WorldWideScience

Sample records for radioactive facility indicadores

  1. Radioactive facilities classification criteria

    International Nuclear Information System (INIS)

    Briso C, H.A.; Riesle W, J.

    1992-01-01

    Appropriate classification of radioactive facilities into groups of comparable risk constitutes one of the problems faced by most Regulatory Bodies. Regarding the radiological risk, the main facts to be considered are the radioactive inventory and the processes to which these radionuclides are subjected. Normally, operations are ruled by strict safety procedures. Thus, the total activity of the radionuclides existing in a given facility is the varying feature that defines its risk. In order to rely on a quantitative criterion and, considering that the Annual Limits of Intake are widely accepted references, an index based on these limits, to support decisions related to radioactive facilities, is proposed. (author)

  2. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  3. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  4. Released radioactivity reducing facility

    International Nuclear Information System (INIS)

    Tanaka, Takeaki.

    1992-01-01

    Upon occurrence of a reactor accident, penetration portions of a reactor container, as a main leakage source from a reactor container, are surrounded by a plurality of gas-tight chambers, the outside of which is surrounded by highly gas-tightly buildings. Branched pipelines of an emergency gas processing system are introduced to each of the gas-tight chambers and they are joined and in communication with an emergency gas processing device. With such a constitution, radioactive materials are prevented from leaking directly from the buildings. Further, pipeline openings of the emergency gas processing facility are disposed in the plurality highly gas-tight penetration chambers. If the radioactive materials are leaked from the reactor to elevate the pressure in the penetration chambers, the radioactive materials are introduced to a filter device in the emergency gas processing facility by way of the branched pipelines, filtered and then released to the atmosphere. Accordingly, the reliability and safety of the system can be improved. (T.M.)

  5. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  6. Development of the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1997-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility's radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date

  7. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  8. The ISOLDE Facility: Radioactive beams at CERN

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The Isope Separation On-Line (ISOL) technique evolved from chemical techniques used to separate radioactive isotopes off-line from irradiated "targets". The ISOL targets of today, used at e.g. ISOLDE, can be of many different types and in different phases but the isotopes are always delivered at very low energies making the technique ideal for study of ground state properties and collections for other applications such as solid state physics and medical physics. The possibility of accelerating these low energy beams for nuclear structure studies, and in the long term future for neutrino physics, is now being explored at first generation radioactive beam facilities. The upgrade towards HIE-ISOLDE aim to consolidate ISOLDE's position as a world leading radioactive nuclear beam facility and it will be a pre-cursor to a future all European ISOL facility, EURISOL, with order of magnitudes higher radioactive beam intensities and energies. Prerequisite knowledge and references: None

  9. Annual Report of Radioactive Waste Facilities Operation in 2015

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; DIAO; Lei; SHEN; Zheng; LI; Wen-ge

    2015-01-01

    301of the Department of Radiochemistry,is in charge of the management of radioactive waste and the safety of the relative facilities to meet the request of the scientific research production.There are 16radioactive waste facilities,including9facilities which are closed and monitored

  10. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  11. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  12. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  13. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  14. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  15. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  16. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  17. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  18. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  19. The conceptual design of waste repository for radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Yamamoto, Masayuki; Hashimoto, Naro

    2002-02-01

    Advisory Committee on Nuclear Fuel Cycle Backend Policy reported the basic approach to the RI and Institute etc. wastes on March 2002. According to it, radioactive waste form medical, industrial and research facilities should be classified by their radioactivity properties and physical and chemical properties, and should be disposed in the appropriate types of repository with that classification. For the radioactive waste containing comparatively high radioactivity generated from reactors, NSC has established the Concentration limit for disposal. NSC is now discussing about the limit for the radioactive waste from medical, industrial and research facilities containing comparatively high radioactivity. Japan Nuclear Cycle Development Institute (JNC) preliminary studied about the repository for radioactive waste from medical, industrial and research facilities and discussed about the problems for design on H12. This study was started to consider those problems, and to develop the conceptual design of the repository for radioactive waste from medical, industrial and research facilities. Safety assessment for that repository is also performed. The result of this study showed that radioactive waste from medical, industrial and research facilities of high activity should be disposed in the repository that has higher performance of barrier system comparing with the vault type near surface facility. If the conditions of the natural barrier and the engineering barrier are clearer, optimization of the design will be possible. (author)

  20. Analysis through indicators of the management of radioactive waste in a radioactive facility; Analisis por medio de indicadores de la gestion de desechos radiactivos en una instalacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Amador Balbona, Zayda; Argudin Bocourt, William, E-mail: zabalbona@centis.edu.cu [Centro de Isotopos (CENTIS), Mayabeque (Cuba)

    2013-07-01

    The evaluation of the management of radioactive waste in the center of isotopes of the Republic of Cuba is the objective of this work. To do so, all the operations of the management system are evaluated through indicators used by this radioactive facility over a decade ago. Available information is processed from 1996 until 2012. The major waste generators are identified through the indicator of annual generation of each working group by local and by worker and it were analyzed the available store radioactive inventory, the relationship between the variation of annual technological waste volume of waste and the annual total manipulated activity, the relationship generation-declassification and the percent of liquid effluents managed as waste. Indicators of unconditional clearance, as well as the of the gaseous and liquid discharges are presented. It is concluded, with all these indicators, that it is possible to determine where are the causes of the behavior in the generation of radioactive waste if it is an increase of manipulated activity int the places of work or of worker, or improper application of the procedures of collection. It is controlled not only management, but also determines in which aspects can work to achieve the objective of minimizing the formation of these wastes, to be able to reduce the production costs. National shedding environmental regulations are met and the results are acceptable)

  1. Radioactive waste management in a fuel reprocessing facility in fiscal 1982

    International Nuclear Information System (INIS)

    1984-01-01

    In the fuel reprocessing facility of the Power Reactor and Nuclear Fuel Development Corporation, radioactive gaseous and liquid waste are released not exceeding the respective permissible levels. Radioactive concentrated solutions are stored at the site. Radioactive solid waste are stored appropriately at the site. In fiscal 1982, the released quantities of radioactive gaseous and liquid waste were both below the permissible levels. The results of radioactive waste management in the fuel reprocessing facility in fiscal 1982 are given in the tables: the released quantities of radioactive gaseous and liquid waste, the produced quantities of radioactive solid waste, and the stored quantities of radioactive concentrated solutions and of radioactive solid waste as of the end of fiscal 1982. (Mori, K.)

  2. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  3. ISOL science at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Beene, James R [ORNL; Bardayan, Daniel W [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gross, Carl J [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK); Liang, J Felix [ORNL; Nazarewicz, Witold [ORNL; Stracener, Daniel W [ORNL; Tatum, B Alan [ORNL; Varner Jr, Robert L [ORNL

    2011-01-01

    The Holi eld Radioactive Ion Beam Facility, located in Oak Ridge, Tennessee, is operated as a National User Facility for the U.S. Department of Energy, producing high quality ISOL beams of short-lived, radioactive nuclei for studies of exotic nuclei, astrophysics research, and various societal applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25-MV Tandem, accelerated, and used in experiments. This article reviews HRIBF and its science.

  4. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  5. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  6. Prospects for high-power radioactive beam facilities worldwide

    CERN Document Server

    Nolen, Jerry A

    2003-01-01

    Advances in accelerators, targets, ion sources, and experimental instrumentation are making possible ever more powerful facilities for basic and applied research with short-lived radioactive isotopes. There are several current generation facilities, based on a variety of technologies, operating worldwide. These include, for example, those based on the in-flight method such as the recently upgraded National Superconducting Cyclotron Laboratory at Michigan State University, the facility at RIKEN in Japan, GANIL in Caen, France, and GSI in Darmstadt, Germany. Present facilities based on the Isotope-Separator On-Line method include, for example, the ISOLDE laboratory at CERN, HRIBF at Oak Ridge, and the new high-power facility ISAC at TRIUMF in Vancouver. Next-generation facilities include the Radioactive-Ion Factory upgrade of RIKEN to higher energy and intensity and the upgrade of ISAC to a higher energy secondary beam; both of these projects are in progress. A new project, LINAG, to upgrade the capabilities at...

  7. Decommissioning Strategies Selection for Facilities Using Radioactive Material

    International Nuclear Information System (INIS)

    Husen Zamroni; Jaka Rachmadetin

    2008-01-01

    The facilities using radioactive material that have been stopped operation will require some form of the decommissioning for public and environment safety. The approaches are identified by three decommissioning strategies: immediate dismantling, deferred dismantling and entombment. If a facility undergoes immediate dismantling, most radio nuclides will have no such sufficient time to decay and therefore this strategy may not provide reduction in the worker exposure. A facility that undergoes deferred dismantling may advantage from the radioactive decay of residual radio nuclides during the long term storage period and entombment could be a viable option for other nuclear facilities containing only short lived or limited concentrations of long lived radionuclides. Mostly, only two types of the decommissioning used to be done in the world, immediate and deferred dismantling. (author)

  8. Holifield Radioactive Ion Beam Facility Development and Status

    CERN Document Server

    Tatum, Alan

    2005-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility dedicated to nuclear structure, reactions, and nuclear astrophysics research with radioactive ion beams (RIBs) using the isotope separator on-line (ISOL) technique. An integrated strategic plan for physics, experimental systems, and RIB production facilities have been developed and implementation of the plan is under way. Specific research objectives are defined for studying the nature of nucleonic matter, the origin of elements, solar physics, and synthesis of heavy elements. Experimental systems upgrade plans include new detector arrays and beam lines, and expansion and upgrade of existing devices. A multifaceted facility expansion plan includes a $4.75M High Power Target Laboratory (HPTL), presently under construction, to provide a facility for testing new target materials, target geometries, ion sources, and beam preparation techniques. Additional planned upgrades include a second RIB production system (IRIS2), an external axi...

  9. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  10. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  11. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  12. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  13. Annual Report of Radioactive Waste Facilities Operation in 2013

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; LIU; Fu-guo

    2013-01-01

    301,a section of Department of Radiochemistry,which manages 15 facilities and undertakes the administrative tasks of radioactive waste,is the important guarantee of scientific research production and safety in CIAE.1 The safe operation of the radioactive waste management facilities In 2013,in order to ensure the operation safety,we formulated the inspection regulations,which included regular operation inspection,week safety inspection from the leaders of the section and

  14. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  15. International measures needed to protect metal recycling facilities from radioactive materials

    International Nuclear Information System (INIS)

    Mattia, M.; Wiener, R.

    1999-01-01

    In almost every major city and region of every country, there is a recycling facility that is designed to process or consume scrap metal. These same countries will probably have widespread applications of radioactive materials and radiation generating equipment. This material and equipment will have metal as a primary component of its housing or instrumentation. It is this metal that will cause these sources of radioactivity, when lost, stolen or mishandled, to be taken to a metal recycling facility to be sold for the value of the metal. This is the problem that has faced scrap recycling facilities for many years. The recycling industry has spent millions of dollars for installation of radiation monitors and training in identification of radioactive material. It has expended millions more for the disposal of radioactive material that has mistakenly entered these facilities. Action must be taken to prevent this material from entering the conventional recycling process. There are more than 2,300 known incidents of radioactive material found in recycled metal scrap. Worldwide, more than 50 smeltings of radioactive sources have been confirmed. Seven fatal accidents involving uncontrolled radioactive material have also been documented. Hazardous exposures to radioactive material have plagued not just the workers at metal recycling facilities. The families of these workers, including their children, have been exposed to potentially harmful levels of radioactivity. The threat from this material does not stop there. Radioactive material that is not caught at recycling facilities can be melted and the radioactivity has been found in construction materials used to build homes, as well as shovels, fencing material, and furniture offered for sale to the general public. The time has come for the international community to address the issue of the uncontrolled sources of radioactive material. The following are the key points that must be addressed. (i) Identification of sources

  16. NSC confirms principles for safety review on Radioactive Waste Burial Facilities

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Nuclear Safety Commission authorized the scope of Principles for Safety Examination on Radioactive Waste Burial Facilities as suitable, the draft report for which was established by the Special Committee on Safety Standards of Radioactive Waste (Chairman Prof. Masao Sago, Science University of Tokyo) and reported on March 10 to the NSC. The principles include the theory that the facility must be controlled step by step, corresponding to the amount of radioactivity over 300 to 400 years after the burial of low-level solid radioactive waste with site conditions safe even in the event of occurrence of a natural disaster. The principles will be used for administrative safety examination against the application of the business on low-level radioactive waste burial facility which Japan Nuclear Fuel Industries, Inc. is planning to install at Rokkashomura, Aomori Prefecture. (author)

  17. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  18. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  19. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  20. Development of a Commonwealth Radioactive Waste Management Facility in Australia

    International Nuclear Information System (INIS)

    Hesterman, R.

    2006-01-01

    Full text: The Australian Government has commenced a process to build a Commonwealth Radioactive Waste Management Facility in the Northern Territory for management of radioactive wastes produced by Australian Government agencies. The Government is committed to safely managing its relatively small volume of low level radioactive waste (approximately 3800 cubic metres) and even smaller volume of intermediate level waste (around 400 cubic metres) that have been generated since the early 1950s from the research, medical and industrial use of radioactive materials. Australia has no high level radioactive waste as it does not have any nuclear power reactors. Australian states and territories are responsible for the safe and secure management of low level and intermediate level waste generated within their jurisdictions. They have jointly generated approximately 200 cubic metres of low level radioactive waste and under 100 cubic metres of intermediate level for the same period. In July 2004, the Prime Minister announced that the Australian Government would examine the suitability of Commonwealth land holdings, both onshore and offshore, for establishing the Facility. An initial assessment of offshore territories by the Department of Education, Science and Training (DEST) did not find any sufficiently suitable sites for hosting the Facility. This was due to the low elevation of most territories, inadequate infrastructure and incompatibility with existing land uses. In July 2005, Dr Nelson, then the Minister for Education, Science and Training, announced that three Department of Defence properties in the Northern Territory would be investigated for siting the Facility. The three properties are Fishers Ridge, about 43 kilometres southeast of Katherine; Harts Range, 100 kilometres directly northeast of Alice Springs; and Mt Everard, about 27 kilometres directly northwest of Alice Springs. In addition, the Commonwealth Radioactive Waste Management Act 2005, enacted in December

  1. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  2. Outline of the radioactive waste management strategy at the national radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.F.; Tukhto, A.A.; Ivanov, V.B.

    2000-01-01

    The national Belarus radioactive waste disposal facility 'Ekores' was started in 1964 and was designed for radioactive waste coming from nuclear applications in industry, medicine and research. It is located in the neighbourhood of Minsk (2 Mil. people) and it is the only one in this country. In 1997 the Government initiated the project for the facility reconstruction. The main reconstruction goal is to upgrade radiological safety of the site by creating adequate safety conditions for managing radioactive waste at the Ekores disposal facility. This covers modernising technologies for new coming wastes and also that the wastes currently disposed in the pits are retrieved, sorted and treated in the same way as new coming wastes. The reconstruction project developed by Belarus specialists was reviewed by the IAEA experts. The main provisions of the revised project strategy are given in this paper. The paper's intention is to outline the technical measures which may be taken at standard 'old type Soviet Radon' disposal facility so as to ensure the radiological safety of the site. (author)

  3. Decommissioning of a Radioactive Facility Used for Biomolecule Labeling and Biological Effects

    International Nuclear Information System (INIS)

    Yagüe, L.; Navarro, N.; Álvarez, A.; Quiñones, J.

    2015-01-01

    This paper presents the measurement methodology designed for the final status survey of an old radioactive facility, used as radiolabeling lab. Its declassification as radioactive facility required the radiological characterization of all walls, structures and materials at the facility in order to reuse its outbuilding for conventional use. To demonstrate compliance with the declassification criteria, the design of the final status survey was performed applying MARSSIM(1) (Multi-Agency Radiation Survey and Site Investigation Manual) methodology and using different measurement techniques depending on the radioactive isotopes in the inventory of the facility, their half-lives and emission characteristics.

  4. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  5. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  6. Improvements of present radioactive beam facilities and new projects

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1995-01-01

    A short overview is given over scheduled improvements of present radioactive beam facilities and of new projects. In order to put these into a coherent context the paper starts with a general section about the making of radioactive beams. (author)

  7. Radioactive ion beam facilities in Europe

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    2008-01-01

    The past two decades have seen extraordinarily rapid development of radioactive beam physics throughout the world and in particular in Europe. The important scientific advances have stemmed from a large number of facilities. Previously existing stable beam machines have been adapted to produce rare isotope beams and dedicated facilities have come on-line. This talk gives an overview of the present European installations highlighting their complementary nature. The European roadmap calls for the construction of two next generation facilities: FAIR making use of projectile fragmentation and EURISOL based on the ISOL technique. The future FAIR facility will be described and the path towards EURISOL presented in the light of the construction of 'intermediate' generation facilities SPIRAL2, HIE ISOLDE and SPES and results from the ongoing EURISOL Design Study.

  8. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  9. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    Harvego, Lisa; Bennett, Brion

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  10. Design of good manufacturing facility for sterile radioactive pharmaceuticals

    International Nuclear Information System (INIS)

    Shin, B.C.; Choung, W.M.; Park, S.H.; Lee, K.I.; Park, J.H.; Park, K.B.

    2002-01-01

    Based on the GMP codes for radiopharmaceuticals in U.K. and some advanced countries, suitable guidelines for the production facility have been established and followed them up. The facility designs were fairly modified to maintain cleanliness criteria for installation in the existing radioisotope production facilities which are installed only in radiation safety points of view. Detailed design brief was drawn up by the Hyundai Engineering staffs, on the basis of initial planning and conceptual design was carried out by authors. Hot cells were installed in preparation room for radioactive handling. As hot cells under negative air pressure are not properly airtight, the surrounding environment was designed to keep less than class 10,000. Hot cells were designed to maintain less than class 1 0,000 and partially less than class 1 00 for production of sterile products. Final products will be autoclaved for sterilization after filling. To avoid contamination by microorganisms and particles of surrounding area, air curtain with vertical laminar flow will be installed between anteroom and corridor. In a pharmaceutical environment, the main consideration is the protection of the product. Thus, work station is held above ambient pressure. However, when handling radioactive materials, air pressure for work station should be lower than in surrounding areas to protect the operators and the remainder of the facility from airborne radioactive contamination. As Radiopharmaceuticals are radioactive materials for medical use, changing room could be held higher pressure than any other zones. It is expected that the facility will be effectively used for both routine preparation and research for sterile radiopharmaceuticals. (Author)

  11. Socioeconomic issues and analyses for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Ulland, L.

    1988-01-01

    Radioactive Waste facility siting and development can raise major social and economic issues in the host area. Initial site screening and analyses have been conducted for both potential high-level and low-level radioactive waste facilities; more detailed characterization and analyses are being planned. Results of these assessments are key to developing community plans that identify and implement measures to mitigate adverse socioeconomic impacts. Preliminary impact analyses conducted at high-level sites in Texas and Nevada, and site screening activities for low-level facilities in Illinois and California have identified a number of common socioeconomic issues and characteristics as well as issues and characteristics that differ between the sites and the type of facilities. Based on these comparisons, implications for selection of an appropriate methodology for impact assessment and elements of impact mitigation are identified

  12. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    Directory of Open Access Journals (Sweden)

    M. V. Vedernikova

    2017-01-01

    Full Text Available This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on data collected during operation of near-surface disposal facilities for short-lived intermediate-, lowand very low-level waste in France, as well as nearsurface disposal facilities for long-lived waste in Russia. Further analysis of occupational and public doses calculated at the design stage was completed covering a near-surface disposal facility in Belgium and deep disposal facilities in the United Kingdom and the Nizhne-Kansk rock massive (Russia. The results show that engineering and technical solutions enable almost complete elimination of internal occupational exposure, whereas external exposure doses would fall within the range of values typical for a basic nuclear facility. Conclusion: radioactive waste disposal facilities being developed, constructed and operated meet the safety requirements effective in the Russian Federation and consistent with relevant international recommendations. It has been found that individual occupational exposure doses commensurate with those received by personnel of similar facilities abroad. Furthermore, according to the forecasts, mean individual doses for personnel during radioactive waste disposal would be an order of magnitude lower than the dose limit of 20 mSv/year. As for the public exposure, during normal operation, potential impact is virtually impossible by delaminating boundaries of a nuclear facility sanitary protection zone inside which the disposal facility is located and can be solely attributed to the use

  13. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  14. Facilities for the examination of radioactive bodies

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Richardson, E.K.

    1981-01-01

    A facility for the examination of radioactive bodies comprises carriages, each transporting one or more radioactive bodies, e.g. nuclear fuel elements, which travel along a shielded passage to bring the bodies to examination stations spaced along the passage. The passage comprises a circular section tube surrounded by a thick cylinder of shielding material e.g. lead. The transverse sectional dimensions of the passage are not much larger than the corresponding dimensions of the carriages in order to maintain the radioactive region as small as possible. Equipment for the examination of the radioactive bodies is located outside the shielded passage, and may be for metallurgical examination, e.g. by ultrasonics, radiography or other non-destructive testing means, or for mensuration to identify changes in shape, dimensions or weight. (author)

  15. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  16. Analysis of local acceptance of a radioactive waste disposal facility.

    Science.gov (United States)

    Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew

    2008-08-01

    Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.

  17. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  18. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  19. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  20. Overview of linac applications at future radioactive beam facilities

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1996-01-01

    There is considerable interest worldwide in the research which could be done at a next generation, advanced radioactive beam facility. To generate high quality, intense beams of accelerated radionuclides via the open-quotes isotope separator on-lineclose quotes (ISOL) method requires two major accelerator components: a high power (100 kW) driver device to produce radionuclides in a production target/ion source complex, and a secondary beam accelerator to produce beams of radioactive ions up to energies on the order of 10 MeV per nucleon over a broad mass range. In reviewing the technological challenges of such a facility, several types of modem linear accelerators appear well suited. This paper reviews the properties of the linacs currently under construction and those proposed for future facilities for use either as the driver device or the radioactive beam post-accelerator. Other choices of accelerators, such as cyclotrons, for either the driver or secondary beam devices of a radioactive beam complex will also be compared. Issues to be addressed for the production accelerator include the choice of ion beam types to be used for cost-effective production of radionuclides. For the post-accelerator the choice of ion source technology is critical and dictates the charge-to-mass requirements at the injection stage

  1. Decommissioning strategies for facilities using radioactive material

    International Nuclear Information System (INIS)

    2007-01-01

    The planning for the decommissioning of facilities that have used radioactive material is similar in many respects to other typical engineering projects. However, decommissioning differs because it involves equipment and materials that are radioactive and therefore have to be handled and controlled appropriately. The project management principles are the same. As with all engineering projects, the desired end state of the project must be known before the work begins and there are a number of strategies that can be used to reach this end state. The selection of the appropriate strategy to be used to decommission a facility can vary depending on a number of factors. No two facilities are exactly the same and their locations and conditions can result in different strategies being considered acceptable. The factors that are considered cover a wide range of topics from purely technical issues to social and economic issues. Each factor alone may not have a substantial impact on which strategy to select, but their combination could lead to the selection of the preferred or best strategy for a particular facility. This Safety Report identifies the factors that are normally considered when deciding on the most appropriate strategy to select for a particular facility. It describes the impact that each factor can have on the strategy selection and also how the factors in combination can be used to select an optimum strategy

  2. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  3. Near-surface facilities for disposal radioactive waste from non-nuclear application

    International Nuclear Information System (INIS)

    Barinov, A.

    2000-01-01

    The design features of the near-surface facilities of 'Radon', an estimation of the possible emergency situations, and the scenarios of their progress are given. The possible safety enhancing during operation of near-surface facilities, so called 'Historical facilities', and newly developed ones are described. The Moscow SIA 'Radon' experience in use of mobile module plants for liquid radioactive waste purification and principal technological scheme of the plant are presented. Upgrading of the technological scheme for treatment and conditioning of radioactive waste for new-developed facilities is shown. The main activities related to management of spent ionizing sources are mentioned

  4. Steps for safety. Radioactive waste management facilities and Y2K

    International Nuclear Information System (INIS)

    Warnecke, E.

    1999-01-01

    As part of the IAEA activities concerned with Year 2000 (Y2K) problem special attention is paid to operation of radioactive waste management facilities although, fortunately, in the management of radioactive materials the response of a process or activity to a failure would be slow in many instance, providing more time to resolve the issue before any radiological consequences occur. To facilitate greater cooperation, the IAEA organized an international workshop on the exchange of information concerning safety measure to address the Y2K issues on radioactive waste management and nuclear fuel cycle facilities

  5. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2006-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  6. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-01

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary

  7. Site selection process for radioactive waste repository (radioactive facility) in Cuba as a fundamental safety criteria

    International Nuclear Information System (INIS)

    Vital, Jose Luis Peralta; Castillo, Reinaldo Gil; Chales Suarez, Gustavo; Rodriguez Reyes, Aymee

    1999-01-01

    The paper show the process of search carried out for the selection of the safest site in the National territory, in order to sitting the Facility (Repository) that will disposal the low and intermediate level radioactive wastes, as well as the possible Storage Facility for nuclear spent Fuel (radioactive wastes of high activity). We summarize the obtained Methodology and the Criterions of exclusion adopted for the development of the Process of site selection, as well as the current condition of the researches that will permit the obtaining of the nominative objectives. (author)

  8. Radioactive clearance discharge of effluent from nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Liu Xinhua; Xu Chunyan

    2013-01-01

    On the basis of the basic concepts of radiation safety management system exemption, exclusion and clearance, we expound that the general industrial gaseous and liquid effluent discharges are exempted or excluded, gaseous and liquid effluent discharged from nuclear and radiation facilities are clearance, and non-radioactive. The main purpose of this paper is to clarify the concepts, reach a consensus that the gaseous and liquid effluent discharged from nuclear and radiation facilities are non-radioactive and have no hazard to human health and natural environment. (authors)

  9. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  10. Reduction of radioactive waste by improvement of conditioning facilities

    Energy Technology Data Exchange (ETDEWEB)

    Radde, E.

    2014-07-01

    The NES (Nuclear Engineering Seibersdorf) is the only radioactive waste conditions and storage facility in Austria. It manages waste originating from research, industry and medicine. Its main goal is, not only to treat and store waste safety, but also to optimize processes to further reduce the waste volume. To achieve this goal, the New Handling Facility was built. In this paper we will show how the waste volume can be easily reduced by optimizing the conditioning and waste stream process. The NES owns a water treatment plant for cleaning of active waste water, an incineration plant that is used to burn radioactive waste. (Author)

  11. Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Shadrack, Antoony; Kim, Changlak [KEPCO International Nuclear Graduate School, Uljin (Korea, Republic of)

    2013-07-01

    The nuclear power program will inevitably generate radioactive wastes including low-and intermediate radioactive waste and spent fuel. These wastes are hazardous to human health and the environment and therefore, a reliable radioactive waste disposal facility becomes a necessity. This paper describes Kenya's basic plans for the disposal of radioactive wastes expected from the nuclear program. This plan is important as an initial implementation of a national Low to intermediate level wastes storage facility in Kenya. In Kenya, radioactive waste is generated from the use of radioactive materials in medicine, industry, education and research and development. Future radioactive waste is expected to arise from nuclear reactors, oil exploration, radioisotope and fuel production, and research reactors as shown in table 1. The best strategy is to store the LILW and spent fuel temporarily within reactor sites pending construction of a centralized interim storage facility or final disposal facility. The best philosophy is to introduce both repository and nuclear power programs concurrently. Research and development on volume reduction technology and conceptual design of disposal facility of LILW should be pursued. Safe management of radioactive waste is a national responsibility for sustainable generation of nuclear power. The republic of Kenya is set to become the second African nuclear power generation country after South Africa.

  12. Contained scanning electron microscope facility for examining radioactive materials

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1986-03-01

    At the Savannah River Laboratory (SRL) radioactive solids are characterized with a scanning electron microscope (SEM) contained in a glove box. The system includes a research-grade Cambridge S-250 SEM, a Tracor Northern TN-5500 x-ray and image analyzer, and a Microspec wavelength-dispersive x-ray analyzer. The containment facility has a glove box train for mounting and coating samples, and for housing the SEM column, x-ray detectors, and vacuum pumps. The control consoles of the instruments are located outside the glove boxes. This facility has been actively used since October 1983 for high alpha-activity materials such as plutonium metal and plutonium oxide powders. Radioactive defense waste glasses and contaminated equipment have also been examined. During this period the facility had no safety-related incidents, and personnel radiation exposures were maintained at less than 100 mrems

  13. Questionnaire survey report on measurement of radioactivity in working environment of radioisotopes facility

    International Nuclear Information System (INIS)

    Kawano, Takao; Nomura, Kiyoshi

    2008-01-01

    To look over the current measurement of radioactivity concentration in working environment of many radioisotopes facilities, a questionnaire survey was carried out under the auspices of the Planning Committee of the Japan Society of Radiation Safety Management. 64 responses were obtained in 128 radiation facilities, which the questionnaires were sent to. The main results were obtained by aggregate analysis of the answers for questionnaires as the followings. Major nuclides subject to measurement were 3 H, 14 C, 32 P and 125 I Sampling of radioisotopes in air was mainly performed using collectors like dust samplers and HC-collectors. Liquid scintillation counters and gamma counters were used to measure β and γ radioactivity contained in airborne particles or gas samples. Contamination by radioactivity was not detected in 55% facilities surveyed, but in 40% facilities at the same level as or at lower levels than a hundredth part of the regulated concentration limit of each nuclide. Almost all facilities is found to consider that the measurement of radioactivity concentration in working environments is not always necessary. (author)

  14. Software application for a total management of a radioactive facility

    International Nuclear Information System (INIS)

    Mirpuri, E.; Escudero, R.; Macias, M.T.; Perez, J.; Sanchez, A.; Usera, F.

    2008-01-01

    The use of radiological material and/or equipment that generate ionizing radiation is widely extended in biological research. In every laboratory there are a large variety of methods, operations, techniques, equipment, radioisotopes and users related to the work with ionizing radiation. In order to control the radioactive material, users and the whole facility a large number of documents, databases and information is necessary to be created by the manager of the Radioactivity Facility. This kind of information is characterized by a constant and persistent manipulation and includes information of great importance such as the general management of the radioactive material and waste management, exposed workers vigilance, controlled areas access, laboratory and equipment reservations, radiological inspections, etc. These activities are often complicated by the fact that the main manager of the radioactive facility is also in charge of bio-safety and working prevention issues so the documents to generate and manipulate and the procedures to develop are multiplied. A procedure to access and manage all these files is highly recommended in order to optimize the general management of the facility, avoiding loss of information, automating all the activities and allowing data necessary for control easily accessible. In this work we present a software application for a total management of the facility. This software has been developed by the collaboration of six of the most important research centers from Spain in coordination with the company 'Appize soluciones'. This is a flexible and versatile application that adapts to any specific need of every research center, providing the appropriate reports and checklist that speed up to general management and increase the ease of writing the official documents, including the Operations Book. (author)

  15. Air conditioner for radioactive material handling facility

    International Nuclear Information System (INIS)

    Tanaka, Takeaki.

    1991-01-01

    An air conditioner intakes open-air from an open-air intake port to remove sands and sea salt particles by air filters. Then, natural and artificial radioactive particles of less than 1 μm are removed by high performance particulate filters. After controlling the temperature by an air heater or an air cooler, air is sent to each of chambers in a facility under pressure elevation by a blower. In this case, glass fibers are used as the filter material for the high performance particulate filter, which has a performance of more than 99.97% for the particles of 0.3 μm grain size. Since this can sufficiently remove the natural radioactive materials intruded from the outside, a detection limit value in each of the chambers of the facility can be set 10 -13 to 10 -14 μci/cm 3 in respect of radiation control. Accordingly, radiation control can be conducted smoothly and appropriately. (I.N.)

  16. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  17. Risk communication on the siting of radioactive waste management facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Torii, Hiroyuki; Fujii, Yasuhiko

    2007-01-01

    Siting of radioactive waste management facilities frequently raise arguments among stakeholders such as a municipal government and the residents. Risk communication is one of the useful methods of promoting mutual understanding on related risks among stakeholders. In Finland and Sweden, siting selection procedures of repositories for spent nuclear fuels have been carried out successfully with risk communication. The success reasons are analyzed based on the interviews with those who belong to the regulatory authorities and nuclear industries in both countries. Also, in this paper, risk communication among the Japan Radioisotope Association (JRIA), a local government and the general public, which was carried out during the establishment process of additional radioactive waste treatment facilities in Takizawa Village, Iwate Prefecture, is analyzed based on articles in newspapers and interviews with persons concerned. The analysis results showed that good risk communication was not carried out because of the lack of confidence on the JRIA, decision making rules, enough communication chances and economic benefits. In order to make good use of these experiences for the future establishment of radioactive waste management facilities, the lessons learned from these cases are summarized and proposals for good risk communication (establishment of exploratory committee and technical support system for decision making, and measurements to increase familiarity of radioactive waste) are discussed. (author)

  18. National facilities for the management of institutional radioactive waste in Romania

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.N.; Dragolici, F.; Nicu, M.; Lungu, L.; Cazan, L.; Matei, G.; Guran, V.

    2000-01-01

    The management of the non-fuel cycle radioactive wastes from all over Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR). Final disposal is carried out at the National Repository of Radioactive Wastes (DNDR) at Baita Bihor. Radioactive waste treated at STDR arise from three main sources: 1. Wastes arising from the WWR-S research reactor during operation and the future decommissioning works; 2. Local waste from other facilities operating on IFIN-HH site. These sources include wastes generated during the normal activities of the STDR; 3. Wastes from IFIN-HH off site facilities and activities including medical, biological, and industrial applications all over the country. The Radiochemical Production Center, operating within IFIN-HH is the most important source of low and intermediate level radioactive wastes (liquid and solid), as the operational wastes arising from processing at STDR are. The STDR basically consists of liquid and solid waste treatment and conditioning facilities, a radioactive decontamination centre, a laundry and an intermediate storage area. The processing system of the STDR are located at six principal areas performing the following activities: 1. Liquid effluent treatment; 2. Burning of combustible solid stuff; 3. Compaction of solid non-combustible stuff; 4. Cement conditioning; 5. Radioactive decontamination; 6. Laundry. The annual designed treatment capacity of the plant is 1500 m 3 Low Level Aqueous Waste, 100 m 3 Low Level Solid Waste and shielded drums for Intermediate Level Waste. The temporary storage within and final disposal of waste in the frame of DNDR are explained as well as the up-dating of institutional radioactive waste infrastructure

  19. Licensing of radioactive materials and facilities in the Philippines

    International Nuclear Information System (INIS)

    Mateo, A.J.

