WorldWideScience

Sample records for radioactive isotope beams

  1. World new facilities for radioactive isotope beams

    International Nuclear Information System (INIS)

    Motobayashi, T.

    2014-01-01

    The use of unstable nuclei in the form of energetic beams for nuclear physics studies is now entering into a new era. 'New-generation' facilities are either in operation, under construction or being planned. They are designed to provide radioactive isotope (RI) beams with very high intensities over a wide range of nuclides. These facilities are expected to provide opportunities to study nuclear structure, astrophysical nuclear processes and nuclear matter with large proton-neutron imbalance in grate detail. This article reports on the current status of such new-generation RI-beam facilities around the world. In order to cover different energy domains and to meet various scientific demands, the designs of RI-beam facilities are of a wide variety. For example, RIBF in Japan, FAIR in Germany and FRIB in US are based on the fragmentation scheme for beams with energies of a few hundred MeV/nucleon to GeV/nucleon, whereas Spiral2 in France, SPES in Italy, HIE-ISOLDE in Switzerland/France, and the future facility EURISOL in Europe are based on the ISOL method, and aim at providing lower-energy RI beams. There are a many other projects including upgrades of existing facilities in the three continents, America, Asia and Europe

  2. RIKEN radioactive isotope beam factory project – Present status and ...

    Indian Academy of Sciences (India)

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis ... RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ...

  3. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    International Nuclear Information System (INIS)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-01-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article

  4. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    Science.gov (United States)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  5. Total cross section measurement of radioactive isotopes with a thin beam neutron spectrometer

    International Nuclear Information System (INIS)

    Razbudej, V.F.; Vertebnyj, V.P.; Padun, G.S.; Muravitskij, A.V.

    1975-01-01

    The method for measuring the neutron total cross sections of radioactive isotopes by a time-of-flight spectrometer with a narrow (0.17 mm in diameter) beam of thermal neutrons is described. The distinguishing feature of this method is the use of capillary samples with a small amount of substance (0.05-1.0 mg). The energy range is 0.01-0.3 eV. The total cross sections of irradiated samples of sub(153)Eu and sub(151)Eu are measured. From them are obtained the cross sections of sub(152)Eu (Tsub(1/2)=12.4 g) and of sub(154)E (Tsub(1/2)=8.6 yr); they equal 11400+-1400 and 1530+-190 barn at E=0.0253 eV. The cross section of the sub(152)Eu absorption for the thermal spectrum (T=333 K) is determined by the activation method; it is 8900+-1200 barn

  6. CERN: Producing radioactive beams

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Accelerating radioactive beams has long been of interest at CERN's ISOLDE on-line isotope separator - the possibility was discussed at a CERN Workshop on intermediate energy physics as early as 1977. Meanwhile, as was highlighted in the 1991 report of the Nuclear Physics European Collaboration Committee, widespread scientific interest in these beams has developed and a range of projects are proposed, under construction or operational throughout the world

  7. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes

    International Nuclear Information System (INIS)

    Sifi, R.

    2007-07-01

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  8. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  9. Charge breeding of radioactive isotopes at the CARIBU facility with an electron beam ion source

    Science.gov (United States)

    Vondrasek, R. C.; Dickerson, C. A.; Hendricks, M.; Ostroumov, P.; Pardo, R.; Savard, G.; Scott, R.; Zinkann, G.

    2018-05-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q 18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.

  10. Laser spectroscopy of radioactive beams

    International Nuclear Information System (INIS)

    Otten, E.W.

    1983-01-01

    The problem of using the laser spectroscopy in investigations radioactive beams is considered. The main attention is payed to the isotope shift of nuclear charge radii delta 2 >. The general trend of delta 2 > is discussed. Predictions for delta>r 2 < in the framework of the droplet model are given. It is noted that two parameter interpretation of the isotope shift based on the droplet model works the better, the further the distance spans and the clearer the nuclear structure is

  11. National Centre for Radioactive Ion Beams (NCRIB)

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1999-01-01

    A dedicated National Centre for RIB (NCRIB) proposed discussed at several forums is presented. The production of (RIB) radioactive ion beams and applications of beams leading to competitive studies in nuclear structure, nuclear reactions, condensed matter, bio-science and radioactive isotope production etc. are mentioned

  12. Decontamination of radioactive isotopes

    International Nuclear Information System (INIS)

    Despotovic, R.; Music, S.; Subotic, B.; Wolf, R.H.H.

    1979-01-01

    Removal of radioactive isotopes under controlled conditions is determined by a number of physical and chemical properties considered radiocontaminating and by the characteristics of the contaminated object. Determination of quantitative and qualitative factors for equilibrium in a contamination-decontamination system provides the basis for rational and successful decontamination. The decontamination of various ''solid/liquid'' systems is interesting from the scientific and technological point of view. These systems are of great importance in radiation protection (decontamination of various surfaces, liquids, drinking water, fixation or collection of radiocontaminants). Different types of decontamination systems are discussed. The dependence of rate and efficiency of the preparation conditions and on the ageing of the scavenger is described. The influence of coagulating electrolyte on radioactive isotope fixation efficiency was also determined. The fixation of fission radionuclide on oxide scavengers has been studied. The connection between fundamental investigations and practical decontamination of the ''solid/liquid'' systems is discussed. (author)

  13. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  14. Rechargeable radioactive isotope generator

    International Nuclear Information System (INIS)

    Thornton, A.K.; Cerone, F.E.

    1978-01-01

    The description is given of a rechargeable radioactive isotope generator having the following features: a box containing a transport shield, a shielded generator including elements for the absorption and holding of the parent isotope, an eluant tank, a first pipe causing this tank to communicate with the transport shield, a second pipe causing this transport shield to communicate with the shielded generator and a third pipe placing the shielded generator in communication with the outside of the unit. It also includes a shelf across the external front part of the unit a part of which is shielded by external components, a shielded elution flask in which the eluate is poured and a filter set at a point between the flask and the third pipe [fr

  15. Nuclear astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Gade, A.

    2010-01-01

    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.

  16. On the usage of electron beam as a tool to produce radioactive isotopes in photonuclear reactions

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2009-01-01

    We treat the Bremsstrahlung, induced by initial electron beam in converter, and the production of a desirable radioisotope due to the photonuclear reaction caused by this Bremsstrahlung. By way of illustration, the yield of a number of some, the most applicable in practice, radioisotopes is evaluated. The acquired findings persuade us that usage of modern electron accelerators offers a practicable way to produce the radioisotopes needful nowadays for various valuable applications in the nuclear medicine

  17. The ISOLDE Facility: Radioactive beams at CERN

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The Isope Separation On-Line (ISOL) technique evolved from chemical techniques used to separate radioactive isotopes off-line from irradiated "targets". The ISOL targets of today, used at e.g. ISOLDE, can be of many different types and in different phases but the isotopes are always delivered at very low energies making the technique ideal for study of ground state properties and collections for other applications such as solid state physics and medical physics. The possibility of accelerating these low energy beams for nuclear structure studies, and in the long term future for neutrino physics, is now being explored at first generation radioactive beam facilities. The upgrade towards HIE-ISOLDE aim to consolidate ISOLDE's position as a world leading radioactive nuclear beam facility and it will be a pre-cursor to a future all European ISOL facility, EURISOL, with order of magnitudes higher radioactive beam intensities and energies. Prerequisite knowledge and references: None

  18. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  19. Nuclear astrophysics with radioactive beams: a TRIUMF perspective

    International Nuclear Information System (INIS)

    Shotter, A.C.

    2003-01-01

    Explosive nuclear burning in stellar environments involves reactions with a wide range of isotopes. For isotopes that are unstable, information on relevant reaction rates can only generally be obtained at radioactive beam facilities. The ISAC facility at TRIUMF is purpose built to provide a wide range of radioactive beams for nuclear astrophysics purposes as well as a range of other science

  20. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  1. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  2. Radioactive isotopes on the Moon

    International Nuclear Information System (INIS)

    Davis, R. Jr.

    1975-01-01

    A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed

  3. Radioactive beams in Europe

    International Nuclear Information System (INIS)

    Warner, D.D.

    1993-01-01

    In its report open-quotes Nuclear Physics in Europe - Opportunities and Perspectivesclose quotes, NuPECC concluded that physics with radioactive beams represents one of the foremost frontiers in nuclear physics. It therefore set up a study group to produce a report on the physics case for radioactive beams, together with a comparison of the relative merits of the various European facilities, operational or planned, and the R ampersand D required to achieve the desired goals. This paper presents some of the results of that report and concentrates on the latter two aspects of the task assigned to the Study Group. The facilities discussed are those planning to use the two-accelerator method to produce beams in the energy range of 0.5-25Mev/A. In addition, a report is given on the status of the recently-approved Test Bed facility at the Rutherford Appleton Laboratory, where the aim is to test the ability of existing ISOL target/ion-source technology to withstand a primary proton beam intensity of 100μA

  4. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  5. Shielding container for radioactive isotopes

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Tosa, Masayoshi; Hatogai, Tatsuaki.

    1975-01-01

    Object: To effect opening and closing bidirectional radiation used particularly for a gamma densimeter or the like by one operation. Structure: This device comprises a rotatable shielding body for receiving radioactive isotope in the central portion thereof and having at least two radiation openings through which radiation is taken out of the isotope, and a shielding container having openings corresponding to the first mentioned radiation openings, respectively. The radioactive isotope is secured to a rotational shaft of the shielding body, and the shielding body is rotated to register the openings of the shielding container with the openings of the shielding body or to shield the openings, thereby effecting radiation and cut off of gamma ray in the bidirection by one operation. (Kamimura, M.)

  6. Detection systems for radioactive ion beams

    International Nuclear Information System (INIS)

    Savajols, H.

    2002-01-01

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  7. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  8. ISOL science at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Beene, James R [ORNL; Bardayan, Daniel W [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gross, Carl J [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK); Liang, J Felix [ORNL; Nazarewicz, Witold [ORNL; Stracener, Daniel W [ORNL; Tatum, B Alan [ORNL; Varner Jr, Robert L [ORNL

    2011-01-01

    The Holi eld Radioactive Ion Beam Facility, located in Oak Ridge, Tennessee, is operated as a National User Facility for the U.S. Department of Energy, producing high quality ISOL beams of short-lived, radioactive nuclei for studies of exotic nuclei, astrophysics research, and various societal applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25-MV Tandem, accelerated, and used in experiments. This article reviews HRIBF and its science.

  9. BEARS: Radioactive ion beams at LBNL

    International Nuclear Information System (INIS)

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-01-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron's Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min 11 C and 70-sec 14 O, produced by (p,n) and (p,α) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial 11 C beams of up to 2.5 x 10 7 ions/sec and 14 O beams of 3 x 10 5 ions/sec

  10. Production of radioactive molecular beams for CERN-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, Christoph

    2015-06-15

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10{sup 11} ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  11. Production of radioactive molecular beams for CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)703149; Kröll, Thorsten

    SOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10^11 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computanional techniques have been used.

  12. Laser spectroscopy of radioactive barium and strontium isotopes

    International Nuclear Information System (INIS)

    Martin, A.G.

    1986-01-01

    An atomic beam system and a high resolution computer controlled dye laser system were developed to perform isotope shift measurements on accelerator-produced radioactive isotopes. Two different techniques were used to transport the radioactive isotopes to the laser interaction region. The first technique was based on the thermalization and deionization of the nuclear reaction products in a helium buffer gas. The reaction products were subsequently transported in the gas to the laser beam along a capillary tube. This technique suffered from problems with chemical reactions between impurities in the buffer gas and the reaction products and proved to be unsuccessful. The second technique was based on the implantation of the reaction products into a metal lattice. Subsequent heating of the metal lattice released the implanted ions from which an atomic beam was formed. The photon burst technique was used to enable detection of the extremely weak atomic beams formed in this manner. Measurements were performed of the known isotope shifts of radioactive 128 Ba and 126 Ba to test the sensitivity of the system. The previously unmeasured isotope shift of radioactive 82 Sr also was determined, and the result obtained was compared to predictions using the droplet model

  13. Status of radioactive ion beams at the HRIBF

    CERN Document Server

    Stracener, D W

    2003-01-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using sup 1 sup 7 F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include sup 2 sup 5 Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  14. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  15. Radioactive ion beam facilities in Europe

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    2008-01-01

    The past two decades have seen extraordinarily rapid development of radioactive beam physics throughout the world and in particular in Europe. The important scientific advances have stemmed from a large number of facilities. Previously existing stable beam machines have been adapted to produce rare isotope beams and dedicated facilities have come on-line. This talk gives an overview of the present European installations highlighting their complementary nature. The European roadmap calls for the construction of two next generation facilities: FAIR making use of projectile fragmentation and EURISOL based on the ISOL technique. The future FAIR facility will be described and the path towards EURISOL presented in the light of the construction of 'intermediate' generation facilities SPIRAL2, HIE ISOLDE and SPES and results from the ongoing EURISOL Design Study.

  16. Shape coexistence in krypton and selenium light isotopes studied through Coulomb excitation of radioactive ions beams; Etude de la coexistence de formes dans les isotopes legers du krypton et du selenium par excitation Coulombienne de faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E

    2006-06-15

    The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr{sup 78} to oblate in Kr{sup 72} with strong mixing of the configurations in Kr{sup 74} and Kr{sup 76} was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr{sup 74} and Kr{sup 76} beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se{sup 68} nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)

  17. Production and use of radioactive nuclear beams

    International Nuclear Information System (INIS)

    Tanihata, Isao

    1994-01-01

    Two different production method of radioactive nuclear beams (RNB) are reviewed, in this paper. One is the secondary beam method that use a high-energy heavy-ion reaction and a separator and the other is the reacceleration method. The RNB is also expected to have following properties that are useful to the application in wider research and technical usage; 1. any elements and isotopes can be used as a beam. 2. it is easy to control a position and a depth of the implantation. 3. an extremely sensitive detection is possible because they emit radiations. 4. one can select the lifetime among the isotopes suitable for a specific phenomenon. 5. one can select a spin among the isotopes for specific selectivity to the phenomenon. These useful properties of the RNB and a few recent examples of study are discussed. Among them are the discovery of the neutron skin and the neutron halo in nuclei near the limit of existence, the first determinations of reactions relevant to the synthesis of the heavy elements in the universe, and an application to the PET. (J.P.N.)

  18. A densimeter with radioactive isotope of teaching

    International Nuclear Information System (INIS)

    Qu Guopu; Zhao Xiuliang; Cheng Pinjing

    2002-01-01

    A densimeter with radioactive isotope beseemed experiment teaching for speciality of nuclear engineering and nuclear technology in higher education is presented. Principle of work and composing of instrument system are introduced briefly

  19. Radioactive beam studies of cosmological interest

    International Nuclear Information System (INIS)

    Sale, K.E.; Boyd, R.N.; Mathews, G.J.; Corn, B.P.; Islam, M.S.

    1989-01-01

    Experimental efforts by the LLNL/Ohio State radioactive ion beam collaboration are described. We are presently focusing on some reactions which are of great importance in the newly proposed inhomogeneous big bang cosmological models. Specifically we are using our system to make beams of 8 Li for measurements of the 8 Li(d, n) 9 Be and 8 Li(α, n) 11 B cross-sections. These are the key reactions which determine the production of heavy (A > 12) elements during the era of big bang nucleosynthesis, and thus the initial composition of stars and subsequent stellar isotope production. Plans for future experiments, including the measurement of the 7 Be(p, γ) 8 B cross section will be discussed. (orig.)

  20. Sciences with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Kawase, Yoichi

    1992-01-01

    The unstable nuclei which are produced with accelerators and nuclear reactors and are far apart from the stability line have been used mainly in nuclear physics field as the object of the systematic research on atomic nucleus structure. Recently, the projects for developing the advanced research in many fields by accelerating the obtained unstable nuclei have been proposed. The unstable nucleus beam which was accelerated to high energy and controlled precisely keeps the possibility of qualitatively improve further conventional ion beam science, and it is expected as the breakthrough in the interdisciplinary basic research related to atomic energy, therefore, its recent trend in the world is explained, hoping for the new development. The stable isotopes existing naturally distribute along the N-Z straight line, and as they are apart from the natural stability line, they become unstable to beta decay, and their life becomes short exponentially. The significance of unstable nucleus beam science and its recent trend, the production of unstable nucleus beam, the interdisciplinary research using unstable nucleus beam, and the present state and future plan in Research Reactor Institute, Kyoto University are reported. (K.I.)

  1. Radioactive ion beams and techniques for solid state research

    International Nuclear Information System (INIS)

    Correia, J.G.

    1998-01-01

    In this paper we review the most recent and new applications of solid state characterization techniques using radioactive ion beams. For such type ofresearch, high yields of chemically clean ion beams of radioactive isotopesare needed which are provided by the on-line coupling of high resolution isotope separators to particle accelerators, such as the isotope separator on-line (ISOLDE) facility at CERN. These new experiments are performed by an increasing number of solid state groups. They combine nuclear spectroscopic techniques such as Moessbauer, perturbed angular correlations (PAC) and emission channeling with the traditional non-radioactive techniques liked deep level transient spectroscopy (DLTS) and Hall effect measurements. Recently isotopes of elements, not available before, were successfully used in new PAC experiments, and the first photoluminescence (PL) measurements, where the element transmutation plays the essential role on the PL peak identification, have been performed. The scope of applications of radioactive ion beams for research in solid state physics will be enlarged in the near future, with the installation at ISOLDE of a post-accelerator device providing radioactive beams with energies ranging from a few keV up to a few MeV. (orig.)

  2. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  3. Therapeutic use of radioactive isotopes

    CERN Document Server

    Caroline Duc

    2013-01-01

    In December, researchers from ISOLDE-CERN, the Paul Scherrer Institute (PSI) and the Institut Laue-Langevin (ILL) published the results of an in vivo study which successfully proved the effectiveness of four terbium isotopes for diagnosing and treating cancerous tumours.   Four terbium isotopes suitable for clinical purposes. “ISOLDE is the only installation capable of supplying terbium isotopes of such purity and intensity in the case of three out of the four types used in this study,” explains Karl Johnson, a physicist at ISOLDE.  “Producing over a thousand different isotopes, our equipment offers the widest choice of isotopes in the world!” Initially intended for fundamental physics research, ISOLDE has diversified its activities over time to invest in various projects in the materials science, biochemistry and nuclear medicine fields. The proof-of-concept study has confirmed that the four terbium isotopes 149Tb, 152Tb, 155Tb produ...

  4. Hygienic assessment of radioactive iodine isotopes

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.

    1987-01-01

    Sources of radioactive iodine isotopes and their biological significance depending on the way of intake are discussed. The degree of food contamination by radioactive iodine as well as products, which serve as the source of its intake into the human body, and results of their processing are considered. The danger of radioactive iodine intake by different groups of population as well as thyroid irradiation effects are discussed. Description of activities, directed to the human body protection against radioactive iodine and assessment of these protection measures efficiency is presented

  5. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  6. Characterization of defects in semiconductors using radioactive isotopes

    CERN Document Server

    Deicher, Manfred

    2007-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as Mossbauer spectroscopy, perturbed angular correlation, and emission channeling have used nuclear properties to gain microscopical information on the structural and dynamical properties of solids. The availability of many different radioactive isotopes as a clean ion beam at facilities like ISOLDE/CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Spectroscopic techniques like photoluminescence (PL), deep-level transient spectroscopy (DLTS), and Hall effect gain a new quality by using radioactive isotopes. Due to their decay the chemical origin of an observed electronic and optical behavior of a specific defect or dopant can be unambiguously identified. This contribution will highlight a few examples to illustrat...

  7. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  8. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  9. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  10. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  11. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  12. Uses of Radioactive Isotopes in Industry

    International Nuclear Information System (INIS)

    Plata, A.; Val Cob, M. del; Gamboa, J. M.

    1962-01-01

    The present report contains a list of some of the most important problems in industry that have been approached so far by the use of radioactive isotopes. The list has been compiled trough the experience gained by the authors in revising for several years the most important scientific journal and other sources of information on this subject. The classification of industries has been done in an arbitrary way, choosing those isotope uses that have reached a higher degree of development. (Author)

  13. Overview of linac applications at future radioactive beam facilities

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1996-01-01

    There is considerable interest worldwide in the research which could be done at a next generation, advanced radioactive beam facility. To generate high quality, intense beams of accelerated radionuclides via the open-quotes isotope separator on-lineclose quotes (ISOL) method requires two major accelerator components: a high power (100 kW) driver device to produce radionuclides in a production target/ion source complex, and a secondary beam accelerator to produce beams of radioactive ions up to energies on the order of 10 MeV per nucleon over a broad mass range. In reviewing the technological challenges of such a facility, several types of modem linear accelerators appear well suited. This paper reviews the properties of the linacs currently under construction and those proposed for future facilities for use either as the driver device or the radioactive beam post-accelerator. Other choices of accelerators, such as cyclotrons, for either the driver or secondary beam devices of a radioactive beam complex will also be compared. Issues to be addressed for the production accelerator include the choice of ion beam types to be used for cost-effective production of radionuclides. For the post-accelerator the choice of ion source technology is critical and dictates the charge-to-mass requirements at the injection stage

  14. Developments of the ISOLDE RILIS for radioactive ion beam production and the results of their application in the study of exotic mercury isotopes

    CERN Document Server

    AUTHOR|(CDS)2086245; Marsh, Bruce

    This work centres around development and applications of the Resonance Ionization Laser Ion Source (RILIS) of the ISOLDE radioactive ion beam facility based at CERN. The RILIS applies step-wise resonance photo-ionization, to achieve an unparalleled degree of element selectivity, without compromising on ion source efficiency. Because of this, it has become the most commonly used ion source at ISOLDE, operating for up to 75% of ISOLDE experiments. In addition to its normal application as an ion source, the RILIS can be exploited as a spectroscopic tool for the study of nuclear ground state and isomer properties, by resolving the influence of nuclear parameters on the atomic energy levels of the ionization scheme. There are two avenues of development by which to widen the applicability of the RILIS: laser ionization scheme development, enabling new or more efficient laser ionized ion beams and the development of new laser-atom interaction regions. New ionization schemes for chromium, tellurium, germanium, mercu...

  15. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  16. Mass measurement of radioactive isotopes

    CERN Document Server

    Kluge, H J; Scheidenberger, C

    2004-01-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  17. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    Taylor, R.D.

    1990-01-01

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  18. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  19. Physics with energetic radioactive ion beams

    International Nuclear Information System (INIS)

    Henning, W.F.

    1996-01-01

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized

  20. Holifield Radioactive Ion Beam Facility Development and Status

    CERN Document Server

    Tatum, Alan

    2005-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility dedicated to nuclear structure, reactions, and nuclear astrophysics research with radioactive ion beams (RIBs) using the isotope separator on-line (ISOL) technique. An integrated strategic plan for physics, experimental systems, and RIB production facilities have been developed and implementation of the plan is under way. Specific research objectives are defined for studying the nature of nucleonic matter, the origin of elements, solar physics, and synthesis of heavy elements. Experimental systems upgrade plans include new detector arrays and beam lines, and expansion and upgrade of existing devices. A multifaceted facility expansion plan includes a $4.75M High Power Target Laboratory (HPTL), presently under construction, to provide a facility for testing new target materials, target geometries, ion sources, and beam preparation techniques. Additional planned upgrades include a second RIB production system (IRIS2), an external axi...

  1. Radioactive isotopes in occupational health

    International Nuclear Information System (INIS)

    Favino, Angelo.

    1976-01-01

    It is highly desirable today to know and use for industrial medicine purposes all scientific and technological data available in the field of nuclear medicine. The present textbook is an inventory of all possibilities given to occupational doctors in order to pronounce a judgement of ability to work on the occasion of preemployment or routine medical examinations. Such applications require a high degree of competence in radiological protection and also require observation of the basic Safety Standards of Euratom and of the recommendations of the International Committee on Radiological Protection, the same safety principles having been incorporated in all the legislations of the Member States of the Community. In this book a number of chapters are devoted to the description of the basic principles for maximum permissible doses, dosimetric surveillance, medical supervision of workers exposed to ionizing radiations, and medical treatments to be used after a radioactive contamination. In addition a small number of preventive measures are described for all utilisations of radioactive substances for diagnostic or therapeutic purposes

  2. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  3. Radioactive beam production at the Bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Feinberg, B.; Kalnins, J.G.; Krebs, G.F.; McMahan, M.A.; Tanihata, I.

    1989-10-01

    At the Bevalac radioactive beams are routinely produced by the fragmentation process. The effectiveness of this process with respect to the secondary beam's emittance, intensity and energy spread depends critically on the nuclear reaction kinematics and the magnitude of the incident beam energy. When this beam energy significantly exceeds the energies of the nuclear reaction process, many of the qualities of the incident beam can be passed on to the secondary beam. Factors affecting secondary beam quality are discussed along with techniques for isolating and purifying a specific reaction product. The on-going radioactive beam program at the Bevalac is used as an example with applications, present performance and plans for the future. 6 refs., 6 figs., 1 tab

  4. Nucleon transfer reactions with radioactive beams

    Science.gov (United States)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  5. Safe handling of radioactive isotopes. Handbook 42

    International Nuclear Information System (INIS)

    1949-09-01

    With the increasing use of radioactive isotopes by industry, the medical profession, and research laboratories, it is essential that certain minimal precautions be taken to protect the users and the public. The recommendations contained in this handbook represent what is believed to be the best available opinions on the subject as of this date. As our experience with radioisotopes broadens, we will undoubtedly be able to improve and strengthen the recommendations for their safe handling and utilization. Through the courtesy of the National Research Council about a year ago, several hundred draft copies of this report were circulated to all leading workers and authorities in the field for comment and criticism. The present handbook embodies all pertinent suggestions received from these people. Further comment will be welcomed by the committee. One of the greatest difficulties encountered in the preparation of this handbook lay in the uncertainty regarding permissible radiation exposure levels - particularly for ingested radioactive materials. The establishment of sound figures for such exposure still remains a problem of high priority for many conditions and radioactive substances. Such figures as are used in this report represent the best available information today. If, in the future, these can be improved upon, appropriate corrections will be issued. The subject will be under continuous study by the two subcommittees mentioned above. The present Handbook has been prepared by the Subcommittee on the Handling of Radioactive Isotopes and Fission Products

  6. Safe handling of radioactive isotopes. Handbook 42

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1949-09-15

    With the increasing use of radioactive isotopes by industry, the medical profession, and research laboratories, it is essential that certain minimal precautions be taken to protect the users and the public. The recommendations contained in this handbook represent what is believed to be the best available opinions on the subject as of this date. As our experience with radioisotopes broadens, we will undoubtedly be able to improve and strengthen the recommendations for their safe handling and utilization. Through the courtesy of the National Research Council about a year ago, several hundred draft copies of this report were circulated to all leading workers and authorities in the field for comment and criticism. The present handbook embodies all pertinent suggestions received from these people. Further comment will be welcomed by the committee. One of the greatest difficulties encountered in the preparation of this handbook lay in the uncertainty regarding permissible radiation exposure levels - particularly for ingested radioactive materials. The establishment of sound figures for such exposure still remains a problem of high priority for many conditions and radioactive substances. Such figures as are used in this report represent the best available information today. If, in the future, these can be improved upon, appropriate corrections will be issued. The subject will be under continuous study by the two subcommittees mentioned above. The present Handbook has been prepared by the Subcommittee on the Handling of Radioactive Isotopes and Fission Products.

  7. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  8. Production of and studies with secondary radioactive ion beams at Lise

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1990-01-01

    The doubly achromatic spectrometer LISE, installed at GANIL has delivered secondary radioactive beams for the past 6 years. Essentially, it consists of by two dipole magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like fragment-beams emitted at 0 0 . Important features of LISE and selected experimental results will be discussed. LISE was substantially upgraded, recently, by adding a Wien-filter, providing secondary radioactive beams of still increased intensity and isotopic purity. (6 figs)

  9. Digitisation of radioactive isotope images

    International Nuclear Information System (INIS)

    McCready, V.R.; Chittenden, S.

    1987-01-01

    Our conclusions are that for the production of optimum hard copy digital imaging techniques are essential. For routine imaging each image can be correctly exposed and windowed to ensure accurate diagnosis. Digital imaging is ideal in difficult low activity examinations such as gallium-67 studies, labelled monoclonal antibodies or MIBG imaging. The correct choice of matrix size is important. For high information density imaging the 256x256 matrix size with a large field of view camera seems to be optimum for most types of nuclear medicine examinations. In the low information density situation it is probably better to use a 128x128 matrix with some computer smoothing. An algorithm which modulated the intensity of individual pixels based on the average counting rate along the x- or y-axis would help in accentuating small changes in radioactivity. From our experiments in digitising high photon images it is obvious that there should be no edges, lines or empty space visible on the image. To overcome this problem some form of spot wobble is suggested which will only marginally degrade the spacial information on the image. The optimum form of hard copy has yet to be found. So far all forms of paper output have yielded less than satisfactory results. Transparent films appear to be most popular. For this form of output, digital imaging is ideal since the computer can be adjusted so that the end image directly reflects what has been seen on the digital camera monitor. While instant prints are valuable for including in the patients notes, probably the ideal medium is instant hard copy in the form of a transparent image. (orig.) [de

  10. The production of accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1993-01-01

    During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL

  11. Summary -- Experiments with Radioactive Beams Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.J. [Los Alamos National Lab., NM (United States); Wiescher, M. [Notre Dame Univ., IN (United States)

    1992-12-31

    During the course of the workshop, a wide range of futuristic radioactive-beam experiments were discussed. These extended from the study of electroweak interactions in nuclei to materials science, nuclear astrophysics, and a host of nuclear physics investigations. Emphasis was placed on illustrating how these prototypical experiments could be done, discussing what types of detection systems would be needed, exploring the new problems which would be confronting the radioactive beam experimenter, and better defining the beam requirements. Contained herein is a summary of these discussions.

  12. Experimental studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Sastry, D.L.; Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.

    1991-01-01

    The sources of information presented are essentially taken from the papers reported at several international seminars and those appeared in the Journal of Nuclear Instruments and Methods in Physics Research. Production and usage of radioactive ion beams (RIB) in research have received the attention of scientists all over the world during the past six years. The first radioactive ion beams ( 19 Ne) were produced at Bevalac for the purpose of medical research using a primary beam of energy 800 MeV/a.m.u. (author). 19 refs., 2 figs., 3 tabs

  13. Sources of Radioactive Isotopes for Dirty Bombs

    Science.gov (United States)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  14. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes; Ionisation resonante par faisceaux laser: application aux sources d'ions et a l'etude de la structure des noyaux radioactifs de tellure

    Energy Technology Data Exchange (ETDEWEB)

    Sifi, R

    2007-07-15

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  15. Proton Radioactivity Measurements at HRIBF: Ho, Lu, and Tm Isotopes

    International Nuclear Information System (INIS)

    Akovali, Y.; Batchelder, J.C.; Bingham, C.R.; Davinson, T.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Hamilton, J.H.; Janas, Z.; Karny, M.; Kim, S.H.; MacDonald, B.D.; Mas, J.F.; McConnell, J.W.; Piechaczek, A.; Ressler, J.J.; Rykaczewski, K.; Slinger, R.C.; Szerypo, J.; Toth, K.S.; Weintraub, W.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    1998-01-01

    Two new isotopes, 145 Tm and 140 Ho and three isomers in previously known isotopes, 141m Ho, 150m Lu and 151m Lu have been discovered and studied via their decay by proton emission. These proton emitters were produced at the Holifield Radioactive Ion Beam Facility (HRIBF) by heavy-ion fusion-evaporation reactions, separated in A/Q with a recoil mass spectrometer (RMS), and detected in a double-sided silicon strip detector (DSSD). The decay energy and half-life was measured for each new emitter. An analysis in terms of a spherical shell model is applied to the Tm and Lu nuclei, but Ho is considerably deformed and requires a collective model interpretation

  16. Radioactive isotopes are use wide in medicine

    International Nuclear Information System (INIS)

    Vargas, Celso

    2011-01-01

    The radioactive isotopes are used in medicine to view the status of an organ under different conditions; especially in the evolution of an organism after treatment of a cancer. In this process, three key areas have combined; first, the production of isotopes by developing of accelerators or reactors both linear accelerator and cyclotrons. Second, the use of suitable equipment such as PET (Positron emission tomography) for accurate scan of internal organs at physiological and biochemical level or molecular for diagnosis and effective treatment of diseases such as cancer. Currently, the trend has been to combine PET with other technologies such as CAT (computed axial tomographic) or SPECT (Single photon emission computer tomography). Third and finally, the development of molecules increasingly specific that have allowed to obtain several chemical compounds for different uses [es

  17. Prospects for high-power radioactive beam facilities worldwide

    CERN Document Server

    Nolen, Jerry A

    2003-01-01

    Advances in accelerators, targets, ion sources, and experimental instrumentation are making possible ever more powerful facilities for basic and applied research with short-lived radioactive isotopes. There are several current generation facilities, based on a variety of technologies, operating worldwide. These include, for example, those based on the in-flight method such as the recently upgraded National Superconducting Cyclotron Laboratory at Michigan State University, the facility at RIKEN in Japan, GANIL in Caen, France, and GSI in Darmstadt, Germany. Present facilities based on the Isotope-Separator On-Line method include, for example, the ISOLDE laboratory at CERN, HRIBF at Oak Ridge, and the new high-power facility ISAC at TRIUMF in Vancouver. Next-generation facilities include the Radioactive-Ion Factory upgrade of RIKEN to higher energy and intensity and the upgrade of ISAC to a higher energy secondary beam; both of these projects are in progress. A new project, LINAG, to upgrade the capabilities at...

  18. Radioactive ion beam production by the ISOL method for SPIRAL

    International Nuclear Information System (INIS)

    Landre-Pellemoine, Frederique

    2001-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Lignes) of which the start up will begin in September 2001 at GANIL (Grand Accelerateur National d'Ions Lourds) in Caen. This thesis primarily concerns the development of radioactive ion production systems (target/ion source) by the thorough study of each production stage of the ISOL (Isotopic Separation On Line) method: target and/or projectile fragmentation production, diffusion out of target material, effusion into the ion source and finally the ionization of the radioactive atoms. A bibliographical research and thermal simulations allowed us to optimize materials and the shape of the production and diffusion targets. A first target was optimized and made reliable for the radioactive noble gases production (argon, neon...). A second target dedicated to the radioactive helium production was entirely designed and realised (from the specifications to the 'off line' and 'on line' tests). Finally, a third target source system was defined for singly-charged radioactive alkaline production. The intensities of secondary beams planned for SPIRAL are presented here. A detailed study of the diffusion effusion efficiency for these various targets showed that the use of a fine microstructure carbon (grain size of 1 μm) improved the diffusion and showed the importance of thickness of the lamella for the short lived isotope effusion. (author) [fr

  19. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K. L. [University of Tennessee, Knoxville (UTK); Ahn, S.H. [University of Tennessee, Knoxville (UTK); Allmond, James M [ORNL; Ayres, A. [University of Tennessee, Knoxville (UTK); Bardayan, Daniel W [ORNL; Baugher, T. [Michigan State University, East Lansing; Bazin, D. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Beene, James R [ORNL; Berryman, J. S. [Michigan State University, East Lansing; Bey, A. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Cartegni, L. [University of Tennessee, Knoxville (UTK); Chae, K. Y. [University of Tennessee, Knoxville (UTK)/Sungkyunkwan University, Korea; Cizewski, J. A. [Rutgers University; Gade, A. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Galindo-Uribarri, Alfredo {nmn} [ORNL; Garcia-Ruiz, R.F. [Instituut voor Kernen Stralingsfysica, KU Leuven, B-3001, Leuven, Belgium; Grzywacz, Robert Kazimierz [ORNL; Howard, Meredith E [ORNL; Kozub, R. L. [Tennessee Technological University (TTU); Liang, J Felix [ORNL; Manning, Brett M [ORNL; Matos, M. [Louisiana State University; McDaniel, S. [Michigan State University, East Lansing; Miller, D. [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Padgett, S [University of Tennessee, Knoxville (UTK); Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Pain, Steven D [ORNL; Pittman, S. T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Radford, David C [ORNL; Ratkiewicz, Andrew J [ORNL; Schmitt, Kyle [ORNL; Smith, Michael Scott [ORNL; Stracener, Daniel W [ORNL; Stroberg, S. [Michigan State University, East Lansing; Tostevin, Jeffrey A [ORNL; Varner Jr, Robert L [ORNL; Weisshaar, D. [Michigan State University, East Lansing; Wimmer, K. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL)/Central Michigan University; Winkler, R. [Michigan State University, East Lansing

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  20. Techniques to produce and accelerate radioactive ion beams

    CERN Document Server

    Penescu, Liviu Constantin; Lettry, Jacques; Cata-Danil, Gheorghe

    The production and acceleration of the Radioactive Ion Beams (RIB) continues the long line of nuclear investigations started in the XIXth century by Pierre and Marie Curie, Henri Becquerel and Ernest Rutherford. The contemporary applications of the RIBs span a wide range of physics fields: nuclear and atomic physics, solid-state physics, life sciences and material science. ISOLDE is a world-leading Isotope mass-Separation On-Line (ISOL) facility hosted at CERN in Geneva for more than 40 years, offering the largest variety of radioactive ion beams with, until now, more than 1000 isotopes of more than 72 elements (with Z ranging from 2 to 88), with half-lives down to milliseconds and intensities up to 1011 ions/s. The post acceleration of the full variety of beams allows reaching final energies between 0.8 and 3.0 MeV/u. This thesis describes the development of a new series of FEBIAD (“Forced Electron Beam Induced Arc Discharge”) ion sources at CERN-ISOLDE. The VADIS (“Versatile Arc Discharge Ion Source�...

  1. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  2. Laser fluorescence on radioactive isotopes produced in very low yield

    International Nuclear Information System (INIS)

    Wells, S.A.; Evans, D.E.; Griffith, J.A.R.; Eastham, D.A.; Groves, J.; Tolfree, D.W.L.; Warner, D.D.; Dancy, M.P.; Billowes, J.; Grant, I.S.; Walker, P.M.

