WorldWideScience

Sample records for radioactive cesium plutonium

  1. Distribution of plutonium and cesium in alluvial soils of the Los Alamos environs

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Miera, F.R. Jr.; Peters, R.J.

    1976-01-01

    The alluvial soils of three liquid waste disposal areas at Los Alamos were sampled to determine plutonium and cesium distributional relationships and correlations with soil physical-chemical properties. Radionuclide concentrations were determined for soil samples as a function of soil depth and distance from the waste outfall. The cesium-plutonium data were correlated with levels of organic carbon, carbonates, exchangeable and water-soluble cations, pH, cation exchange capacity, bulk density, surface area and geometric particle size of these soils. The distribution patterns of soil plutonium and cesium were also compared to the waste use history of the three study areas

  2. Extraction of radioactive cesium from tea leaves

    International Nuclear Information System (INIS)

    Yano, Yukiko; Kubo, M. Kenya; Higaki, Shogo; Hirota, Masahiro; Nomura, Kiyoshi

    2011-01-01

    Radioactive contamination of foodstuffs attributed to the Fukushima Daiichi nuclear disaster has become a social problem. This study investigated the extraction of radioactive cesium from the contaminated leaves to the tea. The green tea was brewed twice reusing the same leaves to study the difference in extraction of cesium between the first and second brew. Moreover, the extraction of cesium was studied in correlation to brewing time. The concentration of radioactive cesium was determined with gamma spectrometry, and the concentration of caffeine was determined with absorption spectrometry. About 40% of cesium was extracted from leaves in the first brew, and about 80% was extracted in the second brew. The extraction of cesium increased over time, and it reached about 80% after 10 minutes brew. The ratio of radioactive cesium to caffeine decreased linearly over time. This study revealed that the extraction of cesium was higher for the second brew, and a rapid increase in extraction was seen as the tea was brewed for 6 minutes and more. Therefore, the first brew of green tea, which was brewed within 5 minutes, contained the least extraction of radioactive cesium from the contaminated leaves. (author)

  3. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    International Nuclear Information System (INIS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Highlights: • There are radioactively contaminated soils having a radioactive cesium transfer of 0.01. • Micro-PIXE analysis has revealed an existence of phosphorus in a contaminated soil. • Radioactive cesium captured by phosphorus compound would be due to radioactive transfer. -- Abstract: Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ∼0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds

  4. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    Science.gov (United States)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  5. Method of processing radioactive cesium liquid wastes

    International Nuclear Information System (INIS)

    Nishijima, Hiroaki; Asaoka, Sachio; Kondo, Tadami; Suzuki, Isao.

    1985-01-01

    Purpose: To convert and settle cesium, mainly, Cs-137 in liquid wastes in the form of pollucites, that is, cesium-containing ores. Constitution: Water, silica, alumina and alkali metal source are mixed with radioactive liquid wastes containing cesium as the main metal element ingredient, to which an onium compound is further added and they are brought into reaction till pollucite ores (Cs 16 (Al 16 Si 32 O 96 )) are formed. Since most portion of cesium is thus settled in the form of pollucites, storage safety can be attained. Further, the addition of the onium compound can moderate the condition and shorten the time till the pollucite ores are formed. The onium compound usable herein includes tetramethyl ammonium. (Kamimura, M.)

  6. An assessment of potential health impacts on Utrok Atoll from exposure to cesium-137 (137Cs) and plutonium

    International Nuclear Information System (INIS)

    Hamilton, T

    2007-01-01

    Residual fallout contamination from the nuclear test program in the Marshall Islands is a concern to Marshall Islanders because of the potential health risks associated with exposure to residual fallout contamination in the environment. Scientists from Lawrence Livermore National Laboratory (LLNL) have been monitoring the amount of fallout radiation delivered to Utrok Atoll residents over the past 4 years. This briefing document gives an outline of our findings from the whole body counting and plutonium bioassay monitoring programs. Additional information can be found on the Marshall Islands web site (http://eed.lnl.gov/mi/). Cesium-137 is an important radioactive isotope produced in nuclear detonations and can be taken up from coral soils into locally grown food crop products that form an important part of the Marshallese diet. The Marshall Islands whole body counting program has clearly demonstrated that the majority of Utrok Atoll residents acquire a very small but measurable quantity of cesium-137 in their bodies (Hamilton et al., 2006; Hamilton et. al., 2007a; 2007b;). During 2006, a typical resident of Utrok Atoll received about 3 mrem of radiation from internally deposited cesium-137 (Hamilton et al., 2007a). The population-average dose contribution from cesium-137 is around 2% of the total radiation dose that people normally experience from naturally occurring radiation sources in the Marshall Islands and is thousands of times lower than the level where radiation exposure is known to produce measurable health effects. The existing dose estimates from the whole body counting and plutonium bioassay programs are also well below radiological protection standards for protection of the public as prescribed by U.S. regulators and international agencies including the Marshall Islands Nuclear Claim Tribunal (NCT). Similarly, the level of internally deposited plutonium found in Utrok Atoll residents is well within the range normally expected for people living in the

  7. Actual situation of concentration and inventory of radioactive cesium in Matsukawaura Lagoon sediment, Fukushima Prefecture

    International Nuclear Information System (INIS)

    Arita, Koichi; Yabe, Tohru; Hayashi, Seiji

    2014-01-01

    In order to qualitatively evaluate the current status of inventory of radioactive cesium in Matsukawaura Lagoon, profiles of radioactive cesium concentration in sediment cores and sediment characteristics were measured at 36 points. It was shown that sediment characteristics were different even at high concentration of radioactive cesium to the same extent. As a result, the inventory of radioactive cesium were also different. Even at high concentration of radioactive cesium, inventory in southwestern high mud content rate was less than the western. The total inventory of down to 20 cm of sediment throughout Matsukawaura Lagoon was estimated to be about 220 GBq, that more than 80% distributed to 15 cm shallower than has been revealed. (author)

  8. Radioactive cesium content in selected food products. Pt. 2. Radioactive cesium in daily food rations of selected population groups

    International Nuclear Information System (INIS)

    Skibniewska, K.; Smoczynski, S.S.; Wisniewska, I.

    1993-01-01

    The content of radioactive cesium isotopes emitting beta radiation was studied in daily food rations analysed in diets of working-class and non-working-class families from food products from the regions of Olsztyn, Poznan, Lublin, Warsaw and Wroclaw in 1987 and 1988. In 1987 the highest level of radioactive cesium was found in the food rations in Olsztyn, and lowest in the rations in Poznan (3.32 and 0.65 Bq/kg respectively). In 1988 higher radiocesium content was found in rations composed according to the data on the diet consumed daily in non-working-class families. In that case the highest content was in the daily food rations composed in Warsaw - 2.35 Bq/kg and lowest in Poznan - 1.19 Bq/kg in the daily food rations of working-class families about one half of that value was found. The calculated means values of both analysed rations were: 1.35 for Olsztyn, 0.89 for Poznan, and 1.86 Bq/kg for Warsaw. The calculated mean value of the contamination with radioactive cesium was in 1988 0.93 Bq/kg for the rations in working-class families (in 1987 it was 1.80 Bq/kg). (author). 15 refs, 1 tab

  9. Radiation safety for incineration of radioactive waste contaminated by cesium

    International Nuclear Information System (INIS)

    Veryuzhs'kij, Yu.V.; Gryin'ko, O.M.; Tokarevs'kij, V.V.

    2016-01-01

    Problems in the treatment of radioactive waste contaminated by cesium nuclides are considered in the paper. Chornobyl experience in the management of contaminated soil and contaminated forests is analyzed in relation to the accident at Fukushima-1. The minimization of release of cesium aerosols into atmosphere is very important. Radiation influence of inhaling atmosphere aerosols polluted by cesium has damage effect for humans. The research focuses on the treatment of forests contaminated by big volumes of cesium. One of the most important technologies is a pyro-gasification incineration with chemical reactions of cesium paying attention to gas purification problems. Requirements for process, physical and chemical properties of treatment of radioactive waste based on the dry pyro-gasification incineration facilities are considered in the paper together with the discussion of details related to incineration facilities. General similarities and discrepancies in the environmental pollution caused by the accidents at Chornobyl NPP and Fukushima-1 NPP in Japan are analyzed

  10. Mobility of radioactive cesium in soil originated from the Fukushima Daiichi nuclear disaster. Application of extraction experiments

    International Nuclear Information System (INIS)

    Yoshikazu Kikawada; Takao Oi; Katsumi Hirose; Masaaki Hirose; Atsushi Tsukamoto; Ko Nakamachi; Teruyuki Honda; Hiroaki Takahashi

    2015-01-01

    Extraction experiments on soil radioactively contaminated by the Fukushima Daiichi Nuclear Power Plant accident were conducted by using a variety of extractants to acquire knowledge on the mobility of radioactive cesium in soil. The experimental results revealed that cesium is tightly bound with soil particles and that radioactive cesium newly deposited on soil due to the accident had apparently a higher mobility than stable cesium commonly existing in soil. The results suggested that radioactive cesium deposited on soil hardly migrates via aqueous processes, although chemical and mineralogical conditions of soil affect their mobility. (author)

  11. Removal of radioactive cesium from soil by ammonium citrate solution and ionic liquid

    International Nuclear Information System (INIS)

    Ishiwata, Shunji; Kitakouji, Manabu; Taga, Atsushi; Ogata, Fumihiko; Ouchi, Hidekazu; Yamanishi, Hirokuni; Inagaki, Masayo

    2015-01-01

    Radioactive cesium has strongly bound soil as time proceeded, which could not be cleaved in mild condition. We have found that serial treatment of ammonium citrate solution and ionic liquid removed radioactive cesium from soil effectively. The sequence of the treatment is crucial, since inverse serial treatment or mixture of two kinds of solution did not show such an effect, which suggested that ammonium citrate unlocked trapped cesium in soil and ionic liquid solved it. We also found that repeating serial treatment and prolonged treatment time additively removed cesium from soil. (author)

  12. Using copper hexacyanoferrate (II) impregnated zeolite for cesium removal from radioactive liquid waste

    International Nuclear Information System (INIS)

    Fumio, K.; Kenji, M.

    1982-01-01

    Experiments were performed to obtain fundamental data on cesium ion removal characteristics of metal hexacyanoferrate (II) impregnated zeolite in radioactive liquid waste containing a large amount of sodium sulfate. Copper hexacyanoferrate (II) impregnated zeolite (CuFZ) was prepared and showed a high selectivity for cesium ion. The material was suitable for use in an ion exchange column. This exchanger could selectively and efficiently remove the cesium even if there is 15 wt% Na 2 SO 4 in the solution. Cesium removal ability and stability of CuFZ were excellent over a wide pH range between 1.5 and 10. The cesium ion exchange ability was not influenced by the presence of the alkali metal ions, calcium and magnesium, and carbonate ions even at concentrations 25 times greater than the cesium ion. However, since ammonium ion behaves similarly to cesium ion and interrupts latter ion adsorption, the presence of ammonium ion is not desirable. The CuFZ offers the possibility of separating and removing cesium from liquid wastes produced in facilities handling radioactive materials

  13. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  14. Decontamination of radioactive cesium in soil using nano-size metallic calcium dispersing

    International Nuclear Information System (INIS)

    Mitoma, Yoshiharu; Fukuoka, Takezo; Matsue, Hideaki; Kobayashi, Hidemasa; Shiraishi, Hiroaki; Kajitani, Mikio

    2013-01-01

    In Japan, the major concern on radioactive cesium ( 134 Cs and 137 Cs) deposition and soil contamination due to the emission form the Fukushima Dai-ichi nuclear power plant showed up after a massive quake on March 11, 2011. Soil contamination with radioactive cesium has a long-term radiological impact due to its long half-life (30 years for 137 Cs) and its high biological hazard. Therefore, much attention has been paid to decontaminate Cs-contaminated soil with washing and/or extraction by adopting solvents. However, such wet methods have some disadvantages, i.e. forming of secondary effluents and additional cost for their treatment. We have recently shown that the nano-size metallic calcium/calcium oxide/iron dispersing mixture (Fe-nCa) is most effective for heavy metals immobilization and volume reduction method under dry condition. Thus, we applied this method to treat real radioactive cesium contaminated soils in dry condition. Simple stirring of the contaminated soil with Fe-nCa achieved about above 90% of radioactive Cs decontamination rate and the volume reduction level also reached around 50-60%. In this paper, we showed the effectiveness of a Fe-nCa method for the rapid remediation and volume reduction method of real radioactive cesium contaminated soils under dry conditions and our challenges for sophistication applying machine and reagents. (author)

  15. Local mat-forming cyanobacteria effectively facilitate decontamination of radioactive cesium in rice fields

    International Nuclear Information System (INIS)

    Yamamoto, Atsushi; Yoshida, Shigeru; Okumura, Hiroshi; Inagaki, Masayo; Yamanishi, Hirokuni; Ito, Tetsuo; Furukawa, Michio

    2015-01-01

    The most effective and widespread method to decontaminate radioactive cesium from the Fukushima Daiichi Nuclear Power Plant Disaster was peeling topsoil. But the method had problems, such as large amounts of discarded soil and large-scale work. In nature, cyanobacteria formed biomats on the ground surface and facilitated peeling topsoil when the biomats dried. The cyanobacteria-facilitating peeling decontamination method utilized these cyanobacterial properties. Cyanobacteria are located all over Japan and 'local' cyanobacteria could be used for decontamination without introducing new species. Utilizing cyanobacteria could decrease the amount of discarded soil to about 30% and downsize the execution-scale to individual locations. Cyanobacterial biomats were easily cultivated, especially in rice fields, by maintaining wet conditions and exposure to 100 - 83% solar radiation. Shading by a thin net was helpful in maintaining an environment suitable for cyanobacteria. Nowadays, to prevent uptake of radioactive cesium into rice, K + is usually added to fertilizer in rice fields. The K + fertilization in rice fields might also enhance cyanobacterial capture of radioactive cesium, because high concentrations of K + enhanced cyanobacterial uptake of Cs + . Cyanobacteria could also mitigate the risk of radioactive cesium moving away from a decontaminating rice field. Therefore, the cyanobacteria-facilitating peeling decontamination method was proposed as an easy and safe 'D.I.Y.' method for both farmers and the environment. Besides, plowing rice fields with water before peeling improved the efficiency of this method, because plowing increased the radioactive cesium concentration in the topsoil. (author)

  16. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.; Miller, D.H.; Carter, J.T.

    1992-01-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from 800 μg of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values

  17. Modeling approach to various time and spatial scale environmental issues in Fukushima. Related to radioactive cesium migration in aquatic systems

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kitamura, Akihiro; Yamada, Susumu; Machida, Masahiko

    2015-01-01

    Several numerical models have been prepared to deal with various time- and spatial-scale issues related to radioactive cesium migration in environment in Fukushima area. The SACT (Soil and Cesium Transport) model developed by the Japan Atomic Energy Agency (JAEA) predicts middle- to long-term evolution of radioactive cesium distribution due to soil erosion, subsequent sediment transport and deposition, and radioactive cesium migration based on the Universal Soil Loss Equation (USLE). The TODAM (Time-dependent One-dimensional Degradation and Migration) model, iRIC/Nays2D and the FLESCOT (Flow, Energy, Salinity, Sediment, Contaminant Transport) model are one-, two- and three-dimensional river/reservoir/coastal models, respectively. Based on conservation equations of sediment and radioactive cesium, they treat advection and diffusion of suspended sediment and cesium, deposition of sediment to bed, re-suspension from bed and adsorption/desorption of radioactive cesium. These models are suitable for small and short time scale issues such as high discharges of sediment and radioactive cesium from rivers due to heavy rainfall events. This paper describes fragments of the JAEA’s approaches of modeling to deal with the issues corresponding to radioactive cesium migration in environment with some case studies. (author)

  18. The determination of cesium and rubidium in highly radioactive waste liquid

    International Nuclear Information System (INIS)

    Wei Songsheng

    1991-01-01

    Cesium and rubidium in high-level waste liquid were determined by atomic absorption spectrometry with the instrument modified for analyzing radioactive samples. The results show that the method is effective and safe. The error of the method is less than +- 3%, and it has been used in the production of cesium

  19. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  20. Prussian blue as an antidote for radioactive thallium and cesium poisoning

    Directory of Open Access Journals (Sweden)

    Altagracia-Martinez M

    2012-06-01

    Full Text Available Marina Altagracia-Martínez, Jaime Kravzov-Jinich, Juan Manuel Martínez-Núñez, Camilo Ríos-Castañeda, Francisco López-NaranjoDepartments of Biological Systems and Health Care, Biological and Health Sciences Division, Universidad Autónoma Metropolitana-Xochimilco, Mexico DF, MexicoBackground: Following the attacks on the US on September 11, 2001, potentially millions of people might experience contamination from radioactive metals. However, before the specter of such accidents arose, Prussian blue was known only as an investigational agent for accidental thallium and cesium poisoning. The purpose of this review is to update the state of the art concerning use of Prussian blue as an effective and safe drug against possible bioterrorism attacks and to disseminate medical information in order to contribute to the production of Prussian blue as a biodefense drug.Methods: We compiled articles from a systematic review conducted from January 1, 1960 to March 30, 2011. The electronic databases consulted were Medline, PubMed, the Cochrane Library, and Scopus.Results: Prussian blue is effective and safe for use against radioactive intoxications involving cesium-137 and thallium. The US Food and Drug Administration has approved Prussian blue as a drug, but there is only one manufacturer providing Prussian blue to the US. Based on the evidence, Prussian blue is effective for use against radioactive intoxications involving cesium-137 and thallium, but additional clinical research on and production of Prussian blue are needed.Keywords: Prussian blue, radioactive cesium, thallium, intoxication, biodefense drug

  1. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded 137 Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500 0 C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137 Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137 Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10 -10 kg m -2 s -1 , while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10 -12 kg m -2 s -1 . The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137 Cs aluminosilicate pellets were 1.29 x 10 -16 m 2 s -1 , 6.88 x 10 -17 m 2 s -1 , and 1.35 x 10 -17 m 2 s -1 , respectively

  2. Advance in the study of removal of cesium from radioactive wastewater by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Wang Songping; Wang Xiaowei; Du Zhihui

    2014-01-01

    The excellent performance in the removal of cesium from radioactive wastewater by inorganic ion exchangers has received extensive attention due to their characteristic physico-chemical features. The paper summarized research progress of removal of cesium by different inorganic ion exchangers such as silicoaluminate, salts of hetero polyacid, hexacyanoferrate, insoluble salts of acid with multivalent metals, insoluble hydrous oxides of multivalent metals and silicotitanate and reviewed several removal systems of cesium by inorganic ion exchangers which might offer China some reference in treatment and disposal of radioactive wastewater. (authors)

  3. The Effect of Pretreatment on the Cesium Adsorption Ability of IONSIV(C)IE-911

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    1999-01-01

    The recovery of plutonium from reactor fuel elements at the Savannah River Site generated nearly 34 million gallons of high level waste. The Site stores the waste as a mixture of precipitated metal hydroxides and associated supernatant liquid with elevated concentrations of free hydroxide. The liquid fraction contains the majority of the radioactive cesium

  4. Intercomparison of numerical simulations on oceanic dispersion of the radioactive cesium released because of the Fukushima disaster

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H.; Kobayshi, T.; Furuno, A. [Japan Atomic Energy Agency, Ibaraki (Japan); Usui, N.; Kamachi, M. [Japan Meteorological Agency, Meteorological Research Inst., Ibaraki (Japan); Nishikawa, S.; Ishikawa, Y. [Japan Agency for Marine-Earth Science and Tech., Kanagawa (Japan)

    2014-07-01

    We conducted numerical simulations on oceanic dispersion of the radioactive cesium released because of the Fukushima disaster in the North Pacific. Two independent oceanic reanalysis data were used in the simulations. Both simulations suggested that the {sup 137}Cs concentration had been reduced to the pre-Fukushima level around 2.5 years after the disaster. The intercomparison revealed that meso-scale eddies accompanied by the Kuroshio Extension may have efficiently diluted the radioactive cesium at the sea surface. The meso-scale eddies also played an important role in transporting the surface radioactive cesium into the intermediate layer. (author)

  5. Survey of environmental radiation in Kawamata-machi, Fukushima-ken (2). Radioactive cesium in wild mushroom

    International Nuclear Information System (INIS)

    Inagaki, Masayo; Yamanishi, Hirokuni; Wakabayashi, Genichiro; Hohara, Sin-ya; Itoh, Tetsuo; Shirasaka, Norifumi; Tanesaka, Eiji; Okumura, Hiroshi; Furukawa, Michio

    2013-01-01

    Large amount of radioactive cesium was emitted from the TEPCO Fukushima Dai-ichi nuclear power plant by the accident into atmospheric air, and a part of the radioactivity was brought to the ground by rain and snowfall. The Yamakiya district in Kawamata-machi, Fukushima is specified as the prepared evacuation zone. The authors collected wild mushrooms in this district as samples with gentle guide of local mushroom lovers in October, 2012. The kinds of mushroom were specified by the mushroom specialist. 16 kinds of mushrooms have been extracted. The extracted mushroom was brought back to the university. The concentration of radioactive cesium was measured by means of the hyperpure germanium semiconductor detector. The concentrations were ranged from 0.5 to 2600 Bq/g, and were different with points of sampling and kinds. The concentrations were compared with before washing and after washing by means of ultrasonic cleaning. The amount of radioactive cesium reduced to the range from 30% to 60% of the before washing. (author)

  6. Radioactive and Stable Cesium Distributions in Fukushima Forests

    Science.gov (United States)

    Ioshchenko, V.; Kivva, S.; Konoplev, A.; Nanba, K.; Onda, Y.; Takase, T.; Zheleznyak, M.

    2015-12-01

    Fukushima Dai-ichi NPP accident has resulted in release into the environment of large amounts of 134Cs and 137Cs and in radioactive contamination of terrestrial and aquatic ecosystems. In Fukushima prefecture up to 2/3 of the most contaminated territory is covered with forests, and understanding of its further fate in the forest ecosystems is essential for elaboration of the long-term forestry strategy. At the early stage, radiocesium was intercepted by the trees' canopies. Numerous studies reported redistribution of the initial fallout in Fukushima forests in the followed period due to litterfall and leaching of radiocesium from the foliage with precipitations. By now these processes have transported the major part of deposited radiocesium to litter and soil compartments. Future levels of radiocesium activities in the aboveground biomass will depend on relative efficiencies of the radiocesium root uptake and its return to the soil surface with litterfall and precipitations. Radiocesium soil-to-plant transfer factors for typical tree species, soil types and landscape conditions of Fukushima prefecture have not been studied well; moreover, they may change in time with approaching to the equilibrium between radioactive and stable cesium isotopes in the ecosystem. The present paper reports the results of several ongoing projects carried out by Institute of Environmental Radioactivity of Fukushima University at the experimental sites in Fukushima prefecture. For typical Japanese cedar (Cryptomeria japonica) forest, we determined distributions of radiocesium in the ecosystem and in the aboveground biomass compartments by the end of 2014; available results for 2015 are presented, too, as well as the results of test application of D-shuttle dosimeters for characterization of seasonal variations of radiocesium activity in wood. Based on the radiocesium activities in biomass we derived the upper estimates of its incorporation and root uptake fluxes, 0.7% and 3% of the total

  7. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests.

    Science.gov (United States)

    Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya

    2018-07-01

    After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Radioactive cesium-134 and cesium-137 measured by ChIbaraki-Kizuna No.1 in the Paleo-Kantoh great depth submarine basin

    International Nuclear Information System (INIS)

    Kimura, Kazuya; Nirei, Hisashi; Yoshida, Takeshi

    2012-01-01

    The 2011 Earthquake off the Pacific Coast of Tohoku caused serious geological disasters, on March 11th. Especially radioactive pollution by the nuclear accident at the Fukushima No. 1 nuclear power plant has the medical environmental problem. We have been researching the actual condition of that in Higashi-Kanto area by use of RT-30 (made by GEORADIS). In the result, it becomes clear that almost radiogen which diffused at a Higashi-Kantou is cesium-134 and cesium-137, and radioactive pollution is also a kind of geo-pollution. In fact, radioactive ingredients move according to mass transfer and deposition rule. For example, we verified that radiogen move and deposit on a water catchment area at a side road of Higashi-kanto Expressway in the northern Chiba prefecture. So, we must make out a unit of geological layer and characteristic features of radioactive materials when investigate and decontamination. If we do that without knowledge of geological unit and radiogen's attribution, radioactive pollution would become diffuse. Just for the record, this was written in the Katori-Narita-Itako International Declaration (IUGS-GEM). (author)

  9. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K.; Di Vitta, Patricia B.

    2013-01-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  10. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  11. Results of Plutonium Intercalibration in Seawater and Seaweed Samples

    International Nuclear Information System (INIS)

    Fukai, R.; Murray, C.N.

    1976-01-01

    The results of the intercalibration exercise for the measurement of plutonium-239 and 228 in two seawater samples SW-I-1 and SW-I-2 and a marine algae sample AG-I-1 are presented. Seventeen laboratories from 8 countries as well as the IAEA International Laboratory of Marine Radioactivity took part. A discussion of the results and methods used in the analysis is given. It is concluded that in spite of the complicated chemical procedures involved in plutonium analysis, the scatter of the reported results was much smaller than that for fission product radionuclides such as strontium-90, ruthenium-106, cesium-137 etc. (author)

  12. Adsorption of Radioactive Cesium to Illite-Sericite Mixed Clays

    Science.gov (United States)

    Hwang, J. H.; Choung, S.; Park, C. S.; Jeon, S.; Han, J. H.; Han, W. S.

    2016-12-01

    Once radioactive cesium is released into aquatic environments through nuclear accidents such as Chernobyl and Fukushima, it is harmful to human and ecological system for a long time (t1/2 = 30.2 years) because of its chemical toxicity and γ-radiation. Sorption mechanism is mainly applied to remove the cesium from aquatic environments. Illite is one of effective sorbent, considering economical cost for remediation. Although natural illite is typically produced as a mixture with sericite formed by phyllic alteration in hydrothermal ore deposits, the effects of illite-sericite mixed clays on cesium sorption was rarely studied. This study evaluated the sorption properties of cesium to natural illite collected at Yeongdong in Korea as the world-largest illite producing areas (termed "Yeongdong illite"). The illite samples were analyzed by XRF, XRD, FT-IR and SEM-EDX to determine mineralogy, chemical composition, and morphological characteristics, and used for batch sorption experiments. Most of "Yeongdong illite" samples predominantly consist of sericite, quartz, albite, plagioclase feldspar and with minor illite. Cesium sorption distribution coefficients (Kd,Cs) of various "Yeongdong illite" samples ranged from 500 to 4000 L/kg at low aqueous concentration (Cw 10-7 M). Considering Kd,Cs values were 400 and 6000 using reference sericite and illite materials, respectively, in this study, these results suggested that high contents of sericite significantly affect the decrease of sorption capabilities for radiocesium by natural illite (i.e., illite-sericite mixed clay).

  13. Sorption of cesium, radium, protactinium, uranium, neptunium and plutonium on rapakivi granite

    International Nuclear Information System (INIS)

    Huitti, T.; Hakanen, M.

    1996-12-01

    The aim of the study is to determine the sorption of cesium, radium, protactinium, uranium, neptunium and plutonium on rapakivi granite in the brackish groundwater of Haestholmen (site of the Loviisa-1, Loviisa-2 reactors). The studies were carried out under aerobic (Cs, Ra, Pa, U, Np, Pu) and anaerobic (Np, Pa, Pu, Tc) laboratory conditions. The cation exchange capasity was determined for the rock and the diffusion of tritiated water in the rocks of different degree of alteration. The sorption and diffusion properties of the rocks are briefly compared with those of host rocks at other sites under investigation by the Finnish company Posiva Oy for the final disposal of spent fuel. (29 refs.)

  14. Radioactive substances

    International Nuclear Information System (INIS)

    Butler, G.C.; Hyslop, C.

    1980-01-01

    The purpose of this chapter is to show how to assess the detriment resulting from the release of radioactive materials to the environment. The minimum information required for the assessments is given for seven radionuclides of interest from the point of view of environmental contamination. The seven radionuclides are tritium, krypton-85, strontium-90, iodine-131, cesium-137, radium-226 and plutonium-239. Information is given on the radiation doses and the radiation effects on man due to these radioisotopes. (AN)

  15. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    Science.gov (United States)

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  16. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Barney, G.S.

    1975-05-01

    Radioactive cesium (primarily 137 Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137 Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO 2 /Al 2 O 3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  17. Distribution of radioactive cesium ((134)Cs Plus(137)Cs) in a contaminated Japanese soybean cultivar during the preparation of tofu, natto, and nimame (Boiled Soybean).

    Science.gov (United States)

    Hachinohe, Mayumi; Kimura, Keitarou; Kubo, Yuji; Tanji, Katsuo; Hamamatsu, Shioka; Hagiwara, Shoji; Nei, Daisuke; Kameya, Hiromi; Nakagawa, Rikio; Matsukura, Ushio; Todoriki, Setsuko; Kawamoto, Shinichi

    2013-06-01

    We investigated the fate of radioactive cesium ((134)Cs plus (137)Cs) during the production of tofu, natto, and nimame (boiled soybean) from a contaminated Japanese soybean cultivar harvested in FY2011. Tofu, natto, and nimame were made from soybean grains containing radioactive cesium (240 to 340 Bq/kg [dry weight]), and the radioactive cesium in the processed soybean foods and in by-product fractions such as okara, broth, and waste water was measured with a germanium semiconductor detector. The processing factor is the ratio of radioactive cesium concentration of a product before and after processing. For tofu, natto, nimame, and for the by-product okara, processing factors were 0.12, 0.40, 0.20, and 0.18, respectively; this suggested that these three soybean foods and okara, used mainly as an animal feed, can be considered safe for human and animal consumption according to the standard limit for radioactive cesium of soybean grains. Furthermore, the ratio of radioactive cesium concentrations in the cotyledon, hypocotyl, and seed coat portions of the soybean grain was found to be approximately 1:1:0.4.

  18. The technological safety in facilities that manage radioactive sources

    International Nuclear Information System (INIS)

    Lizcano, D.

    2014-10-01

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  19. Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune.

    Science.gov (United States)

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight (134)Cs and 607,000 Bq kg(-1) dry weight (137)Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil.

  20. Overview of insoluble radioactive cesium particles emitted from the Fukushima Dai-ichi Nuclear Power Station

    Science.gov (United States)

    Satou, Yukihiko

    2017-04-01

    In the early stage of the Fukushima Dai-ichi Nuclear Power Station (F1NPS) accident, number of spot type contamination has been observed in computed autoradiography (Kashimura 2013, Shibata 2013, Satou 2014). It's means presence of radioactive particles, however, insoluble cesium particle was overlooked because cesium, which is dominant radioactive element in the accident, becomes ionized in the environment. Adachi et al. (2013) showed presence of cesium (Cs)-bearing particles within air dust sample collected at Tsukuba, 170 km south from the Fukushima site, in midnight of 14 to morning of 15 March 2011. These particles were micrometer order small particles and Cs was could be detectable as element using an energy dispersive X-ray spectroscopy (EDX). However, other radioactive elements such as Co-60, Ru-103 and uranium, which were dominant element of radioactive particles delivered from Chernobyl accident, could not detected. Abe et al. (2014) employed a synchrotron radiation (SR)-micro(μ)-X-ray analysis to the Cs-bearing particles, and they were concluded that (1) contained elements derived from nuclear fission processes and from nuclear reactor and fuel materials; (2) were amorphous; (3) were highly oxidized; and (4) consisted of glassy spherules formed from a molten mixture of nuclear fuel and reactor material. In addition, Satou et al. (2016) and Yamaguchi et al. (2016) disclosed that silicate is main component of Cs-bearing particles. Satou et al. (2015) discovered two types of radioactive particles from soil samples collected in the vicinity of the F1NPS. These particles were remained in the natural environment more than four years, silicate is main component in common of each group particles. Group A particles were very similar to Cs-bearing particles reported by Adachi et al. except particle shape. On the other hand, group B is big particles found in north area from the F1NPS, and the strongest particles contained 20 kBq of Cs-137 within a particle

  1. Spatiotemporal distribution of radioactive cesium released from Fukushima Daiichi Nuclear Power Station in the sediment of Tokyo Bay, Japan

    International Nuclear Information System (INIS)

    Nakagawa, Ryota; Ishida, Masanobu; Baba, Daisuke; Tanimoto, Satomi; Okamoto, Yuichi; Yamazaki, Hideo

    2013-01-01

    The spatial and temporal distribution of "1"3"4Cs and "1"3"7Cs released from Fukushima Daiichi Nuclear Power Station in the Tokyo Bay sediments were investigated. The total radioactivity of "1"3"4Cs and "1"3"7Cs detected in the Tokyo Bay sediment ranged from 240 to 870 Bq/kg-dry in the estuary of Arakawa River, but the activities detected in other sites were about 90 Bq/kg-dry or less. These results suggested that radioactive cesium, which precipitated to the ground, was carried to the river along with clay particles by rainfall and transported to the estuary. The vertical distribution of radioactive cesium showed that it invaded deeper than estimated based on the accumulation rate of the sediment. It was described that the vertical distribution of radioactive cesium was affected by physical mixing of sediments by tidal current, flood, and bioturbation of benthos. (author)

  2. Behavior of radioactive metal surrogates under various waste combustion conditions

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Lee, Jae Hee; Kim, Jung Guk; Yoo, Jae Hyung; Kim, Joon Hyung

    2002-01-01

    A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 900 .deg. C, under oxygen-deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm O 2 ). At high temperatures above 1,400 .deg. C, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 1500 .deg. C. Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd 2 O 3 , CoO and Cs 2 O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration

  3. Cesium in the nutrient cycle. Cesium metsaen ravinnekierrossa marjojen ja sienten cesium ei vaehene

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A

    1992-01-01

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland.

  4. Status of plutonium ceramic immobilization processes and immobilization forms

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-01-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R ampersand D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi 2 O 7 ), the desired actinide host phase, with lesser amounts of hollandite (BaAl 2 Ti 6 O 16 ) and rutile (TiO 2 ). Alternative actinide host phases are also being considered. These include pyrochlore (Gd 2 Ti 2 O 7 ), zircon (ZrSiO 4 ), and monazite (CePO 4 ), to name a few of the most promising. R ampersand D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO 2 powder, cold press and sinter fabrication methods, and immobilization form formulation issues

  5. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  6. High-temperature incineration of radioactive waste. Exploitation of the FLK-60 slagging incinerator for the treatment of different waste streams contaminated with plutonium

    International Nuclear Information System (INIS)

    Voorde Van de, N.; Taeymans, A.; Hennart, D.; Vanbrabant, R.; Balleux, W.; Geenen, G.; Gijbels, J.

    1986-01-01

    During the years 1983 and 1984 the FLK-60 high-temperature slagging incinerator at Mol was used for incineration of simulated plutonium waste and BWR power-station waste after extensive technical adaptations. A total of 10 tons of simulated waste containing 15 g of plutonium and 6 tons of simulated waste containing 624 MBq of 60 Co and 393 MBq of cesium isotopes was successfully treated. The average volume reduction factor was 18. Global decontamination factors of 280 000 for 137 Cs and 22 000 000 for 239 Pu were measured. Routine working and interventions for maintenance and repair could be carried out safely in alpha-conditions. The report describes in detail the technical adaptations and the behaviour of the various parts of the installation during the 39 runs carried out in the contract period. It also gives the chemical and radiochemical composition of the granules and secondary waste streams. The plutonium-based leach rate of the granules is in the range of 2 x 10 -5 to 3.5 x 10 -4 g/cm 2 . d. Finally typical mass, energy and radioactivity balances of the installation are given and various options for the final conditioning of the granules are briefly discussed. 6 refs, 6 figs, 29 tables

  7. Recent advances of numerical simulation studies for radioactive cesium adsorption on soil materials

    International Nuclear Information System (INIS)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2013-01-01

    Radiocesium (Cesium 134 and 137) emitted from destroyed Fukushima Daiichi Nuclear Power Production Station is known mostly to remain for a long time on earth's surfaces and to become sources of radiation exposure to habitants. Large scale decontamination work carried out by national and local governments inevitably produces tremendous amount of radioactive wastes of soils whose volume must be effectively and economically reduced based on a scientifically reliable technique. This paper employs the atomic and molecular simulation method applied to adsorption mechanism of soils and cesium ions and presents the examples of proposals with the results of this field. (S. Ohno)

  8. Status of plutonium ceramic immobilization processes and immobilization forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.; Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (United States); Vance, E.R.; Jostsons, A. [Australian Nuclear Science and Technology Organization, Menai (Australia)] [and others

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.

  9. Investigations of Baltic See radioactivity within 1976-1980

    International Nuclear Information System (INIS)

    Weiss, D.; Lyonnig, M.; Tille, J.; Gzhibovska, D.; Tomchak, Ya.; Gedeonov, L.I.; Gusev, D.I.; Ivanova, L.M.; Pavlovskij, O.A.; Stepanova, V.D.

    1983-01-01

    The report presents summary of data on the Baltic Sea radioactive contamination obtained in DDR, PPR and the USSR within 1976-1980. The seawater, sediments and aquatic plants and animals were investigated. The distribution of strontium-90 and cesium-137 isotopes is given both for the open sea and its gulfs. Tendency towards strontium-90 concentration decrease is noted though cesium-137 concentration rise was observed in 1980 due to radioactive and polluted water ingress from the Northern Sea. In a number of points, except western regions in the vicinity of the Northern Sea, uniform distributions of strontium-90 and cesium-137 concentations versus depth were established. The radionuclide contents in water, sediments and aquatic organisms of Greifswald and Finland gulfs where Nuclear Power Plants are located on the seashore were found to be the same as in the open sea. The dependence of strontium-90 and especially cesium-137 sorption on the sediments composition has been noticed. In 1980 DDR presented data on tritium content in both near-surface and deep waters. Poland has carried out the first investigations of plutonium-239 and 240 content in the sediments. The dynamic behaviour of strontium-90 and cesium-137 concentrations in the Baltic Sea water within 1959-1980 has been reviewed. Data on strontium-90 and cesium-137 content in fishes and plants are given. On this basis the dose commitmments for population were estimated. 19 refs.; 27 tabs.; 6 figs

  10. Measurement of cesium and mercury emissions from the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1992-01-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to measure non-radioactive cesium in the offgas system from the glass melter. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICP-MS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. In addition, total particulate measurements were also made. Measurements of mercury decontamination factors were made on the same equipment; the results indicate that most of the mercury in the offgas system probably exists as elemental mercury and HgCl 2 , with some HgO and Hg 2 Cl 2 . The decontamination factors determined for cesium, total particulate, and mercury all compared favorably with the design values

  11. Novel Approach for the Remediation of Radioactive Cesium Contaminated Soil with nano-Fe/Ca/CaO Dispersion Mixture in Dry Condition

    Directory of Open Access Journals (Sweden)

    Mallampati S. R.

    2013-04-01

    Full Text Available Present study, first time we developed a nano-Fe/Ca/CaO dispersion mixture based remediation and volume reduction method of real radioactive cesium contaminated soils. After soil samples treated with 10wt% of nano-Fe/Ca/CaO dispersion mixtures, emitting radiation intensity was reduced from 4.00 μSv/h to 0.95 μSv/h in non-magnetic fraction soils. While, after treatment, about 30wt% magnetic and 70wt% nonmagnetic fraction soils were separated, and it’s condensed radioactive cesium concentration was about 80% and 20%, respectively. By this way, cesium contaminated soil volume can be reduced. These preliminary results appear to be very promising and the simple mixing with the addition of nano-Fe/Ca/CaO may be considered potentially applicable for the remediation and separation of radioactive Cs contaminated soil in dry conditions.

  12. Treatment of radioactive wastes containing plutonium

    International Nuclear Information System (INIS)

    Orlando, O.S.; Aparicio, G.; Greco, L.; Orosco, E.H.; Cassaniti, P.; Salguero, D.; Toubes, B.; Perez, A.E.; Menghini, J.E.; Esteban, A.; Adelfang, P.

