WorldWideScience

Sample records for radioactive material handling

  1. Handling of disused radioactive materials in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1999-10-01

    This paper describes the handling of disused radioactive sources. It also shows graphic information of medical and industrial equipment containing radioactive sources. This information was prepared as part of a training course on radioactive wastes. (The author)

  2. Radioactive material handling for radiopharmaceutical production

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Rosli Darmawan; Mohd Khairi Mohd Said; Mohd Arif Hamzah; Mohd Fadil Ismail; Mohd Nor Atan; Mohd Azam Safawi Omar; Zulkifli Hashim; Wan Anuar Wan Awang

    2005-01-01

    Construction of clean room at Block 21 had changed the flow of radioactive material Moly-99 into the hotcell. The existing flow which use the transport cask cannot be used in order to prevent the clean room from contamination. Therefore, the new technique which consist of robotic, pneumatic and transfer box system had been introduced to transfer the radioactive source into the hotcell without going through the clean room.This technique that has been introduced provides safety where the radiation workers control the transfer process by using remote system. (Author)

  3. Air conditioner for radioactive material handling facility

    International Nuclear Information System (INIS)

    Tanaka, Takeaki.

    1991-01-01

    An air conditioner intakes open-air from an open-air intake port to remove sands and sea salt particles by air filters. Then, natural and artificial radioactive particles of less than 1 μm are removed by high performance particulate filters. After controlling the temperature by an air heater or an air cooler, air is sent to each of chambers in a facility under pressure elevation by a blower. In this case, glass fibers are used as the filter material for the high performance particulate filter, which has a performance of more than 99.97% for the particles of 0.3 μm grain size. Since this can sufficiently remove the natural radioactive materials intruded from the outside, a detection limit value in each of the chambers of the facility can be set 10 -13 to 10 -14 μci/cm 3 in respect of radiation control. Accordingly, radiation control can be conducted smoothly and appropriately. (I.N.)

  4. Development and implementation of automated radioactive materials handling systems

    International Nuclear Information System (INIS)

    Jacoboski, D.L.

    1992-12-01

    Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation

  5. Design guides for radioactive-material-handling facilities and equipment

    International Nuclear Information System (INIS)

    Doman, D.R.; Barker, R.E.

    1980-01-01

    Fourteen key areas relating to facilities and equipment for handling radioactive materials involved in examination, reprocessing, fusion fuel handling and remote maintenance have been defined and writing groups established to prepare design guides for each areas. The guides will give guidance applicable to design, construction, operation, maintenance and safety, together with examples and checklists. Each guide will be reviewed by an independent review group. The guides are expected to be compiled and published as a single document

  6. Shielded enclosure for handling radioactive material

    International Nuclear Information System (INIS)

    Laurent, H.; Courouble, J.M.

    1959-01-01

    Two enclosures linked by an air-lock are described: they are designed for the safe handling of 5 curies 0.3 to 0.5 MeV γ emitters, and each is composed of a semi-tight case, ventilated, clad in 80 mm steel plate, and suited for a wide variety of physics and chemistry operations. The equipment required for any given operation can be installed in the shortest possible time, access to the enclosure being via a removable front. Visual control is assured through a lead-glass screen. Each enclosure is fitted with a master-slave manipulator, Argon model 7, and plugs and air-locks are provided for the introduction of liquids and solids. (author) [fr

  7. Method of preventing contaminations in radioactive material handling facilities

    International Nuclear Information System (INIS)

    Inoue, Shunji.

    1986-01-01

    Purpose: To prevent the contamination on the floor surface of working places by laying polyvinyl butyral sheets over the floor surface, replacing when the sheets are contaminated, followed by burning. Method: Polyvinyl butyral sheets comprising 50 - 70 mol% of butyral component are laid in a radioactive material handling facility, radioactive materials are handled on the polyvinyl butyral sheets and the sheets are replaced when contaminated. The polyvinyl butyral sheets used contain 62 - 68 mol% of butyral component and has 0.03 - 0.2 mm thickness. The contaminated sheets are subjected to burning processing. This can surely collect radioactive materials and the sheets have favorable burnability, releasing no corrosive or deleterious gases. In addition, they are inexpensive and give no hindrance to the workers walking. (Takahashi, M.)

  8. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  9. Developing procedures for the handling of highly radioactive materials

    International Nuclear Information System (INIS)

    Wagner, M.L.

    1994-01-01

    Handling procedures for highly radioactive materials must be analyzed for the reduction of radiation dose. In keeping with ALARA principles, time, distance, and shielding must be used to maximum benefit during the job. After an initial risk assessment is accomplished, job pre-planning meetings and cold open-quotes walk-throughsclose quotes are held in order to engineer the best workable procedure given allocated resources, and to reduce personnel exposure. This paper shows the relationship between each step in the job development, over a number of actual jobs, drawing out how subtle changes in practice can affect the individual and team radiation dose

  10. Spoken commands control robot that handles radioactive materials

    International Nuclear Information System (INIS)

    Phelan, P.F.; Keddy, C.; Beugelsdojk, T.J.

    1989-01-01

    Several robotic systems have been developed by Los Alamos National Laboratory to handle radioactive material. Because of safety considerations, the robotic system must be under direct human supervision and interactive control continuously. In this paper, we describe the implementation of a voice-recognition system that permits this control, yet allows the robot to perform complex preprogrammed manipulations without the operator's intervention. To provide better interactive control, we connected to the robot's control computer, a speech synthesis unit, which provides audible feedback to the operator. Thus upon completion of a task or if an emergency arises, an appropriate spoken message can be reported by the control computer. The training programming and operation of this commercially available system are discussed, as are the practical problems encountered during operations

  11. Radiation protection measures for the handling of unsealed radioactive materials

    International Nuclear Information System (INIS)

    Moehrle, G.

    1975-03-01

    The radiation protective medical measures are described which are required after contamination by radioactive materials or their incorporation. In the case of skin contamination, penetration by diffusion is explained and the maximum permissible value with regard to the various types of radiation is given. A detailed description of the decontamination measures including the necessary equipment follows. Indications for the treatment of injuries are given. In addition, incorporation due to inhalation, ingestion with intake through the skin are described, direct and indirect incorporation detection are explained, and the therapeutical possibilities and measures are gone into. (ORU/LH) [de

  12. Construction and commissioning of workrooms for handling of unsealed radioactive materials

    International Nuclear Information System (INIS)

    Weinhold, G.; Jost, E.; Koenig, W.

    1976-03-01

    The requirements prescribed for planning, design and construction of type II and III workrooms for handling of unsealed sources are outlined. The 'Guide Concerning Construction and Equipment of Rooms for Handling of Radioactive Materials' is explained and supplemented in part. Furthermore, problems of radiation protection organization and measuring techniques are discussed. (author)

  13. Illegal handling of radioactive and nuclear materials. Threats and suggestions for measures

    International Nuclear Information System (INIS)

    Oliver, Lena; Melin, Lena; Prawitz, Jan; Ringbom, Anders; Sandstroem, Bjoern; Wigg, Lars; Wirstam, Jens

    2004-01-01

    This project deals with threats from smuggling or other illegal transportation of radioactive or nuclear materials across the borders to Sweden, and with the security of handling such materials in Sweden. The project has included studies of relevant documentation; visits and interviews at industries, hospitals, research institutes and military institutions in Sweden that handle radioactive materials; a pilot study at the Stockholm freeport, where equipment for detection of radioactive materials has been tested for six months; an analysis of incidents reported to the IAEA database; and an analysis of Swedish incidents. The following conclusions are drawn: Stricter rules regarding the physical protection of radiation sources and radioactive materials should be implemented in Sweden. The recommendations recently issued by IAEA should serve as a point of departure for working out such rules

  14. Licence template for mobile handling and storage of radioactive substances for the nondestructive testing of materials

    International Nuclear Information System (INIS)

    Lange, A.; Schumann, J.; Huhn, W.

    2016-01-01

    The Technical Committee ''Radiation Protection'' (Fachausschuss ''Strahlenschutz'') and the Laender Committee ''X-ray ordinance'' (Laenderausschuss ''Roentgenverordnung'') have appointed a working group for the formulation of licence templates for the nationwide use of X-ray equipment or handling of radioactive substances. To date, the following licence templates have been adopted: - Mobile operation of X-ray equipment under technical radiography to the coarse structural analysis in material testing; - Mobile operation of a handheld X-ray fluorescence system; - Mobile operation of a flash X-ray system; - Operation of an X-ray system for teleradiology The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is scheduled for publication. The licence template ''Practices in external facilities and installations'' is currently being revised. The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is used as an example to demonstrate the legal framework and the results of the working group.

  15. Methodology in the handling of the waste radioactive material

    International Nuclear Information System (INIS)

    Emeterio H, M.

    2013-10-01

    The methodology in the management of radioactive waste is constituted by an administrative part and seven technical stages: transport, classification, segregation, conditioning, treatment, packages qualification and final disposition (storage). In their diverse stages the management deserves a special attention, due to the increment of the use and application of the nuclear energy and radioactive substances, for such a reason should be managed in such a way that the exposed personnel safety and the public in general is guaranteed, protecting the integrity of the environment. (Author)

  16. ORNL shielded facilities capable of remote handling of highly radioactive beta--gamma emitting materials

    International Nuclear Information System (INIS)

    Whitson, W.R.

    1977-09-01

    A survey of ORNL facilities having adequate shielding and containment for the remote handling of experimental quantities of highly radioactive beta-gamma emitting materials is summarized. Portions of the detailed descriptions of these facilities previously published in ORNL/TM-1268 are still valid and are repeated

  17. Processing device for discharged water from radioactive material handling facility

    International Nuclear Information System (INIS)

    Kono, Takao; Kono, Hiroyuki; Yasui, Katsuaki; Kataiki, Koichi.

    1995-01-01

    The device of the present invention comprises a mechanical floating material-removing means for removing floating materials in discharged water, an ultrafiltration device for separating processed water discharged from the removing means by membranes, a reverse osmotic filtration device for separating the permeated water and a condensing means for evaporating condensed water. Since processed water after mechanically removing floating materials is supplied to the ultrafiltration device, the load applied on the filtering membrane is reduced, to simplify the operation control as a total. In addition, since the amount of resultant condensed water is reduced, and the devolumed condensed water is condensed and dried, the condensing device is made compact and the amount of resultant wastes is reduced. (T.M.)

  18. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  19. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  20. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  1. Instruction No. 108, on handling of radioactive materials at Ministry of public health establishments

    International Nuclear Information System (INIS)

    1975-01-01

    The regulation applies to the design, construction, reconstruction, and operation of any medical establishment, facilities using radioactive substances for diagnostic, therapeutic, or research purposes. Designs for nuclear medicine laboratories (or departments) must be approbated by, and commissioning performed with the participation of representatives of the State Sanitary Control. Use of radioactive materials is licensed by the Ministry of Public Health and the Committee for Peaceful Uses of Atomic Energy. Radiation safety responsibility is assigned to a specific staff member of the laboratory (or department). Any receipt or transfer of radioactive material is entered into appropriate records, acts, or requests. Special storage facilities must be available; their design and equipment have to meet the particular requirements for the corresponding class of work, as determined by the activity levels, radiotoxicities, and physical conditions of the radioactive substances used. With storage of unsealed sources, the class is at least second. Sealed source treatment requires primarily protection from external exposure. In such cases provisions are made for one basic and one intermediate storage facility; an applicator preparation room; and application room; a sterilization room; a surgery room; wards; toilets and washrooms for patients treated; a routine manipulation room; and a stock room. A number of safety rules in handling sealed sources are listed. A detailed system of radiation protection safeguards and rules is prescribed with regard to ventilation, sewer systems, remote control devices, work clothing and gloves, etc. Handling of unsealed radioactive materials used for diagnostic or research purposes should meet the requirements placed upon the respective radioisotope laboratory class, which has to be at least second. (G.G.)

  2. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  3. A case study on determining air monitoring requirements in a radioactive materials handling area

    International Nuclear Information System (INIS)

    Newton, G.J.; Bechtold, W.E.; Hoover, M.D.; Ghanbari, F.; Herring, P.S.; Jow, Hong-Nian

    1993-01-01

    A technical, defensible basis for the number and placement of air sampling instruments in a radioactive materials handling facility was developed. Historical air sampling data, process and physicochemical knowledge, qualitative smoke dispersion studies with video documentation, and quantitative trace gas dispersion studies were used to develop a strategy for number and placement of air samplers. These approaches can be used in other facilities to provide a basis for operational decisions. The requirements for retrospective sampling, personal sampling, and real-time monitoring are included. Other relevant operational decisions include selecting the numbers, placement, and appropriate sampling rates for instruments, identifying areas of stagnation or recirculation, and determining the adequacy and efficiency of any sampling transport lines. Justification is presented for using a graded approach to characterizing the workplace and determining air sampling and monitoring needs

  4. Shielded enclosure for handling radioactive material; Sorbonnes blindees pour manipulations radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, H; Courouble, J M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Two enclosures linked by an air-lock are described: they are designed for the safe handling of 5 curies 0.3 to 0.5 MeV {gamma} emitters, and each is composed of a semi-tight case, ventilated, clad in 80 mm steel plate, and suited for a wide variety of physics and chemistry operations. The equipment required for any given operation can be installed in the shortest possible time, access to the enclosure being via a removable front. Visual control is assured through a lead-glass screen. Each enclosure is fitted with a master-slave manipulator, Argon model 7, and plugs and air-locks are provided for the introduction of liquids and solids. (author) [French] On decrit deux enceintes reliees par un sas pour manipulation sur 5 curies d'emetteurs {gamma} de 0,3 a 0,5 MeV. Chacune des enceintes est constituee d'une boite semi-etanche, ventilee, entouree de toles d'acier de 80 mm. L'ensemble est concu pour y effectuer les operations physiques ou chimiques les plus variees. L'equipement necessaire a une manipulation donnee peut y etre installe dans le minimum de temps, l'acces se faisant par la face avant qui peut se deplacer. Une dalle de verre au plomb assure la vision. Chacune des sorbonnes est equipee d'une paire de telemanipulateurs Argonne modele 7. Des sas et des bouchons assurent le passage des solides et des fluides. (auteur)

  5. Decree 2210: by means of which technical standards and allowed proceedings for radioactive material handling are issued

    International Nuclear Information System (INIS)

    1992-01-01

    This Decree has the regulation and handling of radioactive material as object, in order to protect the health of people as well as the atmosphere. These regulations are applicable to: all natural or artificial person, public or private, that imports, manufacture, transport, store, trade, transfer or use with industrial, commercial, scientific, medical or any other aim; apparatuses capable to generate ionizing radiations whose quantum energy is superior to 5 k lo electron volts (KeV) or materials that contain radionuclides whose activities surpass the maxim exempt registration; notification and license concession. It includes: definitions; signalizing by means of basic symbol that must be included in all object, material and their mixtures, that emit ionizing radiations; control; production; import and export; trade; use; and transport of activities that involve materials and apparatuses capable to generate ionizing radiations; the category and labeled of bundles; the limits of activity for excepted bundles; the corresponding values for the different radionuclides; the limits of activity for the means of material haulage; the storage; and the handling of radioactive waste [es

  6. A probabilistic safety assessment of radioactive materials transport. A risk analysis of LLW package handling at harbor

    International Nuclear Information System (INIS)

    Watabe, Naohito; Suzuki, Hiroshi; Kouno, Yutaka

    1997-01-01

    The Probabilistic Safety Assessment (PSA) method for radioactive materials (RAM) transport has been developed by CRIEPI. A case study was executed for the purpose of studying the adaptability of the PSA method to LLW package handling, which is one of the processes of the actual transport. The main results of the case study were as follows; 1) Accident scenarios for falling of package were extracted from the 25 ton-crane system chart and package handling manual. 2) Protection methods for each drop accident scenario were confirmed. 3) Important points of the crane system were extracted. 4) Fault trees, which describe accident scenarios, were developed. 5) Probabilities for each basic event and the top event on fault trees were calculated. Consequently, 'falling of a package' on the package handling process by the 25 ton-crane was revealed to be extremely low. Among the four major stages of handling process, i.e. 'Rolling-up', 'Horizontal travelling' 'Rolling-down' and 'Contact with loading platform', the 'Rolling-down' process was found to be a major process with occupies more than 50% of the probability of the falling accidents. According to those results, it was concluded that PSA method is adaptable to package handling from the view points of extraction of weak points and review of the effect of vestment for facility. (author)

  7. The nucleo-electricity and the handling of radioactive materials; La nucleoelectricidad y el manejo de materiales radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Cuapio Ortiz, Hector [Sindicato Unico de Trabajadores de la Industria Nuclear (SUTIN), Mexico, D. F. (Mexico)

    1997-12-31

    This paper deals on the subject of radioactive materials handling, therefore the author presents primarily a brief resume on the different kinds of low level radioactive wastes that are to be expected from the different industrial and medical applications of the radioactivity, at the same time he presents an estimation of the wastes generated annually in our country. This document contains an annex which deals on the research and development of the nuclear energy, covering subjects such as: The term source, reprocessing of irradiated fuels, quantitative assessment, the thermo-chemical databank, the storage of irradiated fuel elements, the radiation effects; also the projects STRIPA, hydrocoin, SYVAC, ISIRS are described [Espanol] Esta ponencia trata sobre el manejo de materiales radioactivos, por lo tanto el autor presenta primeramente un breve resumen de las clases de residuos de bajo nivel que cabe esperar de las distintas aplicaciones industriales y medicas de la radioactividad, al mismo tiempo presenta una estimacion de los residuos que se generan anualmente en nuestro pais. Este documento contiene un anexo en el que se trata la investigacion y desarrollo de la energia nuclear, abordando temas como: El termino fuente, reelaboracion de combustibles irradiados, estimacion cuantitativa, el banco termoquimico de datos, el almacenamiento de elementos combustibles irradiados, los efectos de la radiacion, tambien se describen los proyectos: STRIPA, hydrocoin, SYVAC, ISIRS

  8. Design and operation of off-gas cleaning and ventilation systems in facilities handling low and intermediate level radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The number of developing countries constructing new nuclear facilities is increasing. These facilities include the production and processing of radioisotopes, as well as all types of laboratories and installations, which handle radioactive material and deal with the treatment of radioactive wastes. Ventilation and air cleaning systems are a vital part of the general design of any nuclear facility. The combination of a well designed ventilation system with thorough cleaning of exhaust air is the main method of preventing radioactive contamination of the air in working areas and in the surrounding atmosphere. This report provides the latest information on the design and operation of off-gas cleaning and ventilation systems for designers and regulatory authorities in the control and operation of such systems in nuclear establishments. The report presents the findings of an Advisory Group Meeting held in Vienna from 1 to 5 December 1986 and attended by 12 experts from 11 Member States. Following this meeting, a revised report was prepared by the International Atomic Energy Agency Secretariat and three consultants, M.J. Kabat (Canada), W. Stotz (Federal Republic of Germany) and W.A. Fairhurst (United Kingdom). The final draft was commented upon and approved by the participants of the meeting. 69 refs, 37 figs, 12 tabs

  9. [Efficiencies of contamination source for flooring and some materials used in unencapsulated radioactivity handling facilities].

    Science.gov (United States)

    Yoshida, M; Yoshizawa, M; Minami, K

    1990-09-01

    The efficiencies of contamination source, defined in ISO Report 7506-1, were experimentally determined for such materials as flooring, polyethylene, smear-tested filter paper and stainless steel plate. 5 nuclides of 147Pm, 60Co, 137Cs, 204Tl and 90Sr-Y were used to study beta-ray energy dependence of the efficiency, and 241Am as alpha-ray emitter. The charge-up effect in the measurement by a window-less 2 pi-proportional counter was evaluated to obtain reliable surface emission rate. The measured efficiencies for non-permeable materials, except for two cases, are more than 0.5 even for 147Pm. The ISO recommendations were shown to be conservative enough on the basis of present results.

  10. Efficiencies of contamination source for flooring and some materials used in unencapsulated radioactivity handling facilities

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Yoshizawa, Michio; Minami, Kentaro

    1990-01-01

    The efficiencies of contamination source, defined in ISO Report 7506-1, were experimentally determined for such materials as flooring, polyethylene, smear-tested filter paper and stainless steel plate. 5 nuclides of 147 Pm, 60 Co, 137 Cs, 204 Tl and 90 Sr-Y were used to study β-ray energy dependence of the efficiency, and 241 Am as α-ray emitter. The charge-up effect in the measurement by a window-less 2π-proportional counter was evaluated to obtain reliable surface emission rate. The measured efficiencies for non-permeable materials, except for two cases, are more than 0.5 even for 147 Pm. The ISO recommendations were shown to be conservative enough on the basis of present results. (author)

  11. Safe handling of radioactive isotopes. Handbook 42

    International Nuclear Information System (INIS)

    1949-09-01

    With the increasing use of radioactive isotopes by industry, the medical profession, and research laboratories, it is essential that certain minimal precautions be taken to protect the users and the public. The recommendations contained in this handbook represent what is believed to be the best available opinions on the subject as of this date. As our experience with radioisotopes broadens, we will undoubtedly be able to improve and strengthen the recommendations for their safe handling and utilization. Through the courtesy of the National Research Council about a year ago, several hundred draft copies of this report were circulated to all leading workers and authorities in the field for comment and criticism. The present handbook embodies all pertinent suggestions received from these people. Further comment will be welcomed by the committee. One of the greatest difficulties encountered in the preparation of this handbook lay in the uncertainty regarding permissible radiation exposure levels - particularly for ingested radioactive materials. The establishment of sound figures for such exposure still remains a problem of high priority for many conditions and radioactive substances. Such figures as are used in this report represent the best available information today. If, in the future, these can be improved upon, appropriate corrections will be issued. The subject will be under continuous study by the two subcommittees mentioned above. The present Handbook has been prepared by the Subcommittee on the Handling of Radioactive Isotopes and Fission Products

  12. Safe handling of radioactive isotopes. Handbook 42

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1949-09-15

    With the increasing use of radioactive isotopes by industry, the medical profession, and research laboratories, it is essential that certain minimal precautions be taken to protect the users and the public. The recommendations contained in this handbook represent what is believed to be the best available opinions on the subject as of this date. As our experience with radioisotopes broadens, we will undoubtedly be able to improve and strengthen the recommendations for their safe handling and utilization. Through the courtesy of the National Research Council about a year ago, several hundred draft copies of this report were circulated to all leading workers and authorities in the field for comment and criticism. The present handbook embodies all pertinent suggestions received from these people. Further comment will be welcomed by the committee. One of the greatest difficulties encountered in the preparation of this handbook lay in the uncertainty regarding permissible radiation exposure levels - particularly for ingested radioactive materials. The establishment of sound figures for such exposure still remains a problem of high priority for many conditions and radioactive substances. Such figures as are used in this report represent the best available information today. If, in the future, these can be improved upon, appropriate corrections will be issued. The subject will be under continuous study by the two subcommittees mentioned above. The present Handbook has been prepared by the Subcommittee on the Handling of Radioactive Isotopes and Fission Products.

  13. Methodology in the handling of the waste radioactive material; Metodologia en el manejo del material radiactivo de desecho

    Energy Technology Data Exchange (ETDEWEB)

    Emeterio H, M., E-mail: miguel.emeterio@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The methodology in the management of radioactive waste is constituted by an administrative part and seven technical stages: transport, classification, segregation, conditioning, treatment, packages qualification and final disposition (storage). In their diverse stages the management deserves a special attention, due to the increment of the use and application of the nuclear energy and radioactive substances, for such a reason should be managed in such a way that the exposed personnel safety and the public in general is guaranteed, protecting the integrity of the environment. (Author)

  14. Safety Analysis of 'Older/Aged' Handling and Transportation Equipment for Heavy Loads, Radioactive Waste and Materials in Accordance with German Nuclear Standards KTA 3902, 3903 and 3905

    International Nuclear Information System (INIS)

    Macias, P.; Prucker, E.; Stang, W.

    2006-01-01

    The purpose of this paper is to present a general safety analysis of important handling and transportation processes and their related equipment ('load chains' consisting of cranes, load-bearing equipment and load-attaching points). This project was arranged by the responsible Bavarian ministry for environment, health and consumer protection (StMUGV) in agreement with the power plant operators of all Bavarian nuclear power plants to work out potential safety improvements. The range of the equipment (e.g. reactor building, crane, refuelling machine, load-bearing equipment and load-attaching points) covers the handling and transportation of fuel elements (e. g. with fuel flasks), heavy loads (e.g. reactor pressure vessel closure head, shielding slabs) and radioactive materials and waste (e.g. waste flasks, control elements, fuel channels, structure elements). The handling equipment was subjected to a general safety analysis taking into account the ageing of the equipment and the progress of standards. Compliance with the current valid requirements of the state of science and technology as required by German Atomic Act and particularly of the nuclear safety KTA-standards (3902, 3903 and 3905) was examined. The higher protection aims 'safe handling and transportation of heavy loads and safe handling of radioactive materials and waste' of the whole analysis are to avoid a criticality accident, the release of radioactivity and inadmissible effects on important technical equipment and buildings. The scope of the analysis was to check whether these protection aims were fulfilled for all important technical handling and transportation processes. In particularly the design and manufacturing of the components and the regulations of the handling itself were examined. (authors)

  15. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1988-07-01

    The norm which establishes the requirements of radiation protection and safety related to the transport of radioactive materials, aiming to keep a suitable control level of eventual exposure of personnels, materials and environment of ionizing radiation, including: specifications on radioactive materials for transport, selection of package type; specification of requirements of the design and assays of acceptance of packages; disposal related to the transport; and liability and administrative requirements, are presented. This norm is applied to: truckage, water carriage and air service; design, fabrication, assays and mantenaince of packages; preparation, despatching, handling, loading storage in transition and reception in the ultimate storage of packages; and transport of void packages which have been contained radioactive materials. (M.C.K.) [pt

  16. Radioactive materials

    International Nuclear Information System (INIS)

    Sugiura, Yoshio; Shimizu, Makoto.

    1975-01-01

    The problems of radioactivity in the ocean with marine life are various. Activities in this field, especially the measurements of the radioactivity in sea water and marine life are described. The works first started in Japan concerning nuclear weapon tests. Then the port call to Japan by U.S. nuclear-powered naval ships began. On the other hand, nuclear power generation is advancing with its discharge of warm water. The radioactive pollution of sea water, and hence the contamination of marine life are now major problems. Surveys of the sea areas concerned and study of the radioactivity intake by fishes and others are carried out extensively in Japan. (Mori, K.)

  17. Handbook for Response to Suspect Radioactive Materials

    International Nuclear Information System (INIS)

    Cliff, William C.; Pappas, Richard A.; Arthur, Richard J.

    2005-01-01

    This document provides response actions to be performed following the initial port, airport, or border crossing discovery of material that is suspected of being radioactive. The purpose of this guide is to provide actions appropriate for handling radioactive material

  18. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  19. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  20. FFTF radioactive solid waste handling and transport

    International Nuclear Information System (INIS)

    Thomson, J.D.

    1982-01-01

    The equipment necessary for the disposal of radioactive solid waste from the Fast Flux Test Facility (FFTF) is scheduled to be available for operation in late 1982. The plan for disposal of radioactive waste from FFTF will utilize special waste containers, a reusable Solid Waste Cask (SWC) and a Disposable Solid Waste Cask (DSWC). The SWC will be used to transport the waste from the Reactor Containment Building to a concrete and steel DSWC. The DSWC will then be transported to a burial site on the Hanford Reservation near Richland, Washington. Radioactive solid waste generated during the operation of the FFTF consists of activated test assembly hardware, reflectors, in-core shim assemblies and control rods. This radioactive waste must be cleaned (sodium removed) prior to disposal. This paper provides a description of the solid waste disposal process, and the casks and equipment used for handling and transport

  1. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  2. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  3. Safe transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The film shows the widespread use of radioactive materials in industry, medicine and research and explains the need for transporting nuclear material from producer to user. It shows the way in which packages containing radioactive materials are handled during transport and explains the most important provisions of the IAEA transport regulations, safety series no. 6, such as packaging design criteria and testing requirements, illustrated by various tests carried out, specimen packages and package and freight container labelling. Also illustrated are practical measures to be taken in case of an accident

  4. System for handling and storing radioactive waste

    Science.gov (United States)

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  5. Ergonomic material-handling device

    Science.gov (United States)

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  6. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  7. Method of handling radioactive alkali metal waste

    Science.gov (United States)

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  8. Method of handling radioactive alkali metal waste

    International Nuclear Information System (INIS)

    Mcpheeters, C.C.; Wolson, R.D.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1

  9. Handling of radioactive sources in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    2000-01-01

    This document describes the following aspects: sealed and unsealed radioactive sources, radiation detectors, personnel and area monitoring, surface pollution, radioactive wastes control and radioactive sources transferring. (The author)

  10. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    2001-01-01

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  11. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  12. Handling and disposal of radioactive scrap

    International Nuclear Information System (INIS)

    Witte, K.

    1975-01-01

    The 9th special course for journalists was in this year on the highly topical subject 'handling and disposal of radioactive scrap'. It was held on the 26th and 27th May 1975 at the Nuclear Research Centre at Karlsruhe. These courses have been held for several years by the Nuclear Research Association (GfK) in the School for Nuclear Engineering and are intended mainly to contribute to journalists of the daily papers, radio and television who are 'not previously technically trained' an introduction into the difficult subject matter of nuclear engineering with its ancillary areas. In view of the many discussions carried on in public the course is further intended to achieve that the problems discussed are treated by means of publicity which is free from emotion. In the journalists' course this year specially selected experts gave technical information prepared for general information as to how radioactive waste can be safely worked up and then finally stored without adverse effects on the environment. Since the interesting collection of questions was put forward in a compressed form and at the same time clearly presented, the author reports on the different separate subjects on which lectures were given. (orig.) [de

  13. Radioactive Material Containment Bags

    National Research Council Canada - National Science Library

    2000-01-01

    The audit was requested by Senator Joseph I. Lieberman based on allegations made by a contractor, Defense Apparel Services, about the Navy's actions on three contracts for radioactive material containment bags...

  14. Radioactivity of building materials

    International Nuclear Information System (INIS)

    Terpakova, E.

    2000-01-01

    In this paper the gamma-spectrometric determination of natural radioactivity in the different building materials and wares applied in Slovakia was performed. The specific activities for potassium-40, thorium, radium as well as the equivalent specific activities are presented

  15. Handling radioactivity: a practical approach for scientists and engineers

    International Nuclear Information System (INIS)

    Stewart, D.C.

    1981-01-01

    The aim of this book is to present an overall view in a descriptive and essentially nonmathematical way of the practicalities of handling radioactivity. It is hoped that the material will be particularly helpful to those entering the nuclear field for the first time and to those working in related areas whose responsibilities require them to have a general knowledge of the subject of radioactivity handling and its vocabulary. The presentation is primarily for bench-scale operations. There is a considerable emphasis on facilities since these are fundamental to the safe handling of active materials. Facility design and detail is also unfortunately an area where the relevant information is largely scattered through literature sources that are not accessible to most readers. Some of the topics surveyed - such as dosimetry, shielding and nuclear criticality - are extremely complex and no pretense is made that the treatment here represents more than bare bone summaries of the fields. A considerable effort has been made to cite the key references in each area where more detailed information can be found. A few additional useful references not cited directly in the text appear in an abbreviated bibliography at the end of the book

  16. Consumer Products Containing Radioactive Materials

    Science.gov (United States)

    Fact Sheet Adopted: February 2010 Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials Everything we encounter in our daily lives contains some radioactive material, ...

  17. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  18. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  19. Radioactive certified reference materials

    International Nuclear Information System (INIS)

    Watanabe, Kazuo

    2010-01-01

    Outline of radioactive certified reference materials (CRM) for the analysis of nuclear materials and radioactive nuclides were described. The nuclear fuel CRMs are supplied by the three institutes: NBL in the US, CETAMA in France and IRMM in Belgium. For the RI CRMs, the Japan Radioisotope Association is engaged in activities concerning supply. The natural-matrix CRMs for the analysis of trace levels of radio-nuclides are prepared and supplied by NIST in the US and the IAEA. (author)

  20. Radioactivity, shielding, radiation damage, and remote handling

    International Nuclear Information System (INIS)

    Wilson, M.T.

    1975-01-01

    Proton beams of a few hundred million electron volts of energy are capable of inducing hundreds of curies of activity per microampere of beam intensity into the materials they intercept. This adds a new dimension to the parameters that must be considered when designing and operating a high-intensity accelerator facility. Large investments must be made in shielding. The shielding itself may become activated and require special considerations as to its composition, location, and method of handling. Equipment must be designed to withstand large radiation dosages. Items such as vacuum seals, water tubing, and electrical insulation must be fabricated from radiation-resistant materials. Methods of maintaining and replacing equipment are required that limit the radiation dosages to workers.The high-intensity facilities of LAMPF, SIN, and TRIUMF and the high-energy facility of FERMILAB have each evolved a philosophy of radiation handling that matches their particular machine and physical plant layouts. Special tooling, commercial manipulator systems, remote viewing, and other techniques of the hot cell and fission reactor realms are finding application within accelerator facilities. (U.S.)

  1. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  2. Licence template for mobile handling and storage of radioactive substances for the nondestructive testing of materials; Mustergenehmigung zur ortsveraenderlichen Verwendung und Lagerung radioaktiver Stoffe im Rahmen der zerstoerungsfreien Materialpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Lange, A. [Niedersaechsisches Ministerium fuer Umwelt, Energie und Klimaschutz (Germany); Schumann, J. [Landesamt fuer Arbeitsschutz, Gesundheitsschutz und technische Sicherheit, Berlin (Germany); Huhn, W.

    2016-07-01

    The Technical Committee ''Radiation Protection'' (Fachausschuss ''Strahlenschutz'') and the Laender Committee ''X-ray ordinance'' (Laenderausschuss ''Roentgenverordnung'') have appointed a working group for the formulation of licence templates for the nationwide use of X-ray equipment or handling of radioactive substances. To date, the following licence templates have been adopted: - Mobile operation of X-ray equipment under technical radiography to the coarse structural analysis in material testing; - Mobile operation of a handheld X-ray fluorescence system; - Mobile operation of a flash X-ray system; - Operation of an X-ray system for teleradiology The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is scheduled for publication. The licence template ''Practices in external facilities and installations'' is currently being revised. The licence template ''Mobile handling and storage of radioactive substances for the nondestructive testing of materials'' is used as an example to demonstrate the legal framework and the results of the working group.

  3. Working safely with radioactive materials

    International Nuclear Information System (INIS)

    Davies, Wynne

    1993-01-01

    In common with exposure to many other laboratory chemicals, exposure to ionising radiations and to radioactive materials carries a small risk of causing harm. Because of this, there are legal limits to the amount of exposure to ionising radiations at work and special rules for working with radioactive materials. Although radiation protection is a complex subject it is possible to simplify to 10 basic things you should do -the Golden Rules. They are: 1) understand the nature of the hazard and get practical training; 2) plan ahead to minimise time spent handling radioactivity; 3) distance yourself appropriately from sources of radiation; 4) use appropriate shielding for the radiation; 5) contain radioactive materials in defined work areas; 6) wear appropriate protective clothing and dosimeters; 7) monitor the work area frequently for contamination control; 8) follow the local rules and safe ways of working; 9) minimise accumulation of waste and dispose of it by appropriate routes, and 10) after completion of work, monitor, wash, and monitor yourself again. These rules are expanded in this article. (author)

  4. Construction and equipment requirements for installations and laboratories handling unsealed radioactive materials in low and medium activity - Proposal of an Israeli standard

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shlomo, A; Schlesinger, T; Barshad, M [Soreq Nuclear Research Center, Yavne (Israel)

    1993-10-01

    Working with unsealed radioactive materials involves risks of internal or external exposure to ionizing radiation. Exposure of human beings to ionizing radiation involves adverse health effects and must be prevented or at least reduced to reasonable levels. Radiation sources in this work are unsealed radioactive materials, that may be solids, liquid or in gaseous states, and in varying toxic levels. Various works and actions that are performed on the unsealed radioactive materials have varying potentials of dispersion, contamination and exposure, so that the combination of the type of work activity, isotope characteristics and physical state dictate the internal and external exposure risks. In order to limit the exposure of the personnel of installations and laboratories which deals with unsealed radioactive materials, national and international authorities and organizations standards and procedures for the requirements of construction and equipment of such installations and laboratories. This document means to be a proposal for an Israeli standard requirements for equipment and construction of installations working with low and medium activity unsealed radioactive materials. The targets for defining the, construction and equipment, requirements are: a. Safety and proper protection of personnel and public from external and internal exposure while the work is done properly. Proper protection against the risk of contaminating the environment. c. Standardization of requirements. d. Proper design of installations and laboratories. e. Supply means for evaluation and reduction of construction costs.The equipment detailed here refers to fixed (none movable) equipment which is a part of the construction of the laboratory or installation, unless specified otherwise. The document starts with a review of the recommendations of some international organizations (WHO, IAEA, NRPB) for construction and equipment requirements for these laboratories and installations. Then the

  5. Transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-04-15

    The increasing use of radioactive substances, not only in reactor operations but also in medicine, industry and other fields, is making the movement of these materials progressively wider, more frequent and larger in volume. Although regulations for the safe transport of radioactive materials have been in existence for many years, it has now become necessary to modify or supplement the existing provisions on an international basis. It is essential that the regulations should be applied uniformly by all countries. It is also desirable that the basic regulations should be uniform for all modes of transport so as to simplify the procedures to be complied with by shippers and carriers

  6. Radioactive material generator

    International Nuclear Information System (INIS)

    Czaplinski, T.V.; Bolter, B.J.; Heyer, R.E.; Bruno, G.A.

    1975-01-01

    A radioactive material generator includes radioactive material in a column, which column is connected to inlet and outlet conduits, the generator being embedded in a lead casing. The inlet and outlet conduits extend through the casing and are topped by pierceable closure caps. A fitting, containing means to connect an eluent supply and an eluate container, is adapted to pierce the closure caps. The lead casing and the fitting are compatibly contoured such that they will fit only if properly aligned with respect to each other

  7. Safety aspects in handling naturally occurring radioactive material (NORM) at geothermal usage; Arbeitssicherheitstechnische Aspekte im Umgang mit NORM bei der Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, John; Havenith, Andreas [Aachen Institute for Nuclear Training GmbH (Germany); Hirsch, Marius

    2015-06-01

    This article describes potential radiological hazards, which originate through the mobilization of naturally occurring radioactive material (NORM) from deep geological deposits. The process of geothermal usage requires the artifical lift of injected fluids, which may also transport undesired by-products to the surface. As a result these by-products may precipitate, form residues and require radiation protection measures to cope with this task.