    1990-01-01

    Heavy ion accelerators such as the NSF at Daresbury Laboratory are capable of producing a wide variety of radio-active beams. The intensities of the beams of atoms or ions are always modest, and ultra-sensitive methods are needed to observe laser-induced fluorescence. The fast ion-photon coincidence technique has been applied to neutron-deficient barium ions down to 120 Ba. Nuclear moments and changes in charge radii have been determined from the measured hyperfine splittings and isotope shifts. An abrupt increase in the mean square radius is observed at 121 Ba, large enough to disrupt the systematic staggering seen for the isotopic series. The hyperfine structure has also been observed for an isomeric state of 127 Ba which has a lifetime of about 2 seconds. The measurements lead to an unambiguous assignment of the spin of the isomer. Another technique has been tested with stable krypton atoms. Fluorescent photons in the VUV wavelength region are detected with a high efficiency using a channel plate detector. The background is small enough that it should be possible to measure hyperfine spectra on beams with fewer than 10 3 atoms per second

  3. Cooling of radioactive isotopes for Schottky mass spectrometry

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Eickhoff, H.; Franzke, B.; Nolden, F.; Reich, H.; Schlitt, B.; Winkler, T.

    1999-01-01

    Nuclear masses of radioactive isotopes can be determined by measurement of their revolution frequency relative to the revolution frequency of reference ions with well-known masses. The resolution of neighboring frequency lines and the accuracy of the mass measurement is dependent on the achievable minimum longitudinal momentum spread of the ion beam. Electron cooling allows an increase of the phase space density by several orders of magnitude. For high intensity beams Coulomb scattering in the dense ion beam limits the beam quality. For low intensity beams a regime exists in which the diffusion due to intrabeam scattering is not dominating any more. The minimum momentum spread δp/p=5x10 -7 which is observed by Schottky noise analysis is considerably higher than the value expected from the longitudinal electron temperature. The measured frequency spread results from fluctuations of the magnetic field in the storage ring magnets. Systematic mass measurements have started and can be presently used for ions with half-lives of some ten seconds. For shorter-lived nuclei a stochastic precooling system is in preparation

  4. Radioactive Beam Measurements to Probe Stellar Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael Scott [ORNL

    2010-01-01

    Unique beams of unstable nuclei from the Holi eld Radioactive Ion Beam Facility at Oak Ridge National Laboratory are being used to measure the thermonuclear reactions that occur in novae, X-ray bursts, and supernovae. The astrophysical impact of these measurements is determined by synergistic nuclear data evaluations and element synthesis calculations. Results of recent measurements and explosion simulations are brie y described, along with future plans and software research tools for the community.

  5. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  6. The ISOLDE Facility: Radioactive beams at CERN

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Some of the experimental techniques used will be introduced; more focus will be put on what physics questions can be answered by using radioactive beams. A brief overview is given of the present and future European developments in this rapidly evolving field. Prerequisite knowledge: none

  7. National Centre for Radioactive Ion Beams (NCRIB)

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1999-01-01

    Radioactive Ion (nuclear) Beams have become prolific recently. Nuclear physics and associated subjects have staged a comeback to almost the beginning with the advent of RIB. A dedicated National Centre for RIB (NCRIB) proposed, discussed at several forums and under serious consideration is described

  8. Improvements of present radioactive beam facilities and new projects

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1995-01-01

    A short overview is given over scheduled improvements of present radioactive beam facilities and of new projects. In order to put these into a coherent context the paper starts with a general section about the making of radioactive beams. (author)

  9. From the discovery of radioactivity to the production of radioactive beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1999-01-01

    The evolution of the projectiles used to explore the nucleus influenced strongly the development of Nuclear Physics. The alpha particles from radioactivity were the projectiles mostly used up to the second world war. This period was marked by fundamental discoveries, as those of artificial radioactivity and of fission. From the 1930's to 1070, light accelerated particles (electrons, protons, deuterons, isotopes of helium) became universally used. A third period began in the 1960's with the emergence of heavy ion accelerators, the use of which led to a true revolution in the study of nuclear matter. Finally, the fourth period started in 1985 when the first secondary beams of radioactive nuclei were produced, and opened new ways in physics. (authors)

  10. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  11. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  12. TRI mu P - a radioactive isotope trapping facility under construction at KVI

    CERN Document Server

    Berg, G P; Dermois, O; Harakeh, M N; Hoekstra, R; Jungmann, Klaus; Kopecky, S; Morgenstern, R; Rogachevskiy, A; Timmermans, R; Willmann, L; Wilschut, H W

    2003-01-01

    At the Kernfysisch Versneller Instituut a new facility (TRI mu P) is under development which aims to investigate fundamental interactions using radioactive ions. A spectrum of radioactive isotopes will be produced in inverse-kinematics and fragmentation reactions using heavy-ion beams from the superconducting cyclotron AGOR. The reaction products will be separated from the primary beam in a dual-mode recoil and fragment separator. The beam of isotopes of interest will be transformed into a low-energy, high-quality, bunched beam and, after neutralization, stored in an atom trap. The emphasis will be put on studying the origin of parity violation via beta-nu angular correlations and the search for permanent electric dipole moments of atoms and nuclei. The facility will be open to outside users; suggestions for collaborations to extend the scientific program are encouraged.

  13. Methods for removing radioactive isotopes from contaminated streams

    International Nuclear Information System (INIS)

    Hoy, D.R.; Hickey, T.N.; Spulgis, I.S.; Parish, H.C.

    1979-01-01

    Methods for removing radioactive isotopes from contaminated gas streams for use in atmospheric containment and cleanup systems in nuclear power plants are provided. The methods provide for removal of radioactive isotopes from a first portion of the contaminated stream, separated from the remaining portion of the stream, so that adsorbent used to purify the first portion of the contaminated stream by adsorption of the radioactive isotopes therefrom can be tested to determine the adsorbing efficacy of the generally larger portion of adsorbent used to purify the remaining portion of the stream

  14. Positron emission medical measurements with accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Llacer, J.

    1988-01-01

    This paper reviews in some detail the process by which a heavy ion accelerator can be used to inject positron emitting radioactive particles into a human body for a range of possible medical measurements. The process of radioactive beam generation and injection is described, followed by a study of the relationship between activity that can be injected versus dose to the patient as a function of which of the positron emitting ions is used. It is found that 6 C 10 and 10 Ne 19 are the two isotopes that appear more promising for injection into humans. The design considerations for a non-tomographic instrument to obtain images from beam injections are outlined and the results of 10 Ne 19 preliminary measurements with human phantoms and actual patients for the determination of end-of-range of cancer therapy ion beams is reported. Accuracies in the order of ±1 mm in the measurements of stopping point of a therapy beam with safe doses to the patient are reported. The paper concludes with a simple analysis of requirements to extend the technique to on-line verification of cancer treatment and to nuclear medicine research and diagnostics measurements. 17 refs.; 16 figs.; 3 tabs

  15. Condensed matter physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Haas, H.

    1996-01-01

    An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)

  16. Charge breeding of intense radioactive beams

    CERN Document Server

    Kester, O

    2001-01-01

    The efficient transformation of radioactive beams by charge breeding devices will critically influence the lay-out of the post accelerator of presently built first generation radioactive ion beam (RIB) facilities as well as new second generation facilities. The size of the post-accelerator needed to bring the unstable nuclei to the energies required to study nuclear reactions depends on the charge state of the radioactive ions. The capability to raise that charge state from 1+ to n+, where n may correspond to a charge-to- mass ratio of 0.15 or higher, will therefore produce an enormous reduction in cost as well as the possibility to accelerate heavier masses. Thus the efficiency of the charge breeding scheme in comparison to the stripping scheme will be explored in the frame of the EU-network charge breeding. The two possible charge breeding schemes using either an Electron Beam Ion Source (EBIS) or an Electron Cyclotron Resonance Ion Source (ECRIS), the demands to the sources and the present status of existi...

  17. The cobalt radioactive isotopes in environment

    International Nuclear Information System (INIS)

    2007-01-01

    For the year 1993 the total activity released in cobalt is 69 GBq for the whole of nuclear power plants. The part of activity in cobalt for La Hague in 1993 is 8 GBq of 58 Co and 2 GBq of 60 Co. The radioactive isotopes released by nuclear power plants or the reprocessing plant of La Hague under liquid effluents are shared by half between 58 Co and 60 Co. The exposure to sealed sources is the most important risk for the cobalt. The risk of acute exposure can associate a local irradiation of several decades of grays inducing a radiological burns, deep burn to treat in surgery by resection or graft even amputation. A global irradiation of organism for several grays induces an acute irradiation syndrome, often serious. At long term the stochastic effects are represented by leukemia and radio-induced cancers. The increase of probability of their occurrence is 1% by sievert. We must remind that the natural spontaneous probability is 25%. (N.C.)

  18. Natural radioactive isotopes in food of Polish population

    International Nuclear Information System (INIS)

    Pietrzak-Lis, Z.

    1999-01-01

    The natural radioactive isotopes contamination of basic food products and water in two regions of Poland (Central Poland and Silesia Region) have been measured. The following isotopes have been taken into account: U-234, U-238, Th-228, Th-230, Th-232, Ra-226, Ra-228, Pb-210; Po-210. The annually intake of mentioned isotopes by regional population and relative doses have been assessed for typical diet of adults in Poland

  19. Fundamental symmetries and astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Vogt, E.

    1996-04-01

    A major new initiative at TRIUMF pertains to the use of radioactive beams for astrophysics and for fundamental symmetry experiments. Some recent work is described in which the β-decay-followed by alpha particle emission of 16 N was used to find the resonance parameters dominating the alpha particle capture in 12 C and thus to find the astrophysical S-factor of this reaction which is of crucial importance for alpha-particle burning and the subsequent collapse of stars. In some work underway trapped neural atoms of radioactive potassium atoms will be used to study fundamental symmetries of the weak interactions. Trapping has been achieved and soon 38m K decay will be used to search for evidence of scalar interactions and 37 K decay to search for right-handed gauge-bosom interactions. Future experiments are planned to look for parity non-conservation in trapped francium atoms. This program is part of a revitalization for the TRIUMF laboratory accompanied by the construction of the radioactive beam facility (ISAC). (author)

  20. Accurate hydrocarbon estimates attained with radioactive isotope

    International Nuclear Information System (INIS)

    Hubbard, G.

    1983-01-01

    To make accurate economic evaluations of new discoveries, an oil company needs to know how much gas and oil a reservoir contains. The porous rocks of these reservoirs are not completely filled with gas or oil, but contain a mixture of gas, oil and water. It is extremely important to know what volume percentage of this water--called connate water--is contained in the reservoir rock. The percentage of connate water can be calculated from electrical resistivity measurements made downhole. The accuracy of this method can be improved if a pure sample of connate water can be analyzed or if the chemistry of the water can be determined by conventional logging methods. Because of the similarity of the mud filtrate--the water in a water-based drilling fluid--and the connate water, this is not always possible. If the oil company cannot distinguish between connate water and mud filtrate, its oil-in-place calculations could be incorrect by ten percent or more. It is clear that unless an oil company can be sure that a sample of connate water is pure, or at the very least knows exactly how much mud filtrate it contains, its assessment of the reservoir's water content--and consequently its oil or gas content--will be distorted. The oil companies have opted for the Repeat Formation Tester (RFT) method. Label the drilling fluid with small doses of tritium--a radioactive isotope of hydrogen--and it will be easy to detect and quantify in the sample

  1. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  2. Particle beam generator using a radioactive source

    Science.gov (United States)

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  3. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  4. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  5. A target concept for intense radioactive beams in the 132Sn Region

    International Nuclear Information System (INIS)

    Nolen, J.A. Jr.

    1993-01-01

    To produce intense secondary beams of radioactive isotopes, primary beams of up to 100 kW are being proposed at some facilities. There are plans to test production targets with 800 MeV protons at such higher power at the Rutherford Appleton Laboratory. In this paper the use of high energy neutrons as a possible alternative is presented. The concept is to generate an intense beam of neutrons in a well-cooled target with a primary deuteron beam. The neutrons have a high cross section for producing fission fragments in a thick uranium target which is coupled to the ion source for the secondary beams. The effective target thickness is large and the power dissipated in the ISOL target is relatively small, which should lead to intense beams of neutron-rich, intermediate-mass isotopes such as 132 Sn

  6. Proceedings of national seminar on physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Shyam, R.

    1991-01-01

    This volume containing the proceedings of the national seminar on physics with radioactive ion beams gives a broad overview of the developments taking place in the area of nuclear physics and accelerator physics with special emphasis on the utilization of radioactive ion beams for various studies. Topics covered include studies on nuclear structure and nuclear astrophysics and the wide ranging applications of radioactive ion beams in these and other areas of nuclear sciences. Papers relevant to INIS are indexed separately

  7. Radioactive Ions Production Ring for Beta-Beams

    CERN Document Server

    Benedetto, E; Wehner, J

    2010-01-01

    Within the FP7 EUROnu program, Work Package 4 addresses the issues of production and acceleration of 8Li and 8B isotopes through the Beta-Beam complex, for the production of electron-neutrino. One of the major critical issues is the production of a high enougth ion ßux, to fulÞll the requirements for physics. In alternative to the direct ISOL production method, a new ap- proach is proposed in [1]. The idea is to use a compact ring for Litium ions at 25 MeV and an internal He or D target, in which the radioactive-isotopes production takes place. The beam is expected to survive for several thousands of turns, therefore cooling in 6D is required and, according this scheme, the ionization cooling provided by the target itself and a suitable RF system would be sufÞcient. We present some preliminary work on the Production ring lat- tice design and cooling issues, for the 7Li ions, and propose plans for future studies, within the EUROnu program.

  8. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  9. Experiments with radioactive nuclear beams II

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P.

    2001-12-01

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction 12 C + 12 C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  10. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, F., E-mail: francis.osswald@iphc.cnrs.fr; Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A. [IPHC/IN2P3/CNRS, University of Strasbourg, 67037 Strasbourg (France); Kazarinov, N. [JINR/FLNR, 141980 Dubna (Russian Federation); Perrot, L. [IPNO/IN2P3/CNRS, University of Paris-Sud-11, 91406 Orsay (France)

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  11. Radioactive ion beam development for the SPIRAL 2 project

    International Nuclear Information System (INIS)

    Pichard, A.

    2010-01-01

    This thesis focuses on the study of radioactive ion beam production by the ISOL method for the SPIRAL 2 project. The production of light ion beams is studied and the potential in-target yields of two beams are appraised. The neutron-rich 15 C yield in an oxide target is estimated with simulations (MCNPx, EAF-07) and experimental data bases; the neutron-deficient 14 O yield is estimated thanks to a new measurement of the 12 C( 3 He, n) 14 O reaction excitation function. Based on thermal simulations, a first design of the production target is presented. This thermal study gives the necessary answers for the detailed design of the system able to reach a production yield 140 times higher than with SPIRAL 1. The production of radioactive ion beams coming from fissions in the UCx target is also studied and more particularly effusion and ionisation processes. A global study and an off-line tests campaign allow essential knowledge to the design of the surface ionisation source for SPIRAL 2 to be acquired. A first prototype of this ion source dedicated to alkali and alkaline-earth element production has been built and a thermal calibration performed. Ionisation efficiency and time response of the target-ion source system have been measured at different target temperatures and for different noble gases. These measurements allow evaluation of the impact of effusion and ionisation processes on the production efficiency of different alkali and noble gases isotopes as a function of their half-life. (author) [fr

  12. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  13. Annual report 1984. Radioactive isotope department

    International Nuclear Information System (INIS)

    Muenze, R.

    1985-11-01

    New technologies for production and application of radionuclides and synthesis of radioactive compounds are reported. Special importance is attributed to the characterization of radioactive compounds and the quality check of /sup 99m/Tc- and 14 C-labelled complexes within animal tests. An extensive list of publications and lectures illustrates the international cooperation of research in the field of radiochemistry

  14. Studies of nuclei using radioactive beams

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden

  15. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  16. Dynamics of radioactive lead isotopes in the global environmental atmosphere

    International Nuclear Information System (INIS)

    Koike, Yuya; Kosako, Toshiso

    2006-01-01

    Fundamental information of radioactive lead isotopes, which used as the atmospheric tracer in the global environmental atmosphere, is reviewed. Emanation and exhalation of Rn and Tn, parent nuclide, is stated. Some reports on measurement and application of short-lived lead isotopes are reported. Transfer of radioactive lead isotopes in the atmosphere, vertical profiles of radon, thoron, and short-lived lead isotopes for different turbulent mixing conditions, deposition to aerosol, basic processes of Rn decay product behavior in air defining 'unattached' and 'aerosol-attached' activities, seasonal variation of atmospheric 210 Pb concentration at Beijing and Chengdu, seasonal variation of atmospheric 212 Pb concentration at several observation sites in Japan Islands, and variation in the atmospheric concentration of 212 Pb along with SO 2 are shown. (S.Y.)

  17. Development of the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1997-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility's radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date

  18. Laser fluorescence on radio-active isotopes produced in very low yield

    International Nuclear Information System (INIS)

    Dancy, D.E.; Billowes, J.; Grant, I.S.; Evans, D.E.; Griffith, J.A.R.; Wells, S.A.; Eastham, D.A.; Groves, J.; Smith, J.R.H.; Tolfree, D.W.L.; Walker, P.M.

    1990-01-01

    Fast particle-photon coincidence techniques, developed at Daresbury with strontium isotopes, allow ultra-sensitive laser fluorescence spectroscopy of beams of radio-active isotopes which can only be produced in very low yields. The technique has now been applied to neutron-deficient barium isotopes down to 120 Ba. From measured hyperfine splitting and isotope shifts, nuclear moments and changes in mean square radii have been determined. The work has revealed an abrupt increase in the mean square radius for 121 Ba large enough to disrupt the systematic staggering of nuclear size seen for the series. In a recent experiment an isomeric state of 127 Ba with a half-life of about 2 seconds has been produced in a very low yield; nevertheless we have succeeded in obtaining a fluorescence spectrum. (orig.)

  19. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  20. Detection systems for radioactive ion beams; Systeme de detection en ions radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Savajols, H

    2002-07-01

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  1. Gamma spectroscopy: from steady beams to radioactive beams

    International Nuclear Information System (INIS)

    Stezowski, O.

    2008-06-01

    The author gives an overview of his research works in the field of gamma spectroscopy. First, he recalls some results of experiments performed for the study of peculiar structures associated with different modes of nucleus rotation, and notably in the case of collective rotation of deformed and even super-deformed nuclei. Then, he details tools and methods used to experimentally determine the level scheme. The main characteristics of steady and radioactive beams are briefly presented, and their complementarities and differences are highlighted. Specific spectrometers and sensors are described. In a last chapter, the author discusses several research projects he is involved in, and more particularly the 'gamma tracking' which is the fundamental principle for gamma multi-sensors of the next generations

  2. Radioactive isotopes in clinical medicine and research. Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    The review on the International Symposium on radioactive isotopes in clinical medicine and research in Bad Hofgastein, Austria, 9-12 January 2008, contains 42 papers and 29 poster contributions on the following topics: radiopharmaceutical sciences; radiopharmaceutical sciences in oncology and cardiology; therapy; endocrinology; molecular imaging; clinical PET; physics: image processing; instrumentation, neurology, psychiatry

  3. Radioactive isotopes in clinical medicine and research. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The review on the International Symposium on radioactive isotopes in clinical medicine and research in Bad Hofgastein, Austria, 9-12 January 2008, contains 42 papers and 29 poster contributions on the following topics: radiopharmaceutical sciences; radiopharmaceutical sciences in oncology and cardiology; therapy; endocrinology; molecular imaging; clinical PET; physics: image processing; instrumentation, neurology, psychiatry.

  4. Low (50 keV) and medium (∼10 MeV) energy radioactive beams at Louvain-la-Neuve

    International Nuclear Information System (INIS)

    Huyse, M.; Decrock, P.; Dendooven, P.; Reusen, G.; Duppen, P. Van; Wauters, J.

    1991-01-01

    Low energy radioactive beams are produced at the Leuven Isotope Separator On Line (LISOL) facility in Louvain-la-Neuve. The beams are used for standard nuclear spectroscopy studies and for nuclear orientation on line measurements. Since September 1987 a new project has been started up to accelerate radioactive beams to energies in the range of astrophysical interest. A beam of 10 6 13 N ions per seconde with an energy of 8.5 MeV has been produced last June. (author) 11 refs.; 1 fig.; 1 tab

  5. Vietnam Project For Production Of Radioactive Beam Based On ISOL Technique With The Dalat Reactor

    International Nuclear Information System (INIS)

    Le Hong Khiem; Phan Viet Cuong; Fadi Ibrahim

    2011-01-01

    The presence in Vietnam of Dalat nuclear reactor dedicated to fundamental studies is a unique opportunity to produce Radioactive Ion (RI) Beams with the fission of a 235 U induced by the thermal neutrons produced by the reactor. We propose to produce RI beams at the Dalat nuclear reactor using ISOL (Isotope Separation On-Line) technique. This project should be a unique opportunity for Vietnamese nuclear physics community to use its own facilities to produce RI beams for studying nuclear physics at an international level. (author)

  6. Recent results on reactions with radioactive beams at RIBRAS (Radioactive Ion Beams in Brazil)

    Science.gov (United States)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Arazi, A.; Barioni, A.; Benjamim, E. A.; de Faria, P. N.; Descouvemont, P.; Gasques, L. R.; E; Leistenschneider; Mendes, D. R., Jr.; Morais, M. C.; Morcelle, V.; Moro, A. M.; Pampa Condori, R.; Pires, K. C. C.; Rodriguez-Gallardo, M.; Scarduelli, V.; Shorto, J. M. B.; Zamora, J. C.

    2015-04-01

    We present a quick description of RIBRAS (Radioactive Ion beams in Brazil), which is a superconducting double solenoid system, installed at the Pelletron Laboratory of the University of São Paulo and extends the capabilities of the original Pelletron Tandem Accelerator of 8MV terminal voltage (8UD) by producing secondary beams of unstable nuclei. The experimental program of the RIBRAS covers the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, have also been included in our recent experimental program.

  7. Diagnosis of portal hypertension with radioactive isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lewitus, Z

    1974-01-01

    Administration of /sup 131/I in a microclysma and simultaneous recording of the radioactivity in the liver and precordium allows the diagnosis of portal hypertension in at least 90 percent of the cases. This test has been used now for more than 5 years in patients with liver diseases. The simplicity of the test makes it a valuable bedside procedure.

  8. PRAMANA Cluster radioactivity in xenon isotopes

    Indian Academy of Sciences (India)

    exotic decay or cluster radioactivity was first predicted by sandulescu et al [1] in. 1980 on the basis of ... separator by 58Ni(58Ni, 2n) reaction and carbon clusters were searched for by means of solid state nuclear ..... Lett. 55, 582 (1985). [22] D N Poenaru, W Greiner, K Depta, M Ivascu, D Mazilu and A Sandulescu, At. Data.

  9. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    CERN Document Server

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  10. Status of SPIRAL. The radioactive beam project at GANIL

    International Nuclear Information System (INIS)

    Lieuvin, M.

    1995-01-01

    SPIRAL, a radioactive ion beam facility (RIB) is under construction at GANIL (Caen, France). The heavy ion beams of GANIL will be used to produce radioactive atoms by the ISOL method. After ionisation by an ECR ion source (ECRIS), the low energy radioactive beam is axially injected on the first orbit of a k=265 compact cyclotron. The final energy will range between 1.7 and 25 MeV/u (harmonics 5 to 2) and the accelerated ions will be sent to the existing GANIL experimental areas. The present status of the project is described. (author)

  11. Radioactive nuclear beam facilities based on projectile fragmentation

    International Nuclear Information System (INIS)

    Sherrill, B.M.

    1992-01-01

    The production of radioactive beams using direct separation techniques is discussed. The reaction mechanisms which can be used to produce radioactive beams with these techniques can be broadly divided into three groups, projectile fragmentation, nucleon transfer, and Coulomb disassociation. Radioactive nuclei produced in these ways have large forward momenta with relatively sharp angular distributions peaked near zero degrees which are suitable for collection with magnetic devices. Secondary beam intensities of up to a few percent of the primary beam intensity are possible, although depending on the production mechanism the beam emittance may be poor. Further beam purification can be achieved using atomic processes with profiled energy degraders. The features of the production reaction mechanism, separation techniques, and a review of world wide efforts are presented. The advantages and disadvantages of the method are presented, with discussion of techniques to overcome some of the disadvantages. (Author)

  12. Design of the radioactive ion beam facility at the LNS

    International Nuclear Information System (INIS)

    Migneco, E.; Alba, R.; Calabretta, L.; Ciavola, G.; Cuttone, G.; Di Giacomo, M.; Gammino, S.; Gmaj, P.; Moscatello, M.H.; Raia, G.

    1992-01-01

    At the Laboratorio Nazionale del Sud the existing 15 MV Tandem will be coupled to the Superconducting Cyclotron booster, which will provide light and heavy ion beams in the energy range 100-20 MeV/n. Using these beams, secondary radioactive beams can be produced by projectile fragmentation. A fragment separator will collect the secondary beam produced at energies near that of the projectile and deliver it into the experimental areas. The possibility of using an ECRIS source for the axial injection into the Cyclotron and producing radioactive ions on a thick source placed inside the Tandem preinjector is also discussed. (author) 7 refs.; 2 figs.; 1 tab

  13. A theoretical study of cluster radioactivity in platinum isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Deepthy Maria; Ashok, Nithu; Joseph, Antony [University of Calicut, Department of Physics, Malappuram, Kerala (India)

    2018-01-15

    The probable cluster decay modes in platinum isotopes are predicted with the help of effective liquid drop model. The calculated half-lives are compared with those of universal decay law model and with the experimental data. The investigation affirms the decisive role of neutron magicity in the phenomenon of cluster radioactivity. It is found that the probability of cluster emission decreases with the increase in the neutron number of parent nucleus. Geiger-Nuttall plots of the probable decay modes show linear behaviour, which in turn leads to the equation for logarithmic half-life for the clusters emitted from Pt isotopes. (orig.)

  14. A new class of medicament: radioactivity isotopes (1962)

    International Nuclear Information System (INIS)

    Cohen, Y.

    1962-01-01

    Very many radioelement are used in medicine, either for diagnosis or as therapeutics. The development of medicine has entailed an increase in the number of application of radioactive isotopes. Firstly used in the form of simple inorganic molecules for diagnosis or as anticancer therapeutics, radioelements are now used for labelling organic molecules, allowing functional specific studies of any kind of nature. Their production is made difficult by their radio-active properties. Their pharmaceutical properties, determined by tests and controls, depend either from radiochemistry and from medicine. The author reminds, in this report, the methods for the preparation and analysis, and set out the medical application. (author) [fr

  15. Use of Radioactive Ion Beams for Biomedical Research 2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating prototype PET scanner at the Geneva Cantonal Hospital

    CERN Multimedia

    2002-01-01

    % IS331 \\\\ \\\\ The use of radioactive metal ions (such as $^{90}$Y, $^{153}$Sm or $^{186}$Re) in cancer therapy has made some progress, but has been hampered by factors that could be addressed at CERN with a greater likelihood of success than at any other installation in the world. The present proposal seeks to use the unique advantage of CERN ISOLDE to get round these problems together with the PET scanners at the Cantonal Hospital Geneva (PET~=~positron emission tomography). Radioisotope production by spallation at ISOLDE makes available a complete range of isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. Among these isotopes several positron-emitters having clinical relevance are available.\\\\ \\\\Some free rare earth chelatas are used presently in palliation of painful bone metastases. Curative effects are not able for the moment with this kind of radiopharmaceuticals. More and better data on the biokinetics and bio-distribution...

  16. Radioactive isotopes in clinical medicine and research. Abstracts

    International Nuclear Information System (INIS)

    2005-01-01

    The contribution displays 44 abstracts and 35 posters from the 27th International Symposium on ''radioactive isotopes in clinical medicine and research'', organized by the Austrian society of nuclear medicine and the department of nuclear medicine and the center for biomedical engineering and physics of the Vienna medical university. The abstracts are sorted according to lecture headers: radiopharmaceutical sciences, endocrinology, clinical PET, neurology, oncology, physics and instrumentation, cardiology, inflammation, therapy and varia. (uke)

  17. Chapter 2. Peculiarities of radioactive particle formation and isotope fractionation resulted from underground nuclear explosions

    International Nuclear Information System (INIS)

    1996-01-01

    Radioactive particles, forming terrain fallouts from underground nuclear explosion differ sufficiently from radioactive particles, produced by atmospheric nuclear explosions. Patterns of underground nuclear explosion development, release of radioactivity to the atmosphere, formation of a cloud and base surge, peculiarities of formed radioactive particles, data on isotope fractionation in radioactive particles are presented. Scheme of particle activation, resulted from underground explosions is given

  18. Laser induced fluorescence spectroscopy in atomic beams of radioactive nuclides

    International Nuclear Information System (INIS)

    Rebel, H.; Schatz, G.

    1982-01-01

    Measurements of the resonant scattering of light from CW tunable dye lasers, by a well collimated atomic beam, enable hyperfine splittings and optical isotope shifts to be determined with high precision and high sensitivity. Recent off-line atomic beam experiments with minute samples, comprising measurements with stable and unstable Ba, Ca and Pb isotopes are reviewed. The experimental methods and the analysis of the data are discussed. Information on the variation of the rms charge radii and on electromagnetic moments of nuclei in long isotopic chains is presented. (orig.) [de

  19. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    Science.gov (United States)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  20. Radioactive isotopes and radiation in South Africa: a bibliographic review

    International Nuclear Information System (INIS)

    Basson, J.K.

    1985-12-01

    The development of isotope applications has been a main theme of the erstwhile Atomic Energy Board which organized a national conference in Pretoria in 1963 'to take stock of the work done in the country so far'. Radioactive isotopes and radiation have achieved widespread use in all fields of medicine, agriculture, science and technology. It was recommended that the AEC publish a review of relevant South African work. This publication therefore consists of listings of available publications by South African-based scientists since the 1963 Conference and is divided into the four categories: radiotherapy, clinical and laboratory medicine, agriculture, and industry, preceded by overviews. The terms of reference were construed not to include stable isotopes and it was accordingly decided to concentrate only on radioisotope applications

  1. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    Science.gov (United States)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  2. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  3. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...

  4. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  5. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  6. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  7. Mass measurements on radioactive isotopes using the ISOLTRAP spectrometer

    CERN Document Server

    Dilling, J; Kluge, H J; Kohl, A; Lamour, E; Marx, G; Schwarz, S C; Bollen, G; Kellerbauer, A G; Moore, R B; Henry, S

    2000-01-01

    ISOLTRAP is a Penning trap mass spectrometer installed at the on line isotope separator ISOLDE at CERN. Direct measurements of the masses of short lived radio isotopes are performed using the existing triple trap system. This consists of three electromagnetic traps in tandem: a Paul trap to accumulate and bunch the 60 keV dc beam, a Penning trap for cooling and isobar separation, and a precision Penning trap for the determination of the masses by cyclotron resonance. Measurements of masses of unknown mercury isotopes and in the vicinity of doubly magic /sup 208/Pb are presented, all with an accuracy of delta m/m approximately=1*10/sup -7/. Developments to replace the Paul trap by a radiofrequency quadrupole ion guide system to increase the collection efficiency are presently under way and the status is presented. (10 refs).

  8. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    Science.gov (United States)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  9. Simulation Studies of Diffusion-Release and Effusive-Flow of Short-Lived Radioactive Isotopes

    CERN Document Server

    Zhang, Yan; Kawai, Yoko

    2005-01-01

    Delay times associated with diffusion release from targets and effusive-flow transport of radioactive isotopes to ion sources are principal intensity limiters at ISOL-based radioactive ion beam facilities, and simulation studies with computer models are cost effective methods for designing targets and vapor transport systems with minimum delay times to avoid excessive decay losses of short lived ion species. A finite difference code, Diffuse II, was recently developed at the Oak Ridge National Laboratory to study diffusion-release of short-lived species from three principal target geometries. Simulation results are in close agreement with analytical solutions to Fick’s second equation. Complementary to the development of Diffuse II, the Monte-Carlo code, Effusion, was developed to address issues related to the design of fast vapor transport systems. Results, derived by using Effusion, are also found to closely agree with experimental measurements. In this presentation, the codes will be used in conc...

  10. Kinetics of isotopic exchanges by using radioactive indicators

    International Nuclear Information System (INIS)

    May, S.

    1958-12-01

    After having noticed that iodine 131 under the form of sodium iodide has always been used as radioactive indicator in the CEA atomic pile located in Chatillon, this research report recalls the counting technique and some historical aspects of the notion of isotopic exchange and qualitative works, and presents some generalities on isotopic exchanges (reactions and calculation of rate constants of order 1 and 2, calculation of activation energy, spectro-photometric studies, Walden inversion, alkaline hydrolysis, influence of solvent on exchange kinetics, influence of the nature of the mineral halide). The author then addresses exchanges in aliphatic series (exchange with sodium iodide and with molecular iodine), exchanges in olefin series, exchanges in alicyclic series, and exchanges in aromatic series

  11. Experiments on the nuclear fragmentation and on the production of radioactive beams for direct reactions

    International Nuclear Information System (INIS)

    Weiss, A.

    1993-06-01

    In April 1992 at the GSI a prototype experiment on the production and study of the double-magic radioactive nucleus 56 Ni was successfully performed with proton scattering in inverse kinematics. A 350 MeV/u 56 Ni primary beam from the heavy ion synchrotron SIS was fragmented in a 4/g/cm 2 thick beryllium target. The separation of the formed isotopes ensued in the fragment separator FRS, which was operated in the achromatic mode with a degrader. Production cross sections for a whole series of fragments in the range 29≥Z≥19 and 57≥A≥41 were obtained. It succeeded to detect proton-rich isotopes at the boundary of the stability as for instance 52 Co, 51 Co, 50 Co, or 52 Ni and to determine for the first time their production cross sections. A further part of this thesis with regard to experiments with radioactive beams were first test experiments at the experimental storage ring ESR. The spotlight held luminosity measurements at the internal gas target with cooled, stable proton beam. For this the elastic scattering was stuided in inverse kinematics in the Rutherford range. Studied were different projectile beams (Ne, Xe) at energies of 150 MeV/u respectively 250 MeV/u and gas jets of nitrogen, argon, and hydrogen. The measured energy spectra of the recoils are in agreement with simulation calculations

  12. Tomogram forming process and apparatus using radioactive isotopes

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1980-01-01

    This invention relates to nuclear medicine and particularly to a tomogram forming apparatus which permits, with great efficiency, the very sensitive quantitative determination and the accurate spatial localization of the radioactivity of a body section of a patient to whom a substance labelled with radioactive isotopes has been administered. This scanner is characterized in that it includes several highly focused collimators placed one after the other, according to an arrangement which surrounds a scanning field. Each collimator is mobile with respect to the adjacent one and a system enables the arrangement to be rotated about the scanning field from one scanning position to another. Another device enables the collimators to be moved so that, for each scanning position, the focus of each collimator uniformly samples at least half the scanning field [fr

  13. Measurement of nuclear cross sections using radioactive beams

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E.

    1999-01-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a 6 He nuclear radioactive beam (β emitting with half life 806.7 ms) for the study of the reaction 6 + 209 Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  14. Synthesis and investigation of superheavy elements - perspectives with radioactive beams

    International Nuclear Information System (INIS)

    Muenzenberg, G.

    1997-09-01

    The perspectives for the investigation of heavy and superheavy elements with intense beams of radioactive nuclei available from the new generation of secondary beam facilities in combination with modern experimental developments are the subject of this paper. The nuclear properties of the recently discovered shell nuclei centered at Z=108 and N=164 and predictions on the location of the superheavy region with improved theoretical models will be discussed. (orig.)

  15. Manipulation of rare isotope beams - from high to low energies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States)], E-mail: bollen@nscl.msu.edu; Campbell, C.; Chouhan, S.; Guenaut, C.; Lawton, D.; Marti, F. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Department of Chemistry, Michigan State University, East Lansing, MI (United States); Ottarson, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Pang, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Department of Chemistry, Michigan State University, East Lansing, MI (United States); Schwarz, S.; Zeller, A.F.; Zavodszky, P. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States)

    2008-10-15

    Projectile fragmentation above 50 MeV/u and in-flight separation is a powerful technique for the production and delivery of rare isotopes. The production is fast and chemistry independent, providing nuclides far away from the valley of beta stability and for a very large range of elements. These benefits can be maximized if the produced rare isotopes are made available also as low-energy beams (<15 MeV/u) and at rest. For this purpose the fast beams need to be slowed down and thermalized before being re-accelerated to the desired energy. This can be achieved with gas stopping techniques. This paper discusses various aspects of stopping fast rare isotope beams, including the development of a 'cyclotron gas stopper' that promises to overcome the limitations of present linear gas stopping schemes.

  16. MUST: A silicon strip detector array for radioactive beam experiments

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.; Marechal, F.; Ottini, S.; Alamanos, N.; Barbier, A.; Beaumel, D.; Bonnereau, B.; Charlet, D.; Clavelin, J.F.; Courtat, P.; Delbourgo-Salvador, P.; Douet, R.; Engrand, M.; Ethvignot, T.; Gillibert, A.; Khan, E.; Lapoux, V.; Lagoyannis, A.; Lavergne, L.; Lebon, S.; Lelong, P.; Lesage, A.; Le Ven, V.; Lhenry, I.; Martin, J.M.; Musumarra, A.; Pita, S.; Petizon, L.; Pollacco, E.; Pouthas, J.; Richard, A.; Rougier, D.; Santonocito, D.; Scarpaci, J.A.; Sida, J.L.; Soulet, C.; Stutzmann, J.S.; Suomijaervi, T.; Szmigiel, M.; Volkov, P.; Voltolini, G.