    1976-12-01

    The importation, acquisition, possession, use, sale and/ or transfer of radioactive materials need to be regulated and controlled in order to safeguard the importer, possessor, user or seller and the general public as well. The Philippine Atomic Energy Commission pursuant to Republic Act No. 2067, as amended and Republic Act No. 5207, has been charged by the government to control, regulate and license all the radioactive materials and facilities in the Philippines. Licensing and control is accomplished through a system of rules and regulations applicable to all importers, possessors, users or sellers of radioactive materials

  20. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y C [Yonsei Univ., Seoul (Korea, Republic of); Park, W J; Lee, B S; Lee, S H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  1. Commissioning of the very low level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  2. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    OpenAIRE

    M. V. Vedernikova; I. A. Pron; M. N. Savkin; N. S. Cebakovskaya

    2017-01-01

    This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on d...

  3. Estimation of contaminant transport in groundwater beneath radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Wang, J.C.; Tauxe, J.D.; Lee, D.W.

    1995-01-01

    Performance assessments are required for low-level radioactive waste disposal facilities to demonstrate compliance with the performance objectives contained in either 10 CFR 61, open-quotes Licensing Requirements for Land Disposal of Radioactive Waste,close quotes or U.S. Department of Energy Order 5820.2A, open-quotes Radioactive Waste Management.close quotes The purpose of a performance assessment is to provide detailed, site-specific analyses of all credible pathways by which radionuclides could escape from the disposal facility into the environment. Among these, the groundwater pathway analysis usually involves complex numerical simulations. This paper demonstrates that the use of simpler analytical models avoids the complexity and opacity of the numerical simulations while capturing the essential physical behavior of a site

  4. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  5. The situation of radioactive waste management in the fuel reprocessing facility (for fiscal 1979)

    International Nuclear Information System (INIS)

    1981-01-01

    In the fuel reprocessing facility of Power Reactor and Nuclear Fuel Development Corporation (PNC), the release of radioactive gaseous and liquid wastes was so controlled as not to exceed the set standards. Of the radioactive liquid wastes, concentrated wastes and sludge are stored in tanks. Radioactive solid wastes are suitably stored in containers. The situation of radioactive waste management in the fuel reprocessing facility in fiscal 1979 (from April, 1979, to March, 1980) is presented on the basis of the radiation control report made by PNC. The release of radioactive gaseous and liquid wastes was below the set standards. The following data are given in tables: the released quantity of radioactive gaseous and liquid wastes, the cumulative stored amount of radioactive liquid wastes, the produced quantity and cumulative stored amount of radioactive solid wastes; (for reference) the released quantity of radioactive gaseous and liquid wastes in fiscal 1977, 1978 and 1979. (J.P.N.)

  6. Low-level radioactive waste from rare metals processing facilities

    International Nuclear Information System (INIS)

    Eng, J.; Hendricks, D.W.; Feldman, J.; Giardina, P.A.

    1980-01-01

    This paper reviews the situations at the existing Teledyne Wah Chang Co., Inc. located at Albany, Oregon, and the former Carborundum Corp./Amax Specialty Metals, Inc., facilities located at Parkersburg, West Virginia, and Akron, New York, in order to show the extent of the radioactivity problem at rare metals processing facilities and the need to identify for radiological review other rare metal and rare earth processing sites

  7. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  8. Systematic analysis method for radioactive wastes generated from nuclear research facilities

    International Nuclear Information System (INIS)

    Kameo, Yutaka; Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Katayama, Atsushi; Nakashima, Mikio; Takahashi, Kuniaki

    2011-01-01

    Analytical methods have been developed for the simple and rapid determination of radioactive nuclides, which are selected as important nuclides for the safety assessment of the disposal of wastes generated from research facilities. We advanced the development of a high-efficiency nondestructive measurement technique for γ-ray-emitting nuclides, simple and rapid methods for the pretreatment of hard-to-dissolve samples and subsequent radiochemical separation, and rapid determination methods for long-lived nuclides. In order to establish a system to analyze the important nuclides in various kinds of sample, actual radioactive wastes such as concentrated liquid waste, activated concrete, and metal pipes were analyzed by the present method. The results showed that the present method was well suited for a rapid and simple determination of low-level radioactive wastes generated from research facilities. (author)

  9. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  10. Experience in the Application of INES scale to events in the Spanish Radioactive facilities

    International Nuclear Information System (INIS)

    Ramirez, M. L.; Alvarez, C.

    2002-01-01

    In February 2001, the International Atomic Energy Agency (IAEA) and the Nuclear energy Agency of the OECD (NEA) published a new edition of the INES User's Manual for the classification of nuclear events. One of the new developments introduced with respect to the scope of the former Manual was the inclusion within the INES of any event associated with radioactive material and/or radiation. This would include events occurred in radioactive facilities so the INES would apply not only to events in nuclear facilities. During the publication process some doubts rose about the applicability of INES to other non nuclear types of events. The IAEA was open to the future development of more practical guidance for the application of the scale. Since the beginning of 2001 the Consejo de Seguridad Nuclear (CSN) has been using INES to test the applicability of the system to classify events in radioactive facilities. A total of 31 events occurred at Spanish radioactive facilities has been classified applying INES scale and a report was sent to IAEA to publish our experience. The objective of this presentation is to introduce the experience obtained by the application of the International Nuclear Events Scale (INES) to classify events in radioactive facilities in Spain and to present several issues raised during its application that may need further development in a practical guidance. (Author)

  11. Safety assessment for radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Thanaletchumy Karuppiah; Mohd Abdul Wahab Yusof; Nik Marzuki Nik Ibrahim; Nurul Wahida Ahmad Khairuddin

    2008-08-01

    Safety assessments are used to evaluate the performance of a radioactive waste disposal facility and its impact on human health and the environment. This paper presents the overall information and methodology to carry out the safety assessment for a long term performance of a disposal system. A case study was also conducted to gain hands-on experience in the development and justification of scenarios, the formulation and implementation of models and the analysis of results. AMBER code using compartmental modeling approach was used to represent the migration and fate of contaminants in this training. This safety assessment is purely illustrative and it serves as a starting point for each development stage of a disposal facility. This assessment ultimately becomes more detail and specific as the facility evolves. (Author)

  12. Risk communication on the construction of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru

    2005-01-01

    In this paper, risk communications among the Japan Radioisotope Association (JRIA), a local government and the general public which were carried out during the development process of a radioactive waste treatment facility in Takizawa Village, Iwate Prefecture are analyzed based on the articles of newspapers and the interviews with the concerned people. The analysis results show good risk communications were not carried out because of the absence of the confidence to the JRIA, decision making rules and the merits. In order to make good use of this experience for the future development of radioactive waste management facilities, the lessons learned from this case are summarized and the check lists for good risk communication are proposed. (author)

  13. National Low-Level Radioactive Waste Management Program. Use of compensation and incentives in siting Low-Level Radioactive Waste Disposal Facilities. Revision 1

    International Nuclear Information System (INIS)

    1985-10-01

    This document was prepared to increase understanding of compensation and incentives as they pertain to the siting of Low-Level Radioactive Waste Disposal Facilities. Compensation and incentives are discussed as methods to facilitate siting Low-Level Radioactive Waste Facilities. Compensations may be in the form of grants to enable host communities to evaluate potential impacts of the proposed facility. Compensations may also include reimbursements to the host community for costs incurred during facility construction, operation and closure. These may include required improvements to local roads, new equipment, and payments for revenue losses in local property taxes when disposal sites are removed from the tax base. Incentives provide benefits to the community beyond the costs directly related to the operation of the facility. Greater local control over waste facilities can be a powerful incentive. Local officials may be more willing to accept a facility if they have some control over the operation and monitoring associated with the facility. Failure to secure new disposal sites may cause such problems as illegal dumping which would create public health hazards. Also, lack of disposal capacity may restrict research and medical use of radioactive materials. The use of compensation and incentives may increase acceptance of communities for hosting a low-level waste disposal facility

  14. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    International Nuclear Information System (INIS)

    2003-08-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a high potential risk to workers and to the public. The IAEA has received numerous requests for assistance from Member States faced with the problem of safely managing disused sealed sources. The requests have related to both technical and safety aspects. Particularly urgent requests have involved emergency situations arising from unsafe storage conditions and lost sources. There is therefore an important requirement for the development of safe and cost-effective final disposal solutions. Consequently, a number of activities have been initiated by the IAEA to assist Member States in the management of disused sealed sources. The objective of this report is to address safety issues relevant to the disposal of disused sealed sources, and other limited amounts of radioactive waste, in borehole facilities. It is the first in a series of reports aiming to provide an indication of the present issues related to the use of borehole disposal facilities to safely disposal

  15. Dismantling and rehabilitation programme of nuclear and radioactive facilities at the Spanish Research Centre (CIEMAT)

    International Nuclear Information System (INIS)

    Diaz Diaz, J.L.; Lopez Jimenez, J.

    2002-01-01

    Ciemat was gradually proceeding to the decommissioning of its more than 60 historical facilities. At present, a general decommissioning programme has been established that includes, to a different extent, all radioactive and nuclear facilities and their areas of influence, particularly those related to the front-end and back-end of the nuclear fuel cycle, hot cells and three experimental reactors. The purpose of the programme is to manage a model of a research centre integrating, on one side, a set of radioactive and conventional facilities and laboratories, and, on the other, a small area temporarily classified as a nuclear facility dedicated to the radioactive wastes management and providing an interim storage for materials under safeguards. The largest part of the radioactive wastes produced will be sent to El Cabril, a near surface disposal facility for low and intermediate level wastes, and the rest will be temporarily stored at Ciemat. This paper presents the main features of the programme and the lessons learned in its execution so far. (author)

  16. A successful case site selection for low-and intermediate-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Lee, Bongwoo

    2007-01-01

    Korea decided on Gyeongju-si as the site of low-and intermediate-level radioactive waste disposal facility by referendum in November, 2005. Five success factors are considered; 1) the mayor and municipal assembly leaded the public opinion of inhabitants, 2) an invitation group was formed by citizen, social and religious group, 3) Gyeongju-si has operated the nuclear power plant since 20 years ago, and this radioactive waste disposal facility brings large financial support, 4) many kinds of public information means were used for invitation agreement and 5) the preconception, a nuclear facility is danger, was removed by visiting citizen, social group and local inhabitants at the nuclear power plant facility. Promotion process of the project, invitation process of Gyeongju-si and success factors, construction of an invitation promotion group and development of public information activities, publicity of financial effects and safety of radioactive waste disposal facility, increase of general acceptance among inhabitants by many kinds of public information means, and P.R. of safety of nuclear power plant facility by visiting leadership layers are reported. (S.Y.)

  17. The Holifield Radioactive Ion Beams Facility (HRIBF) - getting ready to do experiments

    International Nuclear Information System (INIS)

    Shapira, D.; Lewis, T.A.

    1998-01-01

    The conversion of the HHIRF facility to a Radioactive Ion Beam facility started in 1994. In this ISOL type facility the Cyclotron has been re-fitted as a driver providing high intensity proton beams which react with the target from which the radioactive products are extracted and then accelerated in the Tandem Electrostatic Accelerator to the desired energy for nuclear science studies. Facilities for nuclear physics experiments are at different stages of development: A Recoil Mass Spectrometer (RMS) with a complement of detectors at the focal plane and around the target is used primarily for nuclear structure studies. A large recoil separator combining velocity and momentum selection, with its complement of focal plane detectors, will be dedicated to measurements relevant to nuclear astrophysics. The Enge Split Pole spectrograph is being re-fitted for operation in a gas filled mode, making it a more versatile tool for nuclear reaction studies. With the new experimental equipment being commissioned and the prospects of running experiments with low intensity radioactive beams a significant effort to develop equipment for beam diagnostics is underway. Some of the efforts and results in developing beam diagnostic tools will be described

  18. Regulatory inspection practices for radioactive and non-radioactive waste management facilities

    International Nuclear Information System (INIS)

    Roy, Amitava

    2017-01-01

    Management of nuclear waste plays an important role in the nuclear energy programme of the country. India has adopted the Closed Fuel Cycle option, where the spent nuclear fuel is treated as a material of resource and the nuclear waste is wealth. Closed fuel cycle aims at recovery and recycle of valuable nuclear materials in to reactors as fuel and also separation of useful radio isotopes for the use in health care, agriculture and industry. India has taken a lead role in the waste management activities and has reached a level of maturity over a period of more than forty decades. The nuclear waste management primarily comprises of waste characterization, segregation, conditioning, treatment, immobilization of radionuclides in stable and solid matrices and interim retrievable storage of conditioned solid waste under surveillance. The waste generated in a nuclear facility is in the form of liquid and solid, and it's classification depends on the content of radioactivity. The liquid waste is characterized as Low level (LLW), Intermediate level (ILW) and High Level (HLW). The LLW is relatively large in volume and much lesser radioactive. The LLW is subjected to chemical precipitation using various chemicals based on the radionuclides present, followed by filtration, settling, ion exchange and cement fixation. The conditioning and treatment processes of ILW uses ion exchange, alkali hydrolysis for spent solvent, phase separation and immobilization in cement matrix. The High Level Waste (HLW), generated during spent fuel reprocessing and containing more than 99 percent of the total radioactivity is first subjected to volume reduction/concentration by evaporation and then vitrified in a meIter using borosilicate glass. Presently, Joule Heated Ceramic Meter is used in India for Vitrification process. Vitrified waste products (VWP) are stored for interim period in a multibarrier, air cooled facility under surveillance

  19. Evaluation of {sup 18}F radioactive concentration in exhaust at cyclotron facility at Chosun University

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Cheol Ki; Jang, Han; Lee, Goung Jin [Dept. of Nuclear Engineering, Chsoun University, Gwangju (Korea, Republic of)

    2016-11-15

    the recent prevalence of PET examinations in Korea has led to an increase in the number of cyclotrons. the medical isotope 18F produced in most cyclotron facilities currently operating in Korea is emitted into the environment during the production of [{sup 18}F]FdG, a cancerdiagnosis reagent. the amount of [{sup 18}F]FdG synthesized determines the radioactive concentration of {sup 18}F in the exhaust. at some facilities, this amount temporarily exceeds the emission limit. In this study, we evaluated the {sup 18}F radioactivity concentration in the exhaust from the cyclotron facility at chosun university. the {sup 18}F radioactivity concentration was measured using an air sampler and a hPGe semiconductor detector. the measurements showed that the radioactive concentration of {sup 18}F in the exhaust at the cyclotron facility at Chosun university was the highest during [{sup 18}F]FdG synthesis but remained under the legal limit of 2,000 Bq m{sup -3}.

  20. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  1. The Constitution, waste facility performance standards, and radioactive waste classification: Is equal protection possible?

    Energy Technology Data Exchange (ETDEWEB)

    Eye, R.V. [Kansas Dept. of Health and Environment, Topeka, KS (United States)

    1993-03-01

    The process for disposal of so-called low-level radioactive waste is deadlocked at present. Supporters of the proposed near-surface facilities assert that their designs will meet minimum legal and regulatory standards currently in effect. Among opponents there is an overarching concern that the proposed waste management facilities will not isolate radiation from the biosphere for an adequate length of time. This clash between legal acceptability and a perceived need to protect the environment and public health by requiring more than the law demand sis one of the underlying reasons why the process is deadlocked. Perhaps the most exhaustive public hearing yet conducted on low-level radioactive waste management has recently concluded in Illinois. The Illinois Low-Level Radioactive Waste Disposal Facility Sitting Commission conducted 71 days of fact-finding hearings on the safety and suitability of a site near Martinsville, Illinois, to serve as a location for disposition of low-level radioactive waste. Ultimately, the siting commission rejected the proposed facility site for several reasons. However, almost all the reasons were related, to the prospect that, as currently conceived, the concrete barrier/shallow-land burial method will not isolate radioactive waste from the biosphere. This paper reviews the relevant legal framework of the radioactive waste classification system and will argue that it is inadequate for long-lived radionuclides. Next, the paper will present a case for altering the classification system based on high-level waste regulatory considerations.

  2. Gaseous radioactive effluent restrictions, measurement, and minimization at a PET/cyclotron facility

    International Nuclear Information System (INIS)

    Plascjak, P.S.; Kim, K.K.; Googins, S.W.; Meyer, W.C. Jr.

    1993-01-01

    In the US, restrictions on the release of radioactive effluents from PET (positron emission tomography)/cyclotron facilities are typically imposed by State regulatory agencies and may be based on various methodologies and limits published by numerous agencies. This work presents suitable effluent concentration limits for various chemical forms of radioisotopes routinely produced in PET/cyclotron facilities. They were determined by application of metabolic models defined by ICRP 53 and ICRP 26/30 which will result in compliance with effective dose equivalent limits of 100 mrem per year at the release point. The NIH Cyclotron Facility effluent air monitoring system, environmental dosimetry program, and simple, effective systems for radioactive effluent minimization are also described. (orig.)

  3. Mastery of risks: we build the memory of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Lacourcelle, C.

    2011-01-01

    The ANDRA, the French national agency of radioactive wastes, is organizing today the information needs of tomorrow. The aim is to allow the future generations to have access to the knowledge of the existence of subsurface radioactive waste facilities and to understand the context and technologies of such facilities. The storage of this information is made on 'permanent paper', a high resistant paper with a lifetime of 600 to 1000 years. An updating of these data is made every 5 years for each waste disposal center. Another project, still in progress, concerns the memory management of deep geologic waste disposal facilities for which the time scale to be considered is of the order of millennia. (J.S.)

  4. Current situation with the centralized storage facilities for non-power radioactive wastes in Latin American countries

    International Nuclear Information System (INIS)

    Benitez, Juan C.; Salgado, Mercedes; Idoyaga Navarro, Maria L.; Escobar, Carolina; Mallaupoma, Mario; Sbriz, Luciano; Moreno, Sandra; Gozalez, Olga; Gomez, Patricia; Mora, Patricia; Miranda, Alberto; Aguilar, Lola; Zarate, Norma; Rodriguez, Carmen

    2008-01-01

    Full text: Several Latin American (LA) countries have been firmly committed to the peaceful applications of ionizing radiations in medicine, industry, agriculture and research in order to achieve socioeconomic development in diverse sectors. Consequently the use of radioactive materials and radiation sources as well as the production of radioisotopes and labeled compounds may always produce radioactive wastes which require adequate management and, in the end, disposal. However, there are countries in the Latin American region whose radioactive waste volumes do not easily justify a national repository. Moreover, such facilities are extremely expensive to develop. It is unlikely that such an option will become available in the foreseeable future for most of these countries, which do not have nuclear industries. Storage has long been incorporated as a step in the management of radioactive wastes. In the recent years, there have been developments that have led some countries to consider whether the roles of storage might be expanded to provide longer-term care of long-live radioactive wastes The aim of this paper is to discuss the current situation with the storage facilities/conditions for the radioactive wastes and disused sealed radioactive sources in Latin-American countries. In some cases a brief description of the existing facilities for certain countries are provided. In other cases, when no centralized facility exists, general information on the radioactive inventories and disused sealed sources is given. (author)

  5. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a ...

  6. Method of preventing contaminations in radioactive material handling facilities

    International Nuclear Information System (INIS)

    Inoue, Shunji.

    1986-01-01

    Purpose: To prevent the contamination on the floor surface of working places by laying polyvinyl butyral sheets over the floor surface, replacing when the sheets are contaminated, followed by burning. Method: Polyvinyl butyral sheets comprising 50 - 70 mol% of butyral component are laid in a radioactive material handling facility, radioactive materials are handled on the polyvinyl butyral sheets and the sheets are replaced when contaminated. The polyvinyl butyral sheets used contain 62 - 68 mol% of butyral component and has 0.03 - 0.2 mm thickness. The contaminated sheets are subjected to burning processing. This can surely collect radioactive materials and the sheets have favorable burnability, releasing no corrosive or deleterious gases. In addition, they are inexpensive and give no hindrance to the workers walking. (Takahashi, M.)

  7. Learning and education on environmental radioactivity by residents of Rokkasho Site for the spent fuel recycling facilities

    International Nuclear Information System (INIS)

    Kawauchi, Kiye; Itoh, Natsuko; Ishikawa, Tomiye; Nihonyanagi, Haruko; Aratani, Michi

    2005-01-01

    The neutron criticality accident at the JCO, a private company for nuclear fuel processing facilities in Tokai has drastically changed minds and attitudes of residents toward environmental radioactivity. The accident happened on September 30, 1999. Before the accident the residents of the Rokkasho Site were not anxious about environmental radioactivity, because they thought the facilities were safe enough concerning containment policy of the radioactivity inside the facilities. Residents, however, had not been taught on a neutron. It is an unfamiliar radiation for them. So, they promptly learnt on neutrons, and some of them began the fixed point measurement of neutrons at the nearest site of the Spent Fuel Recycling Facilities of Rokkasho by the help of Prof. Kazuhisa. Komura, Kanazawa University. Members of the Reading Cicle, Rokkasho Culture Society, mainly women, learnt measurements of environmental radioactivity using simplified counters for alpha-, beta-, and gamma-ray from natural radioactive elements and prepared various kinds of environmental samples. After learning of environmental radioactivity, they began educational activities on the environmental radioactivity for boys and girls in the region. Monitoring of environmental radioactivity is performed by different institutions and with their purposes. Here is reported learning of environmental radioactivity by the residents and education of environmental radioactivity toward the young. Even with the simplest counters, we think that the monitoring of environmental radioactivity by the residents themselves is the royal road to the safety of the regional society. (author)

  8. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Laboratory

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  9. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1996-01-01

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given

  10. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  11. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  12. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  13. Developing operating procedures for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G.

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures

  14. Analysis of occupational doses in radioactive and nuclear facilities

    International Nuclear Information System (INIS)

    Curti, A.; Gomez P, I.; Pardo, G.; Thomasz, E.

    1996-01-01

    Occupational doses were analyzed in the most important nuclear and radioactive facilities in Argentina, on the period 1988-1994. The areas associated with uranium mining and milling, and medical uses of radiation facilities were excluded from this analysis. The ICRP publication 60 recommendations, adopted in 1990, and enforced in Argentine in 1994, keep the basic criteria of dose limitation system and recommend a substantial reduction in the dose limits. The reduction of the dose limits will affect the individual dose distributions, principally in those installations with occupational doses close to 50 mSv. It were analyzed Occupational doses, principally in the following facilities: Atucha-I and Embalse Nuclear Power Plants, radioisotope production plants, research reactors and radioactive waste management plants. The highest doses were identified in each facility, as well as the task associated with them. Trends in the individual dose distribution and collective and average doses were analyzed. It is concluded, that no relevant difficulties should appear in accomplishing with the basic standards for radiological safety, except for the Atucha-I Nuclear Power Plant. In this NPP a significant effort for the optimization of radiological safety procedures in order to diminish the occupational doses, and a change of the fuel channels by new ones free of cobalt are being carried out. (authors). 4 refs., 3 figs., 3 tabs

  15. Special feature of the facilities for final disposal of radioactive waste and its potential impact on the licensing process

    International Nuclear Information System (INIS)

    Lee Gonzales, Horacio M.; Medici, Marcela A.; Alvarez, Daniela E.; Biaggio, Alfredo L.

    2009-01-01

    During the lifetime of a radioactive waste disposal facility it is possible to identify five stages: design, construction, operation, closure and post-closure. While the design, and pre-operation stages are, to some extent, similar to other kind of nuclear or radioactive facilities; construction, operation, closure and post-closure have quite special meanings in the case of radioactive waste disposal systems. For instance, the 'closure' stage of a final disposal facility seems to be equivalent to the commissioning stage of a conventional nuclear or radioactive facility. This paper describes the unique characteristics of these stages of final disposal systems, that lead to concluded that their licensing procedure can not be assimilated to the standard licensing procedures in use for other nuclear or radioactive facilities, making it necessary to develop a tailored license system. (author)

  16. World new facilities for radioactive isotope beams

    International Nuclear Information System (INIS)

    Motobayashi, T.

    2014-01-01

    The use of unstable nuclei in the form of energetic beams for nuclear physics studies is now entering into a new era. 'New-generation' facilities are either in operation, under construction or being planned. They are designed to provide radioactive isotope (RI) beams with very high intensities over a wide range of nuclides. These facilities are expected to provide opportunities to study nuclear structure, astrophysical nuclear processes and nuclear matter with large proton-neutron imbalance in grate detail. This article reports on the current status of such new-generation RI-beam facilities around the world. In order to cover different energy domains and to meet various scientific demands, the designs of RI-beam facilities are of a wide variety. For example, RIBF in Japan, FAIR in Germany and FRIB in US are based on the fragmentation scheme for beams with energies of a few hundred MeV/nucleon to GeV/nucleon, whereas Spiral2 in France, SPES in Italy, HIE-ISOLDE in Switzerland/France, and the future facility EURISOL in Europe are based on the ISOL method, and aim at providing lower-energy RI beams. There are a many other projects including upgrades of existing facilities in the three continents, America, Asia and Europe

  17. Safety measures to address the year 2000 issue at medical facilities which use radiation generators and radioactive materials

    International Nuclear Information System (INIS)

    1999-03-01

    In resolution GC(42)/RES/11 on 'Measures to Address the Year 2000 (Y2K) Issue', adopted on 25 September 1998, the General Conference of the International Atomic Energy Agency (IAEA) - inter alia - urged Member States 'to share information with the Secretariat regarding diagnostic and corrective actions being planned or implemented by operating and regulatory organizations at their ... medical facilities which use radioactive materials to make those facilities Year 2000 ready', encouraged the Secretariat 'within existing resources to act as a clearing-house and central point of contact for Member States to exchange information regarding diagnostic and remediation actions being taken at ... medical facilities which use radioactive materials to make these facilities Year 2000 ready', urged the Secretariat 'to handle the information provided by Member States carefully' and requested the Director General to report to it at its next (1999) regular session on the implementation of that resolution. The IAEA Secretariat convened a group of consultants who met in Vienna from 14 to 18 December 1998 and produced this report. The consultants decided that the report should cover not just 'medical facilities which use radioactive materials' but also medical facilities which, while perhaps not using radioactive materials, use ionizing radiation produced by radiation generators such as accelerators. The reports issued together are: Achieving Year 2000 Readiness: Basic Processes; Safety Measures to Address the Year 2000 Issue at Medical Facilities Which Use Radiation Generators and Radioactive Materials; and Safety Measures to Address the Year 2000 Issue at Radioactive Waste Management Facilities. This report addresses means of dealing with the Y2K problem at medical facilities which use radiation generators and radioactive materials

  18. High level radioactive waste management facility design criteria

    International Nuclear Information System (INIS)

    Sheikh, N.A.; Salaymeh, S.R.

    1993-01-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding

  19. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  20. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.

    1984-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  1. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.; Associated Technologies, Inc., Charlotte, NC)

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor. 4 figs

  2. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  3. Secrets of successful siting legislation for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1988-01-01

    California's users of radioactive materials, working together through the California Radioactive Materials Management Forum (Cal Rad), have played a role in fostering development of our state's low-level radioactive waste disposal facility. One of Cal Rad's contributions was to develop and sponsor California's siting legislation in 1983. In this paper, the elements of the state's LLRW siting law, California Senate Bill 342 (Chapter 1177, Statutes a 1983), and their relationship to a successful siting program are described

  4. CJSC ECOMET-S facility for reprocessing and utilisation of radioactive metal waste: operating experience

    International Nuclear Information System (INIS)

    Gelbutovsky, A.B.; Kishkin, S.A.; Mochenov, M.I.; Troshev, A.V.; Cheremisin, P.I.; Chernichenko, A.A.

    2006-01-01

    The principal objective of the paper is to present operating experience in management of radioactive metal waste, originating at nuclear power facilities of the Russian Federation. Issues of radioactive metal waste recycling by melting, with the purpose of unrestricted re-use in industry, or restricted re-use within the nuclear industry, have been considered. The necessity for using a method of melting at the final stage of radioactive metal waste recycling has been proved. Priority measures to be taken and results achieved in the implementation of the Governmental purpose-oriented programme 'Radioactive Metal Waste Reprocessing and Utilization' have been considered, the CJSC ECOMET-S being the main contractor on the Programme. Main specifications and results of operating a commercial melting facility, owned by CJSC 'ECOMET-S' and used to recycle low-level radioactive metal waste originated at the Leningrad Nuclear Power Plant, have been presented. (author)

  5. Ion sources for initial use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surfaceionization sources are also under design consideration for generating negative radioactive ion beams from high electron-affinity elements. A brief review of the HRIBF will be presented, followed by a detailed description of the design features, operational characteristics, ionization efficiencies, and beam qualities (emittances) of these sources

  6. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    International Nuclear Information System (INIS)

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  7. Operation technology of the ventilation system of the radioactive waste treatment facility(II) - Design and operation note

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Lee, B. C.; Bae, S. M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    As the radioactive waste treatment work, such as compaction and/or solidification of wastes, are done directly by the workers in the Radioactive Waste Treatment Facility, the reasonable design and operation of the ventilation system is essential. In this report, the design criteria and specification of the ventilation equipment, system operation method are described for the effective design and operation of ventilation system in the radioactive waste treatment facility. And the anti-vibration work which was done in the Radioactive Waste Treatment Facility in KAERI to reduce the effect of vibration due to the continuous operation of big rotational equipment, the intake fans and the exhaust fans, are described in the report. 11 refs., 10 figs., 12 tabs. (Author)

  8. Development of 3D Visualization Technology for Medium-and Large-sized Radioactive Metal Wastes from Decommissioning Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A Rim; Park, Chan Hee; Lee, Jung Min; Kim, Rinah; Moon, Joo Hyun [Dongguk Univ., Gyongju (Korea, Republic of)

    2013-10-15

    The most important point of decommissioning nuclear facilities and nuclear power plants is to spend less money and do this process safely. In order to perform a better decommissioning nuclear facilities and nuclear power plants, a data base of radioactive waste from decontamination and decommissioning of nuclear facilities should be constructed. This data base is described herein, from the radioactive nuclide to the shape of component of nuclear facilities, and representative results of the status and analysis are presented. With the increase in number of nuclear facilities at the end of their useful life, the demand of decommissioning technologies will continue to grow for years to come. This analysis of medium-and large-sized radioactive metal wastes and 3D visualization technology of the radioactive metal wastes using the 3D-SCAN are planned to be used for constructing data bases. The data bases are expected to be used on development of the basic technologies for decommissioning nuclear facilities 4 session.

  9. Solid radioactive waste processing facility of the NPP Leningrad

    International Nuclear Information System (INIS)

    Weichard, Swetlana

    2008-01-01

    On behalf of the Russian Company Rosenergoatom NUKEM Technologies GmbH is planning and constructing a complete facility for the processing of solid low- and medium-active radioactive wastes. The NPP Leningrad comprises 4 units of RBMK-1000 reactors, the plant life has been extended by 15 years, the first unit is to be decommissioned in 2018. The construction of four new units is planned. NUKEM is in charge of planning, manufacture, construction and startup of the following facilities: sorting, internal transport, combustion and waste gas cleaning, emission surveillance, compacting, packaging and radiological measurement.

  10. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  11. Obstacle factors and overcoming plans of public communication: With an emphasis on radioactive waste disposal facility siting

    International Nuclear Information System (INIS)

    Yoo, Hae-Woon; Oh, Chang-Taeg

    1996-01-01

    Korea is confronting a serious social conflict, which is phenomenon of local residents reaction to radioactive waste disposal facility. This phenomenon is traced back to the reason that the project sponsors and local residents do not communicate sufficiently each other. Accordingly, in order to overcome local residents' reaction to radioactive waste disposal facility siting effectively, it is absolutely necessary to consider the way of solutions and strategies with regard to obstacle factors for public communication. In this content, this study will review three cases (An-myon Island, Gul-up Island, Yang-yang) on local residents reaction to facility siting. As a result of analysis, authoritarian behavior of project sponsors, local stigma, risk, antinuclear activities of environmental group, failures in siting the radioactive waste disposal facility, etc. has negative impact on public communication of the radioactive waste disposal facility siting. In this study, 5 strategies (reform of project sponsor's authoritarianism, incentive offer, strengthening PA activities, more active talks with environmental groups, promoting credibility of project sponsors) arc suggested to cope with obstacle factors of public communication

  12. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  13. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  14. A summary of the geotechnical and environmental investigations pertaining to the Vaalputs national radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Camisani-Calzolari, F.A.G.M.

    1986-08-01

    This report describes the geological environmental surveys that lead to the choice and final evaluation of the Vaalputs national facility for the disposal of radioactive waste. This survey looked at the geography, demography, ecology, meteorology, geology, geohydrology and background radiological characteristics of the Vaalputs radioactive waste facility

  15. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    International Nuclear Information System (INIS)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama

  16. Analysis through indicators of the management of radioactive waste in a radioactive facility

    International Nuclear Information System (INIS)

    Amador Balbona, Zayda; Argudin Bocourt, William

    2013-01-01

    The evaluation of the management of radioactive waste in the center of isotopes of the Republic of Cuba is the objective of this work. To do so, all the operations of the management system are evaluated through indicators used by this radioactive facility over a decade ago. Available information is processed from 1996 until 2012. The major waste generators are identified through the indicator of annual generation of each working group by local and by worker and it were analyzed the available store radioactive inventory, the relationship between the variation of annual technological waste volume of waste and the annual total manipulated activity, the relationship generation-declassification and the percent of liquid effluents managed as waste. Indicators of unconditional clearance, as well as the of the gaseous and liquid discharges are presented. It is concluded, with all these indicators, that it is possible to determine where are the causes of the behavior in the generation of radioactive waste if it is an increase of manipulated activity int the places of work or of worker, or improper application of the procedures of collection. It is controlled not only management, but also determines in which aspects can work to achieve the objective of minimizing the formation of these wastes, to be able to reduce the production costs. National shedding environmental regulations are met and the results are acceptable)

  17. New low-level radioactive waste disposal/storage facilities for the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    Within the next few years the Savannah River Plant will require new facilities for the disposal and/or storage of solid low-level radioactive waste. Six options have been developed which would meet the regulatory and site-specific requirements for such facilities

  18. Remediation and decommissioning of radioactive waste facilities in Estonia

    International Nuclear Information System (INIS)

    Putnik, H.; Realo, E.