    1987-01-01

    The radioactive wastes generated in the process of manufacture and control of experimental fuel rods of mixed oxides, (U,Pu)O 2 , require an specific treatment due to the plutonium content. The composition of liquid wastes, mostly arising from chemical checks, is variable. The salt content, the acidity, and the plutonium and uranium content are different, which makes necessary a chemical treatment before the inclusion in concrete. The solid waste, such as neoprene gloves, PVC sleeves, filter paper, disposable or broken laboratory material, etc. are also included in concrete. In this report the methods used to dispose of wastes at Alpha Facility are described. With regard to the liquid wastes, the glove box built to process them is detailed, as well as the applied chemical treatment, including neutralization, filtration and later solidification. As for the solid wastes, it is described the cementation method consisting in introducing them into an expanded metal matrix, of the basket type, that contains as a concentric drum of 200 liter capacity which is smaller than the matrix, and the filling with wet cement mortar. (Author)

  13. Effective extraction of radioactive cesium from various pollutants with a detergent solution including Mg2+ and K+

    International Nuclear Information System (INIS)

    Noguchi, Yuki; Kida, Toshiyuki; Kato, Eiichi; Akashi, Mitsuru; Shimizu, Kikuo

    2015-01-01

    Radioactive cesium (Cs) is extracted effectively from various polluted samples such as soil, silt, and burned ash by washing with a detergent solution comprised of KCl, MgCl 2 , and hydroxyethyl cellulose in a 5% H 2 SO 4 aqueous solution. Repeatedly washing extracts more than 65% of the radioactive Cs. (author)

  14. Polymer-inorganic composite resins for recovery of radioactive cesium from acidic media

    International Nuclear Information System (INIS)

    Park, J.I.; Kim, J.S.; Jo, A.; Jang, E.; Park, Y.J.

    2014-01-01

    In this work, our objectives are as follow: i) the development of a method to produce polymer-ammonium molybdophosphate composite resins with the size range ideal for column operations, ii) the preparation of a different type of polymer-AMP granules, other than polyacrylonitrile, with good physical and chemical stability, and iii) the investigation of sorption and recovery properties of the composite potentially useful for radioactive cesium. (author)

  15. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  16. Method for aqueous radioactive waste treatment

    Science.gov (United States)

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  17. The technological safety in facilities that manage radioactive sources; La seguridad tecnologica en instalaciones que manejan fuentes radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D., E-mail: david.lizcano@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The sealed radioactive sources are used inside a wide range of applications in the medicine, industry and investigation around the world. These sources can contain a great radionuclides variety, exhibiting a wide spectrum of activities and radiological half lives. This way, we can find pattern sources of radionuclides as Americium-241, Plutonium-238, Plutonium-239, Thorium-228 and Thorium-230, etc., with some activity of kBq in research laboratories, Iridium-192 and Cesium-137 sources used in brachytherapy with GBq activities, until sources with P Bq activities in industrial irradiators of Cobalt-60 and Cesium-137. This document approach the physical safety that entities like the IAEA recommends for the facilities that contain sealed sources, especially the measures that are taking in the Instituto Nacional de Investigaciones Nucleares (ININ) and others government facilities. (Author)

  18. Cesium levels in foodstuffs fall slowly

    International Nuclear Information System (INIS)

    Rantavaara, A.

    1994-01-01

    Since spring 1986, radioactive decay has reduced the total amount of radioactive cesium 137 in the Finnish environment, originating in Chernobyl, by 17 per cent. The cesium content in fish keeps falling at a diminishing rate, depending on the species of fish and environmental factors. The use of fish from lakes need not be restricted anymore. The cesium contents of game, mushrooms and wild berries have remained steady for some years now. The same is true for agricultural produce. The contents in milk and meat still keep falling slowly. Most of the cesium ingested by finns comes from fish, then from game, reindeer and gathered foods; the lowest amounts are received from agricultural products. (orig.)

  19. Chemical species of plutonium in Hanford radioactive tank waste

    International Nuclear Information System (INIS)

    Barney, G.S.

    1997-01-01

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  20. Cobalt and nickel ferrocyanide-functionalized magnetic adsorbent for the removal of radioactive cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Sun; Park, Chan Woo; Lee, Kune Woo; Yang, Hee Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, So Jin [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The Fe{sub 3}O{sub 4} nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values (43.2 emu∙g{sup -1} for the CoFC-MNPs, and 47.7 emu∙g{sup -1} for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were 15.63 mg∙g{sup -1} (CoFC-MNPs) and 12.11 mg∙g{sup -1} (NiFC-MNPs). Langmuir/ Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from {sup 137}Cs solution (18-21 Bq∙g{sup -1}). The adsorbent selectively adsorbed {sup 137}Cs, even in the presence of competing cations.

  1. The international comparison of radioactivity measurements on a solution of cesium-139

    International Nuclear Information System (INIS)

    Steyn, J.; Botha, S.M.; Van Staden, J.C.

    1976-03-01

    The participation by the NPRL in an intercomparison of radioactivity measurements as organised by the BIPM is fully described. The radioisotope involved, cesium 139, was made available to the BIPM by the NPRL in carrier-free form. The NPRL used the 4π gamma coincidence counting method with an internal liquid scintillation counter as 4π detector. The preliminary results released by the BIPM show the presence of relatively large systematic errors [af

  2. Latest movements on waste recycling measures. Dynamic state and risk assessment of radioactive cesium in disaster waste

    International Nuclear Information System (INIS)

    Fujikawa, Yoko

    2012-01-01

    A large amount of radioactive substances were discharge by the catastrophe of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company. From the analysis of the dynamic state of radioactive substances in the environment, the radioactive cesium in the land and freshwater environment is distributed much in soil and freshwater sediment (solid phase) rather than in aqueous phase, even though the distribution depends on the composition of liquid phase water and adsorption objects. From this fact, the problem of radioactive cesium in the living environment can be summarized in the problem of solid system disaster waste in the end, such as soil, sediment, sludge, and waste. As for the current situation of disaster waste, this paper introduces the present state of disaster waste, in which treatment operations are not smoothly proceeding due to the large amount of waste, and difficulty in the classification work of waste and incineration treatment work. Regarding the wide-area treatment measures, there are various problems such that some municipalities are cooperative and some municipalities are hesitant about the acceptance of waste with radioactive contamination. As an example, this paper introduces the reviewing process and reference information in Osaka Prefecture regarding the acceptance of waste. (O.A.)

  3. Selective cesium and strontium removal for TRU-liquid waste including fission products and concentrated nitric acids

    International Nuclear Information System (INIS)

    Mimori, T.; Miyajima, K.; Kozeki, M.; Kubota, T.; Tusa, E.; Keskinen, A.

    1996-01-01

    A nuclide removal system was designed for treatment of liquid radioactive waste at the Japan Atomic Energy Research Institute (JAERI) Tokai site. Total system will include removal of plutonium, cesium and strontium. Removal of plutonium will be carried out by a method developed by JAERI. Removal of cesium and strontium will be carried out by the methods developed in Finland. The whole project will be implemented for JAERI in cooperation between Mitsui Engineering and Shipbuilding and IVO International. This project has been carried out under the Science and Technology Agency (STA) of Japan. The liquid to be treated includes 7.4x10 9 Bq/L of cesium and 7.4x10 9 Bq/L of strontium. The amount of alpha nuclides is 3.7x10 6 Bq/L. Nitric acid concentration is 1.74 mol/L. The volume of 11,000 liters had to be treated in 200 batches of operation. Removal of cesium and strontium is based on the use of new ion exchange materials developed in Finland. These inorganic ion exchange materials have extremely good properties to separate cesium and strontium from even very difficult liquids. Ion exchange material will be used in columns, where there are materials both for cesium and strontium. According to column tests with simulated waste, one 2 liter column will effectively reach the required DF during 10 batches of operation. Purified liquid can be led to further liquid treatment at the site. After treatment of liquids, both used particle filters and used ion exchange columns will be drained and stored to wait for final treatment and disposal. The designed treatment system has a special beneficial feature as it does not produce secondary waste. Final waste is in the form of particle filters or ion exchange columns with material. Used ion exchange columns and filters will be replaced with new ones by means of remote handling. Construction of the treatment system will be scheduled to commence in FY1995 and assemblying at the site in FY1996. (J.P.N.)

  4. Indian radioactive waste management programme: an overview

    International Nuclear Information System (INIS)

    Raj, Kanwar; Ozarde, P.D.

    2009-01-01

    The salient features of the closed fuel cycle are recovery and recycle of uranium and plutonium for reconversion as fuel. Emphasis is also being given to separation of useful isotopes of cesium and strontium for use in healthcare and in heat source applications and partitioning of minor actinides for transmutation. This finally leaves a very small percentage of material present in the spent fuel as radioactive waste, which needs to be managed. Radioactive waste management practices in India have roots in indigenous research and development in view of the importance accorded to it from the very inception of the country's nuclear energy programme. India's experience in the management of radioactive waste from research and power reactors, fuel reprocessing, and allied facilities is rich and comparable with international practices. (author)

  5. Removal of radioactive and other hazardous material from fluid waste

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  6. Radioactive cesium elution speed in dried wild Mushrooms collected in 2015

    International Nuclear Information System (INIS)

    Yamaguchi, Toshiro; Arai, Hirotsugu; Ohnuma, Tohru; Arai, Hiromu; Takyu, Sodai; Matsuyama, Tetsuo; Ishii, Keizo

    2016-01-01

    Dried wild mushrooms (12 species, 13 samples) collected in Nagano, Fukushima, and Miyagi Prefectures, Japan, in 2015 were immersed in water for 1,440 min. The elution rate of radioactive cesium (Cs) was calculated based on its radioactivity, which was measured with a high-purity germanium semiconductor detector (GX2018; CANBERRA Industries, Meriden, CT, USA) before and after immersion for each mushroom. Immersion fluid was sampled after 10, 30, 60, 180, 360, and 1,440 min of immersion and dried on aluminum foil. Then, imaging plates (BAS-III, Fujifilm, Tokyo, Japan) exposed to the dried immersion fluid were measured with a Bio-imaging Analyzer System-1800 II (Fujifilm). The 50% elution time of each wild mushroom was calculated based on the photo stimulated luminescence density of the autoradiographs. The radioactive Cs elution rate was > 80% for 11 samples (84% of total) comprising 11 mushroom species. Moreover, the 50% elution time was < 30 min for 9 samples (69% of total) comprising 9 species. This shows that the radioactive Cs elution rate and elution speed were not constant among mushroom species. Based on these results, immersing the mushrooms, which were dried, in water for at least 120 min is an effective method for removing radioactive Cs from wild mushrooms. (author)

  7. Studies of mechanism of radioactive cesium-134 adsorption from water solutions onto tri ammonium dodecamolybdenophosphate(V)

    International Nuclear Information System (INIS)

    Choma, J.; Stasiuk, J.

    1992-01-01

    A mechanism of radioactive cesium-134 adsorption from water solutions on new, inorganic adsorbent composed from 85% of tri ammonium dodecamolibdophosphate(V) and 15% of urea resin is presented. A migration is found of Cs cations into the adsorbent grains. The absorption of Cs-134 beta radiation is studied as a function of WMF-15 tablet thickness. The penetration depth of radionuclide was found to be function of the process duration and the adsorbent density. Diffusion of cesium into the adsorbent grains explains the effect of ''recreation'' of its adsorption capacitance. (author). 2 refs, 2 figs

  8. Chemical speciation of plutonium in the radioactive waste burial ground at the Savannah River Plant

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1978-08-01

    The plutonium chemical species in two types of samples from the Savannah River Plant burial ground for radioactive waste were identified. Samples analyzed were water and sediment from burial ground monitoring well C-17 and soil from an alpha waste burial trench. Soluble plutonium in the monitoring well was less than 12A in diameter, was cationic, and contained about 43% Pu(VI) and 25% Pu(IV). The equilibrium distribution coefficient (K /sub d/) for soluble plutonium from the well water (pH 7) to burial ground soil was about 60. Soil plutonium from the waste trench was not cation-exchanged; 78% of the soil plutonium was associated with metallic oxides in the soil. Approximately 9% of the Pu was contained in the crystalline soil matrix. Thus, about 87% of the plutonium in the soil was in a relatively immobile form. Ion-exchangeable and organic acid forms of plutonium amounted to only about 2.5% each. The bulk of the plutonium now on burial ground soils will be immobile except for movement of soil particles containing plutonium. 6 tables

  9. Preferential removal and immobilization of stable and radioactive cesium in contaminated fly ash with nanometallic Ca/CaO methanol suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Sakita, Shogo [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara City, Hiroshima 727-0023 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania)

    2014-08-30

    Graphical abstract: Schematic representation of possible mechanisms determining the Cs extraction and immobilization in fly ash during water, methanol or n-MCaS extraction. - Highlights: • nMCaS suspension for cesium extraction and immobilization in fly ash was developed. • Enhanced cesium immobilization was done by nanometallic Ca/CaO methanol suspension. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • nMCaS unique and a highly potential amendment for the remediation of Cs. - Abstract: In this work, the capability of nanometallic Ca/CaO methanol suspension in removing and/or immobilizing stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs) in contaminated fly ash was investigated. After a first methanol and second water washing yielded only 45% of {sup 133}Cs removal. While, after a first methanol washing, the second solvent with nanometallic Ca/CaO methanol suspension yielded simultaneous enhanced removal and immobilization about 99% of {sup 133}Cs. SEM-EDS analysis revealed that the mass percent of detectable {sup 133}Cs on the fly ash surface recorded a 100% decrease. When real radioactive cesium contaminated fly ash (containing an initial 14,040 Bq kg{sup −1134}Cs and {sup 137}Cs cumulated concentration) obtained from burning wastes from Fukushima were reduced to 3583 Bq kg{sup −1} after treatment with nanometallic Ca/CaO methanol suspension. Elution test conducted on the treated fly ash gave 100 Bq L{sup −1} total {sup 134}Cs and {sup 137}Cs concentrations in eluted solution. Furthermore, both ash content and eluted solution concentrations of {sup 134}Cs and {sup 137}Cs were much lower than the Japanese Ministry of the Environment regulatory limit of 8000 Bq kg{sup −1} and 150 Bq L{sup −1} respectively. The results of this study suggest that the nanometallic Ca/CaO methanol suspension is

  10. Cesium in the nutrient cycle

    International Nuclear Information System (INIS)

    Rantavaara, A.

    1992-01-01

    Most radioactive cesium in forests is deposited in soil, from which it passes into berries and mushrooms, and further to game. The cesium contents of Finnish berries and mushrooms vary depending on the intensity of Chernobyl fallout. Northern Haeme, Pirkanmaa and parts of central Finland received the most fallout. Weather conditions and the environmental factors, and other circumstances during the growth period, also affect the contents. However, consumption of wild berries, mushrooms and game need not be restricted because of radioactivity anywhere in Finland

  11. Derivation of cesium-137 residual radioactive material guidelines for the Peek Street site, Schenectady, New York

    International Nuclear Information System (INIS)

    Jones, L.; Nimmagadda, M.; Yu, C.

    1992-01-01

    Residual radioactive material guidelines for cesium-137 were derived for the Peek rk. The derivation was based on the requirement that the Street site in Schenectady, New York. The derivation was based on the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Peek Street site should not exceed a dose of 100 mrem/yr following remedial action. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD was used in this evaluation. Three potential scenarios were considered for the site on the assumption that for a period of 1,000 years following remedial action, the site wig be utilized without radiological restrictions. The scenarios vary with regard to use of the site, time spent at the site, and sources of food consumed. Results indicate that the basic dose limit of 100 mrem/yr will not be exceeded for cesium-137 within 1,000 years, provided that the soil concentration of cesium-137 at the Peek Street site does not exceed the following levels: 98 pCi/g for Scenario A (industrial worker: the expected scenario), 240 pCi/g for Scenario B (recreationist: a plausible scenario), and 34 pCi/g for Scenario C (resident farmer ingesting food produced in the decontaminated area: a plausible scenario)

  12. Radioactive cesium removal from seawater using adsorptive fibers prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Goto, Shota; Kawai-Noma, Shigeko; Umeno, Daisuke; Saito, Kyoichi; Fujiwara, Kunio; Sugo, Takanobu; Kikuchi, Takahiro; Morimoto, Yasutomi

    2015-01-01

    The meltdown of three reactors of the TEPCO Fukushima Daiichi nuclear power station (NPS) caused by the Great East Japan Earthquake on March 11th 2011 resulted in the emission of radionuclides such as cesium-137 and strontium-90 to the environment. For example, radioactive cesium exceeding the legal discharge limit (90 Bq/L, 2×10 -13 M) was detected in the seawater of the seawater-intake area of the NPS at the end of September 2014. Adsorbents with a high selectivity for cesium ions over other alkali metal ions such as sodium and potassium ions are required for cesium removal from seawater because sodium and potassium ions dissolve respectively at much higher concentrations of 5×10 -1 and 1×10 -2 M than cesium ions (2×10 -9 M). In addition, the simple operations of the immersion in seawater and the recovery of the adsorbents from seawater are desirable at decontamination sites. We prepared a cobalt-ferrocyanide-impregnated fiber capable of specifically capturing cesium ions in seawater by radiation-induced graft polymerization and chemical modifications. First, a commercially available 6-nylon fiber was irradiated with γ-rays. Second, an epoxy-group-containing vinyl monomer, glycidyl methacrylate, was graft-polymerized onto the γ-ray-irradiated nylon fiber. Third, the epoxy ring of the grafted polymer chain was reacted with triethylenediamine to obtain an anion-exchange fiber. Fourth, ferrocyanide ions, [Fe(CN) 6 ] 4 - , were bound to the anion-exchange group of the polymer chains. Finally, the ferrocyanide-ion-bound-fiber was placed in contact with cobalt chloride to precipitate insoluble cobalt ferrocyanide onto the polymer chains. Insoluble cobalt ferrocyanide was immobilized at the periphery of the fiber. However, the impregnation structure remains unclear. Here, we clarified the structure of insoluble cobalt ferrocyanide impregnated onto the polymer chain grafted onto the fiber to ensure the chemical and physical stability of the adsorptive fiber in

  13. Transfer of radioactive cesium from soil to rape plants, rape blossoms and rape honey

    International Nuclear Information System (INIS)

    Molzahn, D.; Klepsch, A.; Assmann-Wertmueller, U.

    1989-01-01

    Due to the test of atomic weapons and the accident in the nuclear power plant at Chernobyl, the vegetation in Germany has been exposed to cesium contamination in the soil. It was to be expected that activity would migrate from soil to plants and to food products. In this work, the transfer of radioactive cesium from soil to rape plants (Brassica napus var. oleifera), rape blossoms and further to rape honey was investigated. By measuring the gamma activity of cesium using germanium detectors with measuring capacity up to 30 h per sample (limit of detection about 0.14 Bq/kg to 0.19 Bq/kg), we determined a mean transfer factor f cs = 0,116 ± 0,080 for the system soil-rape plant, f cs = 0.065 + 0.075 for the system soil-rape blossom and F!S = 0.098 + 0.044 for the system soil-rape honey (plants and honey wet mass, soil dry mass) (Table IV). Additionally, for the transfer of cesium from rape plants to rape honey, a factor of f cs = 2.04 ± 7.23 (both wet mass) was determined. Due to some environmental circumstances, which can hardly ever be taken into account, the results obtained sometimes differ considerably. Nevertheless, the mean transfer factors are within the range of values found in literature (Table V) [de

  14. Health and Safety Laboratory environmental quarterly, March 1--June 1, 1976. [Fallout, natural radioactivity, and lead in environmental samples from USA, India, and Taiwan during 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1976-07-01

    This report presents current data from the HASL environmental programs, the Air Monitoring Section of the Bhabha Atomic Research Center in India, the Health Physics Section of the Institute of Nuclear Science in Taiwan and the Radiological and Environmental Research Division at Argonne National Laboratory. The initial section consists of interpretive reports and notes on the history of long-range fallout, cesium-137 in Bombay milk, natural and fallout radioactivity in Indian diet, reporting results of radioactivity measurements at near zero levels of sample activity and background, plutonium in soil northeast of the Nevada Test Site, radon levels at the Lloyd, NY regional station, strontium-90 in New York and San Francisco diets through 1975, plutonium-239, 240 in 1974 diet, up-dating stratospheric radionuclide inventories to July 1975 and a revised table of radionuclides. Subsequent sections include tabulations of radionuclide levels in stratospheric air; lead and radionuclides in surface air; strontium-90 in deposition, milk, diet, tap water, and human bone; cesium-137 in Chicago foods in April 1976; and environmental radioactivity surveys for nuclear power plants in North Taiwan. A bibliography of recent publications related to environmental studies is also presented.

  15. Cement materials for cesium and iodine confinement

    International Nuclear Information System (INIS)

    Nicolas, G.; Lequeux, N.; Boch, P.; Prene, S.

    2001-01-01

    The following topics were dealt with: radioactive waste storage, cement materials reacting with radioactive cesium and iodine, chemical barrier formation against radioactive pollution, ceramization, long term stability, XRD, PIXE analysis

  16. Cesium-134 and cesium-137 in honey bees and cheese samples collected in the U. S. after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Ford, B C; Jester, W A; Griffith, S M; Morse, R A; Zall, R R; Lisk, D J; Burgett, D M; Bodyfelt, F W

    1988-01-01

    As a result of the Chernobyl accident on April 25, 1986, possible radioactive contamination of honey bees and cheese sampled in several areas of the United States were measured. Of bees collected in May and June of 1986 in both Oregon and New York, only those from Oregon showed detectable levels of cesium-134 (T1/2 = 2.05 years), a radionuclide which would have originated from the Chernobyl incident. Cheese produced in Oregon and New York before the accident showed only cesium-137 (T1/2 = 30.23 years) but cheese produced afterwards (May and September, 1986) in Oregon contained cesium-134. Cheese produced in Ohio and California at the time of the accident and thereafter contained only cesium-137. In general, the levels of radioactivity were higher in the West coast samples as compared to those taken in the East. The levels of radioactivity detected were considered to be toxicologically of no consequence.

  17. Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination

    Science.gov (United States)

    Zehnder, H. J.; Kopp, P.; Eikenberg, J.; Feller, U.; Oertli, J. J.

    1995-07-01

    From 1989 to 1993 the foliar uptake of radioactive strontium (Sr-85) and cesium (Cs-134) by selected leaves of grapevine plants and the subsequent redistribution within the plants was examined under controlled conditions in a greenhouse. The radionuclides were applied as chlorides. These plants were grown in large pots containing a mixture of local soil and peat. Plant and soil samples were analyzed throughout the growing season and also during the following vegetation period. Only traces of the applied radiostrontium were taken up by the leaves. This element was essentially not redistributed within the plants. In contrast, radiocesium was easily taken up through the leaf surface, transported to other plant parts and to some extent released from the roots into the soil. Cesium reaching the soil may interact with clay particles causing a very reduced availability for plants. Therefore the soil may act as a long-term sink for radiocesium. On the other hand, grape berries represent transient sinks. The cesium levels in the berries decreased again in a late phase of maturation, but the mechanisms causing this loss are not yet identified. During the second vegetation period, only a very minor proportion of the radiocesium taken up previously by the plants was present in the above ground parts.

  18. Derivation of strontium-90 and cesium-137 residual radioactive material guidelines for the Laboratory for Energy-Related Health Research, University of California, Davis

    International Nuclear Information System (INIS)

    Nimmagadda, M.; Yu, C.

    1993-04-01

    Residual radioactive material guidelines for strontium-90 and cesium-137 were derived for the Laboratory for Energy-Related Health Research (LEHR) site in Davis, California. The guideline derivation was based on a dose limit of 100 mrem/yr. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD, was used in this evaluation; this code implements the methodology described in the DOE manual for implementing residual radioactive material guidelines. Three potential site utilization scenarios were considered with the assumption that, for a period of 1,000 years following remedial action, the site will be utilized without radiological restrictions. The defined scenarios vary with regard to use of the site, time spent at the site, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded within 1,000 years for either strontium-90 or cesium-137, provided that the soil concentrations of these radionuclides at the LEHR site do not exceed the following levels: 71,000 pCi/g for strontium-90 and 91 pCi/g for cesium-137 for Scenario A (researcher: the expected scenario); 160,000 pCi/g for strontium-90 and 220 pCi/g for cesium-137 for Scenario B (recreationist: a plausible scenario); and 37 pCi/g for strontium-90 and 32 pCi/g for cesium-137 for Scenario C (resident farmer ingesting food produced in the contaminated area: a plausible scenario). The derived guidelines are single-radionuclide guidelines and are linearly proportional to the dose limit used in the calculations. In setting the actual strontium-90 and cesium-137 guidelines for the LEHR site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors such as whether a particular scenario is reasonable and appropriate

  19. Survey and decontamination trial of boat wastes contaminated with radioactive cesium

    International Nuclear Information System (INIS)

    Takigami, Hidetaka; Yamamoto, Takashi; Suzuki, Go; Takeuchi, Yukio; Tanosaki, Takao; Takata, Mitsuyasu; Okubo, Takuro

    2013-01-01

    Field survey was conducted to investigate radioactive cesium contamination status of the fiber reinforced plastic (FRP) boats which were damaged by the Great East Japan Earthquake and resulting tsunami, and further affected by nuclear fallout from the accident at the Fukushima No. 1 nuclear power plant. Radiation dose rate was measured targeted at some selected boats and the surrounding environment by using radiation survey meters (i.e., NaI (Tl) scintillation counter and GM counter) and a radiation-sensing camera in order to visualize a dose rate distribution within the area. In addition, FRP parts, sediment deposits and stagnant waters in the boats were sampled and their "1"3"4Cs and "1"3"7Cs radioactivity were measured by gamma-ray spectrometry using NaI (Tl) scintillation or Ge detector. From the monitoring results, materials or sediments in the boats enhanced the radiation levels, however, which can be significantly reduced by decontamination operations such as removal and wash-out of the materials or sediments (i.e., countermeasures for surface-deposited radioactivity). Consequently, the conducted survey and decontamination approaches became a good model and promoted a prompt dismantlement, removal and further disposal/recycle by the local authorities concerned. (author)

  20. Cesium 137 in oils and plants from Guatemala

    International Nuclear Information System (INIS)

    Ayala, R.E.; Perez, J.F.

    1993-01-01

    Since 1990 the project of radioactive and environmental contamination started in Guatemala. Studies about the radioactive contamination levels are made within the framework of this project. Cesium-137 has been an interest radionuclide, because it is a fission product released to the environment by the use of nuclear weapons and nuclear power plants accidents. The sampling consisted in collection of soil and grass in 20 provinces of Guatemala, one point by province, and it was made in 1990. The cesium-137 concentration in the samples, was determined by gamma spectrometry, using an hyper pure germanium detector. The results show the presence of radioactive contamination in soil and grass due to cesium-137, at levels that might be considered as normal. The levels found are not harmful for human health, and its importance is the fact that can be used as reference levels for the environmental radioactivity monitoring in Guatemala

  1. An autoradiographical method using an imaging plate for the analyses of plutonium contamination in a plutonium handling facility

    International Nuclear Information System (INIS)

    Takasaki, Koji; Sagawa, Naoki; Kurosawa, Shigeyuki; Mizuniwa, Harumi

    2011-01-01

    An autoradiographical method using an imaging plate (IP) was developed to analyze plutonium contamination in a plutonium handling facility. The IPs were exposed to ten specimens having a single plutonium particle. Photostimulated luminescence (PSL) images of the specimens were taken using a laser scanning machine. One relatively large spot induced by α-radioactivity from plutonium was observed in each PSL image. The plutonium-induced spots were discriminated by a threshold derived from background and the size of the spot. A good relationship between the PSL intensities of the spots and α-radioactivities measured using a radiation counter was obtained by least-square fitting, taking the fading effect into consideration. This method was applied to workplace monitoring in an actual uranium-plutonium mixed oxide (MOX) fuel fabrication facility. Plutonium contaminations were analyzed in ten other specimens having more than two plutonium spots. The α-radioactivities of plutonium contamination were derived from the PSL images and their relative errors were evaluated from exposure time. (author)

  2. Health and Safety Laboratory environmental quarterly, September 1, 1976--December 1, 1976. [Monitoring of environment for radioactivity and chemical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, E.P. Jr.

    1977-01-01

    This report presents current data from the HASL environmental programs, The Swedish Defense Research Establishment, The Woods Hole Oceanographic Institution, Argonne National Laboratory and The New Zealand National Radiation Laboratory. The initial section consists of interpretive reports and notes on ground level air radioactivity in Sweden from nuclear explosions, plutonium in air near the Rocky Flats Plant, nitrous oxide concentrations in the stratosphere, lake sediment sampling, plutonium and americium in marine and fresh water biological systems, radium in cat litter, and quality control analyses. Subsequent sections include tabulations of radionuclide and stable lead concentrations in surface air; strontium-90 in deposition, milk, diet, and tapwater; cesium-137 in Chicago foods in October 1976 and environmental radioactivity measurements in New Zealand in 1975. A bibliography of recent publications related to environmental studies is also presented.

  3. Determination of local-area distribution and relocation of radioactive cesium in trees from Fukushima Daiichi Nuclear Power Plant by autoradiography analysis

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Ohnuki, Toshihiko; Kozai, Naofumi; Yamasaki, Shinya; Yoshida, Zenko; Nanba, Kenji

    2013-01-01

    The local area distribution and relocation of radioactive cesium deposited in trees after the 2011 tsunami-related accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) have been studied by measuring the spatial distribution of cesium on/in trees by autoradiography analysis. Samples of trees were collected from places located between 4 and 55 km from FDNPP approximately 2, 8, 20, and 22 months after the accident. The autoradiography analyses of Cryptomeria japonica, Torreya nucifera, and Thujopsis dolabrata var. hondae samples collected approximately 2 and 8 months after the accident showed that radioactive Cs was mainly distributed as spots on the branches and leaves of the trees emerged before the accident, and was detected in negligible amounts in new branch and leaves that emerged after the accident. On the contrary, radioactive Cs was detected at the outermost tip of the branches in the trees collected 20 months after the accident. Morus alba samples collected 22 months after the accident contained radioactive Cs inside and outside their stems, even though no radioactive Cs was detected in their roots, strongly suggesting that a certain amount of radioactive Cs was translocated from the outside to the inside of stems. These results indicate that the distribution of radioactive Cs deposited on/in the trees gradually changes with time (scale: year). (author)

  4. Effects of natural radioactivity on food radioactivity measurement

    International Nuclear Information System (INIS)

    Ennyu, Atsuhito

    2012-01-01

    Since the accident of the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Company, groups and individuals including local governments, food manufacturers, distribution circles, retail circles, and citizens are eager to measure the radioactivity of food, in order to confirm the safety of food from the concerns about radioactive contamination. The measurement of radioactivity of food is done by quantitatively determining gamma rays due to radioactive cesium that was incorporated into the biosphere cycle after having been released into the environment. As for the radioactivity measurement of food using gamma-ray spectrometry with a potassium iodide scintillation detector, which is very commonly used, this paper describes the handling method of obtained data, the principle of erroneous detection of radioactive cesium and iodine interrupted by natural radionuclides, and countermeasures for it. Major natural radioactivity sources are uranium series and thorium series. This paper explains gamma rays, which are characteristic in the decay process of uranium series and often affect the measurement of radioactive cesium in food and water. (O.A.)

  5. Radioactive waste management and plutonium recovery within the context of the development of nuclear energy in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kushnikov, V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The Russian strategy for radioactive waste and plutonium management is based on the concept of the closed fuel cycle that has been adopted in Russia, and, to a great degree, falls under the jurisdiction of the existing Russian nuclear energy structures. From its very beginning, Russian atomic energy policy was based on finding the most effective method of developing the new fuel direction with the maximum possible utilization of the energy potential from the fission of heavy atoms and the achievement of fuel self-sufficiency through the recycling of secondary fuel. Although there can be no doubt about the importance of economic considerations (for the future), concerns for the safety of the environment are currently of the utmost importance. In this context, spent NPP fuel can be viewed as a waste to be buried only if there is persuasive evidence that such an approach is both economically and environmentally sound. The production of I GW of energy per year is accompanied by the accumulation of up to 800-1000 kg of highly radioactive fission products and approximately 250 kg of plutonium. Currently, spent fuel from the VVER 100 and the RBNK reactors contains approximately 25 tons of plutonium. There is an additional 30 tons of fuel-grade plutonium in the form of purified oxide, separated from spent fuels used in VVER440 reactors and other power production facilities, as well as approximately 100 tons of weapons-grade plutonium from dismantled warheads. The spent fuel accumulates significant amounts of small actinoids - neptunium americium, and curium. Science and technology have not yet found technical solutions for safe and secure burial of non-reprocessed spent fuel with such a broad range of products, which are typically highly radioactive and will continue to pose a threat for hundreds of thousands of years.

  6. Decreasing radioactive cesium in lodged buckwheat grain after harvest

    Directory of Open Access Journals (Sweden)

    Katashi Kubo

    2016-01-01

    Full Text Available This study assessed soil contamination with high radioactive cesium (R–Cs concentration in buckwheat grains by lodging, and assessed the possibility of R–Cs reduction in grain through post-harvest preparation. Analysis of buckwheat grain produced in farmers’ fields and reports from farmers indicated that grain from fields that had lodging showed higher R–Cs than grain from fields with no lodging. A field experiment demonstrated that R–Cs in grain after threshing and winnowing (TW was about six times higher in lodged plants than in nonlodged plants. In lodged plants, R–Cs in grain was decreased to about one-fourth by polishing, and was decreased to about one-seventh by ultrasonic cleaning, compared with R–Cs in grain after TW. These results demonstrate that R–Cs of buckwheat grain of lodged plants can be decreased by removing soil from the grain surface by polishing and winnowing.

  7. Copper ferrocyanide - polyurethane foam as a composite ion exchanger for removal of radioactive cesium

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.; Ahmed, J.; Narasimhan, S.V.

    1999-01-01

    A method has been developed for the removal of cesium from the aqueous radioactive waste using a composite ion-exchanger consisting of Copper-Ferrocyanide Powder (CFC) and Polyurethane (PU) Foam. Polyvinyl acetate has been used as a binder in the preparation of CFC-PU foam. The physical properties of CFC such as density, surface area, IR stretching frequency and lattice parameters have been evaluated and also its potassium and copper(II) content have been estimated. Optimization of loading of CFC on PU foam has been studied. The CFC-PU was viewed under microscope to find out the homogeneity of distribution. Exchange capacities of the CFC-PU foam in different media have been determined and column studies have been carried out. Studies have been undertaken on extraction of cesium from CFC foam and also on digestion of spent CFC-PU foam and immobilization of digested solution in cement matrix. The cement matrices have been characterized with respect to density, bio-resistance and leaching resistance. (author)

  8. Chocolate active

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    There is a table of current radioactivity values for various foods and mushrooms. A special accent is on milk and chocolate. Chocolate sorts with more powdered milk are more active. Finally there is a chapter on radionucleides contained in the Chernobyl fallout, other than cesium 137, cesium 134 and strontium 90. The amounts of ruthenium 106, antimony 125, cerium 144, silver 110 m, cesium 134, strontium 90 and plutonium 239 relative to cesium 137 in soil samples in autumn 1987 are given. Special emphasis is on ruthenium 'hot particles' and on plutonium. (qui)

  9. High-sensitivity determination of radioactive cesium in Japanese foodstuffs. 3 years after the Fukushima accident

    International Nuclear Information System (INIS)

    Katsumi Shozugawa; Mayumi Hori; Motoyuki Matsuo

    2016-01-01

    We analyzed 134 Cs, 137 Cs and 40 K in 96 foodstuffs in supermarkets with high sensitivity over 3 years after Fukushima accident. Milk, yoghurt, rice, tea, salmon, cereal, blueberry, miso, and apples had a trace of 134 Cs and 137 Cs from 10 -3 to 100 Bq/kg, however, some mushrooms that were bought in the outer Fukushima prefecture were contaminated by radioactive cesium over the regulatory limit (100 Bq/kg). In view of the 134 Cs/ 137 Cs radioactivity ratio, we can conclude that 137 Cs detected in remote areas 300 km or more from Fukushima Nuclear power plant contained activity from Pre-Fukushima events such as Chernobyl accident (1986) and atmospheric nuclear explosions (from 1945). (author)

  10. Experimental study on cesium immobilization in struvite structures

    International Nuclear Information System (INIS)

    Wagh, Arun S.; Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A.

    2016-01-01

    Graphical abstract: X-ray diffraction patterns of Ceramicrete forms, green representing struvite-K, and red, struvite-(K,Cs) with 10 wt.% CsCl in it. Cs substitutes partially for K, which immobilizes Cs at room temperature by the acid–base reaction. - Highlights: • Struvite structure of Ceramicrete is an excellent host of radioactive cesium. • The volatility problem of cesium can be avoided by this method. • This method can be used to produce cesium waste forms in ambient conditions. • It can also be used to pretreat cesium in glass vitrification technology. • It also provides a method to produce safe sealed radioactive sources of cesium. - Abstract: Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources.

  11. Experimental study on cesium immobilization in struvite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, IL 60439 (United States); Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2016-01-25

    Graphical abstract: X-ray diffraction patterns of Ceramicrete forms, green representing struvite-K, and red, struvite-(K,Cs) with 10 wt.% CsCl in it. Cs substitutes partially for K, which immobilizes Cs at room temperature by the acid–base reaction. - Highlights: • Struvite structure of Ceramicrete is an excellent host of radioactive cesium. • The volatility problem of cesium can be avoided by this method. • This method can be used to produce cesium waste forms in ambient conditions. • It can also be used to pretreat cesium in glass vitrification technology. • It also provides a method to produce safe sealed radioactive sources of cesium. - Abstract: Ceramicrete, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate that has a struvite-K mineral structure. In this study, we demonstrate that this crystalline structure is ideal for incorporating radioactive Cs into a Ceramicrete matrix. This is accomplished by partially replacing K by Cs in the struvite-K structure, thus forming struvite-(K, Cs) mineral. X-ray diffraction and thermo-gravimetric analyses are used to confirm such a replacement. The resulting product is non-leachable and stable at high temperatures, and hence it is an ideal matrix for immobilizing Cs found in high-activity nuclear waste streams. The product can also be used for immobilizing secondary waste streams generated during glass vitrification of spent fuel, or the method described in this article can be used as a pretreatment method during glass vitrification of high level radioactive waste streams. Furthermore, it suggests a method of producing safe commercial radioactive Cs sources.

  12. Alpha spectrum profiling of plutonium in leached simulated high-level radioactive waste-glass

    International Nuclear Information System (INIS)

    Diamond, H.; Friedman, A.M.

    1981-01-01

    Low-geometry X-ray spectra from /sup 239/Pu and /sup 237/Np, incorporated into simulated high-level radioactive waste-glass, were transformed into depth distributions for these elements. Changes in the depth profiles were observed for a series of static leachings in 75/degree/C water. Radiochemical assay of the leach solutions revealed that little neptunium or plutonium was leached, and that the amount leached was independent of leaching time. The depth profiles of the leached specimens showed that there was selective leaching of nonradioactive components of the glass, concentrating the remaining neptunium and plutonium in a broad zone near (but not at) the glass surface. Eventual redeposition of nonradioactive material onto the glass surface inhibited further leaching

  13. Transporting dynamics of radioactive cesium in a forest ecosystem and its discharge processes

    Energy Technology Data Exchange (ETDEWEB)

    Iseda, Kohei; Ohte, Nobuhito; Tanoi, Keitaro; Endo, Izuki; Oda, Tomoki; Kato, Hiroyu [Graduate School of Agricultural and Life Sciences, University of Tokyo (Japan)

    2014-07-01

    A lot of radioactive substance including {sup 137}Cs, {sup 134}Cs fell out to Tohoku and Kanto region in particular Fukushima prefecture after the accident of Fukushima-daiichi nuclear power plant. Generally, cesium tends to attach to clay particle and organic matter. These clay particle and organic matter can potentially flow out from the forest through the river to the downstream not only as particulate matter but also dissolved matter. It is likely that behavior of cesium is similar to sediment locomotion. The objective of this study is to understand transporting dynamics of radioactive cesium inside and outside of the forest. We started investigations on transporting dynamics of cesium in the forest upper stream of Kami-Oguni river in Date city Fukushima prefecture located in about 50 km from the nuclear power plant since July 2012. We conducted river water sampling at 9 points along the river from the uppermost stream to the middle reaches during low flow condition once a month. We also sampled river water during storm event for 5 times in order to capture the change of {sup 137}Cs concentration in a flood stage. Samples were filtered and separated into particulate and dissolved matters using glass micro-fiber filters (GF/F). Samples were analyzed their {sup 137}Cs concentration by Germanium semiconductor detector at University of Tokyo. During low flow condition, {sup 137}Cs was detected only a very small amount both in particulate and dissolved matters. In contrast, during high flow condition, {sup 137}Cs was detected about 10-100 times higher than that of during low flow condition in particulate matter. We estimated discharge flux of {sup 137}Cs from the forest using the relations between water discharge and {sup 137}Cs concentration. It was 0.977 Bq/(m2 day ) (2012/8/31-2013/4/19). In the forest, we set 2 deciduous tree plots (Quercus serrata, Zelkova serrata and so on) and 1 evergreen confer plot (Cyptomeria japonica). Atmospheric depositions of {sup 137

  14. Survey of glass plutonium contents and poison selection

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M.J.; Ramsey, W.G. [Westinghouse Savannah River Company, Aiken, SC (United States); Ellison, A.J.G.; Shaw, H. [Lawrence Livermore National Laboratory, CA (United States)

    1996-05-01

    If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will prevent criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.