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and analog channels of the array in one crate placed adjacent to the reaction chamber and fully remote controlled, including pulse visualization on oscilloscopes. A stand alone data acquisition system devoted to the MUST array has been developed. Isotope identification of light charged particles over the full energy range has been achieved, and the capability of the system to measure angular distributions of states populated in inverse kinematics reactions has been demonstrated

  17. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  18. Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, U., E-mail: uwahl@itn.pt [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2011-12-15

    The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from {approx}70 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently {approx}15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of {approx}80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions in biological systems. The characterisation methods used are typical radioactive probe techniques such as Moessbauer spectroscopy, perturbed angular correlation, emission channeling, and tracer diffusion studies. In addition to these 'classic' methods of nuclear solid state physics, also standard semiconductor analysis techniques such as photoluminescence or deep level transient spectroscopy profit from the application of radioactive isotopes, which helps them to overcome their chemical 'blindness' since the nuclear half life of radioisotopes provides a signal that changes in time with characteristic exponential decay or saturation curves. In this presentation an overview will be given on the recent research activities in materials science and biophysics at ISOLDE, presenting some of the highlights during the last five years, together with a short outlook on the new developments under way.

  19. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Keywords. RIKEN; radioactive ion beams; magic numbers. PACS No. 21.10.-k. 1. Introduction. In RIKEN, there are several heavy ion accelerators. Main accelerator is the RIKEN ring cyclotron (RRC) with K = 540, that has been operated from 1986. The RRC has two injectors; one is heavy ion linear accelerator that has been ...

  20. Present and future radioactive beam studies at GANIL. From SISSI to SPIRAL

    International Nuclear Information System (INIS)

    Guerreau, D.

    1996-01-01

    The present status of radioactive beam developments at GANIL is discussed. The emphasis is put on the construction of the new SPIRAL radioactive beam facility presently underway and of the main trends in physics. (author)

  1. Decoding Environmental Processes Using Radioactive Isotopes for the Post-Radioactive Contamination Recovery Assessment

    Science.gov (United States)

    Yasumiishi, Misa; Nishimura, Taku; Osawa, Kazutoshi; Renschler, Chris

    2017-04-01

    The continual monitoring of environmental radioactive levels in Fukushima, Japan following the nuclear plant accident in March 2011 provides our society with valuable information in two ways. First, the collected data can be used as an indicator to assess the progress of decontamination efforts. Secondly, the collected data also can be used to understand the behavior of radioactive isotopes in the environment which leads to further understanding of the landform processes. These two aspects are inseparable for us to understand the effects of radioactive contamination in a dynamic environmental system. During the summer of 2016, 27 soil core samples were collected on a farmer's land (rice paddies and forest) in Fukushima, about 20 km northwest of the nuclear plant. Each core was divided into 2.0 - 3.0 cm slices for the Cs-134, Cs-137, and I-131 level measurement. The collected data is being analyzed from multiple perspectives: temporal, spatial, and geophysical. In the forest area, even on the same hillslope, multiple soil types and horizon depths were observed which indicates the challenges in assessing the subsurface radioactive isotope movements. It appears that although highly humic soils show higher or about the same level of radioactivity in the surface layers, as the depth increased, the radioactivity decreased more in those samples compared with more sandy soils. With regard to the direction a slope faces and the sampling altitudes, the correlation between those attributes and radioactivity levels is inconclusive at this moment. The altitude might have affected the fallout level on a single hillslope-basis. However, to determine the correlation, further sampling and the detailed analysis of vegetation and topography might be necessary. Where the surface soil was scraped and new soil was brought in, former rice paddy surface layers did show three-magnitude levels lower of radioactivity in the top layer when compared with forest soils. At the foot of forest

  2. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Bum Moon

    2014-02-01

    Full Text Available This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL and fragmentation capability to produce rare isotopes beams (RIBs and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  3. Present and future radioactive nuclear beam developments at Argonne

    International Nuclear Information System (INIS)

    Decrock, P.

    1996-01-01

    A scheme for building an ISOL-based radioactive nuclear beam facility at the Argonne Physics Division, is currently evaluated. The feasibility and efficiency of the different steps in the proposed production- and acceleration cycles are being tested. At the Dynamitron Facility of the ANL Physics Division, stripping yields of Kr, Xe and Ph beams in a windowless gas cell have been measured and the study of fission of 238 U induced by fast neutrons from the 9 Be(dn) reaction is in progress. Different aspects of the post-acceleration procedure are currently being investigated. In parallel with this work, energetic radioactive beams such as 17 F, 18 F and 56 Ni have recently been developed at Argonne using the present ATLAS facility

  4. Radioactive beam diagnostics status and development at the Spiral facility

    International Nuclear Information System (INIS)

    Chautard, F.; Baelde, J.L.; Bucaille, F.; Duneau, P.; Galard, C.; Le Blay, J.P.; Loyant, J.M.; Martina, L.; Ulrich, M.; Laune, B.

    2001-01-01

    In 2001 the first radioactive beam will be accelerated in the CIME cyclotron of the SPIRAL project at GANIL. In order to be able to tune such low intensity beams in the cyclotron (down to few particles per second), a silicon and a scintillator detectors are mounted on probes. They measure the beam energy and the beam phase/RF in the cyclotron as a function of the radius. Such fragile diagnostics are meant to be used routinely from the control room by non-specialists in instrumentation and in presence of various beam intensities. Therefore, a program is developed to control and secure the acquisition procedure, the measurements and the isochronism correction. Additional detectors are installed at a fixed position in the ejection line before the experimental areas. Additionally, a diamond detector is foreseen to be installed in the machine to be tested in order to ease the CIME operation. (authors)

  5. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  6. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications

  7. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  8. Radiography of light alloy castings using radioactive isotopes

    International Nuclear Information System (INIS)

    Lakshminarayana, A.R.; Ramamurthy, D.

    1977-01-01

    One of the most important causes for setback of nation's economy is loss of productive elements as a result of avoidable accidents. Particularly in a complicated field such as aircraft production, failure of a single part may cause the loss of men, money and materials which are all productive elements. To reduce such a loss, to increase productivity and to earn customer confidence, it is absolutely necessary to find out tools for quality assurance of defect prone castings. Radioactive isotopes can judiciously be employed inspite of its lower contrast, provided the radiographer understands : (1) the various types of defects characteristics of each alloy and (2) the limitations and possibilities of detecting such defects by this method. (author)

  9. Determination of the isomeric fraction in a postaccelerated radioactive ion beam using the coupled decay-chain equations

    CERN Document Server

    Ekstrom, A; Dijulio, D D; Cederkall, J; Van de Walle, J

    2010-01-01

    A method based on the coupled decay-chain equations for extracting the isotopic and the isomeric composition of a postaccelerated radioactive ion beam is presented and demonstrated on a data set from a Coulomb excitation experiment. This is the first attempt of analyzing the content of a postaccelerated radioactive ion beam using this technique. The beam composition is required for an absolute normalization of the measurement. The strength of the method, as compared to present online-based methods, lies in the determination of the isomeric fraction of a partially isomeric beam using all data accumulated during the experiment. We discuss the limitations and sensitivity of the method with respect to the gamma-ray detection efficiency and the accumulated flux. (C) 2010 Elsevier B.V. All rights reserved.

  10. Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

    1992-01-01

    The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated

  11. Development of target ion source systems for radioactive beams at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Bajeat, O., E-mail: bajeat@ganil.fr [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Delahaye, P. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Couratin, C. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); LPC Caen, 6 bd Maréchal Juin, 14050 CAEN Cedex (France); Dubois, M.; Franberg-Delahaye, H.; Henares, J.L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France)

    2013-12-15

    Highlights: • For Spiral 1, a febiad ion source has been connected to a graphite target. • For Spiral 2, an oven made with a carbon resistor is under development. • We made some measurement of effusion in the Spiral 2 target. • A laser ion source is under construction. -- Abstract: The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  12. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  13. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications

    Science.gov (United States)

    Schmor, Paul

    2011-02-01

    Radioactive isotopes are used in a wide range of medical, biological, environmental and industrial applications. Cyclotrons are the primary tool for producing the shorter-lived, proton-rich radioisotopes currently used in a variety of medical applications. Although the primary use of the cyclotron-produced short-lived radioisotopes is in PET/CT (positron emission tomography/computed tomography) and SPECT (single photon emission computed tomography) diagnostic medical procedures, cyclotrons are also producing longer-lived isotopes for therapeutic procedures as well as for other industrial and applied science applications. Commercial suppliers of cyclotrons are responding by providing a range of cyclotrons in the energy range of 3-70MeV for the differing needs of the various applications. These cyclotrons generally have multiple beams servicing multiple targets. This review article presents some of the applications of the radioisotopes and provides a comparison of some of the capabilities of the various current cyclotrons. The use of nuclear medicine and the number of cyclotrons supplying the needed isotopes are increasing. It is expected that there will soon be a new generation of small "tabletop" cyclotrons providing patient doses on demand.

  14. Radiological impact assessment of the domestic on-road transportation of radioactive isotope wastes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Myung Hwan; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Technology Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Radioactive Waste Agency (KORAD) began to operate the low and intermediate level radioactive waste disposal facility in Gyeongju and to transport the radioactive waste containing radioactive isotopes from Daejeon to the disposal facility for the first time at 2015. For this radioactive waste transportation, in this study, radiological impact assessment is carried out for workers and public. The dose rate to workers and public during the transportation is estimated with consideration of the transportation scenarios and is compared with the Korean regulatory limit. The sensitivity analysis is carried out by considering both the variation of release ratios of the radioactive isotopes from the waste and the variation of the distances between the radioactive waste drum and worker during loading and unloading of radioactive waste. As for all the transportation scenarios, radiological impacts for workers and public have met the regulatory limits.

  15. High resolution laser spectroscopy of radioactive isotopes using a RFQ cooler-buncher at CERN-ISOLDE

    CERN Document Server

    Mané, E

    2009-01-01

    At CERN, the European Organization for Nuclear Research, radioactive nuclear beams are produced at the On-Line Isotope Mass Separator facility, ISOLDE. This facility provides a variety of exotic nuclear species for multidisciplinary experiments including nuclear physics. A gas-filled linear Paul trap was commissioned off-line and on-line and now is fully integrated at the focal plane of the high resolution separator magnets of ISOLDE. Ion beams with reduced transverse emitance and energy spread are now available for all experiments located downstream the separator beam line. This device is also able to accumulate the ion beam and release the collected sample in short bunches. Typical accumulation times are 100 ms and the released bunch width is 5-20 $\\mu{s}$. Such bunching capabilities has substantially increased the sensitivity of collinear laser spectroscopy with fluorescence detection by reducing the background from laser scatter by up to four orders of magnitude. The spectroscopic quadrupole moments of $^...

  16. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  17. Some thoughts on opportunities with reactions using radioactive beams

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1990-01-01

    I was asked to talk about the use of radioactive beams for nuclear reactions. My overall perspective is that the scientific justification for such studies must be done carefully. To go to the added complexity of radioactive beams one must clearly demonstrate the need for obtaining information about nuclear structure or processes, information that is not otherwise available. On the other hand, much of what we know about nuclear structure comes from nuclear reactions with stable nuclear beams and targets. While a certain amount of information about far from stability nuclei may be obtained from the study of their radioactive decays, this is limited. Our knowledge and understanding of nuclear structure comes from stable nuclei: energy levels, their spins and parties, and very importantly the matrix elements characterizing them. These are largely determined by reaction studies with normal stable nuclei. The extension of such studies to unstable nuclei, far from stability, may well hold qualitative surprises, or at the very least give a firmer basis to our understanding of nuclear structure. Perhaps it is a matter of taste, but if one wishes to start on this endeavor then it is best to begin with simple, easily accessible features. The ''simplest'' nuclei are the ones that form doubly-closed shells and the easiest features to explore initially are the single-particle states and the collective excitations that one can build on these. I would like to emphasize that a unique facility for this type of study is about to come into operation in Darmstadt where the ESR storage ring will capture radioactive beams from fragmentation products and cool them to useful energies for reaction studies

  18. Production of light radioactive ion beams (RIB) using inverse kinematics

    International Nuclear Information System (INIS)

    Das, J.J.; Sugathan, P.; Madhavan, N.; Madhusudhana Rao, P.V.; Jhingan, A.; Varughese, T.; Barua, S.; Nath, S.; Sinha, A.K.; Kumar, B.; Zacharias, J.

    2005-01-01

    At Nuclear Science Centre (NSC), New Delhi, we have implemented a facility to produce low energy light radioactive ion beams (RIBs) using (p,n) type of reactions in inverse kinematics. For this purpose primary beams from the 15-UD Pelletron accelerator impinged on a thin polypropylene foil mounted on a rotating/linearly moving target assembly. For efficiently separating the secondary beam from primary beam, the existing recoil mass spectrometer (RMS) HIRA was operated with new ion optics. Suitable hardware modifications were also made. Using this facility, we have extracted a 7 Be beam of purity better than 99% and spot-size ∼4 mm in diameter. This 7 Be beam has been utilized in a variety of experiments in the energy range of 15-22 MeV. Typical beam parameters are: intensity 10 4 pps, angular spread ±30 mrad and energy spread ±0.5 MeV. Development of appropriate detector setup/target arrangement were also made to perform these experiments. In this paper, we describe the implementation of this project

  19. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  20. Radioactivity of neutron rich oxygen, fluorine and neon isotopes

    International Nuclear Information System (INIS)

    Reed, A.T.; Page, R.D.; Tarasov, O.

    1999-01-01

    The γ-radiation and neutrons emitted following the β-decays of 24 O, 25-27 F and 28-30 Ne have been measured. The nuclides were produced in the quasi-fragmentation of a 78 MeV/A 36 S beam, separated in-flight and identified through time-of-flight and energy loss measurements. The ions were stopped in a silicon detector system, which was used to detect the β-particles emitted in their subsequent radioactive decay. The coincident γ-rays were measured using four large Ge detectors mounted close to the implantation point and the neutrons were detected using forty-two 3 He proportional counters. The measured γ-ray energy spectra are compared with shell model calculations and, where available, the level energies are deduced from transfer reactions

  1. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  2. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C J [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M J [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  3. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  4. Novel wave/ion beam interaction approach to isotope separation

    International Nuclear Information System (INIS)

    Post, R.F.; Lowder, R.S.; Schwager, L.A.; Barr, W.L.; Warner, B.E.

    1993-02-01

    Numerical simulations and experimental studies have been made related to the possibility of employing an externally imposed electrostatic potential wave to separate isotopes. This wave/ion interaction is a sensitive function of the wave/ion difference velocity and for the appropriate wave amplitude and wave speed, a lighter faster isotope will be reflected by the wave to a higher energy while leaving heavier, slower isotopes virtually undisturbed in energy -- allowing subsequent ion separation by simple energy discrimination. In these experiments, a set of some 200 individual, electrodes, which surrounded a microamp beam of neon ions, was used to generate the wave. Measurements of the wave amplitudes needed for ion reflection and measurements of the final energies of those reflected ions are consistent with values expected from simple kinetic arguments and with the more detailed results of numeric simulations

  5. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  6. Radioactive 85Kr in krypton enriched with a light isotope

    International Nuclear Information System (INIS)

    Kuz'minov, V.V.; Novikov, V.M.; Pomanskii, A.A.; Pritychenko, B.V.; Vieiar, J.; Garcia, E.; Morales, A.; Morales, J.; Nunes-Lagos, R.; Piumendon, J.

    1993-01-01

    Radioactive krypton 85, a product of nuclear power generation, is known to be accumulating in the atmosphere continuously. Its volumetric activity in natural krypton is 700-800 Bq/liter. This can cause difficulties, e.g., in the fabrication of nuclear radiation detector for high-mass krypton. Krypton with a reduced 85 Kr content can be obtained by isotope separation. As part of an experiment to look for two-positron decay and conversion of an atomic electron to a positron in 78 Kr, Saenz measured the 85 Kr content in 78 Kr-enriched krypton. A mixture of two 85 Kr samples was used as the working substance of a cylindrical ionization chamber. The useful volume (1.33 liter) of the chamber contained 35.3 liters of gas at ∼2.5 kPa. The energy resolution of the detector at an energy of 0.511 MeV was 3.8%. The measurements were made in a passive lead shield 20 cm thick in an underground laboratory at a depth of 675 m water equivalent. Results are presented for counting rates in low-energy regions, contribution of krypton-85 to background, and the volumetric activity of krypton-85

  7. Yields and spectroscopy of radioactive isotopes at LOHENGRIN and ISOLDE

    CERN Document Server

    Köster, U

    1999-01-01

    Yields of radioactive nuclei were measured at two facilities: the recoil separator LOHENGRIN at the Institut Laue Langevin in Grenoble and the on-line isotope separator ISOLDE at CERN in Geneva. At LOHENGRIN the yields of light charged particles were measured from thermal neutron induced ternary fission of several actinide targets: 233U, 235U, 239Pu, 241Pu and 245Cm. Thin targets are brought into a high neutron flux. The produced nuclei leave these with the recoil obtained in the fission reaction. They are measured at different energies and ionic charge states. After corrections for the experimental acceptance, the time behaviour of the fission rate and the ionic charge fraction, the yields are integrated over the kinetic energy distribution. Comparing these yields with the predictions of various ternary fission models shows that the most abundant nuclides are well reproduced. On the other hand the models overestimate significantly the production of more "exotic" nuclides with an extreme N/Z ratio. Therefore ...

  8. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  9. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  10. Nuclear reactions with 11C and 14O radioactive ion beams

    International Nuclear Information System (INIS)

    Guo, Fanqing

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8

  11. RP process studies with radioactive beams at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K E [Argonne National Lab., Physics Div., Argonne, IL (United States)

    1998-06-01

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F(T{sub 1/2}=110 min) and {sup 56}Ni(T{sub 1/2}=6.1 d) have been produced. The reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed. (orig.)

  12. Investigations of the neutron halo by radioactive beam experiments

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    Recently, a new tool has become available to study the behaviour of nuclei at the limits of particle stability. Heavy-ion projectile fragmentation, in combination with efficient recoil spectrometers, allows to prepare 'exotic' beams which can be used to induce secondary nuclear reactions. First experiments have revealed surprising features in the reactions of the most neutron-rich light nuclei. There is now conclusive evidence that the observed effects are due to long-tail matter distributions ('neutron halo') which occur for the last, very weakly bound neutrons. The results of some recent radioactive beam experiments, made by means of the spectrometer LISE3 at GANIL, are presented. (author) 24 refs.; 7 figs

  13. Radioactive isotope and isomer separation with using light induced drift effect

    International Nuclear Information System (INIS)

    Hradecny, C.; Slovak, J.; Tethal, T.; Ermolaev, I.M.; Shalagin, A.M.

    1991-01-01

    The isotope separation with using light induced drift (LID) is discussed. The basic theoretical characteristics of the method are deduced: separation simultaneously with an arbitrary high enrichment and without significant losses; separation productivity up to 100 μg/h. These characteristics are sufficient and very convenient for separation of expensive radioactive isotopes and isomers which are applied in medicine and science. The first experimental separation of the radioactive isotopes ( 22,24 Na) by using the LID effect is reported. 13 refs.; 5 figs

  14. Reactor, radioactive isotopes and nuclear energy: their avatars in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Roche, M

    1981-03-01

    The decision to bring a fair sized (3MW) research reactor to Venezuela, made in 1954 by a single, ambitious and prestige seeking individual working with a dictatorial government, is a clear case of cargo cult, an implicit desire to import industralized countries' science and technology by purchasing key in hand their expensive machine. The reactor has never ceased to experience difficulties since then, not so much of a physical or mechanical, but rather of a human nature and due to the almost grotesque distance between the machine's potentialities and the quantity and quality of personnel available. Demand and motivation have been scarce, because fossil and hydro energy have been so far plentiful. Military motivation was in theory absent. Perspectives have apparently improved, not that a scientific community has been trained and an infrastructure exists. Radioactive isotopes have been widely used in Venezuela, beginning in 1953, for medical practice and biological research. At present about 2.5 million bolivars worth of radioisotopes are imported annually, mostly from the US and to a lesser extent, from UK. Steps are being taken to train nuclear engineers, since most studies thus far indicate the last few years of the century as the time when nuclear energy will begin to enter the picture, and since a period of at least ten years is needed between the decision to build an atomic power plant and the time it goes into operation. Choice of technique has not been made, but an active, although still small, uranium prospecting program has been initiated. It seems as if, by the end of the century, either nuclear energy will have to supplement other sources, or standard of living of Venezuelans - at least that relative minority who can afford to live well - will drop. 2 figures, 2 tables.

  15. Low-energy radioactive ion beam production of 22Mg

    International Nuclear Information System (INIS)

    Duy, N.N.; Kubono, S.; Yamaguchi, H.; Kahl, D.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Kwon, Y.K.; Khiem, L.H.; Kim, Y.H.; Song, J.S.; Hu, J.; Ayyad, Y.

    2013-01-01

    The 22 Mg nucleus plays an important role in nuclear astrophysics, specially in the 22 Mg(α,p) 25 Al and proton capture 22 Mg(p,γ) 23 Al reactions. It is believed that 22 Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22 Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22 Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22 Mg beam used for the direct measurement of the scattering reaction 22 Mg(α,α) 22 Mg, and the stellar reaction 22 Mg(α,p) 25 Al in the energy region concerning an astrophysical temperature of T 9 =1–3 GK

  16. The containment and an absorbent evaluation for a package for a liquid radioactive isotope

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, D. H.; Hwang, C. S.; Kim, H. J.; Seo, K. S

    2005-03-01

    Radioactive isotopes must be safely transported from the production centre to the point of use. The shipping package to safely transport radioactive isotopes should be able to withstand the conditions prescribed by law. A type a package, which is used to transport liquid radioactive materials, should have a containment system comprising a primary inner and a secondary outer containment or it should be provided with a sufficiently absorbent material to absorb twice the volume of the liquid contents. Accordingly, an absorbent material for use in a Type A package to transport a liquid radioactive isotope was estimated. To estimate the integrity of containment, the leakage tests for a containment system for a Type A package for domestic and abroad expert were conducted.

  17. Development of a surface ionization source for the production of radioactive alkali ion beams in SPIRAL

    International Nuclear Information System (INIS)

    Eleon, C.; Jardin, P.; Gaubert, G.; Saint-Laurent, M.-G.; Alcantara-Nunez, J.; Alves Conde, R.; Barue, C.; Boilley, D.; Cornell, J.; Delahaye, P.; Dubois, M.; Jacquot, B.; Leherissier, P.; Leroy, R.; Lhersonneau, G.; Marie-Jeanne, M.; Maunoury, L.; Pacquet, J.Y.; Pellemoine, F.; Pierret, C.

    2008-01-01

    In the framework of the production of radioactive alkali ion beams by the isotope separation on-line (ISOL) method in SPIRAL I, a surface ionization source has been developed at GANIL to produce singly-charged ions of Li, Na and K. This new source has been designed to work in the hostile environment whilst having a long lifetime. This new system of production has two ohmic heating components: the first for the target oven and the second for the ionizer. The latter, being in carbon, offers high reliability and competitive ionization efficiency. This surface ionization source has been tested on-line using a 48 Ca primary beam at 60.3 A MeV with an intensity of 0.14 pA. The ionization efficiencies obtained for Li, Na and K are significantly better than the theoretical values of the ionization probability per contact. The enhanced efficiency, due to the polarization of the ionizer, is shown to be very important also for short-lived isotopes. In the future, this source will be associated with the multicharged electron-cyclotron-resonance (ECR) ion source NANOGAN III for production of multicharged alkali ions in SPIRAL. The preliminary tests of the set up are also presented in this contribution.

  18. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  19. A Monte Carlo code to optimize the production of Radioactive Ion Beams by the ISOL technique

    CERN Document Server

    Santana-Leitner, M

    2005-01-01

    Currently the nuclear chart includes around 3000 nuclides, distributed as ${\\beta}^+$, ${\\beta}^-$ and $\\alpha$-emitters, stable and spontaneously fissioning isotopes. A similar amount of unknown nuclei belongs to the so-called \\textit{terra incognita}, the uncertain region contained also within the proton, neutron and (fast) fission driplines and thereby stable against nucleon emission. The exploration of this zone is to be assisted by the use of radioactive ion beams (RIB) and could provide a new understanding of several nuclear properties. Moreover, besides pointing at crucial questions such as the validity of the shell model, the dilute matter and the halo structure, challenging experiments outside nuclear physics are also attended, e.g., explanations of the nucleosythesis processes that may justify why the matter in the universe has evolved to present proportions of elements, and which represents a major challenge to nuclear physics. These, together with other fascinating research lines in particle physi...

  20. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  1. Development of a radioactive ion beam test stand at LBNL

    International Nuclear Information System (INIS)

    Burke, J.; Freedman, S.J.; Fujikawa, B.; Gough, R.A.; Lyneis, C.M.; Vetter, P.; Wutte, D.; Xie, Z.Q.

    1998-01-01

    For the on-line production of a 14 O + ion beam, an integrated target--transfer line ion source system is now under development at LBNL. 14 O is produced in the form of CO in a high temperature carbon target using a 20 MeV 3 He beam from the LBNL 88'' Cyclotron via the reaction 12 C( 3 He,n) 14 O. The neutral radioactive CO molecules diffuse through an 8 m room temperature stainless steel line from the target chamber into a cusp ion source. The molecules are dissociated, ionized and extracted at energies of 20 to 30 keV and mass separated with a double focusing bending magnet. The different components of the setup are described. The release and transport efficiency for the CO molecules from the target through the transfer line was measured for various target temperatures. The ion beam transport efficiencies and the off-line ion source efficiencies for Ar, O 2 and CO are presented. Ionization efficiencies of 28% for Ar + , 1% for CO, 0.7% for O + , 0.33 for C + have been measured

  2. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Chongkum, S.

    1987-10-01

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 10 11 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.) [de

  3. The cobalt radioactive isotopes in environment; Les isotopes radioactifs du cobalt dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    For the year 1993 the total activity released in cobalt is 69 GBq for the whole of nuclear power plants. The part of activity in cobalt for La Hague in 1993 is 8 GBq of {sup 58}Co and 2 GBq of {sup 60}Co. The radioactive isotopes released by nuclear power plants or the reprocessing plant of La Hague under liquid effluents are shared by half between {sup 58}Co and {sup 60}Co. The exposure to sealed sources is the most important risk for the cobalt. The risk of acute exposure can associate a local irradiation of several decades of grays inducing a radiological burns, deep burn to treat in surgery by resection or graft even amputation. A global irradiation of organism for several grays induces an acute irradiation syndrome, often serious. At long term the stochastic effects are represented by leukemia and radio-induced cancers. The increase of probability of their occurrence is 1% by sievert. We must remind that the natural spontaneous probability is 25%. (N.C.)

  4. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    1998-02-01

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  5. Isotope toolbox turns 10

    DEFF Research Database (Denmark)

    Wenander, Fredrik; Riisager, Karsten

    2012-01-01

    REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes.......REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes....

  6. Long lived isotopes in the Chernobyl radioactive cloud at Cracow

    International Nuclear Information System (INIS)

    Mietelski, J.W.; Broda, R.; Sieniawski, J.

    1988-01-01

    The analysis of the residual gamma radioactivity in the air filters exposed during the passage of the Chernobyl radioactive cloud over Cracow area gave data on variation in time of the relative contribution of long lived radioisotopes. Conclusions on transport properties of some elements are deduced from the obtained results. 10 refs., 5 figs. (author)

  7. Application of radioactive isotopes in the field of investigations of the means of transportation wear

    International Nuclear Information System (INIS)

    Gromann, Kh-D.

    1979-01-01

    The Station for governing of isotope technique ensures application of radioactive isotopes in the transport of the GDR. The main directions of the isotope application are investigations of wear and leaks. It is reported about the wear investigations performed on models and real structural elements at laboratory testing stands as well as on the real structural elements in the exploitation conditions. Special attention should be paid to the numerous measurements of wear of engines, rails and so on. Data and valuable results have been obtained about the problem of the short-term wear measurement. Measurements of leaks by means of radioactive isotopes application is used for investigations of the hermeticy of the refrigerator tronsport means, heating systems and clymatizing installations of the carriges as well as stationary installations. Then, measurements have been done of leaks in pipelines as well as determinations of their lacalization and intensity. General and specific advantages of separate methods are discussed [ru

  8. Lise: a recoil spectrometer at GANIL for the production and study of secondary radioactive beams. Present status and future

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1989-01-01

    The doubly achromatic spectrometer LISE, installed at the intermediate-energy heavy-ion facility GANIL is now operating since five years. Essentially, it is composed by two dipole-magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like radioactive fragment-beams emitted at 0 0 . We shall review some of the essential properties of LISE. Some selected examples will be used to demonstrate experimental results which have been obtained so far (discovery of numerous new nuclei up to the drip-lines, half-life measurements, β-γ and delayed-particle spectroscopy, spin-aligned beams, total reaction cross-sections). We shall also discuss several improvements, in particular a cross-field electrostatic/electromagnetic post separator, which are expected to provide in the near future secondary beams of still increased intensity and isotopic purity

  9. Uses of Radioactive Isotopes in Industry; Aplicacion es de los isotopos radiactivos en la industria

    Energy Technology Data Exchange (ETDEWEB)

    Plata, A; Val Cob, M del; Gamboa, J M

    1962-07-01

    The present report contains a list of some of the most important problems in industry that have been approached so far by the use of radioactive isotopes. The list has been compiled trough the experience gained by the authors in revising for several years the most important scientific journal and other sources of information on this subject. The classification of industries has been done in an arbitrary way, choosing those isotope uses that have reached a higher degree of development. (Author)

  10. First Results with TIGRESS and Accelerated Radioactive Ion Beams from ISAC: Coulomb Excitation of 20,21,29Na

    Science.gov (United States)

    Schumaker, M. A.; Hurst, A. M.; Svensson, C. E.; Wu, C. Y.; Becker, J. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Stoyer, M. A.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Barton, C. J.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Colosimo, S. J.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Djongolov, M.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Gray-Jones, C.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Kulp, W. D.; Lisetskiy, A. F.; Lee, G.; Lloyd, S.; Maharaj, R.; Martin, J.-P.; Millar, B. A.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Oxley, D. C.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Rigby, S. V.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Sumithrarachchi, C. S.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.

    2009-03-01

    The TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) is a state-of-the-art γ-ray spectrometer being constructed at the ISAC-II radioactive ion beam facility at TRIUMF. TIGRESS will be comprised of twelve 32-fold segmented high-purity germanium (HPGe) clover-type γ-ray detectors, with BGO/CsI(Tl) Compton-suppression shields, and is currently operational at ISAC-II in an early-implementation configuration of six detectors. Results have been obtained for the first experiments performed using TIGRESS, which examined the A = 20, 21, and 29 isotopes of Na by Coulomb excitation.

  11. First results of Trojan horse method using radioactive ion beams: {sup 18}F(p,α) at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, S.; Spitaleri, C.; Puglia, S.; Rapisarda, G.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); Gulino, M. [Università KORE, Enna, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); La Cognata, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Kubono, S.; Wakabayashi, Y. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address RIKEN Nishina Center, Wako, Saitama (Japan); Yamaguchi, H.; Hayakawa, S.; Kurihara, Y. [Center for Nuclear Study, University of Tokyo, Tokyo (Japan); Binh, D. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address Institute of Physics and Electronics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Bishop, S. [RIKEN Nishina Center, Wako, Saitama, Japan and present address Physik Department E12, Technische Universität München, Garching (Germany); Coc, A. [Centre de Spectrométrie Nucléaire et de Spectrométrie de masse, IN2P3, Orsay (France); De Séréville, N.; Hammache, F. [Institut de Physique Nucléaire, IN2P3, Orsay (France)

    2014-05-02

    The abundance of {sup 18}F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the {sup 18}F(p,α){sup 15}O is one of the most important {sup 18}F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam induced reaction.

  12. First results of Trojan horse method using radioactive ion beams: 18F(p,α) at astrophysical energies

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Puglia, S.; Rapisarda, G.; Romano, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Kubono, S.; Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Binh, D.; Bishop, S.; Coc, A.; De Séréville, N.; Hammache, F.

    2014-01-01

    The abundance of 18 F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the 18 F(p,α) 15 O is one of the most important 18 F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam induced reaction

  13. An absorbent for an application to a package for a liquid radioactive isotope for medical usage

    International Nuclear Information System (INIS)

    Bang, K.S.; Lim, S.P.; Lee, J.C.; Seo, K.S.; Han, H.S.

    2004-01-01

    A radioactive isotope has to be safely transport from the producing center to the consuming center. The shipping package to safely transport the radioactive isotope should be able to withstand the prescribed conditions by law. In the field of nuclear medicine, the radioactive isotope is used in a liquid or capsule form. A Type A package, which is to transport liquid radioactive materials, shall be provided with a containment system composed of primary inner and secondary outer containment components or shall be provided with sufficient absorbent material to absorb twice the volume of the liquid contents. Hospitals prefer to use not only convenient but also re-usable packages. To apply an absorbent material to the Type A package, that is to transport liquid radioactive isotope, the free absorbency of the absorbents was estimated. In the case of a liquid with NaOH 0.4%, the free absorbency of the melanine form was the most superior at 91 g/g. In the case of a liquid with Na 0.9%, the free absorbency of the melanine form was the most excellent at 88 g/g also

  14. Future prospects for radioactive nuclear beams in North America

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1993-05-01

    In 1989 this author proposed the construction of a dedicated, flexible, radioactive nuclear beams facility that would provide intense beams of nearly all elements for a program of scientific studies in nuclear structure, nuclear reaction dynamics, astrophysics, high-spin physics, nuclei far from stability, material- and surface science, and atomic- and hyperfine-interaction physics. The initial name proposed for the new facility was ''IsoSpin Factory'' to underscore the key feature of this new physics tool; it was later changed to ''IsoSpin Laboratory'' (ISL). The ISL is now supported by a broad base of nuclear scientists and has been identified in the US Long Range Plan on Nuclear Science as one of the new potential construction projects for the second part of this decade. Since 1989 a number of conferences and workshops has been held in which the scientific and technical case for RNB facilities has been made. The purpose of this paper is to focus on the North American plan for the ISL, which was initially summarized in a ''White Paper'' but has since evolved in its scientific and technical scop

  15. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  16. EBIS/T charge breeding for intense rare isotope beams at MSU

    CERN Document Server

    Schwarz, S; Marrs, R E; Kittimanapun, K; Lapierre, A; Mendez, A J; Ames, F; Beene, J R; Lindroos, M; Ahle, L E; Stracener, D W; Kester, O; Wenander, F; Lopez-Urrutia, J R Crespo; Dilling, J; Bollen, G

    2010-01-01

    Experiments with reaccelerated beams are an essential component of the science program of existing and future rare isotope beam facilities. NSCL is currently constructing ReA3, a reaccelerator for rare isotopes that have been produced by projectile fragmentation and in-flight fission and that have been thermalized in a gas stopper. The resulting low-energy beam will be brought to an Electron Beam Ion Source/Trap (EBIS/T) in order to obtain highly charged ions at an energy of 12 keV/u. This charge breeder is followed by a compact linear accelerator with a maximum beam energy of 3MeV/u for U-238 and higher energies for lighter isotopes. Next-generation rare isotope beam facilities like the Facility for Rare Isotope Beams FRIB, but also existing Isotope Separator On-line (ISOL) facilities are expected to provide rare-isotope beam rates in the order of 10(11) particles per second for reacceleration. At present the most promising scheme to efficiently start the reacceleration of these intense beams is the use of a...

  17. High resolution line for secondary radioactive beams at the U400M cyclotron

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    For implementation of an experimental program for studying nuclear reactions with radioactive ion beams in the energy domain of 20 through 80 MeV · A the high resolution beam line ACCULINNA was put into commissioning on a primary beam line of the JINR U-400M cyclotron. By means of nuclear fragmentation of the 14 N beam with the energy of 51 MeV · A on the 170 mg/cm 2 carbon target radioactive beams of 6 He, 8 He and 8 B were obtained. Possibilities of further development of the set-up are discussed. 6 refs., 7 figs., 2 tabs

  18. ISAC and ARIEL the TRIUMF radioactive beam facilities and the scientific program

    CERN Document Server

    Krücken, Reiner; Merminga, Lia

    2014-01-01

    The TRIUMF Isotope Separator and Accelerator (ISAC) facility uses the isotope separation on-line (ISOL) technique to produce rare-isotope beams (RIB). The ISOL system consists of a primary production beam, a target/ion source, a mass separator, and beam transport system. The rare isotopes produced during the interaction of the proton beam with the target nucleus are stopped in the bulk of the target material. They diffuse inside the target material matrix to the surface of the grain and then effuse to the ion source where they are ionized to form an ion beam that can be separated by mass and then guided to the experimental facilities. Previously published in the journal Hyperfine Interactions.

  19. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  20. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  1. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, {gamma}), (n, 2n), (n, p), and ({gamma}, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  2. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    Science.gov (United States)

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  3. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Y., E-mail: y.iwamoto0805@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H. [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Yamamoto, S. [Nagoya University Graduate School of Medicine, 1-1-20, Daikominami, Higashi-ku, Nagoya-shi, Aichi 461-8673 (Japan)

    2016-09-21

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying “hot spots” or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are “degenerated” in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50–150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  4. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    Science.gov (United States)

    Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.

    2016-09-01

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  5. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  6. Spatial distribution sampling and Monte Carlo simulation of radioactive isotopes

    CERN Document Server

    Krainer, Alexander Michael

    2015-01-01

    This work focuses on the implementation of a program for random sampling of uniformly spatially distributed isotopes for Monte Carlo particle simulations and in specific FLUKA. With FLUKA it is possible to calculate the radio nuclide production in high energy fields. The decay of these nuclide, and therefore the resulting radiation field, however can only be simulated in the same geometry. This works gives the tool to simulate the decay of the produced nuclide in other geometries. With that the radiation field from an irradiated object can be simulated in arbitrary environments. The sampling of isotope mixtures was tested by simulating a 50/50 mixture of $Cs^{137}$ and $Co^{60}$. These isotopes are both well known and provide therefore a first reliable benchmark in that respect. The sampling of uniformly distributed coordinates was tested using the histogram test for various spatial distributions. The advantages and disadvantages of the program compared to standard methods are demonstrated in the real life ca...