  8. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Lenail, B.

    1984-01-01

    Transport of radioactive materials is dependent of transport regulations. In practice integrated doses for personnel during transport are very low but are more important during loading or unloading a facility (reactor, plant, laboratory, ...). Risks occur also if packagings are used outside specifications. Recommendations to avoid these risks are given [fr

  9. The safety of radioactive materials transport

    International Nuclear Information System (INIS)

    Niel, J.Ch.

    1997-01-01

    Five accidents in radioactive materials transport have been studied; One transport accident by road, one by ship, one by rail, and the two last in handling materials from ships in Cherbourg port and Le Havre port. All these accidents were without any important consequences in term of radiation protection, but they were sources of lessons to improve the safety. (N.C.)

  10. Material for radioactive protection

    Science.gov (United States)

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  11. Radioactive wastes handling problems in Venezuela

    International Nuclear Information System (INIS)

    Ramirez, R.; Venegas, R.

    1984-07-01

    A brief description of the radioactive wastes problem in Venezuela is presented. The origins of the problem are shown in a squematic form. The requirements for its solution are divided into three parts: information system, control system, radioactive wastes hadling system. A questionnaire summarizing factors to be considered when looking for a solution to the problem in Venezuela is included, as well as conclusions and recomendations for further discussion

  12. RADIOACTIVE MATERIALS SENSORS

    International Nuclear Information System (INIS)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-01-01

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  13. Transport of radioactive material

    International Nuclear Information System (INIS)

    Lombard, J.

    1996-01-01

    This work deals with the transport of radioactive materials. The associated hazards and potential hazards are at first described and shows the necessity to define specific safety regulations. The basic principles of radiological protection and of the IAEA regulations are given. The different types of authorized packages and of package labelling are explained. The revision, updating and the monitoring of the regulations effectiveness is the subject of the last part of this conference. (O.M.)

  14. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  15. Radioactive material transport

    International Nuclear Information System (INIS)

    White, M.C.

    1979-10-01

    All movements of radioactive materials in Canada are governed by a comprehensive body of regqlations, both national and international. These regulations are designed to maximize shielding to the public and transport workers, allow for heat dissipation, and to prevent criticality accidents, by prescribing specific packaging arrangements, administrative controls, labelling and storage measures. This report describes in some detail specific requirements and summarizes some incidents that occurred between 1974 and 1978

  16. Handling and processing of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    2001-01-01

    The main objective of this report is to provide technical information and reference material on different steps and components of radioactive waste management for staff in establishments that use radionuclides and in research centres in Member States. It provides technical information on the safe handling, treatment, conditioning and storage of waste arising from the various activities associated with the production and application of radioisotopes in medical, industrial, educational and research facilities. The technical information cited in this report consists mainly of processes that are commercialised or readily available, and can easily be applied as they are or modified to solve specific waste management requirements. This report covers the sources and characteristics of waste and approaches to waste classification, and describes the particular processing steps from pretreatment until storage of conditioned packages

  17. Preliminary criteria for the handling of radioactive tea

    International Nuclear Information System (INIS)

    Oezemre, A.Y.

    1993-01-01

    Two years after the Chernobyl accident, tea plantations in northeastern Turkey, at Rize and its surroundings especially, were affected by radioactive fallout. As a radiological countermeasure, the turkish Atomic energy commission (AEC) was called in before tea packing and set up a maximum permissible limit of 12,500 Bq/kg for dry tea in the market; 58,078 t of radioactive tea (≥ 25,000 Bq/kg) were set apart as radioactive waste. In its concern to determine the best solution about the handling of radioactive tea and considering the national conditions, the AEC developed four preliminary criteria that led to select the burial option. (author)

  18. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  19. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Huck, W.

    1992-01-01

    The book presents a systematic survey of the legal provisions governing the transport of radioactive materials, placing emphasis on the nuclear licensing provisions of sections 4, 4b of the Atomic Energy, Act (AtG) and sections 8-10 of the Radiation Protection Ordinance (StrlSchV), also considering the provisions of the traffic law governing the carriage of hazardous goods. The author's goal is to establish a systematic basis by comparative analysis of the licensing regulations under atomic energy law, for the purpose of formulating a proposed amendment to the law, for the sake of clarity. The author furthermore looks for and develops criteria that can be of help in distinguishing the regulations governing the carriage of hazardous goods from the nuclear regulatory provisions. He also examines whether such a differentiation is detectable, particularly in those amendments to the StrlSchV which came after the Act on Carriage of Hazardous Goods. The regulations governing the transport of radioactive materials under the AtG meet with the problem of different classification systems being applied, to radioactive materials in the supervisory regulations on the one hand, and to nuclear materials in Annex 1 to the AtG on the other hand. A classification of natural, non-nuclear grade uranium e.g. by the financial security provisions is difficult as a result of these differences in the laws. The author shows that the transport regulations of the StrlSchV represent an isolated supervisory instrument that has no connecting factor to the sections 28 ff StrlSchV, as radiation protection is provided for by the regulations of the Act on Carriage of Hazardous Goods. The author suggests an amendment of existing law incorporating the legal intent of sections 8-10 StrlSchV and of sections 4, 4b AtG into two sections, and abolishing the supervisory provisions of the StrlSchV altogether. (orig./HP) [de

  20. Transport of radioactive materials

    International Nuclear Information System (INIS)

    Hamel, P.E.

    In Canada, large numbers of packages containing radioactive materials are shipped for industrial, medical and commercial purposes. The nature of the hazards and the associated risks are examined; the protection measures and regulatory requirements are indicated. The result of a survey on the number of packages being shipped is presented; a number of incidents are analyzed as a function of their consequences. Measures to be applied in the event of an emergency and the responsibility for the preparation of contingency plans are considered. (author) [fr

  1. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  2. Radioactive Material (Road Transport) Act 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This Act came into force on 27 August 1991. It replaces earlier legislation dating from 1948 and enables the United Kingdom to give effect to the International Atomic Energy Agency's (IAEA) latest recommended Regulations for the Safe Transport of Radioactive Material. The new Act clarifies and extends the power of the Secretary of State to make regulations regarding, among other things, the design, labelling, handling, transport and delivery of packages containing radioactive material and the placarding of vehicles transporting such packages. The Act gives the Secretary of State the power to appoint inspectors to assist him in enforcing the regulations. (NEA)

  3. Regulatory process for material handling equipment

    International Nuclear Information System (INIS)

    Rajendran, S.; Agarwal, Kailash

    2017-01-01

    Atomic Energy (Factories) Rules (AEFR) 1996, Rule 35 states, 'Thorough inspection and load testing of a Crane shall be done by a Competent Person at least once every 12 months'. To adhere to this rule, BARC Safety Council constituted 'Material Handling Equipment Committee (MHEC)' under the aegis of Conventional Fire and Safety Review Committee (CFSRC) to carry out periodical inspection and certification of Material Handling Equipment (MHE), tools and tackles used in BARC Facilities at Trombay, Tarapur and Kalpakkam

  4. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  5. Procedures for the Safe Transport of Radioactive Material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Lyul; Chung, K. K.; Lee, J. I.; Chang, S. Y.; Lee, T. Y

    2007-11-15

    This technical report describes the procedure and work responsibility along with the regulation and standard necessary for the safe transport of radioactive or contaminated materials. This report, therefore, can be effectively used to secure the public safety as well as to prevent the disastrous event which might be resulted from the transport process of radioactive materials by establishing a procedure and method on the safe packing, handling and transport of radioactive materials.

  6. A cabinet for the handling or treatment of materials therein in a protected atmosphere

    International Nuclear Information System (INIS)

    Landy, J.J.

    1978-01-01

    A cabinet is described in which the atmosphere is arranged to move in a recirculatory filtered closed system. It is stated to be suitable for the handling of materials in a protected atmosphere, for example the handling of biohazardous materials, radioactive materials, etc. Full constructional details are given. (U.K.)

  7. Storage of radioactive material - accidents - precipitation - personnel monitoring

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-12-01

    This volume covers the reports on four routine tasks concerned with safe handling of radioactive material and influence of nuclear facilities on the environment. The tasks performed were as follows: Storage of solid and liquid radioactive material; actions in case of accidents; radiation monitoring of the fallout, water and ground; personnel dosimetry

  8. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    Delivering radioactive material to where it is needed is a vital service to industry and medicine. Millions of packages are shipped all over the world by all modes of transport. The shipments pass through public places and must meet stringent safety requirements. This video explains how radioactive material is safely transported and describes the rules that carriers and handlers must follow

  9. Transport regulation for radioactive materials

    International Nuclear Information System (INIS)

    Ha Vinh Phuong.

    1986-01-01

    Taking into account the specific dangers associated with the transport of radioactive materials (contamination, irradiation, heat, criticality), IAEA regulations concerning technical specifications and administrative procedures to ward off these dangers are presented. The international agreements related to the land transport, maritime transport and air transport of radioactive materials are also briefly reviewed

  10. Radioactive materials production

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Radiochemical Processing Plant (RPP) at ORNL has served as the national repository and distribution center for 233 U for > 20 years. Several hundred kilograms of uranium, containing approximately 90 to 98% 233 U, are stored there in the form of metal, oxides, and nitrate solutions. All of these uranium materials contain small, but significant, concentrations of 232 U, ranging from 2 to 225 ppm. Most of the radioactivity associated with the 233 U comes from the decay daughters of 232 U (74-year half-life). The 252 Cf Industrial Sales/Loan Program involves loans of 252 Cf neutron sources to agencies of the US Government and sales of 252 Cf as the bulk oxide and as palladium-californium alloy pellets and wires. The program has been operated since 1968 in temporary facilities at the Savannah River Laboratory (SRL). The obsolete hot-cell facilities at SRL are now being decommissioned, and the program activities are being transferred to ORNL's Californium Facility in Bldg. 7930, which is managed by the staff of the Transuranium Processing Plant

  11. Customs control of radioactive materials

    International Nuclear Information System (INIS)

    Causse, B.

    1998-01-01

    Customs officers take part in the combat against illicit traffic od radioactive materials by means of different regulations dealing with nuclear materials, artificial radiation sources or radioactive wastes. The capability of customs officers is frequently incomplete and difficult to apply due to incompatibility of the intervention basis. In case of contaminated materials, it seems that the customs is not authorised directly and can only perform incidental control. In order to fulfil better its mission of fighting against illicit traffic of radioactive materials customs established partnership with CEA which actually includes practical and theoretical training meant to augment the capabilities of customs officers

  12. Background radioactivity in environmental materials

    International Nuclear Information System (INIS)

    Maul, P.R.; O'Hara, J.P.

    1989-01-01

    This paper presents the results of a literature search to identify information on concentrations of 'background' radioactivity in foodstuffs and other commonly available environmental materials. The review has concentrated on naturally occurring radioactivity in foods and on UK data, although results from other countries have also been considered where appropriate. The data are compared with established definitions of a 'radioactive' substance and radionuclides which do not appear to be adequately covered in the literature are noted. (author)

  13. Dossier: transport of radioactive materials

    International Nuclear Information System (INIS)

    Mignon, H.; Brachet, Y.; Turquet de Beauregard, G.; Mauny, G.; Robine, F.; Plantet, F.; Pestel Lefevre, O.; Hennenhofer, G.; Bonnemains, J.

    1997-01-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  14. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  15. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  16. Physical protection of radioactive material in transport

    International Nuclear Information System (INIS)

    1975-01-01

    Safety in the transport of radioactive material is ensured by enclosing the material, when necessary, in packaging which prevents its dispersal and which absorbs to any adequate extent any radiation emitted by the material. Transport workers, the general public and the environment are thus protected against the harmful effects of the radioactive material. The packaging also serves the purpose of protecting its contents against the effects of rough handling and mishaps under normal transport conditions, and against the severe stresses and high temperatures that could be encountered in accidents accompanied by fires. If the radioactive material is also fissile, special design features are incorporated to prevent any possibility of criticality under normal transport conditions and in accidents. The safe transport requirements are designed to afford protection against unintentional opening of packages in normal handling and transport conditions and against damage in severe accident conditions; whereas the physical protection requirements are designed to prevent intentional opening of packages and deliberate damage. This clearly illustrates the difference in philosophical approach underlying the requirements for safe transport and for physical protection during transport. This difference in approach is, perhaps, most easily seen in the differing requirements for marking of consignments. While safety considerations dictate that packages be clearly labelled, physical protection considerations urge restraint in the use of special labels. Careful consideration must be given to such differences in approach in any attempt to harmonize the safety and physical protection aspects of transport. (author)

  17. Storage depot for radioactive material

    International Nuclear Information System (INIS)

    Szulinski, M.J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson

  18. Naturally Occurring Radioactive Materials (NORM)

    International Nuclear Information System (INIS)

    Gray, P.

    1997-01-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training)

  19. Naturally Occurring Radioactive Materials (NORM)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

  20. Decontamination method for radioactively contaminated material

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Mizuguchi, Hiroshi; Sakai, Hitoshi; Komatsubara, Masaru

    1998-01-01

    Radioactively contaminated materials having surfaces contaminated by radioactive materials are dissolved in molten salts by the effect of chlorine gas. The molten salts are brought into contact with a low melting point metal to reduce only radioactive materials by substitution reaction and recover them into the low melting point metal. Then, a low melting point metal phase and a molten salt phase are separated. The low melting point metal phase is evaporated to separate the radioactive materials from molten metals. On the other hand, other metal ions dissolved in the molten salts are reduced into metals by electrolysis at an anode and separated from the molten salts and served for regeneration. The low melting point metals are reutilized together with contaminated lead, after subjected to decontamination, generated from facilities such as nuclear power plant or lead for disposal. Since almost all materials including the molten salts and the molten metals can be enclosed, the amount of wastes can be reduced. In addition, radiation exposure of operators who handle them can be reduced. (T.M.)

  1. Design of systems for handling radioactive ion exchange resin beads

    International Nuclear Information System (INIS)

    Shapiro, S.A.; Story, G.L.

    1979-01-01

    The flow of slurries in pipes is a complex phenomenon. There are little slurry data available on which to base the design of systems for radioactive ion exchange resin beads and, as a result, the designs vary markedly in operating plants. With several plants on-line, the opportunity now exists to evaluate the designs of systems handling high activity spent resin beads. Results of testing at Robbins and Meyers Pump Division to quantify the behavior of resin bead slurries are presented. These tests evaluated the following slurry parameters; resin slurry velocity, pressure drop, bead degradation, and slurry concentration effects. A discussion of the general characteristics of resin bead slurries is presented along with a correlation to enable the designer to establish the proper flowrate for a given slurry composition and flow regime as a function of line size. Guidelines to follow in designing a resin handling system are presented

  2. Apparatus and process for handling dangerous fluent material

    International Nuclear Information System (INIS)

    Stock, A.J.; Christofer, D.E.; Brinza, J.E.

    1976-01-01

    Systems, apparatus and methods are disclosed for disposing of radioactive waste materials by placing them into a container such as a steel drum, together with cement or other solidifying agent and water or other suitable liquid in amounts sufficient to provide eventually a solidified mixture of predetermined amounts of cement or other solidifying agent and radioactive material, closing the drum, agitating the mixture in the drum for mixing the contents, and then storing the drum for at least a period of time sufficient to permit partial decay of radioactive materials or to await available time for shipment. Also disclosed are remotely controlled apparatus for handling both empty and filled drums, for placing the drums in and removing drums from enclosed drumming equipment where they have been filled and agitated, for accurately placing the drums containing radioactive material in storage, and for removing the drums from storage and loading them on a vehicle for transportation. All of these operations are done by remote control with a high degree of safety to the operators and maintenance personnel from radiation and freedom of the ambient from radiation pollution

  3. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  4. The management of radioactive materials spills

    International Nuclear Information System (INIS)

    Ryan, M.T.; Ebenhack, D.G.

    1985-01-01

    The management and handling of a radioactive materials spill must be swift and effective to reduce or mitigate any adverse impacts on public health and safety. Spills within nuclear facilities generally pose less of a public health impact than spills in areas of public access. The essential elements of spill management include prior planning by agencies which may be required to respond to a spill. Any plan for the management of radioactive materials spills must be flexible enough to be applied in a variety of situations. The major elements of a radioactive materials spill plan, however, apply in every case. It is essential that communications be clear and effective, that the management of a spill be directed by a responsible party whose authority is recognized by everyone involved and that the actions, according to the principles discussed above, be taken to assure the safety of any injured personnel, containment and stabilization and clean up the spill and to verify through radiological surveys and sample analyses that the clean up is complete. Any spill of radioactive materials, minor or major, should be assessed so that similar spills or accidents can be prevented

  5. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1975-01-01

    In the course of transport by road, rail, sea and air, consignments of radioactive material are in close proximity to ordinary members of the public and in most cases they are loaded and unloaded by transport workers who have no special training or experience in the handling of radioactive substances. The materials being transported cover a wide variety - ranging from small batches of short-lived radionuclides used in medical practice which can be transported in small sealed lead pots in cardboard boxes, to large, extremely radioactive consignments of irradiated nuclear fuel in flasks weighing many tons. With the growing development of nuclear power programmes the transport of irradiated fuel is likely to increase markedly. It is clear that unless adequate regulations concerning the design and assembly of the packages containing these materials are precisely set down and strictly carried out, there would be a high probability that some of the radioactive contents would be released, leading to contamination of other transported goods and the general environment, and to the delivery of a radiation dose to the transport workers and the public. An additional requirement is that the transport should proceed smoothly and without delay. This is particularly important for radioactive materials of short half-life, which would lose significant amounts of their total activity in unnecessary delays at international boundaries. Therefore, it is essential that the regulations are also enforced, to ensure that the radioactive material is contained and the surrounding radiation level reduced to a value which poses no threat to other sensitive goods such as photographic film, or to transport workers and other passengers. These regulations should be as uniform as possible on an international basis, so that consignments can move freely from one country to another with as little delay as possible at the frontiers. (author)

  6. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  7. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  8. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Science.gov (United States)

    2012-09-20

    ... for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins From Commercial Nuclear Power... Radioactive Waste Spent Ion Exchange Resins from Commercial Nuclear Power Reactors. DATES: Please submit... Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from Commercial...

  9. Requirements for the register of physical persons for the preparation, use and handling radioactive sources

    International Nuclear Information System (INIS)

    1998-07-01

    This norm establishes the process for register of superior level profession nals enabled to the preparation, using, and handling of radioactive sources. This norm applies to the physical persons candidates applying to the register for preparation, use and handling of radioactive sources in radioactive installations at the industry, agriculture, teaching and researching

  10. Very low level radioactive material

    International Nuclear Information System (INIS)

    Schaller, K.H.; Linsley, G.; Elert, M.

    1993-01-01

    Man's environment contains naturally occurring radionuclides and doses from exposures to these radionuclides mostly cannot be avoided. Consequently, almost everything may be considered as very low level radioactive material. In practical terms, management and the selection of different routes for low level material is confined to material which was subject to industrial processing or which is under a system of radiological control. Natural radionuclides with concentrations reaching reporting or notification levels will be discussed below; nevertheless, the main body of this paper will be devoted to material, mainly of artificial origin, which is in the system involving notification, registration and licensing of practices and sources. It includes material managed in the nuclear sector and sources containing artificially produced radionuclides used in hospitals, and in industry. Radioactive materials emit ionising radiations which are harmful to man and his environment. National and international regulations provide the frame for the system of radiation protection. Nevertheless, concentrations, quantities or types of radionuclide may be such, that the material presents a very low hazard, and may therefore be removed from regulatory control, as it would be a waste of time and effort to continue supervision. These materials are said to be exempted from regulatory control. Material exempted in a particular country is no longer distinguishable from ''ordinary'' material and may be moved from country to country. Unfortunately, criteria for exempting radioactive materials differ strongly between countries and free trade. Therefore there is a necessity for an international approach to be developed for exemption levels

  11. Radioactivity in building materials

    International Nuclear Information System (INIS)

    1985-01-01

    The present report, drawn up at the request of the former Minister of Public Health and Environmental Affairs of the Netherlands, discusses the potential radiological consequences for the population of the Netherlands of using waste materials as building materials in housing construction. (Auth.)

  12. Expansion design for a radioactive sources handling laboratory type II class B

    International Nuclear Information System (INIS)

    Sanchez S, P. S.; Monroy G, F.; Alanis, J.

    2013-10-01

    The Radioactive Wastes Research Laboratory (RWRL) of the Instituto Nacional de Investigaciones Nucleares (Mexico), at the moment has three sections: instrumental analysis, radioactive material processes, counting and a license type II class C, to manipulate radioactive material. This license limits the open sources handling to 300 kBq for radionuclides of very high radio-toxicity as the Ra-226, for what is being projected the license extension to type II class B, to be able to manage until 370 MBq of this radionuclides type, and the Laboratory, since the location where is the RWRL have unused area. This work presents a proposal of the RWRL expansion, taking into account the current laboratory sections, as well as the established specifications by the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The current planes of the RWRL and the expansion proposal of the laboratory are presented. (Author)

  13. U.S. port commerce in radioactive materials

    International Nuclear Information System (INIS)

    Marti, B.E.

    1987-01-01

    Much attention has focused on the movement of radioactive materials over land transport systems. On the other hand, maritime flow and associated throughput studies of such substances have been neglected. Although several peaks and troughs are evident between 1972 and 1981, radioactive tonnage moving through U.S. port facilities steadily increasing. In the ten-year period assessed, total radioactive materials handled at U.S. ports expanded by over 19,000 tons, which amounts to almost a 173 percent growth rate. The purpose of this exploratory research is threefold. First, it identifies all U.S. ports which were involved in loading or discharging radioactive materials. The major goal of the identification process is to broaden public awareness of these types of movement. Second, it classifies U.S. seaports based on the magnitude of radioactive tonnage handled. The function of the classification is to impose some order on the varied data, while at the same time categorizing large, medium, and small facilities. Finally, it seeks to verify whether or not a long term trend exists. The objective of the verification process is to ascertain if the distribution of radioactive materials handled at individual ports has remained constant. Port safety and contingency planning are clearly within the purview of coastal zone management. The results of this preliminary research should form a foundation for future studies which compare and evaluate local, state, and federal regulatory policy pertaining to port operations involving radioactive materials, including waste

  14. HMPT: Basic Radioactive Material Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  15. ASRS application in radioactive material handling

    International Nuclear Information System (INIS)

    Shalina Sheik Muhamad and Rosli Darmawan

    2007-01-01

    ASRS is a computer controlled methods for automatically depositing and retrieving loads from defined storage locations. It consists of several major components which are the Controls System, Storage Structure (Racks), Storage/Retrieval (S/R) Machines, Fire Protection Systems, Pickup and Delivery (P and D) Stations, Storage Modules (Pallets, Baskets, Containers), Aisle Hardware, Aisle Transfer Cars, Conveyors and other transportation equipment. This paper aims to provide an overview of the potential application of the ASRS in Nuclear Malaysia. The need to use the system, operating principle and potential application will be discussed. (Author)

  16. Package for radioactive material

    International Nuclear Information System (INIS)

    Van Rossem, H.

    1983-01-01

    A holder for use with a labelled vial containing a radiopharmaceutical or other dangerous material is claimed. It comprises a hollow body with a closed bottom and an open top. There is at least one transparent portion through which the labelled vial may be inspected, and a holding means to secure the vial in the holder

  17. RADTRAN3, Risk of Radioactive Material Transport

    International Nuclear Information System (INIS)

    Madsen, M.M.; Taylor, J.M.; Ostmeyer, R.M.; Reardon, P.C.

    2001-01-01

    1 - Description of program or function: RADTRAN3 is a flexible analytical tool for calculating both the incident-free and accident impacts of transporting radioactive materials. The consequences from incident-free shipments are apportioned among eight population sub- groups and can be calculated for several transport modes. The radiological accident risk (probability times consequence summed over all postulated accidents) is calculated in terms of early fatalities, early morbidities, latent cancer fatalities, genetic effects, and economic impacts. Ground-shine, ingestion, inhalation, direct exposure, resuspension, and cloud-shine dose pathways are modeled to calculate the radiological health risks from accidents. Economic impacts are evaluated based on costs for emergency response, cleanup, evacuation, income loss, and land use. RADTRAN3 can be applied to specific scenario evaluations (individual transport modes or specified combinations), to compare alternative modes or to evaluate generic radioactive material shipments. Unit-risk factors can easily be evaluated to aid in performing generic analyses when several options must be compared with the amount of travel as the only variable. RADTRAN4 offers advances in the handling of route-related data and in the treatment of multiple-isotope materials. 2 - Method of solution: There are several modes used in the transporting of radioactive material such as trucks, passenger vans, passenger airplanes, rail and others. With these modes of transport come several shipment scenarios. The RADTRAN4 methodology uses material, transportation, population distribution, and health effects models to treat the incident-free case. To handle the vehicle accident impacts, accident severity and package release, meteorological dispersion, and economic models are also employed. 3 - Restrictions on the complexity of the problem: There are no apparent limitations due to programming dimensions

  18. Container for radioactive materials

    International Nuclear Information System (INIS)

    Housholder, W.R.; Greer, N.L.

    1976-01-01

    The improvement of the construction of containers for the transport of nuclear fuels is proposed where above all, the insulating mass suggested is important as it acts as a safeguard in case of an accident. The container consists of a metal casing in which there is a pressure boiler and a gamma-shielding device, spacers between the metal casing and the shielding device as well as an insulation filling the space between them. The insulating material is a water-in-resin emulsion which is hardened or cross-linked by peroxide and which can furthermore contain up to 50 wt.% solid silicious material such as vermuculite or chopped glass fibre. The construction and variations of the insulating mass composition are described in great detail. (HR) [de

  19. Development of an expert system for radioactive material transportation

    International Nuclear Information System (INIS)

    Tamanoi, K.; Ishitobi, M.; Shinohara, Y.

    1990-01-01

    An expert system to deal with radioactive material transportation was developed. This expert system is based on 'Regulations for the Safe Transport of Radioactive Material' by IAEA issued 1985. IAEA published the regulations under such environments that safety transportation has become increasingly being focused as uses of radioactive materials are more pervasive, not only in nuclear field but also in non-nuclear purposes. Attentions are payed for operators and environment to establish safety in handling radioactive materials. In the 1985 regulations, detailed categorization of radioactive materials and, correspondingly, new classification of packages are introduced. This categorization is more complicated than old regulations, leading us to develop an expert system to evaluate easily the packages categorization. (author)

  20. Device for encapsulating radioactive materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1994-01-01

    A capsule for encapsulating radioactive material for radiation treatment comprising two or more interfitting sleeves, wherein each sleeve comprises a closed bottom portion having a circumferential wall extending therefrom, and an open end located opposite the bottom portion. The sleeves are constructed to fit over one another to thereby establish an effectively sealed capsule container. 3 figs

  1. Radioactivity in building materials

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    The object of this brief report is to make the pollution inspectorate aware of the radiation hazards involved in new building materials, such as gypsum boards and alum slate based concrete blocks whose radium content is high. Experience in Swedish housebuilding has shown that a significant increase in the radiation dose to the occupants can occur. Improved insulation and elimination of draughts in fuel conservation accentuate the problem. Norwegian investigations are referred to and OECD and Scandinavian discussions aiming at recommendations and standards are mentioned. Suggested measures by the Norwegian authorities are given. (JIW)

  2. Procedure for permanently storing radioactive material

    International Nuclear Information System (INIS)

    Canevall, J.

    1987-01-01

    This patent describes a method of storing radioactive material in a hollow construction having an access opening. The construction is located below the surface of the ground within a rock chamber. The chamber has walls, a floor, and a ceiling. The construction is completely spaced from the walls, floor, and ceiling of the rock chamber to form an outer spacing, and the construction is made of material impervious to water. The construction comprises a capsule storage area and a capsule handling passageway adjacent thereto having a track and being connected to a lift-shaft running to the surface. The method includes the steps of: completely filling the outer spacing between the walls, ceiling, and floor of the rock chamber and the construction with material not impervious to water; placing capsules containing the radioactive waste in encapsulated form into the capsule storage area; filling the storage area around the loaded capsule with a sealing material to enclose the capsules; repeating the placing and filling steps until the storage area has been completely filled in with the capsules and sealing material; loading the passageway adjacent the storage area with a removable material different than the sealing material; closing the construction and sealing the lift-shaft at least at the construction level and at ground level; and providing means for collecting any water penetrating into the outer spacing

  3. Radioactive materials in construction projects

    International Nuclear Information System (INIS)

    Herrmann, Ralf; Ohlendorf, Frank; Kaltz, Andrea Christine

    2014-01-01

    Till 1990 residues often of the former uranium mining were partly used as building material for road construction, terrain compensation and house construction in Saxony. These recommendations for action are addressed to applicants, planners and building constructors in the engineering and construction sector. It provides information for planning, preliminary investigations, applications, construction supervision related to radiation protection measures and documentation of construction projects where radioactive materials are expected.

  4. Status of radioactive material transport

    International Nuclear Information System (INIS)

    Kueny, Laurent

    2012-01-01

    As about 900.000 parcels containing radioactive materials are transported every year in France, the author recalls the main risks and safety principles associated with such transport. He indicates the different types of parcels defined by the regulation: excepted parcels, industrial non fissile parcels (type A), type B and fissile parcels, and highly radioactive type C parcels. He briefly presents the Q-system which is used to classify the parcels. He describes the role of the ASN in the control of transport safety, and indicates the different contracts existing between France or Areva and different countries (Germany, Japan, Netherlands, etc.) for the processing of used fuels in La Hague

  5. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.; Cruse, J.M.

    1991-02-01

    To provide uniform packaging of hazardous materials on an international level, the United Nations has developed packaging recommendations that have been implemented worldwide. The United Nations packaging recommendations are performance oriented, allowing for a wide variety of package materials and systems. As a result of this international standard, efforts in the United States are being directed toward use of performance-oriented packaging and elimination of specification (designed) packaging. This presentation will focus on trends, design evaluation, and performance testing of radioactive material packaging. The impacts of US Department of Transportation Dockets HM-181 and HM-169A on specification and low-specific activity radioactive material packaging requirements are briefly discussed. The US Department of Energy's program for evaluating radioactive material packings per US Department of Transportation Specification 7A Type A requirements, is used as the basis for discussing low-activity packaging performance test requirements. High-activity package testing requirements are presented with examples of testing performed at the Hanford Site that is operated by Westinghouse Hanford Company for the US Department of Energy. 5 refs., 2 tabs

  6. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations

  7. Radioactive materials system of the ININ (SMATRAD)

    International Nuclear Information System (INIS)

    Rivero G, E.; Ledezma F, L.E.; Valdivia R, D.

    2007-01-01

    The radioactive iodine (I-131) it is an isotope created starting from the iodine with the purpose of emitting radiation for medicinal use. When a small dose of I-131 is ingested, this is absorbed in the sanguine torrent in the gastrointestinal tract (Gl) and it is concentrated by the blood on the thyroid gland, where it begins to destroy the cells. This treatment makes that the activity of the thyroid decreases in great measure and in some cases it can transform an hyperactive thyroid in a hypoactive thyroid which requires additional treatments. The sodium iodide I-131 is one of the products elaborated and marketed by the ININ in the Radiopharmaceuticals and Radioisotopes production plant, dependent of the Radioactive Material Department of the Nuclear Applications in the Health Management. The Plant is the only one in its type that exists in the country, it has Sanitary License and Good Practice of Production Certificate, emitted by the Secretary of Health, and licenses for the handling and the transportation of radioactive material, sent by the National Commission of Nuclear Safety and Safeguards. Also, the quality system of the plant is certified under the ISO 9001:2000 standard. (Author)

  8. Method of processing radioactive materials

    International Nuclear Information System (INIS)

    Kondo, Susumu; Moriya, Tetsuo; Ishibashi, Tadashi; Kariya, Masahiro.

    1986-01-01

    Purpose: To improve contamination proofness, water proofness, close bondability and stretching performance of strippable paints coated to substrates liable to be contaminated with radioactive materials. Method: Strippable paints are previously coated on substrates which may possibly be contaminated with radioactive materials. After the contamination, the coated membranes are stripped and removed. Alternatively, the strippable paints may be coated on the already contaminated substrates and, after drying, the paints are stripped and removed. The strippable paints used herein have a composition comprising a styrene-butadiene block copolymer containing from 60 to 80 wt% of styrene as a main ingredient and from 0.3 to 5 % by weight of a higher alkyl amine compound having 12 to 18 carbon atoms blended with the copolymer. (Ikeda, J.)

  9. Truck transportation of radioactive materials

    International Nuclear Information System (INIS)

    Madsen, M.M.; Wilmot, E.L.

    1983-01-01

    Analytical models in RADTRAN II are used to calculate risks to population subgroups such as people along transport routes, people at stops, and crewman. The stops model, which calculates the dose to persons adjacent to the transport vehicle while it is stopped, frequently provides the largest contribution to incident-free radiological impacts. Components such as distances from the vehicle containing radioactive material to nearby people at stops, stop duration, and number of crew members are required for the stops model as well as other incident-free models. To provide supporting data for RADTRAN II based on operational experience, selected truck shipments of radioactive material were observed from origin to destination. Other important aspects of this program were to correlate package size to effective shipment transport index (TI) using radiological surveys and to characterize population distributions and proximities of people to the shipment at a generic truck stop

  10. Storage containers for radioactive material

    International Nuclear Information System (INIS)

    Cassidy, D.A.; Dates, L.R.; Groh, E.F.

    1981-01-01

    A radioactive material storage system is disclosed for use in the laboratory. This system is composed of the following: a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof; a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate; the groove and the gasket, and a clamp for maintaining the cover and the plate are sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage

  11. Accidents during transport of radioactive material

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2008-01-01

    Radioactive materials are a part of modern technology and life. They are used in medicine, industry, agriculture, research and electrical power generation. Tens of millions of packages containing radioactive materials are consigned for transport each year throughout the world. In India, about 80000 packages containing radioactive material are transported every year. The amount of radioactive material in these packages varies from negligible amounts used in consumer products to very large amounts in shipment of irradiator sources and spent nuclear fuel

  12. Natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Mrnustik, J.

    1988-01-01

    Within a study of the natural radioactivity of building materials, coefficients were determined of the emanation from selected materials and raw materials, such as porous concrete, bricks, marlite, quartzite, etc. Measurements were made of ground samples using Lucas scintillation chambers which give an accuracy of determination of the coefficient of about 10%. Specific radium activity was also determined for the samples. Tabulated is a comparison of the average specific activity of radium in concrete, power plant ash and porous concrete in Czechoslovakia and abroad. It is stated that monitoring the content of natural radionuclides in building materials is an indispensable part of the production process in the building industry, this with regard to the radiation protection of the population. This will be enhanced by the new Czechoslovak standard determining methods of measuring the content of natural radionuclides and the coefficient of radon emanation, and the subsequent evaluation of the properties of building materials. (Z.M.) 3 figs., 3 tabs

  13. Raising students and educators awareness of radioactive materials transport through creative classroom materials and exhibits

    International Nuclear Information System (INIS)

    Holm, J.; Sandoz, C.; Dickenson, J.; Lee, J.C.; Smith, A.M.

    1994-01-01

    The public is concerned about how the shipping and handling of radioactive materials affects them and their environment. Through exhibit showings doing professional education conferences and smaller, focussed workshops, the United States Department of Energy (DOE) has found teachers and students to be an especially interested audience for hazardous and radioactive materials transportation information. DOE recognizes the importance of presenting educational opportunities to students about scientific and societal issues associated with planning for and safely transporting these types of materials. Raising students' and educators' awareness of hazardous and radioactive materials transport through creative classroom materials and exhibits may help them make informed decisions as adults about this often controversial and difficult issue

  14. Radioactive substances in the Danish building materials

    International Nuclear Information System (INIS)

    Ulbak, K.

    1986-01-01

    Building materials as any other materials of natural occurrence contain small concentrations of natural radioactive elements. This natural radioactivity affects people inside buildings. This publiccation refers measurements of the Danish building materials, and radiation doses originating from this source affecting the Danish population are related to the other components of background radioactivity. (EG)

  15. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  16. The transport of radioactive materials - Future challenges

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    2008-01-01

    the part of some commercial transporters, for example shipping lines, to handle radioactive cargoes. The World Nuclear Transport Institute is addressing these issues, for example by facilitating cooperation between consignors and shippers, advice on radiation protection programmes, the provision of a knowledge base to help the various stakeholders in the transport chain and also by its involvement in training courses. There is ample evidence to demonstrate that the real risks to man and the environment from radioactive transport operations are small, not only for severe accident scenarios but also for malicious acts. It is therefore vital that we continue our efforts to dispel irrational fears and reassure the public that under the current IAEA regulatory regime radioactive material transport is a necessary, safe and secure operation. (author)

  17. Radioactive material package seal tests

    International Nuclear Information System (INIS)

    Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

    1990-01-01

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 x 10 -7 std cm 3 /s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab

  18. Materials Handling. Module SH-01. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on materials handling is one of 50 modules concerned with job safety and health. It presents the procedures for safe materials handling. Discussed are manual handling methods (lifting and carrying by hand) and mechanical lifting (lifting by powered trucks, cranes or conveyors). Following the introduction, 15 objectives (each…

  19. Atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1988-01-01

    The report describes currently available techniques for predicting the dispersion of accidentally released radioactive materials and techniques for visualization using computer graphics. A simulation study is also made on the dispersion of radioactive materials released from the Chernobyl plant. The simplest models include the Gauss plume model and the puff model, which cannot serve to analyze the effects of the topography, vertical wind shear, temperature inversion layer, etc. Numerical analysis methods using advection and dispersion equations are widely adopted for detailed evaluation of dispersion in an emergency. An objective analysis model or a hydrodynamical model is often used to calculate the air currents which are required to determine the advection. A small system based on the puff model is widely adopted in Europe, where the topography is considered to have only simple effects. A more sophisticated large-sized system is required in nuclear facilities located in an area with more complex topographic features. An emergency system for dispersion calculation should be equipped with a graphic display to serve for quick understanding of the radioactivity distribution. (Nogami, K.)