  15. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  16. The study of sorption of cesium radionuclides by 'T-55' ferrocyanide sorbent from various types of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Semenischev, V.S.; Voronina, A.V.; Bykov, A.A.

    2013-01-01

    The sorption of caesium by T-55 sorbent from different types of liquid radioactive wastes is studied. It is shown that the sorbent can be used for extraction of cesium from high level acidic and saline solutions and also for decontamination of caesium contaminated waters containing surfactants and EDTA. (author)

  17. Radioactive cesium in Finnish mushrooms

    International Nuclear Information System (INIS)

    Kostiainen, E.; Ylipieti, J.

    2010-02-01

    Surveillance of radioactive cesium in Finnish mushrooms was started in 1986 at STUK. Results of the surveillance programs carried out in Lapland and other parts of Finland are given in this report. More than 2000 samples of edible mushrooms have been analysed during 1986-2008. The 137 Cs detected in the mushrooms mainly originates from the 137 Cs deposition due to the accident at the Chernobyl nuclear power plant in 1986. The 137 Cs concentrations of mushrooms in the end of 1970s and in the beginning of 1980s varied from some ten to two hundred becquerels per kilogram originating from the nuclear weapon test period. The uneven division of the Chernobyl fallout is seen in the areal variation of 137 Cs concentrations of mushrooms, the 137 Cs concentrations being about tenfold in the areas with the highest deposition compared to those where the deposition was lowest. After the Chernobyl accident the maximum values in the 137 Cs concentrations were reached during 1987-88 among most species of mushrooms. The 137 Cs concentrations have decreased slowly, being in 2008 about 40 per cent of the maximum values. The 137 Cs concentrations may be tenfold in the mushroom species with high uptake of cesium (Rozites caperatus, Hygrophorus camarophyllus, Lactarius trivialis) compared to the species with low uptake (Albatrellus ovinus, Leccinum sp.) picked in the same area. The 137 Cs contents in certain species of commercial mushrooms in Finland still exceed the maximum permitted level, 600 Bq/kg, recommended to be respected when placing wild game, wild berries, wild mushrooms and lake fish on the market (Commission recommendation 2003/274/Euratom). Therefore, the 137 Cs concentrations of mushrooms should be measured before placing them on the market in the areas of the highest 137 Cs deposition, except for Albatrellus ovinus, Boletus sp. and Cantharellus cibarius. The 137 Cs concentrations of common commercial mushroom species, Cantharellus tubaeformis and Craterellus

  18. Cesium glass irradiation sources

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1982-01-01

    The precipitation process for the decontamination of soluble SRP wastes produces a material whose radioactivity is dominated by 137 Cs. Potentially, this material could be vitrified to produce irradiation sources similar to the Hanford CsCl sources. In this report, process steps necessary for the production of cesium glass irradiation sources (CGS), and the nature of the sources produced, are examined. Three options are considered in detail: direct vitrification of precipitation process waste; direct vitrification of this waste after organic destruction; and vitrification of cesium separated from the precipitation process waste. Direct vitrification is compatible with DWPF equipment, but process rates may be limited by high levels of combustible materials in the off-gas. Organic destruction would allow more rapid processing. In both cases, the source produced has a dose rate of 2 x 10 4 rads/hr at the surface. Cesium separation produces a source with a dose rate of 4 x 10 5 at the surface, which is nearer that of the Hanford sources (2 x 10 6 rads/hr). Additional processing steps would be required, as well as R and D to demonstrate that DWPF equipment is compatible with this intensely radioactive material

  19. Distribution of Radioactive Cesium during Milling and Cooking of Contaminated Buckwheat.

    Science.gov (United States)

    Hachinohe, Mayumi; Nihei, Naoto; Kawamoto, Shinichi; Hamamatsu, Shioka

    2018-06-01

    To clarify the behavior of radioactive cesium (Cs) in buckwheat grains during milling and cooking processes, parameters such as processing factor (Pf) and food processing retention factor (Fr) were evaluated in two lots of buckwheat grains, R1 and R2, with different concentrations of radioactive Cs. Three milling fractions, the husk, bran, and flour fractions, were obtained using a mill and electric sieve. The radioactive Cs ( 134 Cs + 137 Cs) concentrations in husk and bran were higher than that in grain, whereas the concentration in flour was lower than that in grain. Pf values for the flours of R1 and R2 were 0.60 and 0.80, respectively. Fr values for the flours of R1 and R2 were 0.28 and 0.53, respectively. Raw buckwheat noodles (soba) were prepared using a mixture of buckwheat flour and wheat flour according to the typical recipe and were cooked with boiling water for 0.5, 1, and 2 min, followed by rinsing with water. Pf values for the soba boiled for 2 min (optimal for eating) made with R1 and R2 were 0.34 and 0.40, respectively. Fr values for these R1 and R2 samples were 0.55 and 0.66, respectively. Pf and Fr values for soba boiled for different times for both R1 and R2 were less than 0.6 and 0.8, respectively. Thus, buckwheat flour and its product, soba, cooked by boiling, are considered acceptable for human consumption according to the standard limit for radioactive Cs in buckwheat grains.

  20. Separation of cesium from intermediate level liquid radioactive waste by solvent extraction with antioxidants

    International Nuclear Information System (INIS)

    Gulis, G.

    1989-01-01

    Antioxidants AO 2246, AO 4, AO 4K, AO 301 (Czechoslovakia) and NOCRAC 2246 (Japan) were tested as extracting agents for the separation of cesiium by solvent extraction with substituted phenols. The following effects on extraction were studied: pH of water phase, influence of diluent and of antioxidant concentration, extraction time, influence of salt content. The extraction of cesium from liquid radioactive waste was tested. The best results were obtained by NOCRAC 2246 in nitrobenzene, the extraction efficiency was 92.3% with pH 13.23. (author) 7 refs.; 5 figs.; 4 tabs

  1. Quantitative analysis on dose to humans as a result of consuming tuna fish contaminated by cesium radionuclides

    International Nuclear Information System (INIS)

    Khani, J.; Donev, J.M.K.C.

    2014-01-01

    Quantitative empirical data is presented on the dose exposure to North Americans consuming tuna fish that have accumulated concentrations of radioactive isotopes. The two particular radioactive isotopes of interest are cesium-137 and cesium-134. Though biological effects of radiation are a widely debatable topic, the consumption of tuna fish does not support significant increased risk of cancer to humans. An important comparison is made between the elevated levels of radioactive cesium concentrations to naturally occurring radionuclides, namely potassium-40 and polonium-210. It is calculated that naturally occurring radioactive isotopes are in the orders of magnitude greater than the cesium radionuclides in tuna fish. (author)

  2. Quantitative analysis on dose to humans as a result of consuming tuna fish contaminated by cesium radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Khani, J.; Donev, J.M.K.C., E-mail: jykhani@ucalgary.ca, E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada)

    2014-07-01

    Quantitative empirical data is presented on the dose exposure to North Americans consuming tuna fish that have accumulated concentrations of radioactive isotopes. The two particular radioactive isotopes of interest are cesium-137 and cesium-134. Though biological effects of radiation are a widely debatable topic, the consumption of tuna fish does not support significant increased risk of cancer to humans. An important comparison is made between the elevated levels of radioactive cesium concentrations to naturally occurring radionuclides, namely potassium-40 and polonium-210. It is calculated that naturally occurring radioactive isotopes are in the orders of magnitude greater than the cesium radionuclides in tuna fish. (author)

  3. Separation of radio cesium from PUREX feed solution by sorption on composite ammonium molybdo phosphate (AMP)

    International Nuclear Information System (INIS)

    Singh, I.J.; Achuthan, P.V.; Jain, S.; Janardanan, C.; Gopalakrishnan, V.; Wattal, P.K.; Ramanujam, A.

    2001-01-01

    Composite AMP exchanger was developed and evaluated for separation of radio cesium from dissolver solutions of PUREX process using a column experiment. The composite shows excellent sorption of radio cesium from dissolver solutions without any loss of plutonium and uranium. The removal of radio cesium from dissolver solutions will help in lowering the degradation of tri-n-butyl phosphate (TBP) in the solvent extraction process and will also help in reducing the radiation related problems. (author)

  4. Extraction of cesium from acid solutions

    International Nuclear Information System (INIS)

    Katykhin, G.S.; Simonov, A.S.

    1983-01-01

    The extraction of cesium from acidic solutions is studied. Halogen-substituted carboxylic acids were chosen for the aqueous phase and nitrobenzene the diluent. The distribution coefficients are determined by the use of radioactive tracers 134 Cs and 137 Cs. It is believed that large singly charged anions of strong acids are necessary for the extraction of cesium. Metal halide acids are selected for supplying the anions

  5. Remedial measures against high levels of radioactive cesium in Swedish lake fish

    International Nuclear Information System (INIS)

    Andersson, T.; Nilsson, Aa.; Haakanson, L.; Kvarnaes, H.

    1991-01-01

    The Swedish Radiation Protection Institute (SSI) has provided funds for the testing of methods to reduce the concentration of radioactive cesium in fish. The main purpose of this report is to present to remedies tested and to give an account of the effect they had on the concentration of Cs-137 in fish. In addition, analyses are made of the lake-specific factors contributing to the Cs-uptake in fish in the tested lakes. The time interval between the remedies adopted and the latest fish analyses (about 2 years on average) is not sufficient to statistically establish the small effects of the remedies. A longer time series of data is required for this

  6. Criteria for cesium capsules to be shipped as special form radioactive material

    International Nuclear Information System (INIS)

    Lundeen, J.E.

    1994-01-01

    The purpose of this report is to compile all the documentation which defines the criteria for Waste Encapsulation and Storage Facility (WESF) cesium capsules at the IOTECH facility and Applied Radiant Energy Corporation (ARECO) to be shipped as special form radioactive material in the Beneficial Uses Shipping System (BUSS) Cask. The capsules were originally approved as special form in 1975, but in 1988 the integrity of the capsules came into question. WHC developed the Pre-shipment Acceptance Test Criteria for capsules to meet in order to be shipped as special form material. The Department of Energy approved the criteria and directed WHC to ship the capsules at IOTECH and ARECO meeting this criteria to WHC as special form material

  7. Accumulative behavior of radioactive cesium during the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Mizuhara, Shinji; Kawamoto, Katsuya; Maeseto, Tomoharu; Kuramochi, Hidetoshi; Osako, Masahiro

    2015-01-01

    Understanding the long-term accumulation behavior of radioactive cesium (r- Cs) in municipal solid waste (MSW) incineration plants is important for safety management of them. In this study, first, not only air dose rate but also r-Cs activity in wall adhesion dust at different point in the inside of a MSW incineration plant were measured. The results showed that higher amounts of the Cs were observed in the surface layer of refractory and that higher air dose ratios were obtained in the upstream region in incineration process. However, the Cs content of adhered dust onto the surface material of incineration equipment was higher in downstream than upstream because of the decrease of flue gas temperature. (author)

  8. Industrial treatment of solutions of fission products. Separation of caesium-137; Traitement industriel de solutions de produits de fission. Separation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, C; Raggenbass, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    sources solides a partir du melange brut, sans separation; b) separation d'un ou plusieurs produits de fission determines a partir desquels sont confectionnees les sources. L'examen de la composition radioactive du melange de produits de fission resultant de l'exploitation des reacteurs de Marcoule (G1, G2 et G3) montre que le cesium-137 represente a lui seul 30 pour cent de l'energie {gamma} disponible a la sortie de l'usine plutonium, 70 pour cent deux ans apres et pratiquement 100 pour cent au bout de 5 ans. Il n'y a donc qu'un interet minime a entreprendre la confection de sources avec le melange de produits de fission, la separation du cesium ne representant pas un travail plus complique et conduisant a un produit dont les possibilites d'utilisation sont plus nombreuses. Nous avons envisage la separation du cesium-137 par une methode derivee de la methode connue basee sur la precipitation du cesium par l'acide phosphotungstique. Dans les methodes publiees, le phosphotungstate est completement dissous et le cesium est extrait de la solution par echange de cations ou par elimination des ions phosphates et tungstates sur une resine echangeuse d'anions. Nous avons etudie la transformation du phosphotungstate de cesium en phosphate et tungstate de baryum par emploi de l'hydroxyde de baryum qui remet le cesium en solution en hydroxyde. Les avantages sont les suivants: - decontamination plus poussee du cesium-137, sans purification supplementaire; - possibilite de transformation directe en sulfate de cesium; - simplification generale du mode operatoire, et par consequent de l'installation. (auteur)

  9. Industrial treatment of solutions of fission products. Separation of caesium-137; Traitement industriel de solutions de produits de fission. Separation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, C.; Raggenbass, A. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    confection de sources solides a partir du melange brut, sans separation; b) separation d'un ou plusieurs produits de fission determines a partir desquels sont confectionnees les sources. L'examen de la composition radioactive du melange de produits de fission resultant de l'exploitation des reacteurs de Marcoule (G1, G2 et G3) montre que le cesium-137 represente a lui seul 30 pour cent de l'energie {gamma} disponible a la sortie de l'usine plutonium, 70 pour cent deux ans apres et pratiquement 100 pour cent au bout de 5 ans. Il n'y a donc qu'un interet minime a entreprendre la confection de sources avec le melange de produits de fission, la separation du cesium ne representant pas un travail plus complique et conduisant a un produit dont les possibilites d'utilisation sont plus nombreuses. Nous avons envisage la separation du cesium-137 par une methode derivee de la methode connue basee sur la precipitation du cesium par l'acide phosphotungstique. Dans les methodes publiees, le phosphotungstate est completement dissous et le cesium est extrait de la solution par echange de cations ou par elimination des ions phosphates et tungstates sur une resine echangeuse d'anions. Nous avons etudie la transformation du phosphotungstate de cesium en phosphate et tungstate de baryum par emploi de l'hydroxyde de baryum qui remet le cesium en solution en hydroxyde. Les avantages sont les suivants: - decontamination plus poussee du cesium-137, sans purification supplementaire; - possibilite de transformation directe en sulfate de cesium; - simplification generale du mode operatoire, et par consequent de l'installation. (auteur)

  10. Radioactive substances in tap water.

    Science.gov (United States)

    Atsuumi, Ryo; Endo, Yoshihiko; Suzuki, Akihiko; Kannotou, Yasumitu; Nakada, Masahiro; Yabuuchi, Reiko

    2014-01-01

    A 9.0 magnitude (M) earthquake with an epicenter off the Sanriku coast occurred at 14: 46 on March 11, 2011. TEPCO Fukushima Daiichi Nuclear Power Plant (F-1 NPP) was struck by the earthquake and its resulting tsunami. Consequently a critical nuclear disaster developed, as a large quantity of radioactive materials was released due to a hydrogen blast. On March 16(th), 2011, radioiodine and radioactive cesium were detected at levels of 177 Bq/kg and 58 Bq/kg, respectively, in tap water in Fukushima city (about 62km northwest of TEPCO F-1 NPP). On March 20th, radioiodine was detected in tap water at a level of 965 Bq/kg, which is over the value-index of restrictions on food and drink intake (radioiodine 300 Bq/kg (infant intake 100 Bq/kg)) designated by the Nuclear Safety Commission. Therefore, intake restriction measures were taken regarding drinking water. After that, although the all intake restrictions were lifted, in order to confirm the safety of tap water, an inspection system was established to monitor all tap water in the prefecture. This system has confirmed that there has been no detection of radioiodine or radioactive cesium in tap water in the prefecture since May 5(th), 2011. Furthermore, radioactive strontium ((89) Sr, (90)Sr) and plutonium ((238)Pu, (239)Pu+(240)Pu) in tap water and the raw water supply were measured. As a result, (89) Sr, (238)Pu, (239)Pu+(240)Pu were undetectable and although (90)Sr was detected, its committed effective dose of 0.00017 mSv was much lower than the yearly 0.1 mSv of the World Health Organization guidelines for drinking water quality. In addition, the results did not show any deviations from past inspection results.

  11. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Use to titanium-treated zeolite for plutonium, strontium, and cesium removal from West Valley alkaline wastes and sludge wash wastes

    International Nuclear Information System (INIS)

    Bray, L.A.; Hara, F.T.

    1993-01-01

    Zeolite (IONSIV IE-96) treated with a titanium (Ti) solution will extract traces of plutonium (Pu), strontium (Sr), and cesium (Cs) found in the West Valley Nuclear Services Co., Inc. (WVNS) alkaline supernatant and alkaline sludge water washes. Small ion exchange columns containing Ti-treated zeolite have been successfully tested at WVNS and Pacific Northwest Laboratory (PNL) for the removal of Pu. Full-scale ion exchange processing of sludge wash solution is now being developed at WVNS for use in FY 1992. Commercial manufacturing options for the production of the Ti-treated zeolite were investigated. The Ti-treated zeolite may have application at Hanford and at other U.S. Department of Energy (DOE) sites for the removal of low-level concentrations of Cs, Sr, and Pu from alkaline waste streams

  13. Dissolved Concentration Limits of Radioactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  14. Dissolved Concentration Limits of Radioactive Elements

    International Nuclear Information System (INIS)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  15. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  16. Decorporation of mixture of strontium and cesium isotopes with domestic mineral waters

    International Nuclear Information System (INIS)

    Slavov, S.; Filev, G.; Kiradzhiev, G.

    1990-01-01

    The possibilities of Bulgarian mineral waters to decorporate mixtures of strontium and cesium radioisotopes, simultaneous entering the body, were studied. A modified effect in respect to radioactive strontium was found. Modification of the effect of mixing two diferent types of mineral waters was not proven. No effect was found of potassium-containing mineral water on radioactive cesium kinetics. 1 tab., 7 refs

  17. Civil plutonium management

    International Nuclear Information System (INIS)

    Sicard, B.; Zaetta, A.

    2004-01-01

    During 1960 and 1970 the researches on the plutonium recycling in fast neutrons reactors were stimulated by the fear of uranium reserves diminishing. At the beginning of 1980, the plutonium mono-recycling for water cooled reactors is implementing. After 1990 the public opinion concerning the radioactive wastes management and the consequences of the disarmament agreements between Russia and United States, modified the context. This paper presents the today situation and technology associated to the different options and strategical solutions of the plutonium management: the plutonium use in the world, the neutronic characteristics, the plutonium effect on the reactors characteristics, the MOX behavior in the reactors, the MOX fabrication and treatment, the possible improvements to the plutonium use, the concepts performance in a nuclear park. (A.L.B.)

  18. Assesment of Plutonium 238 and Plutonium 239+240 in soils of different agricultural regions of Guatemala

    International Nuclear Information System (INIS)

    Gutierrez Martinez, E.A.

    1998-02-01

    In this report an assesment and measurement of PLUTONIUM 238, PLUTONIUM 239, and PLUTONIUM 240 are made. Samples of cultivated soils in 15 provinces of Guatemala were taken. To separate plutonium isotopes a radiochemical method was made using extraction, precipitation and ionic interchange. By electrodeposition the plutonium was measured using an alpha spectroscopy by PIPS method. The radioactivity ranges from 2.84 mBq/Kg to 36.38 mBq/Kg for plutonium 238, and 8.46 mBq/Kg to 26.61 mBq/Kg for plutonium 239+240

  19. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  20. A method for estimating radioactive cesium concentrations in cattle blood using urine samples.

    Science.gov (United States)

    Sato, Itaru; Yamagishi, Ryoma; Sasaki, Jun; Satoh, Hiroshi; Miura, Kiyoshi; Kikuchi, Kaoru; Otani, Kumiko; Okada, Keiji

    2017-12-01

    In the region contaminated by the Fukushima nuclear accident, radioactive contamination of live cattle should be checked before slaughter. In this study, we establish a precise method for estimating radioactive cesium concentrations in cattle blood using urine samples. Blood and urine samples were collected from a total of 71 cattle on two farms in the 'difficult-to-return zone'. Urine 137 Cs, specific gravity, electrical conductivity, pH, sodium, potassium, calcium, and creatinine were measured and various estimation methods for blood 137 Cs were tested. The average error rate of the estimation was 54.2% without correction. Correcting for urine creatinine, specific gravity, electrical conductivity, or potassium improved the precision of the estimation. Correcting for specific gravity using the following formula gave the most precise estimate (average error rate = 16.9%): [blood 137 Cs] = [urinary 137 Cs]/([specific gravity] - 1)/329. Urine samples are faster to measure than blood samples because urine can be obtained in larger quantities and has a higher 137 Cs concentration than blood. These advantages of urine and the estimation precision demonstrated in our study, indicate that estimation of blood 137 Cs using urine samples is a practical means of monitoring radioactive contamination in live cattle. © 2017 Japanese Society of Animal Science.

  1. Composition of Radioactive Aerosols in the Shelter Construction of the Chernobyl Nuclear Power Plant in 2000-2015

    Science.gov (United States)

    Ogorodnikov, B. I.

    2018-06-01

    The results of the physicochemical studies of radioactive aerosols inside and outside the Shelter construction at the Arch construction stage of the Chernobyl Nuclear Power Plant (ChNPP) in 2000-2015 were presented. The dominant isotopes were shown to be cesium, strontium, americium, plutonium, and uranium. They are carried by disperse particles of 2-7 μm. In subreactor rooms, in particular, 012/7, the composition of aerosols is affected by the erosion of the fuel-containing mass formed in 1986. Submicron cesium carrier aerosols appear as a result of evaporation and condensation during fires and welding works. Radiocesium is a well-soluble component of aerosols, while plutonium isotopes are not readily soluble components. In several rooms, the contents of radon, thoron, and their daughter products exceeded the permissible values. In April-June 2011, the intake of radionuclides from the accident at the Japanese Fukushima-1 NPP, which had AMAD of 0.5 μm, was detected and tracked using Petryanov multilayer filters. The productivity of filtration units under the dusty conditions in the exclusion zone of ChNPP and in fogs and haze was investigated. Hydrophilic prefilters with 7-10 μm fibers were recommended.

  2. Plutonium in the environment

    International Nuclear Information System (INIS)

    Kudo, A.

    2001-01-01

    The first volume of the new series, Radioactivity in the Environment, focuses on the environmental occurrence, the speciation, the behaviour, the fate, the applications and the health consequences of that much-feared and much-publicised element, plutonium. Featuring a collection of selected, peer-reviewed, up-to-date papers by leading researchers in the field, this work provides a state-of-the-art description of plutonium in the environment. This title helps to explain where present frontiers are drawn in our continuing efforts to understand the science of environmental plutonium and will help to place widespread concerns into perspective. As a whole this new book series on environmental radioactivity addresses, at academic research level, the key aspects of this socially important and complex interdisciplinary subject. Presented objectively and with the ultimate authority gained from the many contributions by the world's leading experts, the negative and positive consequences of having a radioactive world around us will be documented and given perspective. refs

  3. Hazards of plutonium and fuel reprocessing

    International Nuclear Information System (INIS)

    Watson, G.M.

    1978-01-01

    Apart from the possibility that civil plutonium may be diverted to military use the main argument against the introduction of a plutonium economy seems to be the supposedly unmanageable biological risk attached to plutonium itself. The author points out weaknesses in many of the opponents' arguments against the increased use of plutonium and argues that current safety practices are more than adequate in handling plutonium and other radioactive materials

  4. Studies of environmental radioactivity in Cumbria. Part 4 Caesium-137 and plutonium in soils of Cumbria and the Isle of Man

    International Nuclear Information System (INIS)

    Cawse, P.A.

    1980-08-01

    A network of soil sampling sites covering an area of some 2500 km 2 in Cumbria and the whole of the Isle of Man was selected and sampled in 1978. Soils from permanent grassland, coniferous woodland and deciduous woodland were examined, to a depth of 30 cm. The spatial distribution of sampling points is based on a grid of 10 km side. The objective of the study is to provide information on the integrated deposition of Cs-137, Pu-239+240 and Pu-238 from the atmosphere, and to determine the distribution of possible emissions from the nuclear establishment at Windscale in the presence of radioactivity deposited from nuclear weapons fallout, that is superimposed upon the natural background of radioactivity in soil. Results from soil samples collected in 1978 in Cumbria and the Isle of Man are compared with the average integrated deposition for UK soils from nuclear fallout. In the Isle of Man no radioactivity is observed in excess of nuclear weapons fallout, but in Cumbria excess levels of plutonium are detected in coastal lowland areas under permanent grassland probably due to the transport of radioactive material from sea to land. At three sampling sites on grassland and woodland within 2.3 km of the Windscale stacks, the excess plutonium and Cs-137 in soil could be attributed mainly to atmospheric discharges from Windscale. The observed deposition of radioactivity has little radiological significance, based on assessment of risk by inhalation of soil dust that contains plutonium. (author)

  5. Plutonium 238/239 Decorporation Model

    Science.gov (United States)

    2014-10-01

    4. Transfer Coefficients for the DTPA Biokinetic Model (Breustedt 2009) ...................... 25 Table 5. Decay Properties of Pu-238 and Pu-239...volume 2), cesium-137 (volume 3), F. tularensis (volume 4), sulfur mustard (volume 5), americium-241 (volume 6), Y. pestis (volume 7), botulinum ... toxin (volume 8), plutonium-238/239 (volume 9) and vesicants (volume 10, an expansion on volume 5). This paper presents an inhalation exposure model for

  6. Removal of cesium radioisotopes from solutions using granulated zeolites

    International Nuclear Information System (INIS)

    Bronic, J.; Subotic, B.

    1991-01-01

    The influence of type of zeolite and the flow rate of solution through the column on the removal efficiency of radioactive cesium ions from solution has been investigated. The analysis of the change in the concentration of cesium ions in the solutions and distribution of cesium ions in the column fillings (granulated zeolites), after passing the solutions through the columns filled with various granulated zeolites (zeolite 4A, zeolite 13X, synthetic mordenite) was performed. On the basis of the results of this study, the conditions for the most efficient removal of cesium ions from solutions have been discussed. (author) 35 refs.; 9 figs.; 1 tab

  7. Recent studies of uranium and plutonium chemistry in alkaline radioactive waste solutions

    International Nuclear Information System (INIS)

    King, William D.; Wilmarth, William R.; Hobbs, David T.; Edwards, Thomas B.

    2008-01-01

    Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions

  8. Plutonium immobilization program - Cold pour Phase 1 test results

    International Nuclear Information System (INIS)

    Hamilton, L.

    2000-01-01

    The Plutonium Immobilization Project will disposition excess weapons grade plutonium. It uses the can-in-canister approach that involves placing plutonium-ceramic pucks in sealed cans that are then placed into Defense Waste Processing Facility canisters. These canisters are subsequently filled with high-level radioactive waste glass. This process puts the plutonium in a stable form and makes it unattractive for reuse. A cold (non-radioactive) glass pour program was performed to develop and verify the baseline design for the canister and internal hardware. This paper describes the Phase 1 scoping test results

  9. Plutonium Immobilization Program - Cold pour Phase 1 test results

    International Nuclear Information System (INIS)

    Hamilton, L.

    2000-01-01

    The Plutonium Immobilization Project will disposition excess weapons grade plutonium. It uses the can-in-canister approach that involves placing plutonium-ceramic pucks in sealed cans that are then placed into Defense Waste Processing Facility canisters. These canisters are subsequently filled with high-level radioactive waste glass. This process puts the plutonium in a stable form and makes it unattractive for reuse. A cold (non-radioactive) glass pour program was performed to develop and verify the baseline design for the canister and internal hardware. This paper describes the Phase 1 scoping test results

  10. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  11. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya

    2017-01-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium we...

  12. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    Science.gov (United States)

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  13. Sources of Radioactive Isotopes for Dirty Bombs

    Science.gov (United States)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  14. Fabrication of stimuli-sensitive hydrogel for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Bong, Sang Bum; Park, Chan Woo; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment.1 Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. 2 Various surface including road, roof, house, building were contaminated with Cs-137. These coating materials have some problems and limitation such as toxic component, and lack of reusability of materials related to the cost. Thus, a more cost-effective and environmental friendly coating materials is still desired. 3 In the present study, the stimuli-sensitive hydrogel were fabricated for the removal of radioactive Cs from solid surface. We describe the morphology, structure, and physical property of these stimuli sensitive hydrogel. In addition, their ability to eliminate cesium was also evaluated. The smart hydrogel coating materials showed an excellent morphology change from the liquid to film by addition of Ca ion. Therefore, the stimuli-sensitive hydrogel demonstrated good potential for the treatment of contaminated surface for the removal of radioactive cesium.

  15. Fabrication of stimuli-sensitive hydrogel for the removal of cesium

    International Nuclear Information System (INIS)

    Yang, Hee-Man; Bong, Sang Bum; Park, Chan Woo; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon

    2015-01-01

    The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment.1 Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. 2 Various surface including road, roof, house, building were contaminated with Cs-137. These coating materials have some problems and limitation such as toxic component, and lack of reusability of materials related to the cost. Thus, a more cost-effective and environmental friendly coating materials is still desired. 3 In the present study, the stimuli-sensitive hydrogel were fabricated for the removal of radioactive Cs from solid surface. We describe the morphology, structure, and physical property of these stimuli sensitive hydrogel. In addition, their ability to eliminate cesium was also evaluated. The smart hydrogel coating materials showed an excellent morphology change from the liquid to film by addition of Ca ion. Therefore, the stimuli-sensitive hydrogel demonstrated good potential for the treatment of contaminated surface for the removal of radioactive cesium

  16. Diffusion of cesium in sodium-borosilicate glasses for nuclear waste immobilisation. Diffusie van cesium in natrium borosilicaat glazen voor het immobiliseren van radioaktief afval

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, F.J.J.G.; Sengers, E.G.F. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands)); Waal, H. de (TPD-TNO-Glass technology, Eindhoven (Netherlands))

    1989-09-26

    Diffusion of cesium in borosilicate glass for high-level radioactive waste is discussed. For this purpose model glasses with non-radioactive elements are being made, in accordance with the specifications of the reprocessing plants, from which concentration couples are composed. A concentration couple consists of two cylinders of borosilicate glass which contain different amounts of cesium. After heat treatment the couples are studied by means of the scanning electron microscopy and X-ray microanalysis. The model study will provide a basis for predictions of the containment achieved over a longer period of time. (author). 11 refs.; 2 figs.; 2 tabs.

  17. High-temperature enthalpies of plutonium monocarbide and plutonium sesquicarbide

    International Nuclear Information System (INIS)

    Oetting, F.L.

    1979-01-01

    The high-temperature enthalpies of plutonium monocarbide and plutonium sesquicarbide have been determined with a copper-block calorimeter of the isoperibol type. The experimental enthalpy data, which was measured relative to 298 K, covered the temperature range from 400 to 1500 K. The calculation of the temperature rise of the calorimeter takes into account the added heat evolution from the radioactive decay of the plutonium samples. These enthalpy results, combined with the heat capacity and entropy of the respective carbide at 298 K available from the literature, has made it possible to generate tables of thermodynamic functions for the plutonium carbides. The behavior of the heat capacity of both of the plutonium carbides, i.e., a relatively steep increase in the heat capacity as the temperature increases, may be attributed to a premelting effect with the formation of vacancies within the crystal lattice although a theoretical treatment of this phenomenon is not given

  18. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  19. Seasonal variation of cesium 134 and cesium 137 in semidomestic reindeer in Norway after the Chernobyl accident

    International Nuclear Information System (INIS)

    Eikelmann, I.M.H.; Bye, K.; Sletten, H.D.

    1990-01-01

    The Chernobyl accident had a great impact on the semidomestic reindeer husbandry in central Norway. Seasonal differences in habitat and diet resulted in large variations in observed radiocesium concentrations in reindeer after the Chernobyl accident. In three areas with high values of cesium-134 and cesium-137 in lichens, the main feed for reindeer in winter, reindeer were sampled every second month to monitor the seasonal variation and the decrease rate of the radioactivity. The results are based on measurements of cesium-134 and cesium-137 content in meat and blood and by whole-body monitoring of live animals. In 1987 the increase of radiocesium content in reindeer in Vågå were 4x from August to January. The mean reductions in radiocesium content from the winter 1986/87 to the winter 1987/88 were 32%, 50% and 43% in the areas of Vågå, Østre-Namdal and Lom respectively

  20. METHOD FOR THE RECOVERY OF CESIUM VALUES

    Science.gov (United States)

    Rimshaw, S.J.

    1960-02-16

    A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.

  1. Plutonium and surrogate fission products in a composite ceramic waste form

    International Nuclear Information System (INIS)

    Esh, D. W.; Frank, S. M.; Goff, K. M.; Johnson, S. G.; Moschetti, T. L.; O'Holleran, T.

    1999-01-01

    Argonne National Laboratory is developing a ceramic waste form to immobilize salt containing fission products and transuranic elements. Preliminary results have been presented for ceramic waste forms containing surrogate fission products such as cesium and the lanthanides. In this work results from scanning electron microscopy/energy dispersive spectroscopy and x-ray diffraction are presented in greater detail for ceramic waste forms containing surrogate fission products. Additionally, results for waste forms containing plutonium and surrogate fission products are presented. Most of the surrogate fission products appear to be silicates or aluminosilicates whereas the plutonium is usually found in an oxide form. There is also evidence for the presence of plutonium within the sodalite phase although the chemical speciation of the plutonium is not known

  2. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  3. Cesium removal using crystalline silicotitanate. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from 137 Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned

  4. Technology for removing radioactive Cs from incineration fly ash

    International Nuclear Information System (INIS)

    Ichikawa, Seigo; Nishizaki, Yoshihiko; Takano, Takehiko; Kumagai, Naokazu

    2016-01-01

    Radioactive cesium contained in incineration fly ash is highly soluble in water. We took advantage of this fact to develop a method for first using water cleaning to transfer cesium to water and then using adsorbent to recover this cesium in high concentrations. Since the adsorbent becomes radioactive waste, inorganic minerals such as zeolite are desirable from the point of view of long-term storage stability; however, zeolite is not suitable for cleaning water containing materials that inhibit cesium adsorption such as K+ and Na+. The feature of the new technology is that it provides a method for effective recovery of cesium from contaminated cleaning water using insoluble ferro-cyanide which is synthesized in situ, and for heat treatment of this cesium adsorbed from the ferro-cyanide to zeolite, thereby achieving reduction of radioactive waste and improvement of stability for long-term storage. (author)

  5. Cesium-137: psychological and social consequences of the Goiania's accident

    International Nuclear Information System (INIS)

    Helou, Suzana; Costa Neto, Sebastiao Benicio da

    1995-01-01

    The book care for radioactive accident occurred in 1987 in Goiania - brazilian city. The accident had origin by the hospitable equipment incorrect handling which contained a stainless steel capsule, in which interior there was cesium-137 chloride. The main boarded aspects are: psychological and social aspects verified after the accident; psychological and social analysis of population of Goiania three years after the accident; essay on the pertinence of Luscher's abbreviate test in psychological evaluation of the radioactive accident victims of Goiania; and psychological and mobile evaluation of intra-uterus children exposed to the radiation with cesium-137

  6. Determination of plutonium in highly radioactive liquid waste by spectrophotometry using neodymium as an internal standard for safeguards analysis. Japan support program for agency safeguards (JASPAS) JC-19

    International Nuclear Information System (INIS)

    Taguchi, Shigeo; Surugaya, Naoki; Sato, Soichi; Kurosawa, Akira; Watahiki, Masaru; Hiyama, Toshiaki

    2006-06-01

    A spectrophotometric determination using neodymium as an internal standard was developed for safeguards verification analysis of plutonium in highly radioactive liquid waste which is produced by the reprocessing of spent nuclear fuel. The internal standard is used as a means to analyze plutonium and also to authenticate the instrument conditions. The method offers reduced sample preparation and analysis time compared to isotope dilution mass spectrometry. The sample was mixed with a known amount of internal standard. Subsequently, plutonium was quantitatively oxidized to Pu(VI) by the addition of Ce(IV) for spectrophotometry. Plutonium concentration was calculated from a relation between Nd(III)/Pu(VI) molar extinction coefficient ratio and their absorbance ratio. The relative expanded uncertainty of the repeated analysis (n=5) was 8.9% (coverage factor k=2) for a highly radioactive liquid waste sample (173 mg L -1 ). The determination limit was 6 mg L -1 (ten fold's the standard deviation). This method was validated through comparison experiments with isotope dilution mass spectrometry. The analytical results of plutonium in highly radioactive liquid waste using this method were agree well with values obtained using isotope dilution mass spectrometry. The proposed method can be applied to independent on-site safeguards analysis at the Tokai Reprocessing Plant. (author)

  7. Cesium transport in Four Mile Creek of the Savannah River Plant

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-04-01

    The behavior of a large radioactive cesium release to a Savannah River Plant (SRP) stream was examined using a stable cesium release to Four Mile Creek. Measurements following the release show that most of the cesium released was transported downstream; however, sorption and desorption decreased the maximum concentration and increased the travel time and duration, relative to a dye tracer, at sampling stations downstream. The study was made possible by the development of an analytical technique using ammonium molybdophosphate and neutron activation that permitted the measurement of stable cesium concentrations as low as 0.2 μg/L

  8. Removal of cesium from red deer meat

    International Nuclear Information System (INIS)

    Jandl, J.; Novosad, J.; Francova, J.; Prochazka, H.

    1989-01-01

    The effect was studied of marinading on the reduction of cesium radionuclide activity in red deer meat contaminated by ingestion of feed containing 134 Cs+ 137 Cs from radioactive fallout following the Chernobyl accident. Two types of marinade were studied, viz., a vinegar infusion and a vinegar infusion with an addition of vegetables and spices. The meat was chopped to cubes of about 1.5 cm in size and the marinading process took place at temperatures of 5 and 11 degC. The drop of cesium content in the meat was determined by gamma spectrometry at given time intervals. The replacement of the marinade and the duration of the process were found to maximally affect efficiency. If the solution was not replaced, about 80% of cesium radionuclides were removed after seven hours of marinading. With one replacement of the infusion the drop in 134 Cs+ 137 Cs radioactivity amounted to up to 90% after seven hours of marinading. No effects were shown of vegetable additions to the vinegar infusion and of the change in temperature from 5 to 11 degC on the efficiency of the process. (author). 3 tabs., 6 refs

  9. Management of radioactive waste and plutonium in the Swedish perspective

    International Nuclear Information System (INIS)

    Larsson, A.; Hultgren, A.; Lind, J.

