of both bands is an oscillating function of the degree of shell filling (or chemical potential lambda F). It was shown that in the rare earth nuclei this interference strongly influenced conclusions about the trends in the Coriolis coupling strength and explained many of the observed band-mixing features (the sharpness of back banding curves, details of the blocking effect etc.). From theoretical analysis it was concluded that in the majority of actinide nuclei the effective interaction V/sub eff/ is strong, and therefore the Coriolis band-mixing have to be very strong. In this paper we would like to demonstrate that contrary to these predictions experimental data suggest that Coriolis band mixing in studied actinide nuclei is relatively weak and possibly significantly weaker than in rare earth nuclei

  10. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  11. Proceedings of the specialist research meeting on scientific and engineering researches of unstable nuclei and on their nuclear methodology (3)

    International Nuclear Information System (INIS)

    Kawade, K.; Taniguchi, A.; Yamada, S.

    1998-01-01

    New research fields with the use of radioactive ion beams are now rapidly developing by virtue of recent progress in radioactive beam accelerators. The scientific and engineering researches on unstable nuclei far from stability are getting particular interests aiming at the full use of their radiation. In the circumstance many laboratories report utilizations and researches of the RI beam, the Tohoku University's renewal plan of the cyclotron and the short-lived nuclear beam facility at KEK have started. To discuss these new subjects on the scientific and engineering researches of unstable nuclei and on their nuclear methodology, the third specialist meeting was held at the KUR on February 16 and 17, 1998. Several noticeable and wide scope works on the method of RI-beam generation and on the new development of nuclear methodology have been reported, such as fundamental researches with laser, new isotope searchings and researches of nuclear structures with ISOL, in-beam nuclear spectroscopies through the deep-inelastic collision. In this meeting, especially, fundamental support-researches are reported, which are precise measurements of absolute disintegration rates, a gamma peak analysis method, evaluations of fundamental nuclear data, measurements of beta detector response functions for reducing Q values and precise measurement of high energy gamma intensities up to 11 MeV. The 14 papers are indexed individually. (J.P.N.)

  12. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  13. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  14. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  15. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  16. Radiative muon capture and renormalization of the induced pseudoscalar coupling constant in nuclei

    International Nuclear Information System (INIS)

    Hasinoff, M.D.; Armstrong, D.S.; Azuelos, G.

    1992-08-01

    Radiative Muon Capture (RMC), μ - Z → ν μ (Z - 1)γ, is a weak semi-leptonic process which is particularly sensitive to the induced pseudoscalar coupling constant, g p , of the weak hadronic current. After a brief introduction and review of the general theoretical background relevant to RMC, the most recent data from TRIUMF and PSI are presented and compared to the latest theoretical calculations. The extracted g p values are compared to the PCAC prediction for RMC on a free proton to determine whether or not there is any significant renormalization of g p inside the nuclear medium. A progress report on the TRIUMF RMC experiment on hydrogen is also presented. refs., 12 figs., 3 tabs

  17. Active Galactic Nuclei: the Shape of Material Around Black Holes and the Witch of Agnesi Function. Asymmetry of Neutrino Particle Density

    Directory of Open Access Journals (Sweden)

    Vezzoli G. C.

    2009-10-01

    Full Text Available A mathematical representation is given and physically described for the shape of the very hot material that immediately surrounds a black hole and the warm material located at a greater distance from the black hole, as related to active galactic nuclei. The shape of the material surrounding the black hole is interpreted in terms of asymmetry of the neutrino flux. Detailed experimental measurements on radioactive decay influenced by astrophysical events are given to support this interpretation.

  18. Low-Energy Nuclear Reactions Resulting as Picometer Interactions with Similarity to K-Shell Electron Capture

    Science.gov (United States)

    Hora, H.; Miley, G. H.; Li, X. Z.; Kelly, J. C.; Osman, F.

    2006-02-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons or deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockroft-Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the "life after death" heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of picometers with reaction probability times U of about megaseconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the picometer-megasecond reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas.

  19. Low-energy nuclear reactions resulting as parametric interactions with similarity to K-shell electron capture

    International Nuclear Information System (INIS)

    Hora, H.; Miley, G.H.; Li, X.Z.; Kelly, J.C.; Osman, F.