  20. The safe transport of radioactive materials

    CERN Document Server

    Gibson, R

    1966-01-01

    The Safe Transport of Radioactive Materials is a handbook that details the safety guidelines in transporting radioactive materials. The title covers the various regulations and policies, along with the safety measures and procedures of radioactive material transport. The text first details the 1963 version of the IAEA regulation for the safe transport of radioactive materials; the regulation covers the classification of radionuclides for transport purposes and the control of external radiation hazards during the transport of radioactive materials. The next chapter deals with concerns in the im

  1. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1990-01-01

    Recently the Agency redefined its policy for education and training in radiation safety. The emphasis is now on long-term strategic planning of general education and training programmes. In line with this general policy the Agency's Standing Advisory Group for the Safe Transport of Radioactive Material (SAGSTRAM) in its 7th meeting (April 1989) agreed that increased training activity should be deployed in the area of transport. SAGSTRAM specifically recommended the development of a standard training programme on this subject area, including audio-visual aids, in order to assist Member States in the implementation of the Agency's Regulations for the Safe Transport of Radioactive Material. This training programme should be substantiated by a biennial training course which is thought to be held either as an Interregional or a Regional Course depending on demand. This training manual, issued as a first publication in the Training Course Series, represents the basic text material for future training courses in transport safety. The topic areas covered by this training manual and most of the texts have been developed from the course material used for the 1987 Bristol Interregional Course on Transport Safety. The training manual is intended to give guidance to the lecturers of a course and will be provided to the participants for retention. Refs, figs and tabs

  2. Enclosure for handling high activity materials

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.

    1977-01-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  3. Enclosure for handling high activity materials abstract

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.; Dominguez Rodriguez, G.; Cruz Castillo, F. de la; Rodriguez Esteban, A.

    1977-01-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With that purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. A description is given of those aspects that may be of interest to people working in this field. (author) [es

  4. Enclosure for handling high activity materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F

    1977-07-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  5. A sensor-based automation system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool

  6. Handling and final storage of radioactive metal components

    International Nuclear Information System (INIS)

    Loennerberg, B.; Engelbrektson, A.; Neretnieks, I.

    1978-06-01

    After the dismounting of the fuel elements, the next stage is to undertake the final storing of the metal components, which have kept the fuel rods together. The components are transmitted to a pool where they are cut into pieces, compacted and placed in wire baskets. These are transferred in a water channel to a cell, where the metal components are embedded into concrete blocks. Thus the baskets are placed in prefabricated concrete containers, after which the metal parts are embedded into cement grout, injected from the bottom of the containers. The blocks are finally stored in rock tunnels constituting a storage similar to the repositories for vitrified waste and spent fuel, although somewhat simplified, taking advantage of the much lower amount of radioactive material in the case of metal components. Thus a depositioning depth of 300 m in rock is very much on the safe side and it is appropriate in this case to fill the tunnels with concrete, ensuring by its alcalinity a suffi ciently low rate of dissolution of the metal and migration of radioactive substances

  7. Method of treating radioactive waste material

    International Nuclear Information System (INIS)

    Allison, W.

    1980-01-01

    A method of treating radioactive waste material, particularly a radioactive sludge, is described comprising separating solid material from liquid material, compressing the solid material and encapsulating the solid material in a hardenable composition such as cement, bitumen or a synthetic resin. The separation and compaction stages are conveniently effected in a tube press. (author)

  8. Natural Radioactivity in Ceramic Materials

    International Nuclear Information System (INIS)

    Abu Khadra, S.A.; Kamel, N.H.

    2005-01-01

    Ceramics are one of the most important types of the industrial building materials. The raw materials of the ceramic are made of a mixture of clay, feldspar, silica, talc kaolin minerals together with zirconium silicates (ZrSiO4).The ceramic raw materials and the final products contain naturally occurring radionuclide mainly U-238 and, Th-232 series, and the radioactive isotope of potassium K-40. Six raw ceramic samples were obtained from the Aracemco Company at Egypt together with a floor tile sample (final product) for measuring radioactive concentration levels., The activity of the naturally U-238, Th-232, and K-40 were determined as (Bq/kg) using gamma spectroscopy (Hyperactive pure germanium detector). Concentration of U and Th were determined in (ppm) using spectrophotometer technique by Arsenazo 111 and Piridy l-Azo -Resorcinol (PAR) indicators. Sequential extraction tests were carried out in order to determine the quantity of the radionuclide associated with various fractions as exchangeable, carbonate, acid soluble and in the residue. The results evaluated were compared to the associated activity indices (AI) that were defined by former USSR and West Germany

  9. Transport containers for radioactive material

    International Nuclear Information System (INIS)

    Doroszlai, P.; Ferroni, F.

    1984-01-01

    A cylindrical container for the transportation of radioactive reactor elements includes a top end, a bottom end and a pair of removable outwardly curved shock absorbers, each including a double-shelled construction having an internal shell with a convex intrados configuration and an external shell with a convex extrados configuration, the shock absorbers being filled with a low density energy-absorbing material and mounted at the top end and the bottom end of the container, respectively, and each of the shock absorbers having a toroidal configuration, and deformable tubes disposed within the shock absorbers and extending in the axial direction of the container

  10. Qualitative comparisons of fusion reactor materials for waste handling and disposal

    International Nuclear Information System (INIS)

    Maninger, R.C.

    1985-01-01

    The activation of five structural materials and seven coolant/breeder/multiplier materials in a common reference neutron environment was calculated with the FORIG activation code. The reference environment was the neutron flux and spectrum at the first wall of the mirror advanced reactor study (MARS) reactor. Qualitative comparison of these activated materials were made with respect to worker protection requirements for gamma radiation in handling the materials and with respect to their classifications for near-surface disposal of radioactive waste

  11. The radioactivity of house-building materials

    International Nuclear Information System (INIS)

    Sos, K.

    2007-01-01

    The paper compares the natural radioactivity and radon emission properties of different building materials like bricks, concretes, cements, sands, limes, marmors of different origin. A description of the radioactive model of apartments is also given. (TRA)

  12. Decommissioning strategies for facilities using radioactive material

    International Nuclear Information System (INIS)

    2007-01-01

    The planning for the decommissioning of facilities that have used radioactive material is similar in many respects to other typical engineering projects. However, decommissioning differs because it involves equipment and materials that are radioactive and therefore have to be handled and controlled appropriately. The project management principles are the same. As with all engineering projects, the desired end state of the project must be known before the work begins and there are a number of strategies that can be used to reach this end state. The selection of the appropriate strategy to be used to decommission a facility can vary depending on a number of factors. No two facilities are exactly the same and their locations and conditions can result in different strategies being considered acceptable. The factors that are considered cover a wide range of topics from purely technical issues to social and economic issues. Each factor alone may not have a substantial impact on which strategy to select, but their combination could lead to the selection of the preferred or best strategy for a particular facility. This Safety Report identifies the factors that are normally considered when deciding on the most appropriate strategy to select for a particular facility. It describes the impact that each factor can have on the strategy selection and also how the factors in combination can be used to select an optimum strategy

  13. Radioactive waste handling at the Mochovce NPP, 1998-2008

    International Nuclear Information System (INIS)

    Vasickova, Gabriela

    2009-01-01

    The radioactive waste management system at the Mochovce NPP is described. The system addresses technical aspects as well as administrative provisions related to radioactive waste generated within the controlled area, from the waste generation phase to waste sorting, packaging, storage, recording, measurement, and transportation to the Bohunice waste processing facility or transfer to the Mochovce liquid radioactive waste treatment facility. The article also addresses conditions for release from the controlled area to the environment for radioactive waste which can be exempt from the institutional administrative control system or released to the environment on the basis of a valid permission issued by the relevant regulatory authority

  14. Packaging, carriage and dispatching fuel and radioactive materials, IAEA regulations

    International Nuclear Information System (INIS)

    White, M.

    1981-01-01

    The need to bring fuel and other radioactive substances into a nuclear power plant and to send out irradiated or contaminated materials: spent fuel, activated equipment, used filters, resin and clothing, etc. gives rise to the question: How can these materials be transported safely and economically. The purpose of this paper is to answer that question by providing information on the regulatory requirements that have been developed for packaging, labelling and handling and on the containers which are being employed. (orig./RW)

  15. Safety in transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Mezrahi, A.; Xavier, A.M.

    1987-01-01

    The increasing utilization of radioisotopes in Industrial, Medical and Research Facilities as well as the processing of Nuclear Materials involve transport activities in a routine basis. The present work has the following main objectives: I) the identification of the safety aspects related to handling, transport and storage of radioactive materials; II) the orientation of the personnel responsible for the radiological safety of Radioactive Installations viewing the elaboration and implementation of procedures to minimize accidents; III) the report of case-examples of accidents that have occured in Brazil due to non-compliance with Transport Regulations. (author) [pt

  16. Transportation accidents/incidents involving radioactive materials (1971-1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1993-01-01

    In 1981, Sandia National Laboratories developed the Radioactive Materials Incident Report (RMIR) database to support its research and development activities for the U.S. Department of Energy (DOE). The RMIR database contains information on transportation accidents/incidents with radioactive materials that have occurred since 1971. The RMIR classifies a transportation accident/incident in one of six ways: as a transportation accident, a handling accident, a reported incident, missing or stolen, cask weeping, or other. This paper will define these terms and provide detailed examples of each. (J.P.N.)

  17. Determination of standards for transportation of radioactive material by aircrafts

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the Enforcement Regulation for the Law on Aviation. Terms are explained, such as exclusive loading and containers. Spontaneously ignitable liquid radioactive materials and the radioactive substances required to be contained in special vessels and others particularly operated during the transport, are excluded from the radioactive materials permissible for transport. The radioactive substances required to be transported as radioactive loadings don't include empty vessels used to contain radioactive materials and other things contaminated by such materials, when they conform to the prescriptions. The technical standards on radioactive loadings are defined, such as maximum radiation dose rate of 0.5 millirem per hour on the surface of L type loadings, 200 millirem per hour for A, and 1000 millirem per hour at the distance of 1 m for BM and BU types, respectively. Confirmation of the safeness of radioactive loadings may be made through the written documents prepared by the competent persons acknowledged by the Minister of Transport. The requisite of fissile loadings is that such loadings shall not reach critical state during the transport in the specified cases. Radioactive loadings or the containers with such loadings shall be loaded so that the safeness of such loadings is not injured by movement, overturn and fall during the transport. The maximum radiation dose rate of the containers with radioactive loadings shall not be more than 200 millirem per hour on the surface. The written documents describing the handling method and other matters for attention and the measures to be taken on accidents shall be carried with for the transport of radioactive loadings. (Okada, K.)

  18. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Science.gov (United States)

    2010-10-01

    ... equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT... Special Items 908.7112 Materials handling equipment replacement standards. Materials handling equipment shall be purchased for replacement purposes in accordance with the standards in FPMR 41 CFR 101-25.405...

  19. Electrodeless light source provided with radioactive material

    International Nuclear Information System (INIS)

    1979-01-01

    Radioactive materials are used to assist in starting a discharge in an electrodeless light source. The radioactive emissions predispose on the inner surface of the lamp envelope loosely bound charges which thereafter assist in initiating discharge. The radioactive material can be enclosed within the lamp envelope in gaseous or non-gaseous form. Preferred materials are krypton 85 and americium 241. In addition, the radioactive material can be dispersed in the lamp envelope material or can be a pellet imbedded in the envelope material. Finally, the radioactive material can be located in the termination fixture. Sources of alpha particles, beta particles, or gamma rays are suitable. Because charges accumulate with time on the inner surface of the lamp envelope, activity levels as low as 10 -8 curie are effective as starting aids. (Auth.)

  20. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    Science.gov (United States)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  1. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  2. Storage of radioactive material - accidents - precipitation - personnel monitoring; Stokiranje radioaktivnih materijala - akcidenti - padavine - kontrola osoblja

    Energy Technology Data Exchange (ETDEWEB)

    Matijasic, A; Gacinovic, O [Institute of Nuclear Sciences Boris Kidric, Radioloska zastita, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This volume covers the reports on four routine tasks concerned with safe handling of radioactive material and influence of nuclear facilities on the environment. The tasks performed were as follows: Storage of solid and liquid radioactive material; actions in case of accidents; radiation monitoring of the fallout, water and ground; personnel dosimetry.

  3. Experience of work with radioactive materials and nuclear fuel at the reactor WWR-K

    International Nuclear Information System (INIS)

    Maltseva, R.M.; Petukhov, V.K.

    1998-01-01

    In the report there are considered questions concerning the handling with fresh and spent fuel, experimental devices, containing high enriched uranium, being fissile materials of the bulk form, radioisotopes, obtained in the reactor, and radioactive waste, formed during the operation of the reactor, and organization of storage, account and control of radioactive and fissile materials is described. (author)

  4. HARAS. A new method for risk evaluation of working with open radioactive materials

    International Nuclear Information System (INIS)

    Klaver, T.

    1998-01-01

    Thumbs of rule with respect to the characteristics and the handling of, and protection facilities for radioactive materials in laboratories are used by everybody involved in radiation protection activities. However, the thumbs of rule must be based on a thorough risk analysis. The so-called HARAS study provides the results of such an analysis, consisting of recommendations to alter the government policy with respect to radionuclide laboratories. HARAS is a Dutch abbreviation for handling of radioactive materials

  5. Radiation safety in sea transport of radioactive material in Japan

    International Nuclear Information System (INIS)

    Odano, N.; Yanagi, H.

    2004-01-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured

  6. Radiation safety in sea transport of radioactive material in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Odano, N. [National Maritime Research Inst., Tokyo (Japan); Yanagi, H. [Nuclear Fuel Transport Co., Ltd., Tokyo (Japan)

    2004-07-01

    Radiation safety for sea transport of radioactive material in Japan has been discussed based on records of the exposed dose of sea transport workers and measured data of dose rate equivalents distribution inboard exclusive radioactive material shipping vessels. Recent surveyed records of the exposed doses of workers who engaged in sea transport operation indicate that exposed doses of transport workers are significantly low. Measured distribution of the exposed dose equivalents inboard those vessels indicates that dose rate equivalents inside those vessels are lower than levels regulated by the transport regulations of Japan. These facts clarify that radiation safety of inboard environment and handling of transport casks in sea transport of radioactive material in Japan are assured.

  7. Packaging and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  8. Packaging and transportation of radioactive materials

    International Nuclear Information System (INIS)

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items

  9. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  10. Calculations on safe storage and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)

    1997-12-31

    In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.

  11. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  12. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past

  13. Current and proposed revisions, changes, and modifications to American codes and standards to address packaging, handling, and transportation of radioactive materials and how they relate to comparable international regulations

    International Nuclear Information System (INIS)

    Borter, W.H.; Froehlich, C.H.

    2004-01-01

    This paper addresses current and proposed revisions, additions, and modifications to American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) (i.e., ''ASMEthe Code'') Section III, Division 3 and American National Standards Institute (ANSI)/ASME N14.6. It provides insight into the ongoing processes of the associated committees and highlights important revisions, changes, and modifications to this Code and Standard. The ASME Code has developed and issued Division 3 to address items associated with the transportation and storage of radioactive materials. It currently only addresses ''General Requirements'' in Subsections WA and ''Class TP (Type B) Containments'' (Transportation Packages) in Subsection WB, but is in the process of adding a new Subsection WC to address ''Class SC'' (Storage Containments). ANSI/ASME Standard N14.6 which interacts with components constructed to Division 3 by addressinges special lifting devices for radioactive material shipping containers. This Standard is in the process of a complete re-write. This Code and Standard can be classified as ''dynamic'' in that their committees meet at least four times a year to evaluate proposed modifications and additions that reflect current safety practices in the nuclear industry. These evaluations include the possible addition of new materials, fabrication processes, examination methods, and testing requirements. An overview of this ongoing process is presented in this paper along with highlights of the more important proposed revisions, changes, and modifications and how they relate to United States (US) and international regulations and guidance like International Atomic Energy Agency (IAEA) Requirement No. TS-R-1

  14. Water pollution by radioactive materials

    International Nuclear Information System (INIS)

    Bovard, P.

    1976-01-01

    Within the frame of the definition of a philosophy and politics of waste disposal and site selection, an analysis is made of the main elements of radioactive pollution of waters: sources of radioactivity, radionuclides classified according to their hazard, waste processing, disposal criteria and transfer processes in the compartments: water, suspended sediments, deposited sediments, biomass [fr

  15. Diverted assembly for radioactive material

    International Nuclear Information System (INIS)

    Andrews, K.M.; Starenchak, R.W.

    1989-01-01

    This patent describes a diverter assembly for diverting a pneumatically conveyed holder for radioactive material between a central conveying tube and one of a plurality of conveying tubes radially offset from the central conveying tube. It comprises: an airtight container having a hollow interior, a first aperture about which the central tube is connected, and a respective plurality of second apertures about which respective offset tubes are connected; a diverter tube in the container having a first end located immediately adjacent the first aperture and a second end offset from the first end a distance equal to the radial offset of the conveying tubes from the central tube; a first mounting means in the container for mounting the diverter tube for rotation about a longitudinal axis of the first end such that the second end is selectively brought into alignment with respective the second apertures; a rotary seal means for sealing the first end of the diverter tube from the interior of the container during and after rotation of the diverter tube; a spring biased seal means for sealing the second end of the diverter tube from the interior of the container during and after rotation of the diverter tube to a selected second aperture; an indexing means for rotatable indexing the second end of the diverter tube; and a drive means for selectively driving the indexing means

  16. Handling of natural occurring radioactive deposits in the oil and gas industry in Norway, United Kingdom and the Netherlands

    International Nuclear Information System (INIS)

    Lysebo, I.; Tufto, P.

    1999-03-01

    Deposits containing naturally occurring radioactive materials is an increasing problem in oil and gas production. Laws and regulations in this area is under preparation, and it is a wish for harmonization with the other oil and gas producing countries in the North Sea. The report gives an overview of amounts of waste and activity levels, decontamination methods and waste handling in Norway, Great Britain and the Netherlands

  17. Treating agent for urea containing radioactive materials

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi; Maki, Kentaro.

    1973-01-01

    Object: To add a coagulant into urea containing radioactive material to precipitate and remove the radioactive material in the urea. Structure: Iodosalt is added into urea and next, a mixed reagent in which silver ion or silver acetic ion and iron hydroxide precipitation or ferrite ion coexist is added therein. The urea is treated to have a sufficient alkaline, after which it is introduced into a basket type centrifuge formed with a filter layer in combination of an upper glass fiber layer and a lower active carbon layer. The treating agent can uniformly remove radioactive ion and radioactive chelate within urea containing inorganic salt and various metabolites. (Nakamura, S.)

  18. The main ecological principles of ensuring safety of man and biosphere in the handling of radioactive wastes

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1999-01-01

    This paper provides an assessment of ecological safety in the handling of radioactive wastes in the territory of Russia. The following problems are considered: the main sources of radioactive wastes and spent nuclear fuel; assessments of collective dose from the enterprises of the nuclear fuel cycle in Russia; and principles and criteria for ensuring ecological safety when handling radioactive wastes

  19. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  20. A development of radioactive material tracking and location control system

    International Nuclear Information System (INIS)

    Joo, Gwang Tae; Jung Seung Yong; Song, Jung Ho

    2005-01-01

    As the whole industry fields such as construction, chemistry, machine, medicine including nuclear-related field have extended the range of radioactive material uses, it is tendency that domestic uses of radioactive material have been increased in quantity and number. In addition, as the transportation, transfer and use of radioactive material have been frequent, its loss, robbery, and carelessness of handling may cause not only employees in charge but the public to worry about damage of explosion and put an obstacle to increase trust in nuclear-related industry. At present, though the transportation, use and storage of radioactive material conform to the institution and standard of the atomic energy law, if we tracking radioactive material in real time, we can take immediate actions to prevent its loss, robbery. As our research institute developed a terminal that control location and tracking real time location for gamma-ray projector used in transporting, transferring, and using nondestructive test, we take a good look at utilities by using GPS-Cell ID bases location control

  1. Specialized equipment needs for the transportation of radioactive material

    International Nuclear Information System (INIS)

    Condrey, D.; Lambert, M.

    1998-01-01

    To ensure the safe and reliable transportation of radioactive materials and components, from both the front and back-end of the nuclear fuel cycle, a transport management company needs three key elements: specialized knowledge, training and specialized equipment. These three elements result, in part, from national and international regulations which require specialized handling of all radioactive shipments. While the reasons behind the first two elements are readily apparent, the role of specialized equipment is often not considered until too late shipment process even though it plays an integral part of any radioactive material transport. This paper will describe the specialized equipment needed to transport three of the major commodities comprising the bulk of international nuclear transports: natural uranium (UF6), low enriched uranium (UF6) and fresh nuclear fuel. (authors)

  2. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past. 7 refs., 13 figs

  3. Fissile materials principles of criticality safety in handling and processing

    International Nuclear Information System (INIS)

    1976-01-01

    This Swedish Standard consists of the English version of the International Standard ISO 1709-1975-Nuclear energy. Fissile materials. Principles of criticality safety in handling and processing. (author)

  4. Fleet Sizing of Automated Material Handling Using Simulation Approach

    Science.gov (United States)

    Wibisono, Radinal; Ai, The Jin; Ratna Yuniartha, Deny

    2018-03-01

    Automated material handling tends to be chosen rather than using human power in material handling activity for production floor in manufacturing company. One critical issue in implementing automated material handling is designing phase to ensure that material handling activity more efficient in term of cost spending. Fleet sizing become one of the topic in designing phase. In this research, simulation approach is being used to solve fleet sizing problem in flow shop production to ensure optimum situation. Optimum situation in this research means minimum flow time and maximum capacity in production floor. Simulation approach is being used because flow shop can be modelled into queuing network and inter-arrival time is not following exponential distribution. Therefore, contribution of this research is solving fleet sizing problem with multi objectives in flow shop production using simulation approach with ARENA Software

  5. Response to Illicit Trafficking of Radioactive Materials

    International Nuclear Information System (INIS)

    2010-01-01

    Two response paths are discussed in the presentation. Reactive response follows when an alarm of a border monitor goes off or a notification is received about an incident involving or suspected to involve radioactive materials. The response can also be the result of the finding of a discrepancy between a customs declaration form and the corresponding actual shipment. Proactive response is undertaken upon receipt of intelligence information suggesting the illicit trafficking of radioactive materials, notification about the discovery of non-compliance with transport regulations or if discrepancies are found in an inventory of radioactive materials.

  6. Measurement of liquid radioactive materials for monitoring radioactive emissions

    International Nuclear Information System (INIS)

    1977-10-01

    This draft regulation applies to measuring equipment for liquid radioactive materials for the monitoring of the radioactive discharges from stationary nuclear power plants with LWR and HTR reactors. Demands made on the measuring procedure, methods of concentration determination, balancing, indication of limiting values, and inspections are layed down. The draft regulation deals with: 1) Monitoring liquid radioactive discharges: Water and similar systems; radionuclides and their detection limits, radioactively contaminated water (waste water); secondary cooling water; power house cooling water; primary cooling water; flooding water; 2) Layout of the measuring and sampling equipment and demands made on continuous and discontinuous measuring equipment; demands made on discontinuous α and β measuring equipment; 3) Maintenance and repair work; inspections; repair of defects; 4) Demands made on documentation; reports to authorities; 5) Supplement: List of general and reference regulations. (orig./HP) [de

  7. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  8. Production, handling and characterization of particulate materials

    CERN Document Server

    Meesters, Gabriel

    2016-01-01

    This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale.  The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses  issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications. In addition to the production processes, all major unit operations and characterization methods are described in this book. It differs from other books which are devoted to a single technique or a single material. Contributors to this book are acknowledged experts in their field. The aim of the book is to facilitate comparison of the different unit operations leading to optimum...

  9. Perceptions, perspectives, proportions: Radioactive material transport

    International Nuclear Information System (INIS)

    1985-01-01

    Nearly a hundred years ago in 1893 - when railroads still monopolized land transport, the first set of international rules governing shipments of hazardous materials were issued to cover their movement by rail. Since then, more than a dozen international bodies, and scores of national regulatory agencies, have published regulations directed at the carriage of dangerous goods by road, sea, air, as well as rail. The regulatory network today covers virtually all kinds of substances and commodities that are used for beneficial purposes, but that under certain conditions are potentially harmful to people and the environment. 'The Problems Encountered by International Road Transport in Multimodal Transport Operations', by M. Marmy, paper presented at the 8th International Symposium on the Transport and Handling of Dangerous Goods by Sea and Associated Modes, Havana, Cuba, 1984. These include the chemical fertilizers farmers spread on their fields, the nuclear fuel now powering electricity plants in some two dozen countries, the drugs physicians use to diagnose and treat illnesses, and the fossil fuels, such as gasoline, routinely used in transport vehicles. All told today, about 21 different international labels are required to identify separate classes of dangerous goods among them, explosives, corrosives, and flammables. Another separate class radioactive materials is the specific subject of feature articles in this issue of the IAEA Bulletin. The evolving regulatory system reflects at once the growth in traffic of hazardous materials, essentially a post-World War II trend. Since the mid-1940s, for example, the transport of all dangerous goods just on the seas has grown 1000%. based on reports at a recent international conference. Overall, years ahead will see further increases

  10. Responsible handling of the radioactive waste at the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia; Varela, Alfonso

    2006-01-01

    The Radiation Safety Program (RSP) of the Universidad de Costa Rica established in 1990, handles the radioactive waste generated at the University. A centralized storage waste room is used by the Centro de Investigacion en Ciencias Atomicas, Nucleares y Moleculares, Instituto de Investigacion en Salud, Centro de Investigacion en Biologia Celular y Molecular, and the Centro de Investigacion en Contaminacion Ambiental. The RSP has pre-storage procedures, internal controls, protocols for storage, withdrawal of sources and discharges to the environment, according to national and international legislation. The main radionuclides in liquid and solid wastes are P32, I125, S35 y C14; which after a storage period will be disposed of as exempted materials. The waste room also permanently stores sources with the following radionuclides Cs137, U238, Th232, Sr90, Ra226, Cd109, Cf252 and Am241. It has 96 permanent sources and 52 that will be disposed of. The RSP allows the University to have a centralized facility for the safe management of all radioactive waste generated locally. (Author)

  11. Radioactive material accidents in the transport

    International Nuclear Information System (INIS)

    Rodrigues, D.L.; Magalhaes, M.H.; Sanches, M.P.; Sordi, G.M.A.A.

    2008-01-01

    Transport is an important part of the worldwide nuclear industry and the safety record for nuclear transport across the world is excellent. The increase in the use of radioactive materials in our country requires that these materials be moved from production sites to the end user. Despite the number of packages transported, the number of incidents and accidents in which they are involved is low. In Brazil, do not be records of victims of the radiation as a result of the transport of radioactive materials and either due to the accidents happened during the transports. The absence of victims of the radiation as result of accidents during the transports is a highly significant fact, mainly to consider that annually approximately two hundred a thousand packages containing radioactive material are consigned for transport throughout the country, of which eighty a thousand are for a medical use. This is due to well-founded regulations developed by governmental and intergovernmental organizations and to the professionalism of those in the industry. In this paper, an overview is presented of the activities related to the transport of radioactive material in the state of Sao Paulo. The applicable legislation, the responsibilities and tasks of the competent authorities are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. It also presents the packages amounts of carried and the accidents occurred during the transport of radioactive materials, in the last five years. The main occurred events are argued, demonstrating that the demanded requirements of security for any transport of radioactive material are enough to guarantee the necessary control of ionizing radiation expositions to transport workers, members of general public and the environment. (author)

  12. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Messenger, W. de L.M.

    1979-02-01

    The hazards of radioactive materials in transport are surveyed. The system whereby they are safely transported between nuclear establishments in the United Kingdom and overseas is outlined. Several popular misconceptions are dealt with. (author)

  13. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  14. Storage of solid and liquid radioactive material

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-01-01

    Solid radioactive waste collected during 1961 from the laboratories of the Institute amounted to 22.5 m 3 . This report contains data about activity of the waste collected from january to November 1961. About 70% of the waste are short lived radioactive material. Material was packed in metal barrels and stored in the radioactive storage in the Institute. There was no contamination of the personnel involved in these actions. Liquid radioactive wastes come from the Isotope production laboratory, laboratories using tracer techniques, reactor cooling; decontamination of the equipment. Liquid wastes from isotope production were collected in plastic bottles and stored. Waste water from the RA reactor were collected in special containers. After activity measurements this water was released into the sewage system since no activity was found. Table containing data on quantities and activity of radioactive effluents is included in this report

  15. Contamination due to radioactive materials

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1984-01-01

    The peaceful exploitation of radioactivity and the expansion of the nuclear power programme ensure that the disposal of radioactive wastes will cause contamination of the marine environment in the foreseeable future. The exposure of marine organisms to radioactivity from wastes has been studied in depth and related to exposure to natural background radiation. Concentrations of natural radionuclides and those from marine waste disposal have been measured at various stations in the oceans and seas around the world. The fate of radionuclides at four representative sites has been studied and the concentrations of radionuclides in oysters, porphyra, plaice in the Windscale discharge area have been measured. The extent of human exposure, particularly with reference to seafood consumption in local fishing communities, has been assessed. Effects of radiation on developing fish embryos and eggs and genetic radiation effects in aquatic organisms has been studied. The above studies reveal that the controls applied to the discharge of radioactive wastes to limit hazards to humans also provide adequate protection for populations of marine organisms. (U.K.)

  16. Development of devices for handling with BN-350 radioactive waste

    International Nuclear Information System (INIS)

    Iksanov, A.G.; Pustobaev, S.N.; Shirobokov, Yu.P.; Pugachyev, G.P.; Baldov, A.N.; Tikhomirov, L.N.; Tkachenko, V.V.; Tazhibayeva, I.L.; Klepikov, A.Kh.; Romanenko, O.G.; Kenzhin, E.A.; Yakovlev, V.V.; Khametov, S.; Kalinkin, V.L.; Skvortsov, A.I.; Dmitriev, S.A.; Arustamov, A.E.; Zelenski, D.I.; Serebrennikov, Yu.A.

    2010-01-01

    The package of activity performed proves the correctness of the concept accepted by the Government of the Republic of Kazakhstan on the BN-350 decommissioning (three successive steps above) targeted at minimization of cost, exposure and amount of radioactive waste. Decommissioning of the high power fast breeder reactor plant is carried out for the first time and therefore the normative documents and design decisions elaborated, accepted technologies and estimation of capital expenditure and maintenance costs may enrich the database and serve as orientation for decommissioning of similar units. According to the concept accepted the BN-350 decommissioning is the process of top level of complexity that is characterized with the requirement of concurrent execution of a large scope of work by means of international teams from Kazakhstan, Russia, USA, EC, etc. Such approach needs the creation of modern effective organization schemes of interfaces and management of the Projects and will be further used in other complicated Projects

  17. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  18. Doses to road transport workers from radioactive materials

    International Nuclear Information System (INIS)

    Lawrence, B.E.; van der Vooren, A.

    1988-12-01

    Each year approximately 750,000 packages of radioactive materials are shipped throughout Canada. Regulatory controls on these shipments are designed to keep radiation doses received by transport workers well within acceptable limits. Since many of these workers are not monitored for radiation exposure, however, little factual information has been available in Canada to support theoretical estimates. A study to document actual radiation doses received by a select group of transport workers that is actively involved in the shipment of radioactive materials, was carried out in 1987 and 1988. This study involved the monitoring of 31 candidates from nine transport companies from across the country that handle medical isotopes, industrial isotopes, uranium fuel cycle materials and associated radioactive wastes. Each of the candidates (consisting of driver, dock workers, sorters, and supervisors) was issued personal thermoluminescent dosimeter (TLD) badges that were worn each day during the six month monitoring period. Some of the candidates were also issued cab or area dosimeters that were left in the cabs of the vehicles or in work areas so that the dose received in these areas could be differentiated from total personal exposure. During the monitoring program, the candidates filled out reporting sheets at the end of each working day to document information such as the quantity of materials handled, handling times and vehicle size. This information and the dosimetry data were used in the development of correlations between materials handled and doses reported so that doses for other handling similar materials could be estimated. Based on the results of the study, it was learned that while most of the transport workers receive doses that are at or near background levels, other (particularly those handling medical isotopes) are exposed to levels of radiation that may result in their receiving doses above the 5 mSv per annum limit set for members of the general public. On

  19. Radioactivity in returned lunar materials

    Science.gov (United States)

    1972-01-01

    The H-3, Ar-37, and Ar-39 radioactivities were measured at several depths in the large documented lunar rocks 14321 and 15555. The comparison of the Ar-37 activities from similar locations in rocks 12002, 14321, and 15555 gives direct measures of the amount of Ar-37 produced by the 2 November 1969 and 24 January 1971 solar flares. The tritium contents in the documented rocks decreased with increasing depths. The solar flare intensity averaged over 30 years obtained from the tritium depth dependence was approximately the same as the flare intensity averaged over 1000 years obtained from the Ar-37 measurements. Radioactivities in two Apollo 15 soil samples, H-3 in several Surveyor 3 samples, and tritium and radon weepage were also measured.

  20. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  1. Instructions for safe transport of radioactive materials

    International Nuclear Information System (INIS)

    2005-01-01

    This entrance includes 5 chapters and tables and supplement. Chapter I contains the definitions and general provisions contained 5 materials. Chapter II contains radioactive materials packaging and permissible limits and it contains 8 materials. The provisions of Chapter III contains descriptions Missionaries. Chapter IV describes shipping instructions. As for the separation of V It contains Final provisions. The entrance contains number of tables speaks of the basic values of radioactive isotopes and radiation also limits activity and the requirements of industrial parcels and limits transactions to transport freight containers, as well as the International Classification of hazardous materials. This also includes entrance to the Supplement to some forms and Alohat

  2. Handling multiple metadata streams regarding digital learning material

    NARCIS (Netherlands)

    Roes, J.B.M.; Vuuren, J. van; Verbeij, N.; Nijstad, H.

    2010-01-01

    This paper presents the outcome of a study performed in the Netherlands on handling multiple metadata streams regarding digital learning material. The paper describes the present metadata architecture in the Netherlands, the present suppliers and users of metadata and digital learning materials. It

  3. Electric devices used in radioactive handling enclosures of the high activity laboratory

    International Nuclear Information System (INIS)

    Gaigeot, F.; Laurent, H.

    1958-08-01

    This report describes several electric, electronic and electromechanical assemblies which are used in radioactive handling enclosures. The authors propose an overview of existing or foreseen devices: a device to lift covers, a brightness comparator, a high voltage device to perform electrophoresis, a level sensor or regulator device, a regulation device to control under-pressure in an enclosure [fr

  4. Security of radioactive sources and materials

    International Nuclear Information System (INIS)

    Rodriguez, C.; D'Amato, E.; Fernandez Moreno, S.

    1998-01-01

    The activities involving the use of radiation sources and radioactive materials are subject to the control of the national bodies dedicated to the nuclear regulation. The main objective of this control is to assure an appropriate level of radiological protection and nuclear safety. In Argentina, this function is carried out by the 'Nuclear Regulatory Authority' (ARN) whose regulatory system for radiation sources and radioactive materials comprises a registration, licensing and inspection scheme. The system is designed to keep track of such materials and to allow taking immediate corrective actions in case some incident occurs. Due to the appearance of a considerable number of illicit traffic events involving radiation sources and radioactive materials, the specialized national and international community has begun to evaluate the adoption of supplementary measures to those of 'safety' guided to its prevention and detection (i.e. 'security measures'). This paper presents a view on when the adoption of complementary 'security' measures to those of 'safety' would be advisable and which they would be. This will be done through the analysis of two hypothesis of illicit traffic, the first one with sources and radioactive materials considered as 'registered' and the second, with the same materials designated as 'not registered'. It will also describe succinctly the measures adopted by the ARN or under its analysis regarding the 'security' measures to sources and radioactive materials. (author)

  5. Statistics of foreign trade in radioactive materials

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1983 to 2000 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2000, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2000, some 2446 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 2720 t were exported. The chief trading partners are countries of the European Union and Russia, South Korea, and Brazil. (orig.) [de

  6. 44 years of testing radioactive materials packages at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Ludwig, S.B. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials.

  7. 44 years of testing radioactive materials packages at ORNL

    International Nuclear Information System (INIS)

    Shappert, L.B.; Ludwig, S.B.

    2004-01-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials

  8. The issue of safety in the transports of radioactive materials

    International Nuclear Information System (INIS)

    Pallier, Lucien

    1961-01-01

    This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel

  9. Legal provisions concerning the handling and disposal of radioactive waste in international and national law

    International Nuclear Information System (INIS)

    Bischof, W.

    1980-01-01

    The development and present state of legislation and regulation in the field of handling and disposal of radioactive waste is surveyed. On the basis of the comprehensive collection of all legal sources of atomic energy law, including the radiation protection law of the Institute of Public International Law of the Goettingen University (Germany, F.R.), the report will consider provisions of international organizations (IAEA, OECD-NEA, EURATOM-Basic Norms, ICRP), of international agreements (London, Barcelona, Paris, Helsinki Conventions; civil liability conventions) and of the national law of different countries (USA, UK, France, Germany, F.R. and D.R., Italy, Switzerland, Belgium, the Netherlands, Spain). The following subjects are considered: notion and definition of radioactive waste, license-system for handling, storage and disposal; exemptions; licensing of nuclear installations and waste disposal; obligation to deliver radioactive wastes; centralized interim and final storage installations; penalties. (H.K.)

  10. Some Experience with Illicit Trafficking of Radioactive Materials in Tanzania

    International Nuclear Information System (INIS)

    Ngaile, J.E.; Banzi, F.P.; Kifanga, L.D.

    2008-01-01

    Illicit trafficking of radioactive materials (orphan sources or disuse sources) is of global concern. Reports on the IAEA Illicit Trafficking Data Base (ITDB) indicates increasing trend of incidents recorded in more than 40 countries on six continents[1]. It is suspected that nuclear trafficking is fueled by nuclear terrorism and is a threat for increasing illegal trade in nuclear and radioactive materials to manufacture Radiological Disposal Devices (RDD)- dirty bombs. As such, the international co-operative efforts are needed to uncover and combat nuclear trafficking in order to minimize its consequences such as external radiation exposure of persons from source to various radiation levels during illicit movement and after seizure; rupture of source leading to internal exposure of persons and environmental contamination. Although accidents with radioactive materials have not occurred in the United Republic of Tanzania (URT), incidents of illicit trafficking and unauthorized possession of radioactive materials has occurred thus prompting the Tanzania Atomic Energy Commission (TAEC) to strengthen its nuclear security of nuclear and radioactive material in the URT. Nuclear faclities and radioactive sources lacks adequate physical protection against theft, fire or different forms of unauthorized access. Tanzaniaia has recorded about thirteen (13) illicit trafficking incidents of radioactive between 1996-2006. Caesium-137, Uranium-238; and Uranium oxide standard and Radium-226 with activity ranging from low to significantly high were among the radiounuclides which were intercepted. Most of these incidents had their original outside Tanzania. The incidents were uncovered by informers in cooperation with the police. Despite the fact that the management of these incidents by the police were adequate, it was observed that there is an inadequate radiation protection arrangements during transport of seized sources; lack of precautions for safety when handling seized

  11. Dry containment of radioactive materials

    International Nuclear Information System (INIS)

    Williams, C.E.