    1977-01-01

    In May 1976 the Governmental Committee on Radioactive Waste (the Aka Committee) submitted its final report to the Swedish Government. The report summarizes a thorough investigation of questions dealing with spent nuclear fuel and radioactive waste. For Sweden, the study recommends reprocessing of spent fuel as a primary alternative. This should be closely linked with fabrication of mixed oxide fuel from recovered material for rapid return as fresh fuel in the energy producing reactors. Such a scheme would have the double advantage of both facilitating waste management and avoiding stockpiling of pure plutonium. The possibility to treat the spent fuel entirely as waste, not utilizing its fuel value, was also considered. Basically national reprocessing, including possibilities for international, particularly Nordic, regional collaboration is envisaged by the Committee. The findings and proposals of the Committee are discussed in the light of the recent development on the nuclear scene in Sweden. As to the economic side, it is argued that the utilities should include all costs relating to the back end in the budgets for their energy production programmes. Reprocessing and waste management neither can nor should be seen as ordinary commercial ventures. Consequently the planning to cover the important needs at the back end of the nuclear fuel cycle is hardly likely to be initiated and undertaken by means of the market mechanism. Careful efforts in this regard are instead required at the national and international levels. The particular sensitivity connected with spent nuclear fuel and plutonium is derived from concern relating to environmental safety and proliferation of nuclear weapons. Together with economic and technical considerations these two broad categories of concern, including physical security and safeguardability, are crucial in the selection and precise formulation of alternatives to be chosen for the back end of the nuclear fuel cycle. Also affecting

  10. Plutonium in the air in Kurchatov, Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Lehto, J.; Salminen, S.; Jaakkola, T.; Outola, I.; Pulli, S. [Laboratory of Radiochemistry, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki (Finland); Paatero, J. [Finnish Meteorological Institute, Helsinki (Finland); Tarvainen, M.; Ristonmaa, S. [Finnish Authority for Nuclear and Radiation Safety, Helsinki (Finland); Zilliacus, R. [Technical Research Centre of Finland, Espoo (Finland); Ossintsev, A.; Larin, V. [Institute of Radiation Safety and Ecology, Kurchatov (Kazakhstan)

    2006-07-31

    Weekly air samples of 25000 m{sup 3} volume were taken with two air samplers over a period of one year in 2000-2001 in the town of Kurchatov in Kazakhstan. For another three-month period in 2001, the samplers were run in the city of Astana, about 500 km west of Kurchatov. {sup 137}Cs, Pu and U concentrations were determined from the filters. Pu activities in Kurchatov varied in a 100-fold range; median {sup 239,240}Pu activities were 100 nBq/m{sup 3} and {sup 238}Pu activities 34 nBq/m{sup 3}. The corresponding values for Astana were considerably lower: 29 and 9 nBq/m{sup 3}, respectively, and in half of the filters the {sup 238}Pu activity was below the detection limit. Plutonium concentration correlated with the amount of dust retained on the filters only at the highest dust loads. Also no correlation between wind speed and the plutonium activity in the filters was observed. Thus, resuspension does not seem to be the mechanism responsible for the airborne plutonium. No clear seasonal variation of Pu air concentration was observed, though levels were somewhat elevated in February to April. There was no correlation between the plutonium and {sup 137}Cs concentrations. In most of the filters the cesium concentration was below the detection limit, but in those filters where it could be detected the cesium concentration was practically constant at 3.9+/-1.6 {mu}Bq/m{sup 3}. Dose estimation for the inhalation of the airborne plutonium gave a low value of 0.018 {mu}Sv/a for the inhabitants in Kurchatov, which is about a thousand times lower than the dose caused by the naturally occurring {sup 210}Po. Air parcel trajectory analysis indicated that the observed Pu activities in the air could not unambiguously be attributed to the most contaminated areas at the Semipalatinsk Test Site. (author)

  11. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  12. Sources contributing to radioactive contamination of the Techa river and areas surrounding the Mayak production association, Urals, Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    A Russian-Norwegian expert group has performed joint investigations of possible impacts of the Mayak plant on the contamination of the Arctic Ocean. This plant that was the first in the former Soviet Union to produce nuclear weapons material, had five special nuclear reactors for production of plutonium and a facility for separation of the plutonium as weapons material. A system of dams along the upper part of Techa River was constructed in order to retain most of the radioactivity, creating several artificial water reservoirs along the old river bed. The paper describes the results of the investigations of the working group. it is concluded that sediment samples from reservoir No. 10 and 11, and from the floodplain along the upper Techa River, have the highest radioactivities (more than 2 MBq/kg d.w. of cesium-137). Flooding of the surrounding swamp and rupture in the reservoirs may cause substantial releases to the river system and thus contaminate the Arctic waters. Also transport of radioactivity by underground water from the reservoirs may contaminate the river system. The future work of the group will be focussed on risk assessment of potential accident scenarios, and possible long-term consequences for man and the environment. 21 refs.

  13. Sources contributing to radioactive contamination of the Techa river and areas surrounding the Mayak production association, Urals, Russia

    International Nuclear Information System (INIS)

    1997-01-01

    A Russian-Norwegian expert group has performed joint investigations of possible impacts of the Mayak plant on the contamination of the Arctic Ocean. This plant that was the first in the former Soviet Union to produce nuclear weapons material, had five special nuclear reactors for production of plutonium and a facility for separation of the plutonium as weapons material. A system of dams along the upper part of Techa River was constructed in order to retain most of the radioactivity, creating several artificial water reservoirs along the old river bed. The paper describes the results of the investigations of the working group. it is concluded that sediment samples from reservoir No. 10 and 11, and from the floodplain along the upper Techa River, have the highest radioactivities (more than 2 MBq/kg d.w. of cesium-137). Flooding of the surrounding swamp and rupture in the reservoirs may cause substantial releases to the river system and thus contaminate the Arctic waters. Also transport of radioactivity by underground water from the reservoirs may contaminate the river system. The future work of the group will be focussed on risk assessment of potential accident scenarios, and possible long-term consequences for man and the environment. 21 refs

  14. The use of composite ferrocyanide materials for treatment of high salinity liquid radioactive wastes rich in cesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, Andrey S. [National Nuclear Centre of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Shakarim Semey State Univ. (Kazakhstan); Satayeva, Aliya R. [Shakarim Semey State Univ. (Kazakhstan); Mikhalovsky, Sergey [Nazarbayev Univ. (Kazakhstan); Brighton Univ. (United Kingdom); Cundy, Andrew B. [Brighton Univ. (United Kingdom)

    2014-07-01

    The use of composite materials based on metal ferrocyanides combined with natural mineral sorbents for treatment of high salinity Cs-containing liquid radioactive waste (LRW) was investigated. The study indicated that among the investigated composites, the best sorption characteristics for Cs were shown by materials based on copper ferrocyanide. Several factors affecting the removal of cesium from LRW, namely total salt content, pH and organic matter content, were also investigated. High concentrations of complexing organic matter significantly reduced the sorption capacity of ferrocyanide sorbents.

  15. Risk of transporting plutonium dioxide and liquid plutonium nitrate by truck and rail

    International Nuclear Information System (INIS)

    Williams, L.D.; Hall, R.J.

    1976-01-01

    This paper presents an analysis method developed to assess the risk in the transportation of radioactive materials and demonstrates its application by summarizing the results of risk assessments of the shipment of plutonium dioxide powder and liquid plutonium nitrate by truck and rail in the United States. In the risk assessment, postulated release modes (series of events that could result in a release of radioactive material) are identified using the fault tree analysis method. Two categories of events that could contribute to a release during transportation are considered: accidents and substandard packaging conditions. The likelihood of basic events in these categories are determined from general accident experience, radioactive material shipping experience, engineering analysis, etc. Using the laws of combining probabilities, the likelihood of radioactive material release is then evaluated. Since accidents vary greatly in severity, the releases from these postulated events also vary in magnitude from the no release condition up through release of the entire package contents. The bases for the release quantities assigned to the postulated accidents sequences are discussed. The consequences of these postulated releases are evaluated based on the amount of plutonium estimated to be released to the environs, the probable weather conditions at the time of the accident, and population density downwind from the accident scene. The likelihood and consequence of postulated releases are coupled and expressed as a risk spectra. (author)

  16. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    Energy Technology Data Exchange (ETDEWEB)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D. [Graduate School of Engineering, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan); Sawada, K. [EcoTopia Science Institute, Nagoya University, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan)

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  17. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  18. Learning more about plutonium; En savoir plus sur le plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This digest brochure explains what plutonium is, where it comes from, how it is used, its recycling into Mox fuel, its half life, historical discovery, its presence in the environment, toxicity and radioactivity. (J.S.)

  19. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    International Nuclear Information System (INIS)

    Bray, L.A.; Brown, G.N.

    1995-01-01

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial 'cold' simulated waste results and confirmed the selective removal provided by ligand-particle web technology

  20. Functions and requirements for a cesium demonstration unit

    International Nuclear Information System (INIS)

    Howden, G.F.

    1994-04-01

    Westinghouse Hanford Company is investigating alternative means to pretreat the wastes in the Hanford radioactive waste storage tanks. Alternatives include (but are not limited to) in-tank pretreatment, use of above ground transportable compact processing units (CPU) located adjacent to a tank farm, and fixed processing facilities. This document provides the functions and requirements for a CPU to remove cesium from tank waste as a demonstration of the CPU concept. It is therefore identified as the Cesium Demonstration Unit CDU

  1. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms.

  2. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO{sub 4}] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania); Lee, Byeong Kyu [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2015-10-30

    Graphical abstract: A possible pathway for immobilization with the nano-Fe/Ca/CaO/[PO{sub 4}] treatment (a) {sup 133}Cs is adsorbed onto the soil particles, (b) Cs encapsulation through the formation of immobile salts, and (c) solid (small/finer or larger/aggregate) soil fraction separation. - Highlights: • Nano-Fe/Ca/CaO/[PO{sub 4}] composite for Cs immobilization in soil was developed. • Enhanced cesium separation and immobilization was done in dry condition. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • Nano-Fe/Ca/CaO/[PO{sub 4}] a highly potential amendment for the remediation of Cs. - Abstract: This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO{sub 4}], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant {sup 133}Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO{sub 4}], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped {sup 134}Cs and {sup 137}Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that {sup 134}Cs and {sup 137}Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO{sub 4}] treated soil were characterized using SEM–EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil

  3. Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery

    International Nuclear Information System (INIS)

    Bray, L.A.; Carson, K.J.; Elovich, R.J.

    1993-10-01

    Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A ampersand M. This report summarizes preliminary results for the measurement of batch distribution coefficient (K d ) values for the powdered CST materials compared to previously tested ion exchange materials: IONSIV IE-96 (a zeolite produced by UOP), CS-100 (an organic resin produced by Rohm and Haas), and BIB-DJ (a new resorcinol-formaldehyde organic resin produced by Boulder Scientific). Excellent results were obtained for CST inorganic exchangers that could be significant in the development of processes for the near-term pretreatment of Hanford alkaline wastes. The following observations and conclusions resulted from this study: (1) Several CST samples prepared at SNL had a higher capacity to remove Cs from solution as compared to BIB-DJ, IE-96, and CS-100. (2) Cesium distribution results showed that CST samples TAM-40, -42, -43, -70, and -74 had λ values of ∼2,200 (λ = Cs K d x ρ b ; where λ represents the number of exchanger bed volumes of feed that can be loaded on an ion exchange column) at a pH value >14. (3) Cesium distribution values for CST exchangers doubled as the aqueous temperature decreased from 40 degrees to 10 degrees C. (4) Crystalline silico-titanates have the capacity to remove Cs as well as Sr and Pu from alkaline wastes unless organic complexants are present. Experimental results indicated that complexed Sr was not removed, and Pu is not expected to be removed

  4. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    Science.gov (United States)

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sorption of plutonium and americium on repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Tweed, C.J.; Williams, S.J.

    1995-01-01

    An integrated program of batch sorption experiments and mathematical modeling has been carried out to study the sorption of plutonium and americium on a series of repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura. The sorption of plutonium and americium on samples of concrete, mortar, sand/bentonite, tuff, sandstone and cover soil has been investigated. In addition, specimens of bitumen, cation and anion exchange resins, and polyester were chemically degraded. The resulting degradation product solutions, alongside solutions of humic and isosaccharinic acids were used to study the effects on plutonium sorption onto concrete, sand/bentonite and sandstone. The sorption behavior of plutonium and americium has been modeled using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database

  6. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  7. Chernobyl cesium in the soil of Montenegro, eight years after the accident

    International Nuclear Information System (INIS)

    Borisov, G. I.; Kuzmic, V. V.; Vukotic, P.; Dapcevic, S.; Antovic, N.; Mirkovic, M.; Fustic, B.

    1996-01-01

    Radioactive cesium contamination of the territory of Montenegro is measured by in situ method of semiconductor gamma-spectrometry at the end of the end of the year 1994. On basis of geological and pedological characteristics of the region, 42 measurement sites are chosen, which are representative for large area and uniformly distributed over the territory of Republic. It is found that degree of contamination varies strongly from region to region. Surface activities of 137 Cs span 3700 to 74000 Bq/m 2 range. Radioactive cesium is mostly remained in the surface part of uncultivated soil. 14 refs.; 3 figs

  8. Cesium uptake capacity of simulated ferrocyanide tank waste. Interim report FY 1994, Ferrocyanide Safety Project

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.; Burger, L.E.

    1994-09-01

    The objective of this project is to determine the capacity for 137 CS uptake by mixed metal ferrocyanides present in Hanford waste tanks, and to assess the potential for aggregation of these 137 CS exchanged materials to form tank ''hot-spots.'' This research, performed at the Pacific Northwest Laboratory (PNL) for the Westinghouse Hanford Company (WHC), stems from concerns of possible localized radiolytic heating within the tanks. If radioactive cesium is exchanged and concentrated by the remaining nickel ferrocyanide present in the tanks, this heating could cause temperatures to rise above the safety limits specified for the ferrocyanide tanks. For the purposes of this study, two simulants, In-Farm-2 and U-Plant-2, were chosen to represent the wastes generated by the scavenging processes. These simulants were formulated using protocols from the original cesium scavenging campaign. Later additions of cesium-rich wastes from various processes also were considered. The simulants were prepared and centrifuged to obtain a moist ferrocyanide sludge. The centrifuged sludges were treated with the original supernate spiked with a known amount of cesium nitrate. After analysis by flame atomic absorption spectrometry, distribution coefficients (K d ) were calculated. The capacity of solid waste simulants to exchange radioactive cesium from solution was examined. Initial results showed that the greater the molar ratio of cesium to cesium nickel ferrocyanide, the less effective the exchange of cesium from solution. The theoretical capacity of 2 mol cesium per mol of nickel ferrocyanide was not observed. The maximum capacity under experimental conditions was 0.35 mol cesium per mol nickel ferrocyanide. Future work on this project will examine the layering tendency of the cesium nickel ferrocyanide species

  9. Plutonium safe handling

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2000-01-01

    The abstract, prepared on the basis of materials of the IAEA new leadership on the plutonium safe handling and its storage (the publication no. 9 in the Safety Reports Series), aimed at presenting internationally acknowledged criteria on the radiation danger evaluation and summarizing the experience in the safe management of great quantities of plutonium, accumulated in the nuclear states, is presented. The data on the weapon-class and civil plutonium, the degree of its danger, the measures for provision of its safety, including the data on accident radiation consequences with the fission number 10 18 , are presented. The recommendations, making it possible to eliminate the super- criticality danger, as well as ignition and explosion, to maintain the tightness of the facility, aimed at excluding the radioactive contamination and the possibility of internal irradiation, to provide for the plutonium security, physical protection and to reduce irradiation are given [ru

  10. The cycling of transuranic radionuclides in the Columbia River, its estuary and the northeast Pacific Ocean: Final report

    International Nuclear Information System (INIS)

    Beasley, T.M.

    1987-01-01

    This review summarizes work during 1985 to 1986 on the radioecology of plutonium, americium and cesium in the Columbia River sediments; radionuclide kinetics of technetium in fish, and radioactivity in the Pacific Ocean

  11. Safe disposal of surplus plutonium

    Science.gov (United States)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  12. Cesium-134 assimilation and retention in the landsnail Helix aspersa Muller 1974. Its potential usefulness as bioindicator for radioactive contamination

    International Nuclear Information System (INIS)

    Alfonso, L.A.; Carvalho, F.P.

    1986-01-01

    Cesium-134 retention was experimentally studied on two groups (n=20 in each) of the land-snail Helix aspersa, labelled either through ingestion of labelled food or the radionuclide injection into the foot muscle. Cesium elimination was found to be not dependent from the labelling technique used. The mean biological half-life for Cs retention in both Helix groups was 53.6+- 0.8 d for the largest retention component, accounting for 0.88 of the initally absorbed Cs. Another experiment runned on a similar size Helix group allowed the gravimetric determination of food ingestion rate (8.8 mg/ g/day) and food assimilation efficiency (0.70+-0.20). Predictive modelling of Cs accumulation by Helix indicates a relatively high bioaccumulation potential in this species. This fact, together with the long biological half-life found for Cs retention, indicate that land snails could be used as suitable bioindicators for radioactive pollution in restrict terrestrial areas. (author)

  13. Qualitative chemical analysis of plutonium by Alpha spectroscopy

    International Nuclear Information System (INIS)

    Ramirez G, J Qumica.J.

    1994-01-01

    In this work the separation and purification of plutonium from irradiated uranium was done. The plutonium, produced by the irradiation of uranium in a nuclear reactor and the β decay of 239 Np, was stabilized to Pu +4 with sodium nitrite. Plutonium was separated from the fission products and uranium by ion exchange using the resin Ag 1 X 8. It was electrodeposited on stainless steel discs and the alpha radioactivity of plutonium was measured in a surface barrier detector. The results showed that plutonium was separated with a radiochemical purity higher than 99 %. (Author)

  14. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    Energy Technology Data Exchange (ETDEWEB)

    Parajuli, Durga; Minami, Kimitaka; Tanaka, Hisashi; Kawamoto, Tohru [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology - AIST (Japan)

    2013-07-01

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  15. Formation, decomposition and cesium adsorption mechanisms of highly alkali-tolerant nickel ferrocyanide prepared by interfacial synthesis

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Yamada, Kazuo; Osako, Masahiro; Haga, Kazuko

    2017-01-01

    Highly alkali-tolerant nickel ferrocyanide was prepared as an adsorbent for preventing the leaching of radioactive cesium from municipal solid waste incinerator fly ash containing large amounts of calcium hydroxide and potassium chloride, which act as an alkaline source and the suppressor for cesium adsorption, respectively. Nickel ferrocyanide prepared by contacting concentrated nickel and ferrocyanide solutions without mixing adsorbed cesium ions in alkaline conditions even the concentration of coexisting potassium ions was more than ten thousand times higher than that of the cesium ions. Large particles of nickel ferrocyanide slowly grew at the interface between the two solutions, which reduced the surface energy of the particles and therefore increased the alkali tolerance. The interfacially-synthesized nickel ferrocyanide was possible to prevent the leaching of radioactive cesium from cement-solidified fly ash for a long period. The mechanisms of the formation, selective cesium adsorption, and alkali-induced decomposition of the nickel ferrocyanide were elucidated. Comparison of the cesium adsorption mechanism with that of the other adsorbents revealed that an adsorbent can selectively adsorb cesium ions without much interference from potassium ions, if the following conditions are fulfilled. 1) The adsorption site is small enough for supplying sufficient electrostatic energy for the dehydration of ions adsorbed. 2) Both the cesium and potassium ions are adsorbed as dehydrated ions. 3) The adsorption site is flexible enough for permitting the penetration of dehydrated ions with the size comparable to that of the site. (author)

  16. Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site.

    Science.gov (United States)

    Snyder, Darin C; Delmore, James E; Tranter, Troy; Mann, Nick R; Abbott, Michael L; Olson, John E

    2012-08-01

    Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Plutonium recycling and the problem of nuclear proliferation

    International Nuclear Information System (INIS)

    Albright, D.; Feiveson, H.S.

    1988-01-01

    A typical 1-gigawatt light water reactor (LWR), the dominant commercial power reactor type today, operating at 70% capacity factor, generates approximately 250 kilograms of plutonium annually. This plutonium, which is produced in the reactor through neutron capture by uranium-238, is then discharged from the reactor along with the other constituents of the spent fuel. About 70% of the plutonium, or 175 kilograms, consists of fissile (odd-numbered) plutonium isotopes. As long as the plutonium discharged from the reactor is left intermixed with the highly radioactive fission products also contained in the spent fuel, it cannot readily be used for power or for weapons. However, upon chemical separation from the radioactive fission products and other components of the spent reactor fuel, the plutonium produced each year in a gigawatt reactor could be used, either in recycled fuel (to replace about 175 kilograms of U-235 in a power reactor) or to provide the fissile material for more than 25 nuclear warheads. Commercial separation of plutonium and the introduction of nuclear fuel cycles using recycled plutonium, which are now impending in several countries, force one to balance the probable increased risks of nuclear proliferation due to these activities against various economic and other motives that have been forwarded in their defense. The authors undertake an assessment of this balancing in this article

  18. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides

    International Nuclear Information System (INIS)

    Saleh, H.M.

    2012-01-01

    Highlights: ► Phytoremediation of radioactive wastes containing 137 Cs and 60 Co radionuclides. ► Using water hyacinth for radioactive waste treatment. ► Bioaccumulation of radionuclides from radioactive waste streams. ► Factors affecting bioaccumulation of 137 Cs and 60 Co using floating plants. - Abstract: Phytoremediation is based on the capability of plants to remove hazardous contaminants present in the environment. This study aimed to demonstrate some factors controlling the phytoremediation efficiency of live floating plant, water hyacinth (Eichhornia crassipes), towards the effluents contaminated with 137 Cs and/or 60 Co. Cesium has unknown vital biological role for plant while cobalt is one of the essential trace elements required for plant. The main idea of this work i.e. using undesirable species, water hyacinth, in purification of radiocontaminated aqueous solutions has been receiving much attention. The controlling factors such as radioactivity concentration, pH values, the amount of biomass and the light were studied. The uptake rate of radiocesium from the simulated waste solution is inversely proportional to the initial activity content and directly proportional to the increase in mass of plant and sunlight exposure. A spiked solution of pH ≈ 4.9 was found to be the suitable medium for the treatment process. The uptake efficiency of 137 Cs present with 60 Co in mixed solution was higher than if it was present separately. On the contrary, uptake of 60 Co is affected negatively by the presence of 137 Cs in their mixed solution. Sunlight is the most required factor for the plant vitality and radiation resistance. The results of the present study indicated that water hyacinth may be a potential candidate plant of high concentration ratios (CR) for phytoremediation of radionuclides such as 137 Cs and 60 Co.

  19. Plutonium ocean shipment safety between Europe and Japan

    International Nuclear Information System (INIS)

    Pierce, J.D.; Hohnstreiter, G.F.; McClure, J.D.; Smith, J.D.; Dukart, R.J.; Koski, J.A.; Braithwate, J.W.; Sorenson, N.R.; Yamamoto, K.; Kitamura, T.; Shibata, K.; Ouchi, Y.; Ito, T.

    2004-01-01

    Sandia National Laboratories (SNL) and Japan Nuclear Cycle Development Institute (JNC) have conducted an extensive emergency response planning study of the safety of the sea transport of plutonium for JNC. This study was conducted in response to international concerns about the safety of the marine transport of PuO2 powder that began with the sea transport of plutonium powder from France to Japan in 1992 using a purposebuilt ship. This emergency response planning study addressed four topics to better define the accident environment for long-range sea transport of nuclear materials. The first topic is a probabilistic safety analysis that evaluates the technical issues of transporting plutonium between Europe and Japan. An engine-room fire aboard a purposebuilt ship is evaluated as the second topic to determine the vulnerability and safety margin of radioactive material packaging for plutonium designed to meet International Atomic Energy Agency (IAEA) standards. The third topic is a corrosion study performed for generic plutonium packaging to estimate the time required to breach the containment boundary in the event of submersion in seawater. The final study topic is a worldwide survey of information on high-value cargo salvage capabilities from sunken ships. The primary purpose of this overall emergency response planning study is to describe and analyze the safety of radioactive material transportation operations for the international transportation of radioactive materials by maritime cargo vessels

  20. Plutonium ocean shipment safety between Europe and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, J D; Hohnstreiter, G F; McClure, J D; Smith, J D; Dukart, R J; Koski, J A; Braithwate, J W; Sorenson, N R [Sandia National Labs., Albuquerque, NM (United States); Yamamoto, K; Kitamura, T; Shibata, K; Ouchi, Y; Ito, T [Japan Nuclear Cycle Development Inst., Tokai-mura (Japan)

    2004-07-01

    Sandia National Laboratories (SNL) and Japan Nuclear Cycle Development Institute (JNC) have conducted an extensive emergency response planning study of the safety of the sea transport of plutonium for JNC. This study was conducted in response to international concerns about the safety of the marine transport of PuO2 powder that began with the sea transport of plutonium powder from France to Japan in 1992 using a purposebuilt ship. This emergency response planning study addressed four topics to better define the accident environment for long-range sea transport of nuclear materials. The first topic is a probabilistic safety analysis that evaluates the technical issues of transporting plutonium between Europe and Japan. An engine-room fire aboard a purposebuilt ship is evaluated as the second topic to determine the vulnerability and safety margin of radioactive material packaging for plutonium designed to meet International Atomic Energy Agency (IAEA) standards. The third topic is a corrosion study performed for generic plutonium packaging to estimate the time required to breach the containment boundary in the event of submersion in seawater. The final study topic is a worldwide survey of information on high-value cargo salvage capabilities from sunken ships. The primary purpose of this overall emergency response planning study is to describe and analyze the safety of radioactive material transportation operations for the international transportation of radioactive materials by maritime cargo vessels.

  1. Utilization of cesium-137 environmental contamination from fallout in erosion and sedimentation studies

    International Nuclear Information System (INIS)

    Guimaraes, M.F. da; Pessenda, L.C.R.; Fernandes, E.A.N.; Freire, O.; Nascimento Filho, V.F. do; Ferraz, E.S.B.

    1988-01-01

    The radioactivity of cesium-137 from fallout in different soils profiles for erosion and sedimentation studies are described. The potential of this technique for hydrographic basin in Piracicaba/Sao Paulo is evaluated. Due to the existence of natural radionuclides in soil, with energy near to cesium-137, the soil samples are determined by a high-purity Ge detectors. (author)

  2. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Motojima, Kenji; Kawamura, Fumio.

    1981-01-01

    Purpose: To increase the efficiency of removing radioactive cesium from radioactive liquid waste by employing zeolite affixed to metallic compound ferrocyanide as an adsorbent. Method: Regenerated liquid waste of a reactor condensation desalting unit, floor drain and so forth are collected through respective supply tubes to a liquid waste tank, and the liquid waste is fed by a pump to a column filled with zeolite containing a metallic compound ferrocyanide, such as with copper, zinc, manganese, iron, cobalt, nickel or the like. The liquid waste from which radioactive cesium is removed is dried and pelletized by volume reducing and solidifying means. (Yoshino, Y.)

  3. Process for recovering cesium from cesium alum

    International Nuclear Information System (INIS)

    Mein, P.G.

    1984-01-01

    Cesium is recovered from cesium alum, CsAl(SO 4 ) 2 , by a two-reaction sequence in which the cesium alum is first dissolved in an aqueous hydroxide solution to form cesium alum hydroxide, CsAl(OH) 3 , and potassium sulfate, K 2 SO 4 . Part of the K 2 SO 4 precipitates and is separated from the supernatant solution. In the second reaction, a water-soluble permanganate, such as potassium permanganate, KMnO 4 , is added to the supernatant. This reaction forms a precipitate of cesium permanganate, CsMnO 4 . This precipitate may be separated from the residual solution to obtain cesium permanganate of high purity, which can be sold as a product or converted into other cesium compounds

  4. User's guide for shipping Type B quantities of radioactive and fissile material, including plutonium, in DOT-6M specification packaging configurations

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1994-09-01

    The need for developing a user's guide for shipping Type B quantities of radioactive and fissile material, including plutonium, in a US Department of Transportation Specification 6M (DOT-6M) packaging was identified by the US Department of Energy (DOE)-Headquarters, Transportation Management Division (EM-261) because the DOT-6M packaging is widely used by DOE site contractors and the DOE receives many questions about approved packaging configuration. Currently, EM-261 has the authority to approve new DOT-6M packaging configurations for use by the DOE Operations Offices. This user's guide identifies the DOE-approved DOT-6M packaging configurations and explains how to have new configurations approved by the DOE. The packaging configurations described in this guide are approved by the DOE, and satisfy the applicable DOT requirements and the identified DOE restrictions. These packaging configurations are acceptable for transport of Type B quantities of radioactive and fissile material, including plutonium

  5. In situ vitrification pilot-scale radioactive test

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Oma, K.H.

    1984-10-01

    Pacific Northwest Laboratory (PNL) is developing in situ vitrification (ISV) as an in-place stabilization technique for selected liquid radioactive waste disposal sites. The process melts the wastes and surrounding soil to produce a durable glass and crystalline waste form. These ISV process development testing and evaluation studies are being conducted for the US Department of Energy. The results of an ISV pilot-scale test conducted in June of 1983 in which soils contaminated with actual radioactive transuranic and mixed fission product elements were vitrified are discussed. The primary objectives of the radioactive test were to: demonstrate containment and confinement of the radioactive material; verify equipment performance of the power and off-gas systems; identify losses to the off-gas system; and characterize the behavior of the radioactive material in the vitrified soil. The test successfully demonstrated the processing containment of radionuclides both within the vitrified mass and in the off-gas system. No environmental release of radioactive material was measured during testing operations. The vitrified soil had a greater than 99% retention of all radionuclides. Losses to the off-gas system varied from less than or equal to 0.03% for particulate materials (plutonium and strontium) to 0.8% for cesium which is a more volatile element. The off-gas system effectively contained both volatile and entrained radioactive materials. Analysis of the vitrified soil revealed that all radionuclides were distributed throughout the vitrified zone, some more uniformly than others. No migration of radionuclides outside the vitrification zone occurred, as indicated by analysis of soil samples from around the block. Previous waste form leaching studies indicate an acceptable durability of the ISV product. 8 references, 34 figures, 8 tables

  6. In situ vitrification pilot-scale radioactive test

    Energy Technology Data Exchange (ETDEWEB)

    Timmerman, C.L.; Oma, K.H.

    1984-10-01

    Pacific Northwest Laboratory (PNL) is developing in situ vitrification (ISV) as an in-place stabilization technique for selected liquid radioactive waste disposal sites. The process melts the wastes and surrounding soil to produce a durable glass and crystalline waste form. These ISV process development testing and evaluation studies are being conducted for the US Department of Energy. The results of an ISV pilot-scale test conducted in June of 1983 in which soils contaminated with actual radioactive transuranic and mixed fission product elements were vitrified are discussed. The primary objectives of the radioactive test were to: demonstrate containment and confinement of the radioactive material; verify equipment performance of the power and off-gas systems; identify losses to the off-gas system; and characterize the behavior of the radioactive material in the vitrified soil. The test successfully demonstrated the processing containment of radionuclides both within the vitrified mass and in the off-gas system. No environmental release of radioactive material was measured during testing operations. The vitrified soil had a greater than 99% retention of all radionuclides. Losses to the off-gas system varied from less than or equal to 0.03% for particulate materials (plutonium and strontium) to 0.8% for cesium which is a more volatile element. The off-gas system effectively contained both volatile and entrained radioactive materials. Analysis of the vitrified soil revealed that all radionuclides were distributed throughout the vitrified zone, some more uniformly than others. No migration of radionuclides outside the vitrification zone occurred, as indicated by analysis of soil samples from around the block. Previous waste form leaching studies indicate an acceptable durability of the ISV product. 8 references, 34 figures, 8 tables.

  7. Learning more about plutonium

    International Nuclear Information System (INIS)

    2008-01-01

    This digest brochure explains what plutonium is, where it comes from, how it is used, its recycling into Mox fuel, its half life, historical discovery, its presence in the environment, toxicity and radioactivity. (J.S.)

  8. Radioactive fallout has different effects in Lapland

    International Nuclear Information System (INIS)

    Rissanen, K.

    1993-01-01

    The effects of radioactive fallout in Lapland differ from those in southern Finland. The subarctic area is poor in vegetation and nutrients, for which reason radioactive substances enter food chains rapidly. As potassium is low in supply in the north, plants use cesium to replace it. Thus cesium is accumulated very effectively in food chain. When in the food chain, cesium is enriched in reindeer and further in Lapp people, who eat reindeer meat frequently. The Finnish Centre for Radiation and Nuclear Safety established a regional laboratory in northern Finland in the 1970's to monitor radiation and carry out research an the area.(author)

  9. Separation of cesium-137 from uranium fission products via a NeoflonR column supporting tetraphenylboron

    International Nuclear Information System (INIS)

    Whitney, C.D.; Landsberger, S.

    2009-01-01

    Cesium is a member of the Group I alkali metals, very reactive earth metals that react vigorously with both air and water. The chemistry of cesium is much like the chemistry of neighboring elements on the periodic table, potassium and rubidium. This close relation creates many problems in plant-life exposed to cesium because it is so easily confused for potassium, an essential nutrient to plants. Radioactive 134 Cs and 137 Cs are also chemically akin to potassium and stable cesium. Uptake of these radioactive isotopes from groundwater by plant-life destroys the plant-life and can potentially expose humans to the radioactive affects of 134 Cs and 137 Cs. Much experimental work has been focused on the separation of 137 Cs from uranium fission products. In previous experimental work performed a column consisting of Kel-F supporting tetraphenylboron (TPB) was utilized to separate 137 Cs from uranium fission products. It is of interest at this time to attempt the separation of 134 Cs from 0.01M EDTA using the same method and Neoflon in the place of Kel-F as the inert support. The results of this experiment give a separation efficiency of 88% and show a linear relationship between the column bed length and the separation efficiency obtained. (author)

  10. Pre-design safety analyses of cesium ion-exchange compact processing unit

    International Nuclear Information System (INIS)

    Richmond, W.G.; Ballinger, M.Y.

    1993-11-01

    This report describes an innovative radioactive waste pretreatment concept. This cost-effective, highly flexible processing approach is based on the use of Compact Processing Units (CPUs) to treat highly radioactive tank wastes in proximity to the tanks themselves. The units will be designed to treat tank wastes at rates from 8 to 20 liters per minute and have the capacity to remove cesium, and ultimately other radionuclides, from 4,000 cubic meters of waste per year. This new concept is being integrated into waste per year. This new concept is being integrated into Hanford's tank farm management plans by a team of PNL and Westinghouse Hanford Company scientists and engineers. The first CPU to be designed and deployed will be used to remove cesium from Hanford double-shell tank (DST) supernatant waste. Separating Cs from the waste would be a major step toward lowering the radioactivity in the bulk of the waste, allowing it to be disposed of as a low-level solid waste form (e.g.,grout), while concentrating the more highly radioactive material for processing as high-level solid waste

  11. Concentration of Cs in plants and water resulting from radioactive pollution

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, A., E-mail: azusa.ishizaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01, Aoba-ku, Sendai 980-8579 (Japan); Ishii, K.; Matsuyama, S.; Fujishiro, F.; Arai, H.; Osada, N.; Sugai, H.; Koshio, S.; Yamauchi, S.; Kusano, K.; Nozawa, Y.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Watanabe, K.; Itoh, S.; Kasahara, K.; Toyama, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-01, Aoba-ku, Sendai 980-8579 (Japan); Suzuki, Y. [Graduate School of Biomedical Engineering, Tohoku University, Aramaki-Aza-Aoba 6-6-04, Aoba-ku, Sendai 980-8578 (Japan)

    2014-01-01

    The consumption of plants cultivated in soils contaminated by radioactive cesium can lead to internal exposure and health problems in humans. It is therefore very important to clarify the uptake mechanism of radioactive cesium from contaminated soils. In this study, the variation of cesium concentrations in plants was examined using mediums that contained no potassium and different cesium concentrations of 50, 100, 250 and 500 ppm. Raphanus sativus was selected as a typical edible vegetable and hydroponically cultivated. Cesium concentrations in leaves were analyzed with a submilli-PIXE camera. The concentration of cesium in plants was observed to increase as concentrations in the medium increased. As the concentration of cesium in the medium increased, the transfer coefficient decreased. However, there was little difference between the 250 and 500 ppm treatments. In future work, PIXE analysis will be performed on different mediums and the relationship with other materials will be investigated.

  12. [Decorporation agents for internal radioactive contamination].

    Science.gov (United States)

    Ohmachi, Yasushi

    2015-01-01

    When radionuclides are accidentally ingested or inhaled, blood circulation or tissue/organ deposition of the radionuclides causes systemic or local radiation effects. In such cases, decorporation therapy is used to reduce the health risks due to their intake. Decorporation therapy includes reduction and/or inhibition of absorption from the gastrointestinal tract, isotopic dilution, and the use of diuretics, adsorbents, and chelating agents. For example, penicillamine is recommended as a chelating agent for copper contamination, and diethylene triamine pentaacetic acid is approved for the treatment of internal contamination with plutonium. During chelation therapy, the removal effect of the drugs should be monitored using a whole-body counter and/or bioassay. Some authorities, such as the National Council on Radiation Protection and Measurements and International Atomic Energy Agency, have reported recommended decorporation agents for each radionuclide. However, few drugs are approved by the US Food and Drug Administration, and many are off-label-use agents. Because many decontamination agents are drugs that have been available for a long time and have limited efficacy, the development of new, higher-efficacy drugs has been carried out mainly in the USA and France. In this article, in addition to an outline of decorporation agents for internal radioactive contamination, an outline of our research on decorporation agents for actinide (uranium and plutonium) contamination and for radio-cesium contamination is also presented.

  13. Solubility of plutonium from rumen contents of cattle grazing on plutonium-contaminated desert vegetation in in vitro bovine gastrointestinal fluids

    International Nuclear Information System (INIS)

    Barth, J.

    1975-01-01

    Rumen contents of cattle grazing on plutonium-contaminated desert vegetation at the Nevada Test Site were incubated in simulated bovine gastrointestinal fluids to study the alimentary solubility of plutonium. Trials were run during November 1973, and during February, May, July and August 1974. During the May and July trials, a large increase in plutonium solubility accompanied by a marked reduction in plutonium concentration of the rumen contents was observed concurrently with a reduction in intake of Eurotia lanata and an increase in the intake of Oryzopsis hymenoides or Sitanion jubatum. However, during the November, February, and August trials, comparatively high concentration of plutonium, but low plutonium solubility, was associated with high levels of Eurotia lanata in the rumen contents. Plutonium-238 was generally more soluble than plutonium-239 in these fluids. Ratios of the percentage of soluble plutonium-238 to the percentage of soluble plutonium-239 varied fro []1:1 to 18:1 on a radioactivity basis. (auth)

  14. Separation of actinides and long-lived fission products from high-level radioactive wastes (a review)

    International Nuclear Information System (INIS)

    Kolarik, Z.

    1991-11-01

    The management of high-level radioactive wastes is facilitated, if long-lived and radiotoxic actinides and fission products are separated before the final disposal. Especially important is the separation of americium, curium, plutonium, neptunium, strontium, cesium and technetium. The separated nuclides can be deposited separately from the bulk of the high-level waste, but their transmutation to short-lived nuclides is a muchmore favourable option. This report reviews the chemistry of the separation of actinides and fission products from radioactive wastes. The composition, nature and conditioning of the wastes are described. The main attention is paid to the solvent extraction chemistry of the elements and to the application of solvent extraction in unit operations of potential partitioning processes. Also reviewed is the behaviour of the elements in the ion exchange chromatography, precipitation, electrolysis from aqueous solutions and melts, and the distribution between molten salts and metals. Flowsheets of selected partitioning processes are shown and general aspects of the waste partitioning are shortly discussed. (orig.) [de

  15. A literature study of the behaviour of cesium, strontium and plutonium in the soil-plant ecosystem

    International Nuclear Information System (INIS)

    Nielsen, B.; Strandberg, M.

    1988-07-01

    Literature on the occurrence of radiocesium (primarily 137CS) in the soil-plant system with emphasis on the influence of treatment on its root uptake, was reviewed. The aim was to study root uptake of radiocesium in order to estimate the applicability of suitable counter measures in cases of contamination of arable land with plutonium, radiostrontium and, in particular, radiocesium. To what extent 136CS is available to, and absorbed by, the plant and how it is distributed and absorbed in the soil is described. The physiological uptake of plutonium from soil through roots to plant parts lying above ground constitutes minor health hazards to population from the ingestion of vegetables. Extensive use of root fruits, might indicate that there is a risk present in areas of high plutonium soil concentration, because plutonium is adsorbed to root molecules, especially if soil and peel are not discarded. Another risk lies in the resuspension of plutonium deposited on the soil surface. As mentioned above, the impact of the leakage of plutonium from the Chernobyl accident was negligible in distant areas. The effects in the vicinity of the reactor, might have been important. In small areas with high levels of plutonium contamination removal of the top soil layer will be effective. Because of the high toxity and long half-life of plutonium, the risk involved merely in isolating such an area will be to high, because the plutonium may be further dispersed. In larger areas, deep ploughing to a depth of 30-40 cm or more, if feasible, is a possibility. Local factors have to be considered, e.g. position of bedrock, groundwater, soil parameters etc. Deep ploughing combined with previous dispersion of clay minerals, lime or humus or a combination, might be a solution, and should be followed by limiting crops to those with roots concentrated in the surface layer and with smallest attainable concentration ratios for plutonium. Cereals might fill this demand. 188 refs. (AB)

  16. Cesium-137 as a radiation source

    International Nuclear Information System (INIS)

    McMullen, W.H.; Sloan, D.P.