    2006-01-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons of deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockcroft Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the 'life after death' heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of pico-meters with reaction probability times U of about mega-seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the pico-meter- mega-second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas. (authors)

  20. Studies of High-T$_{c}$ Superconductors Doped with Radioactive Isotopes

    CERN Multimedia

    Alves, E J; Goncalves marques, J; Cardoso, S; Lourenco, A A; Sousa, J B

    2002-01-01

    %title\\\\ \\\\We propose to study High T$_{c} $ Superconductors~(HTSc) doped with radioactive elements at ISOLDE, in order to investigate some of the problems that persist after use of conventional characterization techniques. Three main topics are proposed: \\begin{enumerate} \\item Characterization of the order/disorder of Hg in the Hg-planes of the HTSc family Hg$_{1}$Ba$_{2}$R$_{(n-1)}$Cu$_{n}$O$_{(2n+2+\\delta)}$ (T$_{c}$ > 130 K) due to defects or impurities such as C and Au. \\item Studies of the doping of Infinite Layers Cuprates (RCuO$_{2}$)$_{n}$, R=Ca, Sr or Ba, using unstable nuclei of the alkaline-earth (IIA) group which decay to the alkaline nuclei (IA) group. The purpose is to introduce charge carriers in these materials by changing the valence of the cations during the nuclear transmutation. The possibility of using ion implantation to introduce directly an alkaline dopant will also be studied. \\item Studies of the Hg/Au doping of high quality YBa$_{2}$Cu$_{3}$O$_{6+x}$ thin films. We intend to chara...

  1. Quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1983-01-01

    Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)

  2. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    Science.gov (United States)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  3. Astrophysical neutron capture rates in s- and r-process nucleosynthesis

    International Nuclear Information System (INIS)

    Beer, H.; Mohr, P.; Oberhummer, H.; Rauscher, T.; Mutti, P.; Corvi, F.; Sedyshev, P.V.; Popov, Yu.P.

    1997-01-01

    The astrophysical neutron capture rates of light and heavy nuclei are measured and calculated. The measurements are realized using the activation technique at the 3.75 MV Karlsruhe Van de Graaff accelerator and by means of the time-of-flight method at the Geel electron linear accelerator (GELINA). The setup for the fast cyclic activation measurements made on 26 Mg and 48 Ca, as well as on Pt isotopes is described. The time-of-flight method is used for neutron capture measurements of the bottleneck isotopes 138 Ba and 208 Pb. The calculations are made using direct and compound nuclear capture models. The s-process nucleosynthesis path in the Os and Pt mass region is discussed in details. It is shown that for 19 '1 Os, 192 Ir and 193 Pt there is a competition between β-decay and neutron capture. The β-decay half-lives are dependent on temperature and electron density of the s-process environment. The abundance of s-only 192 Pt originates from the branching at 191 Os and 192 Ir. The isotopes 190 Pt and 198 Pt are not on the s-process path, therefore the seed abundance vanish during nucleosynthesis. Calculations are carried out using parametrized models in order to reproduce the s-process abundance in the mass region from Os up to Pt. The neutron density is adjusted to reproduce the solar abundance of the s-only isotope 9 2 Pt in the analysis of the present branching especially

  4. New possibilities for improving the accuracy of parameter calculations for cascade gamma-ray decay of heavy nuclei

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.; Grigor'ev, E.P.

    2002-01-01

    The level density and radiative strength functions which accurately reproduce the experimental intensity of two- step cascades after thermal neutron capture and the total radiative widths of the compound states were applied to calculate the total γ-ray spectra from the (n,γ) reaction. In some cases, analysis showed far better agreement with experiment and gave insight into possible ways in which these parameters need to be corrected for further improvement of calculation accuracy for the cascade γ-decay of heavy nuclei. (author)

  5. Method of solidifying radioactive ion exchange resin

    International Nuclear Information System (INIS)

    Minami, Yuji; Tomita, Toshihide

    1989-01-01

    Spent anion exchange resin formed in nuclear power plants, etc. generally catch only a portion of anions in view of the ion exchange resins capacity and most of the anions are sent while possessing activities to radioactive waste processing systems. Then, the anion exchange resins increase the specific gravity by the capture of the anions. Accordingly, anions are caused to be captured on the anion exchange resin wastes such that the specific gravity of the anion exchange resin wastes is greater than that of the thermosetting resins to be mixed. This enables satisfactory mixing with the thermosetting resins and, in addition, enables to form integral solidification products in which anion exchange resins and cation exchange resins are not locallized separately and which are homogenous and free from cracks. (T.M.)