    1980-01-01

    A cask for the dry containment of radioactive fuel elements is described. The cask has a cover which contains valved drain and purge passageways. These passageways are sealed by after purge cover seals which are clamped over them and to the outer surface of the cover. The cover seals are tested by providing them with a pair of concentric ring seal elements squeezed between the cover seal and the outer surface of the cover and by forcing a gas under pressure into the annular region between the seal element

  12. Computed tomography of radioactive objects and materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Murphy, R.V.; Tosello, G.; Reynolds, P.W.; Romaniszyn, T.

    1990-01-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uranium: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly. (orig.)

  13. Medical applications of radioactive material

    International Nuclear Information System (INIS)

    Seidel, C.W.

    1990-01-01

    Hospitals, clinics and other medical complexes are probably the most extensive users of radioactive solutions of Tc-99m, Tl-201, Ga-67, I-123, Xe-133 and radiopharmaceuticals as diagnostic tools to evaluate the dynamic function of various organs in the body, detect cancerous tumors, sites of infection or other bodily dysfunctions. Examples of monitoring blood flow to a stressed heart and to the brain of a cocaine addict are shown. Short-lived positron emitting radionuclides (C-11, N-13, O-15 and F-18) are produced right in a hospital. Other radionuclides are used as therapeutics to reduce tumor size or kill diseased cells. Radioimmunoassay (RIA) is another medical diagnostic tool that is useful in the early detection of the AIDS virus and cancer as well as many other illnesses. Biological researchers, using radioactive biological compounds, have developed many of todays medical diagnostic procedures. Most of the recent Nobel Laureates in the life sciences have used radiolabeled compounds in their research. A brief review of these applications with several examples is presented

  14. The Safe Transportation of Radioactive Materials

    International Nuclear Information System (INIS)

    Megrahi, Abdulhafeed; Abu-Ali, Giuma; Enhaba; Ahmed

    2008-01-01

    In this paper, we present the essential conditions that should be required for transporting the radioactive materials. We demonstrate the procedure for transporting the radioactive iodine-131 from the Centre of Renewable Energies and Desalination of Water in Tajoura, Libya to Tripoli Medical Center. The safe measures were taken during the process of the transportation of the isotope produced in the centre including dosimetry analysis and the thickness of the container. (author)

  15. Development of radioactive materials inspection system

    International Nuclear Information System (INIS)

    Yang Lu; Wang Guobao; Chen Yuhua; Li Latu; Zhang Sujing

    2005-01-01

    Radioactive materials inspection system which is applied to inspect the horror activities of radioactive materials and its illegal transfer. The detector sections are made of highly stable and credible material. It has high sensitivity to radioactive materials. The inspect lowest limit of inspection is the 2-3 times to the background, the energy range is 30 keV-2.5 MeV and the response time is 0.5 s. Inspection message can be transmitted through wired or wireless web to implement remote control. The structure of the system is small, light and convenient. It is ideal for protecting society and public from the harm of the radiation. (authors)

  16. Illicit trafficking of radioactive material in Hungary

    International Nuclear Information System (INIS)

    Golder, I.

    1996-01-01

    Hungary, due to its geographical location is a convenient region for illegal transit of nuclear material between source and target countries. In recent years nine cases have became known and altogether 21.7 kg depleted, 4.6 kg natural, and 2.5 kg low enriched uranium have been confiscated. A brief summary is given of possible origin of the illicitly transported radioactive material. The most important elements of the security of sources including the national and accounting system of radioactive material and the intervention plans are discussed. (author)

  17. Controlling fugitive dust emissions in material handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, G E

    1992-05-01

    The primary mechanism of fugitive dust generation in bulk material handling transfer operations is by dispersion of dust in turbulent air induced to flow with falling or projected material streams. This paper returns to basic theories of particle dynamics and fluid mechanics to quantify the dust generating mechanism by rational analysis. Calculations involving fluid mechanisms are made easier by the availability of the personal computer and the many math manipulating programs. Rational analysis is much more cost effective when estimating collection air volumes to control fugitive emissions; especially in enclosed material handling transfers transporting large volumes of dusty material. Example calculations, using a typical enclosed conveyor-to-conveyor transfer operation are presented to illustrate and highlight the key parameters that determine the magnitude of induced air flow that must be controlled. The methods presented in this paper for estimating collection air volumes apply only enclosed material handling transfers, exhausted to a dust collector. Since some assistance to the control of dust emissions must be given by the material handling transfer chute design, a discussion of good transfer chute design practice is presented. 4 refs., 2 figs., 2 tabs.

  18. Alternate Materials In Design Of Radioactive Material Packages

    International Nuclear Information System (INIS)

    Blanton, P.; Eberl, K.

    2010-01-01

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  19. Transportation of radioactive materials - a utility view

    International Nuclear Information System (INIS)

    Futter, J.L.

    1979-01-01

    Local restrictions to transportation of radioactive materials have proliferated, and the reasons for this are described. Some of the measures which could be undertaken to counteract this trend are discussed. People should speak out on the need for nuclear power in general and for transportation of nuclear materials in particular

  20. Transport of radioactive materials by post

    International Nuclear Information System (INIS)

    1984-11-01

    The objective of the Seminar was to encourage safe and efficient carriage of radioactive material by post. Adequate, up-to-date regulations for international and domestic shipment of radioactive material by all modes of transport, including by mail, have been published by the IAEA. UPU, ICAO, IATA and other international organizations as well as a majority of the countries of the world have adopted most sections of the Agency's Regulations for the Safe Transport of Radioactive Material. Although there is an apparent need for shipping radioactive material by mail, some countries allow only domestic shipments and the postal regulations applied in these countries often differs from the international regulations. Only about 25 countries are known to allow international (as well as domestic) shipments. From the discussions and comments at the Seminar, it appears that the option of shipment by post would be advantageous to enhance both the safety and economy of transporting, as well as to increase availability of, radioactive materials. The Agency's Regulations for transport by post as adopted by the UPU and ICAO are considered to provide a high level of safety and ensure a negligible element of risk. A more uniform application of these regulations within UPU Member States should be encouraged. The competent authority for implementation of the other parts of the Agency's Regulations in each of the Member States should be invited to advise the Postal Administrators and assist in applying the requirements to national as well as international postal shipments

  1. Detection of radioactive materials at borders

    International Nuclear Information System (INIS)

    2003-08-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  2. Detection of radioactive materials at borders

    International Nuclear Information System (INIS)

    2002-09-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  3. Detection of radioactive materials at borders

    International Nuclear Information System (INIS)

    2004-05-01

    By international agreements, the movement of all radioactive materials within and between States should be subject to high standards of regulatory, administrative, safety and engineering controls to ensure that such movements are conducted in a safe and secure manner. In the case of nuclear materials, there are additional requirements for physical protection and accountability to ensure against threats of nuclear proliferation and to safeguard against any attempts at diversion. The results of the terrorist attacks of September 2001 emphasized the requirement for enhanced control and security of nuclear and radioactive materials. In this regard, measures are being taken to increase the global levels of physical protection and security for nuclear materials. Experience in many parts of the world continues to prove that movements of radioactive materials outside of the regulatory and legal frameworks continue to occur. Such movements may be either deliberate or inadvertent. Deliberate, illegal movements of radioactive materials, including nuclear material, for terrorist, political or illegal profit is generally understood to be illicit trafficking. The more common movements outside of regulatory control are inadvertent in nature. An example of an inadvertent movement might be the transport of steel contaminated by a melted radioactive source that was lost from proper controls. Such a shipment may present health and safety threats to the personnel involved as well as to the general public. States have the responsibility for combating illicit trafficking and inadvertent movements of radioactive materials. The IAEA co-operates with Member States and other international organizations in joint efforts to prevent incidents of illicit trafficking and inadvertent movements and to harmonize policies and measures by the provision of relevant advice through technical assistance and documents. As an example, the IAEA and the World Customs Organization (WCO) maintain a Memorandum

  4. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1991-01-01

    The transport of radioactive material embraces the carriage of radioisotopes for industrial, medical and research uses, and the movement of waste, in addition to consignments of nuclear fuel cycle material. It has been estimated that between eighteen and thirty-eight million package shipments take place each year. On the recommendation of the Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), which enjoys wide representations from the Agency's Member States and international organizations, the Secretariat is preparing a training kit comprising this training manual and complementary visual aids. The kit is intended to be the basis for an extensive course on the subject and can be used in whole or in part for inter-regional, regional and even national training purposes. Member States can thus benefit from the material either through training courses sponsored by the Agency, or, alternatively, organized by themselves. As a step towards achieving that goal, the current training manual was compiled using material from the first Inter-Regional Training Course on the Safe Transport of Radioactive material that was held in co-operation with the Nuclear Power Training Centre of the then Central Electricity Generating Board at Bristol, United Kingdom. This Manual was initially published in 1990. On the recommendation of the Agency's Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM), the Manual has since been expanded and updated in time for the second Inter-Regional Training Course, that will in 1991 similarly be held in Bristol. Refs, figs, tabs

  5. Completion of the Radioactive Materials Packaging Handbook

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1998-02-01

    The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials

  6. Ontario hydro radioactive material transportation field guide

    International Nuclear Information System (INIS)

    Howe, W.

    1987-01-01

    The recent introduction of both the AECB Transport Packaging of Radioactive Material Regulations and Transport Canada's Transportation of Dangerous Goods Regulations have significantly altered the requirements for transporting radioactive material in Canada. Extensive additional training as well as certification of several hundred Ontario Hydro employees has been necessary to ensure compliance with the additional and revised regulatory requirements. To assist in the training of personnel, an 'active' corporate Ontario Hydro Field Guide for Radioactive Material Transport document has been developed and published. The contents of this Field Guide identify current Ontario Hydro equipment and procedures as well as the updated relevant regulatory requirements within Canada. In addition, to satisfying Ontario Hydro requirements for this type of information over two thousand of these Field Guides have been provided to key emergency response personnel throughout the province of Ontario to assist in their transportation accident response training

  7. Packaging configurations and handling requirements for nuclear materials

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1981-01-01

    The basic safety concepts for radioactive material are that the package is the primary protection for the public, that the protection afforded by the package should be proportional to the hazard and that the package must be proved by performance. These principles are contained in Department of Energy (DOE), Nuclear Regulatory Commission (NRC) and Department of Transportation (DOT) regulations which classify hazards of various radioactive materials and link packaging requirements to the physical form and quantities being shipped. Packaging requirements are reflected in performance standards to guarantee that shipments of low hazard quantities will survive the rigors of normal transportation and that shipments of high hazard quantities will survive extreme severity transportation accidents. Administrative controls provide for segregation of radioactive material from people and other sensitive or hazardous material. They also provide the necessary information function to control the total amounts in a conveyance and to assure that appropriate emergency response activities be started in case of accidents or other emergencies. Radioactive materials shipped in conjunction with the nuclear reactor programs include, ores, concentrates, gaseous diffusion feedstocks, enriched and depleted uranium, fresh fuel, spent fuel, high level wastes, low level wastes and transuranic wastes. Each material is packaged and shipped in accordance with regulations and all hazard classes, quantity limits and packaging types are called into use. From the minimal requirements needed to ship the low hazard uranium ores or concentrates to the very stringent requirements in packaging and moving high level wastes or spent fuel, the regulatory system provides a means for carrying out transportation of radioactive material which assures low and controlled risk to the public

  8. Denials and Delays of Radioactive Material Shipments

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    2011-01-01

    delays of shipments of radioactive materials forms an important issue today. Radioactive materials need to be transported using all modes of transport for use in different applications such as public health, industry, research and production of nuclear power. The transport of radioactive materials is governed by national and international regulations, which are based on the International Atomic Energy Agency (IAEA) regulations for safe transport of radioactive materials (TS-R-1). These regulations ensure high standards of safety. Recently there were increasing numbers of instances of denials and delays of shipments of radioactive materials even when complying with the regulations. The denials and delays can result in difficulties to patients and others who rely on products sterilized by radiation. Therefore there is an urgent need for a universally accepted approach to solve this problem. In response, the IAEA has formed an International Steering Committee (ISC) on denials and delays of radioactive materials. Also, it designate the National Focal Points (NFP) representative to help the ISC members and the IAEA by informing about denial operations and how they can help. The Steering Committee developed and adopted an action plan which includes the action to be taken. This plan is based on: Awareness, Training, Communication, Lobbying for marketing, Economic and Harmonization among member states. It is important to work within the mandate of the ISC and in the line of action plan on denials and delays. It identified the following network members such as: National Focal Points, Regional Coordinators, National Committee, National Representative for different modes of transport and similar bodies, Carriers, Producers and Suppliers, Different civil societies, NGO's, Ministry of transport and others.

  9. Import/export Service of Radioactive Material

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export service of radioactive material (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Web site: http://cern.ch/service-rp-shipping/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch Radioactive Sources Service Please note that the radioactive sources service (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Moreover, the service being reduced transports between Swiss and French sites (and vice versa) will now be achieved by internal transport. Web site : http://cern.ch/service-radioactive-sources/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch

  10. Expert systems for the transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Luce, C.E.; Clover, J.C.; Ferrada, J.J.

    1994-01-01

    Under the supervision of the Transportation Technologies Group which is in the Chemical Technology Division at Oak Ridge National Laboratory, an expert system prototype for the transportation and packaging of hazardous and radioactive materials has been designed and developed. The development of the expert system prototype focused on using the combination of hypermedia elements and the Visual Basic trademark programming language. Hypermedia technology uses software that allows the user to interact with the computing environment through many formats: text, graphics, audio, and full-motion video. With the use of hypermedia, a user-friendly prototype has been developed to sort through numerous transportation regulations, thereby leading to the proper packaging for the materials. The expert system performs the analysis of regulations that an expert in shipping information would do; only the expert system performs the work more quickly. Currently, enhancements in a variety of categories are being made to the prototype. These include further expansion of non-radioactive materials, which includes any material that is hazardous but not radioactive; and the addition of full-motion video, which will depict regulations in terms that are easy to understand and which will show examples of how to handle the materials when packaging them

  11. Institutional storage and disposal of radioactive materials

    International Nuclear Information System (INIS)

    St Germain, J.

    1986-01-01

    Storage and disposal of radioactive materials from nuclear medicine operations must be considered in the overall program design. The storage of materials from daily operation, materials in transit, and long-term storage represent sources of exposure. The design of storage facilities must include consideration of available space, choice of material, occupancy of surrounding areas, and amount of radioactivity anticipated. Neglect of any of these factors will lead to exposure problems. The ultimate product of any manipulation of radioactive material will be some form of radioactive waste. This waste may be discharged into the environment or placed within a storage area for packaging and transfer to a broker for ultimate disposal. Personnel must be keenly aware of packaging regulations of the burial site as well as applicable federal and local codes. Fire codes should be reviewed if there is to be storage of flammable materials in any area. Radiation protection personnel should be aware of community attitudes when considering the design of the waste program

  12. Radioactive materials transporting container and vehicles

    International Nuclear Information System (INIS)

    Reese, S.L.

    1980-01-01

    A container and vehicle therefor for transporting radioactive materials is provided. The container utilizes a removable system of heat conducting fins made of a light weight highly heat conductive metal, such as aluminum or aluminum alloys. This permits a substantial reduction in the weight of the container during transport, increases the heat dissipation capability of the container and substantially reduces the scrubbing operation after loading and before unloading the radioactive material from the container. The vehicle utilizes only a pair of horizontal side beams interconnecting a pair of yoke members to support the container and provide the necessary strength and safety with a minimum of weight

  13. Transportation of radioactive materials. Safety and regulation

    International Nuclear Information System (INIS)

    Niel, Jean-Christophe

    2013-01-01

    This engineering-oriented publication first presents fluxes and risks related to the transportation of radioactive materials: fluxes, risks, in-depth defence, and parcel typology. The author then describes the elaboration process for transportation regulations: IAEA recommendations for the transportation of radioactive materials and their review process, IAEA recommendations for modal regulations. He presents the French transportation regulation framework: evolutions of IAEA recommendations, case of aerial transport, and case of maritime transport. The next part addresses the specific case of the transportation of uranium hexafluoride. The last part addresses incidents and accidents occurring during transportation: declarations to be made, brief presentations of several examples of incidents and accidents

  14. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  15. Modelling dust liberation in bulk material handling systems

    NARCIS (Netherlands)

    Derakhshani, S.M.

    2016-01-01

    Dust has negative effects on the environmental conditions, human health as well as industrial equipment and processes. In this thesis, the transfer point of a belt conveyor as a bulk material handling system with a very high potential place for dust liberation is studied. This study is conducted

  16. Safety requirements and feedback of commonly used material handling equipment

    International Nuclear Information System (INIS)

    Pathak, M.K.

    2009-01-01

    Different types of cranes, hoists, chain pulley blocks are the most commonly used material handling equipment in industry along with attachments like chains, wire rope slings, d-shackles, etc. These equipment are used at work for transferring loads from one place to another and attachments are used for anchoring, fixing or supporting the load. Selection of the correct equipment, identification of the equipment planning of material handling operation, examination/testing of the equipment, education and training of the persons engaged in operation of the material handling equipment can reduce the risks to safety of people in workplace. Different safety systems like boom angle indicator, overload tripping device, limit switches, etc. should be available in the cranes for their safe use. Safety requirement for safe operation of material handling equipment with emphasis on different cranes and attachments particularly wire rope slings and chain slings have been brought out in this paper. An attempt has also been made to bring out common nature of deficiencies observed during regulatory inspection carried out by AERB. (author)

  17. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (2012 Ed.). Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This Safety Guide provides recommendations and guidance on achieving and demonstrating compliance with IAEA Safety Standards Series No. SSR-6, Regulations for the Safe Transport of Radioactive Material (2012 Edition), which establishes the requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material, including the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Standards Series No. TS-G-1.1 Rev. 1, which was issued in 2008.

  18. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide provides recommendations on achieving and demonstrating compliance with IAEA Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, 2005 Edition, establishing safety requirements to be applied to the national and international transport of radioactive material. Transport is deemed to comprise all operations and conditions associated with and involved in the movement of radioactive material; these include the design, fabrication and maintenance of packaging, and the preparation, consigning, handling, carriage, storage in transit and receipt at the final destination of packages. This publication supersedes IAEA Safety Series No. TS-G-1.1, 2002 Edition

  19. High level radioactive waste repositories. Task 3. Review of underground handling and emplacement. 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A review is presented of proposals for transport, handling and emplacement of high-level radioactive waste in an underground repository appropriate to the U.K. context, with particular reference to waste block size and configuration; self-shielded or partially-shielded block; stages of disposal; transport by road/rail to repository site; handling techniques within repository; emplacement in vertical holes or horizontal tunnels; repository access by adit, incline or shaft; conventional and radiological safety; costs; and major areas of uncertainty requiring research or development.

  20. Natural radioactivity for some Egyptian building material

    International Nuclear Information System (INIS)

    Eissa, M. F.; Mostafa, R. M.; Shahin, F.; Hassan, K. F.; Saleh, Z. A.; Yahia, A.

    2007-01-01

    Study of the radiation hazards for the building materials is interested in most international countries. Measurements of natural radioactivity was verified for some egyptian building materials to assess any possible radiological hazard to man by the use of such materials. The measurements for the level of natural radioactivity in the materials was determined by γ-ray spectrum using HP Ge detector. A track detector Cr-39 was used to measure the radon exhalation rate from these materials. The radon exhalation rates were found to vary from 2.83±0.86 to 41.57 ± 8.38 mBqm -2 h -1 for egyptian alabaster. The absorbed dose rate in air is lower than the international recommended value (55 n Gy h -1 ) for all test samples

  1. Safe and secure: transportation of radioactive materials

    International Nuclear Information System (INIS)

    Howe, D.

    2015-01-01

    Western Waste Management Facility is Central Transportation Facility for Low and Intermediate waste materials. Transportation support for Stations: Reactor inspection tools and heavy water between stations and reactor components and single bundles of irradiated fuel to AECL-Chalk River for examination. Safety Track Record: 3.2 million kilometres safely travelled and no transportation accident - resulting in a radioactive release.

  2. RADIOACTIVE MATERIALS IN BIOSOLIDS: DOSE MODELING

    Science.gov (United States)

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tra...

  3. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  4. Security of handling radioactive sources and the role of the regulatory body in Egypt

    International Nuclear Information System (INIS)

    Salama, M.

    1998-01-01

    The motivation of the present paper was undertaken to discuss the system adopted by the National Centre for Nuclear Safety and Radiation Control (NCNSRC) in handling the radioactive sources inside the country. The system concentrates mainly on the role of the centre concerning three main categories namely regulations, licensing and training. The mutual co-operation between the regulatory body and the other agencies concerning this matter is going to be presented. (author)

  5. Safe transport of radioactive material. 3. ed

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA

  6. Safe transport of radioactive material. 3. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The IAEA has developed a standardized approach to transport safety training as a means of helping Member States to implement the Transport Regulations. The training manual is an anchor of this standardized approach to training: it contains all the topics presented in the sequential order recommended by the IAEA for the student to gain a thorough understanding of the body of knowledge that is needed to ensure that radioactive material ranked as Class 7 in the United Nations' nomenclature for dangerous goods - is transported safely. The explanations in the text refer, where needed, to the appropriate requirements in the IAEA's Transport Regulations; additional useful information is also provided. Thus, the training manual in addition to the Transport Regulations and their supporting documents is used by the IAEA as the basis for delivering all of its training courses on the safe transport of radioactive material. Enclosed with the training manual is a CD-ROM that contains the text of the manual as well as the visual aids that are used at the IAEA's training courses. The following topics are covered: review of radioactivity and radiation; review of radiation protection principles; regulatory terminology; basic safety concepts: materials and packages; activity limits and material restrictions; selection of optimal package type; test procedures: material and packages; requirements for transport; control of material in transport; fissile material: regulatory requirements and operational aspects; quality assurance; national competent authority; additional regulatory constraints for transport; international liability and insurance; emergency planning and preparedness; training; services provided by the IAEA.

  7. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    The automated material transport system (AMTS) was conceived for the transport of samples within the material and process control laboratory (MPCL), located in the plutonium processing building of the special isotope separation (SIS) facility. The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing glove boxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with a minimum of waiting periods and nonproductive activities. The AMTS design requirements, design verification mockup plan, and AMTS mockup procurement specification were established prior to cancellation of the SIS project. Due to the AMTS's flexibility, the need for technology development, and applicability to other US Department of Energy facilities, mockup of the AMTS continued. This paper discusses the system design features, capabilities, and results of initial testing

  8. Dust prevention in bulk material transportation and handling

    Science.gov (United States)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  9. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  10. Regulatory Framework and Current Practices of the Radioactive Material Safe and Secure Transport in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Grillo, B.; Telhaj, E.

    2016-01-01

    Attempts for the establishing of a safe and secure radioactive material transport in Albania began a decade ago with formulation of the different regulation in the field of safe and secure handling of the radioactive materials. In 2004 a special regulation for the safe transport of radioactive material was prepared and approved by the National Radiation Protection Commission). This regulation has been based in the IAEA standards for the radioactive material transport and was reviewed periodically. The last regulation of the radioactive material transport was approved by Albanian government through a governmental ordinance. The transport of the radioactive material in Albania is performed by licensed subjects, which fulfill all requirements of the mentioned governmental ordinance. Based in the existing regulation, for each transport of radioactive material, a special permission is issued by NRPC. The issuing of permission allows competent authority to provide necessary information on transport regularity and to have under survey all transports of the radioactive material carried out inside the country. Last year were issued more than 80 permissions for the transport of the different types and categories of the radioactive sources. (author)

  11. Design and safety evaluation of radioactive gas handling and storage in the FFTF

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Hale, J.P.; Halverson, T.G.

    1976-01-01

    During the operation of the Fast Flux Test Facility (FFTF), radioactive gases, primarily xenon and krypton, will be produced which will require processing and storing. Two systems have been installed in the FFTF for handling these gases: (1) one to handle, primarily, the reactor cover gas system, and (2) a second to handle the cells and cover gas systems, other than the reactor, whose atmosphere may become contaminated. The system that processes the reactor cover gas, which is argon, is called the Radioactive Argon Processing System (RAPS). The effluent argon from RAPS will normally be sufficiently decontaminated to allow its reuse as the reactor cover gas. If the radioactive level in the RAPS becomes too high, the exhaust stream will be diverted to the Cell Atmosphere Processing System (CAPS), a system which can function as a backup to RAPS. The design and operation of the RAPS and CAPS systems are described and certain safety aspects of the systems are discussed. It is shown that these systems adequately provide the cleanup services required and that they provide the safety margins necessary to assure adequate safety to the public

  12. Environment - sustainable management of radioactive materials and radioactive - report evaluation

    International Nuclear Information System (INIS)

    2006-05-01

    The economic affairs commission evaluated the report of M. Henri Revol on the law project n 315 of the program relative to the sustainable management of the radioactive materials and wastes. It precises and discusses the choices concerning the researches of the three axis, separation and transmutation, deep underground disposal and retrieval conditioning and storage of wastes. The commission evaluated then the report on the law project n 286 relative to the transparency and the security in the nuclear domain. It precises and discusses this text objectives and the main contributions of the Senate discussion. (A.L.B.)

  13. Radioactive waste - a select list of material

    International Nuclear Information System (INIS)

    Lambert, C.M.

    1982-01-01

    A chronological bibliography is presented of literature relating to radioactive waste management in the United Kingdom concentrating on material published since 1978. The main sections include Dept. of Environ. and Official publications, administrative and environmental concerns, technological and scientific considerations, including publications on geological aspects, deep-sea bed and ocean-dumping and salt domes, with general background material and further sources of information listed at the end. (U.K.)

  14. Legal provisions concerning the handling and disposal of radioactive waste in international and national law

    International Nuclear Information System (INIS)

    Bischof, W.

    1980-01-01

    A short survey is given on the situation of international legislation concerning radioactive waste handling and disposal. There are special rules on the disposal of nuclear waste in a number of conventions (Geneva 1958, London 1972, Helsinki 1974, Paris 1974, Barcellone 1976) on the protection of the marine environment and of the high sea against pollutions. In 1974 and 1978, the International Atomic Energy Agency made further recommendations concerning radioactive wastes referred to in the London Convention. In 1977, the Organisation for Economic Cooperation and Development also set up within its Nuclear Energy Agency (NEA) a multilateral consultation and surveillance mechanism for the sea-dumping of radioactive waste. The NEA has since published recommendations on the sea-dumping of radioactive waste. In 1975, it was agreed to abide by the Antarctic Treaty of 1959 not to dispose any nuclear waste on the Antarctic Region. There is at present no absolute prohibition of radioactive waste disposal in outer space but the Member States of the United Nations are responsible for such activities. As regards national legislation, the legal provisions for 13 different countries on radioactive waste disposal are listed. (UK)

  15. Radiation surveys of radioactive material shipments

    International Nuclear Information System (INIS)

    Howell, W.P.

    1986-07-01

    Although contractors function under the guidance of the Department of Energy, there is often substantial variation in the methods and techniques utilized in making radiation measurements. When radioactive materials are shipped from one contractor to another, the measurements recorded on the shipping papers may vary significantly from those measured by the receiver and has been a frequent cause of controversy between contractors. Although significant variances occur in both measurements of radiation fields emanating from shipment containers and measurements of residual radioactivity on the surfaces of the containers, the latter have been the most troublesome. This report describes the measurement of contamination on the exterior surfaces of shipment containers

  16. Placarding of road vehicles carrying radioactive materials

    International Nuclear Information System (INIS)

    1977-09-01

    The purpose of this Code is to give guidance on the placarding requirements for vehicles carrying radioactive materials by road in Great Britain and on the continent of Europe. Additional placards may be required regarding dangerous properties other than radioactivity. The labelling of packages for transport is dealt with in AECP 1030. This Code deals with two aspects of road vehicle placarding:-(a) placarding on the outside of road vehicles in Great Britain and on the continent of Europe, (b) a fireproof placard fixed in the driver's cab. Responsibility for placarding the vehicle rests with the carrier, but in practice the consignor may need to provide the placards. (U.K.)

  17. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    An Automated Material Transport System (AMTS) was identified for transport of samples within a Material and Process Control Laboratory (MPCL). The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing gloveboxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with minimum o[ waiting periods and nonproductive activities. This paper discusses the system design features, capabilities and results of initial testing. The overall performance of the AMTS is very good. No major problems or concerns were identified. System commands are simple and logical making the system user friendly. Operating principle and design of individual components is simple. With the addition of various track modules, the system can be configured in most any configuration. The AMTS lends itself very well for integration with other automated systems or products. The AMTS is suited for applications involving light payloads which require multiple sample and material handling, lot tracking, and system integration with other products

  18. Security of radioactive materials for medical use

    International Nuclear Information System (INIS)

    Elliott, A.

    2006-01-01

    Both sealed and unsealed radioactive sources are used in hospitals throughout the world for diagnostic and therapeutic purposes. High activity single sealed sources are used in teletherapy units, although these are becoming less common as they are replaced by linear accelerators, and in blood irradiator units, which are in widespread use. Lower activity sealed sources are used in brachytherapy. High activity unsealed sources are used typically for the treatment of thyroid cancer and neuroblastoma in inpatients while diagnostic doses of unsealed radioactive materials have much lower activities. In the case of a central radiopharmacy producing patient doses of radiopharmaceutical for several Nuclear Medicine departments, however, quite large amounts of radioactive materials may be held. Hospitals are, by their nature, less secure than other licensed nuclear sites and the ever-changing patient /visitor (and staff) population is a further complicating factor. Hitherto, security of radioactive materials in hospitals has tended to be considered from the perspective only of radiation safety but this approach is no longer sufficient

  19. Safe transport of radioactive materials in Egypt

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    1994-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 and 1991 and their nationalities are also discussed. The protective measures are mentioned. A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes. (Author)

  20. Study of gel materials as radioactive 222Rn gas detectors

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J. I.; Rickards, J.; Gammage, R. B.

    2006-01-01

    Commercial hair gel material (polyvinyl pyrolidone triethanolamine carbo-pol in water) and bacteriological agar (phycocolloid extracted from a group of red-purple algae, usually Gelidium sp.) have been studied as radioactive radon gas detectors. The detection method is based on the diffusion of the radioactive gas in the gel material, and the subsequent measurement of trapped products of the natural decay of radon by gamma spectrometry. From the several radon daughters with gamma radiation emission ( 214 Pb, 214 Bi, 214 Po, 210 Pb, 210 Po), two elements, 214 Pb (0.352 MeV) and 214 Bi (0.609 MeV), were chosen for the analysis in this work; in order to determine the best sensitivity, corrections were made for the short half-life of the analysed isotopes. For the gamma spectrometry analysis, a hyper-pure germanium solid state detector was used, associated with a PC multichannel analyser card with Maestro R and Microsoft R Excel R software. The results show the viability of the method: a linear response in a wide radon concentration range (450-10,000 Bq m -3 ), reproducibility of data, easy handling and low cost of the gel material. This detection methodology opens new possibilities for measurements of radon and other radioactive gases. (authors)

  1. Import/export Service of Radioactive Material

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export service of radioactive material (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Web site: http://cern.ch/service-rp-shipping/ Tel.: 73171 E-mail: service-rp-shipping@cern.ch Radioactive Sources Service Please note that the radioactive sources service (24/E-024) is open from Monday to Friday, 8:00 to 11:00. No request will be treated the afternoon. Moreover, the service being reduced, transports between Swiss and French sites (and vice versa) will now be achieved by internal transport. Web site : http://cern.ch/service-rp-sources Tel.: 73171 E-mail: service-rp-sources@cern.ch

  2. Completion of the radioactive materials packaging handbook

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1998-01-01

    'The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance', which will serve as a replacement for the 'Cask Designers Guide'(1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US DOE and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials. Even though the Handbook is concerned with both small and large packagings, most of the emphasis is placed on large packagings that are capable of transporting fissile, radioactive sources (e.g. spent fuels). The safety analysis reports for packagings (SARPs) must address the widest range of technical topics in order to meet United States and/or international regulations, all of which are covered in the Handbook. One of the primary goals of the Handbook is to provide information which would guide designers of radioactive materials packages to make decisions that would most likely be acceptable to regulatory agencies during the approval process of the packaging. It was therefore important to find those authors who not only were experts in one or more of the areas that are addressed in a SARP, but who also had been exposed to the regulatory process or had operational experience dealing with a wide variety of package types. Twenty-five such people have contributed their time and talents to the development of this document, mostly on a volunteer basis

  3. Comparison of differences between ports for radioactive material transport

    International Nuclear Information System (INIS)

    Massey, C.D.; Wheeler, T.A.; Yoshimura, H.R.

    1994-01-01

    Recent controversy and litigation over the import/export of radioactive materials into and out of the United States via United States ports has centered on differences between ports, especially differences in surrounding population densities, and also whether reliance on one or a few ports poses unacceptable risks for these ports and the surrounding populations. This study examines the results of risk analyses from several recent environmental assessments dealing with import/export of various types of radioactive materials ranging from uranium hexafluoride to spent nuclear fuel. Since an intermodal transfer is always involved, the maritime and intermodal transportation is broken down into its component activities and segments; each is determined separately. The results indicate that most of the potential exposure occurs during routine handling of packages during intermodal transfer. Since handling of containerized cargo is highly standardized at ports around the world, differences between ports are of secondary importance. The risks associated with any overland transport from port to inland destination are primarily a function of distance for a given package type

  4. Safe transport of radioactive material. 4. ed

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been publishing Regulations for the Safe Transport of Radioactive Material since 1961. Meeting its statutory obligation to foster the exchange and training of scientists and experts in the field of peaceful uses of atomic energy, the IAEA has developed a standardized approach to transport safety training. This training manual is an anchor of the standardized approach to training. It is a compendium of training modules for courses related to the different aspects of safety of transport of radioactive material. Keeping in view the specific needs of the potential users, the manual includes material that can be used for a variety of training programmes of duration ranging from half-a-day to ten days, for specific audiences such as competent authority personnel, public authorities, emergency response personnel and cargo handlers

  5. Design and Implementation of Company Tailored Automated Material Handling

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1996-01-01

    This article focuses on the problems of analysing automation of material handling systems in order to develop an efficient automated solution that is specifically tailored to the company. The research has resulted in development of new methods for evaluating factory automation from design...... to implementation. The goals of the research were to analyse and evaluate automation in order to obtain an advantageous combination of human and automated resources. The idea is to asses different solutions in a virtual environment, where experiments and analyses can be performed so that the company can justify...... for their application with computer aided information processing tools. The framework is named the "Automated Material Handling (AMH) Preference GuideLine". The research has been carried out in close co-operation with Danish and European industry, where implementations of automation can be referred to. It is our...

  6. Radioactive Materials Packaging (RAMPAC) Radioactive Materials Incident Report (RMIR). RAMTEMP users manual

    International Nuclear Information System (INIS)

    Tyron-Hopko, A.K.; Driscoll, K.L.

    1985-10-01

    The purpose of this document is to familiarize the potential user with RadioActive Materials PACkaging (RAMPAC), Radioactive Materials Incident Report (RMIR), and RAMTEMP databases. RAMTEMP is a minor image of RAMPAC. This reference document will enable the user to access and obtain reports from databases while in an interactive mode. This manual will be revised as necessary to reflect enhancements made to the system

  7. Contamination confinement system of irradiated materials handling laboratories

    International Nuclear Information System (INIS)

    Lobao, A. dos S.T.; Araujo, J.A. de; Camilo, R.L.

    1988-06-01

    A study to prevent radioctivity release in lab scale is presented. As a basis for the design all the limits established by the IAEA for ventilation systems were observed. An evaluation of the different parameters involved in the design have been made, resulting in the especification of the working areas, ducts and filtering systems in order to get the best conditions for the safe handling of irradiated materials. (author) [pt

  8. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  9. Containment system of contamination in irradiated materials handling laboratories

    International Nuclear Information System (INIS)

    Lobao, A.S.T.; Araujo, J.A. de; Camilo, R.L.

    1988-01-01

    A study to prevent radiactivity release in lab scale is presented. As a basis for the design all the limits established by the IAEA for ventilation systems were observed. An evaluation of the different parameters involved in the design have been made, resulting in the specification of the working areas, ducts and filtering systems in order to get the best conditions for the safe handling of irradiated materials. (author) [pt

  10. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  11. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  12. Multimedia instructions for carriers of radioactive material

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G. M.; Simpson, J.; Ghobril, C. N.; Perez, C. F.

    2014-08-01

    For some operators the transport regulations for transporting radioactive material are considered to be complicated and not user friendly and as a result for some operators it is difficult to identify all the transport regulatory requirements they must comply with for each type of package or radioactive material. These difficulties can result in self-checking being ineffective and as a consequence the first and important step in the safety chain is lost. This paper describes a transport compliance guide for operators that is currently under development for the South American market. This paper describes the scope and structure of the guide and examples of the information provided is given, which will be available in English, Portuguese and Spanish. It is intended that when the guide is launched before the end of 2013 it will be accessed using a bespoke software program that can run on Pc platform to provide a checklist for the operator before the shipment begins By identifying the regulatory requirements the guide is also intended to provide operators with an understanding of the structure of the transport regulations and an appreciation of the logic behind the regulatory requirements for each Un numbered package and material type listed in the transport regulations for radioactive material. It is foreseen that the interactive program can be used both operationally on a day-to-day basis and as a training tool, including refresher training, as the guide will be updated when the transport regulations are periodically changed. (Author)

  13. Multimedia instructions for carriers of radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, A.; Sordi, G. M. [Instituto de Pesquisas Energeticas e Nucleares, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Simpson, J. [Class 7 Limited, 9 Irk Vale Drive, Chadderton, Oldham OL1 2TW (United Kingdom); Ghobril, C. N. [Governo de Sao Paulo, Instituto de Economia Agricola, 04301-903 Sao Paulo (Brazil); Perez, C. F., E-mail: adelia@atomo.com.br [Centro Tecnologico da Marinha em Sao Paulo, Av. Prof. Lineu Prestes 2468, Cidade Universitaria, 05508-000 Sau Paulo (Brazil)

    2014-08-15

    For some operators the transport regulations for transporting radioactive material are considered to be complicated and not user friendly and as a result for some operators it is difficult to identify all the transport regulatory requirements they must comply with for each type of package or radioactive material. These difficulties can result in self-checking being ineffective and as a consequence the first and important step in the safety chain is lost. This paper describes a transport compliance guide for operators that is currently under development for the South American market. This paper describes the scope and structure of the guide and examples of the information provided is given, which will be available in English, Portuguese and Spanish. It is intended that when the guide is launched before the end of 2013 it will be accessed using a bespoke software program that can run on Pc platform to provide a checklist for the operator before the shipment begins By identifying the regulatory requirements the guide is also intended to provide operators with an understanding of the structure of the transport regulations and an appreciation of the logic behind the regulatory requirements for each Un numbered package and material type listed in the transport regulations for radioactive material. It is foreseen that the interactive program can be used both operationally on a day-to-day basis and as a training tool, including refresher training, as the guide will be updated when the transport regulations are periodically changed. (Author)

  14. Natural occurring radioactivity materials (NORM) in Ecuadorian oil fields

    International Nuclear Information System (INIS)

    Vasquez, R.; Enriquez, F.; Reinoso, T.