  7. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  8. Significance of iodine radioactive isotopes in the problem of radiation safety of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Malenchenko, A.F.; Mironov, V.P.

    1979-01-01

    The data on actual wastes of nuclear-power plants, environmental distribution and biological effects of iodine radioactive isotopes have been analyzed. Dose-response relationship is estimated as well as its significance for struma maligna development under ionizing radiation and the contribution of iodine radionuclides resulted from nuclear power engineering to this process

  9. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor

  10. The radioactive ion beams facility project for the legnaro laboratories

    Science.gov (United States)

    Tecchio, Luigi B.

    1999-04-01

    In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.

  11. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  12. Astrophysical r- and rp-processes, and radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    1998-01-01

    The modern description of the r-process follows naturally from α-rich freezeout, thought to occur in the hot neutrino wind just beyond the nascent neutron star in a type II supernova. Initially, all pre-existing nuclei are reduced to α-particles and neutrons. As the environment cools, nuclei up to about mass 90 to 100 u are synthesized, in nuclear statistical equilibrium, in about 1 s. In the next few seconds, the remaining neutrons are captured to form the r-process progenitors, which then decay to the r-process nuclides. The rp-process occurs in a high-temperature H-rich environment. It is one of the processes that synthesize the p-process nuclei, the most neutron-poor nuclei in the periodic table. It is thought to occur during the explosion of a C-O white dwarf in a type Ia supernova or in a binary system during accretion onto a white dwarf or a neutron star. It appears to be capable of forming the p-nuclei up to about mass 90 u. Both processes pass through nuclei that are far from stability. Thus, their description requires the masses, half-lives, decay modes, and structure of these nuclei. The next generation of radioactive beam facilities promises to allow the study of many such nuclei. (author)

  13. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    International Nuclear Information System (INIS)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.; Pikin, A. I.

    2015-01-01

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz

  14. Process for disposal of aqueous solutions containing radioactive isotopes

    Science.gov (United States)

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  15. Process for disposal of aqueous solutions containing radioactive isotopes

    International Nuclear Information System (INIS)

    Colombo, P.; Neilson, R.M. Jr.; Becker, W.W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99 0 C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump

  16. Laser beam-forming by deformable mirror for laser isotope separation

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi; Goto, Naohiko

    1995-01-01

    A rectangular laser beam of uniform intensity is very suitable for laser isotope separation. In this paper, we propose a beam-forming system which consists two deformable mirrors. One of the mirrors changes the beam intensity and the other compensates for phase distortion. We developed a deformable mirror for beam-forming. Its deformed surface is similar to the ideal mirror surface for beam-forming. We reshaped a Gaussian-like He-Ne laser beam into a beam with a more uniform intensity profile by a simple deformable mirror. (author)

  17. Investigating the contamination of accelerated radioactive beams with an ionization chamber at MINIBALL

    CERN Document Server

    Zidarova, Radostina

    2017-01-01

    My summer student project involved the operation and calibration of an ionization chamber, which was used at MINIBALL for investigating and determining the contamination in post-accelerated radioactive beams used for Coulomb excitation and transfer reaction experiments.

  18. A new class of medicament: radioactivity isotopes (1962); Une nouvelle classe de medicaments: les isotopes radioactifs (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Very many radioelement are used in medicine, either for diagnosis or as therapeutics. The development of medicine has entailed an increase in the number of application of radioactive isotopes. Firstly used in the form of simple inorganic molecules for diagnosis or as anticancer therapeutics, radioelements are now used for labelling organic molecules, allowing functional specific studies of any kind of nature. Their production is made difficult by their radio-active properties. Their pharmaceutical properties, determined by tests and controls, depend either from radiochemistry and from medicine. The author reminds, in this report, the methods for the preparation and analysis, and set out the medical application. (author) [French] De tres nombreux radioelements trouvent une application en medecine humaine, soit dans le diagnostic, soit en therapeutique. L'evolution de la medecine entraine un accroissement du champ d'application des isotopes radioactifs. D'abord utilises sous forme de molecules minerales simples, pour les diagnostics ou des therapeutiques anticancereuses, les radioelements sont maintenant introduits dans des molecules organiques qui permettent des etudes fonctionnelles specifiques de toute nature. Leur fabrication est compliquee par leurs proprietes radioactives. Leurs caracteristiques pharmaceutiques determinees par des essais et controles, sont liees d'une part a la radiochimie, d'autre part a la medecine. L'auteur rappelle, dans cet expose, les methodes de preparation et d'analyse et aborde les applications medicales. (auteur)

  19. A new class of medicament: radioactivity isotopes (1962); Une nouvelle classe de medicaments: les isotopes radioactifs (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Very many radioelement are used in medicine, either for diagnosis or as therapeutics. The development of medicine has entailed an increase in the number of application of radioactive isotopes. Firstly used in the form of simple inorganic molecules for diagnosis or as anticancer therapeutics, radioelements are now used for labelling organic molecules, allowing functional specific studies of any kind of nature. Their production is made difficult by their radio-active properties. Their pharmaceutical properties, determined by tests and controls, depend either from radiochemistry and from medicine. The author reminds, in this report, the methods for the preparation and analysis, and set out the medical application. (author) [French] De tres nombreux radioelements trouvent une application en medecine humaine, soit dans le diagnostic, soit en therapeutique. L'evolution de la medecine entraine un accroissement du champ d'application des isotopes radioactifs. D'abord utilises sous forme de molecules minerales simples, pour les diagnostics ou des therapeutiques anticancereuses, les radioelements sont maintenant introduits dans des molecules organiques qui permettent des etudes fonctionnelles specifiques de toute nature. Leur fabrication est compliquee par leurs proprietes radioactives. Leurs caracteristiques pharmaceutiques determinees par des essais et controles, sont liees d'une part a la radiochimie, d'autre part a la medecine. L'auteur rappelle, dans cet expose, les methodes de preparation et d'analyse et aborde les applications medicales. (auteur)

  20. Process for improving the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids and gases

    International Nuclear Information System (INIS)

    Schmidberger, R.; Kirch, R.; Kock, W.

    1986-01-01

    In the process for the improvement of the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids or gases by ion exchange and adsorption, non-radioactive isotopes of the element to be isolated are added to the fluid before the isolation, whereas at the same time a large surplus of the non-radioactive isotopes to the radioactive isotopes is achieved by addition of only small quantities of compounds of the non-radioactive isotopes. (orig./RB) [de

  1. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  2. Artificial neural network application in isotopic characterization of radioactive waste drums

    International Nuclear Information System (INIS)

    Potiens Junior, Ademar Jose

    2005-01-01

    One of the most important aspects to the development of the nuclear technology is the safe management of the radioactive waste arising from several stages of the nuclear fuel cycles, as well as from production and use of radioisotope in the medicine, industry and research centers. The accurate characterization of this waste is not a simple task, given to its diversity in isotopic composition and non homogeneity in the space distribution and mass density. In this work it was developed a methodology for quantification and localization of radionuclides not non homogeneously distributed in a 200 liters drum based in the Monte Carlo Method and Artificial Neural Network (RNA), for application in the isotopic characterization of the stored radioactive waste at IPEN. Theoretical arrangements had been constructed involving the division of the radioactive waste drum in some units or cells and some possible configurations of source intensities. Beyond the determination of the detection positions, the respective detection efficiencies for each position in function of each cell of the drum had been obtained. After the construction and the training of the RNA's for each developed theoretical arrangement, the validation of the method were carried out for the two arrangements that had presented the best performance. The results obtained show that the methodology developed in this study could be an effective tool for isotopic characterization of radioactive wastes contained in many kind of packages. (author)

  3. Radioactive isotope and radiation applications in the German Democratic Republic

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Wetzel, K.G.

    1988-01-01

    The state of the art of radioisotope and radiation applications in the GDR is reviewed. New results are discussed and the following examples of application are presented: radiometric coal ash monitors, radiotracer optimization of power stations, irradiation of waste cellulose, isotope ratios in natural gas prospection, radiographic imaging of impurities on wafer surfaces, food irradiation, tracer techniques by 15 N, radiation induced chlorination of PVC, radiotracer optimization of a caprolactame plant, ionization detectors for pollutants in the air, X-ray analyzer of pollutants in the wafer, radiation treatment of parquet in the palace of Sanssouci, and characterization of porcelain. 27 refs. (author)

  4. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Recent experimental programs at RIKEN concerning RI beams are reviewed. RIKEN has the ring cyclotron (RRC) with high intense heavy-ion beams and large acceptance fragment separator, RIPS. The complex can provide high intense RI-beams. By using the high intense RI-beams, a variety of experiments have been ...

  5. Alpha radioactivity for proton-rich even Pb isotopes

    Indian Academy of Sciences (India)

    Alpha radioactivity; proton-rich nuclei; half-life. PACS Nos 23.60.+e; 23.90. ... Z/N ∼= 0.65 to the region close to proton drip line with Z/N ∼= 0.82. The existing ... In the present work we have studied the systematic for alpha emission ..... 80. 0.200. 0.402. 0.497. 8.0. 320.51. 0.333. 0.754. 0.441. 16.0. 1300.72. 0.414. 0.927.

  6. Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Kornilova, Alla A.

    2013-01-01

    Highlights: ► The phenomena of isotope transmutation in growing microbiological cultures were investigated. ► Transmutation in microbiological associations is 20 times more effective than in pure cultures. ► Transmutation of radioactive nuclei to stable isotopes in such associations was investigated. ► The most accelerated rate of Cs 137 to stable Ba 138 isotope transmutation was 310 days. ► “Microbiological deactivation” may be used for deactivation of Chernobyl and Fukushima areas. - Abstract: The report presents the results of qualifying examinations of stable and radioactive isotopes transmutation processes in growing microbiological cultures. It is shown that transmutation of stable isotopes during the process of growth of microbiological cultures, at optimal conditions in microbiological associations, is 20 times more effective than the same transmutation process in the form of “one-line” (pure) microbiological cultures. In the work, the process of direct, controlled decontamination of highly active intermediate lifetime and long-lived reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. In the control experiment (flask with active water but without microbiological associations), the “usual” law of nuclear decay applies, and the life-time of Cs 137 isotope was about 30 years. The most rapidly increasing decay rate, which occurred with a lifetime τ * ≈ 310 days (involving an increase in rate, and decrease in lifetime by a factor of 35 times) was observed in the presence of Ca salt in closed flask with active water contained Cs 137 solution and optimal microbiological association

  7. Studies of colossal magnetoresistive oxides with radioactive isotopes

    CERN Document Server

    CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee; Amaral, V S; Araújo, J P; Butz, T; Correia, J G; Dubourdieu, C; Habermeier, H U; Lourenço, A A; Marques, J G; Da Silva, M F A; Senateur, J P; Soares, J C; Sousa, J B; Suryan, R; Tokura, Y; Tavares, P B; Tomioka, Y; Tröger, W; Vantomme, A; Vieira, J M; Wahl, U; Weiss, F P; INTC

    2000-01-01

    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magnetoresistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\\\ \\\\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO$_{3+ \\delta}$ and La$_{1-x}$R$_{x}$MnO$_{3}$ with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\\\ \\\\ b) Studies of self doped La$_{x}$R$_{1-x}$MnO$_{3+\\delta}$ systems, with oxygen and cation non-stoichiometry: -learning the role of defects in the optimisation of magnetoresistive properties. \\\\ \\\\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic phase...

  8. Studies of Colossal Magnetoresistive Oxides with Radioactive Isotopes

    CERN Multimedia

    2002-01-01

    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magneto- resistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\\\ \\\\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO$_{3+\\delta}$ and La$_{1-x}$R$_{x}$MnO$_{3}$ with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\\\ \\\\ b) Studies of self doped La$_{x}$R$_{1-x}$MnO$_{3+\\delta}$ systems, with oxygen and cation non- stoichiometry: - learning the role of defects in the optimisation of magnetoresestive properties. \\\\ \\\\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic p...

  9. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  10. Survey of literature on the use of radioactive isotopes in agriculture published between 1973 and 1980

    International Nuclear Information System (INIS)

    Van der Westhuizen, M.; Van der Bank, D.J.; Van der Berg, G.W.J.; Uys, A.

    1980-04-01

    The literature on the use of radioactive isotopes in agriculture appears in reports and magazines which are spread over a wide spectrum of disciplines, e.g. nuclear science and agriculture science. For this reason it will be of assistance to practicing scientists to have in one volume a compilation of literature covering this field. The first part of this report consists of a list of books on this subject published by the International Atomic Energy Agency in Vienna. Most of the books are proceedings of symposia and seminars but the report also includes manuals on specialised subjects, useful for scientists starting in this field. The second part of this report consists of titles of reports and magazine articles. These were obtained form 'INIS Atomindex' for the years 1973-1980. It is hoped that the items presented in this report will be useful to scientists interested in the application of radioactive isotopes to agricultural research

  11. Dating of oilfield contamination by Natural Occurring Radioactive Materials (NORM) using isotopic ratios

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Othman, I.; Aba, A.

    2008-05-01

    In the present work, the possibility of using radium isotope ratios (226, 224, 228) for dating of NORM contaminated sites in the oilfields due to uncontrolled disposal of produced water into the environmental NORM contaminated soil sample were collected from different locations in Syrian Oilfields and radioactivity analysed. In addition, production water samples were collected and analysed to determine the isotopes ratios of the naturally occurring radioactive materials. The results have shown that the 228 Ra/ 226 Ra can be successfully used to date contaminated soil provided that this ratio is determined in production water. Moreover, the 210 Pb/ 226 Ra activity ratios was used for the first time for dating of contaminated soil where all factors affecting the method application have been evaluated. Furthermore, the obtained results for dating using the three methods were compared with the actual contamination dates provided by the oil companies. (Authors)

  12. Uranium isotopes as radioactive pollutants in groundwaters of the Morro do Ferro thorium deposit, Brazil

    International Nuclear Information System (INIS)

    Bonotto, D.M.

    1991-01-01

    Groundwater and surface water samples were collected at Morro do Ferro, a thorium and rare earth deposit located on the Pocos de Caldas Plateau, Minas Gerais State, Brazil, to evaluate if the mechanisms related to the migration of 238 U and 234 U isotopes can generate concentrations greater than the gross-alpha activity contaminant limit. The 238 U content range was 0.003-0.24 pCi/1 and the 234 U content range was 0.004-0.25 pCi/1, showing that the studied hydrologic environment doesn't indicate pollution by radioactivity due to these nuclides. However, 226 Ra and 228 Ra isotopes can be considered as radioactive pollutants in groundwaters but not in surface waters of the Morro do Ferro. (author)

  13. A neutron beam facility for radioactive ion beams and other applications

    Science.gov (United States)

    Tecchio, L. B.

    1999-06-01

    In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.

  14. Memory Effects Study of Measuring Radioactive Xenon Isotopes With β-γ Coincidence Method

    International Nuclear Information System (INIS)

    Jia Huaimao; Wang Shilian; Wang Jun; Li Qi; Zhao Yungang; Fan Yuanqing; Zhang Xinjun

    2010-01-01

    The β-γ coincidence technique is a kind of the key important method to detect radioactive xenon isotopes for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). This paper describes noble gases memory effects of β-γ coincidence detector. Xenon memory effects were measured and its influence on detector's minimum detectable activity (MDA) was evaluated. The methods of reducing xenon memory effects were studied. In conclusion, aluminium coated plastic scintillator and YAP scintillator can remarkably decrease xenon memory effects. (authors)

  15. The MOON-1 detector construction and the study of backgrounds from radioactive isotopes

    International Nuclear Information System (INIS)

    Ogama, T; Nakamura, H; Ejiri, H; Fushimi, K; Ichihara, K; Matsuoka, K; Nomachi, M; Hazama, R; Umehara, S; Yoshida, S; Sakiuchi, T; Hai, V H; Sugaya, Y

    2006-01-01

    MOON is a multilayer system of plastic scintillators and 100 Mo films for 100 Mo 0νββ decays. A prototype detector MOON-1 was built with 6 layers of plastic scintillators and 142g of 100Mo films for background (BG), energy and position resolution studies of the MOON detector. No serious BG from natural radioactive isotopes (RI) for 0νββ detection was found

  16. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    Science.gov (United States)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  17. Hyperfine spectra of the radioactive isotopes 81Kr and 85Kr

    International Nuclear Information System (INIS)

    Cannon, B.D.

    1993-01-01

    Isotope shifts and hyperfine constants are reported for the radioactive isotopes 81 Kr and 85 Kr and the stable isotope 83 Kr. The previously unreported nuclear moments of 81 Kr were determined to be μ I =-0.909(4) nuclear magneton and Q=+0.630(13) b from the hyperfine constants. This work increases the number of transitions for which 85 Kr hyperfine constants and isotope shifts have been measured from 1 to 4. The hyperfine anomaly for krypton reported in the previous measurement of 85 Kr hyperfine constants [H. Gerhardt et al., Hyperfine Interact. 9, 175 (1981)] is not supported by this work. The isotope shifts and hyperfine constants of 83 Kr measured in this work are in excellent agreement with previous work. Saturation spectroscopy was used to study transitions from krypton's metastable 1s 5 state to the 2p 9 , 2p 7 , and 2p 6 states. In saturation spectra, different line shapes were observed for the even- and odd-mass krypton isotopes. This even- versus odd-line-mass shape difference can be explained using the large cross section that has been reported for collisional transfer of the 1s 5 state excitation between krypton atoms. Two-color two-photon laser-induced fluorescence was used to measure the hyperfine spectra of the 1s 5- 4d 4 ' transition using the 2p 9 state as the intermediate state. This technique proved to be more sensitive than saturation spectroscopy

  18. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    Science.gov (United States)

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-10-01

    We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  19. Use of environmental radioactive isotopes in geothermal prospecting

    International Nuclear Information System (INIS)

    Balcazar, M.; Lopez M, A.; Huerta, M.; Flores R, J. H.; Pena, P.

    2010-10-01

    Oil resources decrease and environmental impact of burning fossil fuels support the use of alternative energies around the world. By far nuclear energy is the alternative which can supply huge amount of clean energy. Mexico has two nuclear units and has also explored and exploited the use of other complementary renewal energies, as wind and geothermal. Mexico is the third geothermal-energy producer in the world with an installed capacity of 960 MW and is planning the installation of 146 MW for the period 2010-2011, according to information of the Mexican Federal Electricity Board. This paper presents a study case, whose goal is to look for areas where the heat source can be located in geothermal energy fields under prospecting. The method consist in detecting a natural radioactive tracer, which is transported to the earth surface by geo-gases, generated close to the heat source, revealing areas of high permeability properties and open active fractures. Those areas are cross correlated to other resistivity, gravimetric and magnetic geophysical parameters in the geothermal filed to better define the heat source in the field. (Author)

  20. Expeditious syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, and its metabolites.

    Science.gov (United States)

    Lin, Ronghui; Weaner, Larry E; Hoerr, David C; Salter, Rhys; Gong, Yong

    2013-01-01

    Syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, that is, N-(benzo[b]thien-3-ylmethyl)-sulfamide and its metabolites are described. [(13)C(15)N]Benzo[b]thiophene-3-carbonitrile was first prepared by coupling of 3-bromo-benzo[b]thiophene with [(13)C(15)N]-copper cyanide. The resultant [(13)C(15)N]benzo[b]thiophene-3-carbonitrile was reduced with lithium aluminum deuteride to give [(13)CD2(15)N]benzo[b]thiophen-3-yl-methylamine; which was then coupled with sulfamide to afford [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide, the stable isotope-labeled compound with four stable isotope atoms. Direct oxidation of [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope-labeled sulfoxide and sulfone metabolites. On the other hand, radioactive (14)C-labeled N-(benzo[b]thien-3-ylmethyl)-sulfamide was prepared conveniently by sequential coupling of 3-bromo-benzo[b]thiophene with [(14)C]-copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Ion sources for initial use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surfaceionization sources are also under design consideration for generating negative radioactive ion beams from high electron-affinity elements. A brief review of the HRIBF will be presented, followed by a detailed description of the design features, operational characteristics, ionization efficiencies, and beam qualities (emittances) of these sources

  2. Simultaneous determination of radioactive halogen isotopes and 99Tc

    International Nuclear Information System (INIS)

    Kabai, E.; Vajda, N.; Gaca, P.

    2003-01-01

    The purpose of this study was to develop a simplified method for simultaneous determination of radiologically important halogen isotopes and 99 Tc from different types of samples like environmental, biological and waste samples. Due to their long half-lives (longer than 10 5 years) they play important role in the nuclear cycle, especially in environmental monitoring and protection. For a rapid response in the evaluation of 129 I, 36 Cl and 99 Tc contamination levels of these samples it is advantageous to combine the existing individual methods. According to the present procedure, iodine, chlorine and technetium are separated selectively from the same sample aliquot followed by the β spectrometry of the purified fractions. Increased sensitivities can be achieved by neutron activation (NA) especially in the case of 129 I. Our work intends to solve the problem by combining the well-known hot acidic distillation method for iodine separation with the organic extraction process characteristic for technetium separation. The major objective of the work was to separate the disturbing halides from iodine. For this purpose a selective oxidant was applied. For the sample destruction and fractionated distillation an air flow-through installation was used with hot concentrated sulphuric and nitric acids. The trap for iodine contained 3 M NaOH solution. After iodine separation the trap was exchanged for a new one containing the same solution for trapping chlorine or bromine with an addition of 0.01 M KMnO 4 solution as an oxidative agent. As expected, the main part of technetium was contained in the acidic residue after distillation. Tc purification was performed by organic extraction with TBP and TEVA column. (author)

  3. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    2001-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surface has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen Isotopic defined beams from Pd (111) surface in the 40-400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one to the 5% D/(D+H) ratio - and for different incident energies. The beam was directed onto a single-crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to it. (authors)

  4. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generationa

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  5. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  6. Investigating proton emitters at the limits of stability with radioactive beams from the Oak Ridge facility

    Energy Technology Data Exchange (ETDEWEB)

    Toth, K.S. [Oak Ridge National Lab., TN (United States); Batchelder, J.C.; Zganjar, E.F. [Louisiana State Univ., Baton Rouge, LA (United States); Bingham, C.R.; Wauters, J. [Tennessee Univ., Knoxville, TN (United States); Davinson, T.; MacKenzie, J.A.; Woods, P.J. [Edinburgh Univ. (United Kingdom)

    1996-10-01

    By using beams from the Holifield Radioactive Ion Beam Facility at ORNL, it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. In these investigations nuclei produced in fusion-evaporation reactions will be separated from incident ions and dispersed in mass/charge with a recoil mass separator and then implanted into a double-sided Si strip detector for study of proton (and {alpha}-particle) radioactivity. This paper summarizes data presently extant on proton emitters and then focuses on tests and initial experiments that will be carried out with stable beams and with radioactive ions as they are developed at the Oak Ridge facility.

  7. Prospects for studies of ground-state proton decays with the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Toth, K.S.

    1994-01-01

    By using radioactive ions from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. During this production and search process the limits of stability on the proton-rich side of the nuclidic chart will be delineated for a significant fraction of medium-weight elements and our understanding of the proton-emission process will be expanded and improved

  8. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chatterjee, A.; Llacer, J.

    1981-01-01

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11 C and 19 Ne beams, but the short half-life of 19 Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  9. Measurement of nuclear cross sections using radioactive beams; Medicion de secciones eficaces nucleares usando haces radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a {sup 6} He nuclear radioactive beam ({beta} emitting with half life 806.7 ms) for the study of the reaction {sup 6} + {sup 209} Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  10. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    1999-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surfaces has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen isotopic defined beams from Pd (111) surfaces in the 40 - 400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one until 5% D/(D + H) and different incident energies and directed onto a single - crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to them. (authors)

  11. Selection and design of ion sources for use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Haynes, D.L.; Mills, G.D.; Olsen, D.K.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report

  12. Nuclear Astrophysics Data from Radioactive Beam Facilities. Final report

    International Nuclear Information System (INIS)

    Chen, Alan A.

    2008-01-01

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): 21 Na(p,γ) 22 Mg and 18 Ne(α,p) 21 Na - The importance of the 21 Na(p,γ) 22 Mg and the 18 Ne(α,p) 21 Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope 22 Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: 21 Na(p,γ) 22 Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne(α,p) 21 Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,γ) 26 Si and 13 N(p,γ)14O reactions - For Year 2, we worked on evaluations of the 25 Al(p,γ) 26 Si and 13 N(p,γ) 14 O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The 25 Al(p,γ) 26 Si reaction is a key uncertainty in the understanding the origin of galactic 26 Al, a target radioisotope for gamma ray astronomy; the 13 N(p,γ) 14 O reaction in turn is the trigger

  13. Preliminary shielding estimates for the proposed Oak Ridge National Laboratory (ORNL) Radioactive Ion Beam Facility (RIBF)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Gabriel, T.A.; Lillie, R.A.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has proposed designing and implementing a new target-ion source for production and injection of negative radioactive ion beams into the Hollifield tandem accelerator. This new facility, referred to as the Radioactive Ion Beam Facility (RIBF), will primarily be used to advance the scientific communities' capabilities for performing state-of-the-art cross-section measurements. Beams of protons or other light, stable ions from the Oak Ridge Isochronous Cyclotron (ORIC) will be stopped in the RIBF target ion source and the resulting radioactive atoms will be ionized, charge exchanged, accelerated, and injected into the tandem accelerator. The ORIC currently operates with proton energies up to 60 MeV and beam currents up to 100 microamps with a maximum beam power less than 2.0 kW. The proposed RIBF will require upgrading the ORIC to generate proton energies up to 200 MeV and beam currents up to 200 microamps for optimum performance. This report summarizes the results of a preliminary one-dimensional shielding analysis of the proposed upgrade to the ORIC and design of the RIBF. The principal objective of the shielding analysis was to determine the feasibility of such an upgrade with respect to existing shielding from the facility structure, and additional shielding requirements for the 200 MeV ORIC machine and RIBF target room

  14. TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS): a versatile tool for radioactive beam physics

    Science.gov (United States)

    Ball, G. C.; Andreyev, A.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chen, A.; Churchman, R.; Cifarelli, F.; Cline, D.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Moisan, F.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2007-05-01

    TIGRESS is a new generation γ-ray spectrometer designed for use with radioactive beams from ISAC. This paper gives an overview of the project and presents results from the first radioactive beam experiment with TIGRESS, the Coulomb excitation of 20,21Na.

  15. Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack

    CERN Document Server

    Hermes, Pascal; De Maria, Riccardo

    2016-01-01

    The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.

  16. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  17. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1996-01-01

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given

  18. First Nuclear Reaction Experiment with Stored Radioactive 56Ni Beam and Internal Hydrogen and Helium Targets

    NARCIS (Netherlands)

    Egelhof, P.; Bagchi, Soumya; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Furuno, T; Geissel, H.; Gernhauser, R.; Kalantar-Nayestanaki, Nasser; Kuilman, M.; Mahjour-Shafiei, M.; Najafi, M.A.; Rigollet, C.; Streicher, B.

    2014-01-01

    The investigation of light-ion induced direct reactions using stored and cooled radioactive beams, interacting with internal targets of storage rings, can lead to substantial advantages over external target experiments, in particular for direct reaction experiments in inverse kinematics at very low

  19. Nuclear Structure Studies On Exotic Nuclei With Radioactive Beams - Present Status And Future Perspectives At FAIR

    International Nuclear Information System (INIS)

    Peter Egelhof

    2011-01-01

    The investigation of nuclear reactions using radioactive beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The basic concept and the methods involved are briefly discussed, and an overview including some selected examples of recent results obtained with radioactive beams from the present fragment separator at GSI Darmstadt is presented. The experimental conditions expected at the future international facility FAIR will, among others, allow for a substantial improvement in intensity and quality of radioactive beams as compared to present facilities. Therefore, it is expected that FAIR will provide unique opportunities for nuclear structure studies on nuclei far off stability, and will allow to explore new regions in the chart of nuclides of high interest for nuclear structure and nuclear astrophysics. A brief overview on the new facility, and on the experimental setups planned for nuclear structure research with radioactive beams is given. For nuclear reaction studies several complex, highly efficient, high resolution, and universal detection systems such as R 3 B, EXL, ELISe, etc. are presently under design and construction. A brief overview on the research objectives and the technical realization will be presented. (author)

  20. The role fo the Pygmy resonance in the synthesis of heavy elements with radioactive beams

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1990-12-01

    It is suggested that the inclusion of the virtual excitation of the soft giant dipole (pygmy) resonance in the calculation of the cross-section for very neutron-rich radioactive beam-induced fusion reactions may enhance the formation probability of the heavy compound nucleus produced at low excitation energy. (author)

  1. Fast and slow radioactive beams in study of light nuclei far from stability

    International Nuclear Information System (INIS)

    Lewitowicz, M.

    2003-01-01

    Several examples of results of recent experiments performed with the SPIRAL ISOL-type and GANIL high energy radioactive beams on the properties of nuclei far from stability are presented. Future plans of the GANIL/SPIRAL facility related to the SPIRAL II project are shortly discussed. (orig.)

  2. Production of a radioactive 18F ion beam for nuclear reaction studies

    Science.gov (United States)

    Roberts, A. D.; Nickles, R. J.; Paul, M.; Rehm, K. E.; Jiang, C. L.; Blumenthal, D. J.; Gehring, J.; Henderson, D.; Nolen, J.; Pardo, R. C.; Schiffer, J. P.; Segel, R. E.

    1995-12-01

    A two-stage method for generating a radioactive 18F ion beam has been developed. 18F is produced with a medical cyclotron by 11 MeV proton activation of [ 18O]water, then chemically processed off-line for use in a tandem accelerator ion source. Azeotropic distillation reduces the 18O component by 10 5, with a resulting 18O to 18F beam ratio of about 10 3. The average 18F - beam intensity per synthesis is 1 ppA over 120 min from a cesium vapor, sputter negative ion source (SNICS), with a peak intensity of 4.5 ppA.

  3. A concept for emittance reduction of DC radioactive heavy-ion beams

    International Nuclear Information System (INIS)

    Nolen, J.A.; Dooling, J.C.

    1995-01-01

    Numerical simulations indicate that it should be possible to use an electron beam to strip 1+ DC radioactive ion beams to 2+ or higher charge states with on the order of 50% efficiency. The device, which the authors call an Electron-Beam Charge-State Amplifier, is similar to an Electron Beam Ion Source, except that it is not pulsed, the beams are continuous. The 2+ beams are obtained in a single pass through a magnetic solenoid while higher charge states may be reached via multiple passes. An unexpected result of the ion optics simulations is that the normalized transverse emittance of the ion beam is reduced in proportion to the charge-state gain. Ion beams with realistic emittances and zero angular momentum relative to the optic axis before entering the solenoid will travel though the solenoid on helical orbits which intercept the axis once per cycle. With an ion beam about 2 mm in diameter and an electron beam about 0.2 mm in diameter, the ion stripping only occurs very near the optic axis, resulting in the emittance reduction

  4. The Holifield Radioactive Ion Beams Facility (HRIBF) - getting ready to do experiments

    International Nuclear Information System (INIS)

    Shapira, D.; Lewis, T.A.

    1998-01-01

    The conversion of the HHIRF facility to a Radioactive Ion Beam facility started in 1994. In this ISOL type facility the Cyclotron has been re-fitted as a driver providing high intensity proton beams which react with the target from which the radioactive products are extracted and then accelerated in the Tandem Electrostatic Accelerator to the desired energy for nuclear science studies. Facilities for nuclear physics experiments are at different stages of development: A Recoil Mass Spectrometer (RMS) with a complement of detectors at the focal plane and around the target is used primarily for nuclear structure studies. A large recoil separator combining velocity and momentum selection, with its complement of focal plane detectors, will be dedicated to measurements relevant to nuclear astrophysics. The Enge Split Pole spectrograph is being re-fitted for operation in a gas filled mode, making it a more versatile tool for nuclear reaction studies. With the new experimental equipment being commissioned and the prospects of running experiments with low intensity radioactive beams a significant effort to develop equipment for beam diagnostics is underway. Some of the efforts and results in developing beam diagnostic tools will be described

  5. Exotic nuclei and radioactive beams; Noyaux exotiques et faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P.

    1996-12-31

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs.

  6. Procedure for 40K isotope separation from beam of potassium atoms using optical orientation of atoms and radio-frequency excitation of target isotope

    International Nuclear Information System (INIS)

    Nikitin, A.I.; Velichko, A.M.; Vnukov, A.V.; Mal'tsev, K.K.; Nabiev, Sh.Sh.

    1999-01-01

    The procedure for potassium isotope separation, which is liable to reduce of the prise of the product as compared with the up-to-date prise of the 40 K isotope obtained by means of electromagnetic procedure for isotope separation, is proposed. The scheme assumes the increasing flow of the wanted isotope at the sacrifice of the increasing intensity of atomic beam and the increase of the selectivity of need isotope atoms at the sacrifice of the the reduction in the square of collector profile. The objective is achieved that provide of polarized state of the potassium atoms is produced by optic orientation with circular-polarized light [ru

  7. Measurement of residual radioactivity in cooper exposed to high energy heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjoo; Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Uwamino, Yoshitomo; Ito, Sachiko; Fukumura, Akifumi

    1999-03-01

    The residual radioactivities produced by high energy heavy ions have been measured using the heavy ion beams of the Heavy Ion Medical Accelerator (HIMAC) at National Institute of Radiological Sciences. The spatial distribution of residual radioactivities in 3.5 cm, 5.5 cm and 10 cm thick copper targets of 10 cm x 10 cm size bombarded by 290 MeV/u, 400 MeV/u-{sup 12}C ion beams and 400 MeV/u-{sup 20}Ne ion beam, respectively, were obtained by measuring the gamma-ray activities of 0.5 mm thick copper foil inserted in the target with a high purity Ge detector after about 1 hour to 6 hours irradiation. (author)

  8. Overview of the KoRIA Facility for Rare Isotope Beams

    International Nuclear Information System (INIS)

    Hong, S.W.; Bak, S.I.; Chai, J.S.; Ahn, J.K.; Blumenfeld, Y.; Cheon, B.-G.; Choi, C.I.; Cheoun, M.-K.; Cho, D.; Cho, Y.S.; Choi, B.H.; Choi, E.M.; And others

    2013-01-01

    The Korea Rare Isotope Accelerator, currently referred to as KoRIA, is briefly presented. The KoRIA facility is aimed to enable cutting-edge sciences in a wide range of fields. It consists of a 70 kW isotope separator on-line (ISOL) facility driven by a 70 MeV, 1 mA proton cyclotron and a 400 kW in-flight fragmentation (IFF) facility. The ISOL facility uses a superconducting (SC) linac for post-acceleration of rare isotopes up to about 18 MeV/u, while the SC linac of IFF facility is capable of accelerating uranium beams up to 200 MeV/u, 8 pμA and proton beams up to 600 MeV, 660 μA. Overall features of the KoRIA facility are presented with a focus on the accelerator design. (author)

  9. Isotope-beam modification of materials at eV energies

    International Nuclear Information System (INIS)

    Krug, C.; Radtke, C.; Stedile, F.C.; Baumvol, I.J.R.

    2001-01-01

    We developed a low energy ion beam deposition system for isotope-selective modification of materials. It consists of a conventional ion implanter (HVEE 500 kV) and an attachable deceleration system. 29 (N 2 ) + ion beams were used for the nitridation of Si(0 0 1) and the resulting 15 N retained doses and profiles were determined by narrow nuclear resonance profiling. 29 Si was deposited on amorphous carbon films on Si(0 0 1) and the doses evaluated by channeled α particle beams with detection of scattered α at grazing angles. 29 Si was also deposited on Si(0 0 1) and the resulting profiles determined by narrow nuclear resonance

  10. Design of a positional tracking and radiological alarm system for transportation of radioactive isotopes

    International Nuclear Information System (INIS)

    Saindane, Shashank; Pujari, R.N.; Narsaiah, M.V.R.; Chaudhury, Probal; Pradeepkumar, K.S.

    2016-01-01

    The safety aspects during the transport of radioactive material have to ensure that even in event of accident the potential of radiation exposure to public is extremely small. Continuous monitoring and online data transfer to emergency control room will strengthen the emergency preparedness to response to any such accident during transport of radioactive material. The paper presents the combined application of Geographical Information Systems (GIS), Global Positioning System (GPS), General Packet Radio Service (GPRS) and the Internet for tracking the shipment vehicle transporting radioactive isotopes for use in the medical industry. The key features of the prototype system designed are realtime radiological status update along with photo snap of the shipping flask at predefined interval along with positional coordinates, GIS platform and a web-based user interface. The system consists of a GM based radiation monitoring device (RMD) along with a LAN camera, GPS for tracking the shipment vehicle, a communications server, a web-server, a database server, and a map server. The RMD and tracking device mounted in the shipment vehicle collects location and radiological information on real-time via the GPS. This information is transferred continuously through GPRS to a central database. The users will be able to view the current location of the vehicle via a web-based application

  11. Study on Method of Asphalt Density Measurement Using Low Level Radioactive Isotope

    International Nuclear Information System (INIS)

    Chung, Jin-young; Kim, Jung-hoon; Whang, Joo-ho

    2008-01-01

    The fundamental cause of damage to road pavement is insufficient management of asphalt density during construction. Currently, asphalt density in Korea is measured in a laboratory by extracting a core sample after construction. This method delays the overall time of measurement and therefore it is difficult to achieve real-time density management. Using a radioactive isotope for measuring asphalt density during construction reduces measuring time thus enabling realtime measurement. Also, it is provided reliable density measurement to achieve effective density management at work sites. However, existing radiological equipment has not been widely used because of management restrictions and regulations due to the high radiation dose. In this study, we employed a non-destructive method for density measurement. Density is measured by using a portable gamma-ray backscatter device having a radioactivity emission of 100 μCi or less (notice No. 2002-23, Ministry of Science and Technology, standards on radiation protection, etc.), a sealed radioactive source subject to declaration

  12. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  13. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  14. Nuclear structure of light thallium isotopes as deduced from laser spectroscopy on a fast atom beam

    International Nuclear Information System (INIS)

    Bounds, J.A.