  6. The dynamics of the nuclei-nuclei interactions at very high energies

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1988-01-01

    The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out [fr

  7. Tangential channel for nuclear gamma-resonance spectroscopy in thermal neutron capture

    International Nuclear Information System (INIS)

    Belogurov, V.N.; Bondars, H.Ya.; Lapenas, A.A.; Reznikov, R.S.; Senkov, P.E.

    1979-01-01

    Design of a tangential reactor channel which has been made to replace the radial one in the pulsed research reactor IRT-2000 is described. It allows to use the same hole in biological reactor schielding. Characteristics of neutron and gamma-background spectra at the excit of the channel are given and compared with analogous characteristics of the radial one. The gamma background in the tangential channel is lower than in the radial channel. The gamma spectra in the Gd 155 (n, γ)Gd 156 , Gd 157 (n, γ)Gd 158 , Er 167 (n, γ)Er 168 and Hf 177 (n, γ)Hf 178 reactions show that the application of X-ray detection units BDR with the tangential channel allows to carry out the gamma spectrometry of gamma quanta emitted in the thermal neutron capture by both high and low neutron capture cross section nuclei (e.g., Gdsup(157, 155) and Er 167 , Hf 177 , respectively)

  8. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  9. Resonance spin memory in low-energy gamma-ray spectra from Sb, Tb, Ho and Ta odd-odd compound nuclei

    International Nuclear Information System (INIS)

    Olejniczak, U.; Gundorin, N.A.; Pikelner, L.B.; Serov, D.G.; Przytula, M.

    2002-01-01

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using a HPGe detector at the IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of 122 Sb, 160 Tb and 166 Ho was found to be quite distinct. For the 182 Ta compound nucleus it proved to be rather weak

  10. Design of an equipment for the testing of target dedicated to the production of radioactive ions through the ISOL method; Realisation d'un dispositif de test de cibles pour la production d'ions radioactifs par la methode ISOL

    Energy Technology Data Exchange (ETDEWEB)

    Durantel, F

    2005-01-15

    In the ISOL (isotope separation on line) technique, a primary ion beam impinges on a thick target, the incident ions are stopped through fragmentation reactions that generate radioactive nuclei. As soon as they have collected enough electrons, the radioactive nuclei begin diffusing outside the target as radioactive atoms. In order to improve this diffusion the target is strongly heated. The radioactive atoms diffuse till a ion source that ionize them, they are then accelerated to form a secondary beam that is delivered to the experimental area. This work deals with the design of an equipment able to measure the diffusion capacities of various targets, it is made up of -) a high temperature (> 2300 K) oven that will contain the target, -) a ionization source for ionizing radioactive atoms and -) a target dispatcher able to introduce in the oven or remove from the oven any target of a set of 12 targets. This equipment has proved to be able to test during a single experiment several primary beams and target materials. Measurements will be performed in a sequential way for the different projectile-target couples which will assure very closed experimental conditions for each measuring campaign. (A.C.)

  11. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  12. Formation of a dinuclear complex in collisions between light nuclei and entrance channel limitations to fusion

    International Nuclear Information System (INIS)

    Shapira, D.; Shivakumar, B.; Ayik, S.; Harmon, B.A.

    1986-01-01

    A model for fusion of light nuclei has been proposed recently wherein fusion progresses through nucleus-nucleus capture via a dinuclear stage which acts as a doorway to fusion. While this model accounts for the fusion cross sections, it makes no attempt at predicting observables associated with the non-fusion part of the captured flux. A study of products from the decay of the dinuclear complex into non-fusion channels can provide a stringent test for such a model. In this contribution a model which addresses both the binary decay and the fusion of a dinuclear complex formed in the collision is described and model predictions are compared with data. Accompanying contributions discuss the formalism which is used to describe the evolution of the dinuclear complex and present new data which provide information that helps justify the approximations made in applying this model

  13. β-delayed p-decay of proton-rich nuclei ^23Al and ^31Cl and explosive H-burning in novae

    Science.gov (United States)

    Trache, L.; Banu, A.; Hardy, J. C.; McCleskey, M.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Aysto, J.; Jokinen, A.; Saastamoinen, A.; Davinson, T.; Woods, P. J.; Achouri, L.; Roeder, B.