    2001-01-01

    Full text: The nuclear training facility at Paldiski was constructed in the early 1960's by the former USSR Navy. The hull sections of Delta and Echo class submarines each housing a full-sized ship reactor were installed in the main building of the site for training of navy personnel in safe operation of the submarine nuclear reactor systems. The first reactor was commissioned in 1968 and the second in 1982, while both was shut down in 1989. After Estonia's reproclamation of independence in 1991 the responsibility for the clean up and decommissioning of the Paldiski site became a subject of negotiations between Russia and Estonia. As the result Estonia took the ownership and control of the site in September 1995. Before the take over the Russian authorities defuelled the reactors and transported the spent fuel to Russia, dismantled the hull sections not related with reactor systems, seal-welded the hull sections housing the reactor vessels with their primary circuitry and enclosed those in reinforced concrete sarcophagi. The auxiliary facilities and radioactive waste were left intact. Main goals of the Conceptual Decommissioning Plan for the Paldiski facilities, developed under the auspices of the Paldiski International Expert Reference Group (Pier, a group established at the request of the Estonian government to advise local authorities to maintain the decommissioning and waste management at Paldiski) were defined as following: Establishing the waste management system and a long term monitored interim storage, corresponding to internationally accepted safety standards and capable to condition, receive and store all the waste generated during decommissioning of the facility; Reductions of the extent of radiologically controlled areas as much as possible, in order to minimise maintenance requirements. To achieve these goals the following main tasks were addressed in the short and medium term site management action plans: Rearrangement of site for the needs of

  19. Methodology for determining acceptable residual radioactive contamination levels at decommissioned nuclear facilities/sites

    International Nuclear Information System (INIS)

    Watson, E.C.; Kennedy, W.E. Jr.; Hoenes, G.R.; Waite, D.A.

    1979-01-01

    The ultimate disposition of decommissioned nuclear facilities and their surrrounding sites depends upon the degree and type of residual contamination. Examination of existing guidelines and regulations has led to the conclusion that there is a need for a general method to derive residual radioactive contamination levels that are acceptable for public use of any decommissioned nuclear facility or site. This paper describes a methodology for determining acceptable residual radioactive contamination levels based on the concept of limiting the annual dose to members of the public. It is not the purpose of this paper to recommend or even propose dose limits for the exposure of the public to residual radioactive contamination left at decommissioned nuclear facilities or sites. Unrestricted release of facilities and/or land is based on the premise that the potential annual dose to any member of the public using this property from all possible exposure pathways will not exceed appropriate limits as may be defined by Federal regulatory agencies. For decommissioned land areas, consideration should be given to people living directly on previously contaminated areas, growing crops, grazing food animals and using well water. Mixtures of radionuclides in the residual contamination representative of fuel reprocessing plants, light water reactors and their respective sites are presented. These mixtures are then used to demonstrate the methodology. Example acceptable residual radioactive contamination levels, based on an assumed maximum annual dose of one millirem, are calculated for several selected times following shutdown of a facility. It is concluded that the methodology presented in this paper results in defensible acceptable residual contamination levels that are directly relatable to risk assessment with the proviso that an acceptable limit to the maximum annual dose will be established. (author)

  20. Management of radioactive waste at INR-technical support for processing of radioactive waste from nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.; Bujoreanu, L.

    2009-01-01

    The Institute for nuclear research (INR) subsidiary of the Romanian authority for nuclear activities has its own radwaste treatment plant (STDR). STDR is supposed to treat and condition radioactive waste from the nuclear fuel facility, the TRIGA reactor, post irradiation examination laboratories and other research laboratories of NRI. The main steps of waste processing are: pretreatment (collection, characterization, segregation, decontamination)., treatment (waste volume reduction, radionuclide removal, compositional change), conditioning (immobilization and containerization), interim storage of the packages in compliance with safety requirements for the protection of human health and environmental protection, transport of the packages containing radioactive waste, disposal.

  1. Radioactive waste control at the reprocessing facility in fiscal 1980

    International Nuclear Information System (INIS)

    1982-01-01

    At the fuel reprocessing facility of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the release of radioactive gaseous and liquid wastes are controlled so as not to exceed the specific levels. Concentrated low and high level liquid wastes, sludge, etc. are contained in storage tanks. Low and high level solid wastes are stored in appropriate containers. In fiscal 1980 (April to March), the release of gaseous and liquid wastes was below the specific levels (as in the previous years). Based on the report made by PNC in accordance with the law concerning the regulation of reactors, etc., the following data are presented in tables: the released quantity of radioactive gaseous and liquid wastes in fiscal 1980, the cumulative stored quantity of radioactive liquid wastes up to fiscal 1980; the cumulative stored quantity of radioactive solid wastes up to fiscal 1980 and the quantity of the same stored in fiscal 1980. (J.P.N.)

  2. A commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.T.

    1986-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application fro a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  3. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  4. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  5. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  6. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  7. Studies for improvement of regulatory control on the radioactive effluent released from nuclear facilities

    International Nuclear Information System (INIS)

    Cheong, Jae Hak; Park, H. M.; Song, M. C.; Lee, K. H.; Jang, J. K.; Chun, J. K.; Jeong, K. H.

    2005-05-01

    This report contains the second-year results of the research project titled 'Studies for Improvement of Regulatory Control on the Radioactive Effluent Released from Nuclear Facilities' and mainly provides technical and strategic approaches to improve performance of regulatory control on the gaseous effluent released from domestic nuclear facilities. The main result contained here includes overview and technical bases of radioactive gaseous effluent control (Chapter 1), reconsideration of the sensitivity requirements for measurement of radioactivity in gaseous effluent sample (Chapter 2), uncertainty analysis of the calculated radioactivity in gaseous effluent (Chapter 3), and improvement of quantification method of noble gas releases (Chapter 4). In addition, analysis of the impact due to combined sampling of particulate from multiple release points (Chapter 5), comparison of domestic nuclear reactors gaseous effluent data to foreign PWRs (Chapter 6), standardized sampling technique for collection of gaseous tritium (Chapter 7), and application of Xe-133 equivalent concept to gaseous effluent control (Chapter 8) are also provided. As a whole, this report provides a generic approach to improve the performance of regulatory control on the gaseous effluent. Therefore, actual enforcement of the recommendations should be preceded by establishment of a series of action plans reflecting on the site- and facility-specific design and operational features

  8. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  9. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.; Cameron, H.M.; Davies, A.R.; Hiscox, A.W.

    1995-01-01

    Probabilistic safety assessment methodology has been applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  10. Long-term storage of radioactive solid waste within disposal facilities

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Edmunds, J.

    1986-05-01

    A study of the feasibility and implications of operating potential disposal facilities for low and intermediate level solid radioactive waste in a retrievable storage mode for extended periods of up to 200 years has been carried out. The arisings of conditioned UK radioactive waste up to the year 2030 have been examined. Assignments of these wastes to different types of underground disposal facilities have been made on the basis of their present activity and that which they will have in 200 years time. Five illustrative disposal concepts proposed both in the UK and overseas have been examined with a view to their suitability for adaption for storage/disposal duty. Two concepts have been judged unsuitable because either the waste form or the repository structure were considered unlikely to last the storage phase. Three of the concepts would be feasible from a construction and operational viewpoint. This suggests that with appropriate allowance for geological aspects and good repository and waste form design that storage/disposal within the same facility is achievable. The overall cost of the storage/disposal concepts is in general less than that for separate surface storage followed by land disposal, but more than that for direct disposal. (author)

  11. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1989-01-01

    Following the ''First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop

  12. Measuring relative humidity in the radioactive environment of the IRRAD proton facility

    CERN Document Server

    Paerg, Marten

    2017-01-01

    The aim of the project was to obtain information on relative humidity conditions at different locations in the IRRAD proton facility. Due to high radiation levels inside the facility, different sensors had to be qualified and dedicated electronics had to be built to transfer the data of the sensors over long wires to a less radioactive area, where it could be collected.

  13. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-01-01

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management

  14. Facilities for treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1981-02-01

    The standard applies to processes applied in facilities for treatment of radioactive contaminated water in nuclear power plants with LWR- and HTR-type reactors. It does not apply to the treatment of concentrates obtained in the decontamination of water. (orig.) [de

  15. Treatment and storage of radioactive gases from nuclear facilities

    International Nuclear Information System (INIS)

    Johannsen, K.H.; Schwarzbach, R.

    1980-01-01

    Treatment of exhaust air from nuclear facilities aimed at retaining or separating the radionuclides of iodine, xenon, and krypton as well as of tritium and carbon-14 and their storage are of special interest in connection with increasing utilization of nuclear power in order to reduce releases of radioactive materials to the atmosphere. The state of the art and applicability of potential processes of separating volatile fission and activation products from nuclear power stations and reprocessing plants are reviewed. Possibilities of ultimate storage are presented. An evaluation of the current stage of development shows that processes for effective separation of radioactive gases are available. Recent works are focused on economy and safety optimization. Long-term storage, in particular of extremely long-lived radionuclides, needs further investigation. (author)

  16. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  17. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  18. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  19. Financial compensation for municipalities hosting interim or final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Barboza, Alex; Vicente, Roberto

    2005-01-01

    Brazilian Law No. 10308 issued November 20, 2001, establishes in its 34th article that 'those municipalities hosting interim or final disposal facilities for radioactive waste are eligible to receive a monthly payment as compensation'. The values of due payments depend on parameters such as volume of wastes and activity and half-lives of the radionuclides. The method to calculating those values was established by the National Commission on Nuclear Energy, the Brazilian regulatory authority, by Resolution No. 10, issued in the August 18, 2003. In this paper we report the application of that method to a low- and intermediate-level radioactive waste interim storage facility at the Nuclear Energy Research Institute. (author)

  20. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility

    International Nuclear Information System (INIS)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-01-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA’s simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230 MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. - Highlights: • A detailed study on patient-induced radioactivity was conducted by adopting Monte Carlo code FLUKA and activation formula. • New formulas for calculating the activity build-up process of periodic irradiation were derived and extensively studied. • Patient induced radioactivity, which has been ignored for years, is confirmed as a vital factor for radiation protection. • The induced radioactivity from single short-time treatment and long-time running (saturation) were studied and compared. • Some suggestions on how to reduce the hazard of patient’s induced radioactivity were given.

  1. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  2. ORNL shielded facilities capable of remote handling of highly radioactive beta--gamma emitting materials

    International Nuclear Information System (INIS)

    Whitson, W.R.

    1977-09-01

    A survey of ORNL facilities having adequate shielding and containment for the remote handling of experimental quantities of highly radioactive beta-gamma emitting materials is summarized. Portions of the detailed descriptions of these facilities previously published in ORNL/TM-1268 are still valid and are repeated

  3. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  4. Technology, socio-political acceptance, and the low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Andrews, L.J.; Domenech, J.S.

    1986-01-01

    The technology which is required to develop and operate low-level radioactive waste disposal sites in the 1990's is available today. The push for best available technology is a response to the political difficulties in securing public acceptance of the site selection process. Advances in waste management technologies include development of High Integrity Containers (HIC), solidification media, liquid volume reduction techniques using GEODE/sub sm/ and DeVoe-Holbein technology of selective removal of target radioisotopes, and CASTOR V storage casks. Advances in technology alone, however, do not make the site selection process easier and without socio-political acceptance there may be no process at all. Chem-Nuclear has been successful in achieving community acceptance at the Barnwell facility and elsewhere. For example, last June in Fall River County, South Dakota, citizens voted almost 2:1 to support the development of a low-level radioactive waste disposal facility. In Edgemont, the city nearest the proposed site, 85% of the voters were in favor of the proposed facility

  5. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  6. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  7. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  8. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    International Nuclear Information System (INIS)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs

  9. INDICADORES EM SANEAMENTO

    OpenAIRE

    Costa, Samuel Alves Barbi; Côrtes, Larissa Silveira; Coelho Netto, Taiana; Freitas Junior, Moacyr Moreira de

    2016-01-01

    Este artigo se propõe a analisar a evolução dos prestadores de serviços de saneamento do estado de MinasGerais entre os anos de 2005 e 2010 com base nos indicadores do Sistema Nacional de Informações em Saneamento(SNIS). Foram definidos parâmetros técnicos para a análise dos indicadores, classificados os resultados como satisfatórios(verdes) ou insatisfatórios (vermelhos). Esta categorização atende a concepção da Regulação Sunshine, trazendo à tona omonitoramento do progresso das ações no set...

  10. Quality assurance guidance for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.; Hedges, D.

    1991-04-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements of 10 CFR 61.12(j) for a low-level radioactive waste (LLRW) disposal facility. The QC requirements, plus audits and managerial controls requirements, establish the need for developing a quality assurance (QA) program and the guidance provided herein. The criteria developed for this document are similar to the criteria developed for Appendix B to Title 10 of the Code of Federal Regulations (10 CFR) Part 50. Although Appendix B is not a regulatory requirement for an LLRW disposal facility, the criteria that were developed for 10 CFR Part 50 are basic to any QA program. This document establishes QA guidance for the design, construction, and operation of those structures, engineered or natural systems, and components whose function is required to meet the performance objectives of Subpart C of 10 CFR Part 61 and to limit exposure to or release of radioactivity. 7 refs

  11. Suitable areas for a long-term radioactive waste storage facility in Portugal

    International Nuclear Information System (INIS)

    Duarte, P.; Paiva, I.; Trindade, R.; Mateus, A.

    2006-01-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  12. Suitable areas for a long-term radioactive waste storage facility in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, P.; Paiva, I.; Trindade, R. [Instituto Tecnologico e Nuclear, Dept. de Proteccao Radiologica e Seguranca Nuclear, Sacavem (Portugal); Mateus, A. [Lisboa Univ., Dept. de Geologia and Creminer, Faculdade de Ciencias (Portugal)

    2006-07-01

    Radioactive wastes in Portugal result mainly from the application of radioactive materials in medicine, research, industry and from U-ores mining and milling activities. Sealed and unsealed sources (including liquid effluents and N.O.R.M.) classified as radioactive wastes have been collected, segregated, conditioned and stored in the Portuguese Radioactive Waste Interim Storage Facility (P.R.W.I.S.F.) since the sixties. The Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) is responsible for the R.W.I.S.F. management, located nearby Lisbon (S.a.c.a.v. ). Despite recent improvements performed at R.W.I.S.F., the 300 m3 storage capacity will be soon used up if current average store-rate remains unaltered. Being aware of the tendency for radioactive waste production increase in Portugal and of the international rules and recommendations on disposal sites for this kind of wastes, it becomes clear that the P.R.W.I.S.F. must be updated. In this work, a first evaluation of suitable areas to host a long-term radioactive waste storage facility was carried out using a Geographic Information System (G.I.S.) base. Preference and exclusionary criteria were applied, keeping constant the map scale (1:1000000). After processing exclusionary criteria, remaining areas were scored by overlaying three preference criteria. A composite score was determined for each polygon (problem solution) by summing the three preference criteria scores. The highest scores resulted from the combination of these criteria correspond to 4% of the territory, spatially distributed in seven of the eighteen Portuguese mainland administrative districts. Work in progress will use this area as reference for site selection, criss-crossing appropriate criteria for scales ranging from 1:50000 to 1:25000. (authors)

  13. The project for national disposal facility for low and intermediate level radioactive waste in Bulgaria

    International Nuclear Information System (INIS)

    Alexandrov, A.; Boyanov, S.; Christoskova, M.; Ivanov, A.

    2006-01-01

    The State Enterprise Radioactive Waste is the responsible organisation in Bulgaria for the radioactive waste management and, in particular, for the establishment of the national disposal facility (NDF) for low and intermediate level short-lived radioactive waste (LIL RAW SL). According to the national strategy for the safe management of spent fuel and radioactive waste the NDF should be commissioned in 2015. NDF will accept two main waste streams - for disposal and for storage if the waste is not disposable. The major part of disposable waste is generated by Kozloduy NPP. The disposal facility will be a near surface module type engineered facility. Consecutive erection of new modules will be available in order to increase the capacity of the facility. The corrective measures are previewed to be applied if needed - upgrading of engineered barriers and/or retrieval of the waste. The active control after the facility is closed should be not more than 300 years. The safety of the facility is supposed to be based on the passive measures based on defense in deep consisting of physical barriers and administrative measures. A multi barrier approach will be applied. Presently the NDF project is at the first stage of the facility life cycle - the site selection. The siting process itself consists of four stages - elaboration of a concept for waste disposal and site selection planning, data collection and region analyses, characterization of the preferred sites-candidates and site confirmation. Up till now the work on the first two stages of the siting process had been done by the SE RAW. Geological site investigations have been carried out for more than two decades all over the territory of the country. The results of the investigations have been summarized and analysed thoroughly. More than 40 potential sites have been considered, after the preselection 12 sites have been selected as favourable and among them 5 are pointed out as acceptable. The ultimate decision for a site

  14. Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

    1992-01-01

    The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated

  15. Highest manageable level of radioactivity in the waste storage facilities of power plants

    International Nuclear Information System (INIS)

    Elkert, J.; Lennartsson, R.

    1991-01-01

    This project presents and discusses an investigation of the highest level of radioactivity possible to handle in the waste storage facilities. The amount of radioactivity, about 0.1% of the fuel inventory, is the same in both of the cases but the amount of water is very different. The hypothetical accident was supposed to be damage of the reactor fuel caused by loss of coolant. (K.A.E.)

  16. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  17. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  18. TRI mu P - a radioactive isotope trapping facility under construction at KVI

    CERN Document Server

    Berg, G P; Dermois, O; Harakeh, M N; Hoekstra, R; Jungmann, Klaus; Kopecky, S; Morgenstern, R; Rogachevskiy, A; Timmermans, R; Willmann, L; Wilschut, H W

    2003-01-01

    At the Kernfysisch Versneller Instituut a new facility (TRI mu P) is under development which aims to investigate fundamental interactions using radioactive ions. A spectrum of radioactive isotopes will be produced in inverse-kinematics and fragmentation reactions using heavy-ion beams from the superconducting cyclotron AGOR. The reaction products will be separated from the primary beam in a dual-mode recoil and fragment separator. The beam of isotopes of interest will be transformed into a low-energy, high-quality, bunched beam and, after neutralization, stored in an atom trap. The emphasis will be put on studying the origin of parity violation via beta-nu angular correlations and the search for permanent electric dipole moments of atoms and nuclei. The facility will be open to outside users; suggestions for collaborations to extend the scientific program are encouraged.

  19. Investigation on proper materials of a liner system for trench type disposal facilities of radioactive wastes from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Arikawa, Masanobu; Sakamoto, Yoshiaki

    2011-08-01

    The Low-level Radioactive Waste Disposal Project Center of Japan Atomic Energy Agency will settle on near surface disposal facilities with and without engineered barriers for radioactive wastes from research, industrial and medical facilities. Both of them are so called 'concrete pit type' and 'trench type', respectively. The technical standard of constructing and operating a disposal facility based on 'Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors' have been regulated partly by referring to that of 'Waste Management and Public Cleansing Law'. This means that the concrete pit type and the trench type disposal facility resemble an isolated type for specified industrial wastes and a non leachate controlled type final disposal site for stable industrial wastes, respectively. On the other, We plan to design a disposal facility with a liner system corresponding to a leachate controlled type final disposal site on a crucial assumption that radioactive wastes other than stable industrial wastes to be disposed into the trench type disposal facility is generated. By current nuclear related regulations in Japan, There are no technical standard of constructing the disposal facility with the liner system referring to that of 'Waste Management and Public Cleansing Law'. We investigate the function of the liner system in order to design a proper liner system for the trench type disposal facility. In this report, We investigated liner materials currently in use by actual leachate controlled type final disposal sites in Japan. Thereby important items such as tensile strength, durability from a view point of selecting proper liner materials were studied. The items were classified into three categories according to importance. We ranked proper liner materials for the trench type disposal facility by evaluating the important items per material. As a result, high density polyethylene(HDPE) of high elasticity type polymetric sheet was selected

  20. Investigating proton emitters at the limits of stability with radioactive beams from the Oak Ridge facility

    Energy Technology Data Exchange (ETDEWEB)

    Toth, K.S. [Oak Ridge National Lab., TN (United States); Batchelder, J.C.; Zganjar, E.F. [Louisiana State Univ., Baton Rouge, LA (United States); Bingham, C.R.; Wauters, J. [Tennessee Univ., Knoxville, TN (United States); Davinson, T.; MacKenzie, J.A.; Woods, P.J. [Edinburgh Univ. (United Kingdom)

    1996-10-01

    By using beams from the Holifield Radioactive Ion Beam Facility at ORNL, it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. In these investigations nuclei produced in fusion-evaporation reactions will be separated from incident ions and dispersed in mass/charge with a recoil mass separator and then implanted into a double-sided Si strip detector for study of proton (and {alpha}-particle) radioactivity. This paper summarizes data presently extant on proton emitters and then focuses on tests and initial experiments that will be carried out with stable beams and with radioactive ions as they are developed at the Oak Ridge facility.

  1. The estimation of the amount of radioactive waste from decommissioning of the nuclear facilities in Oarai Engineering Center

    International Nuclear Information System (INIS)

    Tanimoto, Kenichi; Aihara, Nagafumi; Imai, Katutomo; Tobita, Kazunori; Nemoto, Masaaki; Imahori, Shinji; Noguchi, Kouichi; Hasegawa, Makoto

    1998-11-01

    The estimation of the amount of radioactive waste produced from nuclear facilities in Oarai Engineering Center was performed for the purpose of using it for countermeasure of decommissioning planning. The conditions and the result of the estimation are as follows; (1) The total amount of occurrence of radioactive waste is 18,820 tons. As the items of the amount in radioactive level, the amount of 1 GBq/t and over is 820 tons and that of under 1 GBq/t is 18,000 tons. (2) The amount of metal waste is 5,820 tons and the amount of concrete is 13,000 tons. (3) Above calculation was based on related specifications, complete drawings, and visual observation. (4) To dismantle facilities, if must exfoliate the surface of wall. As for the polluted zone and the zone with possibility of pollution, it decided to exfoliate 5 cm in thickness from the surface of the wall. And, as for the zone that fundamentally pollution was not there, it decided to exfoliate surface 1 cm in thickness from the surface of the wall. (5) Using the suitable decontamination technology and exfoliation technology can reduce the amount of radioactive waste. (6) In the facilities dealing with sealed source judging from the past record of operation, there is no contact with the radioactive material, etc. Therefore, it can be disposed of all the waste that comes out from the facilities as non-radioactive waste. (author)

  2. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  3. Screening calculations for radioactive waste releases from non-nuclear facilities

    International Nuclear Information System (INIS)

    Xu, Shulan; Soederman, Ann-Louis

    2009-02-01

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 μSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 μSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment plant

  4. Screening calculations for radioactive waste releases from non-nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shulan Xu; Soederman, Ann-Louis

    2009-02-15

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 muSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 muSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment

  5. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    Science.gov (United States)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  7. The planning, construction, and operation of a radioactive waste storage facility for an Australian state radiation regulatory authority

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.D.; Kleinschmidt, R.; Veevers, P. [Radiation Health, Queensland (Australia)

    1995-12-31

    Radiation regulatory authorities have a responsibility for the management of radioactive waste. This, more often than not, includes the collection and safe storage of radioactive sources in disused radiation devices and devices seized by the regulatory authority following an accident, abandonment or unauthorised use. The public aversion to all things radioactive, regardless of the safety controls, together with the Not In My Back Yard (NIMBY) syndrome combine to make the establishment of a radioactive materials store a near impossible task, despite the fact that such a facility is a fundamental tool for regulatory authorities to provide for the radiation safety of the public. In Queensland the successful completion and operational use of such a storage facility has taken a total of 8 years of concerted effort by the staff of the regulatory authority, the expenditure of over $2 million (AUS) not including regulatory staff costs and the cost of construction of an earlier separate facility. This paper is a summary of the major developments in the planning, construction and eventual operation of the facility including technical and administrative details, together with the lessons learned from the perspective of the overall project.

  8. Design guides for radioactive-material-handling facilities and equipment

    International Nuclear Information System (INIS)

    Doman, D.R.; Barker, R.E.

    1980-01-01

    Fourteen key areas relating to facilities and equipment for handling radioactive materials involved in examination, reprocessing, fusion fuel handling and remote maintenance have been defined and writing groups established to prepare design guides for each areas. The guides will give guidance applicable to design, construction, operation, maintenance and safety, together with examples and checklists. Each guide will be reviewed by an independent review group. The guides are expected to be compiled and published as a single document

  9. Equipment experience in a radioactive LFCM [liquid-fed ceramic melter] vitrification facility

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Dierks, R.D.; Sevigny, G.J.; Goles, R.W.; Surma, J.E.; Thomas, N.M.

    1986-11-01

    Since October 1984, the Pacific Northwest Laboratory (PNL) has operated a pilot-scale radioactive liquid-fed ceramic melter (RLFCM) vitrification process in shielded manipulator hot cells. This vitrification facility is being operated for the Department of Energy (DOE) to remotely test vitrification equipment components in a radioactive environment and to develop design and operation data that can be applied to production-scale projects. This paper summarizes equipment and process experience obtained from the operations of equipment systems for waste feeding, waste vitrification, canister filling, canister handling, and vitrification off-gas treatment

  10. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  11. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    International Nuclear Information System (INIS)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment

  12. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    Science.gov (United States)

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Operation of Temporary Radioactive waste stoprage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kinseem, A A; Abulfaraj, W H; Sohsah, M A; Kamal, S M; Mamoon, A M [Nuclear Engineering Department, Faculty of Engineering, King Abdelazizi University jeddah-21413, Saudi Arabia (Saudi Arabia)

    1997-12-31

    Radionuclides of various half lives have been in use for several years years at different Departments of king Abdulaziz university, the university hospital, and research center. The use of unsealed radionuclides in many laboratories, resulted in considerable amounts of solid and liquid radwaste, mainly radiopharmaceuticals. To avoid accumulation of radwastes in working areas, a temporary radioactive waste storage facility was built. Segregation of radwastes according to type was carried out, followed by collection into appropriate containers and transfer to the storage facility. Average radiation dose rate inside the store was maintained at about 75 {mu} h{sup -1} through use of appropriate shielding. The dose rates at points one meter outside the store walls were maintained at about 15-20 {mu}Sv h{sup -1}. Utilization of radioisotopes during the period of 1991-1995 resulted in a volume of about 1.8 m{sup 3} of solid radwaste and about 200 L of liquid radwaste. Records of the store inventory are maintained in a computer database, listing dates, types, activities and packaging data pertinent to the radwastes delivered to the store. Quality assurance procedures are implemented during the different stages of the radwaste collection, transportation, and storage. Construction and operation of the storage facility comply with radiation safety requirements for the workers handling the radwastes, the public and the environment. The capacity of the storage facility is such that it will accommodate storage of generated radwastes of long half life up to year 2016. Permanent disposal of such radwastes may be indicated afterwards. 2 figs., 3 tabs.

  14. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF

  15. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  16. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  17. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    International Nuclear Information System (INIS)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented

  18. Selection and design of ion sources for use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Haynes, D.L.; Mills, G.D.; Olsen, D.K.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report

  19. Radioactive waste package assay facility. Volume 3. Data processing

    International Nuclear Information System (INIS)

    Creamer, S.C.; Lalies, A.A.; Wise, M.O.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd, and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd, on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. Volume 3, describes the work carried out by Siemens Plessey Controls Ltd on the data-processing aspects of an integrated waste assay facility. It introduces the need for a mathematical model of the assay process and develops a deterministic model which could be tested using Harwell experimental data. Relevant nuclear reactions are identified. Full implementation of the model was not possible within the scope of the Harwell experimental work, although calculations suggested that the model behaved as predicted by theory. 34 figs., 52 refs., 5 tabs

  20. The technological safety in facilities that manage radioactive sources

    International Nuclear Information System (INIS)

    Lizcano, D.

    2014-10-01

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  1. Strategy and plan for siting and licensing a Rocky Mountain low-level radioactive waste facility

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    In 1979, the States of Nevada and Washington temporarily closed their commercial low-level radioactive waste (LLW) disposal facilities and South Carolina, the only other state hosting such a facility, restricted the amount of waste it would accept. All three states then announced that they did not intend to continue the status quo of accepting all of the country's commercial low-level radioactive waste. Faced with this situation, other states began considering alternative LLW management and disposal options. In the Rocky Mountain region, this evolved into discussions for the development of an interstate compact to manage low-level waste. Inherent in this management plan was a strategy to site and license a new LLW disposal facility for the Rocky Mountain region. The Rocky Mountain Low-Level Radioactive Waste Compact was negotiated over the course of a year, with final agreement on the language of the compact agreed to in early 1982. States eligible to join the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Colorado adopted the compact into law in 1982, and Nevada, New Mexico and Wyoming adopted it in 1983. Utah has joined the Northwest Compact, although it may decide to join the Rocky Mountain Compact after a new disposal facility is developed for the region. Arizona has taken no action on the Rocky Mountain Compact

  2. Radioactivity in gaseous waste discharged from the separations facilities during 1978

    International Nuclear Information System (INIS)

    Anderson, J.D.; Poremba, B.E.

    1979-01-01

    This document is issued quarterly for the purpose of summarizing the radioactive gaseous wastes that are discharged from the facilities of the Rockwell Hanford Operations. Data on alpha and beta emissions during 1978 are presented where relevant to the gaseous effluent. Emission data are not included on gaseous wastes produced within the 200 Areas by other Hanford contractors

  3. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  4. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, {gamma}), (n, 2n), (n, p), and ({gamma}, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  5. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    Science.gov (United States)

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  6. Radioactive Waste Management at the New Conversion Facility of 'TVEL'R Fuel Company - 13474

    International Nuclear Information System (INIS)

    Indyk, S.I.; Volodenko, A.V.; Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V.

    2013-01-01

    The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL R Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

  7. Fleet servicing facilities for testing and maintaining rail and truck radioactive waste transport systems

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Preston, M.K.; Keith, D.A.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-01-01

    This paper examines feasibility design concepts and feasibility studies of Fleet Servicing Facilities (FSF). Such facilities are intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the waste handling plants in the United States presently receiving radioactive wastes have an onsite FSF, nor is there an existing third party facility providing all of these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the transport system is placed into service. Thus a need is indicated for FSFs or their equivalent at various radioactive materials receiving sites. This paper also compares the respective capital costs and operating characteristics of the following three concepts of a spent fuel cask transportation FSF; integrated FSF, colocated FSF, and independent FSF

  8. Effectiveness of interim remedial actions at a radioactive waste facility

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.; Peterson, J.M.; Seay, W.M.; McNamee, E.

    1989-01-01

    Over the past eight years, several interim remedial actions have been taken at the Niagara Falls Storage Site (NFSS), primarily to reduce radon and gamma radiation exposures and to consolidate radioactive waste into a waste containment facility. Interim remedial actions have included capping of vents, sealing of pipes, relocation of the perimeter fence (to limit radon risk), transfer and consolidation of waste, upgrading of storage buildings, construction of a clay cutoff wall (to limit the potential groundwater transport of contaminants), treatment and release of contaminated water, interim use of a synthetic liner, and emplacement of an interim clay cap. An interim waste containment facility was completed in 1986. 6 refs., 3 figs

  9. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  10. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  11. Branch technical position for performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Campbell, A.C.; Abramson, L.; Byrne, R.M.

    1994-01-01

    The U.S. Nuclear Regulatory Commission has developed a Draft Branch Technical Position on Performance Assessment of Low-Level Radioactive Waste Disposal Facilities. The draft technical position addresses important issues in performance assessment modeling and provides a framework and technical basis for conducting and evaluating performance assessments in a disposal facility license application. The technical position also addresses specific technical policy issues and augments existing NRC guidance pertaining to LLW performance assessment

  12. Radioactive waste package assay facility. Volume 1. Application of assay technology

    International Nuclear Information System (INIS)

    Findlay, D.J.S.; Green, T.H.; Molesworth, T.V.; Staniforth, D.; Strachan, N.R.; Rogers, J.D.; Wise, M.O.; Forrest, K.R.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd., and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd., on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. In volume 1, the reasons for assay are considered together with the various techniques that can be used, and the information that can be obtained. The practical problems associated with the use of the various techniques in an integrated assay facility are identified, and the key parameters defined. Engineering and operational features are examined and provisional designs proposed for facilities at three throughput levels: 15,000, 750 and 30 drums per year respectively. The capital and operating costs for such facilities have been estimated. A number of recommendations are made for further work. 16 refs., 14 figs., 13 tabs

  13. Centralized treatment facility for low level radioactive waste produced in Belgium. The CILVA project

    International Nuclear Information System (INIS)

    Renard, Cl.; Detilleux, M.; Debieve, P.

    1993-01-01

    Due to rather limited amount of waste produced and the small size of the Belgian territory (30 x 10 3 km 2 ), ONDRAF/NIRAS strategy aims at centralizing treatment conditioning and storage of radioactive waste. ONDRAF/NTRAS has decided to set up a new infrastructure: the CILVA unit. The CILVA facility is focused on the supercompaction and the incineration treatment, so that ONDRAF/NIRAS can safely manage all radioactive wastes produced in Belgium. (2 figs.)

  14. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  15. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  16. Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ragaisis, Valdas; Poskas, Povilas; Simonis, Vytautas; Adomaitis, Jonas Erdvilas [Lithuanian Energy Institute, Kaunas (Lithuania). Nuclear Engineering Lab.

    2011-11-15

    New solid radioactive waste management and interim storage facilities will be constructed for the Ignalina Nuclear Power Plant to support ongoing decommissioning activities, including removal and treatment of operational waste from the existing storage buildings. The paper presents approach and methods that have been used to assess radiological impacts to the general public potentially arising under normal operation and accident conditions and to demonstrate compliance with regulations in force. The assessment of impacts from normal operation includes evaluation of exposure arising from release of airborne radioactive material and from facilities and packages containing radioactive material. In addition, radiological impacts from other nearby operating and planned nuclear facilities are taken into consideration. The assessment of impacts under accident conditions includes evaluation of exposure arising from the selected design and beyond design basis accidents. (orig.)

  17. Radiological assessment and management of radioactive spill in a liquid waste treatment facility - Case study

    International Nuclear Information System (INIS)

    Amer, H.A.; Shawky, S.; Ibrahiem, N.

    2002-01-01

    The radiological assessment and management of radioactive spill from liquid waste treatment facility is presented. The incident contaminated the area surrounding the treatment facility with various radionuclides, which were dispersed into the soil. A method based on the European basic safety standards was used to contain the risks associated with the contaminated site. The introduced case study proceeded up to the stage of simplified risk study, since the site is small and it was relatively easy to remove and store the contaminated soil. According to the obtained results, the removal of the upper 30-cm would be considered as appropriate remedying action to resume background level. One of the most important basic concepts of radiation protection in nuclear facilities is the continuity of monitoring radiological release to the environment. It is known that from nuclear facilities only very small amounts of radioactivity are discharged with the liquid effluents and the exhaust air into the environment. Recent studies screening the natural and artificial radionuclide in soil samples from the investigated area revealed normal background concentrations with no anomalies

  18. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  19. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    International Nuclear Information System (INIS)

    Ledoux, M. R.; Cade, M. S.