    2008-01-01

    Full text: Many natural elements contain radioactive isotopes, and most of them are present in the soil. In the gas and oil industries the most important radio nuclides are Ra-226 from the decay series of U-238, and in lower grade Ra-228 from the decay series of Th-232. Water exit from the perforation and perforation mud in the Oil towers drowns the NORM materials. Changes in temperature and pressure, allows the presence of sulphates and carbonates in pipes and internal areas of equipment. A Ra and Ba similarity leads to the selective co-precipitation in mud and incrustations of radioisotopes. A measure made in the pipe lines show that these industries generate important doses overcoming the levels of exemption and even the limits of established doses. The research was done by finding a pipe at Shushufindi 52 B well of production near by Coca city in the Ecuadorian jungle. The 'Comision Ecuatoriana de Energia Atomica' (CEEA), supervises the pipe line and accessories that are used in PETROPRODUCION fields accomplishing the radiological characterization, identifying the useless pipes and separate them in order of take care the good ones. Meanwhile the identification of the radioactive isotopes the CEEA proceed with the isolation of the radioactive disposals. From 57.830 pipes and accessories there were 1.607 useless ones, 56.223 didn't show radioactivity. Those pipes were monitored from the PETRODUCCION'S warehouses in Coca, Lago Agrio and Guarumo from September 12 th 2005 to September 12 th 2006. The CEEA is interested in NORMS because inadvertent workers may get high levels of radioactivity exposition. The Oil industries should have a manual about the complete handling of these materials. (author)

  15. The role of the airline industry in the safe and efficient carriage of radioactive material

    International Nuclear Information System (INIS)

    Abouchaar, J.A.

    2004-01-01

    For the transport of dangerous goods, including radioactive material, the International Air Transport Association (IATA) - representing its member airlines - works towards greater standardization, streamlining of traffic-handling procedures, more automation, reduced government-clearance procedures and documentary requirements, improved handling at airports, and adequate terminal facilities. The paper provides an overview of how IATA works with other international agencies to accomplish these goals and how it reflects the IAEA Transport Regulations in the IATA Dangerous Goods Regulations. (author)

  16. The development of shifting radioactive material

    International Nuclear Information System (INIS)

    Chen Haiteng; Chen Yonghong; Yin Fujun; Che Mingsheng; Hu Xiaodan; Yao Shouzhong

    2010-01-01

    In nuclear field, When the nuclear material shifting from the glove-box,use the technology of plastic welding package in accordance with tradition. There are some defects in this technology because of the plastic character, such as package pierced easily, wrapper not fitted storage for long term, etc. Because of this limit. Plastic shifting technology is only fit for shifting radwaste and nuclear material not need storage from radioactive close area to non-radioactive open area for long term.As the nuclear material exiting leak when shifting in plastic package,and the plastic material don't meet the need of storaging safely for long term.We research into a new technology of nuclear material shifting. When nuclear material is carried out from the glove box. It should be sealed by welding case, then it can be storaged safely for long term. At the same time, nuclear material wouldn't pollute the glove box outside.The study achieved well effect in apply. (authors)

  17. Domestic smoke detectors using radioactive material

    International Nuclear Information System (INIS)

    Anon.

    1979-02-01

    Increasing numbers of technical and consumer products incorporating radioactive material are becoming available to the Australian public. One consumer device of this type coming into common use is the domestic smoke detector that uses Americium 241 in detecting smoke. This device has obvious life-saving and property-saving advantages and is attractive in that it is attractive in that it is self-contained, battery powered and needs little maintenance. The National Health and Medical Research Council in October 1978 recommended conditions, which are listed, are intended to ensure that radiation safety is preserved. They provide for the testing and approval of all models of domestic smoke detectors using radioactive material. The National Health and Medical Research Council stated that provided these conditions are applied it had no objection to the sale of these detectors by retailers

  18. Transport of radioactive material in Canada

    International Nuclear Information System (INIS)

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material

  19. Transport of radioactive material in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In this report, the Advisory Committee on Nuclear Safety (ACNS) presents the results of its study on how the system of the transport of radioactive material (TRM) in Canada is regulated, how it operates, and how it performs. The report deals with the transport of packages, including Type B packages which are used to carry large quantities of radioactive material, but not with the transport of spent nuclear fuel or with the transport of low-level historical waste. The ACNS has examined the Canadian experience in the TRM area, the regulatory framework in Canada with respect to the TRM some relevant aspects of training workers and monitoring compliance with regulatory requirements, the state of the emergency preparedness of organizations involved in the TRM and the process of updating present regulations by the Atomic Energy Control Board (AECB). As a result of this study, the ACNS concludes that the current Canadian regulatory system in the TRM is sound and that the TRM is, for the most part, conducted safely. However, improvements can be made in a number of areas, such as: determining the exposures of workers who transport radioactive material; rewording the proposed Transport Regulations in plain language; training all appropriate personnel regarding the AECB and Transport Canada (TC) Regulations; enforcing compliance with the regulations; and increasing the level of cooperation between the federal agencies and provincial authorities involved in the inspection and emergency preparedness aspects of the TRM. It is also noted that Bill C-23, the Nuclear Safety and Control Act, imposes a new requirement, subject to the Regulations, for a licence for a carrier to transport some types of radioactive material.

  20. Provision of transport packaging for radioactive materials

    International Nuclear Information System (INIS)

    1981-04-01

    The safe transport of radioactive materials is governed by various regulations based on International Atomic Energy Agency Regulations. This code of practice is a supplement to the regulations, its objects being (a) to advise designers of packaging on the technical features necessary to conform to the regulations, and (b) to outline the requirements for obtaining approval of package designs from the competent authority. (U.K.)

  1. Transportaton of radioactive materials by air

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1977-04-01

    Canadian regulations for air transportation of radioactive materials are based on the IAEA regulations. The Atomic Energy Control Board is responsible for enforcement. The IAEA regulations are summarized in this report. A review of 402 210 shipments by air, road, rail, and sea in Canada between 1957 and 1975 reveals 61 incidents. Of the 36 incidents involving air transportation, one resulted in package failure and an increase in radiation and two resulted in package contents being spilled. (LL)

  2. Transport of radioactive materials. 2. rev. ed.

    International Nuclear Information System (INIS)

    Vogt, H.W.; Falkhof, W.; Heibach, K.; Ungermann, N.; Hungenberg, H.

    1991-01-01

    With the last changes in the Ordinance Concerning the Transport of Hazardous Goods two regulations which are important for the carrying trade were introduced: 1. The conveyer must train the driver. He must only employ reliable drivers. 2. The driver must participate in a training course (as of July 1, 1991). These obligations, which already existed in the past in regard to the transport of nuclear fuel, have been extended to include the transport of other radioactive materials. In part I the book deals with basic training courses for parcelled goods, and part II goes into the special knowledge which is required of drivers of radioactive materials. The parts consist of the following sections: 1. General regulations, 2, Responsibility when transporting hazardous goods, 3. General danger features, 4. Information on dangers and their designation, 5. The vehicle's equipment and carrying out the transport, 6. Measures for avoiding accidents. At the end of each section the participant in the course finds a series of questions which pertain to the subject matter just treated so that he can test his own learning performance. So as to make things easier for the trainee, the corect answers are listed in the appendix. As a supplementary section on radioactive materials, part II offers additional detailed explanations by experts in the field on the features of radioactive materials and the dangers they pose. In the margin - next to the instructory text - the key words are given so that the right place in the text of the instruction manual can be readily found. These key words are compiled in the appendix to form an index. (orig./HP) [de

  3. Criteria for onsite transfers of radioactive material

    International Nuclear Information System (INIS)

    Opperman, E.K.; Jackson, E.J.; Eggers, A.G.

    1992-01-01

    A general description of the requirements for making onsite transfers of radioactive material is provided in Chapter 2, along with the required sequencey of activities. Various criteria for package use are identified in Chapters 3-13. These criteria provide protection against undue radiation exposure. Package shielding, containment, and surface contamination requirements are established. Criteria for providing criticality safety are enumerated in Chapter 6. Criteria for providing hazards information are established in Chapter 13. A glossary is provided

  4. Radioactive materials released from nuclear power plants

    International Nuclear Information System (INIS)

    Tichler, J.; Norden, K.; Congemi, J.

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs

  5. Highlights of the American Nuclear Society topical meeting on the treatment and handling of radioactive wastes

    International Nuclear Information System (INIS)

    Blasewitz, A.G.; Lerch, R.E.; Richardson, G.L.

    1983-01-01

    The American Nuclear Society Topical Meeting on the Treatment and Handling of Radioactive Wastes was held in Richland, Washington, from 19-22 April 1982. The object of the meeting was to provide a thorough assessment of the status of technology. The response to the meeting was excellent: 123 papers were presented. There were 505 registrations; 83 were from outside the USA, representing 13 countries. The large and diverse attendance provided a broad technological view and perspective. The following major points emerged from the conference: (1) In an extensive world-wide effort, techniques are being developed to cover all phases of radioactive waste management. (2) A broad and deep technological base has been developed. (3) Many adequate processes are ready for actual application while others are ready for demonstration of applicability. These demonstrations are important to further public acceptance of nuclear energy. (4) At the present level of maturity, systematic analyses should be performed to determine actual requirements for the treatment and handling of radioactive wastes. These analyses can be used to focus our research and development, and demonstration activities to achieve treatment and conditioning systems which are both appropriate and cost-effective. (author)

  6. Management of waste from the use of radioactive material in medicine, industry, agriculture, research and education safety guide

    CERN Document Server

    2005-01-01

    This Safety Guide provides recommendations and guidance on the > fulfilment of the safety requirements established in Safety Standards > Series No. WS-R-2, Predisposal Management of Radioactive Waste, > Including Decommissioning. It covers the roles and responsibilities of > different bodies involved in the predisposal management of radioactive > waste and in the handling and processing of radioactive material. It > is intended for organizations generating and handling radioactive > waste or handling such waste on a centralized basis for and the > regulatory body responsible for regulating such activities.  > Contents: 1. Introduction; 2. Protection of human health and the > environment; 3. Roles and responsibilities; 4. General safety > considerations; 5. Predisposal management of radioactive waste; 6. > Acceptance of radioactive waste in disposal facilities; 7. Record > keeping and reporting; 8. Management systems; Appendix I: Fault > schedule for safety assessment and environmental impact assessment; > Ap...

  7. Radioactive materials transportation life-cycle cost

    International Nuclear Information System (INIS)

    Gregory, P.C.; Donovan, K.S.; Spooner, O.R.

    1993-01-01

    This paper discusses factors that should be considered when estimating the life-cycle cost of shipping radioactive materials and the development of a working model that has been successfully used. Today's environmental concerns have produced an increased emphasis on cleanup and restoration of production plants and interim storage sites for radioactive materials. The need to transport these radioactive materials to processing facilities or permanent repositories is offset by the reality of limited resources and ever-tightening budgets. Obtaining the true cost of transportation is often difficult because of the many direct and indirect costs involved and the variety of methods used to account for fixed and variable expenses. In order to make valid comparisons between the cost of alternate transportation systems for new and/or existing programs, one should consider more than just the cost of capital equipment or freight cost per mile. Of special interest is the cost of design, fabrication, use, and maintenance of shipping containers in accordance with the requirements of the U.S. Nuclear Regulatory Commission. A spread sheet model was developed to compare the life-cycle costs of alternate fleet configurations of TRUPACT-II, which will be used to ship transuranic waste from U.S. Department of Energy sites to the Waste Isolation Pilot Plant near Carlsbad, New Mexico

  8. Regulations of safe transport of radioactive material

    International Nuclear Information System (INIS)

    Patel, R.J.; Sumathi, E.

    2017-01-01

    BARC is a multi-disciplinary nuclear research organisation with facilities located at various parts of the country. The nuclear and radiological facilities in BARC include fuel fabrication facilities, nuclear research reactors, radiological laboratories, nuclear recycle facilities, waste management facilities and other associated facilities. RAdioactive Material (RAM) such as fresh nuclear fuel, irradiated fuel, radioactive sources, vitrified high level wastes, special nuclear material etc., are transported between these facilities either within the controlled premises or in public domain. In BARC the regulatory approval for the packages used for transport of RAM is issued by BARC Safety Council (BSC). Competent Authority for issuing the design approval for the BARC packages in public domain is Director, BARC. In this aspect BSC is assisted by Safety Review Committee-Transport of Radioactive Material (SRC-TRM) constituted by BSC entrusted with the mandate to ensure the packages are designed, manufactured and transported in accordance with the current regulations. This article summarizes the regulatory requirements for transport of RAM and experience in BARC facilities

  9. Radioactive materials and emergencies at sea

    International Nuclear Information System (INIS)

    Shaw, K.B.

    1988-01-01

    Recent events have heightened awareness of the problems raised by accidents at sea involving radioactive materials. The NEA Committee on Radiation Protection and Public Health (CRPPH) noted that, while the transport of radioactive materials at sea is governed by extensive international regulations, deficiencies remained, particularly concerning mechanisms for early accident reporting and the development of generic safety assessments and accident analysises for various kinds of sea transport. As a contribution towards improving international guidance in this field, the NEA appointed a consultant to review the current status of activities carried out by the principal international organizations concerned with the transport of radioactive materials (the IAEA, IMO and the CEC), to identify the various areas where additional work is required and to suggest appropriate improvements. Only the radiation protection aspects of sea transport have been considered here. After having examined the consultant report, the CRPPH felt that its wide distribution to national regulatory authorities in OECD countries would serve a useful purpose. The report is published under the responsibility of the Secretary-General of the OECD and does not commit Member Governments or the Organization

  10. INES- French application to radioactive material transport

    International Nuclear Information System (INIS)

    Sowinski, S.; Strawa, S.; Aguilar, J.

    2004-01-01

    After gaining control of radioactive material transport in June 1997, the French Nuclear Safety Authority (ASN) decided to apply the International Nuclear Event Scale (INES scale) to transport events. The Directorate General for Nuclear Safety and Radioprotection (DGSNR) requests that radioactive material package consignors declare any event occurring during transport, and has introduced the use of the INES scale adapted to classify transport events in order to inform the public and to have feedback. The INES scale is applicable to events arising in nuclear installations associated with the civil nuclear industry and events occurring during the transport of radioactive materials to and from them. The INES scale consists of seven levels. It is based on the successive application of three types of criterion (off-site impact, on-site impact and degradation of defence in depth) and uses the maximum level to determine the rating of an accident. As the transport in question takes place on public thoroughfares, only the off-site impact criteria and degradation of defence in-depth criteria apply. This paper deals with DGSNR's feedback during the past 7 years concerning the French application of the INES scale. Significant events that occurred during transport are presented. The French experience was used by the International Atomic Energy Agency (IAEA) to develop a draft guide in 2002 and the IAEA asked countries to use a new draft for a trial period in July 2004. (author)

  11. Disposal of radioactive waste material to sea

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Radioactive waste liquid of a low or intermediate activity level is mixed with a suitable particulate material and discharged under the sea from a pipeline. The particulate material is chosen so that it sorbs radio-nuclides from this waste, has a good retention for these nuclides when immersed in sea water, and has a particle size or density such that transfer of the particles back to the shore by naturally occurring phenomena is reduced. Radio nuclide concentration in the sea water at the end of the pipeline may also be reduced. The particulate material used may be preformed or co-precipitated in the waste. Suitable materials are oxides or hydroxides of iron or manganese or material obtained from the sea-bed. (author)

  12. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    1997-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (Author)

  13. The safe transport of radioactive material in South Africa

    International Nuclear Information System (INIS)

    Jutle, K.K.

    2000-01-01

    An overview is presented of the activities related to the transport of radioactive material in South Africa. In particular, the applicable legislation, the scope of authority and the regulatory functions of the Competent Authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  14. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  15. Hanford Site radioactive hazardous materials packaging directory

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations ampersand Development (PO ampersand D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage

  16. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  17. Perception of risks in transporting radioactive materials

    International Nuclear Information System (INIS)

    Shepherd, E.W.; Reese, R.T.

    1983-01-01

    A framework for relating the variables involved in the public perception of hazardous materials transportation is presented in which perceived risk was described in six basic terms: technical feasibility, political palatability, social responsibility, benefit assessment, media interpretation, and familiarity as a function of time. Scientists, the media and public officials contribute to the discussion of risks but ultimately people will decide for themselves how they feel and what they think. It is not sufficient to consider the public of not being enlightened enough to participate in the formulation of radioactive material transport policy. The framework provides the technologist with an initial formulation to better inform the public and to understand public perception

  18. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  19. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes

    International Nuclear Information System (INIS)

    Cochran, John R.; Hardin, Ernest

    2015-01-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward-Clyde in 1983 in which waste packages are assembled into ''strings'' and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  20. Designing shafts for handling high-level radioactive wastes in mined geologic repositories

    International Nuclear Information System (INIS)

    Hambley, D.F.; Morris, J.R.

    1988-01-01

    Waste package conceptual designs developed in the United States by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management are the basis for specifying the dimensions and weights of the waste package and transfer cask combinations to be hoisted in the waste handling shafts in mined geologic repositories for high-level radioactive waste. The hoist, conveyance, counterweight, and hoist ropes are then sized. Also taken into consideration are overwind and underwind arrestors and safety features required by the U.S. Nuclear Regulatory Commission. Other design features such as braking systems, chairing system design, and hoisting speed are considered in specifying waste hoisting system parameters for example repository sites

  1. Code of practice for the control and safe handling of radioactive sources used for therapeutic purposes (1988)

    International Nuclear Information System (INIS)

    1988-01-01

    This Code is intended as a guide to safe practices in the use of sealed and unsealed radioactive sources and in the management of patients being treated with them. It covers the procedures for the handling, preparation and use of radioactive sources, precautions to be taken for patients undergoing treatment, storage and transport of radioactive sources within a hospital or clinic, and routine testing of sealed sources [fr

  2. Liquid filter for liquids containing radioactive materials

    International Nuclear Information System (INIS)

    Rohleder, N.; Schwarz, F.

    1986-01-01

    A device for filtering radioactive liquids loaded with solids is described, which has a pressure-resistant housing with a lid and an incomer for the turbid liquid and a collecting space and drain for the filtrate at the bottom of the housing. A filter cartridge is present in this housing. Such a filtering device must be suitable for use in nuclear plants, must be easy to replace by remote control and must minimise the carrying over of radioactive particles. This problem should be solved by the filter cartridge consisting of a large number of horizontal filter plates stacked above one another, which carry a deep layer filter material acting in the sub-micron range. The turbid liquid runs into the centre of the stack of filter plates via a vertical central duct. The intermediate spaces between the filter places are connected to this central duct via the layer of filter material. The filter plates are sealed against one another on the outer circumference and have radial drain openings for the filtrate on the outside. The central duct is sealed at the lower end by a plate. When the filter cartridge is replaced, the radioactive waste in the filter cartridge remains safely enclosed and can be conditioned in suitable containers. (orig.) [de

  3. Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.

    Science.gov (United States)

    Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim

    2012-08-01

    King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.

  4. Cask for radioactive material and method for preventing release of neutrons from radioactive material

    International Nuclear Information System (INIS)

    Gaffney, M.F.; Shaffer, P.T.

    1981-01-01

    A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks

  5. International conventions for measuring radioactivity of building materials

    International Nuclear Information System (INIS)

    Tan Chenglong

    2004-01-01

    In buildings, whether civil or industrial, natural radioactivity always occurs at different degrees in the materials (main building materials, decorative materials). Concerns on radioactivity from building materials is unavoidable for human living and developing. As a member of WTO, China's measuring method of radioactivity for building materials, including radionuclides limitation for building materials, hazard evaluation system etc, should keep accordance with the international rules and conventions. (author)

  6. Device for sampling liquid radioactive materials

    International Nuclear Information System (INIS)

    Vlasak, L.

    1987-01-01

    Remote sampling of radioactive materials in the process of radioactive waste treatment is claimed by the Czechoslovak Patent Document 238599. The existing difficulties are eliminated consisting in a complex remote control of sampling featuring the control of sliding and rotary movements of the sampling device. The new device consists of a vertical pipe with an opening provided with a cover. A bend is provided above the opening level housing flow distributors. A sampling tray is pivoted in the cover. In sampling, the tray is tilted in the vertical pipe space while it tilts back when filled. The sample flows into a vessel below the tray. Only rotary movement is thus sufficient for controlling the tray. (Z.M.)

  7. Assessing materials handling and storage capacities in port terminals

    Science.gov (United States)

    Dinu, O.; Roşca, E.; Popa, M.; Roşca, M. A.; Rusca, A.

    2017-08-01

    Terminals constitute the factual interface between different modes and, as a result, buffer stocks are unavoidable whenever transport flows with different discontinuities meet. This is the reason why assessing materials handling and storage capacities is an important issue in the course of attempting to increase operative planning of logistic processes in terminals. Proposed paper starts with a brief review of the compatibilities between different sorts of materials and corresponding transport modes and after, a literature overview of the studies related to ports terminals and their specialization is made. As a methodology, discrete event simulation stands as a feasible technique for assessing handling and storage capacities at the terminal, taking into consideration the multi-flows interaction and the non-uniform arrivals of vessels and inland vehicles. In this context, a simulation model, that integrates the activities of an inland water terminal and describes the essential interactions between the subsystems which influence the terminal capacity, is developed. Different scenarios are simulated for diverse sorts of materials, leading to bottlenecks identification, performance indicators such as average storage occupancy rate, average dwell or transit times estimations, and their evolution is analysed in order to improve the transfer operations in the logistic process

  8. Safe transport of radioactive material. Second edition

    International Nuclear Information System (INIS)

    1996-01-01

    In 1991, the International Atomic Energy Agency published Training Course Series No. 1 (TCS-1), a training manual that provides in 20 chapters a detailed discussion of the background, philosophy, technical bases and requirements and implementation aspects of the Regulations for the Safe Transport of Radioactive Material. The Transport Regulations are widely implemented by the IAEA's Member States and are also used as the bases for radioactive material transport requirements of modal organisations such as the International Maritime Organization and the International Civil Aviation Organization. This document is a supplement of TCS-1 to provide additional material in the form of learning aids and new exercises, that have been developed with the use of TCS-1 at succeeding IAEA training courses. The learning aids in the first part of the supplement are hitherto unpublished material that provide detailed guidance useful in solving the exercises presented in the second part. Solutions to the exercises are on field at the IAEA Secretariat and are available by arrangement to lectures presenting IAEA training courses. 4 refs, 1 fig., 6 tabs

  9. Natural radioactivity in building materials in Iran

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.

    2011-01-01

    This work presents a comprehensive study of natural radioactivity in building materials used in Iran. For this purpose, 177 samples of five types of building material, i.e. cement, gypsum, cement blocks, gravel and brick, were gathered from different regions of the country and analyzed by gamma spectroscopy to quantify radioactivity concentrations using a high purity germanium (HPGe) detector and a spectroscopy system. According to the results of this investigation, cement samples had maximum values of the mean Ra-226 and Th-232 concentrations, 39.6 and 28.9 Bq/kg, respectively, while the lowest value for mean concentration of these two radionuclides were found in gypsum samples 8.1 and 2.2 Bq/kg, respectively. The highest (851.4 Bq/kg) and lowest (116.2 Bq/kg) value of K-40 mean concentration were found in brick and gypsum samples, respectively. The absorbed dose rate and the annual effective dose were also calculated from the radioactivity content of the radionuclides. The results show that the maximum values of dose rate and annual effective dose equivalent were 53.72 nGy/h and 0.37 mSv/y in brick samples. The radium equivalent activities R eq calculated were below the permissible level of 370 Bq/kg for all building materials. The values of hazard indexes were below the recommended levels, therefore, it is concluded that the buildings constructed from such materials are safe for the inhabitants. The results of this study are consistent with the results of other investigations in different parts of the world. (authors)

  10. Transports of radioactive materials. Legal regulations, safety and security concepts, experience

    International Nuclear Information System (INIS)

    Schwarz, Guenther

    2012-01-01

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  11. United States experience in the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Platt, A.M.; Rhoads, R.E.; Hall, R.J.; Williams, L.D.; Brobst, W.A.; Shappert, L.B.; Jefferson, R.M.

    1977-01-01

    The transport of radioactive material forms a vital link in the nuclear fuel cycle in the United States. Actual U.S. experience and practice with such systems for the packaging and transport of uranium ore concentrates, uranium hexafluoride, fresh fuel, irradiated fuel, non-high-level waste, and plutonium with low heat generation rates are described. Specific shipping systems in current use for these services are illustrated. A comparison will be made of shipping requirements for nuclear parks versus dispersed facilities. Shipping systems for other fuel cycle materials (e.g., high-level waste and cladding hulls) have not been developed because there has been no need to transport these materials commercially. However, conceptual designs for packaging and transport of such materials have been developed. Selected systems are reviewed and summarized. Transport safety in the U.S. is regulated by the U.S. Department of Transportation and the Nuclear Regulatory Commission. Key regulations defining packaging requirements, allowable radiation dose rates, and handling procedures are reviewed. Although the radioactive material shipping industry has an outstanding safety record, opposition to nuclear fuel cycle shipments has surfaced in several areas. The U.S. congressional ban on the shipment of plutonium by air, the actions of New York City to prohibit certain shipments within the city limits, and the requirement of U.S. railroads to ship spent fuel casks only in dedicated trains are reviewed. In an attempt to provide information on the safety margins inherent in the design of radioactive materials packages, ERDA has undertaken a series of accident studies and full scale crash tests that stress the packages beyond the levels expected in severe accidents. In addition, the level of total risk associated with radioactive materials shipments is being evaluated. Current ERDA crash test and transportation risk assessment studies are reviewed. Concern about the possibility of

  12. Guidance on radioactive waste management legislation for application to users of radioactive materials in medicine, research and industry

    International Nuclear Information System (INIS)

    1992-04-01

    This document, addressed primarily to developing countries, is restricted to management of radioactive wastes arising from uses of radionuclides in medicine, industry and research. It does not deal with wastes from the nuclear fuel cycle. Safeguards and physical protection are also outside the scope even though in some special cases it may be relevant; for instance, when fissile material is handled at research establishments. Information on nuclear fuel cycle waste management and waste transport can be found in a number of IAEA publications. The main aim of this document is to give guidance on legislation required for safe handling, treatment, conditioning and release or disposal of radioactive waste. It covers all steps from the production or import of radioactive material, through use, treatment, storage and transport, to the release or disposal of the waste either as exempted material or in special repositories. Management of radioactive wastes as a whole is optimized and kept at acceptable levels in accordance with the basic ICRP recommendations and the IAEA Basic Safety Standards. As a result of the new ICRP recommendations of 1991, the Agency is revising its Basic Safety Standards, the results of which may have some impact on the national regulations and necessitate updating of this document. 16 refs, 1 fig

  13. Effects of non-radioactive material around radioactive material on PET image quality

    International Nuclear Information System (INIS)

    Toshimitsu, Shinya; Yamane, Azusa; Hirokawa, Yutaka; Kangai, Yoshiharu

    2015-01-01

    Subcutaneous fat is a non-radioactive material surrounding the radioactive material. We developed a phantom, and examined the effect of subcutaneous fat on PET image quality. We created a cylindrical non-radioactive mimic of subcutaneous fat, placed it around a cylindrical phantom in up to three layers with each layer having a thickness of 20 mm to reproduce the obesity caused by subcutaneous fat. In the cylindrical phantom, hot spheres and cold spheres were arranged. The radioactivity concentration ratio between the hot spheres and B.G. was 4:1. The radioactivity concentration of B.G. was changed as follows : 1.33, 2.65, 4.00, and 5.30 kBq/mL. 3D-PET image were collected during 10 minutes. When the thickness of the mimicked subcutaneous fat increased from 0 mm to 60 mm, noise equivalent count decreased by 58.9-60.9% at each radioactivity concentration. On the other hand, the percentage of background variability increased 2.2-5.2 times. Mimic subcutaneous fat did not decrease the percentage contrast of the hot spheres, and did not affect the cold spheres. Subcutaneous fat decreases the noise equivalent count and increases the percentage of background variability, which degrades PET image quality. (author)

  14. Investigation into slipping and falling accidents and materials handling in the South African mining industry.

    CSIR Research Space (South Africa)

    Schutte, PC

    2003-03-01

    Full Text Available The objective of this study was to analyze information on slipping and falling accidents and materials handling activities in the South African mining industry. Accident data pertaining to slipping, falling and materials handling accidents...

  15. Decontamination of radioactive materials (part II)

    Energy Technology Data Exchange (ETDEWEB)

    Akashi, Makoto; Shimomura, Satoshi; Hachiya, Misao [National Inst. of Radiological Sciences, Chiba (Japan)

    1998-06-01

    Drifting agents accelerate the exchange process and thus promote to eliminate radioactive materials from human body. The earlier is the administration of the agent, the more effective is the elimination. Against the uptake of radioiodine by thyroid, anti-thyroid drug like NaI, Lugol`s iodine solution, propylthiouracil and methimazole are recommended. Ammonium chloride can be a solubilizer of radioactive strontium. Diuretics may be useful for excretion of radioisotopes of sodium, chlorine, potassium and hydrogen through diuresis. Efficacy of expectorants and inhalants is not established. Parathyroid extract induces decalcification and thus is useful for elimination of 32P. Steroids are used for compensating adrenal function and for treatment of inflammation and related symptoms. Chelating agents are useful for removing cations and effective when given early after contamination. EDTA and, particularly, DTPA are useful for elimination of heavy metals. For BAL (dimercaprol), its toxicity should be taken into consideration. Penicillamine is effective for removing copper and deferoxamine, for iron. Drugs for following radioisotopes are summarized: Am, As, Ba, Br, Ca, Cf, C, Ce, Cs, Cr, Co, Cm, Eu, fission products, F, Ga, Au, H, In, I, Fe, Kr, La, PB, Mn, Hg, Np, P, Pu, Po, K, Pm, Ra, Rb, Ru, Sc, Ag, Na, Sr, S, Tc, Th, U, Y, Zn and Zr. Lung and bronchia washing are effective for treatment of patients who inhaled insoluble radioactive particles although their risk-benefit should be carefully assessed. The present review is essentially based of NCRP Report No.65. (K.H.) 128 refs.

  16. Technically enhanced naturally occurring radioactive materials; identification, characterization and treatment

    International Nuclear Information System (INIS)

    Aly, H.F.

    2001-01-01

    Radioactive materials (TENORM) is produced in a relatively large amount with relatively small radioactivity, however in many instances the radioactivity levels exceeds that permissible. In this presentation, the different industries where enhanced levels of natural radioactivity is identified and characterized will be given. The different approaches for treatment of this enhanced radioactivity will be addressed. Finally, our research and development activities in characterization and treatment of TENORM produced from the oil fields in Egypt will be presented. (authors)

  17. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  18. The measurement theory of radioactivity in building materials

    International Nuclear Information System (INIS)

    Qu Jinhui; Wang Renbo; Zhang Xiongjie; Tan Hai; Zhu Zhipu; Man Zaigang

    2010-01-01

    Radioactivity in Building Materials is the main source of natural radiation dose that the individual is received, which has caused serious concern of all Social Sector. The paper completely introduce the measurement theory of the Radioactivity in Building Materials along with the measurement principle of natural radioactivity, design of shielding facility, choosing measurement time, sample prepared and spectrum analyzed. (authors)

  19. Licenses for possessing and applying radioactive sources, materials, etc

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Commercial and governmental institutions have been licensed by Dutch authorities to possess and apply radioactive sources, materials, etc. A summary is given and the list is subdivided into a number of sections such as radioactive sources, radioactive materials, X-ray equipment and technetium-generators

  20. Discrimination of Naturally Occurring Radioactive Material in Plastic Scintillator Material

    International Nuclear Information System (INIS)

    Ely, James H.; Kouzes, Richard T.; Geelhood, Bruce D.; Schweppe, John E.; Warner, Ray A.

    2003-01-01

    Plastic scintillator material is used in many applications for the detection of gamma-rays from radioactive material, primarily due to the sensitivity per unit cost compared to other detection materials. However, the resolution and lack of full-energy peaks in the plastic scintillator material prohibits detailed spectroscopy. Therefore, other materials such as doped sodium iodide are used for spectroscopic applications. The limited spectroscopic information can however be exploited in plastic scintillator materials to provide some discrimination. The discrimination between man-made and naturally occurring sources would be useful in reducing alarm screening for radiation detection applications which target man-made sources. The results of applying the limited energy information from plastic scintillator material for radiation portal monitors are discussed.

  1. Improvement Of Physical Ergonomics Using Material Handling Systems

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2017-01-01

    Full Text Available This research paper is an investigation of the physical ergonomics of the work place in an automotive parts manufacturing company . Material transfer from one station to another station was done by hand including a walk of a few steps to the next station. The unmachined components that has a quite heavy raw weight also they are being loaded and unloaded by hand .Due to this continuous practice some workers began complaining physical pain in their backs and muscular related pains. The work conditions of the workers were assessed using the REBA Rapid Entire Body Assessment test to understand the stress and the impact the work environment they are exposed to. Few material handling concepts have been suggested and explained to improve the quality of the work conditions for the workers and the REBA test tends to show some significant improvement when these improvements are implemented into the production line.

  2. Residual radioactive material guidelines: Methodology and applications

    International Nuclear Information System (INIS)

    Yu, C.; Yuan, Y.C.; Zielen, A.J.; Wallo, A. III.

    1989-01-01

    A methodology to calculate residual radioactive material guidelines was developed for the US Department of Energy (DOE). This methodology is coded in a menu-driven computer program, RESRAD, which can be run on IBM or IBM-compatible microcomputers. Seven pathways of exposure are considered: external radiation, inhalation, and ingestion of plant foods, meat, milk, aquatic foods, and water. The RESRAD code has been applied to several DOE sites to calculate soil cleanup guidelines. This experience has shown that the computer code is easy to use and very user-friendly. 3 refs., 8 figs

  3. RESRAD, Residual Radioactive Material Guideline Implementation

    International Nuclear Information System (INIS)

    1998-01-01

    This code system is designed to calculate site-specific residual radioactive material guidelines, and radiation dose and excess cancer risk to an on-site resident (maximally exposed individual). A guideline is a radionuclide concentration or level of radioactivity that is acceptable if a site is to be used without radiological restrictions. Guidelines are expressed as concentrations of residual radionuclides in soil. Soil is unconsolidated earth material, including rubble and debris that may be present. The guidelines are based on the following principles: (1) the total effective dose equivalent should not exceed 100 mrem/yr for all plausible land uses and 30 mrem/yr for current and likely future land uses and (2) doses should be kept as low as reasonably achievable (ALARA). Nine environmental pathways are considered: direct exposure, inhalation of dust and radon, and ingestion of plant foods, meat, milk, aquatic foods, soil, and water. CCC-0552/04: A - Description of program or function: RESRAD-BUILD Version 2.36 is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The radioactive material in the building structure can be released into the indoor air by mechanisms such as diffusion (radon gas), mechanical removal (decontamination activities), or erosion (removable surface contamination). In the June 1998 update, RESRAD was updated to Version 5.82 and RESRAD-BUILD was updated to version 2.36. The following notes highlight new features: RESRAD5.82 (4/30/98): - Allow plot data to be exported to tab-delimited text file - Corrected Installation problem to Windows 3.1 - Corrected plotting problem for soil guidelines RESRAD-BUILD2.36 (4/9/98): - Corrected problem with simultaneously changing number of wall regions and their parameters - Added OK button to uncertainty window - Made sure first uncertainty variable in added on first try See the

  4. Tests on 'radio-active' material

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The storage of radio-active waste from nuclear power stations is a well known problem and a subject for extensive investigation. In connection with the use of cement as storage material, tests were carried out on cement-filled 200-litre sheet-steel containers. In order to avoid contamination of the cement core by drilling sludge, any drilling operation must be carried out dry, i.e. without liquid cooling. Air-blast cooling was therefore used for the cooling of a diamond drill and also for the removal of swarf. (H.E.G.)

  5. Radioactive contamination of natural and artificial materials

    International Nuclear Information System (INIS)

    Kovalchuk, E.L.; Pomansky, A.A.; Smolnikov, A.A.; Temmoev, A.H.

    1980-01-01

    The gamma radiation of different materials was measured in an underground low-background chamber with extraordinary background characteristics. The excellent background conditions of the measurements enabled investigators to see the alpha-particle peaks of the internal radioactive contamination of NaI(Tl) detectors, which were especially made for these measurements. The sensitivity limit of the installation was determined by the internal contamination of the NaI(Tl) detectors alone. Any radiation background, except for three substances, tungsten, copper, and brass, could be registered

  6. Regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Kgogo, Obonye

    2016-04-01

    The report provides insight and investigates whether Transport Regulations in Botswana follow international standards for transport of radioactive material. Radioactive materials are very useful in most of our activities and are manufactured in different countries, therefore end up traversing from one country to another and being transported in national roads .The IAEA regulation for the Transport of radioactive material is used as the reference guideline in this study. The current Regulations for Transport of radioactive material in Botswana do not cover all factors which need to be considered when transporting radioactive although they refer to IAEA regulations. Basing on an inadequacy of the regulations and category of radioactive materials in the country recommendations were made concerning security, packaging and worker training's. The regulations for the Transport of radioactive material in Botswana need to be reviewed and updated so that they can relate to international standard. (au)

  7. Is anyone regulating naturally occurring radioactive material? A state survey

    International Nuclear Information System (INIS)

    Gross, E.M.; Barisas, S.G.