    2008-10-01

    We developed a technique to measure β-delayed proton-decay of proton-rich nuclei produced and separated with MARS at TAMU. In particular, we studied the decay of ^23Al and ^31Cl, both important for understanding explosive H-burning in novae. We have pulsed the beam, implanting the source nuclei moving at about 40 MeV/u in a thin Si strip detector, and then measured β-p and β-γ coincidences simultaneously. The states populated above the proton threshold in ^23Mg and ^31S, respectively, may proton decay. They are resonances in the reaction ^22Na(p,γ)^23Mg (crucial for the depletion of ^22Na in ONe novae) and in ^30P(p,γ)^31S (critical point in explosive H-burning in novae), but the protons emitted have very low energies, starting at about 200 keV, an experimental challenge. The setup and the results are described. The β-decay schemes were established for both nuclei, and IAS identified. The technique has shown a remarkable selectivity to β-delayed charged particle emission and shown to work even at radioactive beam rates of a few pps, for rare isotopes with lifetimes as low as 10s msec.

  14. Weak interactions and exchange currents in light nuclei. Theoretical and experimental aspects

    International Nuclear Information System (INIS)

    Guichon, P.

    1980-01-01

    The influence of meson exchange currents in the nuclear weak interaction is investigated theoretically and experimentally. The hypothesis of current algebra and partial conservation of axial current are used, through Adler-Dothan theorem, to derive the one pion exchange correction to the impulse approximation. Calculations are performed for partial transitions in the 1p-shell nuclei and in 16 O. The corrections are generally small except for the (0 + →0 - ) transition in 16 O where the large correction to the time component of the axial current can show up, due to selection rules. The measurement of the muon capture rate for this transition is described and an interpretation in term of exchange currents is proposed [fr

  15. Low energy level density and surface instabilities in heavy transition nuclei

    International Nuclear Information System (INIS)

    Wieclawik, W. de; Foucher, R.; Dionisio, J.S.; Vieu, C.; Hoglund, A.; Watzig, W.

    1975-01-01

    A statistical analysis of Au, Pt, Hg nuclear levels was performed with Ericson's method. The odd mass gold experimental number of levels distributions are compared to the theoretical distributions corresponding to vibrational (Alaga and Kisslinger-Sorensen) and rotational (Stephens, Meyer-ter-Vehn) models. The Alaga model gives the most complete description of 193 Au, 195 Au levels and fits the lowest part of Gilbert-Cameron high energy distributions (deduced from the statistical model and neutron capture data). The Ericson's method shows other interesting features of Pt and Hg isotopes (i.e. level density dependence on nuclear shape and pairing correlations, evidence for phase transitions). Consequently, this method is a useful tool for guiding experimental as well as theoretical investigations of transition nuclei [fr

  16. Cluster structure in Cf nuclei

    International Nuclear Information System (INIS)

    Singh, Shailesh K.; Biswal, S.K.; Bhuyan, M.; Patra, S.K.; Gupta, R.K.

    2014-01-01

    Due to the availability of advance experimental facilities, it is possible to probe the nuclei upto their nucleon level very precisely and analyzed the internal structure which will help us to resolve some mysterious problem of the decay of nuclei. Recently, the relativistic nuclear collision, confirmed the α cluster type structure in the 12 C which is the mile stone for the cluster structure in nuclei. The clustering phenomena in light and intermediate elements in nuclear chart is very interesting. There is a lot of work done by our group in the clustering behaviour of the nuclei. In this paper, the various prospectus of clustering in the isotopes of Cf nucleus including fission state is discussed. Here, 242 Cf isotope for the analysis, which is experimentally known is taken. The relativistic mean field model with well established NL3 parameter set is taken. For getting the exact ground state configuration of the isotopes, the calculation for minimizing the potential energy surface is performed by constraint method. The clustering structure of other Cf isotopes is discussed

  17. Critical and shape-unstable nuclei

    CERN Document Server

    Cailliau, M; Husson, J P; Letessier, J; Mang, H J

    1973-01-01

    The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).

  18. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  19. Coulomb energy differences in mirror nuclei

    International Nuclear Information System (INIS)

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  20. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)