    2002-01-01

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations

  20. Preparation of safety analysis reports (SARs) for near surface radioactive waste disposal facilities. Format and content of SARs

    International Nuclear Information System (INIS)

    1995-02-01

    All facilities at which radioactive wastes are processed, stored and disposed of have the potential for causing hazards to humans and to the environment. Precautions must be taken in the siting, design and operation of the facilities to ensure that an adequate level of safety is achieved. The processes by which this is evaluated is called safety assessment. An important part of safety assessment is the documentation of the process. A well prepared safety analysis report (SAR) is essential if approval of the facility is to be obtained from the regulatory authorities. This TECDOC describes the format and content of a safety analysis report for a near surface radioactive waste disposal facility and will serve essentially as a checklist in this respect

  1. Models for environmental impact assessments of releases of radioactive substances from CERN facilities

    CERN Document Server

    Vojtyla, P

    2005-01-01

    The document describes generic models for environmental impact assessments of releases of radioactive substances from CERN facilities. Except for few models developed in the Safety Commission, the models are based on the 1997 Swiss directive HSK-R-41 and on the 2001 IAEA Safety Report No. 19. The writing style is descriptive, facilitating the practical implementation of the models at CERN. There are four scenarios assumed for airborne releases: (1) short-term releases for release limit calculations, (2) actual short-term releases, (3) short-term releases during incidents/accidents, and (4) chronic long-term releases during the normal operation of a facility. For water releases, two scenarios are considered: (1) a release into a river, and (2) a release into a water treatment plant. The document shall be understood as a reference for specific environmental studies involving radioactive releases and as a recommendation of the Safety Commission.

  2. Principles and guidelines for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1988-06-01

    Four basic principles relevant to radioactive waste disposal identified. These principles cover the justification of the activity giving rise to the waste, the consideration of risk to present and future generations, the minimization of the need for intervention in the future, and the financial obligations of the licensee. The use of risk limits as opposed to dose limits associated with disposal is discussed, as are the concepts of critical group, de minimis, and ALARA, in the context of a waste disposal facility. Guidance is given on the selection of the preferred waste disposal concept from among several alternatives, and for judging proposed design improvements to the chosen concept

  3. Use of risk assessment methods for security design and analysis of nuclear and radioactive facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Andrade, Marcos C.; Jordao, Elizabete

    2011-01-01

    The objective of this work is to evaluate the applicability of risk assessment methods for analyzing the physical protection of nuclear and radioactive facilities. One of the important processes for physical protection in nuclear and radioactive facilities is the identifying of areas containing nuclear materials, structures, systems or components to be protected from sabotage, which could directly or indirectly lead to unacceptable radiological consequences. A survey of the international guidelines and recommendations about vital area identification, design basis threat (DBT), and the security of nuclear and radioactive facilities was carried out. The traditional methods used for quantitative risk assessment, like FMEA (Failure Mode and Effect Analysis), Event and Decision Trees, Fault and Success Trees, Vulnerability Assessment, Monte Carlo Simulation, Probabilistic Safety Assessment, Scenario Analysis, and Game Theory, among others, are highlighted. The applicability of such techniques to security issues, their pros and cons, the general resources needed to implement them, as data or support software, are analyzed. Finally, an approach to security design and analysis, beginning with a qualitative and preliminary examination to determine the range of possible scenarios, outcomes, and the systems to be included in the analyses, and proceeding to a progressively use of more quantitative techniques is presented. (author)

  4. Field test of radioactive high efficiency filter and filter exchange techniques of fuel cycle examination facility

    International Nuclear Information System (INIS)

    Hwang, Yong Hwa; Lee, Hyung Kwon; Chun, Young Bum; Park, Dae Gyu; Ahn, Sang Bok; Chu, Yong Sun; Kim, Eun Ka.

    1997-12-01

    The development of high efficiency filter was started to protect human beings from the contamination of radioactive particles, toxic gases and bacillus, and its gradual performance increment led to the fabrication of Ultra Low Penetration Air Filter (ULPA) today. The application field of ULPA has been spread not only to the air conditioning of nuclear power facilities, semiconductor industries, life science, optics, medical care and general facilities but also to the core of ultra-precision facilities. Periodic performance test on the filters is essential to extend its life-time through effective maintenance. Especially, the bank test on HEPA filter of nuclear facilities handling radioactive materials is required for environmental safety. Nowadays, the bank test technology has been reached to the utilization of a minimized portable detecting instruments and the evaluation techniques can provide high confidence in the area of particle distribution and leakage test efficiency. (author). 16 refs., 13 tabs., 14 figs

  5. Support of the radioactive waste treatment nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Lee, B.J.; Shim, G.S.; Chung, M.S.

    1982-01-01

    Technical service of radioactive waste treatment in Daeduck Engineering Center includes; 1) Treatment of radioactive wastes from the nuclear fuel fabrication facility and from laboratories. 2) Establishing a process for intermediate treatment necessary till the time when RWTF is in completion. 3) Technical evaluation of unit processes and equipments concerning RWTF. About 35 drums (8 m 3 ) of solid wastes were treated and stored while more than 130 m 3 of liquid wastes were disposed or stored. A process with evaporators of 10 1/hr in capacity, a four-stage solvent washer, storage tanks and disposal system was designed and some of the equipments were manufactured. Concerning RWTF, its process was reviewed technically and emphasis were made on stability of the bituminization process against explosion, function of PAAC pump, decontamination, and finally on problems to be solved in the comming years. (Author)

  6. Requirements for a long-term safety certification for chemotoxic substances stored in a final storage facility for high radioactive and heat-generating radioactive waste in rock salt formations

    International Nuclear Information System (INIS)

    Tholen, M.; Hippler, J.; Herzog, C.

    2007-01-01

    Within the scope of a project funded by the German Federal Ministry of Economics and Technology (Bundesministerium fuer Wirtschaft und Technologie, BMWi), a safety certification concept for a future permanent final storage for high radioactive and heat-generating radioactive waste (HAW disposal facility) in rock salt formations is being prepared. For a reference concept, compliance with safety requirements in regard to operational safety as well as radiological and non-radiological protection objectives related to long-term safety, including ground water protection, will be evaluated. This paper deals with the requirements for a long-term safety certification for the purpose of protecting ground water from chemotoxic substances. In particular, longterm safety certifications for the permanent disposal of radioactive waste in a HAW disposal facility in rock salt formations and for the dumping of hazardous waste in underground storage facilities in rock salt formations are first discussed, followed by an evaluation as to whether these methods can be applied to the long-term safety certification for chemotoxic substances. The authors find it advisable to apply the long-term safety certification for underground storage facilities to the long-term safety certification for chemotoxic substances stored in a HAW disposal facility in rock salt formations. In conclusion, a corresponding certification concept is introduced. (orig.)

  7. Recommended parameters for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities

    International Nuclear Information System (INIS)

    Li Hong; Fang Dong; Sun Chengzhi; Xiao Naihong

    2003-01-01

    A set of models and default parameters are recommended for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities in order to standardize the environmental effect assessment of nuclear facilities, and to simplify the observation and investigation in early phase. The paper introduces the input data and default parameters used in the model

  8. The partnership approach to siting and developing radioactive waste management facilities

    International Nuclear Information System (INIS)

    2010-03-01

    History shows that the search for sites for radioactive waste management facilities has been marred by conflicts and delays. Affected communities have often objected that their concerns and interests were not addressed. In response, institutions have progressively turned away from the traditional 'decide, announce and defend' model, and are learning to 'engage, interact and co-operate'. This shift has fostered the emergence of partnerships between the proponent of the facility and the potential host community. Working in partnership with potential host communities enables pertinent issues and concerns to be raised and addressed, and creates an opportunity for developing a relationship of mutual understanding and mutual learning, as well as for developing solutions that will add value to the host community and region. Key elements of the partnership approach are being incorporated into waste management strategies, leading increasingly to positive outcomes. National radioactive waste management programmes are in various phases of siting facilities and rely on different technical approaches for the various categories of waste. In all cases, it is necessary for institutional actors and the potential or actual host community to build a meaningful, workable relationship. Partnership approaches are effective in achieving a desirable combination of licensable site and management concept while meeting the sometimes competing requirements of fair representation and competent participation. Partnership arrangements facilitate reaching agreement on measures for local control, financial support and future development

  9. Assessment of the Proposed Design of a New Spent Sealed Radioactive Sources Storage Facility at Novi Han

    International Nuclear Information System (INIS)

    Alardin, J.M.; Lacroix, J.P.; Glibert, R.; Marneffe, L. de

    2001-09-01

    The NOVI HAN radioactive waste repository (NHRWR) in Bulgaria, built according to a Soviet design, was commissioned in 1964. The State Committee on the Use of Atomic Energy for Peaceful Purposes (CUAEPP) temporarily stopped operations at the repository from October 1994 until measures for improvement of the facility are undertaken. Since 1994, the Spent Sealed Radioactive Sources (SSRS) have been temporarily stored at the facilities at IRT-2000 research reactor of the Bulgarian Academy of Sciences (BAS) in Sofia. In view of the importance of the radiological risks associated with the present management of the SSRS in Bulgaria, the present study contract has been launched to critically review the proposal to provide a new interim storage facility for SSRS at NHRWR. A comprehensive critical review was performed of the feasibility study for the construction of a new SSRS facility at Novi Han, carried out by the local consultant engineering company (EQE), and detailed recommendations were made concerning the proposed new development at the site. The authors think that new concepts and procedures in the management of all categories of SSRS including smoke detectors have to be introduced, taking into account the regulatory framework and the inventories of existing and anticipated SSRS. This should be the basis for the technical specification of the new facilities for conditioning and storage of spent sealed radioactive sources (not only SHARS). (author)

  10. US Army facility for the consolidation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables

  11. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  12. Comprehensive development plans for the low- and intermediate-level radioactive waste disposal facility in Korea and preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kang Il; Kim, Jin Hyeong; Kwon, Mi Jin; Jeong, Mi Seon; Hong, Sung Wook; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

  13. Risk-informed approaches to assess ecological safety of facilities with radioactive waste

    International Nuclear Information System (INIS)

    Vashchenko, V.N.; Zlochevskij, V.V.; Skalozubov, V.I.

    2011-01-01

    Ingenious risk-informed methods to assess ecological safety of facilities with radioactive waste are proposed in the paper. Probabilistic norms on lethal outcomes and reliability of safety barriers are used as safety criteria. Based on the probability measures, it is established that ecological safety conditions are met for the standard criterion of lethal outcomes

  14. Management of Discharge of Low Level Liquid Radioactive Waste Generated in Medical, Educational, Research and Industrial Facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    Although published information on management technologies suitable for radioactive effluents is readily available, smaller facilities such as hospitals, universities and research laboratories in some countries can benefit from more detailed guidance on identifying optimal arrangements for effectively managing their radioactive liquid effluents. A wide range of circumstances exist globally, given that the generation of radioactive liquid effluents may be regular or irregular, and the liquid effluents may be suitable for direct discharge to the environment, or may require a period of decay storage prior to discharge. Countries typically fit into one of the four following categories with respect to the status of their arrangements for the management of radioactive liquid effluents: (1) The country does not have sufficient technical, regulatory and organizational infrastructure to effectively manage its radioactive liquid effluents; (2) The country's technical infrastructure for effectively managing its radioactive liquid effluents is almost sufficient, but it is not supported by an acceptable level of regulatory and organizational capacity (e.g. legal infrastructure, administrative infrastructure); (3) The country has sufficient technical, regulatory and organizational capacity, but it is known that the application of the requirements for proper management of radioactive liquid effluents is, in many cases, not being carried out to the standard indicated by official reports; (4) The country has well developed and established regulatory and organizational capacity, which is complemented by an acceptable level of relevant technical infrastructure such that the radioactive liquid effluents can be properly managed. Facilities, as well as countries, in the first three categories will find information in this publication to assist their further development. Even countries that already have the necessary infrastructure to properly manage their liquid radioactive effluents may

  15. Management of Discharge of Low Level Liquid Radioactive Waste Generated in Medical, Educational, Research and Industrial Facilities

    International Nuclear Information System (INIS)

    2013-07-01

    Although published information on management technologies suitable for radioactive effluents is readily available, smaller facilities such as hospitals, universities and research laboratories in some countries can benefit from more detailed guidance on identifying optimal arrangements for effectively managing their radioactive liquid effluents. A wide range of circumstances exist globally, given that the generation of radioactive liquid effluents may be regular or irregular, and the liquid effluents may be suitable for direct discharge to the environment, or may require a period of decay storage prior to discharge. Countries typically fit into one of the four following categories with respect to the status of their arrangements for the management of radioactive liquid effluents: (1) The country does not have sufficient technical, regulatory and organizational infrastructure to effectively manage its radioactive liquid effluents; (2) The country's technical infrastructure for effectively managing its radioactive liquid effluents is almost sufficient, but it is not supported by an acceptable level of regulatory and organizational capacity (e.g. legal infrastructure, administrative infrastructure); (3) The country has sufficient technical, regulatory and organizational capacity, but it is known that the application of the requirements for proper management of radioactive liquid effluents is, in many cases, not being carried out to the standard indicated by official reports; (4) The country has well developed and established regulatory and organizational capacity, which is complemented by an acceptable level of relevant technical infrastructure such that the radioactive liquid effluents can be properly managed. Facilities, as well as countries, in the first three categories will find information in this publication to assist their further development. Even countries that already have the necessary infrastructure to properly manage their liquid radioactive effluents may

  16. Changing methodology for measuring airborne radioactive discharges from nuclear facilities

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-05-01

    The US Environmental Protection Agency (USEPA) requires that measurements of airborne radioactive discharges from nuclear facilities be performed following outdated methods contained in the American National Standards Institute (ANSI) N13.1-1969 Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities. Improved methods are being introduced via two paths. First, the ANSI standard is being revised, and second, EPA's equivalency granting process is being used to implement new technology on a case-by-case or broad basis. The ANSI standard is being revised by a working group under the auspices of the Health Physics Society Standards Committee. The revised standard includes updated methods based on current technology and a performance-based approach to design. The performance-based standard will present new challenges, especially in the area of performance validation. Progress in revising the standard is discussed. The US Department of Energy recently received approval from the USEPA for an alternate approach to complying with air-sampling regulations. The alternate approach is similar to the revised ANSI standard. New design tools include new types of sample extraction probes and a model for estimating line-losses for particles and radioiodine. Wind tunnel tests are being performed on various sample extraction probes for use at small stacks. The data show that single-point sampling probes are superior to ANSI-Nl3.1-1969 style multiple-point sample extraction probes

  17. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, M. R.; Cade, M. S.

    2002-02-25

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations.

  18. The establishment of a radioactive waste disposal facility in Western Australia for low level waste

    International Nuclear Information System (INIS)

    Hartley, B.M.; Wall, B.; Munslow-Davies, L.; Toussaint, L.F.; Hirschberg, K-J.; Terry, K.W.; Shepherd, M.

    1994-01-01

    The Radiation Health Section of the Health Department of Western Australia has been a repository for unwanted radioactive sources for many years. They have been placed in the radioactive store located on the Queen Elizabeth II Medical Centre Campus. After a collection period of more than 20 years the storage facilities of the Radiation Health Section were nearing capacity. A decision was made to relocate these sources into a permanent near surface burial facility. Following extensive community consultation and site investigations, waste originating in Western Australia was disposed of at Mt Walton (East), 80 km North East of Koolyanobbing Western Australia in November 1992. The site selection process, the radiation monitoring program and the legislative requirements are briefly outlined. 6 refs., 1 tab., 2 figs

  19. Development of a low-energy radioactive ion beam facility for the MARA separator

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Philippos, E-mail: philippos.papadakis@jyu.fi; Moore, Iain; Pohjalainen, Ilkka; Sarén, Jan; Uusitalo, Juha [University of Jyväskylä, Department of Physics (Finland)

    2016-12-15

    A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyväskylä, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

  20. Treatment and conditioning of low-level radioactive waste in Belgium: initial operating results of the Cilva facility

    International Nuclear Information System (INIS)

    Monsch, O.; Renard, C.; Deckers, J.; Luycx, P.

    1995-01-01

    The Belgian National Radioactive Waste and Enriched Fissile Material Agency (ONDRAF), which is responsible for the management of all radioactive waste in Belgium, recently decided to commission the CILVA facility. Operation of this facility, which comprises a number of units for the treatment of low-level radwaste, has been contracted to ONDRAF's Belgoprocess subsidiary based at the Dessel site. A consortium comprising SGN and Fabricom was in charge of building the CILVA facility's waste preparation and conditioning (concrete solidification) units. The concrete solidification processes, which were devised and developed by SGN, have been qualified to secure ONDRAF certification of the process and the facility. This enabled active commissioning of the waste conditioning unit in mid-August 1994. Active commissioning of the waste preparation unit was carried out in several stages up to the beginning of 1995 in accordance with operating requirements. Initial operating results of the two units are presented. (author)

  1. SEM facility for examination of reactive and radioactive materials

    International Nuclear Information System (INIS)

    Downs, G.L.; Tucker, P.A.

    1977-01-01

    A scanning electron microscope (SEM) facility for the examination of tritium-containing materials is operational at Mound Laboratory. The SEM is installed with the sample chamber incorporated as an integral part of an inert gas glovebox facility to enable easy handling of radioactive and pyrophoric materials. A standard SEM (ETEC Model B-1) was modified to meet dimensional, operational, and safety-related requirements. a glovebox was designed and fabricated which permitted access with the gloves to all parts of the SEM sample chamber to facilitate director and accessory replacement and repairs. A separate console combining the electron optical column and specimen chamber was interfaced to the glovebox by a custom-made, neoprene bellows so that the vibrations normally associated with the blowers and pumps were damped. Photomicrographs of tritiated pyrophoric materials show the usefulness of this facility. Some of the difficulties involved in the investigation of these materials are also discussed. The SEM is also equipped with an energy dispersive x-ray detector (ORTEC) and a Secondary Ion Mass Spectrometer (3M) attachments. This latter attachment allows analysis of secondary ions with masses ranging from 1-300 amu. (Auth.)

  2. SUSTENTABILIDADE EM SISTEMAS AGROFLORESTAIS: INDICADORES SOCIOECONÔMICOS

    Directory of Open Access Journals (Sweden)

    Omar Daniel

    2000-03-01

    Full Text Available É ampla a discussão que envolve a importância do enquadramento das atividades de produção em geral, ao conceito de desenvolvimento sustentável. Dentre as atividades agropecuárias, os sistemas agroflorestais (SAF têm sido considerados como sustentáveis, apresentando-se como alternativas aos sistemas intensivos de produção. Para monitorar a sustentabilidade de atividades agropecuárias em geral, incluindo os SAF, diferentes autores enfatizam os indicadores biofísicos, em detrimento dos socioeconômicos. Com o objetivo de definir um rol de indicadores socioeconômicos adaptáveis aos diversos modelos de SAF, desenvolveu-se um estudo consolidado por recomendações de especialistas e ampla revisão de literatura. Concluiu-se que: as categorias relacionadas com a operação dos sistemas comportaram o maior número de indicadores no componente socioeconômico, com maior concentração nas operações endógenas ao sistema, seguidas, de longe, pelos recursos endógenos e exógenos; o maior número de indicadores, sugeridos na categoria operação do sistema, deu-se nos descritores saúde e nutrição, empregos, habitação e saneamento básico e análise econômica; na categoria operação de sistemas exógenos, determinou-se maior número de indicadores para os descritores comercialização e infra-estrutura rural; praticamente, não houve diferença entre o número de indicadores obtidos para os sistemas agroflorestais com e sem o componente animal.

  3. Order of 13 December 1985 on the transfer to ENRESA of the Radioactive Waste Management Facility at Sierra Albarrana

    International Nuclear Information System (INIS)

    1984-01-01

    This Order provides for the transfer of the Radioactive Waste Management Facility at Sierra Albarrana from the Junta de Energia Nuclear to ENRESA, the National Enterprise for Radioactive Waste; it also organises all stages of the transfer. (NEA) [fr

  4. Study on Safety Assessment for TINT- Pre disposal Radioactive Waste Management Facilities by the Application of SAFRAN Software

    International Nuclear Information System (INIS)

    Ya-anant, Nanthavan

    2011-06-01

    Full text: The Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (TINT) provides a centralized radioactive waste management (RWM) service in the country. The pre disposal RWM facilities are composed of low and intermediate level waste treatment and storage facilities. The benefits of this study are (1) to improve the safety of pre disposal RWM facilities (2) to experience with the SAFRAN software tool for the safety assessment of pre disposal RWM facilities, which has been developed following to the methodology from International Atomic Energy Agency (IAEA). The work was performed on collecting all waste management data, the diagram of facilities, buildings, location, procedure, waste classification, waste form, radiological/chemical/physical properties including scenarios in normal and accidental conditions. The result of normal condition is that the effective dose per year of worker and public is less than 20 mSv and 1 mSv respectively. So the TINT-RWM operation is safe, as referred to the regulation

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  6. Disposal of radioactive waste in land burial facilities at Studsvik

    International Nuclear Information System (INIS)

    Ericsson, G.; Haegg, C.; Bergman, C.

    1987-01-01

    The report presents the formal background for the handling of the Studsvik application for permission to build a plant for deposition of radioactive waste in land burial facilities. The SSI (National Swedish Institute of Radiation Protection) basis for assessment is reported and relevant factors are presented. The radiation doses calculated by the SSI do not exceed a few microsievert per annum in spite of very pessimistic assumptions. The report constitutes assessment material for the standpoint to be taken by the board of SSI. (L.F.)

  7. Prospects for studies of ground-state proton decays with the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Toth, K.S.

    1994-01-01

    By using radioactive ions from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. During this production and search process the limits of stability on the proton-rich side of the nuclidic chart will be delineated for a significant fraction of medium-weight elements and our understanding of the proton-emission process will be expanded and improved

  8. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1994-01-01

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility's compliance with criteria identified in the RAP. The criteria are based upon the open-quotes Core Requirementsclose quotes listed in DOE Order 5480.31, open-quotes Startup and Restart of Nuclear Facilitiesclose quotes

  9. Radioactive wastes handling facility

    International Nuclear Information System (INIS)

    Hirose, Emiko; Inaguma, Masahiko; Ozaki, Shigeru; Matsumoto, Kaname.

    1997-01-01

    There are disposed an area where a conveyor is disposed for separating miscellaneous radioactive solid wastes such as metals, on area for operators which is disposed in the direction vertical to the transferring direction of the conveyor, an area for receiving the radioactive wastes and placing them on the conveyor and an area for collecting the radioactive wastes transferred by the conveyor. Since an operator can conduct handling while wearing a working cloth attached to a partition wall as he wears his ordinary cloth, the operation condition can be improved and the efficiency for the separating work can be improved. When the area for settling conveyors and the area for the operators is depressurized, cruds on the surface of the wastes are not released to the outside and the working clothes can be prevented from being involved. Since the wastes are transferred by the conveyor, the operator's moving range is reduced, poisonous materials are fallen and moved through a sliding way to an area for collecting materials to be separated. Accordingly, the materials to be removed can be accumulated easily. (N.H.)

  10. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  11. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  12. A study on radiation shield design of storage facility for low and intermediate level radioactive waste in Bangladesh

    International Nuclear Information System (INIS)

    Khan, JJahirul Haque

    2005-02-01

    Bangladesh has no nuclear power reactor but has only one 3 MW TRIGA Mark-II Research Reactor. The Bangladesh Atomic Energy commission (BAEC) operates a 3 MW TRIGA Mark-II Research Reactor and maintains not only the nuclear facilities at its Atomic Energy Research Establishment (AERE) at Savar (near Dhaka) but also the related radiation facilities the whole country. The main sources of radioactive wastes result from the use of sealed and unsealed radiation sources in medicine industry, research, agriculture, etc as well as from operation and maintenance of the nuclear facilities the whole country. As a result radioactive wastes are increasing day by day and these wastes are classified as low and intermediate level radioactive waste (LILW) following the radiation safety philosophy of IAEA recommendations in Bangladesh. Radioactive waste is very sensitive issue to public and environment from the hazardous standpoint of ionizing radiation. Therefore, storage facility of LILW is very essential for safe radioactive waste management in Bangladesh and in parallel: this study is of a great importance due to new installation of this storage facility in future. The basic objective of this study is to recommend the radiation shield design parameters of the installation of storage facility for low and intermediate level radioactive waste from the points of view of radiation safety and sensitivity analysis. The shield design of this installation has been carried out with the Monte Carlo Code MCNP4C and the point Kernel Code Micro Shield 5.05 respectively considering the ICRP-60 (1990) recommendations for occupational exposure limit (10 μ Sv/hr). For more safety purpose every equivalent dose rate at different positions of this installation is considered below 9 μ Sv/hr in this study. The radiation shield design parameters are recommended based on MCNP4C calculated results than those of Micro Shield due to more credible results and these parameters are: (I) 51 cm thickness of

  13. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  14. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  15. Spatial interpolation of gamma dose in radioactive waste storage facility

    Science.gov (United States)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

  16. Earthquake resistant design of nuclear facilities with limited radioactive inventory

    International Nuclear Information System (INIS)

    1985-10-01

    This document comprises the essential elements of an earthquake resistant design code for nuclear facilities with limited radioactive inventory. The purpose of the document is the enhancement of seismic safety for such facilities without the necessity to resort to complicated and sophisticated methodologies which are often associated with and borrowed from nuclear power plant analysis and design. The first two sections are concerned with the type of facility for which the document is applicable and the radiological consideration for accident conditions. The principles of facility classification and item categorization as a function of the potential radiological consequences of failure are given in section 3. The design basis ground motion is evaluated in sections 4-6 using a simplified but conservative approach which also includes considerations for the underlying soil characteristics. Sections 7 and 8 specify the principles of seismic design of building structures and equipment using two methods, called the equivalent static and simplified dynamic approach. Considerations for the detailing of equipment and piping and those other than for lateral load calculations, such as sloshing effects, are given in the subsequent sections. Several appendices are given for illustration of the principles presented in the text. Finally, a design tree diagram is included to facilitate the user's task of making the appropriate selections. (author)

  17. Interpretation of optimisation in the context of a disposal facility for long-lived radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    Full text: Guidance on the Requirements for Authorisation (the GRA) issued by the Environment Agency for England and Wales requires that all disposals of radioactive waste are undertaken in a manner consistent with four principles for the protection of the public. Among these is a principle of Optimisation, that: 'The radiological detriment to members of the public that may result from the disposal of radioactive waste shall be as low as reasonably achievable, economic and social factors being taken into account'. The principle of optimisation is widely accepted and has been discussed in both UK national policy and guidance and in documents from international organisations. The practical interpretation of optimisation in the context of post-closure safety of radioactive waste repositories is, however, still open to question. In particular, the strategies and procedures that a developer might employ to implement optimisation in the siting and development of a repository, and demonstrate optimisation in a safety case, are not defined. In preparation for its role of regulatory review, the Agency has undertaken a pilot study to explore the possible interpretations of optimisation stemming from the GRA, and to identify possible strategies and procedures that a developer might follow. A review has been undertaken of UK regulatory guidance and related documents, and also international guidance, referring to optimisation in relation to radioactive waste disposal facilities. In addition, diverse examples of the application of optimisation have been identified in the international and UK performance assessment literature. A one-day meeting was organised bringing together Agency staff and technical experts with different experiences and perspectives on the subject of optimisation in the context of disposal facilities for radioactive waste. This meeting identified and discussed key issues and possible approaches to optimisation, and specifically: (1) The meaning of

  18. The Possibility of Making a Quantitative Study of the Precipitin Reaction by Gamma-Radioactive Tracers; Possibilite d'une Etude Quantitative de la Reaction de Precipitation par Marquage a l'Aide d'Emetteurs Gamma; Vozmozhnost' kolichestvennogo opredeleniya reaktsii osazhdeniya s pomoshch'yu gamma-radioaktivnykh indikatorov; Estudio Cuantitativo de la Reaccion de Precipitacion con Ayuda de Indicadores Gamma

    Energy Technology Data Exchange (ETDEWEB)

    Bonev, L.; Todorov, S.; Robev, S. [Nauchno-Issledovatel' skij Institut Radiologii i Radiacionnoj Bezopasnosti, Sofija (Bulgaria)

    1965-10-15

    The paper presents the first results of the quantitative determination of the precipitin reaction (formation of an antigen-antibody complex) by labelling the precipitating components with gamma-radioactive tracers which do not chemically interact with albuminous molecules. As tracers it is possible to use chrome-manganese and nickel-copper compounds, whose tendency to hydrolyze permits the fixation of the radioactive tracer on the antigen and antibody respectively. The radioactivity of the components is determined by a multichannel pulse-height analyser. The results obtained show that the precipitation curve, plotted on the basis of radiometric data, closely corresponds to the curve plotted by the well-known quantitative methods used to determine albumin. The paper discusses the possibilities of using the method described. (author) [French] Les auteurs communiquent les premiers resultats d'une etude quantitative qu'ils ont faite de la reaction de precipitation (formation du complexe antigene-anticorps) en marquant les composants du precipites avec des emetteurs gamma qui ne reagissent pas chimiquement avec les molecules d'albumine. Pour le marquage, on peut utiliser des composes de chrome/manganese ou de fer qui subissent facilement l'hydrolyse et assurent de ce fait la fixation de la substance radioactive sur l'antigene et, partant, sur l'anticorps. La radioactivite des composants est determinee a l'aide d'un selecteur d'amplitudes a plusieurs canaux. Les resultats montrent que la courbe de precipitation obtenue avec les donnees radiometriques concorde parfaitement avec celle que l'on obtient par les methodes quantitatives connues servant au dosage de l'albumine. Les auteurs discutent les possibilites d'application de la methode etudiee. (author) [Spanish] Los autores presentan los primeros resultados de un estudio cuantitativo de la reaccion de precipitacion (formacion del complejo antigeno-anticuerpo) que efectuaron marcando los componentes de precipitacion con

  19. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  20. The licensing procedure for an intermediate storage facility for radioactive waste in Hanau

    International Nuclear Information System (INIS)

    Funke, P.; Graebener, K.H.

    2001-01-01

    Since the beginnings of nuclear energy utilisation in Germany, Hanau has been well-known worldwide as the centre for processing nuclear fuels. Names like Nukem, Alkem, RBU and Siemens are synonymous with the production of fuel elements made of highly enriched uranium for material test reactors, low-enriched uranium and uranium-plutonium mixtures (MOX) for prototype reactors and power reactors. Since the Transnuklear controversy in the late eighties, and particularly during the time of the Socialist-Green coalition in Hesse, the firms in Hanau have increasingly downscaled their activities, and finally closed down their fuel element facilities. Decommissioning of the facilities has been approved under paragraph 7 Para. 3 of the German atomic energy act (AtG). Decommissioning at the Uranium Processing Division of Siemens AG, the former RBU, is already well advanced, while Siemens' MOX Processing Division, the former Alkem, is currently being emptied of remaining nuclear fuels; at Nukem, the first buildings have been demolished. The radioactive waste encountered during decommissioning contains enriched uranium and plutonium, and thus constitutes a special category of radioactive waste. (orig.)

  1. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  2. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  3. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    International Nuclear Information System (INIS)

    Dominick, J L

    2001-01-01

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification

  4. Radioactivity measuring and control method and the system for facility of nuclear power plant

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1996-01-01

    In measurement and control for radioactivity in an inspection operation in radiation circumstance for nuclear power plant facilities, radioactive materials in air are sometimes suspended together with ordinary dusts. Then, when a radiation level is low, light is applied to the suspended dusts to measure the quantity and the number of the dusts thereby estimating the radiation level based on the amount of the dusts. Then, the level of the equipments is informed to an operator based on the estimated value, and an operation time is determined. Since the optical dust monitor is inexpensive, a number of dust monitors can be brought into an operation chamber. In addition, they are reduced in the size and the weight, an operator can carry and bring them into the operation chamber. A distribution of dusts can be determined by measuring the concentration of dusts using a plurality of dust monitors thereby enabling to improve safety and economical property of periodical inspection for nuclear power plant facilities. (T.M.)

  5. Radioactivity measuring and control method and the system for facility of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumu

    1996-12-03

    In measurement and control for radioactivity in an inspection operation in radiation circumstance for nuclear power plant facilities, radioactive materials in air are sometimes suspended together with ordinary dusts. Then, when a radiation level is low, light is applied to the suspended dusts to measure the quantity and the number of the dusts thereby estimating the radiation level based on the amount of the dusts. Then, the level of the equipments is informed to an operator based on the estimated value, and an operation time is determined. Since the optical dust monitor is inexpensive, a number of dust monitors can be brought into an operation chamber. In addition, they are reduced in the size and the weight, an operator can carry and bring them into the operation chamber. A distribution of dusts can be determined by measuring the concentration of dusts using a plurality of dust monitors thereby enabling to improve safety and economical property of periodical inspection for nuclear power plant facilities. (T.M.)

  6. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  7. Application of FEPs analysis to identify research priorities relevant to the safety case for an Australian radioactive waste facility

    International Nuclear Information System (INIS)

    Payne, T.E.; McGlinn, P.J.

    2007-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has established a project to undertake research relevant to the safety case for the proposed Australian radioactive waste facility. This facility will comprise a store for intermediate level radioactive waste, and either a store or a near-surface repository for low-level waste. In order to identify the research priorities for this project, a structured analysis of the features, events and processes (FEPs) relevant to the performance of the facility was undertaken. This analysis was based on the list of 137 FEPs developed by the IAEA project on 'Safety Assessment Methodologies for Near Surface Disposal Facilities' (ISAM). A number of key research issues were identified, and some factors which differ in significance for the store, compared to the repository concept, were highlighted. For example, FEPs related to long-term groundwater transport of radionuclides are considered to be of less significance for a store than a repository. On the other hand, structural damage from severe weather, accident or human interference is more likely for a store. The FEPs analysis has enabled the scientific research skills required for the inter-disciplinary project team to be specified. The outcomes of the research will eventually be utilised in developing the design, and assessing the performance, of the future facility. It is anticipated that a more detailed application of the FEPs methodology will be undertaken to develop the safety case for the proposed radioactive waste management facility. (authors)

  8. Indicadores de salud ambiental

    Directory of Open Access Journals (Sweden)

    Manuel Posada de la Paz

    2004-12-01

    Full Text Available Esta ponencia presenta una visión general del proyecto de Indicadores de Salud Ambiental, coordinado por la OMS a nivel internacional y liderado por el Centro de Investigación sobre el Síndrome del Aceite Tóxico y Enfermedades Raras (CISATER en España. En ella se describen los objetivos del proyecto, las gestiones realizadas y los resultados obtenidos durante la fase de viabilidad de este proyecto. El proyecto consiste en el establecimiento de un sistema de información sobre salud ambiental que permita desarrollar una vigilancia de los factores ambientales determinantes de los estados de salud, realizar comparaciones internacionales, elaborar políticas de acción, así como facilitar la comunicación con la ciudadanía. La OMS desarrolló una metodología para el desarrollo de estos indicadores dentro del marco conceptual de información ambiental DPSEEA (Fuerzas impulsoras, Presión, Estado, Exposición, Efecto, Acción y seleccionó un total de 55 indicadores (que incluyen 168 variables sobre 10 áreas de la salud ambiental. Durante la fase de viabilidad se predijo que podrían obtenerse el 89% de los indicadores. Sin embargo la recolección de los datos supuso muchas dificultades debido a la incompatibilidad de algunas variables en los sistemas de información españoles con las variables definidas por la OMS. A nivel de gestión del proyecto, la mayor dificultad radica en la disparidad de responsabilidades en materia de medio ambiente y salud entre las instituciones españolas. Además de la aportación técnica a la salud ambiental en España, un valor añadido de este proyecto ha sido el establecimiento de líneas de colaboración estrechas con los responsables de los diferentes Ministerios implicados.