    1993-08-01

    As far as we know, naturally occurring radioactive material (NORM) has surrounded humankind since the beginning of time. However, recent data demonstrating that certain activities concentrate NORM have increased concern regarding its proper handling and disposal and precipitated the development of new NORM-related regulations. The regulation of NORM affects the management of government facilities as well as a broad range of industrial processes. Recognizing that NORM regulation at the federal level is extremely limited, Argonne National Laboratory (ANL) conducted a 50-state survey to determine the extent to which states have assumed the responsibility for regulating NORM as well as the NORM standards that are currently being applied at the state level. Though the survey indicates that NORM regulation comprises a broad spectrum of controls from full licensing requirements to virtually no regulation at afl, a trend is emerging toward recognition of the need for increased regulation of potential NORM hazards, particularly in the absence of federal standards

  8. 2009 National inventory of radioactive material and wastes. Synthesis report

    International Nuclear Information System (INIS)

    2009-01-01

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  9. Manufacturing method for radioactive material containing vessel

    International Nuclear Information System (INIS)

    Kamino, Yoshikazu; Nishioka, Eiji; Toyota, Michinori.

    1997-01-01

    A containing vessel for radioactive materials (for example, spent fuels) comprises an inner cylinder made of stainless steel having a space for containing radioactive materials at the inside and an outer cylinder made of stainless steel disposed at the outer side of the inner cylinder. Lead homogenization is applied to a space between the inner and the outer cylinders to deposit a lead layer. Then, molten lead heated to a predetermined temperature is cast into the space between the inner and the outer cylinders. A valve is opened to discharge the molten lead in the space from a molten lead discharge pipe, and heated molten lead is injected from a molten lead supply pipe. Then, the discharge of the molten lead and the injection of the molten lead are stopped, and the lead in the space is coagulated. With such procedures, gaps are not formed between the lead of the homogenized portion and the lead of cast portion even when the thickness of the inner and the outer cylinders is great. (I.N.)

  10. Radioactive material air transportation; Transporte aereo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Pader y Terry, Claudio Cosme [Varig Logistica (VARIGLOG), Sao Paulo, SP (Brazil)

    2002-07-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation.

  11. Expansion design for a radioactive sources handling laboratory type II class B; Diseno de ampliacion para un laboratorio de manejo de fuentes radiactivas tipo II clase B

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, P. S. [Universidad Mexiquense del Bicentenario, Av. Industria Poniente s/n, Parque Industrial Dona Rosa, 52000 Lerma, Estado de Mexico (Mexico); Monroy G, F.; Alanis, J., E-mail: salvador-21@live.com.mx [ININ, Carretera Mexico-Touca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The Radioactive Wastes Research Laboratory (RWRL) of the Instituto Nacional de Investigaciones Nucleares (Mexico), at the moment has three sections: instrumental analysis, radioactive material processes, counting and a license type II class C, to manipulate radioactive material. This license limits the open sources handling to 300 kBq for radionuclides of very high radio-toxicity as the Ra-226, for what is being projected the license extension to type II class B, to be able to manage until 370 MBq of this radionuclides type, and the Laboratory, since the location where is the RWRL have unused area. This work presents a proposal of the RWRL expansion, taking into account the current laboratory sections, as well as the established specifications by the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The current planes of the RWRL and the expansion proposal of the laboratory are presented. (Author)

  12. Dry-type radioactive material storage facility

    International Nuclear Information System (INIS)

    Yamanaka, Yasuharu; Matsuda, Masami; Kanai, Hidetoshi; Ganda, Takao.

    1996-01-01

    A plurality of container tubes containing a plurality of canisters therein are disposed in a canister storage chamber. High level radioactive materials are filled in the canisters in the form of glass solidification materials. The canister storage chamber is divided into two cooling channels by a horizontal partition wall. Each of the container tubes is suspended from a ceiling slab and pass through the horizontal partition wall. Namely, each of the container tubes vertically traverses the cooling channel formed between the ceiling slab and the partition wall and extends to the cooling channel formed between the partition wall and a floor slab. Cooling gases heated in the cooling channel below the partition wall are suppressed from rising to the cooling channel above the partition wall. Therefore, the container tubes are efficiently cooled even in a cooling channel above the partition wall to unify temperature distribution in the axial direction of the container tubes. (I.N.)

  13. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  14. Radioactive material (road transport) bill. [Third reading

    International Nuclear Information System (INIS)

    Fishburn, D.; Walley, J.; Currie, E.

    1991-01-01

    This is a private members Bill which will enable new rules to be set out that will govern the way in the which nearly 500,000 shipments of radioactive and nuclear material go by road in the United Kingdom every year. It would give the Department of Transport, which would become the enforcing authority, the powers of entry and inspection and allows penalties to be exacted from those breaking the rules. The present regulations for transport by road are those set out in 1947 and these need to be updated to comply with International Atomic Energy Authority Standards. The debate which lasted over one and a half hours is reported verbatim. The main points raised were about which emergency services if any should be notified on the transport of nuclear materials, with particular reference to Derbyshire. Nuclear power in general was also discussed. (UK)

  15. Remote material handling in the Plutonium Immobilization Project. Revision 1

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports

  16. Radioactive materials' transportation main routes in Brazil. Radiation protection aspects about radioactive materials transportation

    International Nuclear Information System (INIS)

    Vaz, Solange dos Reis e; Andrade, Fernando de Menezes; Aleixo, Luiz Claudio Martins

    2007-01-01

    The heavy transportation in Brazil is generally done by highways. The radioactive material transportation follow this same rule. Whenever a radioactive material is carried by the road, by the sea or by the air, in some cases, a kind of combination of those transportation ways, the transport manager has to create a Transportation Plan and submit it to CNEN. Only after CNEN's approval, the transportation can be done. The plan must have the main action on Radiation Protection, giving responsibilities and showing all the directing that will be take. Although, the Brazilian's highways are not in good conditions, one could say that some of them are not good enough for any kind of transportation. But we are facing radioactive material use increase but the hospitals and industries, that the reason it's much more common that kind of transportation nowadays. So, because of that, a special attention by the governments must be provide to those activities. This paper goal is to show the real conditions of some important highways in Brazil in a radioactive protection's perspective and give some suggestions to adjust some of those roads to this new reality. (author)

  17. Application of radiation protection programmes to transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The principles for implementing radiation protection programmes (RPP) are detailed in the draft IAEA safety guide TS-G-1.5 'Radiation protection programmes for transport of radioactive material'. The document is described in this paper and analysis is made for typical applications to current operations carried out by consignors, carriers and consignees. Systematic establishment and application of RPPs is a way to control radiological protection during different steps of transport activity. The most widely transported packages in the world are radiopharmaceuticals by road. It is described an application of RPP for an organization involved in road transport of Type A packages containing radiopharmaceuticals. Considerations based on the radionuclides, quantities and activities transported are the basis to design and establish the scope of the RPP for the organizations involved in transport. Next stage is the determination of roles and responsibilities for each activity related to transport of radioactive materials. An approach to the dose received by workers is evaluated considering the type, category and quantity of packages, the radionuclides, the frequency of consignments and how long are the storages. The average of transports made in the last years must be taken into account and special measures intended to optimize the protection are evaluated. Tasks like monitoring, control of surface contamination and segregation measures, are designed based on the dose evaluation and optimization. The RPP also indicates main measures to follow in case of emergency during transport taking account of radionuclides, activities and category of packages for different accident scenarios. Basis for training personnel involved in handling of radioactive materials to insure they have appropriate knowledge about preparing packages, measuring dose rates, calculating transport index, labelling, marking and placarding, transport documents, etc, are considered. The RPP is a part

  18. Transport of radioactive material in Bangladesh: a regulatory perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2004-01-01

    Radioactive material is transported in Bangladesh in various types of packages and by different modes of transport. The transport of radioactive materials involves a risk both for the workers and members of the public. The safe transport of radioactive material is ensured in Bangladesh by compliance with Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97. The Bangladesh Atomic Energy Commission (BAEC) is the competent authority for the enforcement of the NSRC act and rules. The competent authority has established regulatory control at each stage to ensure radiation safety to transport workers, members of general public and the environment. An overview is presented of the activities related to the transport of radioactive material in Bangladesh. In particular, the applicable legislation, the scope of authority and the regulatory functions of the competent authority are discussed. The categories of radioactive materials transported and the packaging requirements for the safe transport of these radioactive materials are also described. (author)

  19. Radioactive waste material testing capabilities in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    1999-01-01

    Radioactive material including wastes, generated by Romanian nuclear facilities are packaged in accordance with national and IAEA's Regulation for a safe transport to the disposal center. The evaluation and certification of packages is accomplished by subjecting these packages to normal and simulated test conditions in order to prove the package to technical performances. The standards provide to package designers the possibility to use analysis, testing or a combination of these. The paper describes the experimental and simulating qualification tests for type A packages used for transport and storage of radioactive wastes (low level). Testing are used to substantiate assumptions used in analytical models and to demonstrate package structural response. There are also presented testing capabilities which are used to perform and simulate the required qualification tests. By direct comparison of analysis and experimental results, the degree of reliability of analytical methods and admissibility of assumptions taken in package designing and in demonstrating its safety under conditions of INR - Pitesti, within the contract between the INR - Pitesti and IAEA - Vienna, were determined. (author)

  20. Naturally Occurring Radioactive Material (NORM) in oil and gas industry

    International Nuclear Information System (INIS)

    Algalhoud, K. A.; AL-Fawaris, B. H.

    2008-01-01

    Oil and gas industry in the Great Jamahiriya is one of those industries that were accompanied with generation of some solid and liquid waste, which associated with risks that might lead to harmful effects to the man and the environment. Among those risks the continuous increase of radioactivity levels above natural radioactive background around operating oil fields, due to accumulation of solid and liquid radioactive scales and sludge as well as contaminated produced water that contain some naturally occurring radioactive materials ( NORM/TE-NORM). Emergence of NORM/TE-NORM in studied area noticed when the natural background radioactivity levels increased around some oil fields during end of 1998, For this study, six field trips and a radiation surveys were conducted within selected oil fields that managed and owned by six operating companies under NOC, in order to determine the effective radiation dose in contrast with dose limits set by International Counsel of Radiation Protection(ICRP),and International Atomic Energy Agency(IAEA) Additionally solid samples in a form of scales and liquid samples were also taken for further investigation and laboratory analysis. Results were tabulated and discussed within the text .However to be more specific results pointed out to the fact that existence of NORM/TE-NORM as 226 Ra, 228 Ra, within some scale samples from surface equipment in some oil and gas fields in Jamahiriya were significant. As a result of that, the workers might receive moderate radiation dose less than the limits set by ICRP,IAEA, and other parts of the world producing oil and gas. Results predicted that within the investigated oil fields if workers receive proper training about handling of NORM/TE-NORM and follow the operating procedure of clean ups, work over and maintenance plane carefully, their committed exposure from NORM/TE-NORM will be less than the set limits by ICRP and IAEA. In a trend to estimate internal radiation dose as a result of possible

  1. The crane handling system for 500 litre drums of cemented radioactive waste

    International Nuclear Information System (INIS)

    Staples, A.T.

    1991-01-01

    As part of the AEA Technology strategy for dealing with radioactive wastes new waste treatment facilities are being built at the Winfrith Technology Centre (WTC), Dorset. One of the facilities at WTC is the Treated Radwaste Store (TRS) which is designed to store sealed 500 litre capacity drums of treated waste for an interim period until the national disposal facility is operational. Within the TRS two cranes have been incorporated, one spanning the entire width and travelling the length of the Store. The second operates within the area designated for drum handling during inspection work. The development of the design of these cranes and their associated control systems, to meet the complex requirements of operations whilst also satisfying the reliability and safety criteria, is discussed within the paper. (author)

  2. Introduction to naturally occurring radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, P.

    1997-08-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose

  3. Summary report of the state surveillance program on the transportation of radioactive materials

    International Nuclear Information System (INIS)

    1977-11-01

    From 1973 to 1976, a surveillance program was conducted in New Jersey, Oregon, Missouri, New York, Illinois, Texas, Louisiana, South Carolina, Minnesota, and New York City to provide training support for State radiation personnel and to determine actual radiation exposure conditions and radioactive material package handling practices through the terminals of air carriers and freight forwarders. NRC and DOT along with the participating States, developed the surveillance program. In general, the results did not indicate a public health or safety problem due to the transportation of radioactive materials. Some employees of several freight forwarders, are, however, receiving annual exposures in excess of 500 mrem. Recommendations are given

  4. Meeting the regulatory information needs of users of radioactive materials

    International Nuclear Information System (INIS)

    MacDurmon, G.W.

    1996-01-01

    The use of radioactive materials is one of the most regulated areas of research. Researchers face ever increasing regulatory requirements and issues involving the disposal of radioactive material, while meeting the demands of higher productivity. Radiation safety programs must maximize regulatory compliance, minimize barriers, provide services and solutions, and effectively communicate with users of radioactive materials. This talk will discuss methods by which a radiation safety program can meet the needs of both the research staff and regulatory compliance staff

  5. Meeting the regulatory information needs of users of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    MacDurmon, G.W. [American Cyanamid Company, Princeton, NJ (United States)

    1996-10-01

    The use of radioactive materials is one of the most regulated areas of research. Researchers face ever increasing regulatory requirements and issues involving the disposal of radioactive material, while meeting the demands of higher productivity. Radiation safety programs must maximize regulatory compliance, minimize barriers, provide services and solutions, and effectively communicate with users of radioactive materials. This talk will discuss methods by which a radiation safety program can meet the needs of both the research staff and regulatory compliance staff.

  6. SEM facility for examination of reactive and radioactive materials

    International Nuclear Information System (INIS)

    Downs, G.L.; Tucker, P.A.

    1977-01-01

    A scanning electron microscope (SEM) facility for the examination of tritium-containing materials is operational at Mound Laboratory. The SEM is installed with the sample chamber incorporated as an integral part of an inert gas glovebox facility to enable easy handling of radioactive and pyrophoric materials. A standard SEM (ETEC Model B-1) was modified to meet dimensional, operational, and safety-related requirements. a glovebox was designed and fabricated which permitted access with the gloves to all parts of the SEM sample chamber to facilitate director and accessory replacement and repairs. A separate console combining the electron optical column and specimen chamber was interfaced to the glovebox by a custom-made, neoprene bellows so that the vibrations normally associated with the blowers and pumps were damped. Photomicrographs of tritiated pyrophoric materials show the usefulness of this facility. Some of the difficulties involved in the investigation of these materials are also discussed. The SEM is also equipped with an energy dispersive x-ray detector (ORTEC) and a Secondary Ion Mass Spectrometer (3M) attachments. This latter attachment allows analysis of secondary ions with masses ranging from 1-300 amu. (Auth.)

  7. New electron microprobe for radioactive materials

    International Nuclear Information System (INIS)

    Perrot, M.; Geoffroy, G.; Trotabas, M.

    1989-01-01

    The latest model of CAMECA microprobe SX 50R has just been set up in the high activity laboratory of the Centre d'Etudes Nucleaires de SACLAY. It has been especially designed for the examination of nuclear fuel and irradiated materials. The spectrometers are protected from the radioactivity by an armour plate and the entire equipment has been installed into a special cell in order to protect the operators. The special sample holder allows to examine specimens as large as 80 mm in diameter. One of the interesting uses concerns the quantitative determination of the oxygen content in zircaloy oxidized by steam at high temperature. This analysis was made possible by using the new type of crystals (multilayer)

  8. Research with radioactive materials in man

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1987-01-01

    In connection with the revision of the Radiation Protection Ordinance, for instance in section 41, the author - who can draw on his own experience as a referee for projects planned in the area of research with radioactive materials in man - deals with the following problems: 1. Quantifiable risk-benefit assessment as opposed to qualitative risk-benefit assessment based on medical experience. 2. Delimination of medicine and research by criteria such as application to healthy or sick persons, application of a new method or an already standardized one, application in the hope to achieve an individual benefit or without such hopes, and application with a view to obtaining results suitable to be generalized, in the course of which many borderline cases will crop up. 3. Legal requirements in section 41 of the Radiation Protection Ordinance with the demands for minimization of risks and quality assurance, and 4. application procedure and experience gathered so far. (TRV) [de

  9. Closure for casks containing radioactive materials

    International Nuclear Information System (INIS)

    Hall, G.V.B.; Mallory, C.W.

    1990-01-01

    This patent describes an improved closure for covering and sealing an opening in a single cask for containing radioactive material, wherein the opening is characterized by a ledge. It comprises: an inner lid receivable within the opening and having a gasket means that is seatable over the ledge; an outer lid which is likewise receivable into the opening and securable therearound when the outer lid is rotated relative to the opening. The inner lid remaining stationary relative to the cask opening when the outer lid is rotated and having no torque applied thereto by the outer lid when the outer lid is rotated, and bolt means threadedly mounted through the outer lid for applying a compressive force between the inner and outer lids after the outer lid has been secured to the opening in order to depress the gasket means of the inner lid into sealing engagement with the ledge while avoiding the application of torsion between the gasket means and the ledge

  10. Automatized system of radioactive material analysis

    International Nuclear Information System (INIS)

    Pchelkin, V.A.; Sviderskij, M.F.; Litvinov, V.A.; Lavrikov, S.A.

    1979-01-01

    An automatized system has been developed for the identification of substance, element and isotope content of radioactive materials on the basis of data obtained for studying physical-chemical properties of substances (with the help of atomic-absorption spectrometers, infrared spectrometer, mass-spectrometer, derivatograph etc.). The system is based on the following principles: independent operation of each device; a possibility of increasing the number of physical instruments and devices; modular properties of engineering and computer means; modular properties and standardization of mathematical equipment, high reliability of the system; continuity of programming languages; a possibility of controlling the devices with the help of high-level language, typification of the system; simple and easy service; low cost. Block-diagram of the system is given

  11. Development of solid water-equivalent radioactive certified reference materials

    International Nuclear Information System (INIS)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R.; Geske, G.

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides 90 Sr/ 90 Y, 137 Cs, 147 Pm and 204 Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author)

  12. Import/Export Service of Radioactive Material and Radioactive Sources Service

    CERN Multimedia

    2004-01-01

    Please note that the Import/Export Service of radioactive material (http://cern.ch/service-rp-shipping/ - e-mail : service-rp-shipping@cern.ch) and the Radioactive Sources Service (http://cern.ch/service-radioactive-sources - e-mail : service-radioactive-sources@cern.ch) at bldg. 24/E-024 will be closed on FRIDAY 10 SEPTEMBER 2004. Tel. 73171

  13. Transportation of radioactive materials in Sweden

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1979-06-01

    This report is designed to calculate the total risk due to shipping radioactive materials in Sweden. The base case developed is the shipment model that is used now or the best estimate for expected shipments. The model for the calculations and the computer program used has been developed at the Sandia Laboratories, Albuquerque, N.M., USA and is the same that was used for the NUREG-0170 study. The results from the calculations show an annual expected population dose of 30 person-rem due to normal transport conditions. The annual expected dose from accidents were calculated to be between 2.3-20.8 person rem. The higher figure represents the case where plutonium is shipped back to Sweden from reprocessing plants abroad in the form of PuO2 and the lower figure represent the case when plutonium is shipped back in the form of mixed oxide fuel. The total additional population dose in Sweden due to both normal and accident conditions in the transportation of radioactive materials will be 30 - 50 person rem/year. Compared to the natural background radiation that is 8x10 5 person rem per year in Sweden, this figure is very low. If converted to latent cancer fatalities this population dose will add approximately 3.5x10 3 cancers each year. The consequences due to accidents have been calculated and are discussed separately from their probabilities. The most severe accident that was found was an accident involving PuO 2 . This accident would give 82 400 rem as a maximum individual dose and 8.1x10 5 person rem as a population dose. (Auth.)

  14. Accountability of Radioactive Materials in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Noor Fadilla Ismail; Wan Saffiey Wan Abdullah; Khairuddin Mohamad Kontol; Azimawati Ahmad; Suzilawati Muhd Sarowi; Mohd Fazlie Abdul Rashid

    2016-01-01

    Radioactive materials possessed in Malaysian Nuclear Agency have many beneficial applications for research and development, calibration, tracer and irradiation. There are two types of radioactive materials which consist of sealed sourced and unsealed sourced shall be accounted for and secured at all the times by following the security aspect. The Health Physics Group in the Department of Radiation Safety and Health Division is responsible to manage the issues related to any accountability for all radioactive material purchased or received under the radioactive material protocol. The accountability of radioactive materials in Malaysian Nuclear Agency is very important to ensure the security and control the radioactive materials to not to be lost or fall into the hands of people who do not have permission to possess or use it. The accountability of radioactive materials considered as a mandatory to maintaining accountability by complying the requirements of the Atomic Energy Licensing Act 1984 (Act 304) and regulations made thereunder and the conditions of license LPTA / A / 724. In this report describes the important element of accountability of radioactive materials in order to enhances security standard by allowing tracking of the locations of sources and to reduce the risk of radioactive materials falling into the wrong hands. (author)

  15. Handling, treatment, conditioning and storage of biological radioactive wastes. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    1994-12-01

    Biological materials that contain radioactive isotopes have many important applications. During the production and use of these materials, waste will inevitably arise which must be managed with particular care due to their potential biological as well as radiological hazards. This report deals with wastes that arise outside the nuclear fuel cycle and is directed primarily to countries without nuclear power programmes. It is intended to provide guidance to Member States in the handling, treatment and conditioning of biological radioactive materials. The objective of radioactive waste management is to handle, pretreat, treat, condition, store, transport and dispose of radioactive waste in a manner that protects human health and the environment without imposing undue burdens on future generations. 31 refs, 15 figs, 3 tabs

  16. Handling, treatment, conditioning and storage of biological radioactive wastes. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Biological materials that contain radioactive isotopes have many important applications. During the production and use of these materials, waste will inevitably arise which must be managed with particular care due to their potential biological as well as radiological hazards. This report deals with wastes that arise outside the nuclear fuel cycle and is directed primarily to countries without nuclear power programmes. It is intended to provide guidance to Member States in the handling, treatment and conditioning of biological radioactive materials. The objective of radioactive waste management is to handle, pretreat, treat, condition, store, transport and dispose of radioactive waste in a manner that protects human health and the environment without imposing undue burdens on future generations. 31 refs, 15 figs, 3 tabs.

  17. National infrastructure for detecting, controlling and monitoring radioactive materials

    International Nuclear Information System (INIS)

    Othman, I.

    2001-01-01

    Full text: The Atomic Energy Commission of Syria (AECS) has the direct responsibility to assure proper safety for handling, accounting for and controlling of nuclear materials and radioactive sources which based on a solid regulatory infrastructure , its elements contains the following items: preventing, responding, training, exchanging of information. Based on the National Law for AECS's Establishment no. 12/1976, a Ministerial Decree for Radiation Safety no. 6514 dated 8.12.1997, issued by the Prime Minister. This Decree authorizes the Syrian Atomic Energy Commission to regulate all kinds of radiation sources. It fulfills the basic requirements of radiation protection and enforce the rules and regulations. The Radiation and Nuclear Regulatory Office (RNRO) is responsible for preparing all the draft regulations. In 1999 the General Regulations for Radiation Protection was issued by the Director General of the AECS, under Decision no. 112/99 dated 3.2.1999. It is based on an IAEA publication, Safety Series no. 115 (1996), and adopted to meet the national requirements. Syria has nine Boarding Centers seeking to prevent unauthorized movement of nuclear material and radioactive sources in and out side the country. They are related to the Atomic Energy Commission (AECS), and are located at the main entrances of the country. Each is provided with the practical tools and equipment in order to assist Radiation Protection Officers (RPO) in fulfilling their commitments, by promoting greater transparency in legal transfers of radioactive materials and devices. They apply complete procedures for the safe import, export and transit of radioactive sources. The RPOs provide authorizations by issuing an entry approval document, after making sure that each concerned shipments has an authorized license from the Syrian Regulatory Body (RNRO) before permitting shipments to leave, arrive or transit across their territory, enabling law enforcement to track the legal movement of

  18. Handling, assessment, transport and disposal of tritiated waste materials at JET

    International Nuclear Information System (INIS)

    Newbert, G.; Haigh, A.; Atkins, G.

    1995-01-01

    All types of JET radioactive wastes are received for disposal at the Waste Handling Facility (WHF) which features a waste sorting and sampling station, a glove box, a compactor, and packaging and transfer systems. The WHF is operated as a contamination control area with monitored tritium discharges. Two main types of tritium monitors used are liquid scintillation counters and ionization chambers, and samples of various components and materials have now been assessed for tritium. The results so far indicate a widespread of tritium levels from 2Bq/g for cold gas transfer lines to 200kBq/g for in-vessel tiles. General soft housekeeping waste is assessed by a sniffing technique which has a limit of detection corresponding to 120Bq/g. Investigation of improved methods of tritium measurement and of component detritiation was made to facilitate future waste disposal. 8 refs., 6 figs., 2 tabs

  19. WALS: A sensor-based robotic system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system to enhance system safety, flexibility, and robustness and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and too release mechanisms were designed to prevent payload mishandling. An extensive failure modes and effects analysis (FMEA) of the automation system was developed as a safety design analysis tool

  20. Issues in recycling and disposal of radioactively contaminated materials

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.; Roberts, R.; Phillips, J.W.

    1993-01-01

    The Department of Energy's present stock of potentially re-usable and minimally radioactively contaminated materials will increase significantly as the Department's remediation activities expand. As part of its effort to minimize wastes, the Department is pursuing several approaches to recover valuable materials such as nickel, copper, and steel, and reduce the high disposal costs associated with contaminated materials. Key approaches are recycling radioactively contaminated materials or disposing of them as non-radioactive waste. These approaches are impeded by a combination of potentially conflicting Federal regulations, State actions, and Departmental policies. Actions to promote or implement these approaches at the Federal, State, or Departmental level involve issues which must be addressed and resolved. The paramount issue is the legal status of radioactively contaminated materials and the roles of the Federal and State governments in regulating those materials. Public involvement is crucial in the debate surrounding the fate of radioactively contaminated materials

  1. Introduction to naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Egidi, P.

    1997-01-01

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. Some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to exclamation point We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these

  2. Expansion design for a Laboratory of Radioactive Sources Handling type II, class B

    International Nuclear Information System (INIS)

    Sanchez S, P. S.

    2014-01-01

    This work presents the expansion design of the Radioactive Wastes Research Laboratory (RWRL) installation authorized by the Comision Nacional de Seguridad Nuclear y Salvaguardias (Mexico) as type II class C, to manage 40 different radionuclides, approximately. The RWRL has 4 areas at the present time: a laboratory of instrumental analysis, one of radioactive material processes, other of counting and a chemical reagents stock, which is not integrated to the operation license of the RWRL. With the purpose of expanding the operation license of the RWRL to an installation type II class B, to manage until 370 MBq of high radio toxicity radionuclides, is presented in this work an expansion proposal of the RWRL. The expansion proposal is based in: (1) the Mexican Nuclear Standard NOM-027-Nucl-1996 for installations type II class B, (2) the current distribution of water, light, electricity, extraction, gas, air and vacuum services of RWRL, and (3) the available areas inside the building that the RWRL occupies. The proposal contemplates the creation of additional new areas for RWRL: 3 laboratories, 2 dressing rooms, 2 bathrooms and 2 warehouses, one for radioactive materials and another for reagents chemical radiologically inactive. Architectural, electric, hydraulic, extraction and gas planes corresponding to the expansion of RWRL were realized. Inside the proposal the budget required to carry out the mentioned expansion is also presented. (Author)

  3. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.

    1989-11-01

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  4. Disposal containers for radioactive waste materials and separation systems for radioactive waste materials

    International Nuclear Information System (INIS)

    Rubin, L.S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. The separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. The inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and the discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by a second valve structure that is centrifugally actuated to open the discharge ports. The container also includes a coupling structure for releasable engagement with the centrifugal drive structure. The centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized. (author)

  5. Energy-saving methodology for material handling applications

    Energy Technology Data Exchange (ETDEWEB)

    Makris, P.A.; Makri, A.P.; Provatidis, C.G. [National Technical University of Athens, School of Mechanical Engineering, Mechanical Design and Control Systems Division, 9 Iroon Polytechniou Street, Zografou Campus, GR-15773 Athens (Greece)

    2006-10-15

    This paper presents an energy saving approach to the problem of order picking in warehousing environment, which is directly related to the well-known Traveling Salesman Problem (TSP). While the available heuristic algorithms for the order-picking problem search for the route that minimizes the travel time, here the problem is addressed from the energy saving point of view. In a few words, the least energy-consuming route is identified in order to quantify the trade off in time and energy between the fastest route and the most energy economic one. Keeping in mind that often energy is as important as time, especially during a low-demand period, the current paper sheds some light into a two dimensional way of addressing the warehouse material handling problem, which saves time as well as energy. A very interesting finding is that a relatively small loss of service time in many cases may lead to a significant decrease of consumed energy without any additional cost. (author)

  6. Regulations for the Safe Transport of Radioactive Material, 2009 ed. Safety Requirements

    International Nuclear Information System (INIS)

    2009-01-01

    This publication establishes the regulations that are applied to the transport of radioactive material by all modes of transport on land, water or in the air, including transport that is incidental to the use of the radioactive material. The objective and scope of the regulations are described in detail as well as the range of their application. The publication provides requirements useful to governments, regulators, operators of nuclear and radiation facilities, carriers, users of radiation sources and cargo handling personnel. Contents: 1. Introduction; 2. Definitions; 3. General provisions; 4. Activity limits and classification; 5. Requirements and controls for transport; 6. Requirements for radioactive materials and for packagings and packages; 7. Test procedures; 8. Approval and administrative requirements; Annex I: Summary of approval and prior notification requirements; Annex II: Conversion factors and prefixes.

  7. Radiological impact of radioactive materials transport in France

    International Nuclear Information System (INIS)

    Hamard, J.

    1987-01-01

    Radiation doses of personnel and populations are estimated between 1983 and 1985 during road transport of radiopharmaceuticals, spent fuels, wastes and other radioactive materials. Dose equivalent received by air transport and others are difficult to know. Results are summed up in 8 tables. Radioactive materials transport represents less than 1% of exposures related to the fuel cycle [fr

  8. Framework for assessing the effects of radioactive materials transportation

    International Nuclear Information System (INIS)

    Zoller, J.N.

    1996-01-01

    Radioactive materials transport may result in environmental effects during both incident-free and accident conditions. These effects may be caused by radiation exposure, pollutants, or physical trauma. Recent environmental impact analyses involving the transportation of radioactive materials are cited to provide examples of the types of activities which may be involved as well as the environmental effects which can be estimated

  9. State summary of radioactive material transport sector in Brazil

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.; Xavier, A.M.

    1991-07-01

    The main aim of this work is the scientific cooperation with the CNEA (Argentina) in the area of safe transport of radioactive materials, intending to find solutions to some rural problems and, also, to standardize the transport of radioactive materials between Brazil and Argentina. (E.O.)

  10. Dispersion of radioactive materials in air and water

    International Nuclear Information System (INIS)

    Tolksdorf, P.; Meurin, G.

    1976-01-01

    A review of current analytical methods for treating the dispersion of radioactive material in air and water is given. It is shown that suitable calculational models, based on experiments, exist for the dispersion in air. By contrast, the analysis of the dispersion of radioactive material in water still depends on the evaluation of experiments with site-specific models. (orig.) [de

  11. Method of treatment in a system passing radioactive material

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K; Kinoshita, M; Asakura, Y

    1976-05-14

    A method to ensure the safety of the reactor and reduce radiation exposure dose by preventing oxygen hydrogen reaction of the reactor off-gas and accumulation of the radioactive material is described. Substances which are accumulated in an off-gas duct and are likely to capture radioactive material (for instance Pd catalyst falling from a recombiner) is changed into a stable material (for instance, PdI/sub 2/) which is hot likely to capture radioactive material through reaction with a stabilizer (for instance, I/sub 2/, Cl/sub 2/, HCl, etc.). This stabilized material is washed off the atomic power plant system.

  12. 2009 National inventory of radioactive material and wastes. In short

    International Nuclear Information System (INIS)

    2009-01-01

    This booklet gives a summary of the national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). Intended for public information, the booklet explains the basics of radioactive materials and wastes and waste management, and gives some data on present and future waste volumes, information about radioactive waste classification, the geographical distribution of waste sites in France, etc. The various types of radioactive wastes are described (classified by their lifetime and activity level) as well as historical storage sites, polluted areas where wastes are stored, radioactive objects, etc. and their respective management approaches are presented

  13. Transport of radioactive materials: the need for radiation protection programmes

    International Nuclear Information System (INIS)

    Masinza, S.A.

    2004-01-01

    The increase in the use of radioactive materials worldwide requires that these materials be moved from production sites to the end user or in the case of radioactive waste, from the waste generator to the repository. Tens of millions of packages containing radioactive material are consigned for transport each year throughout the world. The amount of radioactive material in these packages varies from negligible quantities in shipments of consumer products to very large quantities of shipments of irradiated nuclear fuel. Transport is the main way in which the radioactive materials being moved get into the public domain. The public is generally unaware of the lurking danger when transporting these hazardous goods. Thus radiation protection programmes are important to assure the public of the certainty of their safety during conveyance of these materials. Radioactive material is transported by land (road and rail), inland waterways, sea/ocean and air. These modes of transport are regulated by international 'modal' regulations. The international community has formulated controls to reduce the number of accidents and mitigate their consequences should they happen. When accidents involving the transport of radioactive material occur, it could result in injury, loss of life and pollution of the environment. In order to ensure the safety of people, property and the environment, national and international transport regulations have been developed. The appropriate authorities in each state utilise them to control the transport of radioactive material. Stringent measures are required in these regulations to ensure adequate containment, shielding and the prevention of criticality in all spheres of transport, i.e. routine, minor incidents and accident conditions. Despite the extensive application of these stringent safety controls, transport accidents involving packages containing radioactive material have occurred and will continue to occur. When a transport accident occurs, it

  14. Low radioactivity material for use in mounting radiation detectors

    Science.gov (United States)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  15. Regulations relevant to the transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Smith, L.

    1996-01-01

    As is the case in many countries, the transport of radioactive materials in Switzerland is primarily regulated by the national regulations for the transport of dangerous goods. Currently these regulations, in the case of radioactive material, incorporate the 1985 IAEA Safety Series 6 Regulations for the Safe Transport of Radioactive Material (As amended 1990). However, as is also the case in some other countries, consignors, shippers and carriers of radioactive materials must also comply with additional laws when shipping radioactive materials. The most important of these other laws and their accompanying regulations are those concerned with radiation protection (import, export and carriers licences) and nuclear power (import, export, inland transport and transit licences). This paper sets out to describe the collective requirements resulting from all three of these sets of regulations. (Author)

  16. Airborne concentrations of radioactive materials in severe accidents

    International Nuclear Information System (INIS)

    Ross, D.F. Jr.; Denning, R.S.

    1989-01-01

    Radioactive materials would be released to the containment building of a commercial nuclear reactor during each of the stages of a severe accident. Results of analyses of two accident sequences are used to illustrate the magnitudes of these sources of radioactive materials, the resulting airborne mass concentrations, the characteristics of the airborne aerosols, the potential for vapor forms of radioactive materials, the effectiveness of engineered safety features in reducing airborne concentrations, and the release of radioactive materials to the environment. Ability to predict transport and deposition of radioactive materials is important to assessing the performance of containment safety features in severe accidents and in the development of accident management procedures to reduce the consequences of severe accidents

  17. Transport of radioactive material in Sudan practice and regulations

    International Nuclear Information System (INIS)

    Abdalla, M. K. E.

    2010-12-01

    In the last couple of decades there has been an impressive increase in applications of radioactive material. Such an extensive and widely spread usage of radioactive materials demands safe transportation of radioactive material from the production site to the application location, as well as quick and effective response in a case of an unexpected transportation event according to Sudan Atomic Energy Commission (SAEC) regulation. The thesis described the local practice for transport of radioactive material as compared to the international standards for radiation protection, and also discussed the emergency procedures that must be follow in case of accident during transport of radioactive material. Furthermore, the objective of this study was also to set proposals for how to cope in the event of a radiological accident. The study methods included survey of current literature on safe transport of radioactive material, survey of national regulations on the subjects in additional to case studies aimed at investigating the practical issues pertinent to transport of radioactive materials in Sudan. A comprehensive review was presented on how to classification of radioactive packages and general requirement for all packaging and packages according to international standard. transport of number of radioactive sources from Khartoum airport to the field was evaluated with regard transport index, category of source, type of package, dose rate around the source, time to destination and means of transport of doses to public, worker are be made. All results were within the limit specified in the national as well as international regulation. The study has addressed for the first time the practice of transport of radioactive material in Sudan. It is anticipated that the results will encourage national organizational and professional bodies to enhance radiation protection and safety of radioactive sources. (Author)

  18. Bases for safety of shipping radioactive materials

    International Nuclear Information System (INIS)

    Frejman, Eh.S.; Shchupanovskij, V.D.; Kaloshin, V.M.

    1986-01-01

    Classification is presented and design of packaging containers for radioactive substance shipment is described. Standard documents and the main activities related to the shipment radiation safety provision are considered. Practical recommendations on environment and personnel protection during radioactive cargo shipment by all types of vehicles are presented

  19. Manufacturing method for radioactive material containing vessel

    International Nuclear Information System (INIS)

    Nishioka, Hideharu; Matsushita, Kazuo; Toyota, Michinori.

    1997-01-01

    Lead homogenization is applied on the inner surface of a space formed between an inner cylinder and an outer cylinder, and a molten lead heated to about 400 to 500degC is cast into a space formed between the inner cylinder and the outer cylinder in a state where the inner and the outer cylinders are heated to from 200 to 300degC. The space formed between the inner cylinder and the outer cylinder is heated to and kept at 330degC or higher for at least 2minutes after the casting of the molten lead, and then it is cooled. Thus, lowering of density of the molten lead due to excess elevation of temperature or dropping of the lead at the homogenization portion by heating the inner and the outer cylinders to an excessively high temperature are not caused. In addition, formation of gaps in the boundary between the inner cylinder and the outer cylinder or between the lead of the homogenized portion and that of the cast portion due to the melting of the lead of the homogenized portion in the space is prevented reliably thereby capable of forming a satisfactory shielding member. Then, even when the thickness of the inner cylinder and the outer cylinder is large, radioactive material containing vessel excellent in heat releasing property and radiation shielding property can be manufactured. (N.H.)