    1985-08-01

    After optimizing the system by experiments on /sup 201,203,205/Tl, the neutron-deficient isotopes 189-193 Tl have been studied using the collinear fast atom beam laser spectroscopy system at UNISOR on-line to the Holifield Heavy Ion Research Facility. A sensitive system for the measurements was developed since the light isotopes were available in mass-separated beams of only 7 x 10 4 to 4 x 10 5 atoms per second. By laser excitation of the 535 nm atomic transitions of atoms in the beam, the 6s 2 7s 2 S/sub 1/2/ and 6s 2 6s 2 P/sub 3/2/ hyperfine structures were measured, as were the isotope shifts of the 535 nm transitions. From these, the magnetic dipole moments, spectroscopic quadrupole moments and isotopic changes in mean-square charge radius were deduced. The magnetic dipole moments are consistent with previous data. The /sup 190,192/Tl isotopes show a considerable difference in quadrupole deformations as well as an anomalous isotope shift with respect to 194 Tl. A large isomer shift in 193 Tl is observed implying a larger deformation in the 9/2 - isomer than in the 1/2 + ground state. The /sup 189,191,193/Tl isomers show increasing deformation away from stability. A deformed shell model calculation indicates that this increase in deformation can account for the dropping of the 9/2 - band in these isotopes while an increase in neutron pairing correlations, having opposite and compensating effects on the rotational moment of inertia, maintains the 9/2 - strong-coupled band structure. 105 refs., 27 figs

  15. Constraints due to the production of radioactive ion beams in the SPIRAL project

    International Nuclear Information System (INIS)

    Leroy, R.; Huguet, Y.; Jardin, P.; Marry, C.; Pacquet, J.Y.; Villari, A.C.C.

    1997-01-01

    The radioactive ion beams that will be delivered by the SPIRAL facility will be produced by the interaction of a stable high energy and high intensity primary ion beam delivered by the GANIL cyclotrons with a carbon target heated to 2000 deg C. During this interaction, some radioactive atoms will be created and will diffuse out of the target before entering into an electron cyclotron resonance ion source where they will be ionized and extracted. The production of radioactive ion beams with this method implies high radiation fields that activate and can damage materials located in the neighborhood of the target. Therefore, the production system which is composed of the permanent magnet ECR ion source coupled to a graphite target will be changed after two weeks of irradiation. As this ensemble will be very radioactive, this operation has to be supervised by remote control. The radiation levels around the target-ion source system and a detailed description of the different precautions that have been taken for safety and for prevention of contamination and irradiation are presented. (author)

  16. Recent progress of in-flight separators and rare isotope beam production

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshiyuki, E-mail: kubo@ribf.riken.jp

    2016-06-01

    New-generation in-flight separators are being developed worldwide, including the Super-FRS separator at the GSI Facility for Antiproton and Ion Research (FAIR), the ARIS separator at the Michigan State University (MSU) Facility for Rare Isotopes Beams (FRIB), and the BigRIPS separator at the RIKEN RI Beam Factory (RIBF), each of which is aimed at expanding the frontiers of rare isotope (RI) production and advancing experimental studies on exotic nuclei far from stability. Here, the recent progress of in-flight separators is reviewed, focusing on the advanced features of these three representative separators. The RI beam production that we have conducted using the BigRIPS separator at RIKEN RIBF is also outlined.

  17. Charge breeding of stable and radioactive ion beams with EBIS/T devices

    CERN Document Server

    Kester, Oliver; Becker, R

    2004-01-01

    Radioactive ion beams (RIBs) are an important tool for experiments at the foremost frontier of nuclear physics. The quasi-continuous radioactive beams from target ion sources of RIB-facilities have to be accelerated to energies at and beyond the Coulomb barrier. An efficient acceleration requires a suitable A/q of the ions determined by the accelerator design, which can be reached via the stripping method or by using a charge state breeder like the REX-ISOLDE system. In order to get comparable efficiencies for a charge state breeder with the stripping scheme, the breeding efficiency in one charge state has to be optimized by narrowing the charge state distribution. In addition good beam quality and thus small emittances are required to achieve best transmission in the following accelerator, which is mandatory for high intensity RIBs. For EBIS/T devices the maximum intensity of the radioactive ion beam is a critical issue, and high current EBIS/T devices will be necessary to deal with intensities of second gen...

  18. Latest developments at GANIL for stable and radioactive ion beam production

    International Nuclear Information System (INIS)

    Jardin, P.; Barue, C.; Bajeat, O.; Canet, C.; Clement, E.; Cornell, J. C.; Delahaye, P.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Fraanberg, H.; Frigot, R.; Leboucher, C.; Lecesne, N.; Lecomte, P.; Leherissier, P.; Lemagnen, F.; Leroy, R.; Maunoury, L.; Mery, A.

    2010-01-01

    In the frame of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.

  19. Evaluation of management of radioactive waste in nuclear medicine department of radiation and isotopes center, Khartoum

    International Nuclear Information System (INIS)

    Ahmed, Amel Bushra Abaker

    2001-01-01

    Evaluation of management of radioactive waste in nuclear medicine department of radiation and isotopes center in Khartoum, Sudan, was conducted using radiation survey meter. The purpose of this study is to provide protection of workers, patients, co patients, an the environment by introducing good practice in management of radioactive waste generated in this lab. In this work measurement of radiation effective dose at different locations in the department were carried out. These locations were selected around the radioactive liquid and solid waste disposal position. It was found that the effective doses per year from radioactive wastes obtained through this work using the survey meter RDS-120 at these locations, are 1.47 mSv/y at the neighbouring patients room, 5.47 mSv/y at the hot lab., 0.09 mSv/y at the neighbouring toilet, 0.321 mSv/y at the water closet, and 1.4 mSv/y at the place down water closet. The results obtained shows that the dose levels waste at the location not exceed the recommended dose limits for workers 20 mSv/y, that set by basic safety standards (Bss 115) which published by the international atomic energy agency. Also it s comply with the national regulation, regulation on basic radiation protection requirement and dose limits 1996, issued by sudan atomic energy commission act 1996. The annual dose calculated for the patients and co-patients at rooms around the nuclear medicine department, the results shows that dose are fairly high. Measure should taken to improve the waste management in the department for better protection of workers, patients and co patients. (Author)

  20. New Applications of Cosmogenic Radioactive Isotopes to Study Water Travel Times

    Science.gov (United States)

    Visser, A.; Thaw, M.; Deinhart, A.; Bibby, R. K.; Esser, B.

    2017-12-01

    The travel time of water moving through a landscape influences nutrient dynamics and biogeochemical cycles. Constraining water travel times helps to understand the functioning of the critical zone. Water travel times cannot be observed directly but can be constrained by measurements of cosmogenic radioactive isotopes. We studied a small (4.6 km2) subalpine (1660-2117 m) catchment in a Mediterranean climate (8 °C, 1200 mm/yr) in the California Sierra Nevada to assess subsurface water storage dynamics and investigate flow paths and flow velocities. We analyzed a combination of three cosmogenic radioactive isotopes with half-lives varying from 87 days (sulfur-35), 2.6 years (sodium-22) to 12.3 years (tritium) in precipitation and stream samples. Water stable isotopes and solute chemistry aided the interpretation of the cosmogenic isotopes. Tritium samples (1L) are analyzed by noble gas mass spectrometry after helium-3 accumulation. Samples for sulfur-35 and sodium-22 are collected by processing 20-1000 L of water through an anion and cation exchange column in-situ. Sulfur-35 is analyzed by liquid scintillation counting after chemical purification and precipitation. Sodium-22 is analyzed by gamma counting after eluting the cations into a 4L Marinelli beaker. Monthly collected precipitation samples show variability of deposition rate for tritium and sulfur-35. Sodium-22 levels in cumulative yearly precipitation samples are consistent with recent studies in the US and Japan. The observed variability of deposition rates complicates direct use as decaying age tracers. The level and variability of tritium in monthly stream samples indicate a mean residence time on the order of 10 years and only small contributions of younger water during high flow conditions. Sulfur-35 and sodium-22 concentrations were critically interpreted considering possible uptake by vegetation and cation exchange. Detections of sodium-22 confirm a small fraction of younger (water. Low concentrations

  1. Use of Radioactive Ion Beams for Biomedical Research 1. in vivo labelling of monoclonal antibodies with radio-lanthanides and $^{225}$Ac

    CERN Multimedia

    2002-01-01

    % IS330 \\\\ \\\\\\begin{enumerate} \\item The aim of this study was to contribute to developments of new radiopharmaceuticals for tumour diagnosis and therapy. CERN-ISOLDE is the leading facility in the world to provide radioactive ion beams with high selectivity, purity and intensity. Radioisotope production by spallation makes available a complete range of rare earth isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. The availability of exotic nuclei, e.g. radionuclides of rare earth elements and $^{225}$Ac, opens new possibilities for the development of radiopharmaceuticals for diagnosis and therapy.\\\\ \\\\ \\item Two approaches were followed within the experimental program. The radioactive metal ions are bound either to bio-specific ligands (monoclonal antibodies or peptides) or to unspecific low molecular weight form. The aim of the experimental program is to evaluate relationships between physico-chemical parameters of the tracer m...

  2. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    Science.gov (United States)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  3. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

    International Nuclear Information System (INIS)

    Herfurth, F.; Dilling, J.; Kellerbauer, A.

    2000-05-01

    An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. (orig.)

  4. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  5. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2014-08-15

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of Sao Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the ''in-flight method'' to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are {sup 6}He, {sup 8}Li, {sup 7}Be, {sup 10}Be, {sup 8}B, {sup 12}B with intensities that can vary from 10{sup 4} to 10{sup 6} pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo ({sup 6}He and {sup 8}B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory. (orig.)

  6. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Science.gov (United States)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  7. The future of the accelerator mass spectrometry of rare long-lived radioactive isotopes

    International Nuclear Information System (INIS)

    Litherland, A.E.

    1990-01-01

    Accelerators, originally designed for nuclear physics, can be added to mass spectrometric apparatus to increase the sensitivity so that isotope ratios in the range 10 -12 to 10 -15 can be measured routinely. This significant improvement of high-sensitivity mass spectrometry has been called Accelerator Mass Spectrometry. The present article addresses the basic principles of accelerator mass spectrometry and some recent applications which show its versatility. In particular, it is noted that accelerator mass spectrometry could play an increasing role in the measurement of the levels of long lived radioactivities in the environment, including the actinides, which result from human activities such as the use of nuclear power. To fulfill this promise, continued research and development is necessary to provide ion sources, various types of heavy ion accelerators and peripheral magnetic and electric analysers. (N.K.)

  8. Method for determination of radioactive iodine isotopes in environmental objects and biologic materials

    International Nuclear Information System (INIS)

    Dubynin, O.D.; Pogodin, R.I.

    1981-01-01

    The method proposed for determination of radioactive iodine isotopes content in environmental objects and biologic materials is based on the extraction of iodine with carbon tetrachloride and subsequent precipitation of bismuthyl iodine (BiOI) in perchloric medium. Sample preparation for analysis is carried out using conventional alkaline ashing methods. Quantitative iodine separation is hampered if macroquantities of Cl - , Br - , SO 4 2 - , SO 8 2 - , Cr 2 O 7 2 - and other ions are present in the solution. Iodine extraction is carried out before its precipitation. Separated iodine preparation activity is measured using scintillation (NaI) Tl gamma spectrometer. The method's sensitivity when measuring iodine-131 preparations makes up 0.07 Bq per 1 sample with the error +-25 %

  9. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  10. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    International Nuclear Information System (INIS)

    Raimbault-Hartmann, H.; Bollen, G.; Beck, D.; Koenig, M.; Kluge, H.-J.; Schwarz, S.; Schark, E.; Stein, J.; Szerypo, J.

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low-energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high-mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about 1 x 10 5 has been achieved. Isobar separation has been demonstrated for radioactive rare-earth ion beams delivered by the ISOLDE on-line mass separator. (orig.)

  11. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    CERN Document Server

    Raimbault-Hartmann, H; Bollen, G; König, M; Kluge, H J; Schark, E; Stein, J; Schwarz, S; Szerypo, J

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about $1\\cdot 10^{5}$ has been achieved. Isobar separation has been demonstrated for radioactive rare earth ion beams delivered by the ISOLDE on-line mass separator.

  12. Precision Lifetime Measurements Using LaBr3 Detectors With Stable and Radioactive Beams

    Directory of Open Access Journals (Sweden)

    Regan P.H.

    2013-12-01

    Full Text Available A range of high resolution gamma-ray spectroscopy measurements have been carried out using arrays which include a number of Cerium-doped Lanthanum-Tribromide (LrBr3(Ce scintillation detectors used in conjunction with high-resolution hyper-pure germanium detectors. Examples of the spectral and temporal responses of such set-ups, using both standard point radioactive sources 152Eu and 56Co, and in-beam fusionevaporation reaction experiments for precision measurements of nuclear excited states in 34P and 138Ce are presented. The current and future use of such arrays at existing (EURICA at RIKEN and future (NUSTAR at FAIR secondary radioactive beam facilities for precision measurements of excited nuclear state lifetimes in the 10 ps to 10 ns regime are also discussed.

  13. Radioactive ion beam facility at Louvain-La-Neuve, Belgium and its features

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1991-01-01

    Use of radioactive ion beams for the study of nuclear structure as well as the astrophysical reaction cross sections become the current interest in physics. A full-fledged facility based on two coupled cyclotrons comprising a compact high current cyclotron and a medium energy cyclotron with an intermediate target and ion source system has been recently commissioned at the Louvain-La-Neuve University in Belgium by its accelerator group and has been successfully used for the measurement of cross sections for the primordial nucleosynthesis reactions of astrophysical interest, directly. A brief description of the system, its operational features together with some details of the target and the ion source arrangement for the production of the radioactive ion beams and their acceleration to energies required for the proposed studies is presented. Description of the reactions studied by the Louvain La Neuve group for astrophysical interest is also given. (author). 20 refs., 6 figs., 4 tabs

  14. Laser-spectroscopic nuclear-structure studies on radioactive silver and indium isotopes

    International Nuclear Information System (INIS)

    Dinger, U.

    1988-05-01

    Neutron-deficient silver and neutron-rich indium isotopes were studied by collinear laser spectroscopy. The neutron-deficient nuclei 101 , 103 , 104 , 105 , 105m , 106m Ag were produced as evaporation-residual nuclei in heavy-ion fusion reactions at the mass separator of the GSI in Darmstadt. The fourteen studied indium isotopes and isomers with even mass number in the range 112-126 In were produced by 600-MeV-proton induced fission of a uranium carbide target at the ISOLDE separator in Geneva. The mass-separated ion beam was subsequently deviated electrostatically, neutralized in a sodium vapor and superposed with a c w dye laser. A photon counting system detected the resonance fluorescence of the induced transitions. The hyperfine structure and the isotope shift of the 4d 9 5s 2 2 D 5/2 → 4d 10 6p 2 P 3/2 transition (λ=547.7 nm) in silver and the 5p 2 P 1/2,3/2 → 6s 2 s 1/2 transition (λ=410 respectively 451 nm) in indium were measured. While in indium for the analysis of the data earlier work could be referred to, in silver a detailed analysis of the isotope shift and hyperfine structure was performed by means of ab initio calculations and semi-empirical procedures. Thereby the configuration interactions were especially considered. The nuclear moments were discussed in the framework of existing nuclear models regarding nuclear-spectroscopic informations. (orig./HSI) [de

  15. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F

  16. Targets for production of high-intensity radioactive ion-beams

    International Nuclear Information System (INIS)

    Hagebo, E.; Hoff, P.; Steffensen, K.

    1991-01-01

    The recent developments of target systems for production of high intensity radioactive ion-beams at the ISOLDE mass separators is described. Methods for chemically selective production through separation of molecular ions are outlined and the effects of the addition of reactive gases has been studied. Results and further possible applications in the light element region are discussed. (author) 10 refs.; 9 figs.; 1 tab

  17. A new method for the labelling of proteins with radioactive arsenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, M. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Hermanne, A. [VUB Cyclotron, University of Brussels, Laarbeeklaan 103, 1090 Brussels (Belgium); Mason, R.P. [Department of Radiology, Advanced Radiological Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (United States); Thorpe, P.E. [Department of Pharmacology and Simmons and Hamon Cancer Centers, University of Texas Southwestern Medical Center at Dallas, Dallas, TX (United States); Roesch, F. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany)]. E-mail: frank.roesch@uni-mainz.de

    2006-12-20

    Radioarsenic labelled radiopharmaceuticals could be a valuable asset to positron emission tomography. In particular, the long half-lives of {sup 72}As (T{sub 1/2}=26h) and {sup 74}As (T{sub 1/2}=17.8d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of monoclonal antibodies (mab) in tumour tissue. In this work, a new method for the labelling of proteins with various radioactive arsenic isotopes was developed. For this purpose, two proteins, namely a chimeric IgG{sub 3} monoclonal antibody, ch3G4, directed against anionic phospholipids, and Rituxan (Rituximab), were labelled as a proof of principle with no-carrier-added radioarsenic isotopes ({sup 74}As and {sup 77}As). The developed labelling chemistry gives high yields (>99.9%), is reliable and could easily be transferred to automated labelling systems in a clinical environment. At least for the mab used in this work, this route of radioarsenic labelling does not affect the immunoreactivity of the product. The arsenic label stays stable for up to 72h at the molecular mass of the monoclonal antibody, which is in particular relevant to follow the pharmacology and pharmacokinetics of the labelled mab for several days.

  18. Determination of stable and radioactive isotopes in rain water in Sahel in 1975 and 1976

    International Nuclear Information System (INIS)

    Baudet, J.; Abi, B.

    1979-01-01

    The problem of desertification in Africa incites to materialize the circuit of the water vapour between its main source, the Gulf of Guinea, and its precipitation site. Some rainwater samples have been collected in Ouagadougou in 1975 and 1976 during the rainy season. The dosage of the stable isotopes D and O 18 and radioactive isotope T shows that in 1975, a year with a general rain deficit, the rain was formed in a continental air mass. On the contrary, in 1976, a year with excess rain, the rain was formed in a maritime air mass. A study of the wind flows at 600, 900, 1500 and 2100 m shows that in 1975 the monsoon penetration is limited to the bottom of the Gulf of Guinea facing Cameroons, while in 1976 it entered the African Continent through the whole Gulf Coast, from Senegal to Cameroons. In 1976, the monsoon went up in latitude 3 0 to 5 0 more to the north than in 1975 [fr

  19. Isotope hydrogeological study of the underground repository for radioactive wastes at Morsleben

    International Nuclear Information System (INIS)

    Gellermann, R.; Hebert, D.

    1991-01-01

    As a contribution of safety assessment of the underground repository for radioactive wastes (ERA) in Morsleben isotope investigations in the hydrosphere has been carried out. The measured tritium concentrations of brines infiltrating into the mine cannot be interpreted in a conventional way due to contamination of mine air with tritium. However, modelling the isotope exchange allows conclusions regarding the water balance of the dripping brines. A complex interpretation which includes hydrogeochemical data results in a qualitative assessment of the infiltrating brines in regard to their hazard potential. An acute danger cannot be derived from the data available up to the present. The natural input of cosmogenic radionuclides (tritium, radiocarbon) into the aquifers above the salt level permits to study radionuclide migration at the ERA site. Tritium from the nuclear weapon tests is detectable up to a depth of 50 m below groundwater level with a maximum in about 20 m. From these data infiltration velocities of 1.6 m/a at maximum and 0.9 m/a in average are derived. The 14 C measurements of samples from more than 100 m depth yield model ages in the order of 10 4 years. This indicates a significantly reduced groundwater dynamic in the deeper horizons. (orig.) [de

  20. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1989-01-01

    Following the ''First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop

  1. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  2. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  3. Techniques and problems in studying intestinal absorption with radioactive isotopes in children

    International Nuclear Information System (INIS)

    James, W.P.T.; Waterlow, J.C.

    1976-01-01

    Radioactive isotopes give substantial promise for assisting the study of gastrointestinal absorption in children in that they allow reduction or elimination of the collection of blood, urine and faeces specimens. These operations are particularly difficult and unreliable in infants, on whom greatest interest in paediatric gastroenterology is centred in the tropics. Here intestinal malabsorption is most commonly associated with malnutrition, lactose intolerance, gastroenteritis, parasitic infestation and iron-deficiency anaemia. Two general techniques that have been employed are whole-body counting and analyses of 14 CO 2 exhaled in the breath after the feeding of 14 C-labelled nutrients. The former is advantageous if radionuclides suitable for the test at hand exist; the latter may be hard to interpret because of problems in the distribution and metabolism of the nutrient and intermediary products. Proper selection and understanding of the tests is particularly important in paediatric work, where the use of radioactive tracer techniques is unacceptable merely for the convenience of the investigator. (author)

  4. Possibilities for Beam Stripping Solutions at a Rare Isotope Accelerator (RIA)

    International Nuclear Information System (INIS)

    Greife, Uwe

    2006-01-01

    As part of the DOE RIA R and D effort we investigated the possibilities and problems of beam strippers in the different heavy ion accelerator components of a possible Rare Isotope Accelerator (RIA) facility. We focused on two beam stripping positions in the RIA heavy ion driver where benchmark currents of up to 5 particle (micro)A 238-U were projected at energies of 10.5 MeV/u and 85 MeV/u respectively. In order to select feasible stripper materials, data from experiments with Uranium beams at Texas A and M and GSI were evaluated. Based on these results thermal estimates for a possible design were calculated and cooling simulations with commercially available software performed. Additionally, we performed simulations with the GEANT4 code on evaluating the radiation environment for our beam stripping solution at the 85 MeV/u position in the RIA driver

  5. Possibilities for beam stripping solutions at a rare isotope accelerator (RIA)

    International Nuclear Information System (INIS)

    Greife, Uwe; Simmons, Ellen; Erikson, Luke; Jewett, Cybele; Livesay, Jake; Chipps, Kelly

    2007-01-01

    We investigated the possibilities and problems of beam strippers in the different heavy ion accelerator components of a possible rare isotope accelerator (RIA) facility. We focused on two beam stripping positions in the RIA heavy ion driver where benchmark currents of up to 5 particle μA 238 U were projected at energies of 10.5 MeV/u and 85 MeV/u, respectively. In order to select feasible stripper materials, data from experiments with uranium beams at the Texas A and M cyclotron and the Gesellschaft fuer Schwerionenforschung (GSI) accelerator were evaluated. Based on these results thermal estimates for a possible design were calculated and cooling simulations with commercially available software performed. Additionally, we performed simulations with the GEANT4 code on evaluating the radiation environment for our beam stripping solution at the 85 MeV/u position in the RIA driver

  6. Development and test of a cryogenic trap system dedicated to confinement of radioactive volatile isotopes in SPIRAL2 post-accelerator

    Science.gov (United States)

    Souli, M.; Dolégiéviez, P.; Fadil, M.; Gallardo, P.; Levallois, R.; Munoz, H.; Ozille, M.; Rouillé, G.; Galet, F.

    2011-12-01

    A cryogenic trap system called Cryotrap has been studied and developed in the framework of nuclear safety studies for SPIRAL2 accelerator. The main objective of Cryotrap is to confine and reduce strongly the migration of radioactive volatile isotopes in beam lines. These radioactive gases are produced after interaction between a deuteron beam and a fissile target. Mainly, Cryotrap is composed by a vacuum vessel and two copper thermal screens maintained separately at two temperatures T1=80 K and T2=20 K. A Cryocooler with two stages at previous temperatures is used to remove static heat losses of the cryostat and ensure an efficient cooling of the system. Due to strong radiological constraints that surround Cryotrap, the coupling system between Cryocooler and thermal screens is based on aluminum thermo-mechanical contraction. The main objective of this original design is to limit direct human maintenance interventions and provide maximum automated operations. A preliminary prototype of Cryotrap has been developed and tested at GANIL laboratory to validate its design, and determine its thermal performance and trapping efficiency. In this paper, we will first introduce briefly SPIRAL2 project and discuss the main role of Cryotrap in nuclear safety of the accelerator. Then, we will describe the proposed conceptual design of Cryotrap and its main characteristics. After that, we will focus on test experiment and analyze experimental data. Finally, we will present preliminary results of gas trapping efficiency tests.

  7. Lifetime measurements using radioactive ion beams at intermediate energies and the Doppler shift method

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Melon, B.; Pissulla, T.; Rother, W.; Fransen, C.; Moeller, O.; Zell, K.O.; Jolie, J. [IKP, Univ. zu Koeln (Germany); Petkov, P. [Bulg. Acad. of Science, INRNE, Solfia (Bulgaria); Starosta, K.; Przemyslaw, A.; Miller, D.; Chester, A.; Vaman, C.; Voss, P.; Gade, A.; Glasmacher, T.; Stolz, A.; Bazin, D.; Weisshaar, D. [NSCL, MSU, East Lansing (United States)

    2007-07-01

    Absolute transition probabilities are crucial quantities in nuclear structure physics. Therefore, it is important to establish Doppler shift (plunger) techniques also for the measurement of level lifetimes in radioactive ion beam experiments. After a first successful test of the Doppler Shift technique at intermediate energy (52MeV/u) with a stable {sup 124}Xe beam, a plunger has been built and used in two experiments, performed at the NSCL/MSU with the SEGA Ge-array and the S800 spectrometer. The aim of the first experiment was to investigate the plunger technique after a knock-out reaction using a radioactive {sup 65}Ge beam at 100 MeV/u for populating excited states in {sup 64}Ge. The second experiment aimed to measure the lifetimes of the first 2{sup +} states in {sup 110,114}Pd with the plunger technique after Coulomb excitation at beam energies of 54 MeV/u. First results of both experiments will be presented and discussed. (orig.)

  8. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  9. A positive (negative) surface ionization source concept for radioactive ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ ≅ 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered by continually feeding a highly electropositive vapor through the ionizer matrix. The use of this technique to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam (RIB) applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in the use at the Holifield radioactive ion beam facility (HRIBF). The design features and operational principles of the source are described in this report. (orig.)

  10. Commissioning results of the ReA EBIT charge breeder at the NSCL: First reacceleration of stable-isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.edu; Schwarz, S.; Kittimanapun, K.; Rodriguez, J.A.; Sumithrarachchi, C.; Barquest, B.; Berryman, E.; Cooper, K.; Fogleman, J.; Krause, S.; Kwarsick, J.; Nash, S.; Perdikakis, G.; Portillo, M.; Rencsok, R.; Skutt, D.; Steiner, M.; Tobos, L.; Wittmer, W.; Bollen, G.; and others

    2013-12-15

    Highlights: • Latest results with the electron-beam ion trap of the ReA post-accelerator at the NSCL. • First reacceleration of stable-isotope beams. • First injection of stable-isotope beams from the NSCL’s beam stopping vault. -- Abstract: ReA is a reaccelerator of rare-isotope beams at the National Superconducting Cyclotron Laboratory (NSCL). The rare isotopes are produced by fast projectile fragmentation. After production, they are separated in-flight and thermalized in a He gas “catcher” cell before being sent to ReA for reacceleration to a few MeV/u. One of its main components is an electron-beam ion trap (EBIT) employed to convert injected singly charged ions to highly charged ions prior to injection into linear-accelerator structures. The ReA EBIT features a high-current electron gun, a long trap structure, and a two-field superconducting magnet to provide both the high electron-beam current density needed for fast charge breeding and high capture probability of injected beams. This paper presents recent commissioning results. In particular, {sup 39}K{sup +} ions have been injected, charge bred to {sup 39}K{sup 16+} and extracted for reacceleration up to 60 MeV. First charge-breeding results of beams injected from a commissioning Rb ion source in the NSCL’s beam “stopping” vault are also presented.

  11. Ion beam trajectory simulation of carbon isotopes in cyclotron DECY-13

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2014-01-01

    A simulation on the ion beam trajectories of various carbon isotopes "1"2C, "1"3C, and "1"4C in DECY-13 cyclotron has been carried out using Scilab 5.4.1 software. Calculations in the simulation were carried out in 3 dimensions. The simulation shows trajectory separations, which provide possibility for "1"4C measurement such as in carbon dating at accelerating voltage frequency of about 72 MHz. (author)

  12. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    Carnelli, P.F.F.; Almaraz-Calderon, S.; Rehm, K.E.; Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C.L.; Lai, J.; Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C.; Paul, M.; Ugalde, C.

    2015-01-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15 C+ 12 C fusion reactions at energies around the Coulomb barrier

  13. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  14. Measurements of neutron yields and radioactive isotope transmutation in collisions of relativistic ions with heavy nuclei

    International Nuclear Information System (INIS)

    Brandt, R.

    1999-01-01

    The paper is based on the report presented at the 85th Session of the JINR Scientific Council. Some aspects of experimental studies of the problem of reprocessing radioactive wastes by means of transmutation in the fields of neutrons generated by relativistic particle beams are discussed. Research results on measurement of neutron yields in heavy targets irradiated with protons at energies up to 3.7 GeV as well as transmutation cross sections of some fission products (I-129) and actinides (Np-237) using radiochemical methods, activation detectors, solid state nuclear track detectors and other methods are presented. Experiments have been performed at the accelerator complex of the Laboratory of High Energies, JINR. Analogous results obtained by other research groups are also discussed

  15. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  16. Production of Rare Earth Isotope Beams for Radiotracer-DLTS on SiC

    CERN Multimedia

    2002-01-01

    Electrical properties of semiconductors are extremely sensitive to minor traces of impurities and defects. This fact allows to intentionally modify material properties and is thus the very basis of semiconductor electronics and optoelectronics. In the present project, electronic properties and doping effects of rare-earth elements in the technologically important semiconductor SiC are to be investigated using optical and electrical characterization techniques like Photoluminescence, Deep Level Transient Spectroscopy and Thermal Admittance Spectroscopy. By using the elemental transmutation of radioactive isotopes as a tracer, it will be guaranteed that the impurity-related band gap states can definitively be distinguished from intrinsic or process-induced defects. For SiC up to now only detailed investigation of Er- related deep levels have been reported, preliminary data exist for Sm- and Gd- impurities. In this project we propose the implantation of Pr and Eu isotopes for detailed level studies.

  17. Universal method for effusive-flow characterization target ion source/vapor transport systems for radioactive ion beam generation (abstract)

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, J.-C.; Liu, Y.; Cole, J. A.; Williams, C.

    2004-01-01

    Worldwide interest in the use of accelerated radioactive ion beams (RIBs) for exploring reactions important in understanding the structure of the nucleus and nuclear astrophysical phenomena has motivated the construction of facilities dedicated to their production and acceleration. Many facilities utilize the isotope-separator-on-line (ISOL) method in which species of interest are generated within a solid or liquid target matrix. Experimentally useful RIBs are often difficult to generate by this technique because of the times required for diffusion from the interior of the target material, and to effusively transport the species of interest to the ion source following diffusion release in relation to its lifetime. Therefore, these delay times must be minimized. We have developed an experimental method that can be used to determine effusive-flow times of arbitrary geometry target/vapor transport systems. The technique utilizes a fast valve to measure effusive-flow times as short as 0.1 ms for any chemically active or inactive species through any target system, independent of size, geometry and materials of construction. In this report, we provide a theoretical basis for effusive flow through arbitrary geometry vapor transport systems, describe a universal experimental apparatus for measuring effusive-flow times, and provide time spectra for noble gases through prototype RIB target/vapor-transport systems

  18. Travel Times of Water Derived from Three Naturally Occurring Cosmogenic Radioactive Isotopes

    Science.gov (United States)

    Visser, Ate; Thaw, Melissa; Deinhart, Amanda; Bibby, Richard; Esser, Brad

    2017-04-01

    Hydrological travel times are studied on scales that span six orders of magnitude, from daily event water in stream flow to pre-Holocene groundwater in wells. Groundwater vulnerability to contamination, groundwater surface water interactions and catchment response are often focused on "modern" water that recharged after the introduction of anthropogenic tritium in precipitation in 1953. Shorter residence times are expected in smaller catchments, resulting in immediate vulnerability to contamination. We studied a small (4.6 km2) alpine (1660-2117 m) catchment in a Mediterranean climate (8 ˚ C, 1200 mm/yr) in the California Sierra Nevada to assess subsurface storage and investigate the response to the recent California drought. We analyzed a combination of three cosmogenic radioactive isotopes with half-lives varying from 87 days (sulfur-35), 2.6 years (sodium-22) to 12.3 years (tritium) in precipitation and stream samples. Tritium samples (1 L) are analyzed by noble gas mass spectrometry after helium-3 accumulation. Samples for sulfur-35 and sodium-22 are collected by processing 20-1000 L of water through an anion and cation exchange column in-situ. Sulfur-35 is analyzed by liquid scintillation counting after chemical purification and precipitation. Sodium-22 is analyzed by gamma counting after eluting the cations into a 4L Marinelli beaker. Monthly collected precipitation samples show variability of deposition rate for tritium and sulfur-35. Sodium-22 levels in cumulative yearly precipitation samples are consistent with recent studies in the US and Japan. The observed variability of deposition rates complicates direct estimation of stream water age fractions. The level and variability of tritium in monthly stream samples indicate a mean residence time on the order of 10 years and only small contributions of younger water during high flow conditions. Estimates of subsurface storage are in agreement with estimates from geophysical studies. Detections of sodium-22

  19. Radioactive and stable cesium isotope distributions and dynamics in Japanese cedar forests.

    Science.gov (United States)

    Yoschenko, Vasyl; Takase, Tsugiko; Hinton, Thomas G; Nanba, Kenji; Onda, Yuichi; Konoplev, Alexei; Goto, Azusa; Yokoyama, Aya; Keitoku, Koji

    2018-06-01

    Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133 Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137 Cs/ 133 Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem

  20. Environmental isotopes assist in the site assessment of Vaalputs radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Levin, M.

    1986-01-01

    The first South African nuclear waste disposal facility is to be sited in an arid environment with an average annual rainfall of about 78mm. The ground water might therefore be virtually stationary, making the geohydrology of the area crucial in the assessment of radionuclide dispersal difficult to study with standard hydraulic methods. Environmental isotopes, which label the water itself and some of its dissolved constituents are able to give synoptic information about the ground water; from this, some projections about future mobility can be made. Tritium profiles in the unsaturated zone show the limited extent of rain water infiltration, which generally extends down to 3-4 metres, with sporadic evidence of deeper penetration through cracks and rootholes in the thick clay cover. Soil moisture therefore seems to occur in tightly bound and more mobile components. This is confirmed by occasionally measurable tritium observed in the saturated zone. Radiocarbon in the ground water cannot be simply interpreted on account of the nature of the granite aquifer. Although suggesting ages of several thousands of years, radiocarbon proves that the water is not 'fossil' or derived from the last pluvial period, postulated to have occurred some 12 000 years ago. Recharge appears to be more ongoing and to occur periodically and locally as a result of outliers within the present climatological regime. Regional movement of ground water is however very limited, as spatial variations seen in the radiocarbon data of the ground water are non-systematic. These conclusions are supported by the distribution of the non-radioactive isotopes, such as oxygen-18

  1. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Torresi, D.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Costa, L. [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, PD (Italy); Glodariu, T. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania); Guglielmetti, A. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica,Università di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Dipartimento di Scienze Fisiche, Università di Napoli, Via Cinthia, I-80126 Napoli (Italy); Parascandolo, C. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Pierroutsakou, D. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Signorini, C.; Soramel, F. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Stroe, L. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania)

    2013-12-15

    Highlights: • Production of in-flight Radioactive Ion Beams via two-body reactions. • Development of a cryogenic gas target. • Event-by-event tracking via Parallel Plate Avalanche Counters (PPACs). -- Abstract: The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of {sup 7}Be, {sup 8}B and {sup 17}F in the energy range 3–5 MeV/u have been produced with intensities about 3 × 10{sup 5}, 1.6 × 10{sup 3} and 10{sup 5} pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed.

  2. Potential and limitations of nucleon transfer experiments with radioactive beams at REX-ISOLDE

    CERN Document Server

    Gund, C.; Cub, J.; Dietrich, A.; Hartlein, T.; Lenske, H.; Pansegrau, D.; Richter, A.; Scheit, H.; Schrieder, G.; Schwalm, D.

    2001-01-01

    As a tool for studying the structure of nuclei far off stability the technique of $\\gamma$-ray spectroscopy after low-energy single-nucleon transfer reactions with radioactive nuclear beams in inverse kinematics was investigated. Modules of the MINIBALL germanium array and a thin position-sensitive parallel plate avalanche counter (PPAC) to be employed in future experiments at REX-ISOLDE were used in a test experiment performed with a stable $^{36}$S beam on deuteron and $^{9}$Be targets. It is demonstrated that the Doppler broadening of $\\gamma$ lines detected by the MINIBALL modules is considerably reduced by exploiting their segmentation, and that for beam intensities up to 10$^{6}$ particles/s the PPAC positioned around zero degrees with respect to the beam axis allows not only to significantly reduce the gamma background by requiring coincidences with the transfer products but also to control the beam and its intensity by single particle counting. The predicted large neutron pickup cross-sections of neut...

  3. A hydrochemical and isotopic case study around a near surface radioactive waste disposal

    International Nuclear Information System (INIS)

    Szanto, Zs.; Svingor, E.; Futo, I.; Palcsu, L.; Molnar, M.; Rinyu, L.