  9. Conceptual designs for waste quality checking facilities for low level and intermediate level radioactive wastes and hazardous waste

    International Nuclear Information System (INIS)

    Driver, S.; Griffiths, M.; Leonard, C.D.; Smith, D.L.G.

    1992-01-01

    This report summarises work carried out on the design of facilities for the quality checking of Intermediate and Low Level Radioactive Waste and Hazardous Waste. The procedures used for the quality checking of these categories of waste are summarised. Three building options are considered: a separate LLW facility, a combined facility for LLW and HW and a Waste Quality Checking Facility for the three categories of waste. Budget Cost Estimates for the three facilities are given based on 1991 prices. (author)

  10. Conceptual aspects of fiscal interactions between local governments and federally-owned, high-level radioactive waste-isolation facilities

    International Nuclear Information System (INIS)

    Bjornstad, D.J.; Johnson, K.E.

    1981-01-01

    This paper examines a number of ways to transfer revenues between a federally-owned high level radioactive waste isolation facility (hereafter simply, facility) and local governments. Such payments could be used to lessen fiscal disincentives or to provide fiscal incentives for communities to host waste isolation facilities. Two facility characteristics which necessitate these actions are singled out for attention. First, because the facility is federally owned, it is not liable for state and local taxes and may be viewed by communities as a fiscal liability. Several types of payment plans to correct this deficiency are examined. The major conclusion is that while removal of disincentives or creation of incentives is possible, plans based on cost compensation that fail to consider opportunity costs cannot create incentives and are likely to create disincentives. Second, communities other than that in which the facility is sited may experience costs due to the siting and may, therefore, oppose it. These costs (which also accrue to the host community) arise due to the element of risk which the public generally associates with proximity to the transport and storage of radioactive materials. It is concluded that under certain circumstances compensatory payments are possible, but that measuring these costs will pose difficulty

  11. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  12. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Snyder, K.E.; Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E.

    1995-02-01

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period

  13. Preliminary shielding estimates for the proposed Oak Ridge National Laboratory (ORNL) Radioactive Ion Beam Facility (RIBF)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Gabriel, T.A.; Lillie, R.A.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has proposed designing and implementing a new target-ion source for production and injection of negative radioactive ion beams into the Hollifield tandem accelerator. This new facility, referred to as the Radioactive Ion Beam Facility (RIBF), will primarily be used to advance the scientific communities' capabilities for performing state-of-the-art cross-section measurements. Beams of protons or other light, stable ions from the Oak Ridge Isochronous Cyclotron (ORIC) will be stopped in the RIBF target ion source and the resulting radioactive atoms will be ionized, charge exchanged, accelerated, and injected into the tandem accelerator. The ORIC currently operates with proton energies up to 60 MeV and beam currents up to 100 microamps with a maximum beam power less than 2.0 kW. The proposed RIBF will require upgrading the ORIC to generate proton energies up to 200 MeV and beam currents up to 200 microamps for optimum performance. This report summarizes the results of a preliminary one-dimensional shielding analysis of the proposed upgrade to the ORIC and design of the RIBF. The principal objective of the shielding analysis was to determine the feasibility of such an upgrade with respect to existing shielding from the facility structure, and additional shielding requirements for the 200 MeV ORIC machine and RIBF target room

  14. Reducing the potential for conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities

    International Nuclear Information System (INIS)

    Rogers, B.G.

    1984-01-01

    Sources of potential conflict between proponents and the public regarding the risks entailed by radioactive waste management facilities are identified and analyzed. Programs and policies are suggested that could reduce conflict over the siting and operation of such facilities

  15. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  16. User's guide for the KBERT 1.0 code: For the knowledge-based estimation of hazards of radioactive material releases from DOE nuclear facilities

    International Nuclear Information System (INIS)

    Browitt, D.S.; Washington, K.E.; Powers, D.A.

    1995-07-01

    The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT software has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. The current prototype version of KBERT focuses on calculation of doses and consequences to in-facility workers due to accidental releases of radioactivity. This report gives detailed instructions on how a user who is familiar with the design, layout and potential hazards of a facility can use KBERT to assess the risks to workers in that facility. KBERT is a tool that allows a user to simulate possible accidents and observe the predicted consequences. Potential applications of KBERT include the evaluation of the efficacy of evacuation practices, worker shielding, personal protection equipment and the containment of hazardous materials

  17. New mass-spectrometric facility for the analysis of highly radioactive samples

    International Nuclear Information System (INIS)

    Warmack, R.J.; Landau, L.; Christie, W.H.; Carter, J.A.

    1981-01-01

    A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained

  18. Investigation of radiation safety management at nuclear medicine facilities in Japan. Contamination of radioactivity in the draining-water system

    International Nuclear Information System (INIS)

    Endo, Keigo; Koizumi, Mitsuru; Kinoshita, Fujimi; Nakazawa, Keiji

    1999-01-01

    Radiation-safety management condition in Japanese nuclear medicine facilities were investigated by the questionnaire method. The first questionnaire was asked in all Japanese 1,401 Nuclear Medicine facilities. Answers from 624 institutes (44.5%) were received and analyzed. The radiation-safety management in nuclear medicine institutes was considered to be very well performed everyday. Opinion for the present legal control of nuclear medicine institutes was that the regulation in Japan was too strict for the clinical use of radionuclides. The current regulation is based on the assumption that 1% of all radioactivity used in nuclear medicine institutes contaminates into the draining-water system. The second questionnaire detailing the contamination of radioactivity in the draining-water system was sent to 128 institutes, and 64 answers were received. Of them, 42 institutes were considered to be enough to evaluate the contamination of radioactivity in the draining-water system. There was no difference between 624 institutes answered to the first questionnaire and 42 institutes, where the radioactivity in the draining-water system measured, in the distribution of the institute size, draining-water system equipment and the radioactivity measuring method, and these 42 institutes seemed to be representative of Japanese nuclear medicine institutes. Contamination rate of radioactivity into the draining system was calculated by the value of radioactivity in the collecting tank divided by the amount of radionuclides used daily in each institute. The institutes were divided into two categories on the basis of nuclear medicine practice pattern; type A: in-vivo use only and type B: both in-vivo and in-vitro use. The contamination rate in 27 type A institutes did not exceed 0.01%, whereas in 15 type B institutes the contamination rate distributed widely from undetectable to above 1%. These results indicated that the present regulation for the draining-water system, which assumed

  19. Nuclear Security Recommendations on Radioactive Material and Associated Facilities: Recommendations (Spanish Edition); Recomendaciones de Seguridad Fisica Nuclear sobre Materiales Radiactivos e Instalaciones Conexas: Recomendaciones

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The purpose of this publication is to provide guidance to States and competent authorities on how to develop or enhance, implement and maintain a nuclear security regime for facilities dealing with radioactive material and associated activities. This is to be achieved through the establishment or improvement of their capabilities to implement a legislative and regulatory framework to address the security of radioactive material, associated facilities and associated activities in order to reduce the likelihood of malicious acts involving those materials. These recommendations reflect a broad consensus among States on the requirements which should be met for the security of radioactive material, associated facilities and activities.

  20. Opting for cooperation: A case study in siting a low level radioactive waste management facility

    International Nuclear Information System (INIS)

    Armour, A.

    1991-01-01

    In 1976, the Canadian federal government called a halt to efforts by a crown corporation to site a low-level radioactive waste management facility when it became apparent that continuation of the siting process would likely result in significant social disruption and political conflict. It established an independent six-person Task Force to advise it on how to proceed. Twelve months later, the Task Force put forward a radically different siting process based on the voluntary participation of communities and collaborative, joint problem-solving and decision making. Cabinet endorsed the approach and in September 1988 authorized the Task Force to begin implementing the recommended process. The first three phases of the process have been implemented and so far it appears to be achieving its desired objective -- to encourage less confrontation and more cooperation in the siting of the low-level radioactive waste management facility

  1. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  2. Groundwater flow analysis using mixed hybrid finite element method for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Aoki, Hiroomi; Shimomura, Masanori; Kawakami, Hiroto; Suzuki, Shunichi

    2011-01-01

    In safety assessments of radioactive waste disposal facilities, ground water flow analysis are used for calculating the radionuclide transport pathway and the infiltration flow rate of groundwater into the disposal facilities. For this type of calculations, the mixed hybrid finite element method has been used and discussed about the accuracy of ones in Europe. This paper puts great emphasis on the infiltration flow rate of groundwater into the disposal facilities, and describes the accuracy of results obtained from mixed hybrid finite element method by comparing of local water mass conservation and the reliability of the element breakdown numbers among the mixed hybrid finite element method, finite volume method and nondegenerated finite element method. (author)

  3. Licensing the California low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; Junkert, R.

    1992-01-01

    California has made significant progress toward the issuance of a license to construct and operate the Southwestern Compact's low-level radioactive waste disposal facility. However, obstacles to completing construction and preparing to receive waste still exist. This paper will describe the technical licensing issues, EIR/S process, political events, and public interactions that have impacted on California regulators' ability to complete the license application review and reach a decision on issuing a license. Issues associated with safely and liability evaluations, finalization of the environmental impact report, and land transfer processes involving multiple state, federal, and local agencies will be identified. Major issues upon which public and political opposition is focusing will also be described. (author)

  4. A State-of-the-Art Report on Technologies of a Safety Assessment and a Radioactivity Exposure Assessment for the Decommissioning Process of Nuclear Facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Kang, Young Ae; Lee, Dong Gyu; Lee, Kune Woo; Jung, Chong Hun

    2007-09-01

    This report is to provide the reference contents of research and development for technologies of radioactivity exposure and safety assessment for development of the decommissioning technology for nuclear facilities. This report consists of as follows: - Analyzing and discussing on state-of-the-art technologies of a radioactivity exposure assessment of a decommissioning for nuclear facilities - Analyzing and discussing on state-of-the-art technologies of a safety assessment of a decommissioning for nuclear facilities

  5. A State-of-the-Art Report on Technologies of a Safety Assessment and a Radioactivity Exposure Assessment for the Decommissioning Process of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan Seong; Kang, Young Ae; Lee, Dong Gyu; Lee, Kune Woo; Jung, Chong Hun

    2007-09-15

    This report is to provide the reference contents of research and development for technologies of radioactivity exposure and safety assessment for development of the decommissioning technology for nuclear facilities. This report consists of as follows: - Analyzing and discussing on state-of-the-art technologies of a radioactivity exposure assessment of a decommissioning for nuclear facilities - Analyzing and discussing on state-of-the-art technologies of a safety assessment of a decommissioning for nuclear facilities.

  6. Radioactive Waste Management at the New Conversion Facility of 'TVEL'{sup R} Fuel Company - 13474

    Energy Technology Data Exchange (ETDEWEB)

    Indyk, S.I.; Volodenko, A.V. [JSC ' TVEL' , Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation); Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V. [JSC ' Siberian Group of Chemical Enterprises' , Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)

    2013-07-01

    The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL{sup R} Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

  7. Radioactive waste safety appraisal. An international peer review of the licence application for the Australian near surface radioactive waste disposal facility. Report of the IAEA International Review Team

    International Nuclear Information System (INIS)

    2004-05-01

    Radioactive waste has been generated in Australia for a number of decades from the production and use of radioactive materials in medicine and industry, from the processing of various minerals containing natural radionuclides and from various research activities. It has been decided in the overall interest of safety and security to develop a radioactive waste disposal facility to accommodate the low level and short lived intermediate level waste, which make up the bulk of the waste, other than mining and minerals processing residues. A site selection process has been undertaken and environmental impact statement report prepared and approved. A licence application has been submitted to the national nuclear regulatory authority, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for siting, construction and operation of the facility. In order to assist the CEO of ARPANSA with his deliberations in this regard a request was made to the IAEA, in terms of its statutory mandate to establish international safety standards for radioactive waste safety and to provide for their application, to undertake an international peer review of the licence application and to advise the CEO accordingly. The outcome and recommendations of this peer review are presented in the report

  8. Outline of facility for studying high level radioactive materials (CPF) and study programmes

    International Nuclear Information System (INIS)

    Sakamoto, Motoi

    1983-01-01

    The Chemical Processing Facility for studying high level radioactive materials in Tokai Works of Power Reactor and Nuclear Fuel Development Corp. is a facility for fundamental studies centering around hot cells, necessary for the development of fuel recycle techniques for fast breeder reactors, an important point of nuclear fuel cycle, and of the techniques for processing and disposing high level radioactive liquid wastes. The operation of the facility was started in 1982, for both the system A (the test of fuel recycle for fast breeder reactors) and the system B (the test of vitrification of high level liquid wastes). In this report, the outline of the facility, the contents of testings and the reflection of the results are described. For the fuel recycle test, the hot test of the spent fuel pins of JOYO MK-1 core was started, and now the uranium and plutonium extraction test is underway. The scheduled tests are fuel solubility, the confirmation of residual properties in fuel melting, the confirmation of extracting conditions, the electrolytic reduction of plutonium, off-gas behaviour and the test of material reliability. For the test of vitrification of high level liquid wastes, the fundamental test on the solidifying techniques for the actual high level wastes eluted from the Tokai reprocessing plant has been started, and the following tests are programmed: Assessment of the properties of actual liquid wastes, denitration and concentration test, vitrification test, off-gas treatment test, the test of evaluating solidified wastes, and the test of storing solidified wastes. These test results are programmed to be reflected to the safety deliberation and the demonstration operation of a vitrification pilot plant. (Wakatsuki, Y.)

  9. On barrier performance of high compaction bentonite in facilities of disposing high level radioactive wastes in formation

    International Nuclear Information System (INIS)

    Ikeda, Hidefumi; Komada, Hiroya

    1989-01-01

    As for the method of disposing high level radioactive wastes generated in the reprocessing of spent fuel, at present formation disposal is regarded as most promising. The most important point in this formation disposal is to prevent the leak of radioactive nuclides within the disposal facilities into bedrocks and their move to the zone of human life. As the method of formation disposal, the canisters containing high level radioactive wastes are placed in the horizontal or vertical holes for disposal dug from horizontal tunnels which are several hundreds m underground, and the tunnels and disposal holes are filled again. For this filling material, the barrier performance to prevent and retard the leak of radioactive nuclides out of the disposal facilities is expected, and the characteristics of low water permeability, the adsorption of nuclides and long term stability are required. However, due to the decay heat of wastes just after the disposal, high temperature and drying condition arises, and this must be taken in consideration. The characteristics required for filling materials and the selection of the materials, the features and classification of bentonite, the properties of high compaction bentonite, and the move of water, heat and nuclides in high compaction bentonite are reported.(Kako, I.)

  10. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    Directory of Open Access Journals (Sweden)

    Schulz F.M.

    2013-07-01

    Full Text Available The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  11. The state of radioactive waste management and of personnel radiation exposure in nuclear power generating facilities in fiscal 1983

    International Nuclear Information System (INIS)

    1985-01-01

    (1) The state of radioactive waste management in nuclear power generating facilities: In the nuclear power stations, the released quantities of radioactive gaseous and liquid wastes are all below the control objective levels. For the respective nuclear power stations, the released quantities of radioactive gaseous and liquid wastes in fiscal 1983 and the objective levels are given in table. And, the quantities of solid wastes taken into storage and the cumulative amounts are given. For reference, the results each year since fiscal 1974 are shown. (2) The state of personnel radiation exposure in nuclear power generating facilities: In the nuclear power stations, the personnel radiation exposures are all below the permissible levels. The dose distribution etc. in the respective nuclear power stations are given in table. For reference, the results each year since fiscal 1974 are shown. (Mori, K.)

  12. [Assessment of cyto- and genotoxicity of natural waters in the vicinity of radioactive waste storage facility using Allium-test].

    Science.gov (United States)

    Udalova, A A; Geras'kin, S A; Dikarev, V G; Dikareva, N S

    2014-01-01

    Efficacy of bioassays of "aberrant cells frequency" and "proliferative activity" in root meristem of Allium cepa L. is studied in the present work for a cyto- and genotoxicity assessment of natural waters contaminated with 90Sr and heavy metals in the vicinity of the radioactive waste storage facility in Obninsk, Kaluga region. The Allium-test is shown to be applicable for the diagnostics of environmental media at their combined pollution with chemical and radioactive substances. The analysis of aberration spectrum shows an important role of chemical toxicants in the mutagenic potential of waters collected in the vicinity of the radioactive waste storage facility. Biological effects are not always possible to explain from the knowledge on water contamination levels, which shows limitations of physical-chemical monitoring in providing the adequate risk assessment for human and biota from multicomponent environmental impacts.

  13. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    International Nuclear Information System (INIS)

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement

  14. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  15. Indicadores de calidad en cardiología. Principales indicadores para medir la calidad de los resultados (indicadores de resultados) y parámetros de calidad relacionados con mejores resultados en la práctica clínica (indicadores de práctica asistencial). INCARDIO (Indicadores de Calidad en Unidades Asistenciales del Área del Corazón): Declaración de posicionamiento de consenso de SEC/SECTCV

    OpenAIRE

    López-Sendón, José; González-Juanatey, José Ramón; Pinto, Fausto; Cuenca Castillo, José; Badimón, Lina; Dalmau, Regina; González Torrecilla, Esteban; López-Mínguez, José Ramón; Maceira, Alicia M.; Pascual-Figal, Domingo; Pomar Moya-Prats, José Luis; Sionis, Alessandro; Zamorano, José Luis

    2015-01-01

    La práctica clínica cardiológica requiere una organización compleja que influya en los resultados globales y puede diferir sustancialmente entre distintos hospitales y comunidades. El objetivo de este documento de consenso es definir indicadores de calidad en cardiología, incluidos los indicadores para medir la calidad de los resultados (indicadores de resultados) y los parámetros de calidad relacionados con mejores resultados en la práctica clínica (indicadores de práctica asistencial). El d...

  16. A feasibility study for the design of a simulated radioactive waste repository facility

    International Nuclear Information System (INIS)

    1986-10-01

    The paper contains the text and references of a feasibility study for the design of a simulated radioactive waste repository facility (final report). The work was commissioned by the Department of the Environment, United Kingdom, as part of its radioactive waste management research programme. The nature of the candidate buffer materials, the factors defining their behaviour, and the nature of a buffer material selection and testing programme, are examined. A description is given of the properties and modelling of host materials. The complex interactions between host materials, and between buffer and host materials, are discussed, along with the instrumentation requirements for measuring the interactions. Finally, the temperature field around a waste package, and modelling a host continuum with a segmental block, are both investigated. (U.K.)

  17. Implementation of stage 3 decommissioning and optimization of radioactive waste generation, Triton facility, France

    International Nuclear Information System (INIS)

    2008-01-01

    The CEA centre of Fontenay-aux-Roses was created in 1946, when the French nuclear energy programme started. Two generations of facilities have been built and operated. The first generation remained operational for 15 years and was dismantled in the late 1950s. It was replaced by a new generation of facilities, as part of the French electronuclear programme, and these included the Triton and Nereide research reactors (hereafter called the Triton facility). In accordance with the CEA strategy and taking into account its urban location, in 1998 the CEA Fontenay-aux-Roses centre decided to launch an extensive cleanup programme to be implemented from 2010 onwards. This included the Stage 3 decommissioning of the Triton facility. In the frame of this decommissioning project, a decommissioning strategy was developed making it possible to optimize the volume of radioactive waste generated

  18. Radioactive material dry-storage facility and radioactive material containing method

    International Nuclear Information System (INIS)

    Kanai, Hidetoshi; Kumagaya, Naomi; Ganda, Takao.

    1997-01-01

    The present invention provides a radioactive material dry storage facility which can unify the cooling efficiency of a containing tube and lower the pressure loss in a storage chamber. Namely, a cylindrical body surrounds a first containing tube situated on the side of an air discharge portion among a plurality of containing tubes and forms an annular channel extending axially between the cylindrical body and the first containing tube. An air flow channel partitioning member is disposed below a second containing tube situated closer to an air charging portion than the first containing tube. A first air flow channel is formed below the air channel partitioning member extending from the air charging portion to the annular channel. The second air channel is formed above the air channel partitioning member and extends from the air charging portion to the air discharge portion by way of a portion between the second containing tubes and the portion between the cylindrical body and the first containing tube. Then, low temperature air can be led from the air charging portion to the periphery of the first containing tube. The effect of cooling the first containing tube can be enhanced. The difference between the cooling efficiency between the second containing tube and the first containing tube is decreased. (I.S.)

  19. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees.

    Science.gov (United States)

    Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M

    2016-03-01

    Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  1. CACAO facility. Radioactive targets at Orsay

    International Nuclear Information System (INIS)

    Bacri, C.O.; Petitbon-Thevenet, V.; Mottier, J.; Lefort, H.; Durnez, A.; Fortuna, F.

    2014-01-01

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a new laboratory dedicated to the fabrication and characterization of radioactive targets. It is supported by the radiochemistry group and the stable target service of the IPNO. The recurring needs of physicists working in the nuclear fuel cycle physics and the growing difficulties to obtain radioactive targets elsewhere were the main motivating factors behind the construction of this new laboratory. The first targets of 235,238 U and 232 Th have already been prepared although the full operating licenses still need to be obtained. In this paper, the installation and the equipment of CACAO will be described. An extensive study of a U test target fabricated by the CACAO laboratory has been performed and results are reported here. The different techniques used to characterize the deposit are presented and the outcome is discussed. (author)

  2. Occupational exposure assessment in a radioactive facility: a preliminary evaluation

    International Nuclear Information System (INIS)

    Alves, Alice dos Santos; Gerulis, Eduardo; Sanches, Matias P.; Carneiro, Janete C.G.G.

    2013-01-01

    The risk that a worker has found on the job is a function of the hazards present and his exposure level to those hazards. Exposure and risk assessment is therefore the heart of all occupational health and industrial hygiene programs involving a continuous process of information gathering. The use of a systematic method to characterize workplace exposures to chemical, physical and biological risks is a fundamental part of this process. This study aims to carry out a preliminary evaluation in a radioactive facility, identifying potential exposures and consequently the existing occupational hazards (risk/agent) in the workplace which the employee is subject. The study is based on proposal to carry out a basic characterization of the facility, which could be the first step in the investigation of occupational exposure. For this study was essential to know the workplace, potential risks and agents; workforce profile including assignment of tasks, sources of exposure processes, and control measures. The main tool used in this study was based on references, records, standards, procedures, interviews with the workers and with management. Since the basic characterization of the facility has been carried out, consequently the potential exposure to the agents of risks to workers has been identified. The study provided an overview of the perception of risk founded at facility studied. It is expected to contribute with the occupational health program resources for welfare of the worker. (author)

  3. Occupational exposure assessment in a radioactive facility: a preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Alice dos Santos; Gerulis, Eduardo; Sanches, Matias P.; Carneiro, Janete C.G.G., E-mail: alicesante@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The risk that a worker has found on the job is a function of the hazards present and his exposure level to those hazards. Exposure and risk assessment is therefore the heart of all occupational health and industrial hygiene programs involving a continuous process of information gathering. The use of a systematic method to characterize workplace exposures to chemical, physical and biological risks is a fundamental part of this process. This study aims to carry out a preliminary evaluation in a radioactive facility, identifying potential exposures and consequently the existing occupational hazards (risk/agent) in the workplace which the employee is subject. The study is based on proposal to carry out a basic characterization of the facility, which could be the first step in the investigation of occupational exposure. For this study was essential to know the workplace, potential risks and agents; workforce profile including assignment of tasks, sources of exposure processes, and control measures. The main tool used in this study was based on references, records, standards, procedures, interviews with the workers and with management. Since the basic characterization of the facility has been carried out, consequently the potential exposure to the agents of risks to workers has been identified. The study provided an overview of the perception of risk founded at facility studied. It is expected to contribute with the occupational health program resources for welfare of the worker. (author)

  4. Naturally occurring radioactive materials (NORM) in the oil and gas processing and production facilities

    International Nuclear Information System (INIS)

    Najera F, J.

    1994-01-01

    NORM contamination is produced by concentration in petroleum facilities of naturally occurring radioactive materials. The presence of NORM in petroleum reservoirs and in the oil and gas industry has been widely recognized. It's not a critical technical problem if you proceed timely to solve it. NORM is a great but controllable hazard to the human health and the environment, and represents a severe waste management problem. We suggest to the latino american oil companies to conduct studies to detect NORM contamination in their facilities an use to them to plan the appropriate actions to control the situation. (author). 15 refs

  5. Experiences in planning and response for the radiological emergencies in a radioactive facility

    International Nuclear Information System (INIS)

    Amador B, Z.H.; Perez P, S.; Torres B, M.B.; Ayra P, F.E.

    2006-01-01

    It is internationally recognized the importance of the planning and the assurance for the effective response to the radiological emergencies. In the work those experiences on this thematic one in the Isotopes Center (CENTIS), the radioactive facility where the biggest radioactive inventory is manipulated in Cuba are presented. Due to CENTIS is also the sender and main transport of radioactive materials, it is included this practice. The revision of the abnormal situations during the years 1997 at the 2005, starting from the classification adopted by the Regulatory Authority of the country is carried out. Its are register the details of these occurrences in the Radiological Events Database (BDSR). A correspondence among the radiological impact evaluated in the Emergency Plan for the possible events and that of the registered ones is obtained. The complete training programs and realization of the exercises are carried out. Those results of 3 mockeries made to full scale are picked up. It was concluded that the operational experience and the maintained infrastructure, determine the answer capacity for radiological emergencies in the CENTIS. (Author)

  6. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2004-01-01

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  7. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  8. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  9. Methods for the minimization of radioactive waste from decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this report is to provide Member States and their decision makers (ranging from regulators, strategists, planners and designers, to operators) with relevant information on opportunities for minimizing radioactive wastes arising from the D and D of nuclear facilities. This will allow waste minimization options to be properly planned and assessed as part of national, site and plant waste management policies. This objective will be achieved by: reviewing the sources and characteristics of radioactive materials arising from D and D activities; reviewing waste minimization principles and current practical applications, together with regulatory, technical, financial and political factors influencing waste minimization practices; and reviewing current trends in improving waste minimization practices during D and D

  10. Radioactive waste interim storage in Germany

    International Nuclear Information System (INIS)

    2015-12-01

    The short summary on the radioactive waste interim storage in Germany covers the following issues: importance of interim storage in the frame of radioactive waste management, responsibilities and regulations, waste forms, storage containers, transport of vitrified high-level radioactive wastes from the reprocessing plants, central interim storage facilities (Gorleben, Ahaus, Nord/Lubmin), local interim storage facilities at nuclear power plant sites, federal state collecting facilities, safety, radiation exposure in Germany.

  11. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    Science.gov (United States)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  12. Significant progress towards development of the low-level radioactive waste disposal facility in Illinois

    International Nuclear Information System (INIS)

    Klebe, M.; Henry, T.L.; Corpstein, P.

    1996-01-01

    Development of disposal sites for low-level radioactive waste is a complicated legal, regulatory and public sector process. Development of the low-level radioactive waste disposal facility to support generators in Illinois and Kentucky is well under way. Significant progress has been made to re-engineer the siting development process capitalizing on prior lessons learned and a recommitment from Illinois state leadership assuring the future success of the program. Comparisons of why this new process will succeed are the major focus of this paper. Specific changes in approach from the previous process including changes in the Illinois Management Act (Management Act), creation of the Illinois Low-Level Radioactive Waste Siting Task Group (Task Group), new roles for the Illinois State Geologic Survey and Illinois State Water Survey (Scientific Surveys) and the Illinois Department of Nuclear Safety (IDNS), a new contractor reliance approach and increased confidence on the open-quote science close-quote are the major contrasts between the previous process and the new process currently underway

  13. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  14. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  15. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  16. Catalogue of facilities in Member States of the European Community for testing the packaging of radioactive materials

    International Nuclear Information System (INIS)

    Marchal, A.; Swindell, G.E.

    1983-01-01

    A group of experts convened by the Commission of the European Communities in Brussels on 2 July 1980 to suggest possible actions in connection with the safe transport of radioactive materials, recommended, among other things, that the Commission should collect and distribute information on packaging test facilities in Member States. In response to that recommendation a letter of enquiry was sent informally, on behalf of the Commission, to the competent authorities of the Member States. The purpose of the enquiry is to assist in the effective implementation of the internationally accepted Regulations for the Safe Transport of Radioactive Materials through the dissemination of information on test facilities and on the terms and conditions under which the services of these facilities could be made available for the testing of packaging designed in other countries. As an aid to the presentation of the material in a harmonized format, it was suggested that the information provided should cover relevant topics. The information received by the Commission has been assembled for each installation according to this format

  17. Disposal facilities on land for low and intermediate-level radioactive wastes: draft principles for the protection of the human environment

    International Nuclear Information System (INIS)

    1983-10-01

    This document gives the views of the authorising [United Kingdom] Departments under the Radioactive Substances Act 1960 about the principles which those Departments should follow in assessing proposals for land disposal facilities for low and intermediate-level radioactive wastes. It is based on relevant research findings and reports by international bodies; but has been prepared at this stage as a draft on which outside comments are sought, and is subject to revision in the light of those comments. That process of review will lead to the preparation and publication of a definitive statement of principles, which will be an important background document for public inquiries into proposals to develop sites for land disposal facilities. Headings are: authorisation of disposal; other legislation governing new disposal facilities; basic radiological requirements; general principles; information requirements. (author)

  18. Risks, costs and benefits analysis for exhumation of buried radioactive materials at a nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Kirk, J.S.; Moore, R.A.; Huston, T.E.

    1996-01-01

    A Risks, Costs and Benefits analysis provides a tool for selecting a cost-effective remedial action alternative. This analysis can help avoid transferring risks to other populations and can objectively measure the benefits of a specific remedial action project. This paper describes the methods and results of a Risks, Costs and Benefits analysis performed at a nuclear fuel fabrication facility. The analysis examined exhuming and transporting radioactive waste to an offsite disposal facility. Risks evaluated for the remedial action project were divided into two categories: risks posed to the worker and risks posed to public health. Risks to workers included exposure to radioactive contaminants during excavation and packaging of waste materials and the use of heavy machinery. Potential public health risks included exposure to radioactive materials during transport from the exhumation site to the disposal facility. Methods included use of site-specific and published data, and existing computer models. Occupational risks were quantified using data from similar onsite remedial action projects. Computer modeling was used to evaluate public health risks from transporting radioactive materials; the consequences or probability of traffic accidents; and radiation exposure to potential inhabitants occupying the site considering various land use scenarios. A costs analysis was based on data obtained from similar onsite remedial action projects. Scenarios used to identify benefits resulting from the remedial action project included (1) an evaluation of reduction in risks to human health; (2) cost reductions associated with the unrestricted release of the property; and (3) benefits identified by evaluating regulatory mandates applicable to decommissioning. This paper will provide an overview of the methods used and a discussion of the results of a Risks, Costs and Benefits analysis for a site-specific remedial action scenario

  19. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S.

    2005-10-01

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site

  20. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S

    2005-10-15

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site.

  1. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-01-01

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value

  2. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  3. Radioactive Operations Committee Review of the Intermediate-Level Waste Evaporator Facility, Building 2531 February 17, 1972

    International Nuclear Information System (INIS)

    Liberman, B.; Brooksbank, R.E.

    1972-01-01

    A subcommittee of the Radioactive Operations Committee met with the Operators of the Intermediate Level Waste Evaporator Facility on February 17, 1972, to discuss the status of the facility and its operations since the review of October 7, 1970, and reported in ORNL-CF-70-11-12. This review was made to determine the status of the ILWEF since the last review, to discuss compliance with previously recommended changes, and to review any new items of safety significance. Several recommendations were made.

  4. New challenges in the safety assessment of radioactive waste storage and disposal facilities in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Linge, I.; Utkin, S. [Nuclear Safety Inst. (IBRAE RAN), Moscow (Russian Federation)

    2014-07-01

    Russian radioactive waste (RW) management practice (disposal, in particular) is characterized by a number of features which makes it fundamentally different from the international one. The technologies used in the middle of the XX century became widespread even after the nuclear arms race was over. As a result: Industrial sites comprise a large number of old solid RW storage facilities and surface water reservoirs (ponds, lakes), which capacity varies from one to several hundred million cubic meters, storing liquid RW; Deep well injection of liquid RW into aquifers has been in practice since the early 1960's. Major changes aimed at addressing the accumulated problems began to occur only a decade ago. In 2008, a large-scale state nuclear legacy program was initiated, and in 2011, the framework act «On RW management» was passed. New tasks were set before the Russian nuclear industry for the purpose of establishing a unified state system for RW management. It was accompanied by a number of new challenges in the safety justification and calculation tools development. They are discussed in the paper with significant consideration to the existing nuclear legacy facilities; unique liquid radioactive waste storage and disposal facilities; and new-built disposal facilities. (author)

  5. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  6. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  7. Environmental justice: Implications for siting of Federal Radioactive Waste Management Facilities

    International Nuclear Information System (INIS)

    Easterling, J.B.; Poles, J.S.

    1994-01-01

    Environmental justice is a term that has developed as a result of our need to address whether some of the environmental decisions we have made -- and others we will make -- are fair. The idea of environmental justice has been actively pursued by the Clinton Administration, and this consideration has resulted in Executive Order 12898, which was signed by President Clinton on February 11, 1994. The Executive Order calls for adverse impacts of Federal actions on minority or low-income populations to be identified before decisions implementing those actions are made. Numerous studies show that noxious facilities, such as incinerators and landfills, have been constructed in minority or low-income communities. And since the Department has not yet decided on sites for high-level waste storage or disposal facilities, it will have to take the new Executive Order into consideration as another piece in the complicated quilt of requirements that cover facility siting. An interesting twist to this is the fact that twenty Native American Indian Tribes expressed interest in voluntarily hosting a high-level radioactive waste management facility for temporary storage. They made these expressions on their own initiative, and several Tribes continue to pursue the idea of negotiations with either the Federal Government or private entities to locate a temporary storage site on Tribal land. The Executive Order goes beyond simply studying the effect of siting a facility and addresses in spirit a criticism that the Federal Government has been guilty of open-quotes environmental racismclose quotes in its siting policies -- that it has intentionally picked minority or low-income communities for waste management facilities. What Department of Energy staff and others may have considered foregone conclusions in terms of interim storage facility siting and transportation options will have to be reevaluated for compatibility with provisions of the new Executive Order

  8. Performance assessment studies for the long-term safety evaluation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Olteanu, M.; Bujoreanu, L.