    1985-01-01

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  17. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  18. Natural and artificial radioactivity in the area of the Mochovce regional radioactive waste store

    International Nuclear Information System (INIS)

    Bezak, J.; Daniel, J.; Moravek, J.

    2000-01-01

    The results of monitoring of natural and artificial radioactivity in the area of the Mochovce regional radioactive waste store before commission are presented. The concentrations of uranium, thorium, potassium, and cesium, as well as radon volume activity were measured

  19. Recent trends of plutonium facilities and their control

    Energy Technology Data Exchange (ETDEWEB)

    Muto, T [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1974-02-01

    Much interest has been focussed on Pu recycle since the oil crisis because of an expected shortage of enriched uranium. Plutonium handling techniques and plutonium fuel fabricating facilities should be developed to meet the future demand of plutonium, but the radioactive property of plutonium to be reprocessed from spent fuel and recycled plutonium is remarkably different, and it has to be handled safely. Technical criteria for plutonium facilities are specified in the USAEC regulatory guides and other rules. Some of these criteria are location condition, quality of confinement, protection against accidents and so on. The control conditions for plutonium facilities are exposure control, criticality control, measurement control and new system of safeguard. These problems are under development to meet the future requirement for the safe handling of Pu material.

  20. Radioactive and stable cesium isotope distributions and dynamics in Japanese cedar forests.

    Science.gov (United States)

    Yoschenko, Vasyl; Takase, Tsugiko; Hinton, Thomas G; Nanba, Kenji; Onda, Yuichi; Konoplev, Alexei; Goto, Azusa; Yokoyama, Aya; Keitoku, Koji

    2018-06-01

    Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133 Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137 Cs/ 133 Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem

  1. Using Biomolecules to Separate Plutonium

    Science.gov (United States)

    Gogolski, Jarrod

    Used nuclear fuel has traditionally been treated through chemical separations of the radionuclides for recycle or disposal. This research considers a biological approach to such separations based on a series of complex and interdependent interactions that occur naturally in the human body with plutonium. These biological interactions are mediated by the proteins serum transferrin and the transferrin receptor. Transferrin to plutonium in vivo and can deposit plutonium into cells after interacting with the transferrin receptor protein at the cell surface. Using cerium as a non-radioactive surrogate for plutonium, it was found that cerium(IV) required multiple synergistic anions to bind in the N-lobe of the bilobal transferrin protein, creating a conformation of the cerium-loaded protein that would be unable to interact with the transferrin receptor protein to achieve a separation. The behavior of cerium binding to transferrin has contributed to understanding how plutonium(IV)-transferrin interacts in vivo and in biological separations.

  2. Thermal decomposition of woody wastes contaminated with radioactive materials using externally-heated horizontal kiln

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyuki; Kato, Shigeru; Yamasaki, Akihiro; Ito, Takuya; Suzuki, Seiichi; Kojima, Toshinori; Kodera, Yoichi; Hatta, Akimichi; Kikuzato, Masahiro

    2015-01-01

    Thermal decomposition experiments of woody wastes contaminated with radioactive materials were conducted using an externally-heated horizontal kiln in the work area for segregation of disaster wastes at Hirono Town, Futaba County, Fukushima Prefecture. Radioactivity was not detected in gaseous products of thermal decomposition at 923 K and 1123 K after passage through a trap filled with activated carbon. The contents of radioactive cesium ( 134 Cs and 137 Cs) were measured in the solid and liquid products of the thermal decomposition experiments and in the residues in the kiln after all of the experiments. Although a trace amount of radioactive cesium was found in the washing trap during the start-up period of operation at 923 K, most of the cesium remained in the char, including the residues in the kiln. These results suggest that most of the radioactive cesium is trapped in char particles and is not emitted in gaseous form. (author)

  3. Kinetics of 137cesium in cerebral structures and blood

    International Nuclear Information System (INIS)

    Ribas, B.; Gonzalez, M.D.; Rio, J. del; Reus, M.I.S.; Gonzalez-Baron, M.

    1987-01-01

    The old clinical use of cesium in epilepsy expresses a relation of this metal with the central nervous system. Two groups of male Wistar rats of 200 g were administered single doses of 50μCi intravenously for blood kinetics and 2μCi 137 CsCl in each lateral ventricle of the brain for the kinetics in the cerebral structures, respectively. In both cases under ether anesthesia. Blood samples of IV gouts were weighed, and cerebral structure hypothalamus, hypocampus, striatum, cortex, cerebellum, mesencephalon and medulla oblongata dissected, cleaned, washed, dried, weighed, and in both cases cpm of the samples evaluated submitting it to the gamma radiations detector. In both experimental values of the 137 CsCl kinetics are expressed and applying the retroprojection method; parameters and constants are obtained. tsub(1/2) alpha = 0.0358 h and tsub(1/2) beta = 6.7159 h. In tables the equations of the alpha and beta phases are expressed. In blood after the rapid diminution of the radioactivity in the first 5 min the equilibrium phase is reached in 30 min afterwards, and the values remain almost the same 4 h after the injection and cesium is slowly eliminated by the rat. Cerebral structures after its intracerebroventricular application show that cesium has a great uptake velocity, it is rapidly incorporated by hypothalamus and after by cortex, hypocampus, striatum, mesencephalon and medulla oblongata, the two last showing the slower incorporation. After 24 h the cesium radioactivity declines slowly and progressively. (author)

  4. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  5. Cesium-137 inventory of the undisturbed soil areas in the Londrina Region, Parana, Brazil

    International Nuclear Information System (INIS)

    Andrello, Avacir C.; Appoloni, Carlos Roberto

    2005-01-01

    Cesium-137 is an artificial radionuclide introduced in the environment through the radioactive fallout of the superficial tests of nuclear weapons. The cesium-137 deposition occurred to middles of the 1980-decade and, due to the Chernobyl accident, great part of Europe had a additional fallout of cesium-137. The contaminations of this accident do not have reached Southern Hemisphere. Cesium-137 is an alkaline metal, high electropositive, that in contact with the soil is strongly adsorbed to the clay in the FES (Frayed Edge Sites) and RES (Regular Edge Sites) positions, and it movement by chemical processes in the soil is insignificant. Because of this, cesium-137 became a good soil marker, and its movement is related to the soil movement particles, so that the cesium-137 have been used in the study of the soil redistribution processes, as a tool of quantifying the rates of soil losses and gain. To use this methodology, it is necessary the knowledge of the reference inventory of cesium-137, that is given as function of the total concentration of cesium-137 deposited in an area by the radioactive fallout. If a sampling point presents less cesium-137 than the reference inventory, this point is considered a point with soil loss; otherwise, the point is considered a point with soil deposition. To evaluate the cesium-137 inventory in the Londrina region, four areas of the undisturbed soil were sampling in grid of 3x3, with a distance of 9 meters among the points. Of these four sampling areas, three areas were of native forest (labeled Mata1, Mata2 and Mata UEL), and one was a pasture area. Cesium-137 inventory was 223 ± 41 Bq m -2 , 240 ± 65 Bq m -2 and 305 ± 36 Bq m -2 for Mata UEL, Mata1 and Mata2, respectively, and of 211 ± 28 Bq m -2 for the native pasture. Considering the deviation in each value, it is not possible to conclude that there are differences among the values of cesium-137 inventory, so that the average reference inventory of cesium-137 for the

  6. Plutonium vulnerability issues at Hanford's Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Feldt, E.; Templeton, D.W.; Tholen, E.

    1995-01-01

    The Plutonium Finishing Plant (PFP) at the Hanford, Washington Site was operated to produce plutonium (Pu) metal and oxide for national defense purposes. Due to the production requirements and methods utilized to meet national needs and the abrupt shutdown of the plant in the late 1980s, the plant was left in a condition that poses a risk of radiation exposure to plant workers, of accidental radioactive material release to the environment, and of radiation exposure to the public. In early 1994, an Environmental Impact Statement (EIS) to determine the best methods for cleaning out and stabilizing Pu materials in the PFP was started. While the EIS is being prepared, a number of immediate actions have been completed or are underway to significantly reduce the greatest hazards in the PFP. Recently, increased attention his been paid to Pu risks at Department of Energy (DOE) facilities resulting in the Department-wide Plutonium Vulnerability Assessment and a recommendation by the Defense Nuclear Facilities Safety Board (DNFSB) for DOE to develop integrated plans for managing its nuclear materials

  7. A vision for environmentally conscious plutonium processing

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Christensen, D.C.; Miller, W.L.

    1998-01-01

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power and remediation. An unavoidable aspect of plutonium processing is that radioactive contaminated gas, liquid, and solid streams are generated. These streams need to be handled in a manner that is not only in full compliance with today's laws,but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. The theme of this paper is that recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to our children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. This paper will describe such a vision for plutonium processing that could be implemented fully within five years at a facility such as the Los Alamos Plutonium Facility (TA55). As a significant bonus, even on this short time scale, the initial technology investment is handsomely returned in avoided waste management costs

  8. The transport of civil plutonium by air

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the review entitled ''The Transport of Civil Plutonium by Air'' reported by the Advisory Committee on the Safe Transport of Radioactive Materials (ACTRAM) 1988. The contents contain chapters on the following topics:- the reasons for air transport, the various regulations, packagings for plutonium transport, testing of the packagings, accidents, the consequences of a release, and emergency arrangements. (U.K.)

  9. Adsorption of iodine and cesium onto some cement materials

    Energy Technology Data Exchange (ETDEWEB)

    Mine, Tatsuya [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Mihara, Morihiro; Ito, Masaru [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kato, Hiroshige [IDC, Tokai, Ibaraki (Japan)

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO{sub 2}, partition coefficient being 100 ml/g for initial tracer concentration of 10{sup -5} mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  10. Adsorption of iodine and cesium onto some cement materials

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ito, Masaru

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO 2 , partition coefficient being 100 ml/g for initial tracer concentration of 10 -5 mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  11. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  12. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    International Nuclear Information System (INIS)

    P. Bernot

    2005-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO 2 as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with 231 Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise

  13. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Nuclear Research Center, Atomic Energy Authority, Dokki 12311, Giza (Egypt)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Phytoremediation of radioactive wastes containing {sup 137}Cs and {sup 60}Co radionuclides. Black-Right-Pointing-Pointer Using water hyacinth for radioactive waste treatment. Black-Right-Pointing-Pointer Bioaccumulation of radionuclides from radioactive waste streams. Black-Right-Pointing-Pointer Factors affecting bioaccumulation of {sup 137}Cs and {sup 60}Co using floating plants. - Abstract: Phytoremediation is based on the capability of plants to remove hazardous contaminants present in the environment. This study aimed to demonstrate some factors controlling the phytoremediation efficiency of live floating plant, water hyacinth (Eichhornia crassipes), towards the effluents contaminated with {sup 137}Cs and/or {sup 60}Co. Cesium has unknown vital biological role for plant while cobalt is one of the essential trace elements required for plant. The main idea of this work i.e. using undesirable species, water hyacinth, in purification of radiocontaminated aqueous solutions has been receiving much attention. The controlling factors such as radioactivity concentration, pH values, the amount of biomass and the light were studied. The uptake rate of radiocesium from the simulated waste solution is inversely proportional to the initial activity content and directly proportional to the increase in mass of plant and sunlight exposure. A spiked solution of pH Almost-Equal-To 4.9 was found to be the suitable medium for the treatment process. The uptake efficiency of {sup 137}Cs present with {sup 60}Co in mixed solution was higher than if it was present separately. On the contrary, uptake of {sup 60}Co is affected negatively by the presence of {sup 137}Cs in their mixed solution. Sunlight is the most required factor for the plant vitality and radiation resistance. The results of the present study indicated that water hyacinth may be a potential candidate plant of high concentration ratios (CR) for phytoremediation of radionuclides

  14. A numerical study on oceanic dispersion and sedimentation of radioactive cesium-137 from Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Higashi, Hironori; Morino, Yu; Ohara, Toshimasa

    2014-01-01

    We discussed a numerical model for oceanic dispersion and sedimentation of radioactive cesium-137 (Cs-137) in shallow water regions to clarify migration behavior of Cs-137 from Fukushima Daiichi Nuclear Power Plant. Our model considered oceanic transport by three dimensional ocean current, adsorption with large particulate matter (LPM), sedimentation and resuspension. The simulation well reproduced the spatial characteristics of sea surface concentration and sediment surface concentration of Cs-137 off Miyagi, Fukushima, and Ibaraki Prefectures during May-December 2011. The simulated results indicated that the adsorption-sedimentation of Cs-137 significantly occurred during strong wind events because the large amount of LPM was transported to upward layer by resuspension and vertical mixing. (author)

  15. Determination of the radioactive concentration of 137Cs in water

    International Nuclear Information System (INIS)

    1986-01-01

    The recently accepted standard method to determine the radioactive concentration of 137 Cs in water is based on the selective retention of cesium ions on ammonium-phosphorous-molybdate followed by the dissolution of the sorbent and the selective precipitation of cesium-hexa-chloro-platinate. The radioactive concentration is determined by the measurement of β disintegration rate of the preparate. (V.N.)

  16. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    Science.gov (United States)

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  17. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals

    International Nuclear Information System (INIS)

    Borai, E.H.; Harjula, R.; Malinen, Leena; Paajanen, Airi

    2009-01-01

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs + ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  18. Hot demonstration of proposed commercial cesium removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable

  19. Process for recovering cesium from cesium alum

    International Nuclear Information System (INIS)

    Mein, P.G.

    1984-01-01

    Cesium is recovered from cesium alum, CsAl(SO 4 ) 2 , by an aqueous conversion and precipitation reaction using a critical stoichiometric excess of a water-soluble permanganate to form solid cesium permanganate (CsMnO 4 ) free from cesium alum. The other metal salts remain in solution, providing the final pH does not cause hydroxides of aluminium or iron to form. The precipitate is separated from the residual solution to obtain CsMnO 4 of high purity

  20. Environmental radioactivity in the North Atlantic region. The Faroe Islands and Greenland included. 1983

    International Nuclear Information System (INIS)

    Aarkrog, A.; Boelskifte, S.; Buch, E.; Christensen, G.C.; Dahlgaard, H.; Hallstadius, L.; Hansen, H.; Holm, E.; Mattsson, S.; Meide, A.

    1984-12-01

    Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1983. Results from samplings of surface sea water and seaweed in the Norwegian and Greenland Seas and along the Norwegian and Greenland west coasts are reported. Beside radiocesium and 90 Sr some of these samples have also been anlysed for tritium,plutonium and americium. Finally technetium-99 data on seaweed samples collected in the North Atlantic region since the beginning of the sixties are presented. (author)

  1. Environmental radioactivity in the North Atlantic region. The Faroe Islands and Greenland included. 1984

    International Nuclear Information System (INIS)

    Aarkrog, A.; Boelskifte, S.; Buch, E.; Christensen, G.C.; Dahlgaard, H.; Hallstadius, L.; Hansen, H.; Holm, E.

    1985-12-01

    Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in human diet in the Faroes and Greenland in 1984. Results from samplings of surface sea water and seaweed in the Norwegian and Greenland Seas and along the Norwegian and Greenland west coasts are reported. Beside radiocesium and 90 Sr some of these samples have also been anlysed for tritium, polonium, plutonium and americium. Finally technetium-99 data on seaweed samples collected in the North Atlantic region since the beginning of the sixties are presented. (author)

  2. Environmental radioactivity in the North Atlantic region. The Faroe Islands and Greenland included. 1985

    International Nuclear Information System (INIS)

    Aarkrog, A.; Boelskifte, S.; Dahlgaard, H.; Hansen, H.; Buch, E.; Christensen, G.C.; Hallstadius, L.; Rioseco, J.; Holm, E.

    1987-06-01

    Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90 and cesium-137 was determined in samples of precipitation, sea water vegetation, various foodstuffs (including milk in the Faroes) and drinking water. Estimates are given of the mean contents of 90 Sr a 137 Cs in human diet in the Faroes and Greenland in 1985. Results from samplings of surface sea water and seaweed in the English Channel, the Fram Strait and along the Norwegian and Greenland coast are reported. Beside radiocesium and 90 Sr some of these samples have also been analysed for tritium, plutonium and americium. Finally technetium-99 data on seaweed and sea water samples collected in the North Atlantic region are presented. 14 refs. (author)

  3. Modelling the transport of radioactive cesium released from the Fukushima Dai-ichi NPP with sediments through the hydrologic system

    Science.gov (United States)

    Kinouchi, T.; Omata, T.; Wei, L.; Liu, T.; Araya, M.

    2013-12-01

    Due to the accident of the Fukushima Dai-ichi Nuclear Power Plant on March 2011, a huge amount of radionuclides including Cesium-134 and Cesium-137 was deposited over the main island of Japan and the Pacific Ocean, resulting in further transfer and diffusion of Cesium through the atmospheric flow, watershed hydrological processes, and terrestrial ecosystem. Particularly, for the transfer of Cesium-134 and Cesium-137, sediments eroded and transported by the rainfall-runoff processes play an important role as Cesium tends to be strongly adsorbed to soil particles such as clay and silt. In this study, we focus on the transport of sediment and adsorbed Cesium in the watershed-scale hydrologic system to predict the long-term change of distribution of Cesium and its discharge to rivers and ocean. We coupled a physically-based distributed hydrological model with the modules of erosion and transport of sediments and adsorbed Cesium, and applied the coupled model to the Abukuma River watershed, which is located over the area of higher deposition of Cesium. In the model, complex land use and land cover distributions, and the effect of human activities such as irrigation, dam control and urban drainage system are taken into accounts. Simulation was conducted for the period of March 2011 until August 2012, with initial spatial distribution of Cesium-134 and Cesium-137 obtained by the airborne survey. Simulated flow rates and sediment concentrations agreed well with observed, and found that since the accident, two major storms in July and September 2011 transported about 50% of total sediments transported during the simulated periods. Cesium concentration in the sediment was reproduced well except for the difference in the initial periods. This difference is attributable to the uncertainty arisen from the initial distribution of Cesium in the soil and the transfer of Cesium from the forest canopy.

  4. Retrospective radiation-hygienic assessment of cesium-137 intake with feeding in the organisms of the Altai Territory habitants

    International Nuclear Information System (INIS)

    Meshkov, N.A.; Val'tseva, E.A.

    2016-01-01

    Radioactive precipitations as the result of atmospheric nuclear tests on the Semipalatinsk test site turned to local soil contamination by cesium-137 on the territory of the Altai Territory and Gorny Altai. The distribution of long-lived radioisotopes, cesium-137 in particular, in the main food staffs for local population is investigated. The retrospective analysis of cesium-137 specific activity in food products produced on these territories is carried out. It is ascertained that cesium-137 in meat has the general contribution to intake with food into organisms of adult population [ru

  5. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    International Nuclear Information System (INIS)

    Hamm, L.L.

    2000-01-01

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste

  6. Plutonium isotopes/137Cs activity ratios for soil in Montenegro

    International Nuclear Information System (INIS)

    Antovic, N. M.; Vukotic, P.; Svrkota, N.; Andrukhovich, S.K.

    2011-01-01

    Plutonium isotopes/ 137 Cs activity ratios were determined for six soil samples from Montenegro, using the results of alpha-spectrometric measurements of 239+240 Pu and 238 Pu, as well as gamma-spectrometric cesium measurements. An average 239+240 Pu/ 137 Cs activity ratio is found to be 0.02, as the 238 Pu/ 137 Cs and 238 Pu/ 239+240 Pu one - 0.0006 and 0.03, respectively. It follows from the results that the source of plutonium in Montenegro soil is nuclear weapon testing during the fifties and sixties of the twentieth century. On the other hand, there is a contribution of the accident at the Chernobyl nuclear power plant to the soil contamination with 137 Cs isotope. [sr

  7. Analysis of cesium-137 vertical distribution in the profile of plowed chernozems at different schemes of their assaying

    International Nuclear Information System (INIS)

    Paramonova, T.A.; Komissarova, O.L.; Belyaev, V.R.; Ivanov, M.M.

    2016-01-01

    In 2011-2015 the assessment of profile cesium-137 distribution in agrocenosis of chernozem zone on the territory of the Plavsk radioactive spot in Tula region formed after the Chernobyl accident has been carried out. It is shown that up until now non-uniformity of cesium-137 vertical distribution over the plowed chernozems profile may be occurred, it should be taken into account at radioecological survey of post-Chernobyl landscapes. For correct evaluation of radioecological state of plowed soils their systematic monitoring on the base of preliminary analysis of cesium-137 distribution and also with the account of agrotechnical peculiarities of various crops cultivation is recommended. On the Plavsk radioactive spot territory the most adequate assessments of cesium-137 stores in plowed chernozems one can obtain on the base of assaying the upper 30-cm soil depth, including not only current topsoil, but also old-arable horizon formed by deep rehabilitation plowing [ru

  8. The effect of fertilizer application on 137 cesium accumulation in lucerne grown on a leached chernozem

    International Nuclear Information System (INIS)

    Konstantinov, G.; Kovachev, K.; Penchev, D.; Ermolaev, I.; Mirchev, M.

    1974-01-01

    On the basis of pot experiments, carried out in a glass-house the following conclusions on the effect of fertilizer application are made: nitrogen fertilizer application increases the amount of radioactive cesium in lucerne plants. Phosphorus fertilizer introduction, similarly to potassium fertilizer application decreases cesium uptake, resulting in an increase in available phosphorus in the soil. (M.Ts.)

  9. The Study of some nutritional and pharmacological aspects of human radioactive contamination by cesium and plutonium

    International Nuclear Information System (INIS)

    Bittel, R.

    1988-04-01

    Foodchains are significant vectors of internal human radioactive contamination. Way of life, especially feeding habits are at present strikingly evolving under the influence of a better knowledge of food requirements and availability, greater use of additives, new technologies, economical, social and psychological factors. As a consequence, Cs and Pu in the diet vary, in spite of their unchanged concentration in the environment. Between source term and effective dose rate, many factors arise that lead to dose factor variability which must be quantified. These considerations should lead to a new optimization of radiological food control [fr

  10. A vision for environmentally conscious plutonium processing

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Christensen, D.C.; Miller, W.L.

    1998-01-01

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power, and remediation. An unavoidable aspect of plutonium processing is that radioactively contaminated gas, liquid, and solid waste streams are generated. These streams need to be handled in a manner that not only is in full compliance with today's laws but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. It is now abundantly evident that in the long run, these practices have proven to be neither environmentally nor economically sound. Recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. The authors describe such a vision for plutonium processing that could be implemented fully within 5 yr at a facility such as the Los Alamos National Laboratory Plutonium Facility (TA55). As a significant bonus, even on this short timescale, the initial technology investment is handsomely returned in avoided waste management costs

  11. Strontium-90 and cesium-137 in fresh water

    International Nuclear Information System (INIS)

    1978-01-01

    Japan Chemical Analysis Center has analysed the strontium-90 and Cesium-137 contents in fresh water from 7 prefectures in Japan by the commission of Science and Technology Agency of Japanese Government. The method described in ''Radioactivity Survey Data in Japan No. 43 (NIRS-RSD-43, 1977) was applied to the analysis of these two radionuclides in samples. (author)

  12. Potential of thorium-based fuel cycle for PWR core to reduce plutonium and long-term toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    The cross section libraries and calculation methods of the participants were inter-compared through the first stage benchmark calculation. The multiplication factor of unit cell benchmark are in good agreement, but there is significant discrepancies of 2.3 to 3.5 %k at BOC and at EOC between the calculated infinite multiplication factors of each participants for the assembly benchmark. Our results with HELIOS show a reasonable agreement with the others except the MTC value at EOC. To verify the potential of the thorium-based fuel to consume the plutonium and to reduce the radioactivity from the spent fuel, the conceptual core with ThO{sub 2}-PuO{sub 2} or MOX fuel were constructed. The composition and quantity of plutonium isotopes and the radioactivity level of spent fuel for conceptual cores were analyzed, and the neutronic characteristics of conceptual cores were also calculated. The nuclear characteristics for ThO{sub 2}-PuO{sub 2} thorium fueled core was similar to MOX fueled core, mainly due to the same seed fuel material, plutonium. For the capability of plutonium consumption, ThO{sub 2}-PuO{sub 2} thorium fuel can consume plutonium 2.1-2.4 times MOX fuel. The fraction of fissile plutonium in the spent ThO{sub 2}-PuO{sub 2} thorium fuel is more favorable in view of plutonium consumption and non-proliferation than MOX fuel. The radioactivity of spent ThO{sub 2}-PuO{sub 2} thorium and MOX fuel batches were calculated. Since plutonium isotopes are dominant for the long-term radioactivity, ThO{sub 2}-PuO{sub 2} thorium has almost the same level of radioactivity as in MOX fuel for a long-term perspective. (author). 22 figs., 11 tabs.

  13. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions.

    Science.gov (United States)

    Miah, Muhammed Yusuf; Volchek, Konstantin; Kuang, Wenxing; Tezel, F Handan

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L(-1) at room temperature (21°C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  14. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Volchek, Konstantin, E-mail: Konstantin.Volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Kuang, Wenxing [SAIC Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L{sup -1} at room temperature (21 deg. C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed.

  15. Cesium migration experiments in different media

    International Nuclear Information System (INIS)

    Tello, C.C.O. de

    1992-01-01

    The environmental impact caused by the radioactive waste disposal depends on many factors, mainly on the release pathways of the radionuclides from the waste product to the environment. The migration of the radioelements through the different barriers, which compose the disposal system, is considered the main via for this release. This paper describes the experiments carried out to improve the cemented waste quality, as well to assess the cesium migration in different media. (author)

  16. Cesium-137 accumulation in higher plants before and after Chernobyl

    International Nuclear Information System (INIS)

    Sawidis, T.; Drossos, E.; Papastefanou, C.; Heinrick, G.

    1990-01-01

    Cesium-137 concentrations in plant species of three biotypes of northern Greece, differing in location as well as in vegetation, are reported following the Chernobyl reactor accident. The cesium uptake by plants was due to the foliar deposition rather than the root uptake. The highest level of cesium in plants was found in Ranunculus sardous, a pubescent plant. The 137 Cs concentration was about 22kBq kg -1 d.w. A high level of cesium was also found in Salix alba ( 137 Cs: 19.6 kBq kg -1 d.w.), a deciduous tree showing that hairy leaves or leaves having rough and large surfaces can absorb greater amounts of radioactivity (surface effect). A comparison is also made between the results of measurements of the present study and the results of measurements of some herbarium plants collected one year before the accident as well as the results of measurements of some new plants grown and collected one year after the accident resulting in a natural removal rate of 137 Cs in plants varying from 14 to 130 days

  17. Recovery from the radioactive pollution due to Fukushima first nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Terakawa, A.; Matsuyama, S.; Kikuchi, Y.; Fujishiro, F.; Ishizaki, A.; Osada, N.; Arai, H.; Sugai, K.; Nagakubo, K.; Sakurada, T. [Dept. of Quantum Science and Energy Engineering, Tohoku University, Sendai (Japan)

    2013-07-01

    Full text: The great East Japan earthquake happened at 14:46 11{sup th} March 2011. After the earthquake, the huge tsunamis of above 16m height hit the east coast of Northeastern Japan. About 20,000 peoples died or went missing and many houses were lost. The tsunamis caused the nuclear accident of Fukushima first nuclear power plant. Three nuclear reactors hydrogen-exploded 12{sup th}, 14{sup th} and 15{sup th} March, one after another, and scattered the huge amount of radioisotopes of {sup 131}I and {sup 134,137}Cs on the prefectures in the eastern region of Japan. Especially, Fukushima prefecture where the nuclear plant is located was contaminated very much. This radiation catastrophe worried about the internal exposure by taking contaminated foods and the external exposure by surrounding radioactivity. The radiation exposure was mainly caused by {sup 131}I the earlier stage of the accident and then by {sup 134,137}Cs. Now, the radiation doses on the asphalt or concrete places and some areas are gradually decreasing and become around a half value of the earlier one. This is well known as the weathering effect. We found that the density of cesium radioisotopes decreases with a function of depth from the ground surface, and almost of all cesium radioisotopes were distributed in the thickness of 1 cm. We washed the contaminated soil 3 times. The radioactivity of soil reduced one twenty fifth of original one. Almost all cesium radioisotopes were contained in remains liquid. Depositing muddy water, we separated clay from water. It was confirmed that the water was no radioactive. This resulted cesium radioisotopes were not ionic in soil and water, and adhered mainly to clay on the ground. Therefore, cesium radioisotopes have not been detected in river water and city water from the early stages of the accident. The volume of clay was about one tenth of the contaminated soil. We applied this idea to decontaminate the school yards (about 7000m{sup 2}) of elementary

  18. Recovery from the radioactive pollution due to Fukushima first nuclear power plant accident

    International Nuclear Information System (INIS)

    Ishii, K.; Terakawa, A.; Matsuyama, S.; Kikuchi, Y.; Fujishiro, F.; Ishizaki, A.; Osada, N.; Arai, H.; Sugai, K.; Nagakubo, K.; Sakurada, T.

    2013-01-01

    Full text: The great East Japan earthquake happened at 14:46 11 th March 2011. After the earthquake, the huge tsunamis of above 16m height hit the east coast of Northeastern Japan. About 20,000 peoples died or went missing and many houses were lost. The tsunamis caused the nuclear accident of Fukushima first nuclear power plant. Three nuclear reactors hydrogen-exploded 12 th , 14 th and 15 th March, one after another, and scattered the huge amount of radioisotopes of 131 I and 134,137 Cs on the prefectures in the eastern region of Japan. Especially, Fukushima prefecture where the nuclear plant is located was contaminated very much. This radiation catastrophe worried about the internal exposure by taking contaminated foods and the external exposure by surrounding radioactivity. The radiation exposure was mainly caused by 131 I the earlier stage of the accident and then by 134,137 Cs. Now, the radiation doses on the asphalt or concrete places and some areas are gradually decreasing and become around a half value of the earlier one. This is well known as the weathering effect. We found that the density of cesium radioisotopes decreases with a function of depth from the ground surface, and almost of all cesium radioisotopes were distributed in the thickness of 1 cm. We washed the contaminated soil 3 times. The radioactivity of soil reduced one twenty fifth of original one. Almost all cesium radioisotopes were contained in remains liquid. Depositing muddy water, we separated clay from water. It was confirmed that the water was no radioactive. This resulted cesium radioisotopes were not ionic in soil and water, and adhered mainly to clay on the ground. Therefore, cesium radioisotopes have not been detected in river water and city water from the early stages of the accident. The volume of clay was about one tenth of the contaminated soil. We applied this idea to decontaminate the school yards (about 7000m 2 ) of elementary schools of Marumori town adjacent to Fukushima

  19. Denatured plutonium: a study of deterrent action. Final report

    International Nuclear Information System (INIS)

    Hutchins, B.A.

    1975-07-01

    The safeguarding of nuclear reactor fuel includes physical security methods as well as technological process options. The purpose of this study was to provide a preliminary evaluation of a technological option; the introduction of denaturing as a deterrent to illicit plutonium diversion. Denaturing is accomplished by coextracting some highly-radioactive fission products with the plutonium during reprocessing of spent fuel. The radioactive denaturant is always in companion with the plutonium through all subsequent fuel cycle steps - and serves as a deterrent to diversion or illicit usage of this fissile source. In concept the denaturing approach is simple and straightforward. This report provides a preliminary analysis of denaturing which can be achieved within the framework of present reprocessing technology. The impact of denaturing is indicated by comparison to a conventional (i.e., non-denatured) light water reacter cycle approach

  20. The biological impacts of ingested radioactive materials on the pale grass blue butterfly

    Science.gov (United States)

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M.

    2014-05-01

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  1. The biological impacts of ingested radioactive materials on the pale grass blue butterfly.

    Science.gov (United States)

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M

    2014-05-15

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  2. The future of plutonium - an overview

    International Nuclear Information System (INIS)

    Larson, C.E.

    1975-01-01

    Plutonium is the underpinning of the nuclear industry. Without it it is estimated that the fuel will run out not long after the turn of the century. With plutonium in fast breeders nuclear reactors can be operated for tens of thousands of years and the depleted uranium now available can be utilized The fuel cycle contemplated is similar to that of the light water reactor with some important differences at least partially related to the greater radioactivity of the resulting mixture of plutonium isotopes. The regulatory program does recognize the problems, including those of toxicity, safeguards and transportation. The concept of an integrated fuel cycle facility at a single location must be seriously considered. (author)

  3. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe{sub 3}O{sub 4} nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired.

  4. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    International Nuclear Information System (INIS)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon

    2014-01-01

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe 3 O 4 nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired

  5. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    Science.gov (United States)

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  6. Chernobyl radioactivity impacts and remediation of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Rennie, C.D.; Baweja, A.S.

    1992-01-01

    This report gives an overview of the results of the Chernobyl nuclear accident, the impacts of strontium, cesium, and plutonium on forestry ecosystems, the toxicity of the radionuclides, remediation techniques such as upgrading the soils with the addition of potassium and calcium, and other possible measures for remediation, based primarily on the Bikini Atoll model.

  7. Dosage of cesium 137 in radioactive wastes by the application of sodium tetraphenylborate; Dosage du cesium 137 dans les effluents radioactifs par le tetraphenylborate de sodium

    Energy Technology Data Exchange (ETDEWEB)

    Testemale, G; Girault, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A simple technique of the dosage of {sup 137}Cs has been developed. The technique consists in the formation of cesium tetraphenyl borate, followed by a double extraction with isoamyl acetate, and washing of the organic phase. The counting of known parts of the cesium solution assaying of its purity by {gamma} spectrometry enable the determination of the {sup 137}Cs. The yield is about 98 per cent. (authors) [French] Une technique simple du dosage du {sup 137}Cs a ete mise au point. Elle consiste en une double extraction du tetraphenylborate de cesium forme par l'acetate d'isoamyle suivie d'un lavage de la phase organique. Des comptages sur des parties aliquotes de la solution de cesium et un controle de purete par spectrometrie {gamma} permettent la determination de cet element. Rendement: environ 98 pour cent. (auteurs)

  8. Development of an ion-exchange process for removing cesium from high-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Baumgarten, P.K.; Wallace, R.M.; Whitehurst, D.A.; Steed, J.M.

    1979-11-01

    Methods to determine resin characteristics, i.e., cesium equilibria and diffusion rates, were developed. These parameters can now guide resin selection and aid in interpreting column performance. The K/sub D/ cesium ion concentration relation gives evidence of three different types of ion exchange sites. The countercurrent load/elution/regeneration cycle for the removal of cesium by ion exchange repeatedly reached the goal decontamination factor (DF) of 10,000 at throughputs up to 60 column volumes. Resin backwashing appears feasible, but further development of column geometry will be required. The proposed ammonium elutriant is satisfactory. Regeneration end-point can be controlled by electrical conductivity monitoring

  9. Determination of detailed regulations concerning transportation of radioactive materials by vehicles

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations concerning transportation of radioactive materials by vehicles''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding the radioactive materials with not more than 15 grams of such uranium and plutonium. The permissible surface density is 1/100,000 microcurie per cm 2 for radioactive materials emitting alpha-ray and 1/10,000 microcurie per cm 2 for such materials which does not emit alpha-ray. For the radioactive materials which can be transported as L type loads, their kinds and quantities are specified in the forms of solid, liquid and gas, respectively. Transporting conditions including the quantity and leakage in A, BM and BU type loads are provided for, respectively, in the lists attached and in the particular sections. (Okada, K.)

  10. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  11. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  12. Selective separation of actinides and long-lived fission products from 1 AW MTR liquid waste: pilot plant tests part II

    International Nuclear Information System (INIS)

    Grossi, G.; Marrocchelli, A.; Pietrelli, L.; Calle, C.; Gili, M.; Luce, A.; Troiani, F.

    1992-01-01

    In Italy there are some 120 m 3 of liquid High-level radioactive Wastes coming from MTR, Candu and EPK River fuel elements reprocessing. These High-level radioactive wastes contain a large amount of chemicals and inert salts together with cesium, strontium and transuranium elements. Transuranium elements and strontium are separated from the inert salts by means of a selective precipitation while Cesium is adsorbed on synthetic zeolithes (AZE Process) or precipitated with sodium Tetraphenyl borate (NaTPB) (ATE process). The benchscale experiments have confirmed the feasibility of selective separation processes and have showed that decontamination efficiency for strontium, plutonium and cesium were, respectively, 100, 5000 and 1000. This second part of the CEC final report describes Searse pilot plant tests with cold experiments. 37 Refs.; 17 Figs.; 16 Tabs

  13. Robotic sample preparation for radiochemical plutonium and americium analyses

    International Nuclear Information System (INIS)

    Stalnaker, N.; Beugelsdijk, T.; Thurston, A.; Quintana, J.

    1985-01-01

    A Zymate robotic system has been assembled and programmed to prepare samples for plutonium and americium analyses by radioactivity counting. The system performs two procedures: a simple dilution procedure and a TTA (xylene) extraction of plutonium. To perform the procedures, the robotic system executes 11 unit operations such as weighing, pipetting, mixing, etc. Approximately 150 programs, which require 64 kilobytes of memory, control the system. The system is now being tested with high-purity plutonium metal and plutonium oxide samples. Our studies indicate that the system can give results that agree within 5% at the 95% confidence level with determinations performed manually. 1 ref., 1 fig., 1 tab

  14. Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents

    International Nuclear Information System (INIS)

    Todd, T.A.; Mann, N.R.; Tranter, T.J.; Sebesta, F.; John, J.; Motl, A.

    2002-01-01

    Ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) composite sorbents have been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) concentrated acidic tank waste. Batch contacts were performed to qualitatively evaluate the effects of increased nitric acid, sodium and potassium. An equilibrium isotherm was generated with simulated concentrated tank waste solutions and fit to the Langmuir equation. Additional batch contact experiments were performed to determine if mercury, plutonium and americium would sorb onto AMP-PAN. Dynamic sorption was evaluated in column tests employing 1.5 cm 3 columns operating at 5, 10 and 20 bed volumes of flow per hour. Results indicate, as expected, that dynamic cesium sorption capacity is reduced as the flowrate is increased. Calculated dynamic capacities for cesium were 22.5, 19.8 and 19.6 mg Cs/g sorbent, for 5, 10 and 20 bed volume per hour flows, respectively. The thermal stability of loaded AMP-PAN was evaluated by performing thermogravimetric analysis (TGA) on samples of AMP, PAN (polymer), and AMP-PAN. Results indicate that AMP-PAN is stable to 400 deg C, with less than a 10% loss of weight, which is at least partially due to loss of water of hydration. The evaluation of AMP-PAN indicates that it will effectively remove cesium from concentrated acidic tank waste solutions. (author)

  15. Separation of cesium from simulated active waste using zinc hexacyanoferrate supported composite

    International Nuclear Information System (INIS)

    Somida, H.H.; El Zahhar, A.A.; Shehata, M.K.; El Naggar, H.A.

    2003-01-01

    Potassium zinc hexacyanoferrate (KZnHCF) was prepared and supported on polyacrylonitrile (PAN) binding polymer. This composite was characterized and used to study the elimination of cesium from acidic radioactive waste containing Sr(II), Eu(II), Am(II), Zr(IV), Hf(IV) and Nb(V) using batch and column techniques. The sorption capacity of this composite for cesium was found to be 1.14 meq/g for column technique. The effect of presence of NH 4 SCN, NaNo 3 and other complexing agents in the aqueous solutions was studied

  16. CANDU - a versatile reactor for plutonium disposition or actinide burning

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Gagnon, M.J.N.; Boczar, P.G.; Ellis, R.J.; Verrall, R.A.