    2007-01-01

    As part of the site characterisation program for the near surface radioactive waste treatment and disposal facility (RWTDF) at Puespoekszilagy, Hungary, water quality and environmental isotope investigations have been carried out. Water samples for major ion chemistry, tritium, 14 C and stable isotope ratio measurements (δ 18 O, δD, δ 34 S, δ 13 C) were taken quarterly from the observation wells, the streams and the precipitation during the period 1999-2001. The chemical composition of groundwaters presented a continuous transition from waters situated on one side to waters on the top and on the other slope of the disposal suggesting the mixing of the three hydrochemical ''endmembers''. Most of δD and δ 18 O data were situated between GMWL and LMWL (δD = 7.2 x δ 18 O - 1 permille) with Oligocene aquifer presenting recharge of Pleistocene origin and water on the top and the gentle slope of the hill presenting recharge of Holocene origin. δ 34 S values of dissolved sulphates varied in a wide range (-14.2 permille to +5.4 permille). The tritium in precipitation varied between 4.4 and 18.1 TU with an annual weighted average of 10 ± 0.3 TU. The streams showed larger fluctuations than the wells, but the changes of δ 18 O, δD and T were small compared to those in precipitation (showing seasonal variation). Stable isotope, tritium and radiocarbon data proved that the replenishment of groundwater is slow on the steeper side and the direction of water movement is toward the gentle slope of the hill. It was judged that this path is the one that is most likely to give rise to high doses and, therefore, was used in the hydrological modelling of the safety assessment that followed the present work. The possibility that there may also be transport through the unsaturated zone and systems of perched water tables in layers 1 and 2 to both the Szilagyi and Nemedi streams cannot be excluded; the transport along these pathways is likely to be intermittent. (orig.)

  4. Secondary ion mass spectrometry and environment. SIMS as applied to the detection of stable and radioactive isotopes in marine organisms

    International Nuclear Information System (INIS)

    Chassard-Bouchaud, C.; Escaig, F.; Hallegot, P.

    1984-01-01

    Several marine species of economical interest, Crustacea (crabs and prawns) and Molluscs (common mussels and oysters) were collected from coastal waters of France: English Channel, Atlantic Ocean and Mediterranean Sea and of Japan. Microanalyses which were performed at the tissue and cell levels, using Secondary Ion Mass Spectrometry, revealed many contaminants; stable isotopes as well as radioactive actinids such as uranium were detected. Uptake, storage and excretion target organs were identified [fr

  5. The use of natural radioactive Isotopes in the determination of pollution sources of AL-Kabir AL-Shimali river

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Shwiekani, R.; Mamish, S.

    2012-01-01

    In the present research, variations of concentration levels of some natural radioactive isotopes (226 Ra, 210 Po,210 Pb, U and Th isotopes) and some trace elements (Cu, Zn, Pb, Cd) in water and sediments of AL-Kabir AL-Shimali river during the period of 2009-2010 have been studied. The samples were collected along the river from the asphalt factory to the end of the mouth of the river in the Mediterranean Sea. Results showed that concentrations of natural radioactive isotopes have been increased slightly in water and sediments of the river after the asphalt factory and after the factories area, while the concentrations of Rn in the river's water were low along the river except the waters of October 16, Lake Dam that reached a value of 341 mBq/l. These high concentrations in water and sediments of the AL-Kabir AL-Shimali River were due to discharges from the asphalt factory and other factories known to contain natural radioactive isotopes, indicating the possibility of using these isotopes in the determination of pollution sources of AL-Kabir AL-Shimali River. However, the measured concentrations are relatively low compared to the values reported in the world due to river water flow that dilute concentrations of these elements. On the other hand, measurements of trace elements (Cu,Zn,Pb,Cd) showed low concentrations in the waters of the river, with some increases in the concentrations in river sediments after the asphalt factory and the factories area , indicating the contribution of the factories outlets in this increase. The results were compared with the results of previous studies conducted on the Euphrates and the Orontes, where the comparison showed lower values in the AL-Kabir AL-Shimali river environment. (author)

  6. The use of natural radioactive isotopes in the determination of pollution sources of Al-Kabir Al-Shimali river

    International Nuclear Information System (INIS)

    ALmasri, M.; Shweikani, R.; Mamish, S.; Al-Haleem, M.A.; Al-Shamali, K.; Jerby, B.

    2010-10-01

    In the present research, variations of concentration levels of some natural radioactive isotopes ( 226 Ra, 210 Po, 210 Pb, U and Th isotopes) and some trace elements (Cu, Zn, Pb, Cd) in water and sediments of Al-Kabir Al-Shimali river during the period of 2009-2010 have been studied. The samples were collected along the river from the asphalt factory to the end of the mouth of the river in the Mediterranean Sea. Results showed that concentrations of natural radioactive isotopes have been increased slightly in water and sediments of the river after the asphalt factory and after the factories area, while the concentrations of Rn in the river's water were low along the river except the waters of October 16, Lake Dam that reached a value of 341mBq/l. These high concentrations in water and sediments of the Al-Kabir Al-Shimali River were due to discharges from the asphalt factory and other factories known to contain natural radioactive isotopes, indicating the possibility of using these isotopes in the determination of pollution sources of Al-Kabir Al-Shimali River. However, the measured concentrations are relatively low compared to the values reported in the world due to river water flow that dilute concentrations of these elements. On the other hand, measurements of trace elements (Cu,Zn,Pb,Cd) showed low concentrations in the waters of the river, with some increases in the concentrations in river sediments after the asphalt factory and the factories area , indicating the contribution of the factories outlets in this increase. The results were compared with the results of previous studies conducted on the Euphrates and the Orontes, where the comparison showed lower values in the Al-Kabir Al-Shimali river environment.(author)

  7. Nuclear structure and astrophysics with accelerated beams of radioactive ions: A new multidisciplinary research tool

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1995-01-01

    After a brief discussion of the techniques for producing accelerated radioactive ion beams (RIBs), several recent scientific applications are mentioned. Three general nuclear structure topics, which can be addressed using RIBs, are discussed in some detail: possible modifications of the nuclear shell structure near the particle drip lines; various possibilities for decoupling the proton and neutron mass distributions for weakly bound nuclei; and tests of fundamental nuclear symmetries for self-conjugate and nearly self-conjugate nuclei. The use of RIBs to study r- and rp-process nucleosynthesis also is discussed

  8. Selection of targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    In this report, the authors describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the Holifield Radioactive Ion Beam Facility (HRIBF) as well as prototype ion sources that show promise for future use for RIB applications. A brief review of present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect fast and efficient diffusion release of the short-lived species is also given

  9. Cold valleys in the radioactive decay of 248-254Cf isotopes

    International Nuclear Information System (INIS)

    Biju, R.K.; Sahadevan, Sabina; Santhosh, K.P.; Joseph, Antony

    2008-01-01

    Based on the concept of cold valley in cold fission and fusion, we have investigated the cluster decay process in 248-254 Cf isotopes. In addition to alpha particle minima, other deep minima occur for S, Ar and Ca clusters. It is found that inclusion of proximity potential does not change the position of minima but minima become deeper. Taking Coulomb and proximity potential as interacting barrier for post-scission region, we computed half-lives and other characteristics for various clusters from these parents. Our study reveals that these parents are stable against light clusters and unstable against heavy clusters. Computed half-lives for alpha decay agree with experimental values within two orders of magnitude. The most probable clusters from these parents are predicted to be 46 Ar, 48,50 Ca which indicate the role of doubly or near doubly magic clusters in cluster radioactivity. Odd A clusters are found to be favorable for emission from odd A parents. Cluster decay model is extended to symmetric region and it is found that symmetric fission is also probable which stresses the role of doubly or near doubly magic 132 Sn nuclei. Geiger-Nuttal plots were studied for various clusters and are found to be linear with varying slopes and intercepts. (author)

  10. Possibility of wine dating using the natural Pb-210 radioactive isotope

    International Nuclear Information System (INIS)

    Hubert, Ph.; Pravikoff, M.S.; Gaye, J.

    2015-01-01

    To control the authenticity of an old wine without opening the bottle, we developed a few years ago a method based on the measurement of the 137 Cs activity. However, for recent vintages, the 137 Cs activity drops to far too low values (most of the time less than 10 mBq/L for a 10-year-old wine) for this method to perform correctly. In this paper we examine the possibility to date wines using the natural radio-element 210 Pb which has a 22-year period. This new method we propose implies the opening of the bottle and the follow-on destruction of the wine itself, which means that it can only be used for investigating non-expensive bottles or wine lots where there are multiple bottles of the same provenance. Uncertainties on the resulting 210 Pb radioactivity values are large, up to more than 50%, mainly due to local atmospheric variations, which prevents us to carry out precise dating. However it can be used to discriminate between an old wine (pre-1952) and a young wine (past-1990), an information that cannot be obtained with the other techniques based on other isotopes ( 137 Cs, 14 C or tritium). - Highlights: • We correlate the measured 210 Pb activity in wine to the vintage year. • A precise dating with 210 Pb is still difficult. • The method is complementary to the 137 Cs technique we previously developed

  11. Behaviour of radioactive and stable isotopes of calcium in the soil-solution-plant system at different soil humidity

    International Nuclear Information System (INIS)

    Karavaeva, E.N.; Molchanova, I.V.

    1976-01-01

    The results of experiments performed to study the behaviour of radioactive and stable isotopes of Ca in soil - solution - plant system at different soil moistening are given. The experiments have been conducted in culture pans with two soils: soddy-meadow and soddy-podzolic differing in a number of physico-chemical properties. The solution of radioactive Ca( 45 CaCl 2 ) has been applied to soddy-meadow soil at the rate of 0.2 μcurie/kg, and to soddy-podzolic soil - at the rate of 0.1 μcurie/kg. The distribution and accumulation coefficients are estimated by the ratio to the total content of stable Ca and 45 Ca in soil. A direct relationship between distribution coefficients and the rate of soil moistening is observed. It has been established that 45 Ca and the natural stable isotopes of Ca applied to the soil differ in the type of distribution in soil - soil solution system and in accumulation by plants. However, a great similarity has been observed in behaviour of radioactive and stable isotopes of Ca depending on soil moistening

  12. Utilization of small-amount of radioactive isotope. Report of Technical Committee for Using Minor Radioactive Sources, Section of Physical Science and Industry, JRIAS. (1)

    International Nuclear Information System (INIS)

    1999-01-01

    The report of this series is a summary of considerations made by the committee which was founded in January, 1991, for stimulating the utilization of small-amount radioactive isotopes. The present report (1) is composed of three chapters concerning the purpose above mentioned and achievement of the committee, and reasonable regulation for the sealed isotopes. For the purpose, analysis was made for the present states of small-amount radioisotope utilization and of legal regulation and proposals were done by the committee. In the past, the first (1/1, 1991-5/31, 1992) and second (6/1, 1992 5/31, 1994) terms of the committee investigated the present states of utilization and safety handling in Japan and foreign countries, methods for stimulation, education and re-evaluation of the past trials for technology of those sub-legal isotopes together with translation of IAEA SAFETY SERIES No. 104 into Japanese, which was published in the journal Radioisotopes vol.44 (1995), for reference of the present states in Japan and foreign countries. In the chapter of proposal for the reasonable regulation for the sealed isotopes, the present committee investigated the present states of utilization of the industrial instruments and daily necessities which are equipped with small-amount radioisotopes, their legal and safety problems involved and the basis of calculation of exemption level, and made proposals for reasonable regulation. (K.H.)

  13. Production of multicharged radioactive ion beams for spiral: studies and realization of the first target-ion source system

    International Nuclear Information System (INIS)

    Maunoury, L.

    1998-01-01

    In the framework of the SPIRAL project, which concerns the production and the acceleration of a multicharged radioactive ions beam, the following part has been studied: production and ionization of the radioactive ions beam. A first target-source (nanogan II), devoted exclusively to the production of multicharged radioactive ions gas type beams, has been studied and tested. The diffusion efficiency has been deduced from the diffusion equations (Fick laws). This efficiency is governed by the following parameters: the temperature, the grains size of the target, the Arrhenius parameters and the radioactive period. Another study concerning the production targets is presented. It deals with the temperature distribution allowing an utilization of more than one month at a temperature of 2400 K. Another development (SPIRAL II) is devoted to the production of high neutron content radioactive atoms created by the uranium fission, from fast neutrons. The neutrons beam is produced by the ''stripping break-up'' of a deutons beam in a converter. (A.L.B.)

  14. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  15. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    CERN Document Server

    Catherall, R; Gilardoni, S S; Köster, U

    2003-01-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN, tests have been made on standard ISOLDE actinide targets using fast neutron bunches produced by bombarding thick, high-Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten an...

  16. Evaluation of the Shielding Performance for the Hot-cell built in 100-MeV Isotope Beam-line of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Min; Park, Sung Kyun; Min, Yi Sub; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study describes the structure of the hot-cell constructed in KOMAC for radioisotope production and evaluates the shielding performance for the hot-cell via the radiation shielding ability test. Korea multi-purpose accelerator complex (KOMAC) is currently operating 20-MeV and 100-MeV beam-line one by on. Additional 100-MeV beam-line and target room (TR101) are planned for the purpose of the radioisotope production in this year. The initial goal of the radioisotope production is to produce the radioactive isotopes, Sr-82 or Cu-67, used widely for the diagnosis and treatment of the cancer. In order to produce these radioisotopes mentioned, the proton beam with the energy between 70-MeV and 100- MeV at a beam current of 300 μA is irradiated into a solid target made of ZnO or RbCl. After the irradiation of the proton beam during approximately 100 hours, the radioisotope Sr-82 with the radioactivity amount of about 3.8 Ci or the Cu-67 with the amount of about 2.7 Ci will be produced. Radioisotopes produced though this process should be conveyed from the TR101 target room to the PR101 processing room and then in order to be delivered into the place for the next process step, a hot-cell is necessary. Result of the shielding performance evaluation of the hot-cell for producing radioisotopes shows the necessity of the shield reinforcement using lead material at side of the lead glass window.

  17. Development and application of RP-HPLC methods for the analysis of transition metals and their radioactive isotops in radioactive waste

    International Nuclear Information System (INIS)

    Seekamp, S.

    1999-07-01

    A major criterion in the final disposal of nuclear waste is to keep possible changes in the geosphere due to the introduction of radioactive waste as small as possible and to prevent any escape into the biosphere in the long term. The Federal Office for Radiation Protection (BfS) has therefore established limit values for a number of nuclides. Verifying these limits has to date involved laborious wet chemical analysis. In order to accelerate quantification there is a need to develop rapid multielement methods. HPLC methods represent a starting point for this development. Chemical separation is necessary to quantify β-emitters via their radioactive radiation since they are characterized by a continuous energy spectrum. A method for quantifying transition metals and their radioactive isotopes from radioactive waste has been created by using a chelating agent to select the analytes and RP-HPLC to separate the complexes formed. In addition to separating the matrix, complexation on a precolumn has the advantage of enriching the analytes. The subject of this thesis is the development and application of the method including studies of the mobile and stationary phase, as well as the optimization of all parameters, such as pH value, sample volume etc., which influence separation, enrichment or detection. The method developed was successfully tested using cement samples. It was also used for investigations of ion exchange resins and for trace analysis in calcium fluoride. Furthermore, the transferability of the method to actinides was examined by using a different complexing agent. (orig.) [de

  18. Experimental methods in radioactive ion-beam target/ion source development and characterization

    International Nuclear Information System (INIS)

    Welton, R.F.; Alton, G.D.; Cui, B.; Murray, S.N.

    1998-01-01

    We have developed off-line experimental techniques and apparatuses that permit direct measurement of effusive-flow delay times and ionization efficiencies for nearly any chemically reactive element in high-temperature target/ion sources (TIS) commonly used for on-line radioactive ion-beam (RIB) generation. The apparatuses include a hot Ta valve for effusive-flow delay-time measurements, a cooled molecular injection system for determination of ionization efficiencies, and a gas flow measurement/control system for introducing very low, well-defined molecular flows into the TIS. Measurements are performed on a test stand using molecular feed compounds containing stable complements of the radioactive nuclei of interest delivered to the TIS at flow rates commensurate with on-line RIB generation. In this article, the general techniques are described and effusive-flow delay times and ionization efficiency measurements are reported for fluorine in an electron-beam plasma target/ion source developed for RIB generation and operated in both positive- and negative-ion extraction modes. copyright 1998 American Institute of Physics

  19. Proceedings of the workshop on the science of intense radioactive ion beams

    International Nuclear Information System (INIS)

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort

  20. Selection of RIB targets using ion implantation at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Dellwo, J.

    1995-01-01

    Among several major challenges posed by generating and accelerating adequate intensities of RIBs, selection of the most appropriate target material is perhaps the most difficult because of the requisite fast and selective thermal release of minute amounts of the short-lived product atoms from the ISOL target in the presence of bulk amounts of target material. Experimental studies are under way at the Oak Ridge National Laboratory (ORNL) which are designed to measure the time evolution of implanted elements diffused from refractory target materials which are candidates for forming radioactive ion beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF). The diffusion coefficients are derived by comparing experimental data with numerical solutions to a one-dimensional form of Fick's second law for ion implanted distributions. In this report, we describe the experimental arrangement, experimental procedures, and provide time release data and diffusion coefficients for releasing ion implanted 37 Cl from Zr 5 Si 3 and 75 As, 79 Br, and 78 Se from Zr 5 Ge 3 and estimates of the diffusion coefficients for 35 Cl, 63 Cu, 65 Cu, 69 Ga and 71 Ga diffused from BN; 35 Cl, 63 Cu, 65 Cu, 69 Ga, 75 As, and 78 Se diffused from C; 35 Cl, 68 Cu, 69 Ga, 75 As, and 78 Se diffused from Ta

  1. Experiments with radioactive nuclear beams II; Experimentos con haces nucleares radiactivos II

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-12-15

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction {sup 12}C + {sup 12}C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  2. Proceedings of the workshop on the science of intense radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J.B.; Vieira, D.J. (comps.)

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  3. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  4. Deflection of atomic beams with isotope separation by optical resonance radiation using stimulated emission and the ac stark effect

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Liao, P.F.H.

    1977-01-01

    Improved atomic beam deflection and improved isotope separation, even in vapors, is proposed by substituting the A.C. Stark effect for the baseband chirp of the pushing beam in the prior proposal by I. Nebenzahl et al., Applied Physics Letters, Vol. 25, page 327 (September 1974). The efficiency inherent in re-using the photons as in the Nebenzahl et al proposal is retained; but the external frequency chirpers are avoided. The entire process is performed by two pulses of monochromatic coherent light, thereby avoiding the complication of amplifying frequency-modulated light pulses. The A.C. Stark effect is provided by the second beam of coherent monochromatic light, which is sufficiently intense to chirp the energy levels of the atoms or isotopes of the atomic beam or vapor. Although, in general, the A.C. Stark effect will alter the isotope shift somewhat, it is not eliminated. In fact, the appropriate choice of frequencies of the pushing and chirping beams may even relax the requirements with respect to the isotope absorption line shift for effective separation. That is, it may make the isotope absorption lines more easily resolvable

  5. Production of intense metallic ion beams in order of isotopic separations

    International Nuclear Information System (INIS)

    Sarrouy, J.L.

    1955-01-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [fr

  6. Measurement of g factors of excited states in radioactive beams by the transient field technique: 132Te

    International Nuclear Information System (INIS)

    Benczer-Koller, N.; Kumbartzki, G.; Gurdal, G; Gross, Carl J; Krieger, B; Hatarik, Robert; O'Malley, Patrick; Pain, S. D.; Segen, L.; Baktash, Cyrus; Bingham, C. R.; Danchev, M.; Grzywacz, R.; Mazzocchi, C.

    2008-01-01

    The g factor of the 2 1 + state in 52 132 Te, E(2 1 + ) = 0.9739 MeV, r = 2.6 ps, was measured by the transient field technique applied to a radioactive beam. The development of an experimental approach necessary for work in radioactive beam environments is described. The result g = 0.28(15) agrees with the previous measurement by the recoil-in-vacuum technique, but here the sign of the g factor is measured as well

  7. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  8. The usage of electron beam to produce radio isotopes through the uranium fission by γ-rays and neutrons

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.V.

    2010-01-01

    We treat the production of desirable radio isotopes due to the 238 U photo-fission by the bremsstrahlung induced in converter by an initial electron beam provided by a linear electron accelerator. We consider as well the radio isotope production through the 238 U fission by the neutrons that stem in the 238 U sample irradiated by that bremsstrahlung. The yield of the most applicable radio isotope 99 Mo is calculated. We correlate the findings acquired in the work presented with those obtained by treating the nuclear photo-neutron reaction. Menace of the plutonium contamination of an irradiated uranium sample because of the neutron capture by 238 U is considered. As we get convinced, the photo-neutron production of radio isotopes proves to be more practicable than the production by the uranium photo- and neutron-fission. Both methods are certain to be brought into action due to usage of the electron beam provided by modern linear accelerators

  9. Studies of nuclei using radioactive beams. [Space Astronomy Lab. , Univ. of Florida, Gainesville, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  10. Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  11. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  12. Use of radioanalytical methods for determination of uranium, neptunium, plutonium, americium and curium isotopes in radioactive wastes

    International Nuclear Information System (INIS)

    Geraldo, Bianca

    2012-01-01

    Activated charcoal is a common type of radioactive waste that contains high concentrations of fission and activation products. The management of this waste includes its characterization aiming the determination and quantification of the specific radionuclides including those known as Difficult-to-Measure Radionuclides (RDM). The analysis of the RDM's generally involves complex radiochemical analysis for purification and separation of the radionuclides, which are expensive and time-consuming. The objective of this work was to define a methodology for sequential analysis of the isotopes of uranium, neptunium, plutonium, americium and curium present in a type of radioactive waste, evaluating chemical yield, analysis of time spent, amount of secondary waste generated and cost. Three methodologies were compared and validated that employ ion exchange (TI + EC), extraction chromatography (EC) and extraction with polymers (ECP). The waste chosen was the activated charcoal from the purification system of primary circuit water cooling the reactor IEA-R1. The charcoal samples were dissolved by acid digestion followed by purification and separation of isotopes with ion exchange resins, extraction and chromatographic extraction polymers. Isotopes were analyzed on an alpha spectrometer, equipped with surface barrier detectors. The chemical yields were satisfactory for the methods TI + EC and EC. ECP method was comparable with those methods only for uranium. Statistical analysis as well the analysis of time spent, amount of secondary waste generated and cost revealed that EC method is the most effective for identifying and quantifying U, Np, Pu, Am and Cm present in charcoal. (author)

  13. A novel technique for measurement of atomic data of rare and radioactive isotopes: a case study in gadolinium isotopes

    International Nuclear Information System (INIS)

    Marathe, A.P.; Venugopalan, A.; Jagatap, B.N.

    2002-01-01

    A new method of performing high resolution spectroscopy of rare and radioactive elements by devising a new design of a HCDL and using this as an emission source for high resolution spectroscopy on recording Fabry-Pecort optical spectrometer (REFPOS) has been developed

  14. Induced radioactivity in the target station and decay tunnel from a 4MW proton beam

    CERN Document Server

    Agosteo, S; Otto, T; Silari, Marco

    2003-01-01

    An important aspect of a future CERN Neutrino Factory is the material activation arising from a 2.2 GeV, 4 MW proton beam striking a mercury target. A first estimation of the hadronic inelastic interactions and the production of residual nuclei in the target, the magnetic horn, the decay tunnel, the surrounding rock and a downstream dump has been performed by the Monte Carlo hadronic cascade code FLUKA. The aim is both to assess the dose equivalent rate to be expected during maintenance work and to evaluate the amount of residual radioactivity, which will have to be disposed of after the facility has ceased operation. This paper discusses the first results of such calculations.

  15. Development of a low-energy radioactive ion beam facility for the MARA separator

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Philippos, E-mail: philippos.papadakis@jyu.fi; Moore, Iain; Pohjalainen, Ilkka; Sarén, Jan; Uusitalo, Juha [University of Jyväskylä, Department of Physics (Finland)

    2016-12-15

    A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyväskylä, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

  16. A two-zone cosmic ray propagation model and its implication of the surviving fraction of radioactive cosmic ray isotopes

    International Nuclear Information System (INIS)

    Simon, M.; Scherzer, R.; Enge, W.

    1977-01-01

    In cosmic ray propagation calculations one can usually assume a homogeneous distribution of interstellar matter. The crucial astrophysical parameters in these models are: The path length distribution, the age of the cosmic ray particles and the interstellar matter density. These values are interrelated. The surviving fraction of radioactive cosmic ray isotopes is often used to determine a mean matter density of that region, where the cosmic ray particles may mainly reside. Using a Monte Carlo Propagation Program we calculated the change in the surviving fraction quantitatively assuming a region around the sources with higher matter density. (author)

  17. Assessment for ion beam analysis methods about hydrogen isotope in hydrogen storaged metal

    International Nuclear Information System (INIS)

    Ding Wei; Long Xinggui; Shi Liqun

    2006-01-01

    In this paper, experimental arrangements of measuring hydrogen isotope concentration and distribution in metal hydride with ion beam analysis methods were reported, and the advantage and disadvantage of different methods were analyzed too. Experiment results show that it can get abundant information and accurate value by these ways. It can get an accurate value since it's the Rutherford cross-section, and the Mylar film used in the experiment is thin enough for H, D and T distinguishing each other while using ERD analysis method with 6.0 MeV O ion beam to proceed this work, but the disadvantage of this method is that the sample preparing is more difficult, and the analysis depth is lower. It could get the distribution information of H, D and T and the analysis depth is about 3.0 μm while using ERD analysis method with 7.4 MeV 4 He ion beam, but the disadvantage is that the spectra of H, D and T overlap each other, which makes a big error in simulated calculation. If using PBS method with 3.0 MeV proton, the analysis depth is deeper, but it couldn't get the H distribution information. (authors)

  18. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    International Nuclear Information System (INIS)

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  19. High resolution optical spectroscopy in isotopically-pure Si using radioactive isotopes: towards a re-evaluation of deep centres

    CERN Multimedia

    2008-01-01

    Deep centres in silicon have been studied in great detail over the last 50 years and much progress has been made in the understanding and control of impurities in this material. Much of this effort has been focussed on the problems of metallic impurities such as Fe, Ag, Cu and Au. These are impurities that diffuse quickly into the crystal and hamper device performance. Although the understanding of these impurity centres in Si is widely thought to be "solved" recent experiments with isotopically-pure Si are disproving long-held results and are opening up new perspectives on the constitutent nature of deep centres in Si. In particular, there is new evidence to show that the family of Cu, Ag and Au may all show essentially the same behaviour by forming a cluster of $\\textbf{any four atoms}$ of these elements. This has been established for Cu and Ag through the use of different stable isotopes in the preparation of samples, but the case of Au remains unproven since there is only one stable Au isotope. In this pr...

  20. Radioactivity

    International Nuclear Information System (INIS)

    Chelet, Y.

    2006-01-01

    The beginning of this book explains the why and how of the radioactivity, with a presentation of the different modes of disintegration. Are tackled the reports between radioactivity and time before explaining how the mass-energy equivalence appears during disintegrations. Two chapters treat natural radioisotopes and artificial ones. This book makes an important part to the use of radioisotopes in medicine (scintigraphy, radiotherapy), in archaeology and earth sciences (dating) before giving an inventory of radioactive products that form in the nuclear power plants. (N.C.)

  1. Radioactivity

    International Nuclear Information System (INIS)

    2002-01-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  2. Development of an intense O-15 radioactive ion beam using low energy protons

    CERN Document Server

    Lapi, S; Zyuzin, A Yu; D'Auria, J M

    2003-01-01

    The production of copious quantities of sup 1 sup 5 O, (half-life = 122.2 s) for astrophysical applications has been a source of concern at TRIUMF and ISAC for some time. An sup 1 sup 5 O beam is needed for two experiments ( sup 1 sup 5 O(alpha,gamma) sup 1 sup 9 Ne and sup 1 sup 5 O( sup 6 Li,d) sup 1 sup 9 Ne) at ISAC. The beam flux required for these experiments is extremely high, (between 10 sup 9 and 10 sup 1 sup 1 sup 1 sup 5 O/s) and thus high efficiencies at all steps in the process will be required. Difficulties arise due to the fact that oxygen is very reactive chemically and thus is difficult to extract from a thick spallation target. The possibility of using one of the small cyclotrons on site (TR13, CP42 or TR30) for the production of this isotope ( sup 1 sup 5 O) has been discussed. This production approach will involve the use of low energy protons to interact with a nitrogen gas target via the sup 1 sup 5 N(p,n) sup 1 sup 5 O reaction, which is accessible with attainable particle energies usin...

  3. Rare isotope beam energy measurements and scintillator developments for ReA3

    Science.gov (United States)

    Lin, Ling-Ying

    The ReAccelerator for 3 MeV/u beams (ReA3) at the National Superconducting Cyclotron Laboratory (NSCL) in Michigan State University can stop rare isotope beams produced by in-flight fragmentation and reaccelerate them in a superconducting linac. The precise knowledge of the energy and the energy spread of the ion beams extracted from the ReA3 linac is essential for experimental requirement in many applications. Beam energy determination methods such as implantation on a Si detector and/or using calibrated linac settings are precise within a few tens of keV/u. In order to determine beam energies with good resolution of less than 0.5 % FWHM, a 45 degree bending magnet with a movable slit is used to determine the absolute beam energy based on the magnetic rigidity. Two methods have been developed for the energy calibration of the beam analyzing magnet: gamma-ray nuclear resonance reactions and a time-of-flight (TOF) technique. The resonance energies of gamma-ray resonant reactions provide well-known and precise calibration points. The gamma ray yields of the 27Al(p,gamma)28Si at Ep= 992 keV and 632 keV resonances and 58Ni(p,gamma)59Cu at Ep= 1843 keV resonance have been measured with the high efficiency CAESAR (CAESium iodide ARray) and SuN (Summing NaI(Tl)) detectors. By fitting the observed resonant gamma-ray yields, not only the beam energy can be precisely correlated with the magnetic field but also beam energy spread can be obtained. The measured beam energy spread is consistent with beam optics calculations. A time-of-flight system for determining the absolute energy of ion beams and calibrating the 45 degree magnetic analyzer has been developed in ReA3 by using two identical secondary electron monitors (grid-MCP detectors) with appropriate separation. The TOF technique is applicable to the variety of beam energies and ion particles. Velocities of ion beam are determined by simultaneously measuring the arrival time of beam bunches at the two detectors with

  4. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  5. Spectroscopy of high lying resonances in {sup 9}Be produced with radioactive {sup 8}Li beams

    Energy Technology Data Exchange (ETDEWEB)

    Lepini-Szily, A.; Leistenschneider, E.; Lichtenthäler, R.; Guimaraes, V.; Condori, R. Pampa; Scarduelli, V.; Rossi, E.; Zagatto, V.A.; Aguiar, V.A.P.; Duarte, J., E-mail: alinka@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Mendes Junior, D.R.; Faria, P.N. de; Santos, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica; Descouvemont, P. [Physique Nucleaire Theorique et Physique Mathematique, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Pires, K.C.C. [Universidade Tecnologica Federal do Parana (UFTPR), Cornelio Procopio, PR (Brazil); Morcelle, V. [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil); Moraes, M.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Britos, T.; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Zamora, J.C. [Technische Universität Darmstadt, (Germany); Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    We present the results of the {sup 8}Li(p,α){sup 5}He and {sup 8}Li(p,p){sup 8}Li reactions measured at the RIBRAS (Radioactive Ion Beams in Brazil) system. The experiment was realized in inverse kinematics using a thick [CH{sub 2}]{sub n} polyethylene target and an incident {sup 8}Li beam, produced by RIBRAS. Using the thick target method, the complete excitation function could be measured between E{sub cm} = 0.2 - 2.1 MeV, which includes the Gamow peak energy region. The excitation function of the {sup 8}Li(p,α){sup 5}He reaction, populating resonances between 16.888 and 19.0 MeV in {sup 9}Be, was obtained[1] and the resonances were fitted using R-matrix calculations. This study shed light on spins, parities, partial widths and isospin values of high lying resonances in {sup 9}Be. The measurement of the resonant elastic scattering {sup 8}Li(p,p){sup 8}Li populating resonances in the same energy region can constrain the resonance parameters. Preliminary results of the elastic scattering are also presented. (author)

  6. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    International Nuclear Information System (INIS)

    Urrego-Blanco, J.P.; Bingham, C.R.; Brandt, B. van den; Galindo-Uribarri, A.; Gomez del Campo, J.; Hautle, P.; Konter, J.A.; Padilla-Rodal, E.; Schmelzbach, P.A.

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3 He- 4 He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4 He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12 C by protons in inverse kinematics are presented

  7. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    International Nuclear Information System (INIS)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented

  8. Criminal Protection of the Consumer of Irradiated food and Consumer Protection Against Contaminated Food with Radioactive Isotopes

    International Nuclear Information System (INIS)

    El-Baroudy, M.M.

    2003-01-01

    The widespread peaceful applications of atomic energy in food and agriculture had various positive and negative impacts on the economies of food and its production. Food is positively affected through either its treatment by ionizing radiation to preserve and reduce losses in it or by using mutations treated by ionizing radiation for improving their productivity. On the other hand, negative effects of nuclear energy on food are caused by nuclear explosions in nuclear weapons testing as well as by different nuclear energy applications and the wastes formed as a result of it. These activities can cause different contamination levels of the environment and particularly, the arable land. This in turn leads to the production of contaminated food with radioactive isotopes. Consequently, the present work which is subdivided into two parts, involves a study of both the positive and negative effects of ionizing radiations and radioactive isotopes on food. The first part deals with the legal protection of food treated by ionizing radiations to preserve it, explaining the related different legal and regulatory aspects. Food irradiation processes should be carried out in a framework of the national control regulations and in a way that is consistent with the reference standards adopted internationally for the safety and hygiene of food

  9. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  10. Chemistry, spectroscopy and isotope separation of zirconium and its compounds as revealed by laser diagnostics of laser produced metal beams

    International Nuclear Information System (INIS)

    Hackett, P.A.; Humphries, M.; Rayner, D.M.; Bourne, O.L.; Mitchell, A.

    1986-01-01

    Recent work from the author's laboratory on zirconium beams is reviewed. Zirconium metal beams have been produced by laser vaporization of solid zirconium targets coupled with supersonic expansion of helium gas. The resultant supersonic metal beam is shown to present an ideal environment for various spectroscopic techniques. The state distribution of zirconium atoms in the beam is obtained from low resolution laser induced fluorescence (LIF) studies. High resolution LIF studies give information on the hyperfine splitting in the ground state of the zirconium-91 isotope. Information on the hyperfine splitting in the excited state is obtained from quantum beat spectroscopy. Low resolution 2 color multiphoton ionization spectroscopy using a XeCl laser allows isotope separation of all isotopes of zirconium. These metal beams are highly reactive and can be used to produce novel chemical species. The results of two studies in which a reactant is added to the expansion gas are reported here. Zirconium oxide (ZrO), a molecule observed in the emission spectra of cool stars and in laboratory studies at high temperatures, is produced in a low temperature, collision free environment by adding small quantities of oxygen to the expansion gas. Zirconium fluoride (ZrF), a molecule previously unobserved, is produced by the addition of small quantities of CF/sub 4/

  11. Radioactivity Handbook

    International Nuclear Information System (INIS)

    Firestone, R.B.; Browne, E.

    1985-01-01

    The Radioactivity Handbook will be published in 1985. This handbook is intended primarily for applied users of nuclear data. It will contain recommended radiation data for all radioactive isotopes. Pages from the Radioactivity Handbook for A = 221 are shown as examples. These have been produced from the LBL Isotopes Project extended ENDSF data-base. The skeleton schemes have been manually updated from the Table of Isotopes and the tabular data are prepared using UNIX with a phototypesetter. Some of the features of the Radioactivity Handbook are discussed here

  12. K isomerism and collectivity in neutron-rich rare-earth isotopes.

    OpenAIRE

    Patel, Zena

    2016-01-01

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated an...

  13. The TRIple PLunger for EXotic beams TRIPLEX for excited-state lifetime measurement studies on rare isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, H., E-mail: iwasaki@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Dewald, A.; Braunroth, T.; Fransen, C. [Institut für Kernphysik der Universität zu Köln, D-50937 Cologne (Germany); Smalley, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Lemasson, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Morse, C.; Whitmore, K.; Loelius, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-01-11

    A new device, the TRIple PLunger for EXotic beams (TRIPLEX), has been developed for lifetime measurement studies with rare isotope beams. This plunger device holds up to three metal foils in the beam path and facilitates the recoil distance Doppler-shift technique to measure lifetimes of nuclear excited states in the range of 1 ps to 1 ns. The unique design allows independent movement of the target and the second degrader with respect to a fixed first degrader in between, enabling advanced experimental approaches, such as the differential recoil distance method and the double recoil distance method. The design and control of the device are presented in this paper, together with simulated performances of the new applications. As an example of actual experiments, results from the lifetime measurement of the neutron-rich {sup 17}C isotope performed at the National Superconducting Cyclotron Laboratory are shown.

  14. Deposition of thin films by retardation of an isotope separator beam

    International Nuclear Information System (INIS)

    Colligon, J.S.; Grant, W.A.; Williams, J.S.; Lawson, R.P.W.

    1976-01-01

    An ion optical lens system capable of retarding and focusing a mass-analysed ion beam, produced in the University of Salford isotope separator, from an energy of 20 keV to 50-60 eV is described. Using this system it is technically feasible to deposit spectroscopically pure ions of all species onto a substrate to produce thin film for devices and junctions. Preliminary investigations of the technique have been carried out using lead and copper ions which were deposited onto silicon single-crystal substrates. These ions were selected because their high mass relative to silicon allowed analyses of the deposited films by low-angle Rutherford backscattering of 2 MeV He ions; the single-crystal silicon substrate enabled the extent of damage due to unretarded neutral particles to be estimated from channelling data. Results for lead films showed that films less than 150 A in thickness were discontinuous and scanning electron microscopy confirmed their 'island' structure. For thicker deposits, of order 600 A, the films were continuous. Results are also presented for copper-lead sandwich layers produced by successive depositions. Channelling experiments indicated that the neutral component was less than 5% of the total ion-beam intensity. Investigations of the spatial distribution of the lead films indicated a non-uniformity which, it is suggested, arises from a fault in the retardation lens design. (author)

  15. State of radionuclides in seawater. Comparison of natural stable and artificial radioactive isotope s of mercury and zinc in natural waters of the arid zone of the USSR

    International Nuclear Information System (INIS)

    Rakhmatov, U; Khikmatov, K; Kist, A.A.; Kulmatov, R.A.; Teshabaev, S.T.; Volkov, A.A.