    2008-01-01

    Especially during the last ten years, a part of Romanian research program 'Management of Radioactive Waste and Spent Fuel' was focused mainly on applicative research for the design of near-surface disposal facility, which intends to accommodate the low and intermediate radioactive waste generated from Cernavoda NPP. In this frame, our contribution was at the acquisition of technical data for the characterization of the future disposal facility. In the present, the project of the disposal facility, located on the Saligny site, near Cernavoda NPP, must be licensed. As regards to the safe disposal, the location of final disposal, the Saligny site, has been characterized through the five geological formations which contain potential routes for transport of radionuclide released from disposal facility, in the receiving zones(potential receiving zones), into liquid and gaseous phases. The technical characteristics of the disposal facility were adapted at the Romanian disposal concept using the reference data from IAEA technical report (IAEA,1999). Input parameters which characterized from physical and chemical point of view the disposal system, were partially taken from literature. The performance assessment studies, which follows the preliminary design development phases and the selection, describes how the source term is affected by the infiltration of water through the disposal facility, degradation process of engineering barriers (reflected in the distribution coefficient values) and solubility limit. The studies regard the evaluation of the source term, sensitivity and uncertainty analysis provide the information on 'how' and 'why' were evaluated, following: (i) radiological safety assessment of near-surface disposal facility on Saligny site; (ii) complexity standard assessment of the Engineering Barriers Systems (EBS); (iii) identification of the elements which must be elaborated for the increase of the disposal safety and the necessity for new technical data for

  9. Design and operation of off-gas cleaning and ventilation systems in facilities handling low and intermediate level radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The number of developing countries constructing new nuclear facilities is increasing. These facilities include the production and processing of radioisotopes, as well as all types of laboratories and installations, which handle radioactive material and deal with the treatment of radioactive wastes. Ventilation and air cleaning systems are a vital part of the general design of any nuclear facility. The combination of a well designed ventilation system with thorough cleaning of exhaust air is the main method of preventing radioactive contamination of the air in working areas and in the surrounding atmosphere. This report provides the latest information on the design and operation of off-gas cleaning and ventilation systems for designers and regulatory authorities in the control and operation of such systems in nuclear establishments. The report presents the findings of an Advisory Group Meeting held in Vienna from 1 to 5 December 1986 and attended by 12 experts from 11 Member States. Following this meeting, a revised report was prepared by the International Atomic Energy Agency Secretariat and three consultants, M.J. Kabat (Canada), W. Stotz (Federal Republic of Germany) and W.A. Fairhurst (United Kingdom). The final draft was commented upon and approved by the participants of the meeting. 69 refs, 37 figs, 12 tabs

  10. Environmental impact assessment for a radioactive waste facility: A case study

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1990-01-01

    A 77-ha site, known as the Niagara Falls Storage Site and located in northwestern New York State, holds about 190, 000 m 3 of soils, wastes, and residues contaminated with radium and uranium. The facility is owned by the US Department of Energy. The storage of residues resulting from the processing of uranium ores started in 1944, and by 1950 residues from a number of plants were received at the site. The residues, with a volume of about 18,000 m 3 , account for the bulk of the radioactivity, which is primarily due to Ra-226; because of the extraction of uranium from the ore, the amount of uranium remaining in the residues is quite small. An analysis of the environmental impact assessment and environmental compliance actions taken to date at this site and their effectiveness are discussed. This case study provides an illustrative example of the complexity of technical and nontechnical issues for a large radiative waste facility. 11 refs., 7 figs., 2 tabs

  11. New safety performance indicators for safety assessment of radioactive waste disposal facilities. Cuban experience

    International Nuclear Information System (INIS)

    Peralta Vital, J.L.; Castillo, R.G.; Olivera, J.

    2002-01-01

    The paper shows the Cuban experience on implementing geological disposal of radioactive waste and the necessity for identifying new safety performance indicators for the safety assessment (SA) of radioactive waste disposal facilities. The selected indicator was the concentration of natural radioactive elements (U, Ra, Th, K) in the Cuban geologic environment. We have carried out a group of investigations, which have allowed characterising the concentration for the whole Country, creating a wide database where this indicator is associated with the lithology. The main lithologies in Cuba are: the sedimentary rocks (70 percent of national occurrence), which are present in the three regions (limestone and lutite), and finally the igneous and metamorphic rocks. The results show the concentrations ranges of the natural radionuclides associated fundamentally to the variation in the lithology and geographical area of the Country. In Cuba, the higher concentration (ppm) of Uranium and Radium are referenced to the Central region associated to Skarn, while for Thorium (ppm) and Potassium (%), in the East region the concentration peaks in Tuffs have been found. The concentrations ranges obtained are preliminary, they characterise the behaviour of this parameter for the Cuban geology, but they do not represent limits for safety assessment purposes yet. Also other factors should be taken into account as the assessment context, time scales and others assumptions before establishing the final concentration limits for the natural radionuclides as a radiological and nuclear safety performance indicator complementary to dose and risk for safety assessment for radiological and nuclear facilities. (author)

  12. Radioactive ion beam facility at Louvain-La-Neuve, Belgium and its features

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1991-01-01

    Use of radioactive ion beams for the study of nuclear structure as well as the astrophysical reaction cross sections become the current interest in physics. A full-fledged facility based on two coupled cyclotrons comprising a compact high current cyclotron and a medium energy cyclotron with an intermediate target and ion source system has been recently commissioned at the Louvain-La-Neuve University in Belgium by its accelerator group and has been successfully used for the measurement of cross sections for the primordial nucleosynthesis reactions of astrophysical interest, directly. A brief description of the system, its operational features together with some details of the target and the ion source arrangement for the production of the radioactive ion beams and their acceleration to energies required for the proposed studies is presented. Description of the reactions studied by the Louvain La Neuve group for astrophysical interest is also given. (author). 20 refs., 6 figs., 4 tabs

  13. Indicadores de calidad de las plataformas educativas digitales Indicadores de qualidade das plataformas educacionais digitais Indicators of the Quality of Digital Educational Platforms

    Directory of Open Access Journals (Sweden)

    Mireya Ardila-Rodríguez

    2011-04-01

    Full Text Available En este artículo se presentan los resultados de un estudio acerca de indicadores de calidad en los procesos deformación en ambientes virtuales, que deriva de un marco conceptual y de una serie de hipótesis que expresan relaciones esperadas entre las variables. Estas relaciones conceptuales se examinan y ponen a prueba mediante el trabajo de campo, y se someten al análisis estadístico entre los indicadores que operan como referentes empíricos de los conceptos. Como resultado del trabajo realizado, se identifican, describen e interpretan los indicadores de calidad en los procesos de enseñanza-aprendizaje en ambientes virtuales.Este artigo mostra os resultados de um estudo sobre indicadores de qualidade nos processos de formação em ambientes virtuais, que deriva de um quadro conceitual e uma série de hipóteses que expressam relações esperadas entre as variáveis. Estas relações conceituais são examinadas e testadas através do trabalho de campo e submetidas à análise estatística entre os indicadores que servem como referências empíricas dos conceitos. Ao final se identificam, descrevem e interpretam os indicadores de qualidade nos processos de ensino-aprendizagem em ambientes virtuais.This article presents the findings of a study on indicators of the quality of educational processes in virtual environments. It is derived from a conceptual framework and a series of hypotheses that express the expected relationships between the variables. These conceptual relationships are examined and tested through field work, then subjected to a statistical analysis concerning the indicators that operate as empirical referents of the concepts. Indicators of quality in teaching-learning processes in virtual environments were identified, described and interpreted as a result of the study.

  14. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  15. Technical issues in licensing low-level radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Junkert, R. [California Dept. of Health Services, CA (United States)

    1993-03-01

    The California Department of Health Service spent two years in the review of an application for a low-level radioactive waste disposal facility in California. During this review period a variety of technical issues had to be evaluated and resolved. One of the first issues was the applicability and use of NRC guidance documents for the development of LLW disposal facilities. Other technical issues that required intensive evaluations included surface water hydrology, seismic investigation, field and numerical analysis of the unsaturated zone, including a water infiltration test. Source term verification became an issue because of one specific isotope that comprised more than 90% of the curies projected for disposal during the operational period. The use of trench liners and the proposed monitoring of the unsaturated zone were reviewed by a highly select panel of experts to provide guidance on the need for liners and to ensure that the monitoring system was capable of monitoring sufficient representative areas for radionuclides in the soil, soil gas, and soil moisture. Finally, concerns about the quality of the preoperational environmental monitoring program, including data, sample collection procedures, laboratory analysis, data review and interpretation and duration of monitoring caused a significant delay in completing the licensing review.

  16. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Torresi, D.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Costa, L. [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, PD (Italy); Glodariu, T. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania); Guglielmetti, A. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica,Università di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Dipartimento di Scienze Fisiche, Università di Napoli, Via Cinthia, I-80126 Napoli (Italy); Parascandolo, C. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Pierroutsakou, D. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Signorini, C.; Soramel, F. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Stroe, L. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania)

    2013-12-15

    Highlights: • Production of in-flight Radioactive Ion Beams via two-body reactions. • Development of a cryogenic gas target. • Event-by-event tracking via Parallel Plate Avalanche Counters (PPACs). -- Abstract: The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of {sup 7}Be, {sup 8}B and {sup 17}F in the energy range 3–5 MeV/u have been produced with intensities about 3 × 10{sup 5}, 1.6 × 10{sup 3} and 10{sup 5} pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed.

  17. Facility effluent monitoring plan for the 300 Area Fuels Fabrication Facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Brendel, D.F.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring system by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The Fuel Fabrication Facility in the Hanford 300 Area supported the production reactors from the 1940's until they were shut down in 1987. Prior to 1987 the Fuel Fabrication Facility released both airborne and liquid radioactive effluents. In January 1987 the emission of airborne radioactive effluents ceased with the shutdown of the fuels facility. The release of liquid radioactive effluents have continued although decreasing significantly from 1987 to 1990

  18. Legal framework of Preclinical Molecular Imaging radioactive facilities; Marco legal de las instalaciones radiactivas de Imagen Molecular Preclínica

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez, C.; Lorenz, P.

    2014-07-01

    Preclinical Molecular Imaging facilities are 2ª category radioactive facilities, so the regulation that applies to them is the same as the rest of the radioactive facilities, both the regime of authorizations and the establishment of the basic standards of radiation protection of workers and members of the public. There are also specific and mandatory technical regulations coming from Nuclear Safety Council safety instructions and ministerial orders, applicable for installations using unsealed radioactive material and equipment generating ionizing radiation for diagnosis, also taking account the possible existence of sealed radioactive sources of verification. [Spanish] Las instalaciones de Imagen Molecular Preclínica son instalaciones radiactivas de 2ª categoría, por lo que la reglamentación que les aplica es la misma que al resto de las instalaciones radiactivas, tanto en el régimen de autorizaciones, como en el establecimiento de las normas básicas de protección radiológica para los trabajadores y los miembros del público. Existe además normativa técnica específica y de obligado cumplimiento, procedente de instrucciones de seguridad del Consejo de Seguridad Nuclear y de Órdenes Ministeriales , aplicable para instalaciones donde se utilice material radiactivo no encapsulado y equipos generadores de radiaciones ionizantes para diagnóstico, teniendo en cuenta también la posible existencia de fuentes radiactivas encapsuladas de verificación.

  19. Use of urethane foam in preparing for decontamination and decommissioning of radioactive facilities

    International Nuclear Information System (INIS)

    1981-01-01

    Portable urethane foam generating equipment has been in use for 15 to 20 years for a large number of applications, such as roof systems, tank insulation, and building insulation. Still another industrial application is its use in the decontamination and decommissioning of radioactive facilities at Mound Facility. The major problems encountered with urethane foams were with the packaging and stabilization procedures. The operation for spraying the foam on interior surfaces and equipment involved getting the gun inside without opening up the interior to the outside environment. A Gusmer FF proportioner and Model D spray gun was used for this operation. The gun was modified so that the trigger could be remotely located to facilitate its entry through a glovebox gloveport opening. The Model D gun has an air cap to blow foam off the tip of the gun. This cap was used to hold a plastic bag in place around the gun. The plastic bag is then put on a glove port and fastened securely. Urethane spray is applied on all exposed surfaces. This assures that all residual material is fixed for shipment. This simplifies cleaning operations as there is no need to remove the last trace of plutonium and results in a considerable shortening of the time required to prepare the gloveboxes. With the interior foamed, the gloveboxes are moved to the loading and packaging areas. Urethane foams are used to fill in the voids in our final shipping container. Radioactive waste materials are segregated according to the level of radioactive material present. One category is low level or low specific activity (LSA) and the other high level or Transuranic (TRU). Foam is used in TRU packages as packaging material to stabilize the loads and to help cushion against shock in transit on truck or railcar

  20. Quality assurance guidance for low-level radioactive waste disposal facility: Final report

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1989-01-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements for a low-level waste (LLW) disposal facility. The QC requirements are the basis for developing of a quality assurance (QA) program and for the guidance provided herein. The criteria are basic to any QA program. The document specifically establishes QA guidance for the design, construction, and operation of those structures, systems, components, as well as, for site characterization activities necessary to meet the performance objectives and to limit exposure to our release of radioactivity. 7 refs

  1. Fostering a Durable Relationship between a Radioactive Waste Management Facility and its Host Community. Adding Value through Design and Process. 2015 Edition

    International Nuclear Information System (INIS)

    2015-01-01

    In the field of long-term radioactive waste management, repository projects last from decades to centuries. Such projects will inevitably have an effect on the host community from the planning stage to the end of construction and beyond. The key to a long-lasting and positive relationship between a facility and its host community is ensuring that solutions are reached together throughout the entire process. The sustainability of radioactive waste management solutions can potentially be achieved through design and implementation of a facility that provides added cultural and amenity value, as well as economic opportunities, to the local community. This edition of Fostering a Durable Relationship between a Waste Management Facility and its Host Community: Adding Value through Design and Process highlights new innovations in siting processes and in facility design - functional, cultural and physical - from different countries, which could be of added value to host communities and their sites in the short to long term. These new features are examined from the perspective of sustainability, with a focus on increasing the likelihood that people will both understand the facility and its functions, and remember over very long timescales what is located at the site. This 2015 update by the NEA Forum on Stakeholder Confidence will be beneficial in designing paths forward for local or regional communities, as well as for national radioactive waste management programmes. Section 2 of this report summarises the value of developing a sustainable relationship between a community and a radioactive waste management facility through added cultural and amenity value. In Section 3, the report identifies design considerations - functional, cultural and physical - that may help facilities to fit into the community in a sustainable manner. Each design feature is illustrated with examples. Section 4 discusses the benefits that may be gained from the very process of planning radioactive

  2. Radioprotection considerations on the expansion project of an interim storage facility for radioactive waste

    International Nuclear Information System (INIS)

    Boni-Mitake, Malvina; Suzuki, Fabio F.; Dellamano, Jose C.

    2009-01-01

    The Radioactive Waste Management (GRR) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) receives, treats, packs, characterizes and stores institutional radioactive wastes generated at IPEN-CNEN/SP and also those received from several radiological facilities in the country. The current storage areas have been used to store the treated radioactive waste since the early 1980's and their occupation is close to their full capacity, so a storage area expansion is needed. The expansion project includes the rebuilding of two sheds and the enlargement of the third one in the area currently occupied by the GRR and in a small adjacent area. The civil works will be in controlled area, where the waste management operations will be maintained, so all the steps of this project should be planned and optimized, from the radioprotection point of view. The civil construction will be made in steps. During the project implementation there will be transfer operations of radioactive waste packages to the rebuilt area. After these transfer operations, the civil works will proceed in the vacant areas. This project implies on radiological monitoring, dose control of the involved workers, decontamination and clearance of areas and it is also envisaged the need for repacking of some radioactive waste. The objective this paper is to describe the radioprotection study developed to this expansion project, taking into account the national radioprotection and civil construction regulations. (author)

  3. Study of waste acceptance criteria for low-level radioactive waste from medical, industrial, and research facilities (Contract research)

    International Nuclear Information System (INIS)

    Koibuchi, Hiroto; Dohi, Terumi; Ishiguro, Hideharu; Hayashi, Masaru; Senda, Masaki

    2008-12-01

    Japan Atomic Energy Agency (JAEA) is supposed to draw up the plan for the disposal program of the very low-level radioactive waste and low-level radioactive waste generated from medical, industrial and research facilities. For instance, there are these facilities in JAEA, universities, private companies, and so on. JAEA has to get to know about the waste and its acceptance of other institutions described above because it is important for us to hold the licenses for the disposal program regarding safety assessment. This report presents the basic data concerning radioactive waste of research institutes etc. except RI waste, domestic and foreign information related to acceptance criteria for disposal of the low-level radioactive waste, the current status of foreign medical waste management, waste acceptance, and such. In this report, Japan's acceptance criteria were summarized on the basis of present regulation. And, the criteria of foreign countries, United States, France, United Kingdom and Spain, were investigated by survey of each reference. In addition, it was reported that the amount of waste from laboratories etc. for near-surface disposal and their characterization in our country. The Subjects of future work: the treatment of hazardous waste, the problem of the double-regulation (the Nuclear Reactor Regulation Law and the Law Concerning Prevention from Radiation Hazards due to Radioisotopes and Others) and the possession of waste were discussed here. (author)

  4. Grading of Requirements for Radioactive Waste Activities in Nuclear Research Reactors: Radioisotope Production Facilities

    International Nuclear Information System (INIS)

    Tawfik, Y.E.

    2017-01-01

    A graded approach is applicable in all stages of the life time of a research reactor. During the life time of a research reactor, any grading performed should not, in any manner, affect safety functions and operational limits and conditions are preserved, so that there are no undue radiological hazards to workers, public or environment. The grading of activities should be based on safety analyses, and regulatory requirements. Other elements to be considered in grading are the complexity and the maturity of the technology, operating experience associated with the activities and the stage in the life time of the facility. In order to ensure that proper and a de quate provision is made for the safety implications associated with the management and disposal of radioactive waste, the waste is characterized and classified. The general scheme for classifying radioactive waste as presented in the current study is based on considerations of long term safety, and thus, by implication, disposal of the waste. This classification provides a starting point for the grading of activities associated with the packaging and disposal of radioactive waste

  5. Automated Storage Retrieval System (ASRS) Role Towards Achievement of Safety Objective and Safety Culture in Radioactive Storage Facilities

    International Nuclear Information System (INIS)

    Mohamad Hakiman Mohd Yusoff; Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Muhammad, Z.A.; Nur Azna Mahmud; Norfazlina Zainal Abidin

    2012-01-01

    Waste Technology Development Centre (WasTeC) has been awarded with quality management system ISO 9001:2000 in June 2004 or now known as ISO 9001:2008. The scope of the unit's ISO certification is radioactive waste management and storage of radioactive material. To meet the objectives and requirements ISO 9001:2008, WasTeC has started a project known as Automated Storage and Retrieval System (ASRS). ASRS is a computing controlled method for automatically depositing and retrieving waste from defined locations. The system is used to replace the existing process of storage and retrieval of radioactive waste at storage facility at block 33.The main objective of this project is to reduced the radiation exposure to the worker and potential forklift accident occur during storage and retrieval of the radioactive waste. By using the ASRS system, WasTeC/ Nuclear Malaysia can provide a safe storage of radioactive waste and the use of this system can eliminate the repeat handling and can improve productivity. (author)

  6. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2 radioactive waste and laundry shipments

    International Nuclear Information System (INIS)

    Doerge, D.H.; Haffner, D.R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  7. Radioactive waste processing facility and underground processing method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Hasegawa, Yasuyuki

    1998-01-01

    There are disposed a communication pit laterally extended in an underground base rock, an access pit extended from the ground surface to the communication pit, discarding pits laterally extended at a plurality of longitudinal positions of the communication pit and layered buffer materials for keeping a radioactive waste-sealing container at substantially the center of the discarding pit. The layered buffer material comprises fan-shaped buffer blocks divided so that the axial end faces of inner and outer layers are displaced with each other in the axial direction of the discarding pit and so that the circumferential end faces of the inner and the outer layers are circumferentially displaced with each other. Even if the base lock should move, the layered buffer material reduces the propagation of the movement to the radioactive waste-sealing vessel thereby enabling to enhance supporting strength. (N.H.)

  8. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.

    Science.gov (United States)

    Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon

    2011-12-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  9. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste

    International Nuclear Information System (INIS)

    Wilson, James C; Towler, George; Thorne, Michael C; Norris, Simon

    2011-01-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source–pathway–receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  10. Supercompaction of radioactive waste at NPP Krsko

    International Nuclear Information System (INIS)

    Fink, K.; Sirola, P.

    1996-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as a political tool, brought the final radioactive repository siting effort to a stop. Although small amounts of radioactive waste are produced in research institutes, hospitals and industry, major source of radioactive waste in Slovenia is the Nuclear Power Plant Krsko. When Krsko NPP was originally built, plans were made to construct a permanent radioactive waste disposal facility. This facility was supposed to be available to receive waste from the plant long before the on site storage facility was full. However, the permanent disposal facility is not yet available, and it became necessary to retain the wastes produced at the plant in the on-site storage facility for an extended period of time. Temporary radioactive storage capacity at the plant site has limited capacity and having no other options available NPP Krsko is undertaking major efforts to reduce waste volume generated to allow normal operation. This article describes the Radioactive Waste Compaction Campaign performed from November, 1994 through November, 1995 at Krsko NPP, to enhance the efficiency and safety of storage of radioactive waste. The campaign involved the retrieval, segmented gamma-spectrum measurement, dose rate measurement, compaction, re-packaging, and systematic storage of radioactive wastes which had been stored in the NPP radioactive waste storage building since plant commissioning. (author)

  11. Performance assessment handbook for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

    1992-02-01

    Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes

  12. Evaluation and analysis of the residual radioactivity for the 15UD Pelletron accelerator facility

    International Nuclear Information System (INIS)

    Sonkawade, R. G.

    2007-01-01

    For the assessment of radiological impact of the accelerators, it will be better to have the documented information on activation of metal parts of the accelerator components. It is very much essential to get reliable data on these subjects. During acceleration of light ion, the residual radioactivity in the accelerator facility was found near the Analyzing Magnet, single slit, Beam Profile Monitors (BPM), Faraday Cups (FC), bellows, beginning of switching magnet bellows, at the target and the ladder. Study with HPGE detector gives an insight of the formation of the short or long lived radionuclides. The different targets used in the light ion experiment were also monitored and proper decommissioning and decontamination steps were followed. This paper presents the data of residual radioactivity in the 15UD Pelletron accelerator infrastructure. (author)

  13. State of exposure control for workers engaging in radiation works and state of radioactive waste management in nuclear reactor facilities for test and research and nuclear reactor facilities at research and development stage, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This is the summary of the reports submitted in fiscal year 1995 by the installers of the nuclear reactor facilities for test and research or at research and development stage, conforming to the related law. The individual dose equivalent of the workers engaging in radiation works in fiscal year 1995 was sufficiently lower than the prescribed limit in all reactor facilities. As for the released quantities of gaseous and liquid wastes, the radioactive substances in the air and water outside the monitor zones never exceeded the prescribed concentration limit in all reactor facilities. In the reactor facilities, for which the target values of release control have been determined, the values were less than the targets in all cases. The increase of stored radioactive solid waste decreased as the dismantling works of the reactor auxiliary system of the nuclear powered ship 'Mutsu' were finished in fiscal year 1994. As the amount of stored radioactive solid waste approaches the installed capacity, the preservation capacity of the existing waste preservation building was increased. (K.I.)

  14. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  15. Declassification of radioactive water from a pool type reactor after nuclear facility dismantling

    Science.gov (United States)

    Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.

    2017-09-01

    This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.

  16. Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters like fire and flooding and its environmental impacts

    Science.gov (United States)

    Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.

    2018-06-01

    The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.

  17. A case study on the safety assessment for groundwater pathway in a near-surface radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Park, Joo Wan; Chang, Keun Moo; Kim, Chang Lak

    2002-01-01

    A safety assessment is carried out for the near-surface radioactive waste disposal in the reference engineered vault facility. The analysis is mainly divided into two parts. One deals with the release and transport of radionuclide in the vault and unsaturated zone. The other deals with the transport of radionuclide in the vault and unsaturated zone. The other deals with the transport of radionuclide in the saturated zone and radiological impacts to a human group under well drinking water scenario. The parameters for source-term, geosphere and biosphere models are mainly obtained from the site specific data. The results show that the annual effective doses are dominated by long lived, mobile radionuclides and their associated daughters. And it is found that the total effective dose for drinking water is far below the general criteria of regulatory limit for radioactive waste disposal facility

  18. Radiation dose evaluation based on exposure scenario during the operation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun; Kim Chang Lak; Choi, Heui Joo; Park, Joo Wan

    1999-01-01

    Radiation dose to worker in disposal facility was calculated by using point kernel MICROSHIELD V5.02 computer code based on exposure scenarios. An conceptual design model for disposal vaults in disposal facility was used for object of shielding calculation model. Selected radionuclides and their activities among radioactive wastes from nuclear power plants were assumed as radiation sources for the exposure calculation. Annual radiation doses to crane workers and to people working on disposal vaults were calculated according to exposure time and distance from the sources with conservative operation scenarios. The scenarios used for this study were based on assumption for representing disposal activities in a future Korean near surface disposal facility. Calculated exposure rates to worker during normal disposal work were very low comparing with annual allowable limit for radiation worker

  19. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  20. The development of the American national standard, ''control of radioactive surface contamination on materials, equipment and facilities to be released for uncontrolled use''

    International Nuclear Information System (INIS)

    Shapiro, J.

    1980-01-01

    The American National Standard, Control of Radioactive Surface Contamination on Materials, Equipment and Facilities to be Released for Uncontrolled Use, was developed under the procedures of ANSI for ANSI Main Committee N13 (Radiation Protection) by a working group of the Health Physics Society Standards Committee. This standard provides criteria for the control of materials, equipment and facilities contaminated with radioactivity proposed to be released for uncontrolled use. Permissible contamination limits are specified as well as methods assessing the levels of contamination. This paper reviews the proceedings of the Subcommittee on Radioactive Surface Contamination, the comments received by reviewers of the standard, the resolution of the committee, and the bases for reaching the final limits, recommendations, and measurement procedures. (H.K.)

  1. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  2. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  3. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  4. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pescatore, C.

    2010-01-01

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  5. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  6. Meeting performance objectives for Low-Level Radioactive Disposal Waste Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Taylor, G.E.

    1992-01-01

    A new Low-Level Radioactive Waste (LLW) disposal facility at the Savannah River Site is presently being constructed. The facility was designed to meet specific performance objectives (derived from DOE Order 5820.2A and proposed EPA Regulation 40CFR 193) in the disposal of containerized Class A and B wastes. The disposal units have been designed as below-grade concrete vaults. These vaults will be constructed using uniquely designed blast furnace slag + fly as concrete mix, surrounded by a highly permeable drainage layer, and covered with an engineered clay cap to provide the necessary environmental isolation of the waste form to meet the stated performance objectives. The concrete mix used in this facility, is the first such application in the United States. These vaults become operational in September 1992 and will become the first active facility of its kind, several years ahead of those planned in the commercial theater. This paper will discuss the selection of the performance objectives and conceptual design

  7. Economics of a small-volume low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    1993-04-01

    This report was prepared by the US Department of Energy National Low-Level Waste Management Program to present the results of a life-cycle cost analysis of a low-level radioactive waste disposal facility, including all support facilities, beginning in the preoperational phase and continuing through post-closure care. The disposal technology selected for this report is earth-covered concrete vaults, which use reinforced concrete vaults constructed above grade and an earth cover constructed at the end of the operational period for permanent closure. The report develops a design, cost estimate, and schedule for the base case and eight alternative scenarios involving changes in total disposal capacity, operating life, annual disposal rate, source of financing and long-term interest rates. The purpose of this analysis of alternatives is to determine the sensitivity of cost to changes in key analytical or technical parameters, thereby evaluating the influence of a broad range of conditions. The total estimated cost of each alternative is estimated and a unit disposal charge is developed

  8. Qualification testing facility for packages to be used for transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Vieru, Gheorghe

    2009-01-01

    The radioactive materials (RAM) packaging have to comply to all modes and transport condition, routine or in accident conditions possibly to occur during transportation operations. It is well known that the safety in the transport of RAM is dependent on packaging appropriate for the contents being shipped rather than on operational and/or administrative actions required for the package. The quality of these packages - type A, B or C has to be proved by performing qualification tests in accordance with the ROMANIAN nuclear regulation conditions provided by CNCAN Order no. 357/22.12.2005- 'Norms for a Safe Transport of Radioactive Material', the IAEA Vienna Recommendation stipulated in the Safety standard TS-R-1- Regulation for the Safe Transport of Radioactive Material, 2005 Edition, and other applicable international recommendations. The paper will describe the components of the designed testing facilities, and the qualification testing to be performed for all type A, B and C packages subjected to the testing. In addition, a part of the qualification tests for a package (designed and manufactured in INR Pitesti) used for transport and storage of spent fuel LEU elements of a TRIGA nuclear reactor will be described and analyzed. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design are also presented and commented. The paper concludes that the new Romanian Testing Facilities for RAM packages will comply with the national safe standards as well as with the IAEA applicable recommendation provided by the TS-R-1 safety standard. (author)

  9. Performance assessment review guide for DOE low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Dodge, R.L.; Hansen, W.R.; Kennedy, W.E. Jr.; Layton, D.W.; Lee, D.W.; Maheras, S.T.; Neuder, S.M.; Wilhite, E.L.; Curl, R.U.; Grahn, K.F.; Heath, B.A.; Turner, K.H.

    1991-10-01

    This report was prepared under the direction of the Performance Assessment Peer Review Panel. The intent is to help Department of Energy sites prepare performance assessments that meet the Panel's expectations in terms of detail, quality, content, and consistency. Information on the Panel review process and philosophy are provided, as well as important technical issues that will be focused on during a review. This guidance is not intended to provide a detailed review plan as in NUREG-1200, Standard Review Plan for Review of a License Application for a Low-Level Radioactive Waste Disposal Facility (January 1988). The focus and intent of the Panel's reviews differ significantly from a regulatory review. The review of a performance assessment by the Panel uses the collective professional judgment of the members to ascertain that the approach taken the methodology used, the assumptions made, etc., are technically sound and adequately justified. The results of the Panel's review will be used by Department of Energy Headquarters in determining compliance with the requirements of DOE Order 5820.2A, ''Radioactive Waste Management.''

  10. Development of a facility for fabricating nuclear waste canisters from radioactively contaminated steel

    International Nuclear Information System (INIS)

    Logan, J.A.; Larsen, M.M.

    1986-01-01

    This paper describes design of a facility and processes capable of using radioactively contaminated waste steel as the principal raw material for fabricating stainless steel canisters to be used for disposal of nuclear high-level waste. By such action, expenditure (i.e., permanent loss to society) of thousands of tons of uncontaminated chromium and nickel to fabricate such canisters can be avoided. Moreover, the cost and risks involved in disposing of large accumulations of radioactively contaminated steel as low-level radioactive waste (LLRW), that would otherwise be necessary, can also be avoided. The canister fabrication processes (involving centrifugal casting) described herein have been tested and proven for this application. The performance characteristics of stainless steel canisters so fabricated have been tested and agreed to by the organizations that have been involved in this development work (Battelle Memorial Institute, DuPont, EGandG and the Savannah River Laboratory) as equivalent to the performance characteristics of canisters fabricated of uncontaminated wrought stainless steel. It is estimated that the production cost for fabricating canisters by the methods described will not differ greatly from the production cost using uncontaminated wrought steel, and the other costs avoided by not having to dispose of the contaminated steel as LLRW could cause this method to produce the lowest ultimate overall costs

  11. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  12. New Low-Level Radioactive Waste Storage/Disposal Facilities at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities, and alternative operations are described for a new low-level solid radioactive waste storage/disposal operation at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented. Appendix G contains an intensive archaeological survey of alternative waste disposal areas in the Savannah River Plant area. 117 refs., 99 figs., 128 tabs

  13. The study on safety facility criteria for radioactive waste repository

    International Nuclear Information System (INIS)

    Lee, S. H.; Choi, M. H.; Han, S. H. and others

    1992-12-01

    The radioactive waste repository are necessary to install the engineered safety systems to secure the safety for operation of the repository in the event of fire and earthquake. Since the development of safety facility criteria requires a thorough understanding about the characteristics of the engineered safety systems, we should investigate by means of literature survey and visit SKB. In particular, definition, composition of the systems, functional requirement of the systems, engineered safety systems of foreign countries, system design, operation and maintenance requirement should be investigated : fire protection system, ventilation system, drainage system, I and C system, electric system, radiation monitoring system. This proposed criteria consist of purpose, scope of application, ventilation system, fire protection system, drainage system, electric system and this proposed criteria can be applied as a basic reference for the final criteria

  14. Comparative approaches to siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection

  15. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications

  16. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  17. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  18. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  19. Users manual for the pursuit of the radiological status of the nuclear and radioactive facilities of the ININ

    International Nuclear Information System (INIS)

    Sotelo B, D.; Villarreal, J.E.

    1992-05-01

    The purpose of this program consists on a database that gives pursuit at the radiation levels in laboratories and facilities users of radioactive material or generators of ionizing radiations, introducing in it mensurations that were made in different departments, for its later analysis. (Author)

  20. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  1. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  2. Procedures and techniques for closure of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    2001-12-01

    The overall objective of this report is to provide Member States with guidance on planning and implementation of closure of near surface disposal facilities for low and intermediate level radioactive waste. The specific objectives are to review closure concepts, requirements, and components of closure systems; to discuss issues and approaches to closure, including regulatory, economic, and technical aspects; and to present major examples of closure techniques used and/or considered by Member States. Some examples of closure experience from Member States are presented in the Appendix and were indexed separately

  3. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  4. Decommissioning of a Radioactive Facility Used for Biomolecule Labeling and Biological Effects; Desclasificación de una Instalación Radiactiva Dedicada al Marcado de Biomoléculas y Efectos Biológicos

    Energy Technology Data Exchange (ETDEWEB)

    Yagüe, L.; Navarro, N.; Álvarez, A.; Quiñones, J.

    2015-07-01

    This paper presents the measurement methodology designed for the final status survey of an old radioactive facility, used as radiolabeling lab. Its declassification as radioactive facility required the radiological characterization of all walls, structures and materials at the facility in order to reuse its outbuilding for conventional use. To demonstrate compliance with the declassification criteria, the design of the final status survey was performed applying MARSSIM(1) (Multi-Agency Radiation Survey and Site Investigation Manual) methodology and using different measurement techniques depending on the radioactive isotopes in the inventory of the facility, their half-lives and emission characteristics.