  20. Containers for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Bochard, C.

    1975-01-01

    The container for heat evolving radioactive materials has a metallic outer casing formed with outwardly projecting heat dissipating or cooling members, such as pins or fins, while each of its ends is formed with a flat flange which extends radially beyond the outer ends of the cooling members. A perforated wall extends between the flanges to define with same and with the periphery of the outer casing an annular space within which the cooling members are enclosed. This perforated wall is adapted to support a flexible covering sleeve the ends of which are clamped by inflatable seals between the periphery of the flanges and outer rings removably secured to the latter. Spraying means are provided within the aforesaid space to permit of projecting an uncontaminated liquid on the cooling members to cool the container before and/or while the latter is immersed in a loading and unloading pond with the sleeve mounted in position. The lower flange is provided with liquid collecting and evacuating means and compressed air may be injected into the said space to force the collected liquid outwardly. (auth)

  1. Leachability of naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Desideri, D.; Feduzi, L.; Meli, M.A.; Roselli, C.

    2006-01-01

    Naturally occurring radioactive materials (NORM) are present in the environment and can be concentrated by technical activities, particularly those involving natural resources. These NORM deposits are highly stable and very insoluble under environmental conditions at the earth's surface. However, reducing or oxidant conditions or pH changes may enable a fraction of naturally occurring radionuclides to eventually be released to the environment. Leachability of 210 Pb and 210 Po was determined in three samples coming from a refractories production plant (dust, sludge, finished product), in one dust sample from a steelwork and in one ash sample coming from an electric power station. A sequential extraction method consisting of five operationally-defined fractions was used. The average leaching potential observed in the samples from the refractory industry is very low (mean values: 5.8% for 210 Pb and 1.7% for 210 Po). The 210 Pb and 210 Po leachability increases for the ash sample coming from an electric power plant using carbon (17.8% for 210 Pb and 10.0% for 210 Po); for the dust sample coming from a steelwork, the percent soluble fraction is 41.1% for 210 Pb and 8.5% for 210 Po. For all samples the results obtained show that 210 Pb is slightly more soluble than 210 Po. (author)

  2. Plant Material Acquisition, Layout, and Handling for Flood Control Projects

    National Research Council Canada - National Science Library

    Fischenich, J

    2000-01-01

    .... Successful designs are based on consideration of hydraulic impacts and environmental benefits, the anticipated soils and hydrology, and the approach by which the vegetation is obtained, handled, and installed...

  3. Discussion of and guidance on the optimization of radiation protection in the transport of radioactive material

    International Nuclear Information System (INIS)

    1986-05-01

    The document provides guidance on one of the components of the system of dose limitation as it applies to the transport of radioactive material, namely the optimization of radiation protection. It focuses on the following parts of the transport system: design, maintenance, preparation for transport, transport, storage-in-transit and handling and it considers occupational and public exposures. The application is intended mainly for those transport situations within the regulatory requirements where potential radiation exposures could be beneficially reduced

  4. Reuse and recycling of radioactive material packaging

    International Nuclear Information System (INIS)

    Gerulis, Eduardo; Zapparoli, Carlos Leonel; Barboza, Marycel Figols de

    2009-01-01

    Human development is directly linked to energy consumption. The political decisions (to this human development) result in economic, social and environmental aspects, whose magnitude should maintain the sustainability of every aspect for not to collapsing. The environmental aspect has been a target of research because of the excessive emission of gases which contributes to the greenhouse effect. The production processes emit gases due to the consumption of energy to get it, but it is necessary to maintain the environmental sustainability in order to minimize the contribution to the emission of greenhouse gases. The population control and the energetic efficiency are factors that contribute to the environmental sustainability. Besides them, the culture of consumption is another factor that, when applied to the reduction of emissions, also contributes to the sustainability of the environment. The reuse of materials is one of the sub-factors which contribute to the reduction of emissions. The Radiopharmacy Directory (DIRF) at IPEN-CNEN/SP, produces radiopharmaceuticals that are necessary to improve the Brazilian population's life quality. The radiopharmaceuticals are transported in packaging to the transport of radioactive material. These packages are considered non-biodegradable, because some metals, which make up these packages, pollute the environment. These packages have increased costs, in addition, because it must be approved in tests of integrity. The reuse of packaging in favorable situations to the same purpose is a way to help the environment degradation and costs reduction. The packaging reuse in unfavorable situations disobey rules or return logistics that become effective the transport back, but the consumption culture strengthening can change this situation. This paper describes IPEN's packaging, form and quantities distribution, and the packaging that comes back to be reused. (author)

  5. Trasmar: automated vehicle for transport of radioactive materials

    International Nuclear Information System (INIS)

    Segovia R, J.A.; Martinez J, L.

    2001-01-01

    Traditionally robots have been used for industrial applications, even though area in which these devices had a deep impact is in the nuclear industry. The ININ is an Institute that must to manage and to work with radioactive substances. The ININ is also responsible of the storage and supervision of radioactive wastes in the country, therefore the applications of the automated systems in the Institute have as the main objective to reduce the exposure and the contact of personnel with the radioactive material. Here to, it has been proposed the project called Assisted Transportation of Radioactive Material (TRASMAR). (Author)

  6. Lessons learned by southern states in transportation of radioactive materials

    International Nuclear Information System (INIS)

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE's Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board's Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns

  7. Report on current research into organic materials in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A preliminary review of relevant recent papers on organic materials in radioactive waste is presented. In particular, the effects of chelating or complexing agents, the influence of bacteria and the role of colloids are assessed. The requirement for further radioactive waste inventory detail is indicated. Potential problem areas associated with the presence of organic materials in radioactive waste are identified and appropriate experimental work to assess their significance is proposed. Recommendations for specific further work are made. A list and diagrams of some of the more important polymer structures likely to be present in radioactive waste and their possible degradation products are appended. (author)

  8. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  9. Transporting radioactive materials: Q ampersand A to your questions

    International Nuclear Information System (INIS)

    1993-04-01

    Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet

  10. State statutes and regulations on radioactive materials transportation

    International Nuclear Information System (INIS)

    Foster, B.

    1981-11-01

    The transport of radioactive material is controlled by numerous legislative and regulatory actions at the federal, state, and local levels. This document is a compilation of the state level laws and regulations. The collected material is abstracted and indexed by states. Each state section contains three divisions: (1) abstracts of major statutes, (2) legislative rules, and (3) photocopies of relevant paragraphs from the law or regulation. This document was prepared for use by individuals who are involved in the radioactive material transportation process. This document will not be updated. The legislative rules section contains the name of the state agency primarily responsible for monitoring the transport of radioactive materials

  11. Transportation accidents/incidents involving radioactive materials (1971--1991)

    International Nuclear Information System (INIS)

    Cashwell, C.E.; McClure, J.D.

    1992-01-01

    The Radioactive Materials Incident Report (RMIR) database contains information on transportation-related accidents and incidents involving radioactive materials that have occurred in the United States. The RMIR was developed at Sandia National Laboratories (SNL) to support its research and development program efforts for the US Department of Energy (DOE). This paper will address the following topics: background information on the regulations and process for reporting a hazardous materials transportation incident, overview data of radioactive materials transportation accidents and incidents, and additional information and summary data on how packagings have performed in accident conditions

  12. Spread-sheet application to classify radioactive material for shipment

    International Nuclear Information System (INIS)

    Brown, A.N.

    1998-01-01

    A spread-sheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spread-sheet are used to confirm the proper US DOT classification when offering radioactive material packages for transport. The user must input to the spread-sheet the mass of the material being classified, the physical form (liquid or not) and the activity of each regulated nuclide. The spread-sheet uses these inputs to calculate two general values: 1)the specific activity of the material and a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material. If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three low specific activity designations (LSA-I, LSA-II, LSA-III, or not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity). This spread-sheet has proven to be an invaluable aid for shippers of radioactive materials at the Idaho National Engineering and Environmental Laboratory. (authors)

  13. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  14. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  15. Safety in transport of radioactive materials - the next 10 years

    International Nuclear Information System (INIS)

    Barker, R.

    1981-01-01

    The number of shipments of radioactive material is increasing steadily - some estimates indicate by about 10 per cent a year. Several million packages are already shipped about the world each year and this number will increase at least for the next 10 years. Part of this increase will come from the expected growth in the number of nuclear power plants which will be shipping irradiated fuel that had previously been stored on-site or in use, and from the associated shipments of nuclear waste. The increase in production and use of nuclear fuel requires increased production (and hence increased shipments) or uranium and thorium ores; and of concentrates, nitrates, fluorides and fresh fuel. Shipments of highly active waste from reprocessing nuclear fuels, already occurring to some extent in Europe, will increase and may begin again in the USA in the next few years. Also in the next 10 years, decommissioning of some reactors will take place requiring special types of shipments. A new type of shipment that may arise within the next 10 years is that of several kilograms (millions of curies) of tritium. A few of these large, easily controlled shipments will be required for the operation of the prototype fusion reactor, a joint project supported through the IAEA by the USSR, USA, and others. The technology for designing such packaging is well established, but it does not appear that any of the existing designs are capable of handling such large amounts of tritium and so new designs will be needed. The medical, industrial, and research uses of radioactivity are expected to continue to grow and the associated shipments of radioactive material to become even more frequent. The Agency is collecting data on shipments in all Member States and will issue an analysis of that data in 1981. For several years to come, however, we can expect the largest number of packages to be exempt shipments (e.g. smoke detectors and luminous watches) and medical isotopes; the greatest volume to be

  16. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  17. Development of solid water-equivalent radioactive certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R. (Office for Standardization, Metrology and Quality Control (ASMW), Berlin (Germany, F.R.)); Geske, G. (Jena Univ. (Germany, F.R.))

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides {sup 90}Sr/{sup 90}Y, {sup 137}Cs, {sup 147}Pm and {sup 204}Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author).

  18. Assessment of the threat from diverted radioactive material and 'orphan sources' - An international comparison

    International Nuclear Information System (INIS)

    Steinhausler, F.

    2001-01-01

    Full text: Multiple international activities have been undertaken to contain the trafficking of weapons-usable material in order to reduce the risk from the proliferation of such material. In addition, over the past decade the issue of unintended handling and transport of radioactive material has become increasingly important. Concurrent with the growing number of radioactive sources in industry, medicine, agriculture and research, the probability for losing control over such sources increases as well ('orphan sources'). The potential impact on society and the environment from these two categories of threat has been documented extensively in the literature. In this study representatives from 11 countries in the Americas, Europe and Asia-Pacific formed a network to exchange information concerning nuclear and other radioactive material on the following topic areas: Legislation and regulatory practices for the production, processing, handling, use, holding, storage, transport, import, and export; History of site-specific non-compliance and enforcement actions, as well as punitive actions; National approach for handling the issue of orphan sources; The role of national security forces; Managerial and technical procedures to ensure material inventory control and accountancy; Aspects of physical protection on-site and during transport; Technical/scientific expertise and equipment available at the national level to detect, identify and quantify such material in the field; Level of practical implementation of technical equipment to detect such material at border crossings, airports, railway stations, and mail distribution centres; Cases of seizure of nuclear and contaminated materials, illegal sales and fraud; Training programmes available for preventing, detecting and responding to the loss of control. The results of the analysis show that, despite several international consensus documents and supporting legislation, in several cases major additional efforts are needed

  19. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  20. Radiation and Radioactivity Levels Survey of Naturally Occurring Radioactive Materials (NORM) at PT Caltex Pacific Indonesia

    International Nuclear Information System (INIS)

    Bakri, Jusuf; Siregar, Roland

    2003-01-01

    PT Caltex Pacific Indonesia (CPI) is the largest oil company sharing contractor with Pertamina, located in Riau Province, Central Sumatera, employs about 6,800 employees and works together with 28,000 business partner employees. Currently CPI produces about 510,000 bbls crude oil. The production process mobilizes the naturally occurring radionuclides from deep reservoir rock that are deposited as Naturally Occurring Radioactive Materials (NORM) in well tubes, surface pipes, vessels and other processing equipment. NORM has a potential to be externally exposed during production process due to the accumulation of gamma emitting radionuclides and internal exposure to employees/business partners particularly during maintenance, sludge processing and decontamination of equipment. Understanding of the possible NORM hazards to human life, CPI initiated a NORM survey in order to obtain a clear picture of the magnitude of NORM in CPI operations. The survey has been conducted in 2001 and 2002 involved experts from Chevron Texaco USA, BATAN and BAPETEN Jakarta. The survey covered the determination of gamma exposure rates and the concentration of 238 U, 232 Th, 226 Ra, 228 Ra, 228 Th and 40 K in several samples taken from scale, sludge, tank bottom and sand. To safely management of NORM, the Industrial Health Team of Corporate Health, Environment and Safety in coordination with Training Center Team and BATAN have conducted a NORM training for Industrial Hygienist and employees exposed to NORM, developed Standard Operating Procedure for NORM Handling and Disposal and continuously performed NORM survey and mapping of all suspected areas. (author)

  1. Ionising radiations, radioactive materials and the fire services

    International Nuclear Information System (INIS)

    Button, J.C.E.

    1981-05-01

    Extensive experience has shown that ionizing radiations and radioactive materials can be used safely in a wide variety of applications, provided a number of precautions are implemented. Transport of radioactive materials is common and regulations designed to ensure safety in such transport have resulted in an excellent safety record. Pre-planning for fire situations in buildings where radioactive materials are known to be present is very desirable. An Australian Standard, AS2243, recommends that Station Officers of the local fire brigade be appraised of the hazards and the need to take particular care in areas marked with ionizing radiation warning signs

  2. Inventory of accidents and losses at sea involving radioactive material

    International Nuclear Information System (INIS)

    2001-09-01

    The present report describes the content of the inventory of accidents and losses at sea involving radioactive material. It covers accidents and losses resulting in the actual release of radioactive materials into the marine environment and also those which have the potential for release. For completeness, records of radioactive materials involved in accidents but which were recovered intact from the sea are also reported. Information on losses of sealed sources resulting in actual or potential release of activity to the marine environment nad of sealed sources that were recovered intact is also presented

  3. Licensing of radioactive materials and facilities in the Philippines

    International Nuclear Information System (INIS)

    Mateo, A.J.

    1976-12-01

    The importation, acquisition, possession, use, sale and/ or transfer of radioactive materials need to be regulated and controlled in order to safeguard the importer, possessor, user or seller and the general public as well. The Philippine Atomic Energy Commission pursuant to Republic Act No. 2067, as amended and Republic Act No. 5207, has been charged by the government to control, regulate and license all the radioactive materials and facilities in the Philippines. Licensing and control is accomplished through a system of rules and regulations applicable to all importers, possessors, users or sellers of radioactive materials

  4. The regulation concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    The Regulation is established on the basis of The law for the regulations of nuclear source materials, nuclear fuel materials and reactors'' and the ''Law for the prevention of radiation injuries due to radioisotopes.'' The prescriptions cover the transport of radioactive materials by railway, street rail way, ropeway, trolley buses, motorcars and light vehicles. Terms are explained, such as nuclear fuel materials, radioisotopes, radioactive substances, transported radioactive things, transported fissile things, vehicles, containers, exclusive loading, surrounding inspection area. Four types of transported radioactive things are specified, L and A types being less dangerous and BM and BU being more dangerous. Transported fissile things are classified to three kinds according to the safety to criticality of such things. Transported radioactive things except those of L type and containers with transported fissile things shall not be loaded or unloaded at the places where persons other than those concerned come in usually. Loading and unloading of such things shall be carried out so that the safety of such things is not injured. The maximum dose rate of radiation of the containers with transported radioactive things shall not be more than 200 millirem per hour on the surface and 10 millirem per hour at the distance of 1 meter. Specified transported radioactive things shall be particularly marked by the letter of ''radioactive'' or other signs indicating as such. (Okada, K.)

  5. 77 FR 23117 - Rigging Equipment for Material Handling Construction Standard; Correction and Technical Amendment

    Science.gov (United States)

    2012-04-18

    ... Equipment for Material Handling Construction Standard; Correction and Technical Amendment AGENCY... AND HEALTH REGULATIONS FOR CONSTRUCTION Subpart H--Materials Handling, Storage, Use, and Disposal 0 1... amendment. SUMMARY: OSHA is correcting its sling standard for construction titled ``Rigging Equipment for...

  6. Use of a scanning electron microscope for examining radioactive materials

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Prouve, Michel.

    1981-05-01

    The LAMA laboratory of the Grenoble Nuclear Research Center participates in studies carried out by research teams on fuels. Post-irradiation studies are performed on irradiated pins for research and development and safety programs. A scanning electron microscope was acquired for this purpose. This microscope had to fulfill certain criteria: it had to be sufficiently compact for it to be housed in a lead enclosure; it had to be capable of being adapted to operate with remote handling control. The modifications made to this microscope are briefly described together with the ancillary equipment of the cell. In parallel with these operations, an interconnection was realized enabling materials to be transferred between the various sampling and sample preparation cells and the microscope cell with a small transfer cask. After two years operating experience the microscope performance has been assessed satisfactory. The specific radioactivity of the samples themselves cannot be incriminated as the only cause of loss in resolution at magnifications greater than x 10,000 [fr

  7. Retrospective search on biomass harvesting techniques including materials handling and storage

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This literature search covers the period 1977 to date. The harvesting, materials handling and storage of the following materials: wood; crops and crop residues; peat; sugar cane; reeds, grasses and fers; algae and jojoba shrubs are covered.

  8. SIMULASI GROUP TECHNOLOGY SYSTEM UNTUK MEMINIMALKAN BIAYA MATERIAL HANDLING DENGAN METODE HEURISTIC

    Directory of Open Access Journals (Sweden)

    Much. Djunaidi

    2006-04-01

    Full Text Available Group Technology System merupakan metode pengaturan fasilitas produksi (machine groups yang dibutuhkan untuk memproses suatu part family tertentu ke dalam sel-sel manufaktur. Pengaturan tata letak di CV. Sonytex yang berdasarkan process layout mengakibatkan perusahaan menghadapi permasalahan berupa tingginya kebutuhan material handling. Salah satu kriteria kinerja dalam pembentukan sel manufaktur pada GTS adalah meminimasi total jarak material handling, sehingga dapat mengurangi biaya material handling dan meningkatkan produktivitas. Dalam penelitian ini digunakan tiga metode, yaitu Bond Energy Algorithm (BEA, Rank Order Clustering (ROC dan Rank Order Clustering 2 (ROC2. Hasil dari penelitian ini adalah dengan menerapkan group technology systems diperoleh total pengurangan jarak material handling sebesar 70 m dan penghematan biaya material handling sebesar Rp 1.534.978,-. Berdasarkan model simulasi, relayout dengan metode BEA meningkatkan jumlah produksi sebesar 1 unit produk/hari dan penurunan waktu tunggu sebesar 0,575 menit.

  9. Method of encapsulating waste radioactive material

    International Nuclear Information System (INIS)

    Forrester, J.A.; Rootham, M.W.

    1982-01-01

    When encapsulating radioactive waste including radioactive liquid having a retardant therein which retards the setting of cements by preventing hydration at cement particles in the mix, the liquid is mixed with ordinary Portland cement and subjected, in a high shear mixer, to long term shear far in excess of that needed to form ordinary grout. The controlled utilization of the retardants plus shear produces a thixotropic paste with extreme moldability which will not bleed, and finally sets more rapidly than can be expected with normal cement mixtures forming a very strong product. (author)

  10. Transport of proximity nuclear radioactive materials

    International Nuclear Information System (INIS)

    2010-01-01

    This brief publication gives an overview of the international and national regulatory framework for the transport of radioactive substances, outlines progress orientations identified by the French Nuclear Safety Authority (ASN), indicates the parcel classification and shipment radiological criteria, and how to declare events occurring during the transport of radioactive substances, which number to phone in case of a radiological incident. Finally, the role of the ASN and its field of activity in matters of control are briefly presented with a table of its office addresses in France

  11. Regulations related to the transport of radioactive material in Brazil

    International Nuclear Information System (INIS)

    Sahyun, Adelia; Sordi, Gian-Maria A.A.; Sanches, Matias P.

    2001-01-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  12. Regulations related to the transport of radioactive material in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sahyun, Adelia; Sordi, Gian-Maria A.A. [ATOMO Radioprotecao e Seguranca Nuclear, Sao Paulo, SP (Brazil)]. E-mail: atomo@atomo.com.br; Sanches, Matias P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: msanches@net.ipen.br

    2001-07-01

    The transport of radioactive material has raised great interest on the part of national regulatory authorities, thus resulting in a safety measures improvement for all kinds of transportation. The transport of radioactive material is regulated by safety criteria much more than those applied to conventional hazardous material. All radioactive material transportation run in Brazilian territory must be in accordance with what is established by the CNEN-NE 5.01 - Transport of Radioactive Material. There are other national and international regulations for radioactive material transportation, which have to be accomplished with and adopted during the operation of radioactive material transportation. The aim of this paper is to verify the criteria set up in the existing regulations and propose a consensus for all the intervening organizations in the regulation process for land, air or sea transportation. This kind of transportation can not depend on the efforts of only one person, a group of workers or even any governmental body, but must be instead a shared responsibility among workers, transport firms and all regulative transportation organizations. (author)

  13. Spreadsheet application to classify radioactive material for shipment

    International Nuclear Information System (INIS)

    Brown, A.N.

    1997-12-01

    A spreadsheet application has been developed at the Idaho National Engineering and Environmental Laboratory to aid the shipper when classifying nuclide mixtures of normal form, radioactive materials. The results generated by this spreadsheet are used to confirm the proper US Department of Transportation (DOT) classification when offering radioactive material packages for transport. The user must input to the spreadsheet the mass of the material being classified, the physical form (liquid or not), and the activity of each regulated nuclide. The spreadsheet uses these inputs to calculate two general values: (1) the specific activity of the material, and (2) a summation calculation of the nuclide content. The specific activity is used to determine if the material exceeds the DOT minimal threshold for a radioactive material (Yes or No). If the material is calculated to be radioactive, the specific activity is also used to determine if the material meets the activity requirement for one of the three Low Specific Activity designations (LSA-I, LSA-II, LSA-III, or Not LSA). Again, if the material is calculated to be radioactive, the summation calculation is then used to determine which activity category the material will meet (Limited Quantity, Type A, Type B, or Highway Route Controlled Quantity)

  14. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  15. Regulations for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1995-01-01

    Regulations and rules for the safe transport of radioactive materials by all kinds of conveyance are offered. Different types of packages and the conditions associated with the methods of safe packaging are given

  16. Packaging and transportation of radioactive materials: summary program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference. (DC)

  17. Transport of radioactive materials and equipment. Requirements. (Provisional)

    International Nuclear Information System (INIS)

    1983-01-01

    This standard is aimed at establishing the procedures that must be followed when transporting radioactive materials and equipment in Venezuelan Territory. The ''Consejo Nacional para el Desarrollo de la Industria Nuclear'' is responsible for their fulfillment and control

  18. Quality management in the regulation of radioactive material transport

    International Nuclear Information System (INIS)

    Barenghi, Leonardo; Capadona, Nancy M.; Lopez Vietri, Jorge R.; Panzino, Marina; Ceballos, Jorge

    2006-01-01

    The paper describes the quality management procedure used by the Argentine Nuclear Regulatory Authority to establish the regulations concerning the safe transport of radioactive materials. The quality management system is based on the family of the ISO 9000 norms [es

  19. Packaging requirements and procedures for the transport of radioactive materials

    International Nuclear Information System (INIS)

    White, M.C.

    1980-01-01

    Canadian regulations on the transportation of radioactive materials are based on those formulated by the IAEA. A synopsis of these regulations is presented, and the background to certain key provisions is explained. (LL)

  20. Handbook for structural analysis of radioactive material transport casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-04-01

    This paper described structural analysis method of radioactive material transport casks for use of a handbook of safety analysis and evaluation. Safety analysis conditions, computer codes for analyses and stress evaluation method are also involved in the handbook. (author)

  1. Packaging and transportation of radioactive materials: summary program

    International Nuclear Information System (INIS)

    1978-01-01

    This document contains summaries or abstracts of reports presented at the Symposium on Packaging and Transportation of Radioactive Materials. Separate indexing has been performed on individual items presented at this conference

  2. Radiation protection rules for handling of sealed radioactive sources in medicine

    International Nuclear Information System (INIS)

    1985-02-01

    The rules presented here relate to the use of sealed radioactive sources in medical therapy, with the radioactive sources being temporarily or permanently incorporated into body cavities or body tissues, or fixed to the body surface. They also relate to radioactive sources with dimensions below 5 mm (as e.g. seeds). (orig./HP) [de

  3. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  4. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  5. First response to transportation emergencies involving radioactive materials

    International Nuclear Information System (INIS)

    1994-01-01

    This FEMA/DOE/DOT videocourse describes the basis for procedures to be used by emergency first responders for transportation accidents which involve radioactive materials. Various commercial and government sector radioactive materials shipment programs will be described and will include information about hazards and the elements of safety, proper first response actions, notification procedures, and state or federal assistance during emergencies. Primary audience: fire service and emergency management personnel

  6. Transportation incidents involving Canadian shipments of radioactive material

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1979-06-01

    This paper gives a brief statement of the legislation governing the transportation of radioactive materials in Canada, reviews the types of shipments made in Canada in 1977, and surveys the transportation incidents that have been reported to the Atomic Energy Control Board over the period 1947-1978. Some of the more significant incidents are described in detail. A totAl of 135 incidents occurred from 1947 to 1978, during which time there were 644750 shipments of radioactive material in Canada

  7. Radioactive materials in ashes from peat fired plants

    International Nuclear Information System (INIS)

    Erlandsson, B.; Hedvall, R.

    1984-11-01

    Measurements of the gamma radiation have been used for determination of radioactive materials in peat ashes from five Swedish heating plants. The results show that the amount of radioactive materials was almost the same in all samples. The concentration of 125 Sb, 137 Cs, 144 Cs and 155 Eu were in good conformity with the concentrations found in the environment. The 235 U-concentration was hardly possible to measure. (Edv)

  8. Radiological consequences of radioactive substances in building materials

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1982-01-01

    A review of radiological consequences of radioactive substances in building materials is given. Where the other contributing papers are dealing with technical problems and measuring techniques, this paper is going beyond the term dose and is considering the risk by radioactive substances in building materials in relation to conventional risks. The present state of international standards is also discussed. If a limit of 1 mSv is adopted, it is shown that this limit is just met at present conditions. (Author) [de

  9. Considerations concerning the secure transport of radioactive materials in Romania

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2002-01-01

    As UNO member and founding member of the IAEA, Romania has implemented national regulations concerning the transport of radioactive materials in complete safety, complying with recommendations by IAEA and other international organizations. Accordingly, the National Commission for Nuclear Activities Control, CNCAN, issued the Directive no. 374/October 2001 which provides the rules for secure radioactive material transport in Romania on roads, rail ways, sea/fluvial and air ways. The paper presents the main sources of producing radioactive materials focussing the following: mining of natural uranium ore, nuclear fuel fabrication plants, nuclear power plants operation, nuclear research reactors, industrial use of radioactive sources (as gamma radiography), use of radioisotope in scientific, educational or medical units. The paper pays attention to the special routes and containers adopted for most secure transport of radioactive waste. Finally, one presents specific issues relating to identification and evaluation of the risk factors occurring at the transport of radioactive waste, as well as the potential radiological consequences upon population and environment. Estimated are the collective risk doses for different categories of populations from areas adjacent to the routes of radioactive materials transportation. It is stressed that the annual collective dose which the population is exposed to in case of accident is comparable with the dose from the natural (cosmic radiation background)

  10. Transports of radioactive materials. Legal regulations, safety and security concepts, experience; Befoerderung radioaktiver Stoffe. Rechtsvorschriften, Sicherheits- und Sicherungskonzept, Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Guenther

    2012-07-15

    In Germany, approximately 650,000 to 750,000 units containing radioactive materials for scientific, medical and technical applications are shipped annually by surface, air and water transports. Legally speaking, radioactive materials are dangerous goods which can cause hazards to life, health, property and the environment as a result of faulty handling or accidents in transit. For protection against these hazards, their shipment therefore is regulated in extensive national and international rules of protection and safety. The article contains a topical review of the international and national transport regulations and codes pertaining to shipments of radioactive materials, and of the protection concepts underlying these codes so as to ensure an adequate standard of safety and security in shipping radioactive materials in national and international goods traffic. (orig.)

  11. Regulation of Transportation of Radioactive Material in Indonesia

    International Nuclear Information System (INIS)

    Nirwono, Muttaqin Margo; Choi, Kwang Sik

    2011-01-01

    1.1. Background Indonesia is a biggest archipelago country with 17,508 islands in 33 provinces. In transportation Indonesia has large number of airports, railways, roadways, waterways, and merchant marines. Since nuclear and radiation utilizations are expanding on whole country, the mobilization of these is usually placed outside of controlled facilities, in the public domain, and often entails movement between countries. The Indonesian Nuclear Energy Regulatory Agency (BAPETEN) is responsible for supervision and also authorization of the transport of radioactive material (TRM). TRM is the specific movement of a radioactive material consignment from origin to destination by public transportation (road or rail, water and air). This study aims to determine whether national regulation is harmonized with international practice in ensuring safety and security of TRM. The finding of this study will provide recommendation for enhancement of regulation on TRM. 1.2. Regulation of TRM in Indonesia Government Regulation (GR) No. 26, 2002 on the Safe Transport of Radioactive Material is implemented pursuant to Act 10, 1997 on Nuclear Energy. This GR was repealed GR 13, 1975 on TRM. The GR 26 consist of 16 chapters and 39 articles, included licensing: authority and responsibilities: packaging: radiation protection programme; training: quality assurance programme: type and activity limit of radioactive materials: radioactive materials with other dangerous properties: emergency preparedness: administrative sanction: and penal provisions. Principally, this GR adopted IAEA-TS-R-1, 'Regulations for the Safe Transport of Radioactive Material', 1996's Edition

  12. Protocol for therapy of people who suffered wounds from radioactive material in radiological and nuclear accidents

    International Nuclear Information System (INIS)

    Lopes, Amanda Gomes

    2015-01-01

    The handling of glassware in ampoules, containing solution is very common in research or production laboratories. During manipulation, there is a likelihood of occurrence of incidents such as the breaking of ampoules or glass vials containing material in liquid or powdered form which may cause a wound to the possibility of contamination with handled material. When the solution is radioactive there is a concern due to the risk of incorporation of that material. According to NCRP 156, the scientific literature contains over 2100 cases of wounds contaminated with radionuclides and more than 90% of the reported cases occurred in the hands and arms, but mainly on the fingers. Despite having no cases of wounds reported radioactive material in Brazil or a protocol developed by the National Agencies, applications and hence the manipulation of radionuclides is increasing in the country, rising the possibility of wound occurrence contaminated by radionuclides. In this work was proposed a methodology for management of individuals who suffered wounds from radioactive material in cases of nuclear accidents and radiological emergencies that present intake, which consisted of four steps: definition of the accident scenario, individual triage of the public or workers, proper measurements with detectors PRD, IdentiFINDER2 and germanium in different thicknesses material tissue-equivalent, and later adoption of first aid measures consisting of attendance, monitoring of contaminated personnel, evaluation of effective dose and direct to specialized medical center. As an example of results it follows the case of 241 Am where the best performance was obtained by measurements with the shielded HPGe (7%) and the shielded and collimation of 0.5 cm IdentiFINDER2 (10%). While, unshielded PRD, unshielded or shielded side IdentiFINDER2 and unshielded TeCd showed performance ranging from 30 to 70%. In general, the uncertainties obtained had values below 1.5%. In this work a protocol for

  13. Estimation of global inventories of radioactive waste and other radioactive materials

    International Nuclear Information System (INIS)

    2008-06-01

    A variety of nuclear activities have been carried out in the second part of the twentieth century for different purposes. Initially the emphasis was on military applications, but with the passage of time the main focus of nuclear activities has shifted to peaceful uses of nuclear energy and to the use of radioactive material in industry, medicine and research. Regardless of the objectives, the nuclear activities generate radioactive waste. It was considered worthwhile to produce a set of worldwide data that could be assessed to evaluate the legacy of the nuclear activities performed up to the transition between the twentieth and the twenty first century. The assessment tries to cover the inventory of all the human produced radioactive material that can be considered to result from both military and civilian applications. This has caused remarkable difficulties since much of the data, particularly relating to military programmes, are not readily available. Consequently the data on the inventory of radioactive material should be considered as order-of-magnitude approximations. This report as a whole should be considered as a first iteration in a continuing process of updating and upgrading. The accumulations of radioactive materials can be considered a burden for human society, both at present and in the future, since they require continuing monitoring and control. Knowing the amounts and types of such radioactive inventories can help in the assessment of the relative burdens. Knowledge of the national or regional radioactive waste inventory is necessary for planning management operations, including the sizing and design of conditioning, storage and disposal facilities. A global inventory, either of radioactive waste or of other environmental accumulations of radioactive material, could be used to provide a perspective on the requirements and burdens associated with their management, by means of comparisons with the burdens caused by other types of waste or other

  14. Denials and delays of shipments in the transport of radioactive materials in Brazil

    International Nuclear Information System (INIS)

    Sobreira, Ana Celia F.; Bemelmans, Denise

    2007-01-01

    REM Industria e Comercio is a Brazilian private company which has been performing transport of radioactive material in Brazil for more than 15 years and is also experiencing this situation. In Brazil, over 50,000 shipments of radioactive materials are carried out every year, mostly for medical purposes. There are 4 airlines companies operating the domestic routes and only is currently accepting material of Class 7 (radioactive) for transport. When transporting by road, REM uses its own vehicles or hires associated cargo companies. For the sea transport, there is not a certified vessel for this kind of material in Brazil which increases the prices and makes the transport by this mode very expensive and more difficult. Reasons for denials have been identified as misinterpretation of the regulations, lack of harmonization between regulations, fear of indemnity costs for accidents, restrictive rules at ports not allowing storage of radioactive material in transit, frequent changes in modal regulations, lack of education and training of cargo handlers and the misconception of public perception concerning radiation risks. Seeking for local solutions, REM has organized meetings involving medical societies, competent authorities and carriers and has taken part on commissions for revising standards and regulations and trained cargo handling personnel as well. This paper addresses causes for delays and denials and reports identified domestic solutions. (author)

  15. Focus on radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, M

    1989-01-01

    Written for children, this book looks at the nature of radioactive materials, how they were discovered, what they are used for and how they affect the environment around us. The emphasis is on the benefits of radioactive materials, particularly in nuclear power stations, in medical diagnostics and radiotherapy, in industry and in agriculture. Nuclear fission and fusion are explained, how radioactive materials are handled and naturally occurring radioactivity are included. (UK).

  16. Data about shipping of radioactive material for medical use

    International Nuclear Information System (INIS)

    Sanches, M.P.; Rodrigues, D.L.

    2006-01-01

    The transport of radioactive materials implies a risk for the personnel of the team, those members of the public and the environment. While the safety in the transports is based on the designs of the bulks, the programs of radiological protection are important to assure the radiological control to the workers, the public and the environment during the transport of these materials. Although the biggest interest in the transport of radioactive materials it spreads to be centered in the nuclear industry, the transport in great measure it happens for the materials of medical use. These are mainly transported in bulks of the A Type and excepted bulks. The transport ones are forced, by national regulations, to send to the competent authority, in our case the National Comissao of Nuclear Energy (CNEN), all the data of the transported materials. This work has by objective to aim the efforts made to settle down and to manage the data regarding the transported radioactive materials. The existent data in the Radiopharmaceuticals Center, of the Institute of Energy and Nuclear Investigations 'IPEN/CNEN' it contains the information on all the radioactive materials consigned for the transport during every year. A statistic of the number of deliveries of the radioactive material for the period from 2001 to 2005 is provided. Based on this statistic its are presented the number of bulks, the quantity of activity and the ways of the transport for the period in study. (Author)

  17. Miscellaneous radioactive materials detected during uranium mill tailings surveys

    International Nuclear Information System (INIS)

    Wilson, M.J.

    1993-10-01

    The Department of Energy's (DOE) Office of Environmental Restoration and Waste Management directed the Oak Ridge National Laboratory Pollutant Assessments Group in the conduct of radiological surveys on properties in Monticello, Utah, associated with the Mendaciously millsite National Priority List site. During these surveys, various radioactive materials were detected that were unrelated to the Monticello millsite. The existence and descriptions of these materials were recorded in survey reports and are condensed in this report. The radioactive materials detected are either naturally occurring radioactive material, such as rock and mineral collections, uranium ore, and radioactive coal or manmade radioactive material consisting of tailings from other millsites, mining equipment, radium dials, mill building scraps, building materials, such as brick and cinderblock, and other miscellaneous sources. Awareness of the miscellaneous and naturally occurring material is essential to allow DOE to forecast the additional costs and schedule changes associated with remediation activities. Also, material that may pose a health hazard to the public should be revealed to other regulatory agencies for consideration

  18. Information from the Import/Export of radioactive material Service

    CERN Multimedia

    DGS Unit

    2010-01-01

    The radiation protection group reminds you that the import/export of all radioactive material must be declared in advance. In the case of exports, an EDH shipping request form must be completed, ticking the box “radioactive material”. In the case of imports, an electronic form must be completed before the material arrives on the CERN site. Any requests which do not comply with the above procedure will be refused. The import of any radioactive material that has not been declared in advance will be systematically refused. For further information, please consult the web site: http://cern.ch/service-rp-shipping Yann Donjoux / Radioactive Shipping Service Tél: +41 22 767.31.71 Fax: +41 22 766.92.00

  19. The safety of radioactive materials transport; La surete des transports de matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The rule of the radioactive materials transport contains two different objectives: the safety, or physical protection, consists in preventing the losses, the disappearances, the thefts and the diversions of the nuclear materials (useful materials for weapons); the high civil servant of defence near the Minister of Economy, Finance and Industry is the responsible authority; the safety consists in mastering the risks of irradiation, contamination and criticality presented by the radioactive and fissile materials transport, in order that man and environment do not undergo the nuisances. The control of the safety is within the competence of the Asn. (N.C.)

  20. Concentrations of radioactive elements in lunar materials

    Science.gov (United States)

    Korotev, Randy L.

    1998-01-01

    As an aid to interpreting data obtained remotely on the distribution of radioactive elements on the lunar surface, average concentrations of K, U, and Th as well as Al, Fe, and Ti in different types of lunar rocks and soils are tabulated. The U/Th ratio in representative samples of lunar rocks and regolith is constant at 0.27; K/Th ratios are more variable because K and Th are carried by different mineral phases. In nonmare regoliths at the Apollo sites, the main carriers of radioactive elements are mafic (i.e., 6-8 percent Fe) impact-melt breccias created at the time of basin formation and products derived therefrom.

  1. Remote-handling demonstration tests for the Fusion Materials Irradiation Test (FMIT) Facility

    International Nuclear Information System (INIS)

    Shen, E.J.; Hussey, M.W.; Kelly, V.P.; Yount, J.A.