    1986-01-01

    This paper studies the state of stable and artificial radioactive isotopes of merury and zinc in natural waters of the arid zone of the USSR by radioactivity and radiochemical methods. Convergent results have been obtained for the dissolved forms of mercury and zinc in natural waters of the arid zone in a comparison of the results of radioactivation analysis and laboratory simulation using the radionuclides mercury-203 and zinc-65

  16. Use of stable and radioactive isotopes in the determination of the recharge rate in Djeffara aquifer system southern Tunisia

    International Nuclear Information System (INIS)

    Trabelisi, R.; Zouari, K.

    2012-12-01

    Southern Tunisia is characterized by the presence of several hydrogeological basins, which extend over Tunisian borders. The Djeffara aquifer is one of the most important aquifer systems n this area and contains several interconnected aquifer levels. Stable (δ 2 H, δ 18 O and δ 13 C) and radioactive isotopes (1 4C , 3 H ) have been used to evaluate recharge mechanisms and groundwater residence time in the Djeffara multi-aquifer. Thesis aquifer presents two compartments, the first one ( west of the Medenine fault system) is unconfined with a well defined isotope fingerprint, the second compartment is deeper and confined multi- tracer results show groundwater of different origins, and ages , and that tectonic features control ground water flows. The unconfined part was mostly recharged during the Holocene. The recharge rates of this aquifer, inferred by 1 4C ages, are variable and could reach 3.5 mm/year. However, stable isotope composition and 1 4 'C content of the confined groundwater indicates carrier recharge during late pelistocene cold periods. (Author)

  17. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [ed.

    1992-12-31

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world's experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  19. Source term estimation and the isotopic ratio of radioactive material released from the WIPP repository in New Mexico, USA

    International Nuclear Information System (INIS)

    Thakur, P.

    2016-01-01

    After almost 15 years of operations, the Waste Isolation Pilot Plant (WIPP) had one of its waste drums breach underground as a result of a runaway chemical reaction in the waste it contained. This incident occurred on February 14, 2014. Moderate levels of radioactivity were released into the underground air. A small portion of the contaminated underground air also escaped to the surface through the ventilation system and was detected approximately 1 km away from the facility. According to the source term estimation, the actual amount of radioactivity released from the WIPP site was less than 1.5 mCi. The highest activity detected on the surface was 115.2 μBq/m 3 for 241 Am and 10.2 μBq/m 3 for 239+240 Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m 3 of 241 Am and 5.8 μBq/m 3 of 239+240 Pu at a monitoring station located approximately 1 km northwest of the WIPP facility. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment. In this paper, the early stage monitoring data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and an oversight monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP) LLC were utilized to estimate the actual amount of radioactivity released from the WIPP underground. The Am and Pu isotope ratios were measured and used to support the hypothesis that the release came from one drum identified as having breached that represents a specific waste stream with this radionuclide ratio in its inventory. This failed drum underwent a heat and gas producing reaction that overpowered its vent and

  20. Efigie: a computer program for calculating end-isotope accumulation by neutron irradiation and radioactive decay

    International Nuclear Information System (INIS)

    Ropero, M.

    1978-01-01

    Efigie is a program written in Fortran V which can calculate the concentration of radionuclides produced by neutron irradiation of a target made of either a single isotope or several isotopes. The program includes optimization criteria that can be applied when the goal is the production of a single nuclide. The effect of a cooling time before chemical processing of the target is also accounted for.(author) [es

  1. Production of radioactive nuclides in inverse reaction kinematics

    International Nuclear Information System (INIS)

    Traykov, E.; Rogachevskiy, A.; Bosswell, M.; Dammalapati, U.; Dendooven, P.; Dermois, O.C.; Jungmann, K.; Onderwater, C.J.G.; Sohani, M.; Willmann, L.; Wilschut, H.W.; Young, A.R.

    2007-01-01

    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly relevant when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented

  2. Nuclear data for unstable isotopes

    International Nuclear Information System (INIS)

    Sorlin, O.

    1992-01-01

    Nuclear Physics and Astrophysics are both entrusted with the task of understanding nucleosynthesis and energy production in the stars. At high temperatures and densities present in explosive scenarii such as the early universe, cataclysmic binary stars (nova or accretion stars), and supernovae, the nucleosynthesis proceeds throughout unstable nuclei. In order to produce and to study the most exotic isotopes that are not accessible from stable beam - stable (or radioactive) target experiments, it is necessary to develop facilities that utilize Radioactive Nuclear Beams (RNB). The existing methods for producing unstable nuclei will be described in paragraph 2. A review of the major explosive stellar processes will be made through some selected examples using RNB

  3. Radioactivity. Centenary of radioactivity discovery

    International Nuclear Information System (INIS)

    Charpak, G.; Tubiana, M.; Bimbot, R.

    1997-01-01

    This small booklet was edited for the occasion of the exhibitions of the celebration of the centenary of radioactivity discovery which took place in various locations in France from 1996 to 1998. It recalls some basic knowledge concerning radioactivity and its applications: history of discovery, atoms and isotopes, radiations, measurement of ionizing radiations, natural and artificial radioactivity, isotope dating and labelling, radiotherapy, nuclear power and reactors, fission and fusion, nuclear wastes, dosimetry, effects and radioprotection. (J.S.)

  4. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  5. Yrast spectroscopy in {sup 49-51}Ti via fusion-evaporation reaction induced by a radioactive beam

    Energy Technology Data Exchange (ETDEWEB)

    Niikura, M.; Ideguchi, E.; Michimasa, S.; Ota, S.; Shimoura, S.; Wakabayashi, Y. [University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Aoi, N.; Baba, H.; Fukuchi, T.; Ichikawa, Y.; Kubo, T.; Kurokawa, M.; Ohnishi, T.; Suzuki, H.; Yoshida, K. [RIKEN Nishina Center, Wako, Saitama (Japan); Iwasaki, H.; Onishi, T.K.; Suzuki, D. [University of Tokyo, Department of Physics, Tokyo (Japan); Liu, M.; Zheng, Y. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2009-12-15

    In-beam {gamma} -ray spectroscopy of high-spin states in {sup 49-51}Ti was performed via the fusion-evaporation reaction using a radioactive beam. By excitation function and {gamma} - {gamma} coincidence analysis, yrast high-spin levels up to I=(21/2{sup -}),(11{sup +}),(17/2{sup -}) in {sup 49-51}Ti were determined. The levels were compared with full-pf -shell model calculation. The level structure indicates the persistency of the N=28 shell gap at yrast states in {sup 49-51}Ti. (orig.)

  6. Isotopic and Radioactivity Fingerprinting of Groundwater in the United Arab Emirates (UAE)

    Energy Technology Data Exchange (ETDEWEB)

    Murad, A.; Hussein, S. [Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Aldahan, A. [Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Hou, X. L. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde (Denmark); Possnert, G. [Tandem Laboratory, Uppsala University, Uppsala (Sweden)

    2013-07-15

    A pilot investigation using radioactivity together with chemical features was conducted to characterize groundwater sampled from wells drilled in fractured Paleogen-Neogen carbonate rocks along the foothill of about 1200 m absl high mountain and wells drilled in Quaternary clastic sediments from a nearby alluvial plain in the southeastern part of the UAE. These two water modes are relatively easily separated by their chloride and EC (salt content) contents and provide an ideal case for testing radioactivity fingerprints. The groundwater of the alluvial plain, which is expected to reflect a short distance precipitation recharge source, indicates a concentration of {sup 222}Rn and {sup 226}Ra 2-3 orders of magnitude lower than the groundwater of the carbonate rocks. The range of variability for gross alpha is similar, but the gross beta activity indicates only 1 order of magnitude difference between the two water types. The radioactively richer groundwater of the carbonate aquifers compared to the alluvium plane may reflect the signature of deep basinal fluids. These marked differences in radioactivity of the two water modes clearly suggests that radioactive fingerprinting can provide a potential method for the identification groundwater sources in the UAE. (author)

  7. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  8. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  9. The behaviour of radioactive isotopes in liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Watson, W.R.; Gwyther, J.R.

    1979-01-01

    A small scale, all AISI 316 stainless steel, pumped loop has been operated with 134 Cs, 137 Cs and 22 Na in the sodium. The loop has a distillation sampler, oxygen meter, two cold traps and a small subsidiary pumped loop initially containing the isotopes adsorbed on uranium oxide. The distribution of the isotopes within the loop has been determined over the temperature range 100 to 300 0 C with 1 to 2 ppm of oxygen in the sodium and a sodium velocity about half the Reynolds number required for the onset of turbulence in the vertical legs. (author)

  10. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.

    2007-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent

  11. Radioactive beams produced by the ISOL method: development for laser ionization and for surface ionization; Faisceaux exotiques par methode ISOL: developpements pour l'ionisation par laser et l'ionisation de surface

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Faouzi

    2004-10-01

    The works were carried out in the framework of the research program PARRNe (production of radioactive neutron-rich nuclei). This program aims to determine optimal conditions to produce intense beams of neutron-rich isotopes. This thesis treats multiple technical aspects related to the production of separate radioactive isotopes in line (ISOL). It deals mainly with the development of the target-source unit which is the key element for projects such as SPIRAL-2 or EURISOL.The first part presents the various methods using fission as production mode and compares them: fission induced by thermal neutrons, induced by fast neutrons and photofission. The experiment carried out at CERN validated the interest of the photofission as a promising production mode of radioactive ions. That is why the institute of nuclear physics of Orsay decided to build a linear electron accelerator at the Tandem d'Orsay (ALTO).The second part of this thesis deals with the development of uranium targets. The X-rays diffraction and Scanning Electron Microscopy have been used as analysis techniques. They allowed to determine the chemical and structural characteristics of uranium carbide targets as function of various heating temperatures. After the production, the process of ionization has been studied. Two types of ion source have been worked out: the first one is a surface ion source and the second one is a source based on resonant ionization by laser. These two types of sources will be used for the ALTO project. (author)

  12. Simultaneous Measurements of Nanoaerosols and Radioactive Aerosols Containing the Short-lived Radon Isotopes.

    Czech Academy of Sciences Publication Activity Database

    Otáhal, P.P.S.; Burian, I.; Ondráček, Jakub; Ždímal, Vladimír; Holub, R.F.

    2017-01-01

    Roč. 175, č. 5 (2017), s. 53-56 ISSN 0144-8420. [Conference on Protection against Radon at Home and at Work / 13th International Workshop on the Geological Aspects of Radon Risk Mapping /8./. Prague, 12.09.2017-16.09.2017] Institutional support: RVO:67985858 Keywords : equilibrium-equivalent concentration * radon * radioactive nenoaerosols Subject RIV: DL - Nuclear Waste, Radioactive Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 0.917, year: 2016

  13. Determination of Isotopes Types and Activities in Radioactive Waste of Kosovo A Power Plant

    OpenAIRE

    , B Cena; , K Dollani; , G Hodolli

    2013-01-01

    The second nnportant event after the 1nventory of rad10act1ve waste 1n Kosovo, their location and the number of radioactive sources, is the determination of the type of radioisotope and their activities. This activity was conducted entirely in difŞcult terrain and was taken due to the absence in most cases of resource certiŞcates or any other document with the necessary information that will enable the identiŞcation of radioactive sources and their activity. In this way the activity was under...

  14. α decay and cluster radioactivity of nuclei of interest to the synthesis of Z =119 , 120 isotopes

    Science.gov (United States)

    Poenaru, D. N.; Gherghescu, R. A.

    2018-04-01

    Super-heavy nuclei of interest for the forthcoming synthesis of the isotopes with Z =119 , 120 are investigated. One of the very interesting latest experiments was performed at the velocity filter SHIP (GSI Darmstadt) trying to produce 299120 in a fusion reaction 248Cm(54Cr,3 n )299120 . We report calculations of α -decay half-lives using four models: AKRA (Akrawy), ASAF (analytical superasymmetric fission), UNIV (universal formula), and semFIS (semi-empirical formula based on fission theory). The released energy, Q , is calculated using the theoretical model of atomic masses, WS4. For Sr,9492 cluster radioactivity of 120,302300 we predict a branching ratio relative to α decay of -0.10 and 0.49, respectively, meaning that it is worth trying to detect such kinds of decay modes in competition with α decay.

  15. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson

    2013-02-01

    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  16. Study of isotopic desequilibrium of natural radioactive series in granitic environment: Pluton of El Berrocal (Toledo)

    International Nuclear Information System (INIS)

    Hernandez Benitez, A.

    1994-01-01

    This report summarizes the work funded by European Communities with contract '' The Berrocal project: characterization and validation of natural radionuclide migration processes under real conditions in a fissured granitic environment''. The author takes into account the following aspects in his study: isotope of natural radionuclides, sampling methods, analytic methodology and geological characteristics of the area

  17. Use of radioactive and stable isotopes in hydrologic studies. Some examples of its application in Ecuador

    International Nuclear Information System (INIS)

    Villalba, Fabio

    2001-01-01

    Isotope techniques have been applied in Ecuador in different cases, looking for solutions to specific problems related to the origin and age of ground waters, dam filtrations, characterization of lakes, river/aquifers interrelation, and others. This work presents a short review of these cases showing the applied technique and the results obtained

  18. Preparation of radioactive labelled compounds. Pt. 2. 82Br labelled organic bromine compounds by isotopic exchange

    International Nuclear Information System (INIS)

    Otto, R.

    1988-05-01

    Studies on isotopic exchange between organic bromine compounds and 82 Br labelled dioxane dibromide in the presence of AlCl 3 are described. The results obtained enable to develop a simple and quick preparation method for the labelling with 82 Br [fr

  19. Collinear laser spectroscopy on radioactive neutron-deficient lead and thallium isotopes

    International Nuclear Information System (INIS)

    Menges, R.

    1989-02-01

    The systematic study of the isotope shift in the neighbourhood of the closed shells was extended in this thesis to Z = 82. The elements lead and thallium were measured up to the mass 190 and 188 and the nuclear moments determined together with the change of the mean square charge radius. The accumulating of the recoil nuclei formed by heavy ion reactions in the bunched ion source of the GSI mass separator could be used in order to study the low-spin isomers with I = 2 of the neutron-deficient thallium isotopes up to A = 190. It is a clearly recognizable isomer shift against the I = 7 isomers shown which changes at A = 194 the sign. A phenomenon which also exists in the element mercury, but for which no sufficient explanation exists. The magnetic moments of the thallium isotopes complete the analysis of Ekstroem (1976) and confirm the choice of the sign of the magnetic moments of the I = 2 isomers. The application of the additivity rule to the odd-odd nuclei shows qualitatively good agreement with the experiment and confirms so the assignment of the configuration of the contributing nuclear states. The quadrupole moments show a slight oblate deformation of the 9/2 - intruder states. The moments of the lead isotopes show pronounced one-particle character and by this the nearly spherical shape of nuclei with closed proton shell. The deviation from the linear slope of the mean square radius of the lead isotopes onsetting at A = 194 cannot be explained by the mixing of the 0 1 + ground state with the deformed 0 2 + intruder state. The odd - even staggering and the buckling of the charge radii at the shell closure are very well reproduced by Hartree-Fock calculations which regard the 3- and 4-particle interactions in the nucleus. (orig.) [de

  20. Isotopic and Radioactivity Fingerprinting of Groundwater in the United Arab Emirates

    DEFF Research Database (Denmark)

    Murad, A.; Aldahan, A.; Hou, Xiaolin

    2013-01-01

    A pilot investigation using radioactivity together with chemical features was conducted to characterize groundwater sampled from wells drilled in fractured Paleogen-Neogen carbonate rocks along the foothill of about 1200 m absl high mountain and wells drilled in Quaternary clastic sediments from ...

  1. A kinematic-based methodology for radiological protection: Runoff analysis to calculate the effective dose for internal exposure caused by ingestion of radioactive isotopes

    Science.gov (United States)

    Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.

    2014-05-01

    We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes

  2. Physico-chemical reactions in the underground movement of radioactive isotopes

    International Nuclear Information System (INIS)

    Gailledreau, C.

    The physico-chemical state of the radioelements moving underground can influence considerably their migration velocity. In the case of 90 Sr--held on by monmorillonites, apatites, activated aluminum oxide--the occurrence of electronegative colloids, sorbing selectively 90 Sr results in an immediate break-through of this isotope. This phenomenon has been demonstrated in the case of the calcite phosphate reaction. A high pH is generally favorable to 90 Sr sorption (apatite, aluminum oxide). The occurrence of Ca 2+ ions acts very unfavorably on 90 Sr sorption by minerals specifics of this isotope (apatite, aluminum oxide). The same thing occurs with organic matters 137 Cs sorption, attributed to illitic clays, is little sensitive to the nature of the solution. Ruthenium-106 seems to move underground chiefly as a nitrosylruthenium hydroxide complex. This complex would be weakly sorbed on soil colloids by London--Van der Waals forces

  3. Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Thien; Tran, Le Bao; Ton, Thai Van; Chuong, Huynh Dinh; Tao, Chau Van [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics; VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Nuclear Technique Lab.; Tam, Hoang Duc [Ho Chi Minh City Univ. of Pedagogy (Viet Nam). Faculty of Physics; Quang, Ma Thuy [VNUHCM-Univ. of Science, Ho Chi Minh City (Viet Nam). Dept. of Nuclear Physics

    2017-07-15

    In this work, the angular dependent efficiency recorded by collimated NaI(Tl) detector is determined a quantification of the activity of mono- and multi-energy gamma emitting isotopes positioning in a waste drum. The simulated efficiencies using both MCNP5 and Geant4 are in good agreement with experimental results. Referring to these simulated efficiencies, we recalculated the source activity with the highest deviation of 13%.

  4. Validation of radioactive isotope activity measurement in homogeneous waste drum using Monte Carlo codes

    International Nuclear Information System (INIS)

    Thanh, Tran Thien; Tran, Le Bao; Ton, Thai Van; Chuong, Huynh Dinh; Tao, Chau Van; VNUHCM-Univ. of Science, Ho Chi Minh City; Tam, Hoang Duc; Quang, Ma Thuy

    2017-01-01

    In this work, the angular dependent efficiency recorded by collimated NaI(Tl) detector is determined a quantification of the activity of mono- and multi-energy gamma emitting isotopes positioning in a waste drum. The simulated efficiencies using both MCNP5 and Geant4 are in good agreement with experimental results. Referring to these simulated efficiencies, we recalculated the source activity with the highest deviation of 13%.

  5. Radioactive and radiogenic isotopes in sediments from Cooper Creek, Western Arnhem Land

    Energy Technology Data Exchange (ETDEWEB)

    Frostick, A. [Charles Darwin University, Darwin, NT 0909 (Australia); ERISS, GPO Box 461, Darwin, NT 0801 (Australia)], E-mail: alison.frostick@cdu.edu.au; Bollhoefer, A. [ERISS, GPO Box 461, Darwin, NT 0801 (Australia); Parry, D.; Munksgaard, N. [Charles Darwin University, Darwin, NT 0909 (Australia); Evans, K. [ERISS, GPO Box 461, Darwin, NT 0801 (Australia)

    2008-03-15

    Protection of the environment post-mining is a key objective of rehabilitation, especially where runoff and erosion from rehabilitated mine sites could potentially lead to contamination of the surrounding land and watercourses. As part of an overall assessment of the success of rehabilitation at the former Nabarlek uranium (U) mine, an appraisal of stable lead (Pb) isotopes, radionuclides and trace metals within sediments and soils was conducted to determine the off site impacts from a spatial and temporal perspective. The study found localised areas on and adjacent to the site where soils had elevated levels of trace metals and radionuclides. Lead isotope ratios are highly radiogenic in some samples, indicating the presence of U-rich material. There is some indication that erosion products with more radiogenic Pb isotope ratios have deposited in sediments downstream of the former ore body. However, there is no indication that the radiogenic erosion products found on the mine site at present have significantly contaminated sediments further downstream of Cooper Creek.

  6. Radioactive and radiogenic isotopes in sediments from Cooper Creek, Western Arnhem Land

    International Nuclear Information System (INIS)

    Frostick, A.; Bollhoefer, A.; Parry, D.; Munksgaard, N.; Evans, K.

    2008-01-01

    Protection of the environment post-mining is a key objective of rehabilitation, especially where runoff and erosion from rehabilitated mine sites could potentially lead to contamination of the surrounding land and watercourses. As part of an overall assessment of the success of rehabilitation at the former Nabarlek uranium (U) mine, an appraisal of stable lead (Pb) isotopes, radionuclides and trace metals within sediments and soils was conducted to determine the off site impacts from a spatial and temporal perspective. The study found localised areas on and adjacent to the site where soils had elevated levels of trace metals and radionuclides. Lead isotope ratios are highly radiogenic in some samples, indicating the presence of U-rich material. There is some indication that erosion products with more radiogenic Pb isotope ratios have deposited in sediments downstream of the former ore body. However, there is no indication that the radiogenic erosion products found on the mine site at present have significantly contaminated sediments further downstream of Cooper Creek

  7. Extended methods using thick-targets for nuclear reaction data of radioactive isotopes

    Science.gov (United States)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2017-09-01

    The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.

  8. Determination of radioactive emission origins based on analyses of isotopic composition

    International Nuclear Information System (INIS)

    Devell, L.

    1987-01-01

    The nature of radioactivity emissions can be determined through gamma spectroscopy of air samples with good precision, which means that the type of source of the emission may be found, e.g. nuclear weapons test, of nuclear power plant accident. Combined with information on wind trajectories it is normally possible to recognize time and area for the emission. In this preliminary study, the knowledge of and preparedness for such measurements are described. (L.E.)

  9. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    Science.gov (United States)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  10. Nuclear structure from radioactive decay

    International Nuclear Information System (INIS)

    Wood, J.L.

    1991-01-01

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models

  11. Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Myeong-Hwan; Lee, Young-Ouk [Korea Atomic Energy Research Institue, Daejeon (Korea, Republic of); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-12-15

    The possibilities of production of yet unknown neutron-rich isotopes of Md are explored in several multi-nucleon transfer reactions with actinide targets and stable and radioactive beams. The projectile-target combinations and bombarding energies are suggested to produce new neutron-rich isotopes of Md in future experiments. (orig.)

  12. Device for flame combustion of liquid or solid samples in radioactive isotope trace indication

    International Nuclear Information System (INIS)

    Kaartinen, N.H.

    1979-01-01

    The plant or animal tissue containing T and/or 14 C isotope indicator is in a small ignition cage within the combustion chamber. The ignition cage consists of Nichrome which supports the ignition procedure. The combustion chamber is maintained at a temperature above the condensation temperature of the vapours escaping from the tissue (e.g. H 2 O). The thimble type ignition cage burns uniformly together with the sample. It is no longer necessary to make pellets of the sample. (DG) [de

  13. Neutron and proton transmutation-activation cross section libraries to 150 MeV for application in accelerator-driven systems and radioactive ion beam target-design studies

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.; MacFarlane, R.E.; Mashnik, S.; Wilson, W.B.

    1998-05-01

    New transmutation-activation nuclear data libraries for neutrons and protons up to 150 MeV have been created. These data are important for simulation calculations of radioactivity, and transmutation, in accelerator-driven systems such as the production of tritium (APT) and the transmutation of waste (ATW). They can also be used to obtain cross section predictions for the production of proton-rich isotopes in (p,xn) reactions, for radioactive ion beam (RIB) target-design studies. The nuclear data in these libraries stem from two sources: for neutrons below 20 MeV, we use data from the European activation and transmutation file, EAF97; For neutrons above 20 MeV and for protons at all energies we have isotope production cross sections with the nuclear model code HMS-ALICE. This code applies the Monte Carlo Hybrid Simulation theory, and the Weisskopf-Ewing theory, to calculate cross sections. In a few cases, the HMS-ALICE results were replaced by those calculated using the GNASH code for the Los Alamos LA150 transport library. The resulting two libraries, AF150.N and AF150.P, consist of 766 nuclides each and are represented in the ENDF6-format. An outline is given of the new representation of the data. The libraries have been checked with ENDF6 preprocessing tools and have been processed with NJOY into libraries for the Los Alamos transmutation/radioactivity code CINDER. Numerous benchmark figures are presented for proton-induced excitation functions of various isotopes compared with measurements. Such comparisons are useful for validation purposes, and for assessing the accuracy of the evaluated data. These evaluated libraries are available on the WWW at: http://t2.lanl.gov/. 21 refs

  14. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  15. Measurement of the stellar (n,γ) cross section of the shortlived radioactive isotope 147Pm

    International Nuclear Information System (INIS)

    Gerstenhoefer, T.W.

    1993-05-01

    During helium burning in the red giant phase of stellar evolution, nuclei with A>60 are produced by the slow neutron capture process (s-process). Starting from the iron group isotopes, the synthesis path works along the valley of beta stability by subsequent neutron captures and beta decays. An important feature of the s-process is the occurence of branchings in this path whenever unstable isotopes with half-lives comparable to the typical neutron capture time scale of about one year are encountered. The analysis of the corresponding abundance patterns can be used to derive estimates for the stellar neutron flux, temperature, and density. Quantitative branching analyses require reliable (n,γ) cross sections for the branch point nuclei. This report presents the first ever measured (n,γ) cross section for the branch point 147 Pm (t 1/2 =2.6 yr) in the neutron energy range 1 n 7 Li(p,n) 7 Be reaction that allowes to simulate a quasi-stellar neutron spectrum. To this end, the rf gas discharge ion source and optical components of the Karlsruhe 3.75 Van de Graaff accelerator were revised. Last but not least, the radiation hazard of the 147 Pm sample (180 GBq) had to be accounted for. In addition of the measurements on 147 Pm, the stellar (n,γ) cross section on its stable daughter, 147 Sm was also determined, mainly in order to verify the experimental technique with Moxon-Rae detectors. (orig.)

  16. Production of secondary radioactive beams from 44 MeV/u Ar projectiles

    International Nuclear Information System (INIS)

    Bimbot, R.; Della Negra, S.; Aguer, P.; Bastin, G.; Anne, R.; Delagrange, H.; Hubert, F.

    1985-01-01

    Secondary beams have been produced through interaction of a 1760 MeV Ar beam with a 99 mg/cm 2 Be target. An achromatic spectrometer is used to select the magnetic rigidity corresponding to a given beam, and to transport this beam over a distance of about 18 m. The beam purity is studied using a solid state ΔE-E telescope. Beams of 38 S and 39 Cl are produced with a purity of about 80% and production rates of 1.5 10 -6 Isub(o) and 5.10 -5 Isub(o) respectively. Here Isub(o) denotes the primary beam intensity. Beams of 38 Ar, 39 Ar and 41 Kr are produced with about the same abundances as 39 Cl but with lower purities. It is shown that, by setting properly the experimental parameters, the beam production can be improved by a factor 2 to 5. This could lead to intensities of about 2.10 6 pps for 38 S and of 10 7 to 10 8 pps for the four other beams. The possibility of purifying these beams by placing a degrader between the two dipoles of the spectrometer is shown experimentally

  17. Chemisorption of organic iodine compounds forming from fission isotopes of radioactive iodine

    International Nuclear Information System (INIS)

    Tot, G.; Galina, F.; Zel'd, E.

    1977-01-01

    Studied is ethyl iodine adsorption, labelled by iodine 131, on palladium black and on aluminium oxide activized by palladium. The desorption of adsorbed iodine in the temperature range of 20-600 deg C by the mass spectroscopy and thermal gravimetric methods was investigated. At the ethyl iodine and palladium interaction the bond between carbon and iodine in the ethyl iodine molecule breaks down and extracting iodine reacts with palladium, forming a stable compound at high temperatures. Desorption of adsorbed iodine is insignificant up to the temperatures of 250-300 deg C. Thus, sorbents, containing palladium, may be successfully applied for iodine absorption from the organic iodine compounds. These compounds spontaneously appear from the iodine fragment ratio isotopes during their interaction with some environmental organic impurities

  18. Geological interpretation of Eastern Cuba Laterites from an airborne magnetic and radioactive isotope survey

    Energy Technology Data Exchange (ETDEWEB)

    Batista, J.A; Blanco, J [Departamento de Geologia, Instituto Superior Minero Metalurgico de Moa, (Cuba); Perez-Flores, M.A [Centro de Investigacion Cientifica y Educacion Superior de Ensenada, Baja California (Mexico)

    2008-04-15

    In eastern Cuba area several geophysical techniques have been applied to distinguish the main geological characteristics of the laterites which are of economical importance for the extraction of iron, nickel and chrome. The geophysical measurements include an aeromagnetic survey and thorium (eTh), potassium (K) and uranium (eU) isotope measurements. The results of gamma spectrometer measurements make a distinction between laterite reservoirs. The application of the magnetic and isotope methods allowed the determination of the distribution and development of the laterite crust, as well as the determination of hydrothermal alterations affecting the laterites, which is very useful for mining exploration and exploitation. Such alterations indicate the presence of silicates, which have negative effects on the metallurgic process. It is known that laterite crust has a high content of eU and eTh. [Spanish] Se han utilizado varias tecnicas geofisicas en la region oriental de Cuba para distinguir las principales caracteristicas geologicas de las lateritas, que poseen importancia economica para la extraccion de hierro, niquel y cobalto. Las mediciones geofisicas incluyen un estudio aeromagnetico y mediciones de isotopos de torio (eTh), potasio (K) y uranio (eU). Los resultados de las mediciones espectrometricas establecen diferencias entre los yacimientos de lateritas. De la aplicacion del metodo magnetico e isotopico se determino la distribucion y desarrollo de las cortezas lateriticas, asi como la ubicacion de alteraciones hidrotermales que afectan a las lateritas, lo cual es muy util durante la exploracion y explotacion minera. Esas alteraciones indican la presencia de silicatos, que tienen un efecto negativo en el proceso metalurgico. Se conoce que las cortezas lateriticas tienen altos contenidos de eU y eTh. De los contenidos de eU y eTh se infiere que las lateritas de la region de Moa se formaron antes que las de Mayari. De estas mediciones fue posible inferir el

  19. Application of naturally occurring isotopes and artificial radioactive tracer for monitoring water flooding in oil field

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, I.H.; Farooq, M.; Tasneem, M.A.; Rafiq, M.; Din, U.G.; Gul, S.

    2002-03-01

    Water flooding is an important operation to enhance oil recovery. Water is injected in the oil formation under high pressure through an injection well. Movement of the injected water is needed to be traced to test the performance of water flood, investigate unexpected anomalies in flow and verify suspected geological barriers or flow channels, etc. In the present study environmental isotopes and artificial radiotracer (tritium) were used at Fimkassar Oil Field of Oil and Gas Development Company Limited (OGDCL) where water flooding was started in March 1996 in Sakessar formation to maintain its pressure and enhance the oil recovery. Environmental isotopes: /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents were used to determine the breakthrough/transit time and contribution of fresh injected water. Water samples were collected from the injection well, production well and some other fields for reference indices of Sakessar Formation during June 1998 to August 1999. These samples were analyzed for the /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents. Results show that the water of production well is mixture of fresh water and formation water. The fresh water contribution varied from 67% to 80%, while remaining component was the old recharged formation water. This percentage did not change significantly from the time of break-through till the last sampling which indicates good mixing in the reservoir and absence of any quick channel. The initial breakthrough time was 27 months as the fresh water contributed significantly in the first appearance of water in the production well in June 1998. Tritium tracer, which was injected in November 1998, appeared in the production well after 8 months. It show that breakthrough time decreased with the passage of time. /sup 14/C of inorganic carbon in the water in Chorgali and Sakessar Formations was also analyzed which indicates that the water is at least few thousand years old. (author)

  20. Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Gross, C.J.; Ginter, T.N.; Shapira, D.; Milner, W.T.; McConnell, J.W.; James, A.N.; Johnson, J.W.; Mas, J.; Mantica, P.F.; Auble, R.L.; Das, J.J.; Blankenship, J.L.; Hamilton, J.H.; Robinson, R.L.; Akovali, Y.A.; Baktash, C.; Batchelder, J.C.; Bingham, C.R.; Brinkman, M.J.; Carter, H.K.; Cunningham, R.A.; Davinson, T.; Fox, J.D.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J.F.; MacDonald, B.D.; MacKenzie, J.; Paul, S.D.; Piechaczek, A.; Radford, D.C.; Ramayya, A.V.; Reviol, W.; Rudolph, D.; Rykaczewski, K.; Toth, K.S.; Weintraub, W.; Williams, C.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    2000-01-01

    The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K=100, the RMS has acceptances of ±10% in energy and ±4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices

  1. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  2. A method of and apparatus for, monitoring the radioactivity of a plurality of samples incorporating lower energy beta-emitting isotopes

    International Nuclear Information System (INIS)

    Warner, G.T.; Potter, C.G.

    1981-01-01

    A method for monitoring the radioactivity of a number of samples incorporating low energy beta-emitting isotopes which allows the simultaneous precipitation of many samples with a minimum of sample handling, is described. The samples are placed on a support so that they are not overlapping, the support and sample are permeated with liquid or gel scintillant and the sample areas are scanned. (U.K.)

  3. Isotopic techniques in radioactive waste disposal site evaluation: a method for reducing uncertainties I. T, T/3He, 4He, 14C, 36Cl

    International Nuclear Information System (INIS)

    Muller, A.B.

    1981-01-01

    This paper introduces five of the isotopic techniques which can help reduce uncertainties associated with the assessment of radioactive waste disposal sites. The basic principles and practical considerations of these best known techniques have been presented, showing how much additional site specific information can be acquired at little cost or consequence to containment efficiency. These methods, and the more experimental methods appearing in the figure but not discussed here, should be considered in any detailed site characterization, data collection and analysis

  4. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  5. Labeling pharmaceuticals with radioactive isotopes. Technical progress report, December 1, 1975--November 30, 1976

    International Nuclear Information System (INIS)

    Blau, M.; Bender, M.A.

    1976-01-01

    The purpose of this research is to prepare iodo- and bromo-aliphatic amino acid analogs labeled with γ-emitting isotopes ( 131 I, 123 I and 77 Br) for possible use as pancreas localizing agents. Studies on the halogen exchange reaction (I- for Cl-) for the synthesis of β-iodo-α-aminobutyric acid (a valine analog) have suggested that the iodo compound was formed initially. However, the desired compound cannot be isolated because of its chemical instability. Distribution studies in rats with the crude halogen exchange reaction mixture confirmed this finding. Studies on the addition of hydrogen iodine to allylglycine under various conditions for the synthesis of γ-iodo-α-aminopentanoic acid (a leucine analog) suffered the same obstacle; the chemical instability of the desired iodo compound precludes isolation and characterization. Convinced that the iodo analogs were too unstable for use as practical localizing agents, we turned to the possible use of Br for CH 3 substituted amino acids. The 14 C labeled β-bromo-α-aminobutyric acid methyl ester was synthesized. This methyl ester will be hydrolyzed and the distribution of free amino acid will be studied. Labeled with 77 Br this compound might be useful for pancreas localization

  6. Astrophysical Shrapnel: Discriminating Among Near-Earth Stellar Explosion Sources of Live Radioactive Isotopes

    CERN Document Server

    Fry, Brian J; Ellis, John R

    2015-01-01

    We consider the production and deposition on Earth of isotopes with half-lives in the range 10$^{5}$ to 10$^{8}$ years that might provide signatures of nearby stellar explosions, extending previous analyses of Core-Collapse Supernovae (CCSNe) to include Electron-Capture Supernovae (ECSNe), Super-Asymptotic Giant Branch (SAGBs) stars, Thermonuclear/Type Ia Supernovae (TNSNe), and Kilonovae/Neutron Star Mergers (KNe). We revisit previous estimates of the $^{60}$Fe and $^{26}$Al signatures, and extend these estimates to include $^{244}$Pu and $^{53}$Mn. We discuss interpretations of the $^{60}$Fe signals in terrestrial and lunar reservoirs in terms of a nearby stellar ejection ~2.2 Myr ago, showing that (i) the $^{60}$Fe yield rules out the TNSN and KN interpretations, (ii) the $^{60}$Fe signals highly constrain a SAGB interpretation but do not completely them rule out, (iii) are consistent with a CCSN origin, and (iv) are highly compatible with an ECSN interpretation. Future measurements could resolve the radio...

  7. Analysis of gaseous-phase stable and radioactive isotopes in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Haas, H.H.; Weeks, E.P.; Thorstenson, D.C.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy provides that agency with data for evaluating volcanic tuff beneath Yucca Mountain, Nevada, to determine its suitability for a potential repository of high-level radioactive waste. Thickness of the unsaturated zone, which consists of fractured, welded and nonwelded tuff, is about 1640 to 2460 feet (500 to 750 meters). One question to be resolved is an estimate of minimum ground-water traveltime from the disturbed zone of the potentail repository to the accessible environment. Another issue is the potential for diffusive or convective gaseous transport of radionuclides from an underground facility in the unsaturated zone to the accessible environment. Gas samples were collected at intervals to a depth of 1200 feet from the unsaturated zone at Yucca Mountain, Nevada. Samples were analyzed for major atmospheric gases; carbon dioxide in the samples was analyzed for carbon-14 activity and for delta 13 C; water vapor in the samples was analyzed for deuterium and oxygen-18. These data could provide insight into the nature of unsaturated zone transport processes. 15 refs., 4 figs., 4 tabs

  8. Sorption behaviour of some radioactive isotopes on treated fly ash. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Raouf, M W; El-Dessouky, M I; Aly, H F [Hot Laboratories Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Fly ash is obtained as a by-product from burning mazoute (high molecular weight hydrocarbon) at Northern Cairo Electric Power Generator, was ordinarily disposed in land fill. The carbonaceous material of fly ash was investigated as a possible sorbent for some fission products radionuclides: Cs{sup 134}, Co{sup 60}, and Eu{sup 142+154} at room temperature. The original fly ash was prepared for adsorption studies by sieving to different particle sizes (fractions), and repeated washing by tap water to neutral PH. Some fractions were further treated (after neutralization) by dilute HCl or ethyl alcohol and other fractions were heated at 200, 500, and 800 degree C. The results obtained from sorption on treated fly ash revealed that the percentage uptake (%U) was in accordance with the valency of the cation used: Eu{sup 3+}>Co{sup 2+}>>Cs{sup +} at medium hydrogen ion concentrations. The heated samples at different temperatures showed that % U obeyed the order: 800 degree C >200 degree C. Comparative studies were conducted with pyrolysis residue of domestic waste showed analogous trend in sorption studies. The feasibility of fly ash as a very cheap material in the removal of different fission products from liquid radioactive waste was assessed.