    1997-10-01

    High neutron economy, on-line refuelling, and a simple fuel-bundle design result in a high degree of versatility in the use of the CANDU reactor for the disposition of weapons-derived plutonium and for the annihilation of long-lived radioactive actinides, such as plutonium, neptunium, and americium isotopes, created in civilian nuclear power reactors. Inherent safety features are incorporated into the design of the bundles carrying the plutonium and actinide fuels. This approach enables existing CANDU reactors to operate with various plutonium-based fuel cycles without requiring major changes to the current reactor design. (author)

  17. Decommissioning and Decontamination Program: Battelle Plutonium Facility, Environmental assessment

    International Nuclear Information System (INIS)

    1979-09-01

    This assessment describes the decontamination of Battelle-Columbus Plutonium Facility and removal from the site of all material contamination which was associated with or produced by the Plutonium Facility. Useable uncontaminated material will be disposed of by procedures normally employed in scrap declaration and transfer. Contaminated waste will be transported to approved radioactive waste storage sites. 5 refs., 1 fig

  18. A pilot-scale radioactive test using in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Oma, K.M.

    1985-01-01

    Pacific Northwest Laboratory is developing in situ vitrification (ISV) as a potential remedial action technique for previously disposed radioactive liquid drain sites. The process melts the contaminated soil to produce a durable glass and crystalline waste form and encapsulates the radionuclides. The development of this alternative technology is being performed for the US Department of Energy. The results of an ISV pilot-scale test conducted in June 1983 are discussed in which soils contaminated with actual radioactive transuranic and mixed fission product elements were vitrified. The test successfully demonstrated the containment of radionuclides during processing, both within the vitrified mass and in the off-gas system. No environmental release of radioactive material was detectable during testing operations. The vitrified soil retained >99% of all radionuclides. Losses to the offgas system varied from less than or equal to 0.03% for particulate materials (plutonium and strontium) to 0.8% for cesium, which is a more volatile element. The off-gas system effectively contained both volatile and entrained radioactive materials. Analysis of the vitrified soil revealed that all radionuclides were distributed throughout the vitrified zone, some more uniformly than others. Analysis of soil samples taken adjacent to the block indicated that no migration of radionuclides outside the vitrification zone occurred. Leaching studies have shown that the ISV process generates a highly durable waste form, comparable to Pyrex and granite. Based on geologic data from the hydration of obsidian, which is chemically similar to the ISV glass, the hydration or weathering rate is predicted to be much less than 1 mm in 10,000 yr

  19. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Tymons, B.J.

    1985-06-01

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  20. Sericitization of illite decreases sorption capabilities for cesium

    Science.gov (United States)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction

  1. Plutonium safety training course

    International Nuclear Information System (INIS)

    Moe, H.J.

    1976-03-01

    This course seeks to achieve two objectives: to provide initial safety training for people just beginning work with plutonium, and to serve as a review and reference source for those already engaged in such work. Numerous references have been included to provide information sources for those wishing to pursue certain topics more fully. The first part of the course content deals with the general safety approach used in dealing with hazardous materials. Following is a discussion of the four properties of plutonium that lead to potential hazards: radioactivity, toxicity, nuclear properties, and spontaneous ignition. Next, the various hazards arising from these properties are treated. The relative hazards of both internal and external radiation sources are discussed, as well as the specific hazards when plutonium is the source. Similarly, the general hazards involved in a criticality, fire, or explosion are treated. Comments are made concerning the specific hazards when plutonium is involved. A brief summary comparison between the hazards of the transplutonium nuclides relative to 239 Pu follows. The final portion deals with control procedures with respect to contamination, internal and external exposure, nuclear safety, and fire protection. The philosophy and approach to emergency planning are also discussed

  2. Fabrication, characterization and radiation damage stability of hollandite based ceramics devoted to radioactive immobilisation; Synthese, caracterisation et etude du comportement sous irradiation electronique de matrices de type hollandite destinees au confinement du cesium radioactif

    Energy Technology Data Exchange (ETDEWEB)

    Aubin-Chevaldonnet, V. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DETCD/SCDV), Dept. d' Etudes du Traitement et du Conditionnement des Dechets, Service de Conditionnement des Dechets et Vitrification, 30 - Marcoule (France)

    2004-11-01

    Research on treating specifically the long-lived and high level nuclear wastes, notably cesium, is currently carried out in France. Cesium immobilization in host matrices of high chemical durability constitutes the favoured option. Hollandite matrix is a good candidate because of its high cesium incorporation ability and its excellent chemical stability. During this study, different compositions of hollandite ceramics Ba{sub x}Cs{sub y}C{sub z}Ti{sub 8-z}O{sub 16} (C = Al{sup 3+}, Cr{sup 3+}, Ga{sup 3+}, Fe{sup 3+}, Mg{sup 2+}, Sc{sup 3+}), synthesized by oxide route, were characterized in terms of structure, microstructure and physical and chemical properties. Iron ions seems to be the most suitable of the studied C cations to get high-performance hollandites. The stability of these ceramics under external electron irradiation, simulating the {beta} particles emitted by radioactive cesium, were also estimated, at the macroscopic and atomic scale. The point defects creation and their thermal stability were followed by electron paramagnetic resonance. (author)

  3. On plutonium, journalism and ethics

    International Nuclear Information System (INIS)

    Rundo, J.

    1994-01-01

    This editorial comments on the furore resulting from three lay articles published by E. Welsome in the Albuquerque Tribune for 15 November 1993, concerning the injection of plutonium into humans in the 1940s, and discusses the ethics of administration of radioactive materials with and without informed consent. (Author)

  4. Nukem's plutonium hitches a ride

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The European repercussions of a scandal involving the illegal movement of plutonium and cobalt 60 in canisters in which it was claimed there was only low-level radioactive waste, from West Germany to the reprocessing centre at Mol, Belgium are considered. Large bribes were paid to employees of the nuclear industry and government inspectors to allow this illicit transport to carry on over a number of years. It is not yet clear where the plutonium came from or where it was going. The suggestion that it may have been sold to Libya or Pakistan for nuclear weapons is very damaging to the nuclear safety argument. Even if the plutonium was being disposed of because it could not be accounted for, the safeguard procedures do not give confidence to the European public more aware of nuclear safety than ever. (UK)

  5. Selective extraction of cesium: from compound to process

    International Nuclear Information System (INIS)

    Simon, N.; Eymard, S.; Tournois, B.; Dozol, J.F.

    2000-01-01

    Under the French law of 30 December 1991 on nuclear waste management, research is conducted to recover long-lived fission products from high-level radioactive effluents generated by spent fuel reprocessing, in order to destroy them by transmutation or encapsulate them in specific matrices. Cesium extraction with mono and bis-crown calix(4)arenes (Frame 1) is a candidate for process development. These extractants remove cesium from highly acidic or basic pH media even with high salinity. A real raffinate was treated in 1994 in a hot cell to extract cesium with a calix-crown extractant. The success of this one batch experiment confirmed the feasibility of cesium decontamination from high-level liquid waste. It was then decided to develop a process flowchart to extract cesium selectively from high-level raffinate, to be included in the general scheme of long-lived radionuclide partitioning. It was accordingly decided to develop a process based on liquid-liquid extraction and hence optimize a calixarene/diluent solvent according to: - hydraulic properties: density, viscosity, interfacial tension, - chemical criteria: sufficient cesium extraction (depending on the diluent), kinetics, third phase elimination... New mono-crown-calixarenes branched with long aliphatic groups (Frame 2) were designed to be soluble in aliphatic diluents. To prevent third phase formation associated with nitric acid extraction, the addition of modifiers (alcohol, phosphate and amide) in the organic phase was tested (Frame 3). Table 1 shows examples of calixarene/diluent systems suitable for a process flowchart, and Figure 2 provides data on cesium extraction with these new systems. Alongside these improvements, a system based on a modified 1,3-di(n-octyl-oxy)2,4-calix[4]arene crown and a modified diluent was also developed, considering a mixed TPH/NPHE system as the diluent, where TPH (hydrogenated tetra propylene) is a common aliphatic industrial solvent and NPHE is nitrophenyl

  6. A rapid method of dosing plutonium in radioactive effluents; Methode de dosage rapide du plutonium dans les effluents radioactifs (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, J; Messainguiral, L [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1961-07-01

    The plutonium is first separated by a lanthanum fluoride precipitation. The precipitated fluorides are dissolved in normal nitric acid solution in the presence of aluminium nitrate. The plutonium transformed to the tetravalent state is then extracted with thenoyltrifluoroacetone and returned to the aqueous phase with 10 N nitric acid. After evaporation on a watch glass the residue is calcined on a Meker burner and counted using a counting system fitted with a zinc sulphide scintillator. When necessary, the calcium is eliminated at the beginning of the dosage by a fluoride precipitation, the plutonium being oxidised to the valency IV. (authors) [French] Le plutonium est d'abord separe par entrainement au fluorure de lanthane. Le precipite des fluorures est remis en solution en milieu acide nitrique normal, en presence de nitrate d'aluminium. Le plutonium amene a la valence IV est alors extrait par la thenoyltrifluoroacetone et remis en phase aqueuse dans l'acide nitrique 10 N. Apres evaporation sur verre de montre, le residu est calcine sur bec Meker et compte sur un ensemble de comptage equipe d'un scintillateur au sulfure de zinc. Lorsque cela est necessaire, le calcium est elimine, au debut du dosage, par precipitation du fluorure, le plutonium etant oxyde a la valence VI. (auteurs)

  7. Effect of compositional variation in plutonium on process shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.H.

    1997-11-01

    Radiation dose rate from plutonium with high {sup 239}Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations.

  8. Effect of compositional variation in plutonium on process shielding design

    International Nuclear Information System (INIS)

    Brown, T.H.

    1997-11-01

    Radiation dose rate from plutonium with high 239 Pu content varies with initial nuclidic content, radioactive decay time, and impurity elemental content. The two idealized states of old plutonium and clean plutonium, whose initial compositions are given, provide approximate upper and lower bounds on dose rate variation. Whole-body dose rates were calculated for the two composition states, using unshielded and shielded plutonium spheres of varying density. The dose rates from these variable density spheres are similar to those from expanded plutonium configurations encountered during processing. The dose location of 40 cm from the sphere center is representative of operator standoff for direct handling of plutonium inside a glove box. The results have shielding implications for glove boxes with only structurally inherent shielding, especially for processing of old plutonium in an expanded configuration. Further reduction in total dose rate by using lead to reduce photon dose rate is shown for two density cases representing compact and expanded plutonium configurations

  9. Measurement of Gamma Radioactivity in a Group of Control Subjects from the Stockholm Area During 1959-1963

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Nilsson, I; Eckerstig, K

    1963-08-15

    Repeated measurements of the gamma radioactivity in a group of control subjects have been made since June 1959, using a whole body counter scintillation spectrometer. The body contents of cesium-137 and potassium-40 and their trends with time have been determined. The cesium-137 values have been compared with the results from measurements of the fallout rate of cesium-137 and the concentration of cesium-137 in milk. The control group study was carried out to obtain information about the gamma radioactivity situation in the general population. Such an investigation is necessary if one wants to measure occupational contamination at low levels.

  10. Determination of the cesium distribution coeficient in Goiania and Abadia de Goias cities soils

    International Nuclear Information System (INIS)

    Marumo, J.T.; Suarez, A.A.

    1989-01-01

    In September, 1987, an unauthorized removal of a cesium-therapy unit and its violation caused an accident, where several places of Goiania's city, capital of Goias, Brazil, were contaminated. The removal of the radioactive wastes generated from decontamination process, was made to Abadia de Goias's city (near Goiania), where an interim storage was constructed. Soil samples collected from the 57 th Street (Goiania) and from the interim storage permitted to determine, through static method, the cesium distribution coefficient for different cesium solution concentrations. Those results allows for some migration/retention evaluations in disposal site selection. Some soils parameters (water content, density, granulometric analysis etc) as well as clay minerals constituents were also determined. (author) [pt

  11. Determination of the cesium distribution coefficient in Goiania and Abadia de Goias cities soils

    International Nuclear Information System (INIS)

    Marumo, J.T.; Suarez, A.A.

    1989-10-01

    In September, 1987, an unauthorized removal of a cesium-therapy unit and its violation caused an accident, where several places of Goiania's city, capital of Goias, Brazil, were contaminated. The removal of the radioactive wastes generated from decontamination process, was made to Abadia de Goias city (near Goiania), where an interim storage was constructed. Soil samples collected from the 57 th Street (Goiania) and from the interim storage permitted to determine, through static method, the cesium distribution coefficent for different cesium solution concentrations. Those results allows for some migration/retention evaluations in disposal site selection. Some soils parameters (water content, density, granulometric analysis etc) as well as clay minerals constituents were also determined. (author) [pt

  12. Direct reduction of plutonium from dicesium hexachloroplutonate

    International Nuclear Information System (INIS)

    Averill, W.A.; Boyd, T.E.

    1991-01-01

    The Rocky Flats Plant produces dicesium hexachloroplutonate (DCHP) primarily as a reagent in the molten salt extraction of americium from plutonium metal. DCHP is precipitated from aqueous chloride solutions derived from the leaching of process residues with a high degree of selectivity. DCHP is a chloride salt of plutonium, while the traditional aqueous precipitate is a hydrated oxide. Plutonium metal preparation from the oxide involves either the conversion of oxide to a halide followed by metallothermic reduction or direct reduction of the oxide using a flux. Either method generates at least three times as much radioactively contaminated waste as metal produced. Plutonium concentration by DCHP precipitation, however, produces a chloride salt that can be reduced using calcium metal at a temperature of approximately 1000K. In this paper the advantages and limitations of this process are discussed

  13. Social aspects concerning the cesium-137 accident

    International Nuclear Information System (INIS)

    Chaves, Elza Guedes

    1997-01-01

    The present work aims to understand how social representations constructed upon nuclear energy have influenced on molding and orienting public's behavior in the presence of the accident that occurred in Goiania with the capsule of Cesium-137. As a starting point, it is accepted here that panic caused by that accident could be properly understood only if dimension of subjectivity is taken into consideration. This perspective is required whenever events that put human life and environment in risk happen. Facing the accident, people internalized radioactivity, an unknown element, as certainty of cancer and death despite the fact that cancer and death could only outcome in case there had been excessive exposure to radioactivity. (author)

  14. Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide

    International Nuclear Information System (INIS)

    Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

    2003-01-01

    Understanding the aqueous chemistry of plutonium, in particular in environmental conditions, is often complicated by plutonium's complex redox chemistry. Because plutonium possesses four oxidation states, all of which can coexist in solution, a reliable method for the identification of these oxidation states is needed. The identification of plutonium oxidation states at low levels in aqueous solution is often accomplished through an indirect determination using series of liquid-liquid extraction procedures using oxidation state specific reagents such as HDEHP and TTA. While these methods, coupled with radioactive counting techniques provide superior limits of detection they may influence the plutonium redox equilibrium, are time consuming, waste intensive and costly. Other analytical methods such as mass spectrometry and radioactive counting as stand alone methods provide excellent detection limits but lack the ability to discriminate between the oxidation states of the plutonium ions in solution

  15. Natural and artificial radioactivity in Great Bratislava

    International Nuclear Information System (INIS)

    Lanc, J.

    1997-01-01

    The results of the aviation measurement of the gamma-radiation are presented in the form of the maps of iso-lines of the concentration of the natural radioactive elements (potassium, uranium, thorium) and artificial radionuclides (cesium-137, cesium-134). From the obtained dates the maps of dose rate of the gamma-radiation in the air are calculated, of the dose equivalent rate and the map of the fraction of the dose equivalent rate from the natural elements potassium, uranium, thorium. The natural radioactivity of the minerals in the Great Bratislava region, especially for the extreme low values of the contain of the thorium, does not amount the average values of the radioactivity of the Earth crust. The area activity of cesium-137 are in the range 2 - 10 kBq.m -2 and cesium-134 is 1 - 2.5 kBq.m -2 . From the point of view of the summary level of the external irradiation from the Earth surface the measured zone as relative even is evaluated, in the range 10-100 nSv.h -1 . The total average level of the dose rate of the external irradiation of man (inclusively from the cosmic radiation 40-50 nSv.h -1 ) in the conditions of Bratislava is 100 nSv.h -1 . The contribution of external component of the irradiation is 40-100 nSv.h -1 (0.1-0.3 mSv.y -1 ). The dose equivalent commitment of internal component from the cesium-137 is for the all age category of the population under the level negligible risk 0.01 mSv.y -1 [sk

  16. Accumulation of strontium 90 and cesium 137 in some hydrobionts

    International Nuclear Information System (INIS)

    Boyadzhiev, A.; Keslev, D.; Kerteva, A.; Novakova, E.

    1974-01-01

    Factors responsible for the accumulation of strontium 90 and cesium 137 in some plant organisms, characteristic for fishes in Bulgarian fresh-water reservoirs and in Black Seawater, were examined. The investigated samples were taken during spring, summer and autumn-winter seasons 1967/1968. Each sample burnt to ashes at 450 0 C was examined for strontium 90 and cesium 137 content as well as stable isotopes of calcuim and potassium. Accumulation factors for strontium 90 and cesium 137 were significantly higher in freshwater hydrobionts than in seawater hydrobionts. This could be explained by variations in the concentration of stable isotopes of calcium and potassium from freshwater reservoirs and from seawater. Potassium and calcium concentrations were relatively constant in seawater while in freshwater they were significantly variable. Accumulation factors for these radionuclides increased according to the amount of rain and the altitude above sea level. Strontium 90 was deposited mostly in fins, less in scales and least in the meat of fishes; cesium 137 was mainly deposited in the meat and less in the other parts of fishes. The highest accumulation factors for strontium 90 were determined in fishes and for cesium 137 in plant organisms. The most convenient plant and fish species for tracing radioactive contamination of freshwater reservoirs and in the Black Sea were indicated. (A.B.)

  17. Radioecology

    International Nuclear Information System (INIS)

    Kienzl, K.; Kralik, M.; Bossew, P.

    2001-01-01

    This chapter of the environmental control report deals with the radioactivity measurement and monitoring in Austria. The geographical distribution and the depth distribution of the cesium, plutonium and americium isotope content of the soil is given. The radionuclide migration in soil, hydrosphere, forests and the whole ecosystem is studied. The tritium content in atmospheric precipitation is monitored. The European map of cesium-137 deposition of the year 1996 and the actual positions of nuclear power stations around Austria is given. (a.n.)

  18. Precipitation process for supernate decontamination

    International Nuclear Information System (INIS)

    Lee, L.M.; Kilpatrick, L.L.

    1982-11-01

    A precipitation and adsorption process has been developed to remove cesium, strontium, and plutonium from water-soluble, high-level radioactive waste. An existing waste tank serves as the reaction vessel and the process begins with the addition of a solution of sodium tetraphenylborate and a slurry of sodium titanate to the contained waste salt solution. Sodium tetraphenylborate precipitates the cesium and sodium titanate adsorbs the strontium and plutonium. The precipitate/adsorbate is then separated from the decontaminated salt solution by crossflow filtration. This new process offers significant capital savings over an earlier ion exchange process for salt decontamination. Chemical and small-scale engineering studies with actual waste are reported. The effect of many variables on the decontamination factors and filter performance are defined

  19. A study on environmental pollution caused by radioactive substances and its countermeasure techniques. Part 2. Present situation of radioactive pollution and decontamination

    International Nuclear Information System (INIS)

    Nozaki, Atsuo; Kakuma, Takayuki; Narita, Yasunori; Yoshino, Hiroshi

    2012-01-01

    In present research, in order to clarify the actual condition of contamination, the radioactive concentration of the soil and the plant in Koriyama city was measured. It turned out that the radioactive concentration of soil or plants were heavily polluted by caesium-134 and 137, and iodine-131 was already disappeared by its lifetime. Especially, cesium-134 + 137 was ranged 3400 Bq/kg at the surface of soil in garden, however, it was remarkably decreased in the deeper point at 10 cm and ranged 23 Bq/kg, and we cannot detect the cesium at 15 cm. It is necessary for people in Fukushima to decontaminate for reducing radioactivity level. And it turned out that the evergreen plants have been polluted at high radioactive concentration and decontamination by cutting down the plant was decreased by 14% average. Most of radioactive material is removed by removing soils. (author)

  20. Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN)

    International Nuclear Information System (INIS)

    Miller, C.J.; Olson, A.L.; Johnson, C.K.

    1995-01-01

    Recent efforts at the Idaho Chemical Processing Plant (ICPP) have included evaluation of cesium removal technologies as applied to ICPP acidic radioactive waste streams. Ammonium molybdophosphate (AMP) immobilized on a polyacrylonitrile support (AMP-PAN) has been studied as an ion exchange agent for cesium removal from acidic waste solutions. Capacities, distribution coefficients, elutability, and kinetics of cesium-extraction have been evaluated. Exchange breakthrough curves using small columns have been determined from 1M HNO 3 and simulated waste solutions. The theoretical capacity of AMP is 213 g Cs/kg AMP. The average experimental capacity in batch contacts with various acidic solutions was 150 g Cs/kg AMP. The measured cesium distribution coefficients from actual waste solutions were 3287 mL/g for dissolved zirconia calcines, and 2679 mL/g for sodium-bearing waste. The cesium in the dissolved alumina calcines was analyzed for; however, the concentration was below analytical detectable limits resulting in inconclusive results. The reaction kinetics are very rapid (2-10 minutes). Cesium absorption appears to be independent of acid concentration over the range tested (0.1 M to 5 M HNO 3 )

  1. Removal of cesium and separation of strontium the analysis of the leachate of spent fuel

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Chun, Kwan Sik; Kang, Chul Hyung

    2002-01-01

    The selective removal of cesium by ammonium molybdophosphate (AMP) was studied in order to reduce an interference by high radioactivity of cesium on the determination of low radioactive elements in leachate of spent fuel. The removal of Cs, U, Ce, La, Co, Na Sr and K was investigated for the leachate and the bentonite in contact with a spent fuel. More than 90% of cesium was removed by AMP and Ca, Na, Co and Sr was remained in 0.1M HNO 3 . However, three valence elements such as La and Ce were also removed by AMP. Though a little of potassium of the bentonite components was adsorbed on AMP, the potassium in the bentonite solution diluted to its concentration in a real sample would not affect the capacity of AMP greatly. From another experiment for the separation of strontium as a leaching indicator of spent fuel, the recovery of strontium in 8.0 M HNO 3 solution by using Sr-resin (Eichrom, P/N SR-B50-A) was more than 95% by eluting with 0.05 M HNO 3

  2. Cesium-137 global fallout into the Ob river basin and its influence on the Kara sea contamination - Weapons fallout cesium-137 in the Ob' catchment landscapes and its influence on radioactive contamination of the Kara sea: Western Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Semenkov, Ivan N.; Miroshnikov, Alexey Yu. [The Organization of Russian Academy of Sciences Institute of geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences (Russian Federation)

    2014-07-01

    There are several high level {sup 137}Cs anomaly zones detected in the deposits of the SW part of the Kara Sea. These anomaly zones were formed in the Ob' and the Enisey river estuaries due to the geochemical 'river-sea' boarder barrier. Level of radiocaesium specific activity reaches 120 Bq*kg{sup -1} in the deposits from these zones. Radiochemical enterprises occur in the both river basins. Their activity results in caesium-137 transfer into the river net. Vast area is contaminated by {sup 137}Cs after nuclear weapons in Semipalatinsk test-site and Kyshtym disaster in the Ob' river basin. Moreover, caesium comes to the Ob' and the Enisey river basins with global atmospheric fallout. The inflow of global fallout caesium-137 to the catchments is 660 kCi (320 kCi including radioactive decay) that is 4 times higher than {sup 137}Cs emission due to Fukushima disaster. Therefore, these river basins as any other huge catchment are an important sources of radioactive contamination of the Arctic Ocean. The aim of our research is to study behavior of global fallout caesium-137 in the landscapes of the Ob and the Enisey river basins. We studied caesium-137 behavior on the example of first order catchments in taiga, wetland, forest-steppe, steppe, and semi-arid landscapes. Geographic information system (GIS) was made. The tenth-order catchments (n=154, Horton coding system) shape 20-groups due to topsoil properties controlling cesium mobility. Eleven first-order basins, characterized 7 groups of tenth order catchments, were studied. And 700 bulk-core soil samples were collected in 2011-2013. Cesium runoff is calculated for 3 first-order river basins in taiga and forest-steppe landscapes. Storage of global fallout caesium-137 declines from undisturbing taiga first-order river basin (90% of cumulative fallout including radioactive decay)> arable steppe and fores-steppe (70 - 75%)> undisturbing wetland (60%). Caesium-137 transfer is high in arable lands

  3. Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins.

    Science.gov (United States)

    Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin

    2017-01-05

    The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Interactions of low-level, liquid radioactive wastes with soils. 1. Behavior of radionuclides in soil-waste systems

    International Nuclear Information System (INIS)

    Fowler, E.B.; Essington, E.H.; Polzer, W.L.

    1981-01-01

    The characteristics of radioactive wastes and soils vary over a wide range. Liquid radioactive waste entering the environment will eventually contact the soil or geological matrix; interactions will be determined by the chemical and physical nature of the liquid, as well as the soil matrix. We report here the results from an investigation of certain of those characteristics as they relate to retention of radionuclides by soils. Three fractions were demonstrated in the waste as filterable, soluble-sorbable, and soluble-nonsorbable; the physical nature of each fraction was demonstrated using autoradiographic techniques. Isotopes of plutonium and uranium and americium-241 in the soluble fraction of the waste were shown to have a negative charge as determined by ion exchange techniques. In the soil-waste systems, the net charge for those radionuclides was shown to change from predominantly negative to predominantly positive. Nevertheless, cesium-137 was shown to be predominantly positited by TVA and approved by NRC (formerly AEC) since June 1973. This report is based upon the revisions, approved through the end of this reporting period

  5. Strontium-90 and cesium-137 in freshwater (from September, 1982, to December, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in fresh water measured at 4 locations across Japan from September to December, 1982, are given in pCi/l, respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting are also described. The sample was passed through a cation exchange column. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The sample solution prepared was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 0.08 to 0.22 pCi/l for Sr-90 and 0.003 to 0.020 pCi/l for Cs-137 in the freshwater. (J.P.N.)

  6. Cesium separation using integrated electro-membrane technique

    International Nuclear Information System (INIS)

    Fors, Patrik; Lillfors-Pintér, Christina; Widestrand, Henrik; Velin, Anna; Bengtsson, Bernt

    2014-01-01

    Conventional separation technologies such as ion exchange, electro-deionisation and cross flow filtration are not always effective to eliminate nuclides, which are weekly ionised, complexed or hydrated in effluents. Specific nuclide selective absorbers perform well for the treatment of active and contaminated wastewaters but most absorbers generate additional waste while treating high volumes of contaminated water and often show limitations in operating at high flow rates. Electrochemical Ion Exchange (EIX) and EIX in combination with absorbers may offer an alternative solution that overcomes those limitations. This paper reports on the optimization and performance of the integrated technique EIX, for the treatment of low activity effluents that contain cesium and other nuclides. The three-compartment EIX system, which operates with authentic reactor coolant with enhanced nuclide content, indicates high, over 90%, elimination of cesium in a single pass operation mode. With the in-situ and instant ion exchange regeneration, the system successfully reduces the activity from an initial range of 400-2600 Bq/kg to close to detection limit at a velocity of 10-15 cm/min. The applied current density varies between 50-200 mA/cm 2 and the mass balance is close to 100%. During the process, the eliminated cesium and other nuclides are concentrated up to the limits where reverse migration from the concentrated chamber occurs. The concentrate could then be treated with specific absorbents at low flow rates. EIX in combination with cesium-selective ion exchanger CsTreat ® separates the cesium-137 efficiently, but up to now the process does not perform according to EIX principles for the treatment of low grade radioactive wastewaters it rather performs as an irreversible adsorber. The aim with the outcome of the presently ongoing long-term tests is to further support the Best Available Technique Minimizing All Nuclide (BATMAN) projects of Vattenfall NPPs. (author)

  7. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    Soederlund, M.; Lusa, M.; Lehto, J.; Hakanen, M.; Vaaramaa, K.

    2011-01-01

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO 4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  9. Thermal Performance Analysis For Small Ion-Exchange Cesium Removal Process

    International Nuclear Information System (INIS)

    Lee, S.; King, W.

    2009-01-01

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  10. Plutonium accident resistant container project

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1978-05-01

    The PARC (plutonium accident resistant container) project resulted in the design, development, and certification testing of a crashworthy air-transportable plutonium package (shipping container) for certification by the USNRC. This PAT-1 (plutonium air transportable) package survives a very severe sequential test program of impact, crush, puncture, slash, burn, and water immersion. There is also an individual hydrostatic pressure test. The package has a payload mass capacity of 2 kg of PuO2 and a thermal capacity of 25 watts. The design rationale for very high energy absorption (impact, crush, puncture, and slash protection) with residual high-level fire protection, resulted in a reasonalby small air-transportable package, advancing the packaging state-of-art. Optimization design iterations were utilized in the areas of impact energy absorption and stress and thermal analysis. Package test results are presented in relation to radioactive materials containment acceptance criteria, shielding and criticality standards

  11. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    International Nuclear Information System (INIS)

    Rudolph, A.; Kirsch, G.; Toy, H.L.

    1984-01-01

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980

  12. Sorption and desorption of cesium and strontium on TA-2 and TA-41 soils and sediments

    International Nuclear Information System (INIS)

    Kung, K. Stephen; Li, Benjamin W.; Longmire, P.A.; Fowler, M.M.

    1996-04-01

    Current environmental monitoring has detected radioactive contaminants in alluvial groundwater, soils, and sediments in the TA-2 and TA-41 areas along the north central edge of Los Alamos National Laboratory. Because of this contamination, this study was initiated. The objective of this study is to quantify the sorptivity of cesium and strontium onto TA-2 and TA-41 site specific soil samples under a controlled environment in the laboratory. The purposes of this work are to determine cesium and strontium sorption coefficient for these sit specific soils and to evaluate the potential transport of cesium and strontium. Based on this information, a risk assessment and remediation strategy can be developed

  13. Crystalline silicotitanates--new ion exchanger for selective removal of cesium and strontium from radwastes

    International Nuclear Information System (INIS)

    Dosch, R.G.; Klavetter, E.A.; Stephens, H.P.; Brown, N.E.; Anthony, R.G.

    1996-08-01

    A new class of inorganic ion exchange material called crystalline silicotitanates (CST) has been developed for radioactive waste treatment in a collaborative effort between Sandia National Laboratories and Texas A ampersand M University. The Sandia National Laboratories Laboratory Directed Research and Development program provided the initial funding for this effort and this report summarizes the rapid progress that was achieved. A wide range of compositions were synthesized, evaluated for cesium (Cs) removal efficiency, and a composition called TAM-5 was developed that exhibits high selectivity and affinity for Cs and strontium (Sr). Tests show it can remove parts per million concentrations of Cs + from highly alkaline, high-sodium, simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. In experiments with solutions that simulate highly alkaline Hanford defense wastes, the crystalline silicotitanates exhibit distribution coefficients for Cs + of greater than 2,000 ml/g, and distribution coefficients greater than 10,000 ml/g for solutions adjusted to a pH between 1 and 10. In addition, the CSTs were found to exhibit distribution coefficients for Sr + greater than 100,000 ml/g and for plutonium of 2,000 ml/g from simulated Hanford waste. The CST crystal structure was determined and positions of individual atoms identified using x-ray and neutron diffraction. The structural information has permitted identification of the ion exchange sites and provided insights into the strong effect of pH on Cs ion exchange. Information on the synthesis, composition, and structure of CST is considered proprietary and is not discussed in this report

  14. Analysis of americium, plutonium and technetium solubility in groundwater

    International Nuclear Information System (INIS)

    Takeda, Seiji

    1999-08-01

    Safety assessments for geologic disposal of radioactive waste generally use solubilities of radioactive elements as the parameter restricting the dissolution of the elements from a waste matrix. This study evaluated americium, plutonium and technetium solubilities under a variety of geochemical conditions using the geochemical model EQ3/6. Thermodynamic data of elements used in the analysis were provided in the JAERI-data base. Chemical properties of both natural groundwater and interstitial water in buffer materials (bentonite and concrete) were investigated to determine the variations in Eh, pH and ligand concentrations (CO 3 2- , F - , PO 4 3- , SO 4 2- , NO 3 - and NH 4 + ). These properties can play an important role in the complexation of radioactive elements. Effect of the groundwater chemical properties on the solubility and formation of chemical species for americium, plutonium and technetium was predicted based on the solubility analyses under a variety of geochemical conditions. The solubility and speciation of the radioactive elements were estimated, taking into account the possible range of chemical compositions determined from the groundwater investigation. (author)

  15. Development of a water purifier for radioactive cesium removal from contaminated natural water by radiation-induced graft polymerization

    Science.gov (United States)

    Seko, Noriaki; Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Saiki, Seiichi; Ueki, Yuji

    2018-02-01

    Six years after the Fukushima-nuclear accident, the dissolved radioactive cesium (Cs) is now hardly detected in environmental natural waters. These natural waters are directly used as source of drinking and domestic waters in disaster-stricken areas in Fukushima. However, the possibility that some radioactive Cs adsorbed on soil or leaves will contaminate these natural waters during heavy rains or typhoon is always present. In order for the returning residents to live with peace of mind, it is important to demonstrate the safety of the domestic waters that they will use for their daily life. For this purpose, we have synthesized a material for selective removal of radioactive Cs by introducing ammonium 12-molybdophosphate (AMP) onto polyethylene nonwoven fabric through radiation-induced emulsion graft polymerization technique. Water purifiers filled with the grafted Cs adsorbent were installed in selected houses in Fukushima. The capability of the grafted adsorbent to remove Cs from domestic waters was evaluated for a whole year. The results showed that the tap water filtered through the developed water purifier contained no radioactive Cs, signifying the very effective adsorption performance of the developed grafted adsorbent. From several demonstrations, we have commercialized the water purifier named "KranCsair®". Furthermore, we have also developed a method for the mass production of the grafted nonwoven fabric. Using a 30 L grafting reactor, it was possible to produce the grafted nonwoven fabric with a suitable range of degree of grafting. When an irradiated roll of nonwoven trunk fabric with a length of 10 m and a width of 30 cm was set in the reactor filled with glycidyl methacrylate (GMA), AMP, Tween 80 monomer emulsion solution at 40 °C for 1 h, the difference of Dgs in the length and the width on roll of fabrics was negligible.

  16. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    International Nuclear Information System (INIS)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Latitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.

    2004-01-01

    General project objectives. This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high level tank waste.2 This technology owes its development in part to fundamental results obtained in this program

  17. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    International Nuclear Information System (INIS)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Laetitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2003-01-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.2 This technology owes its development in part to fundamental results obtained in this program

  18. Use of cesium-137 to assess soil erosion rates under soybean, coffee and pasture

    International Nuclear Information System (INIS)

    Andrello, A.C.; Appoloni, C.R.; Guimaraes, M.F.

    2003-01-01

    The methodology cesium-137 was used to assess soil erosion and deposition rates in a small watershed with varied crops, at 23 deg 16' S and 51 deg 17' W, in a district of Cambe, Parana State, Brazil. A theoretical equation which considers soil loss or gain directly proportional to the cesium-137 redistribution was utilized in this study. In the watershed, soil redistribution was assessed by transect sampling, and the regional input of cesium-137 by radioactive rainfall determined based on samples from a point in the native forest. Most sampled pasture points presented soil loss, as well as the points in the soybean area under conventional tillage, while in the coffee crop there was neither soil loss nor gain. (author)

  19. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  20. Plutonium in the arctic marine environment--a short review.

    Science.gov (United States)

    Skipperud, Lindis

    2004-06-18

    Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  1. Results of submerged sediment core sampling and analysis on Par Pond, Pond C, and L Lake: July 1995

    International Nuclear Information System (INIS)

    Koch, J.W. II; Martin, F.D.; Friday, G.P.

    1996-06-01

    Sediment cores from shallow and deep water locations in Par Pond, Pond C, and L Lake were collected and analyzed in 1995 for radioactive and nonradioactive constituents. This core analysis was conducted to develop a defensible characterization of contaminants found in the sediments of Par Pond, Pond C, and L Lake. Mercury was the only nonradiological constituent with a nonestimated quantity that was detected above the U.S Environmental Protection Agency Region IV potential contaminants of concern screening criteria. It was detected at a depth of 0.3--0.6 meters (1.0--2.0 feet) at one location in L Lake. Cesium-137, promethium-146, plutonium-238, and zirconium-95 had significantly higher concentrations in Par Pond sediments than in sediments from the reference sites. Cobalt-60, cesium-137, plutonium-238, plutonium-239/240, and strontium-90 had significantly higher concentrations in L-Lake sediments than sediments from the reference sites

  2. Separation of Plutonium from Irradiated Fuels and Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Leonard W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, Kiel S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murray, Alice [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thompson, Major [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thorp, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yarbro, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venetz, Theodore J. [Hanford Site, Benton County, WA (United States)

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  3. Study of methods for removing strontium, plutonium, and ruthenium from Savannah River Plant waste supernate

    International Nuclear Information System (INIS)

    Wiley, J.R.

    1976-06-01

    As a part of long-term waste management studies at the Savannah River Laboratory, tests were made to study removal of strontium, plutonium, and ruthenium from simulated and actual waste supernates. Plutonium was sorbed by Duolite ARC-359 ion exchange resin, the same resin that is used to remove cesium from waste supernate. Strontium was removed from supernate by sorption on a chelating resin Chelex 100, or by precipitation as Sr 3 (PO 4 ) 2 . Activities of 137 Cs, 90 Sr, and 238-241 Pu remaining in processed waste supernate should be 1-10 nanocuries of each element per gram of salt. Of the methods that were tested, none was adequate for plant-scale removal of ruthenium

  4. Simulation of radioactive cesium transfer in the southern Fukushima coastal biota using a dynamic food chain transfer model

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Tsumune, Daisuke; Tsubono, Takaki

    2013-01-01

    The Fukushima Dai-ichi Nuclear Power Plant (1F NPP) accident occurred on 11 March 2011. The accident introduced 137 Cs into the coastal waters which was subsequently transferred to the local coastal biota thereby elevating the concentration of this radionuclide in coastal organisms. In this study, the radioactive cesium levels in coastal biota from the southern Fukushima area were simulated using a dynamic biological compartment model. The simulation derived the possible maximum radioactive cesium levels in organisms, indicating that the maximum 137 Cs concentrations in invertebrates, benthic fish and predator fish occurred during late April, late May and late July, respectively in the studied area where the source was mainly the direct leakage of 137 Cs effluent from the 1F NPP. The delay of a 137 Cs increase in fish was explained by the gradual food chain transfer of 137 Cs introduced to the ecosystem from the initial contamination of the seawater. The model also provided the degree of radionuclide depuration in organisms, and it demonstrated the latest start of the decontamination phase in benthic fish. The ecological half-lives, derived both from model simulation and observation, were 1–4 months in invertebrates, and 2–9 months in plankton feeding fish and coastal predator fish from the studied area. In contrast, it was not possible to similarly calculate these parameters in benthic fish because of an unidentified additional radionuclide source which was deduced from the biological compartment model. To adequately reconstruct the in-situ depuration of radiocesium in benthic fish in the natural ecosystem, a contamination source associated with the bottom sediments is necessary. -- Highlights: • Cs-137 in the southern Fukushima coastal biota were simulated using a dynamic biological compartment model. • Simulation derived contamination phase of marine biota was completed until late April to July 2011. • The delay of Cs-137 concentration increase in fish

  5. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  6. Plutonium Management, Minor Actinides Partitioning and Transmutation R and D in France

    International Nuclear Information System (INIS)

    Cavedon, Jean-Marc; Courtois, Charles

    2003-01-01

    Jean-Marc Cavedon (CEA, France) then presented the developments concerning Plutonium management and minor actinides P and T research and development in France. By the 1991 law on high-level long-lived radioactive waste a research programme was launched in the areas: (i) geological disposal, (ii) conditioning and long-term storage, and (iii) radiotoxicity reduction by P and T. The results of the work in these areas will be presented to the French Government and Parliament in 2006. The control of Plutonium stocks generated by the French PWRs is proposed to increase Plutonium consumption in reactors and minimise radioactive waste production, and requires the recycling of actinides, especially Plutonium. In the long term, CEA intends to develop a new technology based on gas cooled reactors and their associated fuel cycle, including multiple recycling of Plutonium. The advantages of this development consist in the optimisation of the use of natural resources and the concentration of Plutonium in limited quantities of fuel rods. If needed, the minor actinides could also be recycled. The planned CEA developments depend on new fuel types and will lead to novel waste types (light glasses) with a reduction of long-term radiotoxicity. Radiotoxicity reductions by a factor of 3 to 5 are expected for Plutonium recycling scenarios, and by up to a factor of a few hundreds for Plutonium and minor actinides recycling scenarios. This gain is nearly independent on the reactor type used, but needs about 100 years of application to become effective in terms of making a difference in the total waste inventory to be disposed of

  7. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Motojima, K.; Kawamura, F.