    1982-01-01

    The mission of the Fusion Materials Irradiation Test (FMIT) Facility is to create a fusion-like environment for fusion materials development. Crucial to the success of FMIT is the development and testing of remote handling systems required to handle materials specimens and maintenance of the facility. The use of full scale mock-ups for demonstration tests provides the means for proving these systems

  2. Aviation safety: hazardous materials handling. Hearing before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Sixth Congress, Second Session

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Statements concerning the safety of air transport of hazardous and radioactive materials presented before a Subcommittee of the Committee on Government Operations of the House of Representatives are presented. Statements of various personnel involved in air transport including the Air Line Pilots Association and the US Postal Service and the Professional Air Traffic Controllers Organization are presented for the record. Also included are appendices concerning the Minneapolis-Saint Paul Metropolitan Airport Commission Ordinance number 44, Air Line Pilots Association procedures for the safe transportation of passengers, and a personal statement concerning the handling procedures of radioactive materials by the US Postal Service

  3. A method for prevention of radioactive material release

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Sato, Chikara; Kitamura, Masao.

    1975-01-01

    Object: To provide a method for preventing an underwater radioactive material from being released in a simple and highly reliable manner, which can decrease an amount of radioactive materials discharged into open air from reactor water containing a large amount of radioactive materials such as a reactor core pool. Structure: Pure warm water higher in temperature than that of reactor water is poured from the top of a water surface of a water tank which stores reactor water containing radioactive materials such as radioactive iodine, and water is drawn through an outlet located downwardly of the pure warm water inlet to form a layer of pure warm water at the upper part of the water tank while preventing diffusion of the reactor water into the pure warm water by the difference in density between the reactor water and the pure warm water and downward movement of the pure warm water, thereby preventing contact of the reactor water with the atmosphere and diffusion of the radioactive material into the atmosphere. (Kamimura, M.)

  4. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    Science.gov (United States)

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  5. Limiting values for radioactive materials in food

    International Nuclear Information System (INIS)

    Steiner, Martin

    2014-01-01

    The contribution describes the fundamentals of radiation protection: LNT (linear, no threshold) hypotheses, ALARA (a slow as reasonably achievable), limiting values. Using the example the nuclear accident in Chernobyl the differences in contamination development in different foodstuffs in Germany is demonstrated including recommended limiting values and the radiation exposures after 30 years due to consumption of contaminated food. The natural radioactivity is about 0.3 mSv/year.

  6. Automatized material and radioactivity flow control tool in decommissioning process

    International Nuclear Information System (INIS)

    Rehak, I.; Vasko, M.; Daniska, V.; Schultz, O.

    2009-01-01

    In this presentation the automatized material and radioactivity flow control tool in decommissioning process is discussed. It is concluded that: computer simulation of the decommissioning process is one of the important attributes of computer code Omega; one of the basic tools of computer optimisation of decommissioning waste processing are the tools of integral material and radioactivity flow; all the calculated parameters of materials are stored in each point of calculation process and they can be viewed; computer code Omega represents opened modular system, which can be improved; improvement of the module of optimisation of decommissioning waste processing will be performed in the frame of improvement of material procedures and scenarios.

  7. The use of physical model simulation to emulate an AGV material handling system

    International Nuclear Information System (INIS)

    Hurley, R.G.; Coffman, P.E.; Dixon, J.R.; Walacavage, J.G.

    1987-01-01

    This paper describes an application of physical modeling to the simulation of a prototype AGV (Automatic Guided Vehicle) material handling system. Physical modeling is the study of complex automated manufacturing and material handling systems through the use of small scale components controlled by mini and/or microcomputers. By modeling the mechanical operations of the proposed AGV material handling system, it was determined that control algorithms and AGV dispatch rules could be developed and evaluated. This paper presents a brief explanation of physical modeling as a simulation tool and addresses in detail the development of the control algorithm, dispatching rules, and a prototype physical model of a flexible machining system

  8. Estimation of radioactivity in structural materials of ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National Center for Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Precise knowledge of the thermal neutron flux in the different structural materials of a reactor is necessary to estimate the radioactive inventory in these materials that are needed in any decommissioning study of the reactor. ETRR-1 is a research reactor that went critical on 2/1691. In spite of this long age of the reactor, the effective operation time of this reactor is very short since the reactor was shutdown for long periods. Because of this long age one may think of reactor decommissioning. For this purpose, the radioactivity of the reactor structural materials was estimated. Apart from the reactor core, the important structural materials in the ETRR-1 are the reactor tank, shielding concrete, and the graphite thermal column. The thermal neutron flux was determined by the monte Carlo method in these materials and the isotope inventory and the radioactivity were calculated by the international code ORIGEN-JR. 1 fig.

  9. Statistics of foreign trade in radioactive materials 2004

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1986 to 2004 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2004, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2004, some 2,558 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 1,971 t were exported. The chief trading partners are countries of the European Union, Canada, Russia and the USA. (orig.)

  10. Statistics of foreign trade in radioactive materials 2002

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The German Federal Office for Industry and Foreign Trade Control (BAFA) keeps annual statistics of the imports and exports of radioactive materials, nuclear fuels included. The entries, some of them with precise details, cover the participating countries and the radionuclides concerned as well as all kinds of radioactive materials. The tables listed in the article represent the overall balance of the development of imports and exports of radioactive materials for the years 1983 to 2002 arranged by activity levels, including the development of nuclear fuel imports and exports. For the year 2002, an additional trade balance for irradiated and unirradiated nuclear fuels and source materials differentiated by enrichment is presented for the countries involved. In 2002, some 3 070 t of nuclear fuels and source materials were imported into the Federal Republic, while approx. 3 052 t were exported. The chief trading partners are countries of the European Union, Russia, and the USA. (orig.)

  11. Generic Planning and Control of Automated Material Handling Systems: Practical Requirements Versus Existing Theroy.

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Zijm, Willem H.M.; Schutten, Johannes M.J.; Schuur, Peter

    2011-01-01

    This paper discusses the problem of generic planning and control of Automated Material Handling Systems (AMHSs). The paper illustrates the relevance of this research direction, and then addresses three different market sectors where AMHSs are used. These market sectors are: baggage handling,

  12. Planning and control of automated material handling systems: The merge module

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Hurink, Johann L.; Schutten, Johannes M.J.; Zijm, Willem H.M.; Schuur, Peter; Hu, Bo; Morasch, Karl; Pickl, Stefan; Siegle, Markus

    2011-01-01

    We address the field of internal logistics, embodied in Automated Material Handling Systems (AMHSs), which are complex installations employed in sectors such as Baggage Handling, Physical Distribution, and Parcel & Postal. We work on designing an integral planning and real-time control architecture,

  13. Generic planning and control of automated material handling systems : practical requirements versus existing theory

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Schutten, Johannes M.J.; Schuur, Peter; Zijm, Willem H.M.

    2013-01-01

    This paper discusses the problem to design a generic planning and control architecture for utomated material handling systems (AMHSs). We illustrate the relevance of this research direction, and then address three different market sectors where AMHSs are used, i.e., baggage handling, distribution,

  14. Too hot to handle. Social and policy issues in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Walker, C.A.; Gould, L.C.; Woodhouse, E.J.

    1983-01-01

    Information about the management of radioactive wastes is provided in this book. Specifically, the book attempts to supply information to further the understanding of the history of radioactive waste management in this country and the role of nuclear energy in the future of the US; the science and technology of the processes that produce radioactive wastes and of the methods proposed for managing them; the biological effects of radiation; the public attitudes about nuclear power; the nature of risks resulting from technological developments and ways of managing them; and the political institutions and processes that govern radioactive waste management. The authors have attempted to present an objective view of nuclear waste management taking a stand neither for nor against nuclear power but placing special emphasis on radioactive waste management rather than nuclear power, because they feel that the latter aspect of the subject has received much more extensive coverage elsewhere. The contents of the book are divided into 7 chapters entitled: The Radioactive Waste Management Problem, Science and Technology of the Sources and Management of Radioactive Wastes, Nuclear Waste Management and Risks to Human Health, Public Attitudes toward Radioactive Wastes, How Safe Is Safe Enough; Determinants of Perceived and Acceptable Risk, The Politics of Nuclear Waste Management, and Value Issues in Radioactive Waste Management

  15. Smuggling of radioactive substances. Swedish capacity to detect and analyze; Smuggling av radioaktivt material. Sveriges foermaaga till detektion och analys

    Energy Technology Data Exchange (ETDEWEB)

    Ringbom, A.; Spjuth, L. [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2001-04-01

    This report is the result of a survey of the existing Swedish national capability to detect an attempt to smuggle nuclear material or other radioactive substances. The capacity to perform a more thorough analysis of a seized sample has also been investigated. The study shows that Sweden today has a small capacity to disclose a smuggling attempt of such materials. The limited detection capacity that exists is not sensitive enough for this purpose, and is not used in an optimal way. Furthermore, relevant education of the custom officers is needed. Today, a national capability for an initial analysis of seized material exists, but action plans describing the handling of the material should be resolved. The high number of seizures of radioactive material in countries having a better detection capability indicates that illicit trafficking of radioactive materials is still a problem. In Sweden, we so far do not have many reported incidents of illicit trafficking - partly due to our limited capacity to detect radioactive material - however, we do not know how many incidents that really have occurred. Fixed installations for detection at the border controls are the most efficient way to improve our capacity for detecting nuclear material. An initial pilot study is suggested to be able to estimate the need. Increased education of the custom officers, establishment of formal routines for handling and analysis of seized materials, and to formalise the contacts with international analysis laboratories are also identified as important factors to be improved.

  16. Safety of transport of radioactive material. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Radioactive material has been transported for decades within and between countries as the use of radioactive material to benefit mankind has expanded. The transport can involve many types of materials (radionuclides and radiation sources for applications in agriculture, energy production, industry, and medicine) and all modes of transport (road, rail, sea and waterways, and air). Among the organizations in the United Nations system, the International Atomic Energy Agency (IAEA) has the statutory function to establish or adopt standards of safety for protection of health against exposure to ionizing radiation. Within its statutory mandate and pursuant to this request, in 1961, the IAEA issued Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations). The Transport Regulations were periodically reviewed and, as appropriate, have been amended or revised. The latest version of the Transport Regulations was issued in 2000 by the IAEA as Publication TS-R-1 (ST-1, Revised). In addition, the IAEA is entrusted by its Statute to provide for the application of its standards at the request of States. The objective of the Conference is to foster the exchange of information on issues related to the safety of transport of radioactive material by providing an opportunity for representatives from sponsoring international organizations and their Member States and from other co-operating and participating organizations to discuss critical issues relating to the safety of transport of radioactive material by all modes and to formulate recommendations, as appropriate, regarding further international co-operation in this area. The following topics have been identified by the Technical Programme Committee as the subjects to be covered in the background briefing sessions: History and Status of the IAEA Transport Regulation Development; Experience in adoption of the IAEA Transport Regulations at the international level; Implementation of the IAEA Transport

  17. The management system for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this Safety Guide is to provide information to organizations that are developing, implementing or assessing a management system for activities relating to the transport of radioactive material. Such activities include, but are not limited to, design, fabrication, inspection and testing, maintenance, transport and disposal of radioactive material packaging. This publication is intended to assist those establishing or improving a management system to integrate safety, health, environmental, security, quality and economic elements to ensure that safety is properly taken into account in all activities of the organization. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix: Graded approach for management systems for the safe transport of radioactive materials; Annex I: Two examples of management systems; Annex II: Examples of management system standards; Annex III: Example of a documented management system (or quality assurance programme) for an infrequent consignor; Annex IV: Example of a documented management system (or quality assurance programme) description for an infrequent carrier; Annex V: Example of a procedure for control of records; Annex VI: Example of a procedure for handling packages containing radioactive materials, including receipt and dispatch; Annex VII: Example of a packaging maintenance procedure in a complex organization; Annex VIII: Example of an internal audit procedure in a small organization; Annex IX: Example of a corrective and preventive action procedure

  18. The regulatory framework concerning the safe transport of radioactive material in the European Union

    International Nuclear Information System (INIS)

    Schwarz, G.; Ridder, K.

    2002-01-01

    Radioactive materials of natural and manmade origins are employed worldwide in many areas, such as medicine, research, energy generation, and industry. As a consequence of the special nature and the properties of radioactive substances, irregular handling and use of such materials entails hazards. This is why special safety and protection provisions have been made in the interest of protecting health, life, property, and the environment from such hazards. The development and use of harmonized goals of protection and standards of safety is essential to free trade and the exchange of goods and services within the European Union and worldwide. The national and international institutions and organizations responsible for the protection and safety of transports of radioactive materials, including the European Union and its member countries, early on recognized the need for harmonized safety standards and criteria for transports of dangerous goods and developed an appropriate system of standards of safety and protection and a comprehensive set of tools for monitoring and checking observance of these standards. These tools have been laid down in a system of legally binding agreements, regulations, directives etc., or in recommendations, for the fifteen EU member states. The article presents this system of legally binding agreements, regulations, and recommendations, respectively, which covers the protection and safety of national and international transports of radioactive materials. (orig.) [de

  19. Using computer technology to identify the appropriate radioactive materials packaging

    International Nuclear Information System (INIS)

    Driscoll, K.L.; Conan, M.R.

    1989-01-01

    The Radioactive Materials Packaging (RAMPAC) database is designed to store and retrieve information on all non-classified packages certified for the transport of radioactive materials within the boundaries of the US. The information in RAMPAC is publicly available, and the database has been designed so that individuals without programming experience can search for and retrieve information using a menu-driven system. RAMPAC currently contains information on over 650 radioactive material shipping packages. Information is gathered from the US Department of Energy (DOE), the US Department of transportation (DOT), and the US Nuclear Regulatory Commission (NRC). RAMPAC is the only tool available to radioactive material shippers that contains and reports packaging information from all three Federal Agencies. The DOT information includes package listings from Canada, France, Germany, Great Britain, and Japan, which have DOT revalidations for their certificates of competent authority and are authorized for use within the US for import and export shipments only. RAMPAC was originally developed in 1981 by DOE as a research and development tool. In recent years, however, RAMPAC has proven to be highly useful to operational personnel. As packages become obsolete or materials to be transported change, shippers of radioactive materials must be able to determine if alternative packages exist before designing new packages. RAMPAC is designed to minimize the time required to make this determination, thus assisting the operational community in meeting their goals

  20. Legislative developments in radioactive materials transportation, September 1993--June 1994

    International Nuclear Information System (INIS)

    Worthley, J.A.; Reed, J.B.; Cummins, J.

    1994-07-01

    This is the eighth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the September 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period September 1, 1993--June 30, 1994. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Availability of on-line capability is anticipated by the end of August 1994. Users approved by DOE and NCSL will have access to the data base. This report contains the current status of legislation introduced in the 1993 and 1994 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices and changes in federal regulations pertinent to radioactive waste and hazardous materials transportation

  1. Legislative developments in radioactive materials transportation, April 1993--August 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-09-01

    This is the seventh report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the April 1993 report on Legislative Developments in Radioactive Materials Transportation and describes activities for the period April 1, 1993--August 31, 1993. NCSL currently is updating an on-line data base that contains abstracts of federal, state and local laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of 1993. Users approved by DOE and NCSL will have access to the data base. A copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains the current status of legislation introduced in the 1993 state legislative sessions, not previously reviewed in past reports. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness are described. (General nuclear waste legislation with no transportation element is no longer tracked.) Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation

  2. Transportation of radioactive materials: the legislative and regulatory information system

    International Nuclear Information System (INIS)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico

  3. Transportation of radioactive materials: the legislative and regulatory information system

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.

    1982-03-01

    The US Department of Energy is carrying out a national program to assure the safe shipment of radioactive materials. As part of this overall effort, the Hazardous Materials Information Center of Oak Ridge National Laboratory has developed the comprehensive Legislative and Regulatory Information System, which contains information on federal-, state-, and local-level legislative and regulatory actions pertaining primarily to the shipment of radioactive materials. Specific subject areas chosen to highlight particular transportation restrictions include: (1) identification of state agency responsible for regulating transportation, (2) type of escorts required, (3) areas requiring prior notification, (4) areas requiring permits or licenses, and (5) areas totally banning transportation of all radioactive materials. Other legislative information being categorized and of immediate relevance to the transportation issues is covered under the areas of disposal, storage, and management of radioactive materials; establishment of additional regulations; emergency response regulations; moratoriums on power plant construction and siting; radiation safety and control studies; and remedial action studies. The collected information is abstracted, indexed, and input into one of the two data bases developed under this information system - Current Legislation Data Base and Historical Legislation Data Base. An appendix is included which provides a summary of the state and local laws affecting the transportation of radioactive materials throughout the United States. The Legislative and Regulatory Information System is supported by the Transportation Technology Center located at Sandia National Laboratories, Albuquerque, New Mexico.

  4. Legislative developments in radioactive materials transportation, November 1992--March 1993

    International Nuclear Information System (INIS)

    Reed, J.B.; Cummins, J.

    1993-04-01

    This is the sixth report prepared by the National Conference of State Legislatures (NCSL) on developments in radioactive materials transportation. It updates information contained in the November 1992 Legislative and Legal Developments in Radioactive Materials Transportation report and describes activities for the period November 1, 1992--March 31, 1993. NCSL is working to bring on-line a data base that contains abstracts of state laws and regulations relating to the transportation of radioactive materials. The data base will be operated by NCSL under a cooperative agreement with the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management. Limited availability of on-line capability is anticipated by the end of July 1993. Users approved by DOE and NCSL will have access to the data base. Hard copy of any legislation listed in this report can be obtained by contacting the people listed below. This report contains summaries of legislation introduced in the 1993 state legislative sessions. Bills that address nuclear materials transportation and the broader area of hazardous materials transportation are grouped by state according to their status--enacted, pending or failed. In addition, bills that deal with emergency preparedness and general nuclear waste issues are described. Also included are Federal Register notices pertinent to radioactive waste and hazardous materials transportation. A recent court decision is also summarized

  5. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  6. Integrating CAD/CAM in Automation and Materials Handling

    Science.gov (United States)

    Deal, Walter F.; Jones, Catherine E.

    2012-01-01

    Humans by their very nature are users of tools, materials, and processes as a part of their survival and existence. As humans have progressed over time, their civilizations and societies have changed beyond imagination and have moved from hunters and gatherers of food and materials for survival to sophisticated societies with complex social and…

  7. Exhaust gas cleaning system for handling radioactive fission and activation gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.

    1975-01-01

    An exhaust gas cleaning system utilizing the principle of delaying radioactive gases to permit their radioactive decay to a level acceptable for release to the atmosphere, comprising an adsorbent for adsorbing radioactive gas and a container for containing the adsorbent and for constraining gas to flow through the adsorbent, the adsorbent and the container forming simultaneously an adsorptive delay section and a mechanical delay section, by means of a predetermined ratio of volume of voids in the adsorbent to total volume of the container containing the adsorbent, for delaying radioactive gas to permit its radioactive decay to a level acceptable for release to the atmosphere is described. A method of using an adsorbent for cleaning a radioactive gas containing an isotope which is adsorbed by the adsorbent and containing an isotope whose adsorption by the adsorbent is low as compared to the isotope which is adsorbed and which is short-lived as compared to the isotope which is adsorbed, comprising constraining the gas to flow through the adsorbent with the retention time for the isotope which is adsorbed being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere and with the retention time for the isotope of relatively low adsorption and relatively short life being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere is also described. (U.S.)

  8. Radioactive material in residues of health services residues

    International Nuclear Information System (INIS)

    Costa R, A. Jr.; Recio, J.C.

    2006-01-01

    The work presents the operational actions developed by the one organ responsible regulator for the control of the material use radioactive in Brazil. Starting from the appearance of coming radioactive material of hospitals and clinical with services of nuclear medicine, material that that is picked up and transported in specific trucks for the gathering of residuals of hospital origin, and guided one it manufactures of treatment of residuals of services of health, where they suffer radiological monitoring before to guide them for final deposition in sanitary embankment, in the city of Sao Paulo, Brazil. The appearance of this radioactive material exposes a possible one violation of the norms that govern the procedures and practices in that sector in the country. (Author)

  9. Environmental effects associated with the transportation of radioactive material

    International Nuclear Information System (INIS)

    McClure, J.D.; Pope, R.B.; Yoshimura, H.R.

    1979-01-01

    The primary aim of this paper has been to describe some of the background information concerning nuclear materials transportation systems, accident statistics, accident severities, and test information - all of which when combined yield an environmental statement of the risks associated with the transportation of radioactive materials. The results of the ultimate risk analysis are expressed in terms of numbers of fatalities and, in that sense at least, tend to be an absolute measure of risk. When these risks are compared with other accepted societal risks, the relative risks associated with radioactive material transportation can be established. This information can be used to make decisions at the governmental level and to inform an interested public about these risks. It can be concluded that the risks associated with the transportation of radioactive material are low relative to the other risks that society has already accepted

  10. Quality assurance for packaging of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Gustafson, L.D.

    1986-01-01

    The Department of Energy (DOE) has required for many years that quality assurance programs be established and implemented for the packaging of radioactive and hazardous materials. This paper identifies various requirement principles and related actions involved in establishing effective quality assurance for packaging of radioactive and hazardous materials. A primary purpose of these quality assurance program activities is to provide assurance that the packaging and transportation of hazardous materials, which includes radioactive and fissile materials, are in conformance with appropriate governmental regulations. Applicable regulations include those issued by the Nuclear Regulatory Commission (NRC), the Department of Transportation (DOT), and the Environmental Protection Agency (EPA). DOE Order 5700.6A establishes that quality assurance requirements are to be applied in accordance with national consensus standards where suitable ones are available. In the nuclear area, ANSI/ASME NQA-1 is the preferred standard

  11. Regulations for the safe transport of radioactive material. 1996 ed.

    International Nuclear Information System (INIS)

    1996-01-01

    This publication is the revised version of the IAEA's Regulations for the Safe Transport of Radioactive Materials as approved by the Board of Governors in September 1996. It establishes standards of safety which provide an acceptable level of control of the radiation, criticality and thermal hazards to persons, property and the environment that are associated with the transport of radioactive material. After an introductory section, the publication is structured as follows: Section 2 defines the terms that are required for the purposes of the Regulations; Section 3 provides general provisions; Section 4 gives the activity limits and material restrictions used throughout these Regulations; Section 5 provides requirements and controls for transport; Section 6 provides requirements for radioactive materials and for packagings and packages; Section 7 provides requirements for test procedures; Section 8 provides approval and administrative requirements. The requirements for the transport of specified types of consignments are included in an abbreviated form as Schedules. Refs, figs, tabs

  12. Radioactive material in the West Lake Landfill: Summary report

    International Nuclear Information System (INIS)

    1988-06-01

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab

  13. Ways of solving the problems of radiation safety and environmental protection in handling radioactive waste at atomic power stations in the USSR

    International Nuclear Information System (INIS)

    Gusev, D.I.; Belitskij, A.S.; Turkin, A.D.; Kozlov, V.M.

    1977-01-01

    Requirements of the State Sanitary Supervision on radiation safety of the personnel and population and on protection of the environment in handling radioactive wastes from nuclear power stations in the USSR are regulated by the Standards of Radiation Safety, the Main Sanitary Rules for Handling Radioactive Materials and by the Sanitary Rules for Designing Nuclear Power Stations. The regulations contained in these documents are obligatory for all the establishments at the stages of design, building and operation of nuclear power stations. The main requirement for handling radioactive wastes from nuclear power stations in the USSR is to dispose of them near the place of their production. In nuclear power station siting and designing the special territory is provided for liquid and solid radioactive wastes storage taking into account the whole period of nuclear power station operation. These storage sites are located within the controlled area. They are built as required, usually for five years. The report contains hygienic and hydrological requirements to the radiation waste burial sites and data on the accepted system of controlling leak-proof qualities of the disposal cavities and radioactivity of the ground water in this region. The results of long-term studies on radionuclide leaching from the bituminic blocks are given and it is shown that the bituminizing method used for solidification of intermediate activity wastes is very promising. In the USSR much attention is given to the problem of sanitary protection of the cooling ponds at nuclear power stations. No limits to the national-economic use of these ponds outside the nuclear power station site are established. Therefore in determining the requirements to the discharge of effluents into the cooling ponds of nuclear power stations the possibility of radionuclide transfer to the population through the aquaeous and terrestrial biological chains is taken into account. The possibility of human diet contamination

  14. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  15. Notification: Audit of Security Categorization for EPA Systems That Handle Hazardous Material Information

    Science.gov (United States)

    Project #OA-FY18-0089, January 8, 2018. The OIG plans to begin preliminary research to determine whether the EPA classified the sensitivity of data for systems that handle hazardous waste material information as prescribed by NIST.

  16. US perspective of transporting radioactive materials by sea

    International Nuclear Information System (INIS)

    Chitwood, R.B.

    1978-01-01

    The reason for the US interest in transportation of radioactive materials by sea is discussed. The national and international institutional considerations related to this subject are covered. Some economic aspects in transporting these materials, particularly spent fuels, by sea are also presented

  17. International regulatory control of the transport of radioactive materials

    International Nuclear Information System (INIS)

    Swindell, G.E.

    1979-01-01

    The development of the IAEA regulations on the transport of radioactive materials and the background for the adoption of these regulations by the various international organizations responsible for regulating the different modes of international transport of hazardous materials is briefly discussed

  18. Effect of truck and rail economic deregulation on radioactive material transportation

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.

    1984-01-01

    An evaluation of the effect of truck and rail economic deregulation on radioactive material transportation is presented in this document. The evaluation is based on expected market performance that would be consistent with fundamental economic theories. The issues of transport safety, commodity discrimination and rates are addressed. Relative to transport safety, deregulation should not have any significant impact. While deregulation should not change commodity acceptance and may lower rates for motor carriage, it may allow increased discrimination by rail carriers in addition to raising rates. Consequently, it is likely that the radioactive material transportation industry will continue to place greater reliance on the competitive motor carrier industry. Positive steps that shippers can take are to maintain credible options to ship by alternate modes, to address issues that result in the perceived need for special risk premiums, and to reduce the cost of handling truck shipments by improvements in technology or procedures. 28 references, 3 figures, 6 tables

  19. Status of transport events involving radioactive materials which occurred in France between 1999 and 2011

    International Nuclear Information System (INIS)

    2013-01-01

    This report presents transport events involving radioactive materials, occurred on French territory from 1999 to 2011, listed in the IRSN's database. 1,304 events have been recorded. For each of them, many parameters have been collected and analysed from information listed in the notifications and reports of the events sent by users (type of event, purpose, package design, level on the INES scale...). The numbers of events notified in 2010 and 2011 are slightly higher than the average of 100 events per year. The two main causes of notification concern documentation errors (in transport documents or labeling) and handling mishaps. The downward trend of frequency of package or conveyance contaminations has been confirmed. A short description of the outstanding events occurred in 2010 and 2011 is proposed. This synthesis also gives an outline of the actions recommended by IRSN to avoid recurrence of the notified events and improve the safety of the transports of radioactive materials

  20. Assessment of events involving transport of radioactive materials in France, 1999-2011

    International Nuclear Information System (INIS)

    2013-01-01

    This report presents transport events involving radioactive materials that occurred in France from 1999 to 2011 and entered in the IRSN's database. For each of the 1,304 events recorded, many parameters have been collected and analysed from information listed in the declarations and reports of events sent by users (type of event, purpose, package design, INES level, etc.). The number of events declared in 2010 and 2011 is slightly higher than the average of 100 events per year. The two main reasons for declaration concern errors in transport documentation or labelling and handling mishaps. The new data confirm the downward trend in frequency of package and vehicle contaminations. A short description of outstanding events in 2010 and 2011 is included. This assessment also gives an outline of the actions recommended by IRSN to avoid recurrence of declared events and improve the safety of radioactive material transport. (authors)

  1. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  2. Transport of bundles and equipment which contain radioactive material

    International Nuclear Information System (INIS)

    1987-01-01

    This norm settles down: 1) The requirements that should be completed in relation to safety precautions and protection against ionizing radiations during the transport radioactive material and/or equipment containing it, in order to avoid risks to the collective and the environment. 2) The basic information on procedures that will be completed in the event of happening accidents during the transport or the transit storage of radioactive material and/or equipment that contain it. 3) The measures of security and physical protection during the transport of radioactive material and/or equipment containing it. This norm is applied: 1) To all the ways of transport (by air, by ground and by ship, fluvial and marine) of radioactive material and/or equipment that contain it. 2) To all natural or legal, public or private person, devoted to install, produce, trade, market, import or export radioactive materials and/or equipment containing it, and that needs to transport them as main or secondary activity [es

  3. Regulation of naturally occurring radioactive materials in non-nuclear industries

    International Nuclear Information System (INIS)

    Scott, L.M.

    1997-01-01

    The volume and concentrations of naturally occurring radioactive material is large across a variety of industries commonly thought not to involve radioactive material. The regulation of naturally occurring radioactive material in the United States is in a state of flux. Inventory of naturally occurring radioactive materials is given, along with a range of concentrations. Current and proposed regulatory limits are presented. (author)

  4. Mobile materials handling platform interface architecture for mass production environments

    CSIR Research Space (South Africa)

    Walker, A

    2008-01-01

    Full Text Available Industrial manufacturing systems achieve production stability due to near constant production processes e.g. mass production. Passive methods such as production flow analysis can produce plant layouts which optimise material flow within...

  5. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  6. Quality assurance for the safe transport of radioactive material

    International Nuclear Information System (INIS)

    1994-01-01

    All activities related to the safe transport of radioactive material should be covered by a quality assurance programme. This publication recognizes that a single transport operation often involves several different organizations, each having specific responsibilities. Hence, it is unlikely that the operation will be covered by a single quality assurance programme. Each quality assurance programme should be tailored to the specific organizational structure for which the programme is prepared, with account taken of the particular transport activities of that organization and the interfaces with other organizations. The aim of this publication is to give a detailed interpretation of what must be done by whom to produce a quality assurance programme for radioactive material transport. This publication provides guidance on methods and practical examples to develop QA programmes for the safe transport of radioactive material. It provides information on how to develop the programme, the standards and the common features of a QA programme

  7. The preventing of illicit trafficking of radioactive materials in Estonia

    International Nuclear Information System (INIS)

    Velbri, T.; Aasmann, L.

    1998-01-01

    This paper explains the situation of legislation, practical border-control and equipment of different relevant authorities dealing with the control of radioactive materials in Estonia. The overview of legislation concerning radiation and radiation protection is given. The roles of Estonian Customs Authority, Estonian border Guard, National Rescue Board and Police Authority in the preventing of illicit trafficking of radioactive materials are shown. The incidents of illicit trafficking of radioactive materials are listed. Also the most important border-crossing points and the types of equipment used there are shown. Finally the problems of controlling the borders in Estonia and the future plans in order to make the controlling system more efficient are discussed. (author)

  8. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  9. Refilling material for underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Yajima, Tatsuya; Kato, Hiroyasu.

    1995-01-01

    Generally, the underground circumstance where radioactive wastes are to be processed is in high pH and highly ionized state due to ingredients leached out of cement of a concrete pit and solidifying products. A refilling material for underground disposal are demanded to adsorb radioactive nuclides such as 137 Cs even in such a state. As the refilling material, a mixture of bentonite and sintered vermiculite, preferably, comprising 10 to 40wt% of vermiculite is used. The refilling material has a high water hold out barrier performance of bentonite and a high radioactive nuclide adsorbing performance of vermiculite. In a state of highly ionized state when the adsorbing performance of bentonite is reduced, the nuclide-absorbing performance is improved by vermiculite and since the content of the vermiculite is not more than 40wt%, the water hold out barrier performance of the bentonite is not deteriorated. (N.H.)

  10. Radioactive material dry-storage facility and radioactive material containing method

    International Nuclear Information System (INIS)

    Kanai, Hidetoshi; Kumagaya, Naomi; Ganda, Takao.

    1997-01-01

    The present invention provides a radioactive material dry storage facility which can unify the cooling efficiency of a containing tube and lower the pressure loss in a storage chamber. Namely, a cylindrical body surrounds a first containing tube situated on the side of an air discharge portion among a plurality of containing tubes and forms an annular channel extending axially between the cylindrical body and the first containing tube. An air flow channel partitioning member is disposed below a second containing tube situated closer to an air charging portion than the first containing tube. A first air flow channel is formed below the air channel partitioning member extending from the air charging portion to the annular channel. The second air channel is formed above the air channel partitioning member and extends from the air charging portion to the air discharge portion by way of a portion between the second containing tubes and the portion between the cylindrical body and the first containing tube. Then, low temperature air can be led from the air charging portion to the periphery of the first containing tube. The effect of cooling the first containing tube can be enhanced. The difference between the cooling efficiency between the second containing tube and the first containing tube is decreased. (I.S.)

  11. Regulations for the transport of radioactive material in Italy: the role of the Italian Competent Authority (ANPA)

    International Nuclear Information System (INIS)

    Orsini, A.; Trivelloni, S.

    1995-01-01

    In Italy four Ministries, Industry, Transport, Marine Merchandise and Interior, have the legal responsibility to issue and apply the transport safety regulations for radioactive material. ANPA, the National Agency for Environmental Protection, has the technical duty to issue the approval certificates and to support the various Ministries in authorizing carriers for all modes of transport, in updating the regulations and advising in the case of emergency conditions. ANPA is monitoring the quantity of radioactive material transported in Italy, the radiation doses of workers and public, and verifying the implementation of transport regulations through inspections of the carriers and during storage in transit and handling. (Author)

  12. Regulations for the transport of radioactive material in Italy: the role of the Italian Competent Authority (ANPA)

    International Nuclear Information System (INIS)

    Orsini, A.; Trivelloni, S.

    1995-01-01

    In Italy four Ministries, Industry, Transport, Marine Merchandise and Interior, have the legal responsibility to issue and apply the transport safety regulations for radioactive material. ANPA, the National Agency for Environmental Protection, has the technical duty to issue the approval certificates and to support the various Ministries in authorising carriers for all modes of transport, in updating the regulations and advising in the case of emergency conditions. ANPA is monitoring the quantity of radioactive material transported in Italy, the radiation doses of workers and public, and verifying the implementation of transport regulations through inspection of the carriers and during storage in transit and handling. (author)

  13. Natural radioactivity of building materials in Austria

    International Nuclear Information System (INIS)

    Sorantin, H.; Steger, F.

    1984-03-01

    About 120 samples of natural and manufactured building materials have been analyzed by gamma-spectrometry for their Thorium 232-, Radium 226- and Potassium 40 - content. Granites showed generally the greatest amounts of the above mentioned radionuclides, whereas other natural products like sand, gravels, marbles and gypsum contained only traces of radionuclides. As regards the manufactured building materials only some types of bricks and chemical gypsum showed relatively high concentrations of radionuclides, while the rest of the bricks, tiles, plaster and accessory materials fulfilled the criteria set up in the OECD-NEA report 1979. (Author)

  14. Management system for regulating transport of radioactive material

    International Nuclear Information System (INIS)

    Lopez Vietri, Jorge; Capadona, Nancy; Barenghi, Leonardo

    2008-01-01

    Full text: The objective of this paper is to describe the main characteristics and fundamentals of the Nuclear regulatory Authority's (Autoridad Regulatoria Nuclear, ARN) management system applied to the regulation of transport of radioactive material, in Argentina. In the frame of ARN's quality policy, 'Protection against ionizing radiation on transport of radioactive materials' was selected as one of the regulatory processes, named TRM process from now on. ARN's quality management system is integrally based on ISO 9000 system addressed to help organizations in designing and implementing their quality management systems. TRM process was split into five sub processes in order to facilitate the implementation of quality system. Such sub processes were defined taking account of the main functions developed by ARN in the branch of safe transport of radioactive materials and are listed below: 1) Development and updating of standards and regulatory guides; 2) Licensing of packages, special radioactive materials and consignments of radioactive materials; 3) Compliance assurance during the transport of radioactive materials, and 4) Training, advising and communications. For each of these sub processes were specified their objectives, inputs, activities and outputs, the clients and stakeholders, responsibilities, supporting documents, control of documents and records, control of non-conformances, monitoring and measurements, audits, feedback and improvement. It was decided to develop a quality plan to organize and manage activities to meet quality requirements, to optimize the use of limited resources of the organization and to be used as a basis for monitoring and assessing compliance with the requirements, both internal and external. Supporting documents for sub processes were issued, validated, reviewed and improved as an essential point to implement continuous improving. Simultaneously, some indexes were defined to monitor and measure the sub processes as a way to show

  15. Determination of radioactivity levels from some Egyptian building materials

    International Nuclear Information System (INIS)

    Abd EL Sattar, M.; Morsy, A.A.

    2007-01-01

    Our world is radioactive and has been, since it was created. Over 60 radionuclides (radioactive elements) can be found in nature. Radon is naturally occurring radioactive gas, that is produced by the radioactive decay of radium. Breathing high concentration of radon can cause lung cancer. A set of experiments were carried out using Cr-39 as solid state nuclear track detectors with the optimum etching conditions, 6.25 N Na OH at 70 o C for 8 hours. The radon-222 activity in this survey was found to be in the range of 0.303 kBq/m 3 to 5.04 KBq/m 3 for different building materials in Egypt

  16. Safe Transport of Radioactive Material, Philosophy and Overview

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shinawy, R M.K. [Radiation Protection Dept., Nuclear Rasearch Center, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others.

  17. Safe Transport of Radioactive Material, Philosophy and Overview

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2008-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others

  18. Radioactivity assessment of some building materials from Little Poland Region

    International Nuclear Information System (INIS)

    Bogacz, J.; Cywicka-Jakiel, T.; Mazur, J.; Loskiewicz, J.; Swakon, J.; Tracz, G.

    1994-01-01

    In the paper are presented the results of building materials analysis connected with radiation protection. The concentration of natural radioactive elements (K, U, Th), and the values of f 1 and f 2 coefficients are measured for these materials. The values for ceramic building materials and for cellular concretes are composed. The utility of f 2 parameter is unformally discussed. (author). 9 refs, 12 figs, 3 tabs

  19. Removal of radioactive and other hazardous material from fluid waste

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  20. Shipment of radioactive materials by the US Department of Energy

    International Nuclear Information System (INIS)

    1986-01-01

    This brochure provides notification of, and information on, the general types of radioactive material shipments being transported for or on behalf of DOE in commerce across state and other jurisdictional boundaries. This brochure addresses: packaging and material types, shipment identification, modes of transport/materials shipped, DOE policy for routing and oversize/overweight shipments, DOE policy for notification and cargo security, training, emergency assistance, compensation for nuclear accidents, safety record, and principal DOE contact