  9. Studies of High-T$_{c}$ Superconductors Doped with Radioactive Isotopes

    CERN Multimedia

    Alves, E J; Goncalves marques, J; Cardoso, S; Lourenco, A A; Sousa, J B

    2002-01-01

    %title\\\\ \\\\We propose to study High T$_{c} $ Superconductors~(HTSc) doped with radioactive elements at ISOLDE, in order to investigate some of the problems that persist after use of conventional characterization techniques. Three main topics are proposed: \\begin{enumerate} \\item Characterization of the order/disorder of Hg in the Hg-planes of the HTSc family Hg$_{1}$Ba$_{2}$R$_{(n-1)}$Cu$_{n}$O$_{(2n+2+\\delta)}$ (T$_{c}$ > 130 K) due to defects or impurities such as C and Au. \\item Studies of the doping of Infinite Layers Cuprates (RCuO$_{2}$)$_{n}$, R=Ca, Sr or Ba, using unstable nuclei of the alkaline-earth (IIA) group which decay to the alkaline nuclei (IA) group. The purpose is to introduce charge carriers in these materials by changing the valence of the cations during the nuclear transmutation. The possibility of using ion implantation to introduce directly an alkaline dopant will also be studied. \\item Studies of the Hg/Au doping of high quality YBa$_{2}$Cu$_{3}$O$_{6+x}$ thin films. We intend to chara...

  10. Surface-ionization ion source designed for in-beam operation with the BEMS-2 isotope separator

    International Nuclear Information System (INIS)

    Bogdanov, D.D.; Voboril, J.; Demyanov, A.V.; Karnaukhov, V.A.; Petrov, L.A.

    1976-01-01

    A surface-ionization ion source designed to operate in combination with the BEMS-2 isotope separator in a heavy ion beam is described. The ion source is adjusted for the separation of rare-earth elements. The separation efficiency for 150 Dy is determined to be equal to about 20% at the ionizer temperature of 2600 deg K. The hold-up times for praseodymium, promethium and dysprosium in the ion source range from 5 to 10 sec at the ionizer temperature of 2500-2700 deg K

  11. Performance Test Results of a Single-sided Silicon Strip Detector with a Radioactive Source and a Proton Beam

    International Nuclear Information System (INIS)

    Ki, Y. I.; Kah, D. H.; Son, D. H.; Kang, H. D.; Kim, H. J.; Kim, H. O.; Bae, J. B.; Ryu, S.; Park, H.; Kim, K. R.

    2007-01-01

    Due to high intrinsic precision and high speed properties of a silicon material, the silicon detector has been used in various applications such as medical imaging detector, radiation detector, positioning detectors in space science and experimental particle physics. High technology, modern equipment, and deep expertise are required to design and fabricate good quality of silicon sensors. Only few facilities in the world can develop silicon sensors which meet requirements of sensor performances. That is one of main reasons that the silicon sensor is so expensive and it takes time to purchase the silicon sensor once it is ordered. We designed and fabricated AC-coupled single-sided silicon strip sensors and developed front-end electronics and DAQ system to read out sensor signals. The silicon strip sensors were fabricated on a 5-in. n-type silicon wafer which has an orientation, high resistivity (>5 kΩ · cm) and a thickness of 380 μm. We measured the signal-to-noise ratio (SNR) of each channel by using a radioactive source and a 45 MeV proton beam from the MC-50 cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul. We present the measurement results of the SNRs of the silicon strip sensor with a proton beam and radioactive sources

  12. Production of intense metallic ion beams in order of isotopic separations; Production de faisceaux intenses d'ions metalliques en vue de la separation des isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sarrouy, J L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. Les sources d'ions realisees fournissent des debits ioniques de 10 mA. Ce present travail porte sur l'obtention de faisceaux d'ions faisceaux d'ions intenses (10 a 15 mA), des differents procedes de mesures des courants d'ions, ainsi que l'etude du phenomene de neutralisation de charge d'espace. La deuxieme partie de ce memoire portera sur l'etude et l'adaptation sur la source de divers type de four permettant de vaporiser et d'ioniser directement les metaux. Par ordre de difficulte croissantes de vaporisations, nous avons atteint le chrome. (M.B.)

  13. Isotope separation of relativistic projectile fragments as well as cross section measurements on 8,9,11Li secondary beams

    International Nuclear Information System (INIS)

    Blank, B.

    1991-06-01

    In the framework of this thesis the method of the 'momentum-loss achromate' was for the first time tested at relativistic energies. This experiment is presented in chapter 2 of the thesis. In a second experiment the method was then used, in order to make secondary beams of 8,9,11 Li available. With these secondary beams cross section measurements were performed, from which beside information on the nuclear radii of these nuclei also further information on the internal structure of the lithium isotopes can be derived. This experiment is described in chapter 3 of the thesis. In the framework of these two experiments for the applied heavy ions energy-loss measurements were performed. The results of these measurements are presented in chapter 4. (orig.) [de

  14. Application of Radioactive and Stable Isotopes to Trace Anthropogenic Pollution in the Baltic Sea

    International Nuclear Information System (INIS)

    Lujaniene, G.; Valiulis, D.; Remeikaitė-Nikienė, N.; Barisevičiūtė, R.; Stankevičius, A.; Kulakauskaitė, I.; Mažeika, J.; Petrošius, R.; Jokšas, K.; Li, H.-C.; Garnaga, G.; Povinec, P.

    2015-01-01

    The Baltic Sea is one of the seas most contaminated by various pollutants including the chemical munitions dumped after the Second World War. Pu isotopes, Δ 14 C and δ 13 C of total organic carbon (TOC) as well as lipid and phospholipids (PL) fractions of the sediments were applied to study sources of pollutants including chemical warfare agents (CWA). The compound-specific δ 13 C analysis, PL–derived fatty acid biomarkers and an end-member mixing model were used to estimate a relative contribution of the marine, terrestrial and fossil as well as petroleum hydrocarbons (measured directly) sources to organic carbon in the sediments, to assess a possible effect of petroleum hydrocarbon contamination on radiocarbon signatures and to elucidate a possible leakage of CWA at the Gotland Deep dumpsite. Data on spatial distribution of As, Zn, Ni, Cr, Hg, Cd, Cu and Pb concentrations as well as 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios in the surface sediments indicated the highest concentrations of Pb with their different pattern of distribution and insignificant variations of 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios. The obtained data revealed the possible application of the Chernobyl-derived Pu to trace the pollutants of the terrestrial origin. Wide TOC variations with the strong impact of the terrestrial and fresh waters in the coastal areas were observed. Variations of Δ 14 C and δ 13 C values with the most depleted values of the Δ 14 C TOC (-453%) and Δ 14 C of total lipid extracts (-812.4%) at the CWA dumpsite were found. An excess (after subtracting the petroleum hydrocarbon) of fossil sources at the CWA dumpsite as compared to those at other stations in the Baltic Sea was detected. The obtained results indicated a possible effect of CWA on depleted Δ 14 C and δ 13 C values. This study was supported by the Research Council of Lithuania, contract No. MIP-080/2012. (author)

  15. Application of ion beams in materials science of radioactive waste forms: focus on the performance of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Frederico [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)]. E-mail: garrido@csnsm.in2p3.fr; Nowicki, Lech [Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Thome, Lionel [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Ba-hat timents 104-108, 91405 Orsay Campus (France)

    2005-10-15

    Ion beam techniques provide unique tools for the qualification of radioactive waste forms. They address three major issues: (i) the simulation by ion irradiation of the stability of a matrix submitted to radiative environment; (ii) the doping of a material with stable or radioactive elements which simulate the species to be confined; (iii) the characterisation of a material via nuclear microanalysis techniques. Among various classes of nuclear matrices the spent nuclear fuel is widely considered as a potential candidate for the stabilisation of radioactive wastes in scenarios of long term interim storage or final geological disposal. Illustrative examples revealing the potentialities of the use of ion beams either as a pure characterisation tool - to investigate the chemical stability of the UO{sub 2} matrix under an oxygen potential - or in a combined way (e.g. irradiation/characterisation, doping/characterisation) - to explore the radiation stability and the behaviour of foreign species - are presented. Transformations (stoichiometry, depth and structure of growing hyperstoichiometric U{sub 4}O{sub 9}/U{sub 3}O{sub 7} oxides) occurring during low-temperature air oxidation of uranium dioxide single crystals are reported. Swift heavy ion irradiation of UO{sub 2} single crystals leads to a peculiar single crystal-polycrystal transformation (i.e. polygonisation of the fluorite-type structure of the material). Irradiation of UO{sub 2} at low energy shows that the damage production is directly linked to the energy deposited in nuclear elastic collisions. The lattice location of helium atoms (generated in large amount during the storage period) in interstitial octahedral positions is discussed.

  16. Installation of an isotope separator in Debrecen

    International Nuclear Information System (INIS)

    Gacsi, Z.; Gulyas, J.; Vitez, A.; Csige, L.; Krasznahorkay, A.

    2005-01-01

    Complete text of publication follows. An isotope separator named OSIRIS was decommissioned in Studsvik, Sweden last July. Researchers there offered this equipment to us for dismantling and moving it over to ATOMKI in Debrecen for installation at the cyclotron lab and save and use it in nuclear physics and other sciences where stable and radioactive isotopes are used extensively for fundamental and applied research. Since the separator was used to separate radioactive isotopes, the ion source with its beam extracting, shaping, and transporting accessories, as well as the lining inside the bending magnet, furthermore the beam diagnostic and shaping elements in the 'switchyard' part of the separator had to stay in Studsvik because of the high radioactive contamination. In order to operate this equipment, first we have to design and manufacture these parts together with a new endstation for the collection and handling of the separated isotopes. Parallel with the installation, we also concentrate on different applications of an isotope separator, including separation of stable isotopes for labelling special compounds used in many branches of sciences, medical care, and industry, and on studying single ion implantation possibilities, as well as on the production of special targets for nuclear physics research. First we want to separate stable isotopes, and then, when we overcome all technical pitfalls, we will consider using this equipment to separate radioactive isotopes as well. Our intention is to have this equipment available to anyone at ATOMKI and elsewhere interested in using its capabilities in their own research fields. Consequently, all comments, suggestion, and ideas are welcome now and continuously, since the design and manufacture of parts can then be oriented by taking into account all the suggestions as much as possible. (author)

  17. Electrokinetic remediation of contaminated soil from heavy metals and cobalt radioactive isotope

    International Nuclear Information System (INIS)

    Abdel Raouf, M.W.; Abdel Aziz, M.M.

    2005-01-01

    The present work presents a simple and inexpensive method for the in situ electrokinetic remediation of simulated contamined soil samples. Soil samples were collcted at inshas site (Egypt) at different depths 2-4, 4-6, and 6-8 m, purified from large and hard lumps, and characterized. To improve their hydraulic mobility, equal weights from the simulated soil and sand (0.5kg) were throughly mixed. The soil mixtures were dried under an infrared lamp, ground to a fine powder using a hand mortar. In this study, the soil samples were loaded separately by 250 ml CuSo 4 (1M) for Cu 2+ or CdCl 2 (1M) for Cd 2+ ,/or with simulated aqueous radioactive solution of 60 Co. Contaminated soil samples were left in contact with contaminant solutions for 48 hours in a closed container. Oven dried loaded soils samples were wasted five times by water to remove the free cations; then intial contaminant concentration of copper, calmium, and cobalt in soil samples was measured. To permit for the passage of electric current, loaded soil samples were wet with synthetic ground water (100 ml). A bench scale cell (13.0 cm x 6.0 cm x 6.5 cm) made from plexiglas was packed with 0.2 kg soil sample. A platinum sheet (4 cm x 0.5 cm x 0.05 cm) represented the anode; a graphite bar (iameter 0.5 cm and height 4 cm) represented the cathode, 6.0 cm apart from the anode. In the cell, the applied electric current and potential difference was kept constant at 60 mA and 10V, respectively for three hours treatment duration. The used electrodes were immersed into fired clay pottery bodies (net internal volume 15 ml) full with synthetic ground water. Percent of removal (P r ) of Cu 2+ , Cd 2+ , and 60 Co obtained after three hours waslarger than 97% at current density 2.2mA.cm -2 , and energy consumption 0.12 W.h.kg -1 . The advantages of the applied technique included the close control over the direction of movement of water and dissolved contsminants, retention of the contaminants within a confined zone

  18. A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams

    CERN Document Server

    Kellerbauer, A G; Dilling, J; Henry, S; Herfurth, F; Kluge, H J; Lamour, E; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G; Szerypo, J

    2002-01-01

    A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line experiments. (12 refs).

  19. Production of zero energy radioactive beams through extraction across superfluid helium surface

    NARCIS (Netherlands)

    Takahashi, N; Huang, WX; Gloos, K; Dendooven, P; Pekola, JP; Aysto, J

    A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with

  20. Method of producing a solution of radioactive lanthanum-140 from radioactive barium-140 in an isotope generator and installation to carry out the method

    International Nuclear Information System (INIS)

    Akerman, K.; Jacobs, G.; Sauerwein, K.

    1979-01-01

    A method of separating radioactive lanthanum-140 from radioactive Ba-140 is proposed. The lanthanum-140 will be washed out of a sulphate precipitate and separated from Ba-140-sulphate by a granular filter mass of CaSO 4 and BaSO 4 . Details of the process are given. (UWI) [de

  1. Rare isotope accelerator—conceptual design of target areas

    Science.gov (United States)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-06-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  2. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  3. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  4. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  5. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235 U/ 238 U, 236 U/ 238 U, 145 Nd/ 143 Nd, 146 Nd/ 143 Nd, 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred μm to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101 Ru/( 99 Ru+ 99 Tc) and 102 Ru/( 99 Ru+ 99 Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146 Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235 U/ 238 U and 236 U/ 238 U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus

  6. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    Science.gov (United States)

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten

  7. Decontamination process and device of a radioactive surface with a coherent light beam. Procede et installation de decontamination d'une surface radioactive au moyen d'un faisceau de lumiere coherente

    Energy Technology Data Exchange (ETDEWEB)

    Gauchon, J.P.; Bournot, P.; Caminat, P.; Dupont, A.

    1994-07-29

    To decontaminate a radioactive surface, this one is swept with a focused laser beam and a liquid such as water or preferably a nitric acid solution on the whole surface. The liquid may be a film running on the surface and is recycled advantageously. The resulting decontamination is very efficient. 6 refs., 2 figs., 5 tabs.

  8. The South African isotope facility project

    Science.gov (United States)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  9. New neutron-rich isotopes in the scandium-to-nickel region, produced by fragmentation of a 500 MeV/u 86Kr beam

    International Nuclear Information System (INIS)

    Weber, M.; Geissel, H.; Keller, H.; Magel, A.; Muenzenberg, G.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Roeckl, E.; Rykaczewski, K.; Schall, I.; Suemmerer, K.; Donzaud, C.; Guillemaud-Mueller, D.; Mueller, A.C.; Stephan, C.; Tassan-Got, L.; Dufour, J.P.; Pravikoff, M.; Grewe, A.; Voss, B.; Vieira, D.J.

    1991-10-01

    We have measured production cross-sections of the new neutron-rich isotopes 58 Ti, 61 V, 63 Cr, 66 Mn, 69 Fe, 71 Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u 86 Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss mesurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parameterization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide 78 Ni, are discussed. (orig.)

  10. Experimental investigation of decay properties of neutron deficient $^{116-118}$Ba isotopes and test of $^{112-115}$Ba beam counts

    CERN Multimedia

    We propose to study decay of neutron deficient isotopes $^{116-118}$Ba using Double Sided Silicon Strip Detector (DSSSD). To study delayed-proton and $\\alpha$-decay branching ratios of $^{116-118}$Ba are of special interest because of their vicinity to the proton drip line. The nuclear life-times and properties of the proton unstable states of Cs isotopes, populated through decay of $^{116-118}$Ba isotopes will be measured. In addition to that we propose beam development of $^{112-115}$Ba to study exotic decay properties of these neutron deficient nuclei and to search for super-allowed $\\alpha$-decay in future.

  11. Possibilities for the production of non-stable isotopes

    International Nuclear Information System (INIS)

    Benlliure, J.; Enqvist, T.; Junghans, A.R.; Ricciardi, V.; Schmidt, K.H.; Farget, F.

    1999-04-01

    The production of neutron-rich isotopes is discussed in terms of the two main reaction mechanisms leading to the formation of these nuclei, projectile fragmentation and fission. Production cross sections are calculated for cold-fragmentation and fission. The expected yields are estimated taking into account different technical approaches actually discussed for the production of radioactive beams. (orig.)

  12. Marine Biogenic Minerals Hold Clues About Changes in Ocean Chemistry and Climate: Some Important Lessons Learned from Studies of Stable and Radioactive Isotopes of Be and Al

    Directory of Open Access Journals (Sweden)

    Devendra Lal

    2002-01-01

    Full Text Available The elements Be and Al exhibit very short residence time in ocean waters, and therefore serve as useful tracers for the study of biogeochemical processes in seawater. A unique feature of these tracers is that nuclear interactions of cosmic rays in the atmosphere produce appreciable amounts of two radioactive isotopes, 10Be (with a half-life of 1.5 my and 26Al (with a half-life of 0.7 my, which are introduced in the hydrosphere, cryosphere, and lithosphere via precipitation. Thus, these elements are labeled by their respective radioactive isotopes, which help quantitative tagging of their biogeochemical cycles. Finally, as we report here, several marine organisms incorporate them in their skeletal shells in certain fixed proportions to their concentrations in the seawater, so that it seems possible to study changes in the ocean chemistry and climate over the past several million years. We summarize here the recent discovery by Dong et al.[9] of significant enrichments of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians and aragonite (corals, which should make it possible to determine 10Be/Be and 26Al/Al in oceans in the past. We also summarize their measured 10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.

  13. Off-line production of a sup 7 Be radioactive ion beam

    CERN Document Server

    Gialanella, L; De Cesare, N; D'Onofrio, A; Romano, M; Campajola, L; Formicola, A; Fülöp, Z; Gyürky, G; Imbriani, G; Lubritto, C; Ordine, A; Roca, V; Rogalla, D; Rolfs, C; Russo, M; Sabbarese, C; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P

    2002-01-01

    A sup 7 Be ion beam of several particle pA at 8 MeV has been produced at the TTT3 tandem of the University 'Federico II' in Naples. The sup 7 Be nuclides were formed via the sup 7 Li(p,n) sup 7 Be reaction using a metallic Li target and an 11.4 MeV proton beam of 20 mu A intensity, delivered by the cyclotron in Debrecen. Methods of hot chemistry were used to extract the sup 7 Be nuclides from the Li matrix and to prepare the sup 7 Be cathodes for the ion sputter source of the tandem. Examples of sup 7 Be beam applications are given.

  14. Isotope method for the recognition of groundwater formation in China's preselected high level radioactive waste disposal repository site

    International Nuclear Information System (INIS)

    Guo Yonghai; Wang Ju; Liu Shufen; Su Rui; Lu Chuanhe

    2005-01-01

    Yemaquan region in Beishan area. Gansu province, is one of the preselected sites of disposal repository for high level radioactive waste (HLW) in our country. Hydrogeological condition is an important aspect for site evaluation and the groundwater formation is a key factor to reflect the hydrogeological conditions for a certain area. Isotopic method is the one of the important means to determine the groundwater formation. Through the sampling and analysis of shallow groundwater isotopes of Yemaquan region, combined with geological, hydrogeological and hydrogeochemical characteristics, the issue of groundwater formation in the study region was discussed. The main cognition is that the groundwater in the region was formed from the infiltration of modern rainfall and the strong evaporation was happened for the shallow groundwater, which indicates the circulation conditions were relatively good for the shallow groundwater. This cognition provides very important hydrogeological information and basis for the evaluation of Yemaquan preselected site. (authors)

  15. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  16. The Effusive-Flow Properties of Target/Vapor-Transport Systems for Radioactive Ion Beam Applications

    CERN Document Server

    Kawai, Yoko; Liu, Yuan

    2005-01-01

    Radioactive atoms produced by the ISOL technique must diffuse from a target, effusively flow to an ion source, be ionized, be extracted, and be accelerated to research energies in a time commensurate with the lifetime of the species of interest. We have developed a fast valve system (closing time ~100 us) that can be used to accurately measure the effusion times of chemically active or inactive species through arbitrary geometry and size vapor transport systems with and without target material in the reservoir. The effusive flow times are characteristic of the system and thus serve as figures of merit for assessing the quality of a given vapor transport system as well as for assessing the permeability properties of a given target design. This article presents effusive flow data for noble gases flowing through a target reservoir and ion source system routinely used to generate radioactive species at the HRIBF with and without disks of 6 times and 10 times compressed Reticulated Vitreous Carbon Foam (RVCF) with...

  17. Isotopic separation of 235U and 238U in an atomic beam with selective two-step photo-ionisation

    International Nuclear Information System (INIS)

    Boehm, H.D.V.

    1977-01-01

    The present work gives a report on investigations on isotope separation of 235 U and 238 U by means of selective two-stage photo-ionization on atomic uranium. An atomic beam of sufficient particle density was produced by dissociation of URe 2 in an electron beam heated tungsten furnace at a temperature of 2.500 k. A continuously operated rhodamin-69 dye laser with a maximum output of 120 mW and about 50 mHz band width in one-made operation was used for selective excitation from the ground state. From this state of excitation, ionization resulted achieving a light power of 1.8 W below 3030 A in the reaction volume. The measured separation factors show that the laser method enables the enrichment of uranium to the required valve of three or more percent 235 U for light water reactors in a single separation step. The hyperfine structure could be considerably better resolved compared to earlier investigations, so that it was possible for the first time to identify and measure hitherto unobserved weak components. (orig.) [de

  18. Induced radioactivity of a GSO scintillator by secondary fragments in carbon ion therapy and its effects on in-beam OpenPET imaging.

    Science.gov (United States)

    Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga

    2016-07-07

    The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a (12)C beam with an energy of 290 MeV u(-1). Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.

  19. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  20. Production of radioactivity in local soil at AGS fast neutrino beam

    International Nuclear Information System (INIS)

    Gollon, P.J.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

    1984-01-01

    Brookhaven National Laboratory (BNL) has recently decided to construct a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). To determine the environmental impact of this addition, a study is being conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Typical BNL soil samples were placed at two locations near an operating target: at right angles to the target and behind thick shielding close to the direction of the incident beam. These samples were used to determine radionuclide production and leaching information. A core was taken from beneath the concrete floor of the old target area and a monitoring well was installed down-gradient of the facility. Preliminary results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 9 figures

  1. Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site.

    Science.gov (United States)

    Snyder, Darin C; Delmore, James E; Tranter, Troy; Mann, Nick R; Abbott, Michael L; Olson, John E

    2012-08-01

    Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Massive mercury target for thallium isotope production on the beam of high energy protons

    International Nuclear Information System (INIS)

    Novgorodov, A.F.; Kolachkovski, A.; Nguen Kong Chang.

    1980-01-01

    The yields of thallium radioisotopes in a massive mercury target irradiated with 660 MeV protons have been determined. The constancy of isotopic composition of radiothallium along the whole length (40 cm) of the target has been found. The yields of 200 Tl, 201 Tl and 202 Tl amount to 22.9+-2.8; 3.42+-0.45 and 0.459+-0.61 mCu/mkA h, respectively. It has been shown that the extraction of radioisotopes of thallium and some other elements from large amounts of mercury as well as their subsequent concentration may be carried out fully and relatavely fast when using dilute solutions of acetic acid

  3. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F.; Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2008-01-15

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) - a Nu Plasma HR - equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the {sup 235}U/{sup 238}U, {sup 236}U/{sup 238}U, {sup 145}Nd/{sup 143}Nd, {sup 146}Nd/{sup 143}Nd, {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred {mu}m to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The {sup 101}Ru/({sup 99}Ru+{sup 99}Tc) and {sup 102}Ru/({sup 99}Ru+{sup 99}Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in {sup 146}Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously

  4. Research on isotope geology. Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive/stable isotopes and fission track 2

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Cheon; Chi, Se Jung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Radioelements and heat production rates of granitic rocks and stable isotopes of groundwaters were analyzed to investigate the geothermal potential of Wolchulsan granite complex in the southern Yeongam area. Wolchulsan granite complex is composed mainly by Cretaceous pink alkali-feldspar granite and partly Jurassic biotite granite. The main target for the geothermal exploration is the alkali-feldspar granite that is known in general to be favorable geothermal reservoir(e.g., Shap granite in UK). To develop exploration techniques for geothermal anomalies, all geochemical data were compared to those from the Jeonju granite complex. Heat production rates(HPR) of the alkali-feldspar granite is 1.8 - 10.6 {mu}Wm{sup -3}. High radio-thermal anomalies were revealed from the central western and northern parts of the granite body. These are relatively higher than the Caledonian hot dry granites in the UK. The integrated assessment of Wolchulsan granite complex suggests potential of the Cretaceous alkali-feldspar granite as a geothermal targets. Groundwater geochemistry of the Yeongam area reflects simple evaporation process and higher oxidation environment. Stable isotope data of groundwaters are plotted on or close to the Meteoric Water Line(MWL). These isotopic data indicate a significant meteoric water dominance and do not show oxygen isotope fractionation between groundwater and wall rocks. In despite of high HPR values of the Yeongam alkali-feldspar granite, groundwater samples do not show the same geochemical properties as a thermal water in the Jeonju area. This reason can be well explained by the comparison with geological settings of the Jeonju area. The Yeongam alkali-feldspar granite does not possess any adjacent heat source rocks despite its high radio-thermal HPR. While the Jeonju granite batholith has later heat source intrusive and suitable deep fracture system for water circulation with sedimentary cap rocks. (Abstract Truncated)

  5. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    CERN Document Server

    Goodacre, T Day

    2017-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  6. Coulomb excitation of $^{94,96}$Kr beam Deformation in the neutron-rich krypton isotopes

    CERN Multimedia

    Hass, M; Cederkall, J A; Di julio, D D; Zamfir, N - V; Srebrny, J; Wadsworth, R; Siem, S; Marginean, R; Iwanicki, J S

    Recently the energy of the 2$_{1}^{+}$ state in the N=60 $^{96}$Kr nucleus was determinated to be 241 keV. This was the first experimental observation of an excited state in this highly exotic nucleus. The 2$_{1}^{+}$ state in $^{94}$Kr is located at 665.5 keV, i.e. E(2$_{1}^{+}$) drops by more than 400 keV at N=60. This lowering of the 2$_{1}^{+}$ energy indicates a sharp shape transition behavior which is somewhat similar to that discovered in the Sr and Zr isotopic chains at N=60. The deformation expected for the 2$_{1}^{+}$ state of $^{96}$Kr, as resulting from the E(2$_{1}^{+}$) energy based on the semi-empirical relation of Raman et al. is $\\beta_{2}$ = 0.31, which is, however, considerably smaller than that for Sr and Zr ($\\geq$0.40). The sudden decrease of E(2$_{1}^{+}$) from N=50 to N=60 does not fully agree with the more gradual change of deformation deduced from laser spectroscopy measurements of mean square charge radii, although for $^{96}$Kr, in particular, these are consistent with a $\\beta_{2}...

  7. Radioactivity in the Marine Environment. Chapter 1

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Abdul Kadir Ishak; Norfaizal Mohamad; Wo, Y.M.; Kamarudin Samuding

    2015-01-01

    Radionuclide (radioactive isotopes or radioisotopes is widely distributed on the ground primarily in marine environments. Nowadays, more than 340 isotopes has been identified exist in our earth especially in marine environment. From that total, 80 isotopes was radioactive. The existence of radioactivity in the marine environment is through the direct and indirect distribution of radionuclides

  8. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  9. Uranium isotopic analysis of depleted uranium in presence of other radioactive materials by using nondestructive gamma-ray measurements in coaxial and planar Ge detectors

    International Nuclear Information System (INIS)

    Yucel, H.; Yeltepe, E.; Dikmen, H.; Turhan, Sh.; Vural, M.

    2006-01-01

    Full text: The isotopic abundance of depleted uranium samples in the presence of other radioactive materials, especially actinide isotopes such as Th 232, Np 237-Pa 233 and Am 241 can be determined from two gamma-ray spectrometric methods. One is the absolute method which employs non-destructive gamma-ray spectrometry for energies below 1001 keV using a coaxial Ge detector calibrated with a set of standards. The other is the multi-group analysis (MGA) method using the low energy region (< 300 keV) with a planar Ge detector intrinsically calibrated with gamma and X-rays of uranium without use of standards. At present absolute method, less intense but cleaner gamma peaks at 163.33 keV (5.08 percent) and 205 keV(5.01 percent) of U 235 are preferred over more intense peaks at 143.76 keV(10.76 percent), possible interference with 143.25 keV(0.44 percent) of Np 237 and 185.705 keV(57.2 percent), possible interference with 186.21 keV(3.51 percent) of Ra 226. In the high energy region the 1001.03 keV(0.837 percent) peak of Pa 234 m is used for the isotopic abundance analysis because the more intense 63.3 keV peak of Th 234 daughter of U 238 parent has a fully multiplet(62.86 keV+63.29 keV) and include the interferences of the 62.70 keV(1.5 percent) peak of Pa 234, the 63.81 keV(0.263 percent) peak of Th 232 and the 63.90 keV(0.011 percent) peak of Np 237. Although the MGA method is quicker and more practical, the more laborious absolute gamma spectrometric method can give more accurate results for the isotopic determination of depleted uranium samples. The relative uranium abundances obtained with the second method (i,e., MGA) are in general inconsistent with the declared values for the uranium samples in the presence of the above mentioned actinides. The reason for these erroneous results is proposed to be the interference of the gamma and X-rays of uranium in the 80-130 keV region used in MGA with those emissions from other radioactive materials present

  10. Isotopic marking and tracers

    International Nuclear Information System (INIS)

    Morel, F.

    1997-01-01

    The use of radioactive isotopes as tracers in biology has been developed thanks to the economic generation of the required isotopes in accelerators and nuclear reactors, and to the multiple applications of tracers in the life domain; the most usual isotopes employed in biology are carbon, hydrogen, phosphorus and sulfur isotopes, because these elements are present in most of organic molecules. Most of the life science knowledge appears to be dependent to the extensive use of nuclear tools and radioactive tracers; the example of the utilization of radioactive phosphorus marked ATP to study the multiple reactions with proteins, nucleic acids, etc., is given

  11. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    Science.gov (United States)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  12. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  13. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    International Nuclear Information System (INIS)

    Uwe, Greife

    2014-01-01

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  14. Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

    CERN Document Server

    Andreyev, Andrei

    2013-01-01

    Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

  15. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  16. Localization of the placenta in the 3 trimester of gestation with the use of a gamma-camera and radioactive sup(113m)In indium isotope

    Energy Technology Data Exchange (ETDEWEB)

    Brudnik, A.; Chromy, G.; Ulfik, A.; Bielawski, J.; Wasylewski, A. (Slaska Akademia Medyczna, Katowice (Poland))

    1980-01-01

    In 56 women, treated because of uterine bleedings in the 3 trimester of gestation the localization of the placenta was looked for with use of a gamma camera (Toshiba Co.) and indium radioisotope 113-In. The methodic procedures were elaborated for the application of the gamma-camera and the utilization of radioactive marker /sup 125/Sb in the anatomic reference areas. Full conformity of results with findings at cesarean section was met. Isotope placentography with the application of gamma camera gives a high percentage of adequate diagnoses, least dose of exposition, uncomplicated procedures. The negative diagnosis in suspected cases of placenta previa permitted to decrease the time of hospital stay in a number of cases observed because of uterine bleedings in the 3 trimester of pregnancy.

  17. Localization of the placenta in the 3 trimester of gestation with the use of a gamma-camera and radioactive sup(113m)In indium isotope

    International Nuclear Information System (INIS)

    Brudnik, A.; Chromy, G.; Ulfik, A.; Bielawski, J.; Wasylewski, A.

    1980-01-01

    In 56 women, treated because of uterine bleedings in the 3 trimester of gestation the localization of the placenta was looked for with use of a gamma camera (Toshiba Co.) and indium radioisotope 113-In. The methodic procedures were elaborated for the application of the gamma-camera and the utilization of radioactive marker 125 Sb in the anatomic reference areas. Full conformity of results with findings at cesarean section was met. Isotope placentography with the application of gamma camera gives a high percentage of adequate diagnoses, least dose of exposition, uncomplicated procedures. The negative diagnosis in suspected cases of placenta previa permitted to decrease the time of hospital stay in a number of cases observed because of uterine bleedings in the 3 trimester of pregnancy. (author)

  18. 'Beams' and 'Tracers' to trigger advanced applications of radiation and isotopes

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    The Advisory Committee on Radiation Utilization of the Atomic Energy Commission has been studying the way to promote advanced radiation application in view of the ongoing technical innovation at present. The Committee submitted its report to the AEC on March 13. The report focused on three aspects, the practical application of radiation, research and development, and international cooperation. Each aspect was analyzed regarding its current status, the tasks to be undertaken and the measures to be introduced. The proposed measures will be reflected to the long term program of development and utilization of nuclear energy of the AEC, now being revised. In Japan, radiation has been utilized in industries, agriculture and medical application, to largely contribute to people's well-being. The status of use of radiation, the way for practical use, the application of beams and tracers, and the international cooperation are described. It is suitable to public research institutes to promote the research on which private sectors have not taken initiative in spite of the social demand, that related to the standards and criteria specified by the government, for which private sectors seek assistance, and that requires international cooperation. (Kako, I.).

  19. A kinematic model to estimate the effective dose of radioactive isotopes in the human body for radiological protection

    Science.gov (United States)

    Sasaki, S.; Yamada, T.

    2013-12-01

    The great earthquake attacked the north-east area in Japan in March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power station was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive substances had leaked and been diffused in the vicinity of this station. Radiological internal exposure becomes a serious social issue both in Japan and all over the world. The present study provides an easily understandable, kinematic-based model to estimate the effective dose of radioactive substances in a human body by simplified the complicated mechanism of metabolism. International Commission on Radiological Protection (ICRP) has developed an exact model, which is well-known as a standard method to calculate the effective dose for radiological protection. However, owing to that the above method accord too much with the actual mechanism of metabolism in human bodies, it becomes rather difficult for non-professional people of radiology to gasp the whole images of the movement and the influences of radioactive substances in a human body. Therefore, in the present paper we propose a newly-derived and easily-understandable model to estimate the effective dose. The present method is very similar with the traditional and conventional hydrological tank model. Ingestion flux of radioactive substances corresponds to rain intensity and the storage of radioactive substances to the water storage in a basin in runoff analysis. The key of this method is to estimate the energy radiated from the radioactive nuclear disintegration of an atom by using classical theory of E. Fermi of beta decay and special relativity for various kinds of radioactive atoms. The parameters used in this study are only physical half-time and biological half-time, and there are no intentional and operational parameters of coefficients to adjust our theoretical runoff to observation of ICRP. Figure.1 compares time

  20. Recent results in the study of exotic nuclei using the 'Radioactive Ion Beams in Brazil' (RIBRAS) facility

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V.; Alcantara Nunez, J.; Benjamim, E.A.; Faria, P.N. de; Leistenschneider, E.; Gasques, L.R.; Morais, M.C.; Pampa Condori, R.; Pires, K.C.C.; Scarduelli, V.; Zamora, J.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Mendes Junior, D.R.; Morcelle, V. [Universidade Federal Fluminense (IF/UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Descouvemont, P. [Universite Libre de Bruxelles (Belgium). Physique Nucleaire Theorique et Physique Matematique; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Moro, A.M. [Universidad de Sevilla (Spain). Fac. de Fisica. Dept. de Fisica Atomica, Molecular y Nuclear (FAMN); Arazi, A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Lab. TANDAR; Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    Full text: The 'Radioactive Ion Beams in Brasil' (RIBRAS) facility consists of two super-conducting solenoids of maxi- mum magnetic field B 6.5T, coupled to the 8UD-Pelletron tandem Accelerator installed at the University of Sao Paulo Physics Institute. It is the first radioactive beam facility of the Southern Hemisphere. The production mechanism of the radioactive ions is by transfer reactions, using {sup 9}Be, {sup 3}He, LiF and other production targets, and the forward focused reaction products are selected and focalized by the solenoids into a scattering chamber. Low energy (3-5 MeV/u) radioactive beams of {sup 6}He, {sup 8}Li, {sup 7,10}Be and {sup 8,12}B are produced currently and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy ({sup 9}Be, {sup 12}C, {sup 27}Al, {sup 51}V and {sup 120}Sn) secondary targets. The data are analyzed, using most of the time, the Sao Paulo Potential (SPP) and compared to optical model and continuum discretized coupled-channels (CDCC) calculations. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Some examples of reactions recently studied are {sup 1}H({sup 8}Li,{sup 4}He){sup 5}He, {sup 1}H({sup 8}Li,{sup 1}H){sup 8}Li using thick (CH{sub 2}){sub n} targets to measure their excitation functions. The transfer reaction {sup 12}C({sup 8}Li,{sup 4}He){sup 16}N, leading to well defined excited states of {sup 16}N, through the transfer of {sup 4}H or the sequential decay {sup 3}H+n, is also being studied. (author)