    1984-01-01

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  8. Plutonium accident resistant container project

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1978-09-01

    The PARC (plutonium accident resistant container) project resulted in the design, development, and certification testing of a crashworthy air-transportable plutonium package (shipping container) for certification by the USNRC (Nuclear Regulatory Commission). This PAT-1 (plutonium air transportable) package survives a very severe sequential test program of impact, crush, puncture, slash, burn, and water immersion. There is also an individual hydrostatic pressure test. The package has a payload mass capacity of 2 kg of PuO 2 and a thermal capacity of 25 watts. The design rationale for very high energy absorption (impact, crush, puncture, and slash protection) with residual high-level fire protection, resulted in a reasonably small air-transportable package, advancing the packaging state-of-art. Optimization design iterations were utilized in the areas of impact energy absorption and stress and thermal analysis. Package test results are presented in relation to radioactive materials containment acceptance criteria, shielding and criticality standards

  9. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    International Nuclear Information System (INIS)

    Brooke, J.N.; Hamm, L.L.

    1997-01-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs

  10. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    International Nuclear Information System (INIS)

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-01-01

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate

  11. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    International Nuclear Information System (INIS)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy's Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite trademark CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration

  12. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  13. Psychological and mobile evaluation of intra-uterus children exposed to the radiation with cesium-137

    International Nuclear Information System (INIS)

    Ferreira, Celia Marly

    1995-01-01

    The presented work had as objective the accomplishment of a comparative study of cesium-137 radioactive element effects in the psychological and motor development of children which were going submitted the intra-uterus irradiation during the chronological age of three years. The comparison of the results of study is done through a group-control composed for five children without any involvement with the cesium-137 accident - occurred in 1987 in Goiania, Brazil - of same social, economic and cultural level and with the same age of the reached

  14. WESF cesium capsule behavior at high temperature or during thermal cycling

    International Nuclear Information System (INIS)

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive 137 Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800 0 C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs

  15. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in μCi/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10 -4 to 10 4 . This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10 -7 to 10 -3 μCi/(m 2 day) for 239 Pu and 10 -8 to 10 -5 μCi/(m 2 day) for 238 Pu. Airborne respirable 239 Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, 240 Pu/ 239 240 Pu, similar to weapons grade plutonium rather than fallout plutonium

  16. Development of isotope dilution gamma-ray spectrometry for plutonium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.K.; Parker, J.L. (Los Alamos National Lab., NM (United States)); Kuno, Y.; Sato, S.; Kurosawa, A.; Akiyama, T. (Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan))

    1991-01-01

    We are studying the feasibility of determining the plutonium concentration and isotopic distribution of highly radioactive, spent-fuel dissolver solutions by employing high-resolution gamma-ray spectrometry. The study involves gamma-ray plutonium isotopic analysis for both dissolver and spiked dissolver solution samples, after plutonium is eluted through an ion-exchange column and absorbed in a small resin bead bag. The spike is well characterized, dry plutonium containing {approximately}98% of {sup 239}Pu. By using measured isotopic information, the concentration of elemental plutonium in the dissolver solution can be determined. Both the plutonium concentration and the isotopic composition of the dissolver solution obtained from this study agree well with values obtained by traditional isotope dilution mass spectrometry (IDMS). Because it is rapid, easy to operate and maintain, and costs less, this new technique could be an alternative method to IDMS for input accountability and verification measurements in reprocessing plants. 7 refs., 4 figs., 4 tabs.

  17. Effect of decontamination of planting soil using zeolite slurry that inhibits transition of radioactive cesium from soil to plant bodies

    International Nuclear Information System (INIS)

    Ikeda, Yutaka; Akita, Hiroyuki; Kikawada, Kazuya

    2013-01-01

    The accident of Fukushima Daiichi nuclear energy plant by the tsunami resulting from the Great Eastern Japan Earthquake in 2011 caused the radiation contamination of cultivated field in Fukushima Prefecture. Some decontamination techniques such as surface soil grab, deep cultivation, and adding zeolite to the soil were tested in the rice fields of Fukushima Prefecture. Zeolite is usually used in the form of particle. It inhibits the transition of radioactive cesium from soil to plant bodies. Here, zeolite slurry was also used. The inhibition effect of the zeolite slurry was checked not only in the field but also in a laboratory experiment using some vegetables. The laboratory test results proved the effect of decontamination for vegetable; however, the field test showed uncertainness owing to the low passage coefficient of rice. (author)

  18. Estimation of Radiation Doses in the Marshall Islands Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Urinalysis

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J; Hickman, D; Kehl, S; Hamilton, T

    2007-06-11

    Under the auspices of the U.S. Department of Energy (USDOE), researchers from the Lawrence Livermore National Laboratory (LLNL) have recently implemented a series of initiatives to address long-term radiological surveillance needs at former nuclear test sites in the Republic of the Marshall Islands (RMI). The aim of this radiological surveillance monitoring program (RSMP) is to provide timely radiation protection for individuals in the Marshall Islands with respect to two of the most important internally deposited fallout radionuclides-cesium-137 ({sup 137}Cs) and long-lived isotopes 239 and 240 of plutonium ({sup 239+240}Pu) (Robison et al., 1997 and references therein). Therefore, whole-body counting for {sup 137}Cs and a sensitive bioassay for the presence of {sup 239+240}Pu excreted in urine were adopted as the two most applicable in vivo analytical methods to assess radiation doses for individuals in the RMI from internally deposited fallout radionuclides (see Hamilton et al., 2006a-c; Bell et al., 2002). Through 2005, the USDOE has established three permanent whole-body counting facilities in the Marshall Islands: the Enewetak Radiological Laboratory on Enewetak Atoll, the Utrok Whole-Body Counting Facility on Majuro Atoll, and the Rongelap Whole-Body Counting Facility on Rongelap Atoll. These whole-body counting facilities are operated and maintained by trained Marshallese technicians. Scientists from LLNL provide the technical support and training necessary for maintaining quality assurance for data acquisition and dose reporting. This technical basis document summarizes the methodologies used to calculate the annual total effective dose equivalent (TEDE; or dose for the calendar year of measurement) based on whole-body counting of internally deposited {sup 137}Cs and the measurement of {sup 239+240}Pu excreted in urine. Whole-body counting provides a direct measure of the total amount (or burden) of {sup 137}Cs present in the human body at the time of

  19. Studies of equilibrium and kinetics of adsorption of cesium ions by graphene oxide

    International Nuclear Information System (INIS)

    Oliveira, Fernando M.; Bueno, Vanessa N.; Oshiro, Maurício T.; Potiens Junior, Ademar J.; Hiromoto, Goro; Sakata, Solange K.; Rodrigues, Debora F.

    2017-01-01

    Cesium is one of the fission products of major radiological concern, it is often found in nuclear radioactive waste generated at nuclear power plants. Graphene Oxide (GO) has attracted great attention due to its functionalized surface, which includes hydroxyl, epoxy, carbonyl and carboxyl groups, with great capacity of complexation with metal ions and can be used as adsorbent to remove cations from aqueous solutions. In this work, a treatment of radioactive waste containing 137 Cs was studied. For the batch experiments of Cs + removal, 133 Cs concentrations remained after the adsorption were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and the results obtained were analyzed according to the Langmuir and Freundlich isotherms models. The kinetics of adsorption and Gibbs free energy were also determined. The Langmuir model was the best fit and defined a favorable adsorption. The cesium adsorption process is the pseudo-second model and the Gibbs free energy calculation indicated that the adsorption process is spontaneous. (author)

  20. Studies of equilibrium and kinetics of adsorption of cesium ions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando M.; Bueno, Vanessa N.; Oshiro, Maurício T.; Potiens Junior, Ademar J.; Hiromoto, Goro; Sakata, Solange K., E-mail: fmoliveira@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Rodrigues, Debora F., E-mail: dfrigiro@central.uh.edu [Department of Civil and Environmental Engineering, University of Houston, TX (United States)

    2017-07-01

    Cesium is one of the fission products of major radiological concern, it is often found in nuclear radioactive waste generated at nuclear power plants. Graphene Oxide (GO) has attracted great attention due to its functionalized surface, which includes hydroxyl, epoxy, carbonyl and carboxyl groups, with great capacity of complexation with metal ions and can be used as adsorbent to remove cations from aqueous solutions. In this work, a treatment of radioactive waste containing {sup 137}Cs was studied. For the batch experiments of Cs{sup +} removal, {sup 133}Cs concentrations remained after the adsorption were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and the results obtained were analyzed according to the Langmuir and Freundlich isotherms models. The kinetics of adsorption and Gibbs free energy were also determined. The Langmuir model was the best fit and defined a favorable adsorption. The cesium adsorption process is the pseudo-second model and the Gibbs free energy calculation indicated that the adsorption process is spontaneous. (author)

  1. Cesium contamination of mosses in county Vas, Hungary

    International Nuclear Information System (INIS)

    Golya, I.; Sebestyen, R.

    1993-01-01

    Two species of mosses were examined to assess radiocesium contamination of Vas county, and to analyse some aspects of mosses for use as indicator of radioactive contamination. Experimental results demonstrated that the distribution of contamination in a given region could be characterized by the cesium contamination of mosses. Sampling sites should be selected with special attention paid to spots with high contamination. Regression analysis proved that the contamination of mosses originated from Chernobyl fallout. (author) 4 refs.; 2 figs

  2. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    Science.gov (United States)

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  3. Sample preparation automation for dosing plutonium in urine

    International Nuclear Information System (INIS)

    Jeanmaire, Lucien; Ballada, Jean; Ridelle Berger, Ariane

    1969-06-01

    After having indicated that dosing urinary plutonium by using the Henry technique can be divided into three stages (plutonium concentration by precipitation, passing the solution on an anionic resin column and plutonium elution, and eluate evaporation to obtain a source of which the radioactivity is measured), and recalled that the automation of the second stage has been reported in another document, this document describes the automation of the first stage, i.e. obtaining from urine a residue containing the plutonium, and sufficiently mineralized to be analyzed by means of ion exchanging resins. Two techniques are proposed, leading to slightly different devices. The different operations to be performed are indicated. The different components of the apparatus are described: beakers, hot plate stirrers, reagent circuits, a system for supernatant suction, and a control-command circuit. The operation and use are then described, and results are given

  4. Preconceptual design for separation of plutonium and gallium by ion exchange

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1997-01-01

    The disposition of plutonium from decommissioned nuclear weapons, by incorporation into commercial UO 2 -based nuclear reactor fuel, is a viable means to reduce the potential for theft of excess plutonium. This fuel, which would be a combination of plutonium oxide and uranium oxide, is referred to as a mixed oxide (MOX). Following power generation in commercial reactors with this fuel, the remaining plutonium would become mixed with highly radioactive fission products in a spent fuel assembly. The radioactivity, complex chemical composition, and large size of this spent fuel assembly, would make theft difficult with elaborate chemical processing required for plutonium recovery. In fabricating the MOX fuel, it is important to maintain current commercial fuel purity specifications. While impurities from the weapons plutonium may or may not have a detrimental affect on the fuel fabrication or fuel/cladding performance, certifying the effect as insignificant could be more costly than purification. Two primary concerns have been raised with regard to the gallium impurity: (1) gallium vaporization during fuel sintering may adversely affect the MOX fuel fabrication process, and (2) gallium vaporization during reactor operation may adversely affect the fuel cladding performance. Consequently, processes for the separation of plutonium from gallium are currently being developed and/or designed. In particular, two separation processes are being considered: (1) a developmental, potentially lower cost and lower waste, thermal vaporization process following PuO 2 powder preparation, and (2) an off-the-shelf, potentially higher cost and higher waste, aqueous-based ion exchange (IX) process. While it is planned to use the thermal vaporization process should its development prove successful, IX has been recommended as a backup process. This report presents a preconceptual design with material balances for separation of plutonium from gallium by IX

  5. Cesium transport across flat sheet supported liquid membrane containing CCD in NPOE-dodecane mixture

    International Nuclear Information System (INIS)

    Kandwal, P.; Mohapatra, P.K.

    2012-01-01

    137 Cs is an important fission product of concern for separation scientists working in the area of radioactive waste management. Removal of this long lived heat and gamma ray emitting radionuclides (t 1/2 = 30.2 y) from radioactive waste would drastically bring down the MANREM problem. In addition to this, the recovered cesium can find applications in irradiators for sterilization of foods, medical accessories, sewage sludge treatment, etc. Chlorinated cobalt dicarbollide (CCD) in nitrobenzene and xylene mixture as the diluent has been used for the extraction of radio-cesium from acidic wastes. Other studies have used phenyl trifluoromethylsulfone (FS-13) as the diluent and have been used for supported liquid membrane (SLM) based separation methods which not only have the advantage of simultaneous extraction and stripping, but also drastically cut down the VOC inventory which is welcome from environmental concern point of view

  6. Analysis of cesium extracting solvent using GCMS and HPLC

    International Nuclear Information System (INIS)

    White, T.L.; Herman, C.C.; Crump, S.L.; Marinik, A.R.; Lambert, D.P.; Eibling, R.E.

    2007-01-01

    A high-level waste (HLW) remediation process scheduled to begin in 2007 at the Savannah River Site is the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The MCU will use a hydrocarbon solvent (diluent) containing a cesium extractant, a calix[4]arene compound, to extract radioactive cesium from caustic HLW. The resulting decontaminated HLW waste or raffinate will be processed into grout at the Saltstone Production Facility (SPF). The cesium containing CSSX stream will undergo washing with dilute nitric acid followed by stripping of the cesium nitrate into a very dilute nitric acid or the strip effluent stream and the CSSX solvent will be recycled. The Defense Waste Processing Facility (DWPF) will receive the strip effluent stream and immobilize the cesium into borosilicate glass. Excess CSSX solvent carryover from the MCU creates a potential flammability problem during DWPF processing. Bench-scale DWPF process testing was performed with simulated waste to determine the fate of the CSSX solvent components. A simple high performance liquid chromatography (HPLC) method was developed to identify the modifier (which is used to increase Cs extraction and extractant solubility) and extractant within the DWPF process. The diluent and trioctylamine (which is used to suppress impurity effect and ion-pair disassociation) were determined using gas chromatography mass spectroscopy (GCMS). To close the organic balance, two types of sample preparation methods were needed. One involved extracting aqueous samples with methylene chloride or hexane, and the second was capturing the off gas of the DWPF process using carbon tubes and rinsing the tubes with carbon disulfide for analysis. This paper addresses the development of the analytical methods and the bench-scale simulated waste study results. (author)

  7. Determination of detailed standards for transportation of radioactive materials by ships

    International Nuclear Information System (INIS)

    1978-01-01

    These provisions are established on the basis of the ''Regulations on the transport and storage of dangerous things by ships''. The terms used hereinafter are according to those used in the Regulations. Radioactive materials, etc., include uranium 233, uranium 235, plutonium 238, plutonium 239, plutonium 241, the compounds of such materials and the substances containing one or two and more of such materials, excluding such materials of not more than 15 grams. The permissible surface density of radioactive materials is 1/100,000 of one microcurie per cm 2 for the radioactive materials emitting alpha-ray and 1/10,000 of one microcurie per cm 2 for the radioactive materials not emitting alpha-ray. For the radioactive materials which can be transported as L type cargo, their quantity of radioactivity is defined in their solid, liquid and gaseous forms. The limit of quantity of such cargo is described in detail in the lists attached. Transporting conditions of A, BM and BU type cargos are specified respectively in the particular sections. (Okada, K.)

  8. Chernobyl radioactivity in Turkish tea

    International Nuclear Information System (INIS)

    Molzahn, D.; Tufail, M.; Patzelt, P.

    1990-01-01

    Radioactivity measurement of Turkish tea of 1986 crops is reported. The total cesium activity ranged from about 5500 Bq kg -1 up to 43600 Bq kg -1 . Some other fission products from Chernobyl could be detected in the tea samples, e.g., 95 Zr, 95 Nb, 103 Ru, 106 Ru, 110m Ag and 125 Sb. In addition, some activity values found in tea from USSR are given. The transfer rate of cesium from tea leaves to tea water was found to be about 74%. (author) 6 refs.; 1 fig.; 2 tabs

  9. Plutonium fires; Incendies de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E.

    1959-06-23

    The author reports an information survey on accidents which occurred when handling plutonium. He first addresses accidents reported in documents. He indicates the circumstances and consequences of these accidents (explosion in glove boxes, fires of plutonium chips, plutonium fire followed by filter destruction, explosion during plutonium chip dissolution followed by chip fire). He describes hazards associated with plutonium fires: atmosphere and surface contamination, criticality. The author gives some advices to avoid plutonium fires. These advices concern electric installations, the use of flammable solvents, general cautions associated with plutonium handling, venting and filtration. He finally describes how to fight plutonium fires, and measures to be taken after the fire (staff contamination control, atmosphere control)

  10. Sorption of radioscesium from liquid radioactive waste on clay and immobilization by baking the clay at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, F.; Ghaffar, A. [Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan)

    2011-07-01

    The cesium-137 is the most problematic radionuclide in the radioactive wastes. It belongs to the IA group of the periodic table, highly reactive towards water and has very high mobility. Due to beta and gamma radiation hazards of radiocesium its decontamination and disposal requires some special tools and techniques. In this study globules of clay material was used for the removal of cesium from low level liquid radioactive wastes and further processed for immobilization. The aim of this study was to assess the solidification and immobilization of secondary waste. The secondary waste, after sorption of cesium from the liquid radioactive waste generated at this institute, was found compatible to the cement matrix used for the cementation process. The procedure for immobilization of low level radioactive waste with cementation using vitreous clay material as an additive was developed. (orig.)

  11. Sorption of radioscesium from liquid radioactive waste on clay and immobilization by baking the clay at elevated temperature

    International Nuclear Information System (INIS)

    Rashid, F.; Ghaffar, A.

    2011-01-01

    The cesium-137 is the most problematic radionuclide in the radioactive wastes. It belongs to the IA group of the periodic table, highly reactive towards water and has very high mobility. Due to beta and gamma radiation hazards of radiocesium its decontamination and disposal requires some special tools and techniques. In this study globules of clay material was used for the removal of cesium from low level liquid radioactive wastes and further processed for immobilization. The aim of this study was to assess the solidification and immobilization of secondary waste. The secondary waste, after sorption of cesium from the liquid radioactive waste generated at this institute, was found compatible to the cement matrix used for the cementation process. The procedure for immobilization of low level radioactive waste with cementation using vitreous clay material as an additive was developed. (orig.)

  12. Comments on a paper entitled: Toxicity and carcinogenicity of plutonium-239

    International Nuclear Information System (INIS)

    Stocum, W.E.; Pigg, C.J.

    1978-06-01

    Studies on carcinogenic effects of Pu-239 on animals have been reviewed often in the literature. A summary of these studies, which were done primarily with dogs or rats, shows that the inhalation of Pu-239 results in plutonium being retained in highest concentrations in bone, liver, lung, and lymph nodes. This may result in the induction of specific kinds of cancer, primarily lung and bone carcinomas, and to a lesser extent, bile duct tumors. These animal studies have been extremely useful in the analysis of the limited number of studies available on humans exposed to plutonium and in the prediction of plutonium cancer risk to man. One of the most significant and relevant studies on human exposures to Pu-239 is that of the 1944-45 exposure at Los Alamos Scientific Laboratory. Twenty-five men associated with the Manhattan Project were identified as having had significant plutonium exposures; total initial lung burden across the group was approximately 10 μCi. These individuals have been monitored clinically and in laboratory studies for the past 30 years. None of the individuals has shown cancer incidence and none shows medical findings attributable to internally deposited plutonium. There has been no recorded instance of cancer in man resulting from the internal deposition of any plutonium isotope in the more than three decades in which plutonium has been used. This excellent record illustrates the effectiveness of control measures and safety standards imposed on the handling of radioactive materials. These facts lead to a high level of confidence that the transportation of radioactive materials to and around the WIPP would not have a markedly different record

  13. An MCNP model of glove boxes in a plutonium processing facility

    International Nuclear Information System (INIS)

    Dooley, D.E.; Kornreich, D.E.

    1998-01-01

    Nuclear material processing usually occurs simultaneously in several glove boxes whose primary purpose is to contain radioactive materials and prevent inhalation or ingestion of radioactive materials by workers. A room in the plutonium facility at Los Alamos National Laboratory has been slated for installation of a glove box for storing plutonium metal in various shapes during processing. This storage glove box will be located in a room containing other glove boxes used daily by workers processing plutonium parts. An MCNP model of the room and glove boxes has been constructed to estimate the neutron flux at various locations in the room for two different locations of the storage glove box and to determine the effect of placing polyethylene shielding around the storage glove box. A neutron dose survey of the room with sources dispersed as during normal production operations was used as a benchmark to compare the neutron dose equivalent rates calculated by the MCNP model

  14. Plutonium, cesium, uranium, and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1981-November 30, 1982

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1982-01-01

    Radionuclide activities were measured in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu moving downstream in the Hudson appears to be almost completely retained within the system by particle deposition, while 80 to 90% of the 137 Cs derived from both reactor releases and fallout has been exported to the coastal waters in solution. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion is likely to be a critical factor in regulating plutonium solubility in some environments and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility. Activities of several other nuclides of interest in radioactive waste management ( 238 U, 234 U, 232 Th, 230 Th, 228 Th, 231 Pa) were also found to be orders of magnitude greater in high carbonate waters than in other natural waters

  15. Therapeutic effects of cesium-137 radiation in head and neck malignancy

    International Nuclear Information System (INIS)

    Lee, J.W.

    1978-01-01

    In radiation therapy, many fundamental physical and biological facts and theories must be applied in order to establish a scientific level of practice. There is a voluminous amount of information pertaining to these matters. Cesium-137 is a radioactive nuclide available as a fission product from nuclear reactions. Cesium-137 emits gamma rays at 0.663 MeV. Its half life of about 30 years is an advantage over that of cobalt-60, but cesium-137 is lower, and the specific activity is much less. Author has clinically observed of 150 cases of cesium-137 therapy on head and neck malignancies from Jan. 1971 to Oct. 1978. The following results were observed: 1) Age distribution showed predilection in fifth and decades and sex ratio revealed higher in male than female about 4 times. 2) Laryngeal cancer (34%) maxillary cancer (20.7%) and tongue cancer (12%) occupied high incidence in classification of disease. 3) The cases of radiation only therapeutic group (5000-7000 rad) revealed 61 cases (41.2%) and pre and post operative radiation group (1000-3000 rad) revealed 36 cases (24.3%). 4) In combined therapy (60 cases) arterial infusion group revealed 29 cases and 10 cases of operative group, 11 cases of well prognostic group respectively. (author)

  16. Stop plutonium; Stop plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  17. Validation and Application of Concentrated Cesium Eluate Physical Property Models

    International Nuclear Information System (INIS)

    Choi, A.S.

    2004-01-01

    This work contained two objectives. To verify the mathematical equations developed for the physical properties of concentrated cesium eluate solutions against experimental test results obtained with simulated feeds. To estimate the physical properties of the radioactive AW-101 cesium eluate at saturation using the validated models. The Hanford River Protection Project (RPP) Hanford Waste Treatment and Immobilization Plant (WTP) is currently being built to extract radioisotopes from the vast inventory of Hanford tank wastes and immobilize them in a silicate glass matrix for eventual disposal at a geological repository. The baseline flowsheet for the pretreatment of supernatant liquid wastes includes removal of cesium using regenerative ion-exchange resins. The loaded cesium ion-exchange columns will be eluted with nitric acid nominally at 0.5 molar, and the resulting eluate solution will be concentrated in a forced-convection evaporator to reduce the storage volume and to recover the acid for reuse. The reboiler pot is initially charged with a concentrated nitric acid solution and kept under a controlled vacuum during feeding so the pot contents would boil at 50 degrees Celsius. The liquid level in the pot is maintained constant by controlling both the feed and boilup rates. The feeding will continue with no bottom removal until the solution in the pot reaches the target endpoint of 80 per cent saturation with respect to any one of the major salt species present

  18. Qualitative chemical analysis of plutonium by Alpha spectroscopy.; Determinacion cualitativa de plutonio mediante espectroscopia alfa.

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, J Qumica.J.

    1994-12-31

    In this work the separation and purification of plutonium from irradiated uranium was done. The plutonium, produced by the irradiation of uranium in a nuclear reactor and the {beta} decay of {sup 239} Np, was stabilized to Pu {sup +4} with sodium nitrite. Plutonium was separated from the fission products and uranium by ion exchange using the resin Ag 1 X 8. It was electrodeposited on stainless steel discs and the alpha radioactivity of plutonium was measured in a surface barrier detector. The results showed that plutonium was separated with a radiochemical purity higher than 99 %. (Author).

  19. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  20. Strontium-90 and cesium-137 in freshwater (from Sept. 1983 to Dec. 1983)

    International Nuclear Information System (INIS)

    1983-01-01

    Fresh water, 100 l each, was collected, and to which the carriers of strontium and cesium were added immediately after the sampling. The sample was vigorously stirred and filtered, and passed through a cation exchange column. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The eluate was used for radiochemical analysis. The chemical separation of strontium-90 and cesium-137 was carried out, and the chemical yields were determined. The precipitates were counted for the activity using low background beta counters normally for 60 min. The net sample counting rate was corrected for the counter efficiency, recovery, self-absorption and decay, to obtain the radioactivity per sample aliquot, and the concentrations of these nuclides in the original samples were calculated. The data at six sampling locations in Japan from September to December, 1983, on fresh water are reported. (Kako, I.)

  1. Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yung-Jin; Schwaiger, Luna Kestrel; Booth, Corwin H.; Kukkadapu, Ravi K.; Cristiano, Elena; Kaplan, Daniel; Nitsche, Heino

    2010-03-09

    Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite minerals (Fe1-xMnxOOH) was studied using X-ray absorption spectroscopy. We chose to study the influence of manganese as a minor component in goethite, because goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge structure measurements indicated that essentially all the Mn in the goethite existed as Mn(III), even though Mn was added during mineral synthesis as Mn(II). Importantly, energy dispersive X-ray analysis demonstrated that Mn did not exist as discrete phases and that it was homogeneously mixed into the goethite to within the limit of detection of the method. Furthermore, Mössbauer spectra demonstrated that all Fe existed as Fe(III), with no Fe(II) present. Plutonium(VI) sorption experiments were conducted open to air and no attempt was made to exclude carbonate. The use of X-ray absorption spectroscopy allows us to directly and unambiguously measure the oxidation state of plutonium in situ at the mineral surface. Plutonium X-ray absorption near-edge structure measurements carried out on these samples showed that Pu(VI) was reduced to Pu(IV) upon contact with the mineral. This reduction appears to be strongly correlated with mineral solution pH, coinciding with pH transitions across the point of zero charge of the mineral. Furthermore, extended X-ray absorption fine structure measurements show evidence of direct plutonium binding to the metal surface as an inner-sphere complex. This combination of extensive mineral characterization and advanced spectroscopy suggests that sorption of the plutonium onto the surface of the mineral was followed by reduction of the plutonium at the surface of the mineral to form an inner-sphere complex. Because manganese is often found in the environment as a minor component associated with major mineral components, such as goethite, understanding the molecular-level interactions of plutonium with

  2. Strontium-90 and cesium-137 in service water (from June, 1982, to December, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in service water measured at 19 locations across Japan from June to December, 1982, are given in pCi/l, respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting are also described. Service water was collected at an intake of the water-treatment plant and at the tap. The sample was then passed through a cation exchange column. Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The sample solution prepared was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 0.01 to 0.10 pCi/l for Sr-90 and 0.001 to 0.010 pCi/l for Cs-137 in the service water. (J.P.N.)

  3. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    International Nuclear Information System (INIS)

    Coroneos, A.C.; Taylor, P.A.; Arnold, W.D. Jr.; Bostick, D.A.; Perona, J.J.

    1994-12-01

    The purpose of this report is to document the results of bench-scale testing completed to remove 137 Cs and 90 Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing

  4. Estimation of doses from radioactively contaminated disaster wastes reused for pavements

    International Nuclear Information System (INIS)

    Sawaguchi, Takuma; Takeda, Seiji; Kimura, Hideo; Tanaka, Tadao

    2015-01-01

    It is desirable that the disaster wastes contaminated by radioactive cesium after the severe accident at the Fukushima Nuclear Plant are reused as much as possible in order to minimize the quantity to be disposed of. Ministry of the Environment showed the policy that the wastes containing cesium of higher concentration than the clearance level (100 Bq/kg) were reusable as materials of construction such as subbase course materials of pavements under controlled condition with measures to lower exposure doses. In this study, in order to provide technical information for making a guideline on the use of contaminated concrete materials recycled from disaster wastes as pavement, doses for workers and the public were estimated, and the reusable concentration of radioactive cesium in the wastes was evaluated. It was shown that the external exposure of the public (children) residing near the completed pavement gave the minimum radiocesium concentration in order to comply with the dose criteria. The recycled concrete materials whose average concentration of cesium lower than 2,700 Bq/kg can be used as the subbase course materials of pavements. (author)

  5. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1978-01-01

    Plutonium resuspension results are summarized for experiments conducted by the author at Rocky Flats, onsite on the Hanford reservation, and for winds blowing from offsite onto the Hanford reservation near the Prosser barricade boundary. In each case, plutonium resuspension was shown by increased airborne plutonium concentrations as a function of either wind speed or as compared to fallout levels. All measured airborne concentrations were far below maximum permissible concentrations (MPC). Both plutonium and cesium concentrations on airborne soil were normalized by the quantity of airborne soil sampled. Airborne radionuclide concentrations in ..mu..Ci/g were related to published values for radionuclide concentrations on surface soils. For this ratio of radionuclide concentration per gram on airborne soil divided by that for ground surface soil, there are eight orders of magnitude uncertainty from 10/sup -4/ to 10/sup 4/. This uncertainty in the equality between plutonium concentrations per gram on airborne and surface soils is caused by only a fraction of the collected airborne soil being transported from offsite rather than all being resuspended from each study site and also by the great variabilities in surface contamination. Horizontal plutonium fluxes on airborne nonrespirable soils at all three sites were bracketed within the same four orders of magnitude from 10/sup -7/ to 10/sup -3/ ..mu..Ci/(m/sup 2/ day) for /sup 239/Pu and 10/sup -8/ to 10/sup -5/ ..mu..Ci/(m/sup 2/ day) for /sup 238/Pu. Airborne respirable /sup 239/Pu concentrations increased with wind speed for a southwest wind direction coming from offsite near the Hanford reservation Prosser barricade. Airborne plutonium fluxes on nonrespirable particles had isotopic ratios, /sup 240/Pu//sup 239/ /sup 240/Pu, similar to weapons grade plutonium rather than fallout plutonium.

  6. Radioactivity in the mediterranean sea. Sources and measures in the marine environment (sediments, mussels) - application to the Rhone delta (France)

    International Nuclear Information System (INIS)

    Pruchon-Zhen, S.

    1995-01-01

    Cesium 137, cesium 134, ruthenium 106 and ruthenium 103 have been studied in marine sediments and mussels collected from the Mediterranean coasts, in particular close to the Grand-Rhone river mouth. The influence of both the atmospheric fallout from the Chernobyl accident arisen on 26/4/86 and liquid discharges from nuclear facilities (nuclear power plants and Marcoule fuel reprocessing plant) upon radioactivity levels in the samples have guided this discussion. The Chernobyl accident represents a punctual input in time of radioactivity. In the North-Western Mediterranean basin, the South-East coasts have been more affected than the Rhone estuary rather influenced by liquid discharges into the Rhone river carried out mainly by the Marcoule reprocessing plant (mostly cesium 137 and ruthenium 106). In sediments located in front of the river mouth, cesium activity levels are linked to the Rhone river flow rather than to the fluctuations of the liquid discharges of low radioactive level from the Marcoule reprocessing plant. In fact, the highest levels of cesium in sediments correspond to low water levels of relatively strong intensity. Sediment rates have been calculated. Ruthenium is confirmed as a bad tracer for sedimentary processes. In mussels, cesium 137 ant ruthenium 106 activity levels show an annual rhythmic evolution apart from the respective concentrations in the Rhone river water. Only cesium exhibits activity levels linked to the biological cycle of mussels. The highest cesium 137 activity levels appear during winter spawning and show that it exists a preferential incorporation of cesium into the somatic tissue. (author)

  7. Radionuclide concentrations in vegetation at radioactive-waste disposal Area G during the 1994 growing season

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Biggs, J.B.; Bennett, K.D.

    1995-01-01

    Overstory (pinon pine) and understory (grass and forb) vegetation samples were collected within and around selected points at Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-for the analysis of tritium ( 3 H), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), cesium ( 137 Cs), americium ( 241 Am), and total uranium. In general, most vegetation samples collected within and around Area G contained radionuclide levels in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 5,800 pCi/mL in overstory vegetation collected outside the fence just west of the tritium shafts; this suggests that tritium is migrating from this waste repository through subsurface pathways. Also, understory vegetation collected north of the transuranic (TRU) pads (outside the fence of Area G) contained the highest values of 90 Sr, 238 Pu, 239 Pu, 137 Cs, and 241 Am, and may be a result of surface holding, storage, or disposal activities

  8. Radiochemical determination of strontium-90 and cesium-137 in waters of the Pacific Ocean and its neighboring seas

    International Nuclear Information System (INIS)

    Borisenko, G.S.; Kandinskii, P.A.; Gedeonov, L.I.; Ivanova, L.M.; Petrov, A.A.

    1987-01-01

    Depending on the salinity of the water, two versions of strontium-90 and cesium-137 concentration from water samples are presented. Cesium-137 was concentrated by precipitating sparingly soluble mixed hexacyanoferrates (II), and strontium-90 by precipitating carbonates together with calcium. A scheme has been given for radiochemical analysis of the concentrates. Strontium-90 and cesium-137 contents in the waters of the Pacific Ocean and its neighboring seas have been determined by the radiochemical method described. The levels of radionuclide content in the water and atmospheric precipitations have been shown to be inter-related. Strontium-90 and cesium-137 contents in the surface water of the northwestern Pacific were found to be much lower in 1980 than in the early seventies. The area of technogenic radioactive pollution was found to persist in the region of the Columbia mouth into the Pacific Ocean

  9. Measurement of Radioactivity in the Human Body

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Nilsson, I

    1960-12-15

    A body counter with a steel room and a 4-inch-diameter by 4-inch thick Nal scintillation counter has been in operation since February 1958. It is used to control the internal contamination in people working with radioactive materials. Measurements have also been made on the natural activity in the human body. The average cesium-137/potassium ratio in a group of Swedish males was in May 1959 73 {mu}{mu}c per gram of body potassium and in June 1960 55 {mu}{mu}c per gram of body potassium. The cessation of the nuclear bomb tests has caused a decrease in the cesium level in people. This gives some information of how cesium is entering the biosphere.

  10. Measurement of Radioactivity in the Human Body

    International Nuclear Information System (INIS)

    Andersson, I.Oe.; Nilsson, I.

    1960-12-01

    A body counter with a steel room and a 4-inch-diameter by 4-inch thick Nal scintillation counter has been in operation since February 1958. It is used to control the internal contamination in people working with radioactive materials. Measurements have also been made on the natural activity in the human body. The average cesium-137/potassium ratio in a group of Swedish males was in May 1959 73 μμc per gram of body potassium and in June 1960 55 μμc per gram of body potassium. The cessation of the nuclear bomb tests has caused a decrease in the cesium level in people. This gives some information of how cesium is entering the biosphere

  11. Chemical Studies on the treatment and Conditioning of Radioactive Liquid Waste Using Combined Processes

    International Nuclear Information System (INIS)

    El-Masry, E.H.

    2004-01-01

    Natural inorganic exchanges were used to remove radioactive isotopes cesium, Cobalt and europium using coagulant zinc sulfate as coagulant from low level liquid radioactive waste. the highest percent of removal was obtained in the order asswanlly (85.5%), bentonite (82.2%) and sandstone (65.4%) for the removal of cesium . the same order of removal percent was detected for the removal of cobalt (92.5,91.2,90.6%) and europium (90.6,90.8,90.2%) for asswanlly, bentonite and sandstone respectively

  12. Process for recovering cesium from pollucite

    International Nuclear Information System (INIS)

    Mein, P.G.

    1985-01-01

    Cesium is recovered from a cesium-bearing mineral such as pollucite by extraction with hydrochloric acid to obtain an extract of cesium chloride and other alkali metal and polyvalent metal chlorides. The iron and aluminum chlorides can be precipitated as the hydroxides and separated from the solution of the alkali metal chlorides to which is added potassium permanganate or other water-soluble permanganate to selectively precipitate cesium permanganate. The cesium precipitate is then separated from the residual solution containing the metal chlorides. The cesium permanganate, which is in a very pure form, can be converted to other cesium compounds by reaction with a reducing agent to obtain cesium carbonate and cesium delta manganese dioxide

  13. Feasibility Assessment of Cesium Removal using Microaglae

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ilgook; Ryu, Byung-Gon; Seo, Bum-Kyoung; Moon, Jei Kwon; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The aim of this work is to assess the feasibility of selected one of microalgae in the uptake of Cs+. The obtained results showed the maximum Cs+ removal by D. armatus SCK was 280μM indicating 70% removal efficiency. Also, D. armatus SCK could uptake Cs+ in the presence of K+, is particularly known to be transported into cells as an analog of Cs+ in freshwater condition. Recently, increased attention has been directed on the use of biological technologies for the removal of radionuclides as the cheap and eco-friendly alternative to the non-biological methods. Metal including radioactive compounds uptake by microorganisms can be occurred by metabolism –independent and/or -dependent processes. One involves biosorption based on the ability of microbial cells to bind dissolved metals; on the other involves bioaccumulation, which depends on the metabolic ability of cells to transport metals into the cytoplasm. The purpose of this work is to investigate the feasibility of microalgae in bioaccumulation system to remove cesium from solution. The effect of different environmental parameters on cesium removal was also examined.

  14. A portable concentrator for processing plutonium containing solutions

    International Nuclear Information System (INIS)

    Chamberlain, D.B.; Conner, C.; Chen, L.

    1995-01-01

    This report describes a horizontal, compact agitated-film concentrator called a Rototherm, manufactured by Artisan Industries, Inc. which can be used to process aqueous solutions of radioactive wastes containing plutonium. The unit is designed to concentrate liquid streams to a high-solid content slurry

  15. Liquid waste treatment at plutonium fuels fabrication facility, 2

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Itoh, Ichiroh; Ohuchi, Jin; Miyo, Hiroaki

    1974-01-01

    The economics in the management of the radioactive liquid waste from Plutonium Fuels Fabrication Facility with sludge-blanket type flocculators has been evaluated. (1) Cost calculation: The cost of chemicals and electricity to treat 1 cubic meter of liquid waste is about 876 yen, while the total operating cost is 250 thousand yen per cubic meter in the case of 140 m 3 /year treatment. These figures are much higher than those for ordinary wastes, due to the particular operation against plutonium. (2) Proposal of the closed system for liquid waste treatment at PFFF: In the case of a closed system using evaporator, ion exchange column and rotary-kiln calciner, the operating cost is estimated at 40 thousand yen per cubic meter of liquid waste. Final radioactivity of treated liquid is below 10 -8 micro curies/ml. (Mori, K.)