  5. Occupational radiation exposures at radioactive and nuclear facilities in Argentina

    International Nuclear Information System (INIS)

    Curti, A.; Pardo, G.; Melis, H.

    1998-01-01

    This paper presents an evaluation of occupational radiation exposures at relevant radioactive and nuclear facilities in Argentina, for 1996. The facilities send this information to the Nuclear Regulatory Authority due to the requirements included in their operation licenses and authorizations. Dose distributions of 1891 workers and their parameters are presented. The analysis is performed for each type of the following practices: nuclear power plants, research reactors, radioisotope production, fuel fabrication, industrial irradiation and research in the nuclear fuel cycle. Trends of occupational exposure in different practices are analysed and the highest doses have been identified. Following the 1990 recommendations of the International Commission on Radiological Protection (ICRP 60), the Nuclear Regulatory Authority of Argentina updated the dose limits for workers in 1995. The individual dose limits are 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), not exceeding 50 mSv in a single year. To evaluate the occupational radiation exposure trend, without taking into account practices, an analysis of the distribution of individual doses accumulated in the period 1995/96, for all workers, is performed. Individual doses received during 1996 were all below 50 mSv and doses accumulated in the period 1995/96 were below 100 mSv. (author). 7 refs., 16 figs., 5 tabs

  6. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  7. Commissioning of the very low level radioactive waste disposal facility; Mise en service du Centre de stockage de dechets de tres faible activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    This press kit presents the solution retained by the French national agency of radioactive wastes (ANDRA) for the management of very low level radioactive wastes. These wastes mainly come from the dismantling of decommissioned nuclear facilities and also from other industries (chemical, metal and other industries). The storage concept is a sub-surface disposal facility (Morvilliers center, Aube) with a clay barrier and a synthetic membrane system. The regulatory framework, and the details of the licensing, of the commissioning and of the environment monitoring are recalled. The detailed planing of the project and some exploitation data are given. (J.S.)

  8. Regulations of safe transport of radioactive material

    International Nuclear Information System (INIS)

    Patel, R.J.; Sumathi, E.

    2017-01-01

    BARC is a multi-disciplinary nuclear research organisation with facilities located at various parts of the country. The nuclear and radiological facilities in BARC include fuel fabrication facilities, nuclear research reactors, radiological laboratories, nuclear recycle facilities, waste management facilities and other associated facilities. RAdioactive Material (RAM) such as fresh nuclear fuel, irradiated fuel, radioactive sources, vitrified high level wastes, special nuclear material etc., are transported between these facilities either within the controlled premises or in public domain. In BARC the regulatory approval for the packages used for transport of RAM is issued by BARC Safety Council (BSC). Competent Authority for issuing the design approval for the BARC packages in public domain is Director, BARC. In this aspect BSC is assisted by Safety Review Committee-Transport of Radioactive Material (SRC-TRM) constituted by BSC entrusted with the mandate to ensure the packages are designed, manufactured and transported in accordance with the current regulations. This article summarizes the regulatory requirements for transport of RAM and experience in BARC facilities

  9. Evaluation on construction quality of pit filler material of cavern type radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Takechi, Shin-ichi; Yokozeki, Kosuke; Shimbo, Hiroshi; Terada, Kenji; Akiyama, Yoshihiro; Yada, Tsutomu; Tsuji, Yukikazu

    2014-01-01

    The pit filler material of the underground cavern-type radioactive waste disposal facility, which is poured directly around the radioactive waste packages where high temperature environment is assumed by their decay heat, is concerned to be adversely affected on the filling behavior and its hardened properties. There also are specific issues that required quality of construction must be achieved by unmanned construction with remote operation, because the pit filler construction shall be done under radiation environment. In this paper, the mix proportion of filler material is deliberated with filling experiments simulating high temperature environment, and also the effect of temperature on hardened properties are confirmed with high temperature curing test. Subsequently, the feasibility of unmanned construction method of filler material by pumping, and by movable bucket, are comparatively discussed through a real size demonstration. (author)

  10. Survey of radioactive effluent releases from byproduct material facilities. Technical report

    International Nuclear Information System (INIS)

    Cook, J.R.

    1981-08-01

    A survey of over 3,000 NRC byproduct material licensees was conducted in late 1980 to collect data on annual effluent releases of radioactivity. The survey was conducted through a questionnaire, which was sent to NRC licensees who handle radioactive material in unsealed form, i.e., research, medical, and industrial institutions. Principal findings from the survey analysis are as follows: More than 98% of the reported annual releases to air (484 to 490) yield calculated average concentrations at the boundary of the unrestricted area that were at 1% or less than the maximum permissible concentration (MPC) of Appendix B, Table II, Column 1 of 10 CFR 20. The largest reported annual release was estimated to yield a concentration that was approximately 12% of MPC, the 5 other releases ranged from 1 to 10% of MPC. All reported annual releases of liquid waste were within the limits specified by NRC with most facilities reporting annual releases of only a fraction of a curie. Based on the data provided by licensees and analyzed in this report, it appears that in general the environmental impacts from research, medical and industrial institutions and organizations licensed by the NRC to possess and use byproduct materials are minimal and correspond to a small fraction of that from natural background

  11. Commercial low-level radioactive waste transportation liability and radiological risk

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  12. Commercial low-level radioactive waste transportation liability and radiological risk

    International Nuclear Information System (INIS)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers

  13. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2010-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Administration (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused Spent High Activity Radioactive Sources (SHARS) in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell allows source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at national radioactive waste storage facilities. (authors)

  14. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Barboza, Alex

    2009-01-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  15. The social and special effects of siting a low-level radioactive waste disposal facility in rural Texas

    International Nuclear Information System (INIS)

    Murdock, S.H.; Hamm, R.R.

    1987-01-01

    As part of its assessment of the impacts of a low-level radioactive waste disposal facility in Hudspeth County, the Texas Low-Level Radioactive Waste Disposal Authority (TLLRWDA) sponsored an independent study of the social and special impacts of the facility. These impacts include ''standard'' social impacts (such as impacts on social structures and attitudes, values and perceptions and ''special'' social impacts (such as fear, anxiety, concerns related to equity, the health of future generations, etc.). This paper reports the results of this study. Personal interviews with 71 community leaders and 96 randomly selected county residents were conducted during the summer of 1986. The results suggest that the major concern relates to the contamination of ground water, but that suspicion about the equity of the siting process and about the safe management of wastes is extensive, even among the most knowledgeable respondents. Mitigation concerns center on health and safety issues for residents and on potential forms of mitigation for governmental jurisdictions for leaders. Responses were similar for leaders and residents and for persons in different parts of the county

  16. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  17. The study of the container types used for transport and final disposal of the radioactive wastes resulting from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Postelnicu, C.

    1998-01-01

    The purpose of the present paper is to select from a variety of package forms and capacities some containers which will be used for transport and disposal of the radioactive wastes resulting from decommissioning of nuclear facilities into the National Repository for Radioactive Waste - Baita, Bihor county. Taken into account the possibilities of railway and / or road transport and waste disposal in our country, detailed container classification was given in order to use them for radioactive waste transport and final disposal from decommissioning of IFIN-HH Research Reactor. (author)

  18. Radioactive air emissions 1992 summary

    International Nuclear Information System (INIS)

    Wahl, L.

    1993-10-01

    This report summarizes, by radionuclide or product and by emitting facility, the Laboratory's 1992 radioactive air emissions. In 1992, the total activity of radionuclides emitted into the air from Laboratory stacks was approximately 73,500 Ci. This was an increase over the activity of the total 1991 radioactive air emissions, which was approximately 62,400 Ci. Total 1992 Laboratory emissions of each radionuclide or product are summarized by tables and graphs in the first section of this report. Compared to 1991 radioactive air emissions, total tritium activity was decreased, total plutonium activity was decreased, total uranium activity was decreased, total mixed fission product activity was increased, total 41 Ar activity was decreased, total gaseous/mixed activation product (except 41 Ar) activity was increased, total particulate/vapor activation product activity was increased, and total 32 P activity was decreased. Radioactive emissions from specific facilities are detailed in this report. Each section provides 1992 data on a single radionuclide or product and is further divided by emitting facility. For each facility from which a particular radionuclide or product was emitted, a bar chart displays the air emissions of each radionuclide or product from each facility over the 12 reporting periods of 1992, a line chart shows the trend in total emissions of that radionuclide or product from that facility for the past three years, the greatest activity during the 1990--1992 period is discussed, and unexpected or unusual results are noted

  19. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    International Nuclear Information System (INIS)

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  20. Site selection process for radioactive waste repository (radioactive facility) in Cuba as a fundamental safety criteria; Proceso de seleccion de emplazamiento como criterio fundamental de la seguridad para el repositorio de desechos radiactivos (instalacion radiactiva) en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Jose Luis Peralta; Castillo, Reinaldo Gil; Chales Suarez, Gustavo; Rodriguez Reyes, Aymee [Centro de Tecnologia Nuclear, La Habana (Cuba)

    1999-11-01

    The paper show the process of search carried out for the selection of the safest site in the National territory, in order to sitting the Facility (Repository) that will disposal the low and intermediate level radioactive wastes, as well as the possible Storage Facility for nuclear spent Fuel (radioactive wastes of high activity). We summarize the obtained Methodology and the Criterions of exclusion adopted for the development of the Process of site selection, as well as the current condition of the researches that will permit the obtaining of the nominative objectives. (author) 18 refs., 1 fig., 1 tab.

  1. Radiological safety assessment of transporting radioactive waste to the Gyeongju disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Baik, Min Hoon; Kang, Mun Ja; Ahn, Hong Joo; Hwang, Doo Seong; Hong, Dae Seok; Jeong, Yong Hwan; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  2. Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

    Directory of Open Access Journals (Sweden)

    Jongtae Jeong

    2016-12-01

    Full Text Available A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI, Daejeon, Korea. We considered two kinds of wastes: (1 operation wastes generated from the routine operation of facilities; and (2 decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incident-free (normal transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

  3. Indicadores cualitativos de la sociedad de la información

    Directory of Open Access Journals (Sweden)

    Javier Echeverría

    2003-04-01

    Full Text Available La sociedad de la información (SI requiere un espacio para desarrollarse: el espacio electrónico, generado por las tecnologías de la información y de las comunicaciones (TIC. Si concebimos ese espacio sólo como un mercado informacional (acceso y contenidos, los indicadores que miden el desarrollo de la SI serán cuantitativos y tendrán un claro sesgo mercantilista. En cambio, si promovemos una sociedad civil de la información, tendremos que usar indicadores cualitativos que midan el desarrollo de la vida civil en el espacio electrónico y las capacidades de la ciudadanía por ser activa en él. Como ejemplo, se analiza críticamente el plan europeo e-Learning y los indicadores utilizados por la Unión Europea, centrados en la conexión a internet y el uso de las tecnologías multimedia. Partiendo de que la educación debe desarrollar ante todo las capacidades de acción en el espacio electrónico, se proponen indicadores cualitativos para la educación asistida por las TIC. Estos planteamientos pueden generalizarse a otras actividades sociales en el espacio electrónico.

  4. Deep-well injection of liquid radioactive waste in Russia. Present situation

    International Nuclear Information System (INIS)

    Rybalchenko, A.

    1998-01-01

    At present there are 3 facilities (polygons) for the deep-well injection of liquid radioactive waste in Russia, all of which were constructed in the mid60's. These facilities are operating successfully, and activities have started in preparation for decommissioning. Liquid radioactive waste is injected into deep porous horizons which act as 'collector-layers', isolated from the surface and from groundwaters by a relatively thick sequence of rock of low permeability. The collector-layers (also collector-horizons) contain salt waters or fresh waters of no practical application, lying beneath the main horizons containing potable waters. Construction of facilities for the deep-well injection of liquid radioactive waste was preceded by geological surveys and investigations which were able to substantiate the feasibility and safety of radioactive waste injection, and to obtain initial data for facility design. Operation of the facilities was accompanied by monitoring which confirmed that the main safety requirement was satisfied i.e. localisation of radioactive waste within specified boundaries of the geologic medium. The opinion of most specialists in the atomic power industry in Russia favours deep-well injection as a solution to the problem of liquid radioactive waste management; during the period of active operation of defence facilities (atomic power industry of the former U.S.S.R.), this disposal method prevented the impact of radioactive waste on man and the environment. The experience accumulated concerning the injection of liquid radioactive waste in Russia is of interest to scientists and engineers engaged in problems of protection and remediation of the environment in the vicinity of nuclear industry facilities; an example of the utilisation of the deep subsurface for solidified radioactive waste and the disposal of different types of nuclear materials. Information on the scientific principles and background for the development of facilities for the injection

  5. An assessment of radioactivity level in 51Cr-contaminated dry solid waste generated from a research facility for verification of clearance levels

    International Nuclear Information System (INIS)

    Nagamatsu, Tomohiro; Yamaoka, Kiyonori; Hanafusa, Tadashi; Ono, Toshiro

    2010-01-01

    Radioactive waste generated from research laboratories and other facilities is regulated by the Law Concerning Prevention from Radiation Hazards due to Radioisotopes etc. (Prevention Law). However, the Prevention Law does not provide the level of clearance or the procedures to follow for compliance monitoring. To assess radioactivity amounts for making decisions about clearance levels, the radioactivity levels in dry solid semi-combustible wastes generated from biomedical research, such as 51 Cr-release assays, were measured and evaluated. Radioactivity of semi-combustible waste was 1.42-6.32% of the initial level. In comparison, records for the past 8 years in the Shikata Laboratory, Department of Radiation Research, Okayama University Advanced Science Research Center, indicated 7% to 90% of the initial radioactivity remained in the waste and was differed widely among researchers. This study determined an accurate radioactivity level in dry solid waste, which could lead to savings in disposal costs. (author)

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  7. Indicadores UNESCO de género para medios de comunicación

    Directory of Open Access Journals (Sweden)

    Ruth Ainhoa DE FRUTOS-GARCÍA

    2013-06-01

    Full Text Available La importancia de las mediciones eficaces con el fin de realizar estudios comparados se ha convertido en una constante para los organismos internacionales en general y de UNESCO en particular. Tras los Indicadores de Desarrollo Mediático (UNESCO, 2008, donde se establecía la perspectiva de género como uno de los dos indicadores trasversales junto con la pobreza, UNESCO y la Federación Internacional de Periodistas constituyeron un panel de expertos internacionales para crear indicadores de género para medios de comunicación (UNESCO, 2012. Precisamente por ese motivo, el presente trabajo tiene como objetivo conocer el perfil de estas personas especialistas en el campo de los medios de comunicación y los estudios de género a través de una metodología cuantitativa. Los resultados del estudio permiten obtener, por primera vez, una visión de dichos indicadores a través de las voces expertas.

  8. Pegada Hídrica como Indicador de Sustentabilidade Ambiental1

    OpenAIRE

    Kettrin Farias Bem Maracajá; Vicente de Paulo Rodrigues da Silva; José Dantas Neto; niversidade Federal de Campina Grande

    2012-01-01

    O conceito de pegada hídrica tem sido recentemente introduzido como um importante indicador do consumo de água humano, na tentativa de minimizar os impactos ambientais. Esse trabalho aborda o conceito da pegada hídrica como um indicador de sustentabilidade, com vistas o uso racional dos recursos hídricos. Nos últimos anos, a escassez de alguns recursos naturais vem sendo bastante discutido em todo o mundo e quanto à água a preocupação é ainda maior em face do uso desordenado na irrig...

  9. Experimental study of radioactive aerosols emission during the thermal degradation of organic materials in nuclear facilities

    International Nuclear Information System (INIS)

    Fernandez, Yvette

    1993-01-01

    Radioactive products may be released during a fire in nuclear fuel cycles facilities. These products must be confined to avoid a contamination spread in the environment. It is therefore necessary to be able to predict the amount and the physico-chemical forms of radioactive material that may be airborne. The aim of this study is to determine experimentally the release of contamination aerosols in a typical fire scenario involving plutonium oxide in a glove box. Firstly, this phenomenon has been studied in a small scale test chamber where samples of polymethylmethacrylate (Plexiglas) contaminated by cerium oxide (used as a substitute for plutonium oxide) were submitted to thermal degradation (pyrolysis and combustion). The release of radioactive material is determined by the quantity of contaminant emitted, the kinetics of the release and the particle size distribution of aerosols. Secondly, the development of an experimental procedure allowed to realize large scale fires in more realistic conditions. The experimental tools developed in the course of this study allow to consider application to other scenarios. (author) [fr

  10. Demonstration of safety of decommissioning of facilities using radioactive material

    International Nuclear Information System (INIS)

    Batandjieva, Borislava; O'Donnell, Patricio

    2008-01-01

    Full text:The development of nuclear industry worldwide in the recent years has particular impact on the approach of operators, regulators and interested parties to the implementation of the final phases (decommissioning) of all facilities that use radioactive material (from nuclear power plants, fuel fabrication facilities, research reactors to small research or medical laboratories). Decommissioning is becoming an increasingly important activity for two main reasons - termination of the practice in a safe manner with the view to use the facility or the site for other purposes, or termination of the practice and reuse the facility or site for new built nuclear facilities. The latter is of special relevance to multi-facility sites where for example new nuclear power plants and envisaged. However, limited countries have the adequate legal and regulatory framework, and experience necessary for decommissioning. In order to respond to this challenge of the nuclear industry and assist Member States in the adequate planning, conduct and termination of decommissioning of wide range of facilities, over the last decade the IAEA has implemented and initiated several projects in this field. One of the main focuses of this assistance to operators, regulators and specialists involved in decommissioning is the evaluation and demonstration of safety of decommissioning. This importance of these Agency activities was also highlighted in the International Action Plan on Decommissioning, during the second Joint Convention meeting in 2006 and the International Conference on Lessons Learned from Decommissioning in Athens in 2006. The IAEA has been providing technical support to its Member States in this field through several mechanisms: (1) the establishment of a framework of safety standards on decommissioning and development of a supporting technical documents; (2) the establishment of an international peer review mechanism for decommissioning; (3) the technical cooperation projects

  11. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Biggs, J.

    1995-01-01

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area

  12. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  13. Indicadores de sostenibilidad para el ecoturismo en México: estado actual

    Directory of Open Access Journals (Sweden)

    Edali Camacho Ruiz

    2016-01-01

    Full Text Available El manejo de los centros ecoturísticos se basa en el conocimiento de los espacios naturales y los recursos culturales y económicos de las comunidades locales. No obstante, el uso de indicadores que permitan el diagnóstico y evaluación de la sostenibilidad está limitado. Se revisa el uso de indicadores turísticos de sostenibilidad en México y se analizan los vacíos de información, además de algunas implicaciones para el ecoturismo. Se propone que un sistema de indicadores con generalidades y especificidades promovería el manejo más sostenible del turismo y representaría un medio de diálogo entre los actores involucrados.

  14. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  15. Methodology for safety assessment of near-surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Mateeva, M.

    1998-01-01

    The objective of the work is to present the conceptual model of the methodology of safety assessment of near-surface radioactive disposal facilities. The widely used mathematical models and approaches are presented. The emphasis is given on the mathematical models and approaches, which are applicable for the conditions in our country. The different transport models for analysis and safety assessment of migration processes are presented. The parallel between the Mixing-Cell Cascade model and model of Finite-Differences is made. In the methodology the basic physical and chemical processes and events, concerning mathematical modelling of the flow and the transport of radionuclides from the Near Field to Far Field and Biosphere are analyzed. Suitable computer codes corresponding to the ideology and appropriate for implementing of the methodology are shown

  16. Reference biospheres for the long term safety assessment of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Crossland, I.G.; Torres, C.

    2002-01-01

    Regulatory guidance on the safety assessment of radioactive waste disposals usually requires the consequences of any radionuclide releases to be considered in terms of their potential impact on human health. This requires consideration of the prevailing biosphere and the habits of the potentially exposed humans within it. However, it could take many thousands of years for migrating radionuclides to reach the surface environment. In these circumstances, an assessment model that was based on the present-day biosphere could be inappropriate while future biospheres would be unpredictable. These and other considerations suggest that a standardised, or reference biosphere, approach may be useful. Theme 1 of the IAEA BIOMASS project was established to develop the concept of reference biospheres into a practical system that can be applied to the assessment of the long term safety of geological disposal facilities for radioactive waste. The technical phase of the project lasted for four years until November 2000 and brought together disparate interests from many countries including waste disposal agencies, regulators and technical experts. Building on the experience from earlier BIOMOVS projects, a methodology was constructed for the logical and defensible construction of mathematical biosphere models that can be used in the total system performance assessment of radioactive waste disposal. The methodology was then further developed through the creation of a series of BIOMASS Example Reference Biospheres ('Examples'). These are stylised biosphere models that, in addition to illustrating the methodology, are intended to be useful assessment tools in their own right. (author)

  17. Andra - Everything you ever wanted to know about radioactive waste management

    International Nuclear Information System (INIS)

    2014-08-01

    Andra is a publicly owned industrial and commercial body, set up by the French act of 30 December 1991. Its role was expanded by the 2006 Planning Act on the long-term management of radioactive materials and waste. Andra is independent of the producers of radioactive waste, and is under the supervision of the ministries responsible for energy, research and the environment. Andra is responsible for identifying, implementing and guaranteeing safe management solutions for all French radioactive waste, in order to protect present and future generations from the risks inherent in such substances. Andra's role involves a number of activities: running the two existing above-ground disposal facilities in the Aube, the first one for low- and intermediate- level, short-lived waste (LILW-SL) and the other one for very-low-level waste (VLLW), the Cires facility; monitoring the Manche disposal facility, the CSM, France's first above-ground disposal facility for low- and intermediate-level waste, which is now closed; studying and designing disposal facilities for waste as yet without a special facility, that is: Low-level, long-lived waste (LLW-LL), High-level and intermediate-level long-lived waste (HLW, ILW-LL) - the Cigeo project; taking in radioactive waste from hospitals, research laboratories, universities and radioactive objects owned by private individuals (old luminous clocks and watches, health care equipment containing radium, natural laboratory salts, certain minerals, etc.); at the request of the owner or the authorities, cleaning up sites polluted by radioactivity; surveying and listing French radioactive waste and issuing the National Inventory of Radioactive Materials and Waste every three years; informing all members of the public by means of documents, exhibitions, visits to its facilities, etc.; preserving the memory of its centers; promoting and disseminating its know-how outside France. Contents: 1 - Andra, its role, its activities, its funding; 2

  18. Guide to sampling airborne radioactive materials in nuclear facilities

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.

    1995-01-01

    The ANSI N13.1-1969 Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities is currently being revised. The revision is being drafted by a working group under the auspices of the Health Physics Society Standards Committee. The main differences between the original standard and the proposed revision are a narrowed scope, a greater emphasis on the design process, and the verification of meeting performance criteria. Compliance with the revised standard will present new challenges, especially in the area of performance validation. The progress made in the revision and key portions of the standard are discussed. The DOE has recently petitioned EPA for alternate approaches to complying with air-sampling regulations. Dealing with compliance issues until the revised standard is adopted will be a challenge for both designers and regulators. The objective of this paper is to briefly describe the content of the proposed revision in order to point out significant differences from the old standard and to describe the new challenges that the proposed revision will present

  19. Guide to sampling airborne radioactive materials in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-02-01

    The ANSI N13.1-1969 Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities is currently being revised. The revision is being drafted by a working group under the auspices of the Health Physics Society Standards Committee. The main differences between the original standard and the proposed revision are a narrowed scope, a greater emphasis on the design process, and the verification of meeting performance criteria. Compliance with the revised standard will present new challenges, especially in the area of performance validation. The progress made in the revision and key portions of the standard are discussed. The DOE has recently petitioned EPA for alternate approaches to complying with air-sampling regulations. Dealing with compliance issues until the revised standard is adopted will be a challenge for both designers and regulators. The objective of this paper is to briefly describe the content of the proposed revision in order to point out significant differences from the old standard and to describe the new challenges that the proposed revision will present.

  20. Indicadores nutricionales de los establecimientos de salud

    OpenAIRE

    Instituto Nacional de Salud

    2012-01-01

    Presenta datos estadísticos donde los indicadores de salud son: desnutrición, sobrepeso, obesidad, niños menores de tres años que acceden a los establecimientos de salud, sobrepeso en gestantes, anemia.

  1. Development of a regulatory guide about the content and criteria for the elaboration of the radioactive waste management plans in Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Lopez de la Higuera, Julia; Alvarez Alonso, M. Angeles; Simon Cirujano, Maria I.; Suarez Llorente, Beatriz

    2008-01-01

    Full text:The Spanish legislation requires the licensees to develop, among other documents, a Radioactive Waste Management Plan (RWMP) as an official report in the application for the operation and for the dismantling and decommissioning of a nuclear facility. These Plans should describe the types of waste, inventory, characterization, treatment, conditioning and storage of wastes. The Spanish regulatory body, Consejo de Seguridad Nuclear (CSN), promoted a working group to analyze the content and scope of the RWMP, bringing together the electric power industry association (UNESA), the waste management organisation (ENRESA) and the nuclear fuel industry (ENUSA). The objective of the RWMP is to establish the criteria and instructions to ensure a safe and optimized management, taking into account the normative and technological developments. The Plan is based on support Studies that contain the basic information for the analysis of the waste management options and deals with: (1) Actual generation and management options in the facility; (2) Classification of the facility in waste generation zones; (3) Experience analysis and identification of potential management improvements; (4) Selection, justification and introduction of new management modes. The RWMP will develop the following issues: a) Waste generation and management (for each waste type, information in terms of the origin, physico-chemical and radiological properties, volume of production and implemented management routes); b) Classification of the facility in waste zones. The facility will differentiate those areas where contaminated or activated wastes can be produced (Radioactive Waste Zone - RWZ) or not (Conventional Waste Zone - CWZ). To avoid mixing and allow this separation, two lines of defense will be established. The first one is the classification and setting marks in the Zones and the second one the controls on the non-radioactive wastes at the exit of the facility: a) Selection of foreseen lines

  2. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy's (DOE's) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act

  3. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    Energy Technology Data Exchange (ETDEWEB)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  4. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    International Nuclear Information System (INIS)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected

  5. Control of radioactive waste in dismantling of a nuclear facility; Control de residuos radiactivos en desmantelamiento de una instalacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Campayo, E.

    2014-07-01

    In the dismantling of a nuclear facility are generated radioactive waste that must be suitably processed. The overall process, in a simplified manner, contemplates the characterization in origin, their segregation on the basis of physical, mechanical, and radiological characteristics and their packaging. (Author)

  6. Licensing of nuclear and radioactive installations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    1987-01-01

    In Peru, the Regulation for Ionizing Radiation Sources is applied, which establishes the norms and procedures to follow in the nuclear and radioactive installations of the country in order to assure their correct operation as concerns to the nuclear safety and radiological protection, allowing the emission of the respective licenses. As for the nuclear facilities, this authorization includes the Previous License, the Construction License and the Operation License (provisional and definitive) and for radioactive facilities and equipment generating ionizing radiations: the Construction License and the Operation License. The personnel also require a license that can be an operator license (as for nuclear reactors) or a supervisor license (for nuclear and radioactive facilities). In spite of the above mentioned regulation and its long enforcement period, less than 10% of radioactive facilities in this country are licensed, due to different problems which will be solved in the medium term. (Author)

  7. Results of questionaire survey for the measurement of radioactivity in waste water

    International Nuclear Information System (INIS)

    1992-01-01

    A questionaire for radioactivity in waste water was sent to 388 facilities, including 158 medical facilities, and all (100%) answered. Information requested included: (1) kinds and annual usage of unsealed RI, (2) measuring method of radioactivity in waste water, (3) kinds of measuring instruments and the detection limits, (4) prior treatment of measurement materials, (5) level of radioactive waste exhausted during 3 months, (6) personnel and time per month required for radioactivity measurement, (7) problems and comments in waste water management, and (8) kinds of facilities. A total of 36 unsealed RI were used. The most commonly used RI was I-125 (n=240), followed by H-3 (n=189) and P-32 (n=179). Annual level of RI was 4 GBq or less in 90% of the facilities. The most common method for measuring radioactivity was sampling method (n=241). The most common instrument for measuring radioactivity was a gamma counter for I-125 (45% of the facilities), and a liquid scintillation counter for P-32 (80%) and for C-14 and H-3 (90%). The detection limits for I-125 exceeded the radioactivity limits in 24% of the facilities. The amount of sampler was 5 cc or less in 80% of the facilities. Prio treatment was not carried out in 62.7%. Prior treatment methods reported were enrichment, evaporation, pH adjustment, and sedimentation. Half of the facilities exhausted 10 cm 3 or less of waste water during 3 months. The number of persons engaging in radioactivity measurement per month was reported to be one in 282 facilities (87%). (N.K.)

  8. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    International Nuclear Information System (INIS)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-01-01

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme

  9. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  10. Environmental radioactive intercomparison program and radioactive standards program

    Energy Technology Data Exchange (ETDEWEB)

    Dilbeck, G. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    The Environmental Radioactivity Intercomparison Program described herein provides quality assurance support for laboratories involved in analyzing public drinking water under the Safe Drinking Water Act (SDWA) Regulations, and to the environmental radiation monitoring activities of various agencies. More than 300 federal and state nuclear facilities and private laboratories participate in some phase of the program. This presentation describes the Intercomparison Program studies and matrices involved, summarizes the precision and accuracy requirements of various radioactive analytes, and describes the traceability determinations involved with radioactive calibration standards distributed to the participants. A summary of program participants, sample and report distributions, and additional responsibilities of this program are discussed.

  11. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    International Nuclear Information System (INIS)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. ''Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3

  12. 1992 annual report on low-level radioactive waste management progress

    International Nuclear Information System (INIS)

    1993-11-01

    This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act

  13. Social assessment of siting a low-level radioactive waste storage facility in Michigan

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Traugott, M.J.; Stone, J.V.; McIntyre, P.D.; Davidson, C.C.; Jensen, F.V.; Coover, G.E.

    1990-01-01

    This report presents findings from a social assessment of siting a low-level radioactive waste storage facility in Michigan. Social assessments derive from direct interaction between researchers and study participants. The report is organized into five chapters. Chapter One, Summary of Findings, focuses on key findings from the statewide telephone surveys and the in-depth ethnographic study conducted by the SNR/ISR study team. These and additional findings are discussed in greater detail in the three subsequent chapters. Chapter Two, Statewide Telephone Survey Findings, presents the knowledge, attitudes and beliefs statewide residents have regarding the LLRW project. Chapter Three, Statewide Demographic Findings, presents a detailed examination of differences among various demographic groups and includes regional analysis. Chapter Four, Hillsdale-area Ethnographic Study Findings, discusses perceived impacts of the proposed LLRW storage facility on local residents who mistakenly came to believe that their area had been specially selected as the location for the facility. Specifically, the chapter presents the development, spread, shape and persistence of what is termed a risk perception shadow in the greater Hillsdale area. Possible causes of the shadow also are discussed, and comparisons are made between statewide and Hillsdale-area survey populations. Chapter Five, Research Methods, presents a discussion of the social assessment research methods used to derive these findings

  14. Conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities

    International Nuclear Information System (INIS)

    Iarmosh, I.; Olkhovyk, Yu.

    2016-01-01

    For development of the management strategy for radioactive waste to be placed in near - surface disposal facilities (NSDF), it is necessary to justify long - term safety of such facilities. Use of mathematical modelling methods for long - term forecasts of radwaste radiation impact and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of radwaste to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chornobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of "9"0 Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed

  15. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  16. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    Currently, many Member States are safely operating near surface disposal facilities and some are in the initial or advanced stages of planning geological repositories. As for other nuclear facilities and their operational phase, all activities associated with the disposal of radioactive waste need to be carefully planned and systematic actions undertaken in order to maintain adequate confidence that disposal systems will meet performance as well as prescribed safety requirements and objectives. The effective development and application of a management system (integrating requirements for safety, protection of health and the environment, security, quality and economics into one coherent system) which addresses every stage of repository development is essential. It provides assurance that the objectives for repository performance and safety, as well as environmental and quality criteria, will be met. For near surface repositories, a management system also provides the opportunity to re-evaluate existing disposal systems with respect to new safety, environmental or societal requirements which could arise during the operational period of a facility. The topic of waste management and disposal continues to generate public interest and scrutiny. Implementation of a formal management system provides documentation, transparency and accountability for the various activities and processes associated with radioactive waste disposal. This information can contribute to building public confidence and acceptance of disposal facilities. The objective of this report is to provide Member States with practical guidance and relevant information on management system principles and expectations for management systems that can serve as a basis for developing and implementing a management system for three important stages; the design, construction/upgrading and operation of disposal facilities. To facilitate the understanding of management system implementation at the different stages of a

  17. Fleet servicing facilities for servicing, maintaining, and testing rail and truck radioactive waste transport systems: functional requirements, technical design concepts and options cost estimates and comparisons

    International Nuclear Information System (INIS)

    Watson, C.D.; Hudson, B.J.; Keith, D.A.; Preston, M.K. Jr.; McCreery, P.N.; Knox, W.; Easterling, E.M.; Lamprey, A.S.; Wiedemann, G.

    1980-05-01

    This is a resource document which examines feasibility design concepts and feasibility studies of a Fleet Servicing Facility (FSF). Such a facility is intended to be used for routine servicing, preventive maintenance, and for performing requalification license compliance tests and inspections, minor repairs, and decontamination of both the transportation casks and their associated rail cars or tractor-trailers. None of the United States' waste handling plants presently receiving radioactive wastes have an on-site FSF, nor is there an existing third party facility providing these services. This situation has caused the General Accounting Office to express concern regarding the quality of waste transport system maintenance once the system is placed into service. Thus, a need is indicated for FSF's, or their equivalent, at various radioactive materials receiving sites. In this report, three forms of FSF's solely for spent fuel transport systems were examined: independent, integrated, and colocated. The independent concept was already the subject of a detailed report and is extensively referenced in this document so that capital cost comparisons of the three concepts could be made. These facilities probably could service high-level, intermediate-level, low-level, or other waste transportation systems with minor modification, but this study did not include any system other than spent fuel. Both the Integrated and Colocated concepts were assumed to be associated with some radioactive materials handling facility such as an AFR repository

  18. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  19. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  20. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  1. Indicadores de gênero da assistência de enfermagem às mulheres Indicadores de género de la asistencia a las mujeres Gender indicators of nursing care for women

    Directory of Open Access Journals (Sweden)

    Enilda Rosendo do Nascimento

    2004-10-01

    Full Text Available O texto apresenta um estudo realizado em uma unidade assistencial de saúde de Salvador/ Bahia, com o propósito de construir indicadores de qualidade para a assistência de enfermagem a partir de uma perspectiva de gênero. A construção dos indicadores deu-se através de uma investigação que analisou as concepções de mulheres sobre a assistência pré-natal de enfermagem a elas prestadas, a partir da identificação de ações promotoras de autonomia, dignificação e participação. A coleta de dados realizou-se através de entrevista semi-estruturada a 14 mulheres usuárias da assistência pré-natal de enfermagem que aceitaram participar do estudo e tinham sido atendidas por uma enfermeira em gravidez (es anterior (es ou durante a gravidez atual. Foram construídos dois tipos de indicadores de gênero da assistência de enfermagem: indicadores práticos e indicadores estratégicos de gênero.El texto presenta un estudio realizado en una unidad asistencial de salud de Salvador/Bahia, con el propósito de construir indicadores de calidad para la asistencia de enfermería a partir de una perspectiva del género. La construcción de los indicadores se llevó a cabo a través de una investigación que analizó las concepciones de mujeres a cerca de la asistencia prenatal de enfermería a ellas dada, a contar de la identificación de acciones promotoras de autonomía, dignificación y participación. La coleta de dados se realizó a partir de la entrevista semiestructurada a 14 mujeres usuarias de la asistencia prenatal de enfermería que aceptaron participar del estudio y a quienes atendió una enfermera en embarazo(s anterior(es o durante el embarazo actual. Se adoptaron dos tipos de indicadores de género de la asistencia de enfermería: indicadores prácticos e indicadores estratégicos de género.This text presents a study carried out at a healthcare unit in Salvador/Bahia, with the purpose of building quality indicators for nursing

  2. Safety assessment on the human intrusion scenarios of near surface disposal facility for low and very low level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Wook; Park, Jin Baek [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sang Ho [Chungnam National University, Daejeon (Korea, Republic of)

    2016-03-15

    The second-stage near surface disposal facility for low and very low level radioactive waste's permanent disposal is to be built. During the institutional control period, the inadvertent intrusion of the general public is limited. But after the institutional control period, the access to the general public is not restricted. Therefore human who has purpose of residence and resource exploration can intrude the disposal facility. In this case, radioactive effects to the intruder should be limited within regulatory dose limits. This study conducted the safety assessment of human intrusion on the second-stage surface disposal facility through drilling and post drilling scenario. Results of drilling and post drilling scenario were satisfied with regulatory dose limits. The result showed that post-drilling scenario was more significant than drilling scenario. According to the human intrusion time and behavior after the closure of the facility, dominant radionuclide contributing to the intruder was different. Sensitivity analyses on the parameters about the human behavior were also satisfied with regulatory dose limits. Especially, manual redistribution factor was the most sensitive parameter on exposure dose. A loading plan of spent filter waste and dry active waste was more effective than a loading plan of spent filter waste and other wastes for the radiological point of view. These results can be expected to provide both robustness and defense in depth for the development of safety case further.

  3. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa, E-mail: jcft@cdtn.b, E-mail: masl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SEPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Servico de Protecao Radiologica; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da, E-mail: ltcn@cdtn.b, E-mail: silvajb@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SECPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Secao de Producao de Radiofarmacos

    2011-07-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[{sup 18}F]fluoro-2- deoxy-D-glucose ({sup 18}FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of {sup 18}FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  4. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da

    2011-01-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[ 18 F]fluoro-2- deoxy-D-glucose ( 18 FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of 18 FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  5. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    International Nuclear Information System (INIS)

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-01-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  6. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    Energy Technology Data Exchange (ETDEWEB)

    Freihammer, Till; Chaput, Barb [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada); Vandergaast, Gary [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Arey, Jimi [Public Works and Government Services Canada, Ontario (Canada)

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow

  7. Management of radioactive wastes of iodine therapy

    International Nuclear Information System (INIS)

    Silva, Andre R.M.; Santos, Helena C.

    2015-01-01

    The main objective of waste radioactive management is to ensure the protection of man and the preservation of the environment. The regulation that established the basis for the good radioactive waste management was elaborated by the Comissao Nacional de Energia Nuclear (CNEN), in 1985. It is the CNEN-NE-6:05: 'Management radioactive waste in radioactive facilities', which although it an important standard related to radioactive waste management and help largely in the design of a management system in radioactive facilities of radioisotope users, covers the topics in a general way and does not consider individuals aspects of the different plants, as is the case of nuclear medicine units. The main objective of this study is to show the segregation and safe packaging, avoiding unnecessary exposure of professionals involved and public individuals in general

  8. Application of quality assurance to radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs.

  9. Application of quality assurance to radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs

  10. Proposal of conditioning of the not-in-use sealed sources which are stored in the Radioactive Wastes Treatment Facility

    International Nuclear Information System (INIS)

    Jova, L.; Garcia, N.; Benitez, J.C.; Salgado, M.; Hernandez, A.

    1996-01-01

    There is a considerable number of sealed sources which are no longer in use at the radioactive wastes treatment facility. In the present work a methodology is proposed for the final conditioning of these sources, based on their immobilization in a cement matrix. This cementation is accomplished within a 200-liter tank

  11. Estimate of the intensities of the radioactive nuclides produced at the super-FRS at the future GSI facility

    International Nuclear Information System (INIS)

    Ricciardi, M.V.

    2004-11-01

    The principal goal of the new facility is the construction of a worldwide unique and technically innovative accelerator system that will provide an extensive range of particle beams. Proton and antiproton beams will be available and ion beams of all chemical elements up to uranium will be produced with world-record intensities. The main employ of the high-intensity ion beams is the production of energetic beams of short-lived (radioactive) nuclei, in the following referred to as exotic or Rare Isotope Beams (RIBs). RIBs are produced in nuclear reactions experienced by the primary beams of stable particles. We report on the study of the production of radioactive nuclides and of their propagation through the Super-FRS. The study was performed by means of a nuclear-reaction Monte-Carlo code, ABRABLA, opportunely implemented for the above-described purpose. This work offers an overview of the radioactivity production in the Super-FRS area; the latter is the required starting knowledge for the design of the shielding structure. (orig.)

  12. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  13. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  14. INDICADORES PARA O GERENCIAMENTO DE FACULDADES: UM ESTUDO DE DOIS CASOS NA ESPANHA

    Directory of Open Access Journals (Sweden)

    JAIR ANTONIO FAGUNDES

    2015-01-01

    Full Text Available El objetivo de este artículo es explorar los indicadores para hacer la gestión de dos facultades privadas en España. Se hizo la recolección de datos a través de entrevista, observación directa de los investigadores y análisis de documentos internos de las instituciones de enseñanza. Al final fue posible identificar los indicadores de gestión, financieros y no financieros, de acuerdo con las cuatro perspectivas del Cuadro de Mando Integral (CMI. Se concluye que el caso uno utiliza 34 indicadores, siendo 12 financieros, 10 relacionados con los clientes, 10 de la perspectiva interna y solamente vinculados al desarrollo personal; en el caso dos, se utilizan 41 indicadores, siendo 10 financieros, 11 de los clientes, 11 de los procesos internos y 9 relacionados con el desarrollo personal. Estos resultados están en línea con los resultados obtenidos en otras investigaciones de nivel internacional.

  15. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  16. Environmental monitoring of low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Shum, E.Y.; Starmer, R.J.; Young, M.H.

    1989-12-01

    This branch technical position (BTP) paper on the environmental monitoring program for a low-level radioactive waste disposal facility provides general guidance on what is required by Section 61.53 of Title 10 of the Code of Federal Regulations (10 CFR) of applicants submitting a license application for such a facility. In general, the environmental monitoring program consists of three phases: preoperational, operational, and postoperational. Each phase of the monitoring program should be designed to fulfill the specific objectives defined in the BTP paper. During the preoperational phase, the objectives of the program are to provide site characterization information, to demonstrate site suitability and acceptability, to obtain background or baseline information, and to provide a record for public information. During the operational phase, the emphasis on measurement shifts. Monitoring data are obtained to provide early warning of releases and to document compliance with regulations, the dose limits of 10 CFR Part 61, or applicable standards of the US Environmental Protection Agency. Data are also used to update important pathway parameters to improve predictions of site performance and to provide a record of performance for public information. The postoperational environmental monitoring program emphasizes measurements to demonstrate compliance with the site-closure requirements and continued compliance with the performance objective in regard to the release of radionuclides to the environment. The data are used to support evaluation of long-term effects on the general public and for public information. Guidance is also provided in the BTP paper on the choice of which constituents to measure, setting action levels, relating measurements to appropriate actions in a corrective action plan, and quality assurance

  17. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  18. Evaluation on applicability of construction methods and construction quality of low-diffusion layer of cavern type radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Takechi, Shin-ichi; Yokozeki, Kosuke; Terada, Kenji; Akiyama, Yoshihiro; Yada, Tsutomu; Tsuji, Yukikazu

    2014-01-01

    A performance verification experiment of cavern type radioactive waste disposal facility with a real scale construction is being conducted to evaluate the applicability of proposed construction methods and construction quality of the facility. In this paper, we confirmed that the low-diffusion layer, which is one of the cementitious materials based members, could be filled with mortar from end to end of the member; cracks of low-diffusion layer would not affect the long-term safety evaluation of the facility. And also we figured out the relationship between the material strength and the accumulated temperature, relationship between diffusion coefficient and porosity of low-diffusion layer. (author)

  19. Pegada Hídrica como Indicador de Sustentabilidade Ambiental1

    Directory of Open Access Journals (Sweden)

    Kettrin Farias Bem Maracajá

    2012-08-01

    Full Text Available O conceito de pegada hídrica tem sido recentemente introduzido como um importante indicador do consumo de água humano, na tentativa de minimizar os impactos ambientais. Esse trabalho aborda o conceito da pegada hídrica como um indicador de sustentabilidade, com vistas o uso racional dos recursos hídricos. Nos últimos anos, a escassez de alguns recursos naturais vem sendo bastante discutido em todo o mundo e quanto à água a preocupação é ainda maior em face do uso desordenado na irrigação, bem como pela poluição da água potável através da indústria e agricultura. Partindo dessa análise, a pegada hídrica surge como um indicador de sustentabilidade da água doce em seus diferentes tipos de consumo para que seja utilizada de forma consciente. Com base na revisão da literatura sobre o tema abordado, conclui-se que para a redução da pegada hídrica se deve tomar medidas de controle do uso direto e indireto da água doce principalmente na agricultura irrigada.

  20. Systematic handling of requirements and conditions (in compliance with waste acceptance requirements for a radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Keyser, Peter; Helander, Anita

    2012-01-01

    This Abstract and presentation will demonstrate the need for a structured requirement management and draw upon experiences and development from SKB requirements data base and methodology, in addition to international guidelines and software tools. The presentation will include a discussion on how requirement management can be applied for the decommissioning area. The key issue in the decommissioning of nuclear facilities is the progressive removal of hazards, by stepwise decontamination and dismantling activities that have to be carried out safely and within the boundaries of an approved safety case. For decommissioning there exists at least two safety cases, one for the pre-disposal activities and one for the disposal facility, and a need for a systematic handling of requirements and conditions to safely manage the radioactive waste in the long term. The decommissioning safety case is a collection of arguments and evidence to demonstrate the safety of a decommissioning project. It also includes analyzing and updating the decommissioning safety case in accordance with the waste acceptance criteria's and the expected output, i.e. waste packages. It is a continuous process to confirm that all requirements have been met. On the other hand there is the safety case for a radioactive waste disposal facility, which may include the following processes and requirements: i) Integrating relevant scientific (and other) information in a structured, traceable and transparent way and, thereby, developing and demonstrating an understanding of the potential behavior and performance of the disposal system; ii) Identifying uncertainties in the behavior and performance of the disposal system, describing the possible significance of the uncertainties, and identifying approaches for the management of significant uncertainties; iii) Demonstrating long-term safety and providing reasonable assurance that the disposal facility will perform in a manner that protects human health and the

  1. Achieving local support for a low-level radioactive waste disposal facility in Illinois

    International Nuclear Information System (INIS)

    Kerr, T.A.; Seidler, P.E.

    1989-01-01

    This paper discusses how Illinois is progressing toward the goal of having a new low-level radioactive waste (LLW) disposal facility in operation by the federally mandated milestone of January 1, 1993. To accomplish this task, Illinois has adopted a voluntary siting process. The voluntary siting process will be successful by definition only if a high level of local support can be achieved and sustained. A strong public participation program in conjunction with a comprehensive information and education program is essential to fostering the necessary local support. Many other elements are also needed throughout this process. The Illinois Department of Nuclear Safety (IDNS) has found that making grants to local governments, awarding scholarships for area students, enacting a comprehensive system of legislation and regulations, explaining the site identification and characterization program, describing facility design features, practicing a strong policy of buying and hiring locally, maintaining good relationships with local news media and building trust through personal relationships have all greatly contributed to support for the LLW program in the potential host communities

  2. The Assesment Of Radioactive Accident Management On The RSG-GAS

    International Nuclear Information System (INIS)

    Soejoedi, Agoes; Karmana, Endang

    2000-01-01

    In the operational reactor facilities include RSG-GAS, safety factor for radioactive accident very important to be prioritized. Till now the anticipate happening radioactive accident on the RSG-GAS threat only by the RSG-GAS Operation Manual. For increasing the working function need to create radioactive accident management by facility level. From studying result which source IAEA guidebook, can be composed the assessment accident management of radioactive the RSG-GAS.The sketching this accident management of radioactive to be hoped can helping P2TRR organization by handling radioactive accident if this moment happen on the RSG-GAS

  3. Report of radioactivity survey research in fiscal year 1989

    International Nuclear Information System (INIS)

    1990-12-01

    In the National Institute of Radiological Sciences, as a part of the radioactivity survey and research of Science and Technology Agency, the survey of environmental radioactivity level due to the radioactive fallout accompanying nuclear explosion experiments and the radioactive substances released from nuclear facilities and others and the safety analysis of these have been carried out. The radioactivity and dose survey for environment, foods and human bodies, the survey of the level around nuclear facilities, the business of radioactivity data center, the basic investigation for the evaluation of the results of radioactivity survey, the training of environmental radiation monitoring technicians and the investigation and research of the measurement of emergency radiation exposure and countermeasures were carried out. Those results are summarized. (K.I.)

  4. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  5. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  6. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  7. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  8. The commissioning of the BRISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Tang, B., E-mail: tangb364@126.com; Cui, B.; Chen, L.; Huang, Q.; Ma, R.; Ma, Y.; Ma, X.; Zhang, T.; Jiang, W.

    2016-06-01

    The Beijing Radioactive ion beam facility Isotope Separator On-Line (BRISOL) is a radioactive ion beam facility based on a 100 MeV cyclotron providing 100 μA proton beam bombarding a thick target to produce radioactive nuclei, which are transferred into an ion source to produce a singly-charged ion beam. The construction and installation of BRISOL was completed in March 2014. The commissioning of the BRISOL facility with stable beams has been carried out in the last year. The ion source, the separator and the beam-line were tested with a {sup 39}K{sup +} stable beam. The tests and the current status of the BRISOL facility will be presented in this paper.

  9. una propuesta de indicadores

    Directory of Open Access Journals (Sweden)

    Noemí Luján Ponce

    2007-01-01

    Full Text Available La tecnología reviste características de neutralidad, eficiencia, transparencia y regularidad. Factores que hoy día resultan relevantes para realizar procesos electorales confiables. Las redistritaciones electorales en México 1996 y 2005 resultan casos paradigmáticos en relación a la cristalización de la tecnología como una mediación para la construcción de acuerdos entre los partidos y las autoridades electorales. Se ofrecen cinco indicadores para comparar ambos procesos de distritación.

  10. Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, U., E-mail: uwahl@itn.pt [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2011-12-15

    The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from {approx}70 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently {approx}15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of {approx}80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions in biological systems. The characterisation methods used are typical radioactive probe techniques such as Moessbauer spectroscopy, perturbed angular correlation, emission channeling, and tracer diffusion studies. In addition to these 'classic' methods of nuclear solid state physics, also standard semiconductor analysis techniques such as photoluminescence or deep level transient spectroscopy profit from the application of radioactive isotopes, which helps them to overcome their chemical 'blindness' since the nuclear half life of radioisotopes provides a signal that changes in time with characteristic exponential decay or saturation curves. In this presentation an overview will be given on the recent research activities in materials science and biophysics at ISOLDE, presenting some of the highlights during the last five years, together with a short outlook on the new developments under way.

  11. On-site test of filters in nuclear facilities using radioactive sodium chloride (24Na)-aerosol and methyl iodide (131I)

    International Nuclear Information System (INIS)

    Heidam, N.Z.; Hansen, K.A.; Fenger, J.; Flyger, H.; Hedemann Jensen, P.

    1986-02-01

    The nuclar facilities at Risoe National Laboratory are equipped with high-efficiency filters to protect the environment from routine or accidental releases of radioactive material. The filter efficiency must be tested regularly and a method for on-site control is described. It is based on injection of a radioactive sample in the filter duct, followed by sampling before and after the filter. HEPA-filters are tested with a 24 NaCl-aerosol and charcoal filters with 131 ICH 3 . Normally samples of 1 mCi are used. Penetrations (1 - efficiency) can be determined with a relative uncertainty of 10-15%. (author)

  12. National inventory of radioactive wastes and valorizable materials. Synthesis report

    International Nuclear Information System (INIS)

    2004-01-01

    This national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. It contains: 1 - general introduction; 2 - the radioactive wastes: definition, classification, origin and management; 3 - methodology of the inventory: organization, accounting, prospective, production forecasting, recording of valorizable materials, exhaustiveness, verification tools; 4 - general results: radioactive waste stocks recorded until December 31, 2002, forecasts for the 2003-2020 era, post-2020 prospects: dismantling operations, recording of valorizable materials; 5 - inventory per producer or owner: front-end fuel cycle facilities, power generation nuclear centers, back-end fuel cycle facilities, waste processing or maintenance facilities, civil CEA research centers, non-CEA research centers, medical activities (diagnostics, therapeutics, analyses), various industrial activities (sources fabrication, control, particular devices), military research and experiment centers, storage and disposal facilities; 6 - elements about radioactive polluted sites; 7 - examples of foreign inventories; 8 - conclusion and appendixes. (J.S.)

  13. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  14. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    Science.gov (United States)

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  15. Stakeholder opinions on the use of the added value approach in siting radioactive waste management facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Matti [University of Tampere, School of ManagementTampere (Finland); Richardson, Phil [Galson Sciences Ltd, Oakham (United Kingdom)

    2013-07-01

    In some countries nuclear waste facility siting programs include social and economic benefits, compensation, local empowerment and motivation measures and other incentives for the potential host community. This can generally be referred to as an 'added value approach'. Demonstration of the safety of a repository is seen as a precondition of an added value approach. Recently much focus has been placed on studying and developing public participation approaches but less on the use of such incentive and community benefit packages, although they are becoming a more common element in many site selection strategies for nuclear waste management facilities. The primary objective of this paper is to report on an ongoing study of stakeholders' opinions of the use of an added value approach in siting a radioactive waste facility in the Czech Republic, Poland and Slovenia. The paper argues that an added value approach should adapt to the interests and needs of stakeholders during different stages of a siting process. The main question posed in the study is as follows: What are the measures which should be included in 'added value approach' according to the stakeholders? The research data consists of stakeholders' responses to a survey focusing on the use of added value (community benefits) and incentives in siting nuclear waste management facilities. The survey involved use of a questionnaire developed as part of the EU-funded IPPA* project in three countries: the Czech Republic, Poland and Slovenia. (* Implementing Public Participation Approaches in Radioactive Waste Disposal, FP7 Contract Number: 269849). The target audiences for the questionnaires were the stakeholders represented in the national stakeholder groups established to discuss site selection for a nuclear waste repository in their country. A total of 105 questionnaires were sent to the stakeholders between November 2011 and January 2012. 44 questionnaires were returned, resulting in a

  16. Stakeholder opinions on the use of the added value approach in siting radioactive waste management facilities

    International Nuclear Information System (INIS)

    Kojo, Matti; Richardson, Phil

    2013-01-01

    In some countries nuclear waste facility siting programs include social and economic benefits, compensation, local empowerment and motivation measures and other incentives for the potential host community. This can generally be referred to as an 'added value approach'. Demonstration of the safety of a repository is seen as a precondition of an added value approach. Recently much focus has been placed on studying and developing public participation approaches but less on the use of such incentive and community benefit packages, although they are becoming a more common element in many site selection strategies for nuclear waste management facilities. The primary objective of this paper is to report on an ongoing study of stakeholders' opinions of the use of an added value approach in siting a radioactive waste facility in the Czech Republic, Poland and Slovenia. The paper argues that an added value approach should adapt to the interests and needs of stakeholders during different stages of a siting process. The main question posed in the study is as follows: What are the measures which should be included in 'added value approach' according to the stakeholders? The research data consists of stakeholders' responses to a survey focusing on the use of added value (community benefits) and incentives in siting nuclear waste management facilities. The survey involved use of a questionnaire developed as part of the EU-funded IPPA* project in three countries: the Czech Republic, Poland and Slovenia. (* Implementing Public Participation Approaches in Radioactive Waste Disposal, FP7 Contract Number: 269849). The target audiences for the questionnaires were the stakeholders represented in the national stakeholder groups established to discuss site selection for a nuclear waste repository in their country. A total of 105 questionnaires were sent to the stakeholders between November 2011 and January 2012. 44 questionnaires were returned, resulting in a

  17. Treatment of solid radioactive waste: The incineration of low level radioactive waste

    International Nuclear Information System (INIS)

    Dirks, F.; Hempelmann, W.

    1982-01-01

    Nuclear facilities produce large quantities of burnable solid radioactive waste which incineration can reduce in volume and change into a form capable of ultimate storage. Experiments over many years were carried out at the Karlsruhe Nuclear Research Center to determine the boundary conditions for the design and construction of incineration plants for radioactive waste. On the basis of those experiments a test facility was started up in 1971. This operating facility consists of a shaft furnace lined with ceramics with a downstream series of ceramic flue gas filters. In 1976 the plant was exchanged by the installation of a pilot facility for burning organic solvents and of a flue gas scrubber. The plant has so far been in operation for more than 28000 hours and has processed in excess of 1500 to of solid and some 300 m 3 of liquid low level radioactive wastes. Various repairs and interventions were carried out without greatly impairing availability, which was 81 % on the average. The plant design is being used by various licensees in Japan and Europe; three plants are either in operation or completed, three more are under construction or in the planning stage. On the basis of the available process an incineration plant for alpha contaminated waste will be built at the Karlsruhe Nuclear Research Center in the next few years. (orig.)

  18. Concept for an ultimate storage facility for heat-generating radioactive waste in clay stone in Germany

    International Nuclear Information System (INIS)

    Bollingerfehr, Wilhelm; Poehler, Matthias

    2010-01-01

    According to the German reference ultimate storage concept heat-generating radioactive waste from the operation of nuclear power stations should be stored permanently maintenance-free and in a non-recoverable manner in a salt formation. Within the framework of investigations into the utilisation of alternative host rocks a concept for an ultimate storage facility in clay stone was developed in an R and D project. For this purpose all important aspects of the design, development, operation and shutdown were taken into account for a model region in northern Germany. It was established that storage in 50 m deep vertical boreholes in a mine at a depth of about 350 m appears to be the most practical solution for an ultimate storage facility in clay stone. Compared to the reference concept in salt an ultimate storage facility in clay stone requires solid support of all mine openings with steel arches or shotcrete. Because of the lower maximum permissible temperature in the backfilling material (bentonite) the area required for the ultimate storage facility is about five times larger. A period of more than 100 years is estimated from survey to shutdown. (orig.)

  19. Dossier: transport of radioactive materials; Dossier: le transport des matieres radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Mignon, H. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction du Cycle du Combustible; Niel, J.Ch. [CEA Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Canton, H. [CEA Cesta, 33 - Bordeaux (France); Brachet, Y. [Transnucleaire, 75 - Paris (France); Turquet de Beauregard, G.; Mauny, G. [CIS bio international, France (France); Robine, F.; Plantet, F. [Prefecture de la Moselle (France); Pestel Lefevre, O. [Ministere de l`Equipement, des transports et du logement, (France); Hennenhofer, G. [BMU, Ministere de l`environnement, de la protection de la nature et de la surete des reacteurs (Germany); Bonnemains, J. [Association Robin des Bois (France)

    1997-12-01

    This dossier is entirely devoted to the transportation of radioactive and fissile materials of civil use. It comprises 9 papers dealing with: the organization of the control of the radioactive materials transport safety (safety and security aspects, safety regulations, safety analysis and inspection, emergency plans, public information), the technical aspects of the regulation concerning the transport of radioactive materials (elaboration of regulations and IAEA recommendations, risk assessments, defense in depth philosophy and containers, future IAEA recommendations, expertise-research interaction), the qualification of containers (regulations, test facilities), the Transnucleaire company (presentation, activity, containers for spent fuels), the packages of radioactive sources for medical use (flux, qualification, safety and transport), an example of accident during radioactive materials transportation: the Apach train derailment (February 4, 1997), the sea transport of radioactive materials (international maritime organization (OMI), international maritime dangerous goods (IMDG) code, irradiated nuclear fuel (INF) safety rules), the transport of radioactive materials in Germany, and the point of view from an external observer. (J.S.)

  20. Summary of radioactive solid waste received in the 200 Areas during calendar year 1990

    International Nuclear Information System (INIS)

    Anderson, J.D.; McCann, D.C.; Poremba, B.E.

    1991-04-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy-Richland Operations Office under contract AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1990. This report does not include solid radioactive wastes in storage or disposal in other areas or facilities such as the underground tank farms. Unless packaged within the scope of Hanford Site radioactive solid waste acceptance criteria, liquid waste data are not included in this document. 10 refs., 1 tab

  1. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  2. The FOCON model to assess doses due to the atmospheric radioactive discharges of nuclear facilities during normal operation

    International Nuclear Information System (INIS)

    Rommens, C.; Morin, A.; Merle-Szeremeta, A.

    1999-01-01

    The FOCON model to assess doses due to the atmospheric radioactive discharges of nuclear facilities during normal operation. To assess the dosimetric impact to the public due to atmospheric radioactive discharges of nuclear facilities during normal operation, the Institute for Protection and Nuclear Safety has developed the FOCON96 code. FOCON96 calculates the dispersion of gases and aerosols into the environment (atmosphere contamination and ground deposition), their transfer in the biosphere (soils, plants and animals) and their impact to a member of the public (individual effective and equivalent doses, external exposure to the plume and to the deposits, internal exposure by inhalation and ingestion). FOCON96 uses ergonomic windows and proposes many capabilities (modular architecture, default values, choice of libraries, access to all the parameters of the models, listing or results, management of result files, calculations made directly, etc.). In the European context, and intercomparison with the PC-CREAM code, developed by the National Radiological Protection Board, has shown the coherence of the results of the two codes. A comparison of the windows and capabilities has shown that FOCON96 was easier to use. FOCON96 is not adapted to calculate the doses received during one particular year that are due to the discharges of a facility in operation for a long period of time. An evolution of the software will be considered if this kind of assessment is generalized. (authors)

  3. Radiation hygienic annual report 2012. General environmental radioactivity and radiation surveillance in the vicinity of nuclear facilities in Bavaria

    International Nuclear Information System (INIS)

    Pfau, T.; Bernkopf, J.; Klement, R.; Bayerisches Landesamt fuer Umwelt, Augsburg

    2013-01-01

    The radiation hygienic annual report 2012 includes the following issues: (1) Introduction: Legal aspects of the surveillance, implementation of the radiation protection law, nuclear facility sites in Bavaria, interim storage facilities in Bavaria. (2) Natural radioactivity surveillance: measured data for the exposure paths air, water, food chain land, food chain water, residuals and waste. (3) Radiation surveillance in the vicinity of nuclear facilities in Bavaria: measures for air, precipitation, soils, plants, food chain land, milk and milk products, surface water, food chain water, drinking and ground water; measured data in the vicinity of NNP Isar 1 bd Isar 2 (KKI1/KKI2), NPP Gundremmingen (KGG), NPP Grafenrheinfeld (KKG), research neutron source Muenchen FRM II; emissions, meteorological conditions, spreading calculations.

  4. Historical radioactive waste in France: Situation and lessons learnt

    International Nuclear Information System (INIS)

    Blary, C.; Averous, J.

    2002-01-01

    Some radioactive waste, produced several decades ago, have been stored until now, awaiting an appropriate treatment process or further policy decision, in facilities that are now considered under the present safety standards. When no satisfactory improvements can be brought about the safety of the storage, the retrieval of the old radioactive waste is required. In France, typical facilities concerned with historical radioactive waste are shallow wells, pools, silos, effluents tanks and trenches. Several aspects, sometimes combined, make the retrieval usually more difficult and longer than thought. These aspects are mainly a lack of concern regarding retrieval of the waste when designing the facilities, an insufficient waste characterisation or record keeping, a lack of monitoring, this lack of monitoring becoming more detrimental as the facility is ageing, and a lack of maintenance. Problems related to historical radioactive waste management have been identified and operators are making efforts to eradicate them. Without considering the financial cost of old radioactive waste retrieval, operators have to face problems such as risk of loss of radionuclides containment, radiation protection, handling and transportation. The nuclear safety authority has decided to make safety guidelines regarding designing and operating storage facilities as a result of experience feedback from the storage operators. (author)

  5. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  6. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  7. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  8. Durability test of geomembrane liners presumed to avail near surface disposal facilities for low-level waste generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Kurosawa, Ryohei; Sakamoto, Yoshiaki; Kanno, Naohiro; Kashima, Takahiro

    2014-02-01

    The Low-level Radioactive Waste Disposal Project Center will construct near surface disposal facilities for radioactive wastes from research, industrial and medical facilities. The disposal facilities consist of “concrete pit type” for low-level radioactive wastes and “trench type” for very low level radioactive wastes. As for the trench type disposal facility, two kinds of facility designs are on projects – one for a normal trench type disposal facility without any of engineered barriers and the other for a trench type disposal facility with geomembrane liners that could prevent from causing environmental effects of non radioactive toxic materials contained in the waste packages. The disposal facility should be designed taking basic properties of durability on geomembrane liners into account, for it is exposed to natural environment on a long-term basis. This study examined mechanical strength and permeability properties to assess the durability on the basis of an indoor accelerated exposure experiment targeting the liner materials presumed to avail the conceptual design so far. Its results will be used for the basic and detailed design henceforth by confirming the empirical degradation characteristic with the progress of the exposure time. (author)

  9. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  10. Indicators of the management for the continuous improvement of the radiological safety in a radioactive facility; Indicadores de gestion para la mejora continua de la seguridad radiologica en una instalacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Amador B, Z. H. [Centro de Isotopos, Ave. Monumental y Carretera La Rada, Km 3, Guanabacoa, Apartado 3415, Ciudad de La Habana (Cuba)]. e-mail: zabalbona@centis.edu.cu

    2006-07-01

    The use of safety indicators is common in the nuclear industry. In this work the implementation of indicators for the efficiency analysis of the radiological safety management system of a radioactive installation is presented. Through the same ones the occupational exposure, the training Y authorization of the personnel, the control of practices Y radioactive inventory, the results of the radiological surveillance, the occurrence of radiological events, the aptitude of the monitoring equipment, the management of the radioactive waste, the public exposure, the audits Y the costs of safety are evaluated. Its study is included in the periodic training of the workers. Without this interrelation it is not possible to maintain the optimization of the safety neither to achieve a continuous improvement. (Author)

  11. First Stabilization and Disposal of Radioactive Zinc Bromide at the SRS

    International Nuclear Information System (INIS)

    Denny, J.K.

    2003-01-01

    Facilities Disposition Projects (FDP) personnel at Savannah River Site (SRS) implement the Inactive Facility Risk Management Program to drive down risk and costs in SRS inactive facilities. The program includes cost-effective techniques to identify and dispose of hazardous chemicals and radioactive waste from inactive facilities, thereby ensuring adequate protection of the public, workers and the environment. In June 1998, FDP conducted an assessment of the inactive C-Reactor Facility to assure that chemical and radiological hazards had been identified and were being safely managed. The walkdown identified the need to mitigate a significant hazard associated with storing approximately 13,400 gallons of liquid radioactive Zinc Bromide in three aging railcar tankers outside of the facility. No preventive maintenance was being performed on the rusting tankers and a leak could send radioactive Zinc Bromide into an outfall and offsite to the Savannah River. In 2001, DOE-Savannah River (DOE- SR) funded the FDP to eliminate the identified hazard by disposing of the radioactive Zinc Bromide solution and the three contaminated railcar tankers. This paper describes the innovative, cost-effective approaches and technology used to perform the first stabilization and disposal of radioactive Zinc Bromide at SRS

  12. Recent results in the study of exotic nuclei using the 'Radioactive Ion Beams in Brazil' (RIBRAS) facility

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V.; Alcantara Nunez, J.; Benjamim, E.A.; Faria, P.N. de; Leistenschneider, E.; Gasques, L.R.; Morais, M.C.; Pampa Condori, R.; Pires, K.C.C.; Scarduelli, V.; Zamora, J.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Mendes Junior, D.R.; Morcelle, V. [Universidade Federal Fluminense (IF/UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Descouvemont, P. [Universite Libre de Bruxelles (Belgium). Physique Nucleaire Theorique et Physique Matematique; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Moro, A.M. [Universidad de Sevilla (Spain). Fac. de Fisica. Dept. de Fisica Atomica, Molecular y Nuclear (FAMN); Arazi, A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Lab. TANDAR; Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    Full text: The 'Radioactive Ion Beams in Brasil' (RIBRAS) facility consists of two super-conducting solenoids of maxi- mum magnetic field B 6.5T, coupled to the 8UD-Pelletron tandem Accelerator installed at the University of Sao Paulo Physics Institute. It is the first radioactive beam facility of the Southern Hemisphere. The production mechanism of the radioactive ions is by transfer reactions, using {sup 9}Be, {sup 3}He, LiF and other production targets, and the forward focused reaction products are selected and focalized by the solenoids into a scattering chamber. Low energy (3-5 MeV/u) radioactive beams of {sup 6}He, {sup 8}Li, {sup 7,10}Be and {sup 8,12}B are produced currently and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy ({sup 9}Be, {sup 12}C, {sup 27}Al, {sup 51}V and {sup 120}Sn) secondary targets. The data are analyzed, using most of the time, the Sao Paulo Potential (SPP) and compared to optical model and continuum discretized coupled-channels (CDCC) calculations. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Some examples of reactions recently studied are {sup 1}H({sup 8}Li,{sup 4}He){sup 5}He, {sup 1}H({sup 8}Li,{sup 1}H){sup 8}Li using thick (CH{sub 2}){sub n} targets to measure their excitation functions. The transfer