  16. Plutonium in the Arctic Marine Environment — A Short Review

    Directory of Open Access Journals (Sweden)

    Lindis Skipperud

    2004-01-01

    Full Text Available Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  17. The determination of the cesium distribution coefficient of the interim storage soil from Abadia de Goias, Go, Brazil

    International Nuclear Information System (INIS)

    Marumo, J.T.; Suarez, A.A.

    1989-01-01

    In September, 1987, an unauthorized removal of a cesium-therapy unit and its violation caused an accident, where several places of Goiania's city, capital of Goias, Brazil, were contaminated. The removal of the radioactive wastes generated from decontamination process, was made to Abadia de Goias city (near Goiania), where an interim storage was constructed. Soil samples collected from the 57th Street (Goiania) and from the interim storage permitted to determine, through static method, the cesium distribution coefficient for different cesium solution concentrations. Those results allows for some migration/retention evaluations in disposal site selection. Some soils parameters (water content, density, granulometric analysis, etc) as well as clay minerals constituents were also determined. (author) [pt

  18. Decontamination of radioactive liquid systems by modified clay minerals

    OpenAIRE

    Petrushka, Ihor; Moroz, Olexandr

    2016-01-01

    The process mechanism for sorption of strontium and cesium from liquid radioactive waste using modified bentonites from Yaziv sulfur deposit was investigated. The technique for predicting the intensity of the sorption process based on the comparison of experimental and calculated values of mass transfer coefficients was proposed. It was detected that the process of sorption extraction of strontium and cesium from liquid medium using modified clay minerals may be bes...

  19. Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima

    International Nuclear Information System (INIS)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I.; Murakami, Masashi; Tokuchi, Naoko; Ohashi, Mizue

    2015-01-01

    Since the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, large areas of the forests around Fukushima have become highly contaminated by radioactive nuclides. To predict the future dynamics of radioactive cesium ( 137 Cs) in the forest catchment, it is important to measure each component of its movement within the forest. Two years after the accident, we estimated the annual transportation of 137 Cs from the forest canopy to the floor by litterfall, throughfall and stemflow. Seasonal variations in 137 Cs transportation and differences between forests types were also determined. The total amount of 137 Cs transported from the canopy to the floor in two deciduous and cedar plantation forests ranged between 3.9 and 11.0 kBq m −2  year −1 . We also observed that 137 Cs transportation with litterfall increased in the defoliation period, simply because of the increased amount of litterfall. 137 Cs transportation with throughfall and stemflow increased in the rainy season, and 137 Cs flux by litterfall was higher in cedar plantation compared with that of mixed deciduous forest, while the opposite result was obtained for stemflow. - Highlights: • Annual flux of 137 Cs by litterfall, throughfall and stemflow was estimated in two types of forest in Fukushima, Japan. • Annual amount of 137 Cs transportation was 3.9–11.0 kBq m −2 year −1 in two years after the accident. • 137 Cs flux by litterfall was higher in cedar plantation than that of mixed deciduous forest. • 137 Cs transportation with throughfall and stemflow increased in rainy season.

  20. Historical aspects of the discovery of plutonium

    International Nuclear Information System (INIS)

    Clark, David L.

    2016-01-01

    The historical events that led up to the discovery of plutonium and subsequently, how that discovery helped shape the modern period table of the elements, and ushered in a new era of nuclear science and technology are discussed. When the first of the transuranium elements, neptunium was discovered, it was realized that the radioactive βdecay of "2"3"9Np should lead to the formation of element 94. The scale of the experiments at that time, however, precluded its identification. Plutonium was first produced late in 1940 by Seaborg, McMillan, Kennedy, and Wahl1,2 by bombarding uranium with deuterons to produce the isotope "2"3"8Pu

  1. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 3

    International Nuclear Information System (INIS)

    1976-08-01

    An assessment is presented of the health, safety and environmental effects of the entire light water reactor fuel cycle, considering the comparative effects of three major alternatives: no recycle, recycle of uranium only, and recycle of both uranium and plutonium. The assessment covers the period from 1975 through the year 2000 and includes the cumulative effects for the entire period as well as projections for specific years. Topics discussed include: the light water reactor with plutonium recycle; mixed oxide fuel fabrication; reprocessing plant operations; supporting uranium fuel cycle; transportation of radioactive materials; radioactive waste management; storage of plutonium; radiological health assessment; extended spent fuel storage; and blending of plutonium and uranium at reprocessing plants

  2. Study of Cesium and Strontium sorption in Brazilian clays for their use as a barrier in repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Freire, Carolina Braccini

    2007-01-01

    Wastes in general should be properly treated and stored. Then the radioactive wastes also require suitable and safe management beginning in their generation until the storage in repository. The main purpose of the radioactive waste management is to preserve the human beings and the environment. The objective of this research was to characterize some Brazilian clays in order to evaluate the viability of their use in the backfill layer, one of the radioactive waste repository barriers. The main function of this barrier is to contribute in the delay of the radionuclides movement, and to prevent their release into the environment. Four clays provided by national suppliers were selected for the research: Ca-Montmorillonite (Dol 01), Na-Montmorillonite (Dol 02), Kaolinite (Ind 01) and Vermiculite (Ubm 04). Their physical, chemical and mineralogical characteristics were determined, and also their sorption potential of Cesium and Strontium cations. It was confirmed through these results a direct relationship among their specific surface (SS), the capacity of cationic exchange (CCE) and pH. The CCE results followed this increasing order: Ind 01, Dol 01, and Dol 02. In accordance with the models of Freundlich (KJ) and Langmuir (M), the clays Dol 01 and Dol 02 were the best sorbers of Sr 2+ . The Ind 01 and Ubm 04 were the best ones in the case of Cs + . The Gibbs free energy change (ΔG deg) was calculated for the sorption reactions between the clays and the cations, and it was negative for all clays, confirming the sorption reaction spontaneity. (author)

  3. Radioactivity and food

    International Nuclear Information System (INIS)

    Olszyna-Marzys, A.E.

    1990-01-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references

  4. Measures against radioactive contamination due to Fukushima First Nuclear Power Plant accidents. Part 3. Removing and decontamination of contaminated soil

    International Nuclear Information System (INIS)

    Ishii, K.; Terakawa, A.; Matsuyama, S.

    2012-01-01

    We studied the structure of radioactive cesium distribution in soil and found the exponential dependence. This behavior could be explained theoretically. We developed a useful method to decontaminate the soil contaminated with radioactive cesium atoms. We applied our method to the contaminated school yards of elementary schools of Marumori town and decontaminated total area of about 7000 m"2. (author)

  5. Analytic determination of plutonium in the environment; Determination analytique du plutonium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Ballada, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The work described in this report was undertaken with a view to determining the plutonium content in the fall-out from nuclear explosions. In the first part are described in turn the importance of the problems due to the plutonium, the physico-chemical properties of the radioelement and the biological dangers which it presents. A detailed and critical analysis is made of the radio-toxicological determination of the plutonium as reported in the literature prior to this report. The second part consists in the presentation of a judicious choice of techniques making it possible to determine plutonium in air, rain-water, soils and ash. After a detailed description of the measurement equipment and the operational techniques which have been developed, a justification of these techniques is given with particular reference to their sensitivity and specificity. After a brief conclusion concerning the preceding chapters, the results are presented. These are then discussed in the ease of each element in which the plutonium has been determined. This discussion is concluded by a consideration of the importance of the occurrence of fall-out plutonium on problems relating to public health. From a consideration of 200 analyses carried out, it is concluded that the contribution of plutonium to the exposure of populations is still very small compared to that of natural radiation and that due to such fission products as strontium 90. The report includes 63 literature references, 26 figures and 11 tables. (author) [French] Les travaux decrits dans ce memoire ont ete entrepris et eflectues dans le but de mettre en evidence le plutonium des retombees radioactives consecutives aux explosions nucleaires. Dans la premiere partie nous etudions successivement l'importance des problemes poses par le plutonium puis les proprietes physicochimiques du radioelement et les dangers qu'il presente du point de vue biologique. Nous effectuons une analyse detaillee et critique des techniques

  6. Selected radionuclides important to low-level radioactive waste management

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237

  7. Selected radionuclides important to low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  8. Sellafield (release of radioactivity)

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J; Goodlad, A; Morris, M

    1986-02-06

    A government statement is reported, about the release of plutonium nitrate at the Sellafield site of British Nuclear Fuels plc on 5 February 1986. Matters raised included: details of accident; personnel monitoring; whether radioactive material was released from the site; need for public acceptance of BNFL activities; whether plant should be closed; need to reduce level of radioactive effluent; number of incidents at the plant.

  9. Preparation methods of copper-ferrocyanide functionalized magnetic nanoparticles for selective removal of cesium in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Hee-Man Yang; Kune Woo Lee; Bum-Kyoung Seo; Jei Kwon Moon [KAERI, Daejeon (Korea, Republic of)

    2013-07-01

    Copper ferrocyanide functionalized magnetite nanoparticles (Cu-FC-MNPs) were successfully synthesized by the immobilization of copper and ferrocyanide on the surface of [1-(2 amino-ethyl)-3-aminopropyl] trimethoxysilane modified magnetite nanoparticles. A radioactive cesium (Cs) adsorption test was carried out to investigate the effectiveness of Cu-FC-MNPS for the removal of radioactive Cs. Furthermore, the Cu-FC-MNPs showed excellent separation ability by an external magnet in an aqueous solution. (authors)

  10. Investigation of environmental samples from Fukushima with respect to uranium and plutonium by AMS; Untersuchung von Umweltproben aus Fukushima in Bezug auf Plutonium und Uran mittels AMS

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Stephanie

    2017-02-01

    In March 2011, the nuclear power plant Fukushima Dai-ichi was seriously damaged by a tsunami caused by an earthquake. During the accident large quantities of radionuclides, mainly of the volatile elements cesium and iodine, were released to the environment. In small amounts refractory elements such as plutonium and uranium have also been released. Plutonium and the uraniumisotope {sup 236}U have primarily been delivered by human activities in the environment. Large amounts were released during the atmospheric nuclear weapons tests. Additional sources are accidents in nuclear facilities, like Chernobyl. Every source has its own characteristic isotopic composition. It is therefore possible to determine the origin of the contamination by measuring the isotopic ratios of {sup 240}Pu/{sup 239}Pu and {sup 236}U/{sup 238}U. These ratios can be determined by using accelerator mass spectrometry. Due to its high sensitivity, it is possible to measure even small amounts of plutonium and especially of {sup 236}U. These measurements were performed using the compact 500 kV facility ''TANDY'' of ETH Zurich. In 2013 and 2015 vegetation, litter and soil drill core samples were taken in the contaminated area in Fukushima prefecture. In 2015 samples were taken as close to the sampling locations of the 2013 campaign as possible. After isolation of plutonium and uranium by chemical extraction, separate targets were prepared for the measurement. The {sup 240}Pu/{sup 239}Pu ratios indicate global fallout as the plutonium source for most samples. The plutonium of the reactors of Fukushima Dai-ichi is located in the upper layers like in vegetation or litter. From the uranium ratios alone the reactors could not unambigously be identified as the source of {sup 236}U. However, this is plausible in the cases were reactor plutonium was detected. None of the samples contained higher plutonium activity concentrations than in the rest of Japan, caused by global fallout. This

  11. Monitoring dissolved radioactive cesium in Abukuma River in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Yasutaka, Tetsuo; Kawabe, Yoshishige; Kurosawa, Akihiko; Komai, Takeshi

    2013-01-01

    Radioactive materials were released into the atmosphere and deposited over wide areas of farmland, forests, and cities; elevated levels of "1"3"1I, "1"3"4Cs, and "1"3"7Cs have been detected in these areas due to the accident at the Tokyo Power Fukushima Daiichi Nuclear Power Plant caused by the April 2011 earthquake and tsunami in eastern Japan. Radioactive Cs deposited on farmland and forests gradually leaches into water bodies such as mountain streams and rivers adsorbed onto particles or in a dissolved state. It is important to calrify the level of dissolved and total radioactive Cs in environmental water for forecasting the of discharge of radioactive Cs from forest and watersheds, assessing on the effect of dissolved and total radioactive Cs on not only irrigation water but also rice and other crops, and evaluating the transport of radioactive Cs from rivers to costal areas. Therefore, it is important to monitor their levels in Fukushima Prefecture over time. In this research, we monitored the levels of dissolved and total radioactive Cs in Abukuma River using a conventional evaporative concentration method. By monitoring the river waters since September 2012, it was estimated that the levels of dissolved radioactive Cs were less than 0.128 Bq/L and those of total radioactive Cs were less than 0.274 Bq/L in the main stream and branches of Abukuma River in the low suspended solid condition. (author)

  12. Methods of producing cesium-131

    Science.gov (United States)

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  13. Application of crown ethers to selective extraction and quantitative analysis of technetium 99, iodine 129 and cesium 135 in effluents

    International Nuclear Information System (INIS)

    Paviet, P.

    1992-01-01

    Properties of crown ethers are first recalled. Then extraction of technetium 99 is studied in actual radioactive effluents. Quantitative analysis is carried out by liquid scintillation and interference of tritium is corrected. Iodine 129 is extracted from radioactive effluents and determined by gamma spectrometry. Finally cesium 135 is extracted and determined by thermo ionization mass spectroscopy

  14. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    Science.gov (United States)

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  15. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    Science.gov (United States)

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  16. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    Science.gov (United States)

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  17. Solution speciation of plutonium and Americium at an Australian legacy radioactive waste disposal site.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E

    2014-09-02

    During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.

  18. Tank 19F Folding Crawler Final Evaluation

    International Nuclear Information System (INIS)

    Nance, T.

    2000-01-01

    The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste FR-om 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28

  19. Long time contamination from plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Patzeltova, N; Ragan, P [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia); Matel, L [Comenius Univ., Bratislava (Slovakia). Department of Nuclear Chemistry

    1996-12-31

    Plutonium isotopes in the organism of the patient (who had participated in the liquidation works after the Chernobyl accident; for three month he had stayed in the epicenter, where he acted as a chauffeur driving a radioactive material to the place of destination) from urine were determined. For determination of the concentration of Pu-239, Pu-240 in urine a modified radiochemical method was used. After mineralization the sample was separated as an anion-nitrate complex with contact by the anion form of the resin in the column. The resin was washed by 8 M HNO{sub 3}, the 8 M HCl with 0.3 M HNO{sub 3} for removing the other radionuclides. The solution 0.36 M HCl with 0.01 M HF was used for the elution of plutonium. Using the lanthanum fluoride technique the sample was filtrated through a membrane filter. The plutonium was detected in the dry sample. The Pu-239 tracer was used for the evaluation of the plutonium separation efficiency. The alpha spectrometric measurements were carried out with a large area silicon detector. The samples were measured and evaluated in the energy region 4.98-5.18 MeV. The detection limit of alpha spectrometry measurements has been 0.01 Bq dm{sup -3}. The concentration of plutonium in the 24-hour urine was determined three times in the quarter year intervals. The results are: 54 mBq, 63.2 mBq, 53 mBq, with average 56,7 mBq. From the results of the analyses of plutonium depositions calculated according to ICRP 54 the intake of this radionuclide for the patient was 56.7 kBq. To estimate a committed effective dose (50 years) from the intake of plutonium was used a conversion factor 6.8.10{sup -5} Sv.Bq{sup -1} (class W). So the expressed committed effective dose received from the plutonium intake is 3.8 Sv. This number is relatively high and all the effective dose will be higher, because the patient was exposed to the other radionuclides too. (Abstract Truncated)

  20. Excess plutonium disposition: The deep borehole option

    International Nuclear Information System (INIS)

    Ferguson, K.L.

    1994-01-01

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified

  1. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  2. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    Science.gov (United States)

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  3. Modelling of contamination of surface atmosphere for deflation of Cesium-137 on contaminated territories

    International Nuclear Information System (INIS)

    Bogdanov, A.P.; Zhmura, G.M.

    1994-01-01

    Presence of Cesium 137 in near land air is caused at the contaminated territories by 'local' dusting and transport of the dust from the zone of strong contamination. For large distance is it caused by resuspension of radioactive dust from the surface in the given region. In accordance with the models of dusting round square sources based on Gauss statistical model of dissemination of admixtures in the atmosphere, the contaminated areas of european part of the former of USSR with the density of contamination over 1 Ci/km 2 with Cesium 137 were represented by 30 round square sources covering the main spots of contamination. The results of calculation of contamination of the atmosphere for several cities of Belarus, Russia and Ukraine, where there are the permanent points of observation for the content of radionuclides in the air, have shown that the proposed model of dusting sources describes the contamination of near land air with Cesium 137 reasonably well. 7 refs., 3 tabs

  4. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  5. Determination of curie content and 134/137cesium ratios by gamma spectroscopy of high burnup plutonium-aluminum fuel assemblies

    International Nuclear Information System (INIS)

    Haggard, D.L.; Tanner, J.E.

    1997-06-01

    Nondestructive assay (NDA) gamma spectroscopy techniques were used to measure 134/137 Cs ratios on nine PuAl Mark 42 fuel assemblies. The purpose of the ratio measurement was to confirm theoretical burnup calculations. 134/137 Cs ratios were determined from the measured activity based on corrected net peak area counts for the 605 keV peak from 134 Cs and the 662 keV peak from 137 Cs/ 137m Ba. Assembly No. 2 134/137 Cs ratio measured on 4-15-92 was 0.19. The measured 134/137 Cs ratio was decay corrected to be 2.11 on 8-1-84 based on the half lives of 134 Cs and 137 Cs. The measured 134/137 Cs ratio range was 1.90--2.14 for all nine assemblies. These measured values compare to a theoretical ratio of 1.7 on 8-1-84 determined by burnup calculations. Total cesium curie content was also requested and determined using the NDA direct measurements. Gamma spectral data were measured on the nine sectioned Mark 42 fuel assemblies. Measured cesium curie content, decay corrected to 8-1-84, ranged from 18170--24480 curies of 134 Cs and 8620--11646 curies of 137 Cs. Theoretical cesium curie content of 8-1-84 was 15200 curies 134 Cs and 8973 curies 137 Cs. Direct assay cesium ratio is 12% to 26% higher than the predicted ratio of 1.7. The measured 134 Cs data indicate between 20%--61% more activity than that predicted by the burnup code, whereas the measured 137 Cs activity is between 4% less to 30% more than the predicted activity. This information may be used to address issues concerning criticality safety, storage, and shipping of this type of material

  6. Repository and deep borehole disposition of plutonium

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1996-02-01

    Control and disposition of excess weapons plutonium is a growing issue as both the US and Russia retire a large number of nuclear weapons> A variety of options are under consideration to ultimately dispose of this material. Permanent disposition includes tow broad categories: direct Pu disposal where the material is considered waste and disposed of, and Pu utilization, where the potential energy content of the material is exploited via fissioning. The primary alternative to a high-level radioactive waste repository for the ultimate disposal of plutonium is development of a custom geologic facility. A variety of geologic facility types have been considered, but the concept currently being assessed is the deep borehole

  7. Analytic determination of plutonium in the environment; Determination analytique du plutonium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Ballada, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The work described in this report was undertaken with a view to determining the plutonium content in the fall-out from nuclear explosions. In the first part are described in turn the importance of the problems due to the plutonium, the physico-chemical properties of the radioelement and the biological dangers which it presents. A detailed and critical analysis is made of the radio-toxicological determination of the plutonium as reported in the literature prior to this report. The second part consists in the presentation of a judicious choice of techniques making it possible to determine plutonium in air, rain-water, soils and ash. After a detailed description of the measurement equipment and the operational techniques which have been developed, a justification of these techniques is given with particular reference to their sensitivity and specificity. After a brief conclusion concerning the preceding chapters, the results are presented. These are then discussed in the ease of each element in which the plutonium has been determined. This discussion is concluded by a consideration of the importance of the occurrence of fall-out plutonium on problems relating to public health. From a consideration of 200 analyses carried out, it is concluded that the contribution of plutonium to the exposure of populations is still very small compared to that of natural radiation and that due to such fission products as strontium 90. The report includes 63 literature references, 26 figures and 11 tables. (author) [French] Les travaux decrits dans ce memoire ont ete entrepris et eflectues dans le but de mettre en evidence le plutonium des retombees radioactives consecutives aux explosions nucleaires. Dans la premiere partie nous etudions successivement l'importance des problemes poses par le plutonium puis les proprietes physicochimiques du radioelement et les dangers qu'il presente du point de vue biologique. Nous effectuons une analyse detaillee et critique des techniques

  8. What are Spent Nuclear Fuel and High-Level Radioactive Waste?

    International Nuclear Information System (INIS)

    2002-01-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository

  9. Managing plutonium in Britain. Current options

    International Nuclear Information System (INIS)

    1998-01-01

    This is the report of a two day meeting to discuss issues arising from the reprocessing of plutonium and production of mixed oxide nuclear fuels in Britain. It was held at Charney Manor, near Oxford, on June 25 and 26, 1998, and was attended by 35 participants, including government officials, scientists, policy analysts, representatives of interested NGO's, journalists, a Member of Parliament, and visiting representatives from the US and Irish governments. The topic of managing plutonium has been a consistent thread within ORG's work, and was the subject of one of our previous reports, CDR 12. This particular seminar arose out of discussions earlier in the year between Dr. Frank Barnaby and the Rt. Hon. Michael Meacher MP, Minister for the Environment. With important decisions about the management of plutonium in Britain pending, ORG undertook to hold a seminar at which all aspects of the subject could be aired. A number of on-going events formed the background to this initiative. The first was British Nuclear Fuels' [BNFL] application to the Environment Agency to commission a mixed oxide fuel [MOX] plant at Sellafield. The second was BNFL's application to vary radioactive discharge limits at Sellafield. Thirdly, a House of Lords Select Committee was in process of taking evidence, on the disposal of radioactive waste. Fourthly, the Royal Society, in a recent report entitled Management of Separated Plutonium, recommended that 'the Government should commission a comprehensive review... of the options for the management of plutonium'. Four formal presentations were made to the meeting, on the subjects of Britain's plutonium policy, commercial prospects for plutonium use, problems of plutonium accountancy, and the danger of nuclear terrorism, by experts from outside the nuclear industry. It was hoped that the industry's viewpoint would also be heard, and BNFL were invited to present a paper, but declined on the grounds that they were 'currently involved in a formal

  10. Incident involving radioactive material at IAEA Safeguards Laboratory - No radioactivity released to environment

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: Pressure build-up in a small sealed sample bottle in a storage safe resulted in plutonium contamination of a storage room at about 02:30 today at the IAEA's Safeguards Analytical Laboratory in Seibersdorf. All indications are that there was no release of radioactivity to the environment. Further monitoring around the laboratory will be undertaken. No one was working in the laboratory at the time. The Laboratory's safety system detected plutonium contamination in the storage room where the safe was located and in two other rooms - subsequently confirmed by a team of IAEA radiation protection experts. The Laboratory is equipped with multiple safety systems, including an air-filtering system to prevent the release of radioactivity to the environment. There will be restricted access to the affected rooms until they are decontaminated. A full investigation of the incident will be conducted. The IAEA has informed the Austrian regulatory authority. The IAEA's Laboratory in Seibersdorf is located within the complex of the Austrian Research Centers Seibersdorf (ARC), about 35 km southeast of Vienna. The laboratory routinely analyses small samples of nuclear material (uranium or plutonium) as part of the IAEA's safeguards verification work. (IAEA)

  11. Long time contamination from plutonium

    International Nuclear Information System (INIS)

    Fueloep, M.; Patzeltova, N.; Ragan, P.; Matel, L.

    1995-01-01

    Plutonium isotopes in the organism of the patient (who had participated in the liquidation works after the Chernobyl accident; for three month he had stayed in the epicenter, where he acted as a chauffeur driving a radioactive material to the place of destination) from urine were determined. For determination of the concentration of Pu-239, Pu-240 in urine a modified radiochemical method was used. After mineralization the sample was separated as an anion-nitrate complex with contact by the anion form of the resin in the column. The resin was washed by 8 M HNO 3 , the 8 M HCl with 0.3 M HNO 3 for removing the other radionuclides. The solution 0.36 M HCl with 0.01 M HF was used for the elution of plutonium. Using the lanthanum fluoride technique the sample was filtrated through a membrane filter. The plutonium was detected in the dry sample. The Pu-239 tracer was used for the evaluation of the plutonium separation efficiency. The alpha spectrometric measurements were carried out with a large area silicon detector. The samples were measured and evaluated in the energy region 4.98-5.18 MeV. The detection limit of alpha spectrometry measurements has been 0.01 Bq dm -3 . The concentration of plutonium in the 24-hour urine was determined three times in the quarter year intervals. The results are: 54 mBq, 63.2 mBq, 53 mBq, with average 56,7 mBq. From the results of the analyses of plutonium depositions calculated according to ICRP 54 the intake of this radionuclide for the patient was 56.7 kBq. To estimate a committed effective dose (50 years) from the intake of plutonium was used a conversion factor 6.8.10 -5 Sv.Bq -1 (class W). So the expressed committed effective dose received from the plutonium intake is 3.8 Sv. This number is relatively high and all the effective dose will be higher, because the patient was exposed to the other radionuclides too. For example the determination of the rate radionuclides Am-241/Pu-239,Pu-240 was 32-36 % in the fallout after the Chernobyl

  12. Detection of the actinides and cesium from environmental samples

    Science.gov (United States)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  13. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    Science.gov (United States)

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene

    International Nuclear Information System (INIS)

    Hamed, Mostafa Mohamed; Attallah, Mohamed Fathy; Metwally, Sayed Sayed

    2014-01-01

    Most of the procedures developed for the extraction of cobalt, strontium and cesium by solid phase extraction do not employ simultaneous extraction of them. In this study, rapid simultaneous removal of Co 2+ , Sr 2+ and Cs + on microcrystalline naphthalene as solid-phase extractant was investigated. These ions were allowed to form chelates with oxine and then adsorbed on freshly microcrystalline naphthalene from aqueous solutions. The solid phase extraction procedure (SPE) was optimized by using model solution containing Co 2+ , Sr 2+ and Cs + in batch system. The effects of different parameters such as variation in pH, reagent concentration, standing time, naphthalene solution concentration and contact time on the simultaneous removal of these ions was studied. The obtained results indicated that, sorption was found to be rapid, and the percentage removal of Co 2+ , Sr 2+ and Cs + was found to be 98, 79 and 68% within 10 min, respectively. The kinetics of the sorption process was investigated to understand the kinetic characteristics of sorption of metal chelates onto microcrystalline naphthalene. The developed procedure has been successfully applied to the removal and recovery of 60 Co and 134 Cs from liquid radioactive waste. The parameters can be used for designing a plant for treatment of wastewater economically.

  15. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    1999-01-01

    A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability

  16. Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

    Energy Technology Data Exchange (ETDEWEB)

    COMPTON, J.A.

    1999-10-05

    A vertical calciner will be used to demonstrate the direct denitration process for converting plutonium-bearing liquors to stable plutonium rich solids. The calciner and some of its associated equipment were previously tested with non-radioactive chemicals to demonstrate operability.

  17. Design safety features of containments used for handling plutonium in Reprocessing Plants

    International Nuclear Information System (INIS)

    Aherwal, P.; Achuthan, P.V.

    2016-01-01

    The plutonium present in spent fuel is separated from the associated uranium and fission products using solvent extraction cycles in process cells. Product plutonium nitrate solution containing trace concentrations of uranium and fission products is treated in the reconversion facility through a precipitation-calcination route and converted to sinterable grade plutonium oxide (PuO 2 ). All chemical operations involving materials with high plutonium content, both in solid and solution forms are carried out in glove boxes. Glove box provides an effective isolation from radioactive materials handled and acts as a barrier between the operator and the source of radiation. These glove boxes are interconnected for sequential operations and the interconnected glove box trains are installed within secondary enclosures called double skin which provides double barrier protection to operators

  18. Environmental radioactivity in Greenland 1977

    International Nuclear Information System (INIS)

    Aarkrog, A.; Lippert, J.

    1978-07-01

    Measurements of fallout radioactivity in Greenland in 1977 are reported. Strontium-90 (and Cesium-137 in most cases) was determined in samples of precipitation, sea water, vegetation, animals, and drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1977. (author)

  19. Study of plutonium recycling physics in light water reactors

    International Nuclear Information System (INIS)

    Reuss, Paul

    1979-10-01

    A stock of plutonium from the reprocessing of thermal neutron reactor fuel is likely to appear in the next few years. The use of this plutonium as fuel replacing 235 U in thermal reactors is probably more interesting than simple stock-piling storage: immobilization of a capital which moreover would deteriorate by radioactive decay of isotope 241 also fissile and present to an appreciable extend in plutonium from reprocessing (half-life 15 years); recycling, on the other hand, will supply energy without complete degradation of the stock for fast neutron reactor loads, the burned matter having been partially renewed by conversion; furthermore the use of plutonium will meet the needs created by a temporary pressure on the naturel and/or enriched uranium market. For these two reasons the recycling of plutonium in thermal neutron reactors is being considered seriously today. The present work is confined to neutronic aspects and centres mainly on pressurized water-moderated reactors, the most highly developed at present in France. Four aspects of the problem are examined: 1. the physics of a plutonium-recycling reactor special features of neutronic phenomena with respect to the 'conventional' scheme of the 235 U burning reactor; 2. calculation of a plutonium-recycling reactor: adaptation of standard methods; 3. qualification of these calculations from the viewpoint of both data and inevitable approximations; 4. the fuel cycle and particularly the equivalence of fissile matters [fr

  20. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  1. Accumulation and transport of soil plutonium in liquid waste discharge areas at Los Alamos

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Nyhan, J.W.; Purtymun, W.D.

    1976-01-01

    Plutonium inventory estimates for the surface 12.5 cm of soil in Mortandad Canyon did not reflect all the plutonium added to the canyon during a 7 month interval. The methods used in this study indicated that about 2 mCi 238 Pu and 0 mCisup(239,240)Pu were added to the canyon during the interval, compared with known additions of 5.5 mCi 238 Pu and 0.4 mCisup(239,240)Pu. The discrepancy likely was the result of the large sampling variability, indicating that inventory changes in this order (i.e. up to 17%) are not detectable with any certainty. However, factors other than sampling variability may be involved, including losses of plutonium to depths exceeding 12.5 cm. The relative distribution of plutonium within the canyon demonstrates that transport has occurred beyond the extent of surface water and that runoff from summer rainstorms can serve as a radionuclide transport vector in landscapes exhibiting these hydrologic features. There was a highly significant relationship between suspended sediment concentrations and total amounts of radioactivity in water. The flow rates achieved during the runoff event play an important part in determining the total amount of sediment and thus radioactivity transported downstream. The storm runoff event sampled during this study resulted in the downstream transport of about 1-2% of the sediment inventories of plutonium. (author)

  2. Liquid radioactive waste processing improvement of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Nery, Renata Wolter dos Reis; Martinez, Aquilino Senra; Monteiro, Jose Luiz Fontes

    2005-01-01

    The study evaluate an inorganic ion exchange to process the low level liquid radwaste of PWR nuclear plants, so that the level of the radioactivity in the effluents and the solid waste produced during the treatment of these liquid radwaste can be reduced. The work compares two types of ion exchange materials, a strong acid cation exchange resin, that is the material typically used to remove radionuclides from PWR nuclear plants wastes, and a mordenite zeolite. These exchange material were used to remove cesium from a synthetic effluent containing only this ion and another effluent containing cesium and cobalt. The breakthrough curves of the zeolite and resin using a fix bed reactor were compared. The results demonstrated that the zeolite is more efficient than the resin in removing cesium from a solution containing cesium and cobalt. The results also showed that a bed combining zeolite and resin can process more volume of an effluent containing cesium and cobalt than a bed resin alone. (author)

  3. Cesium-134 and strontium-85 turnover rates in the centipede Scolopocryptops nigridia McNeill

    International Nuclear Information System (INIS)

    Yates, L.R.; Crossley, D.A. Jr.

    1979-07-01

    Radioactive tracers are providing significant information about the ecology of food chains, including such phenomena as accumulation of radioactive fission products, movement of materials along food chains, assimilation and ingestion rates, and nutrient accumulation and turnover. In this study the ingestion, assimilation and turnover to two radioactive tracers were investigated for Scolopocryptops nigridia, an abundant species in forests of the southeastern United States. The two tracers utilized, cesium-134 and strontium-85, are metabolic analogs of potassium and calcium, respectively. The research was performed as part of a larger investigation on the population ecology of the centipede species, emphasizing its relations to nutrient cycling and energy flow in a forest floor system

  4. Mineral resource of the month: cesium

    Science.gov (United States)

    Angulo, Marc A.

    2010-01-01

    The article offers information on cesium, a golden alkali metal derived from the Latin word caesium which means bluish gray. It mentions that cesium is the first element discovered with the use of spectroscopy. It adds that the leading producer and supplier of cesium is Canada and there are 50,000 kilograms of cesium consumed of the world in a year. Moreover, it states that only 85% of the cesium formate can be retrieved and recycled.

  5. On the radioactive pollution of fishery products

    International Nuclear Information System (INIS)

    Katsukawa, Toshio

    2011-01-01

    Fukushima Daiichi accident discharged highly concentrated polluted water to the ocean from late in March to early in April, which lead to discover highly contaminated sand lances around. Polluted water was taken into the Kurile Current and radioactive materials were diluted with surrounding seawater on their pathway. Marine monitoring around showed iodine and cesium in the ocean were almost not detected in May and completely not detected later in the middle of June. However discharged radioactive materials were taken by plankton with seawater and then taken by upper eaters through food chain that meant the level of contamination in the food is added to the level of contamination already in their body as upper bigger ones eat lower smaller ones. Bioaccumulation took time such as one year for freshwater fish around Chernobyl and half or one year for sea bass or cod in Japanese waters after Chernobyl accident. Radiation monitoring was mainly targeted to confirm the safety of fishes caught by fishermen and not to know ecological contamination. Radioecological investigation should be planned to known geographic distribution of cesium contamination and ratio of cesium to strontium with sampling of eligible seaweeds such as wakame around off Fukushima. Scientist and consumer's viewpoints were highly desired for establishment of more rational and transparent inspection system. (T. Tanaka)

  6. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L. [and others

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  7. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L.

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL

  8. Thule-2007 - Investigation of radioactive pollution on land

    International Nuclear Information System (INIS)

    Nielsen, Sven Poul; Roos, P.

    2011-10-01

    A survey of radioactive pollution on land in the Thule area from an airplane accident in 1968 was carried out during 2007 and 2008. The results show levels of plutonium in soil at Narsaarsuk ranging from background values around 39 Bq m -2 up to levels of 1.7 MBq m -2 . Local sub-areas of sizes ranging from a few hundred to a few thousands of square metres show elevated levels above 10 kBq m -2 of plutonium. Based on geostatistical analysis, the total amount of plutonium in soil at Narsaarsuk is estimated at 270 GBq (100 g). Investigations were carried out at Narsaarsuk to determine the occurrence of radioactive particles in air. This involved collection of airborne particles with an air sampler, collection of airborne particles on sticky foils, collection of rain samples and collection of particles that could be resuspended by wind from the soil surface to the air. Small amounts of plutonium were found in air and rain samples, but the derived concentrations in air were very low corresponding to typical back-ground levels in Europe in the range 1-10 nBq m -3 . A few small particles were found on the soil surface with activities up to 1000 Bq plutonium but the air and rain samples showed no sign of resuspension of such particles from the soil. Local areas with elevated levels of radioactive pollution in soil were found at Kap Atholl and Groennedal 15-20 km south of Narsaarsuk. Here the levels were lower than those in the Narsaarsuk area but clearly above background. It was not possible within this project to carry out a systematic survey of the entire region. Hence, it cannot be excluded that there may be more local sub-areas than those identified with elevated levels of radioactive pollution in soil. Screening surveys were carried out at Thule Air Base, Moriusaq, Saunders Island and Wolstenholme Island. The results showed background levels in soil at these locations which means that no sign of radioactive pollution from the accident was found at these locations

  9. Thule-2007 - Investigation of radioactive pollution on land

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Sven Poul; Roos, P.

    2011-10-15

    A survey of radioactive pollution on land in the Thule area from an airplane accident in 1968 was carried out during 2007 and 2008. The results show levels of plutonium in soil at Narsaarsuk ranging from background values around 39 Bq m-2 up to levels of 1.7 MBq m-2. Local sub-areas of sizes ranging from a few hundred to a few thousands of square metres show elevated levels above 10 kBq m-2 of plutonium. Based on geostatistical analysis, the total amount of plutonium in soil at Narsaarsuk is estimated at 270 GBq (100 g). Investigations were carried out at Narsaarsuk to determine the occurrence of radioactive particles in air. This involved collection of airborne particles with an air sampler, collection of airborne particles on sticky foils, collection of rain samples and collection of particles that could be resuspended by wind from the soil surface to the air. Small amounts of plutonium were found in air and rain samples, but the derived concentrations in air were very low corresponding to typical back-ground levels in Europe in the range 1-10 nBq m-3. A few small particles were found on the soil surface with activities up to 1000 Bq plutonium but the air and rain samples showed no sign of resuspension of such particles from the soil. Local areas with elevated levels of radioactive pollution in soil were found at Kap Atholl and Groennedal 15-20 km south of Narsaarsuk. Here the levels were lower than those in the Narsaarsuk area but clearly above background. It was not possible within this project to carry out a systematic survey of the entire region. Hence, it cannot be excluded that there may be more local sub-areas than those identified with elevated levels of radioactive pollution in soil. Screening surveys were carried out at Thule Air Base, Moriusaq, Saunders Island and Wolstenholme Island. The results showed background levels in soil at these locations which means that no sign of radioactive pollution from the accident was found at these locations. (Author)

  10. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume 2, Appendix B, Part 3: Los Alamos National Laboratory site assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    Environmental safety and health (ES and H) vulnerabilities are defined as conditions or weaknesses that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public. In response to the initiative by the Secretary of Energy, Los Alamos National Laboratory (LANL) has performed a self assessment of the ES and H vulnerabilities of plutonium inventories at the laboratory. The objective of this site-specific self assessment is to identify and report ES and H vulnerabilities associated with the storage, handling, and processing of plutonium and maintenance of plutonium-contaminated facilities. This self-assessment of ES and H vulnerabilities and validation by a peer group is not another compliance audit or fault-finding exercise. It has a fact finding mission to develop a database of potential environment, safety, and health vulnerabilities that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public

  11. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  12. Sorption of cesium on montmorillonite and effect of salt concentration

    International Nuclear Information System (INIS)

    Atun, G.; Bilgin, B.; Mardinli, A.

    1996-01-01

    The sorption behavior of cesium on montmorillonite type[e clay was studied by using radioactivity measurements. Concentrations of Cs + ions ranged from 10 -6 to 10 -2 M. Cesium retention reduced with increasing salt concentration which was varied between 10 -4 and 10 -1 M. Selectivity coefficients K CsNa for the exchange between Cs and Na were calculated for different equivalent fractions of Cs on the solid phase. Using the K CsNa values, free energy change was found to be 7.8 kJ/mol. The data could be fitted to a Freundlich isotherm, and empirical Freundlich parameters enabled the generation of a site distribution function. By fitting the data to the Dubinin-Radushkevich (D-R) isotherm, a mean energy of sorption of 8.6kJ/mole was calculated which corresponds to the energy of ion exchange reactions. The values of energy changes calculated by using two different methods were in good agreement. (author)

  13. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  14. Trophic position and metabolic rate predict the long-term decay process of radioactive cesium in fish: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hideyuki Doi

    Full Text Available Understanding the long-term behavior of radionuclides in organisms is important for estimating possible associated risks to human beings and ecosystems. As radioactive cesium (¹³⁷Cs can be accumulated in organisms and has a long physical half-life, it is very important to understand its long-term decay in organisms; however, the underlying mechanisms determining the decay process are little known. We performed a meta-analysis to collect published data on the long-term ¹³⁷Cs decay process in fish species to estimate biological (metabolic rate and ecological (trophic position, habitat, and diet type influences on this process. From the linear mixed models, we found that 1 trophic position could predict the day of maximum ¹³⁷Cs activity concentration in fish; and 2 the metabolic rate of the fish species and environmental water temperature could predict ecological half-lives and decay rates for fish species. These findings revealed that ecological and biological traits are important to predict the long-term decay process of ¹³⁷Cs activity concentration in fish.

  15. The medical treatment of the plutonium-contaminated wound

    International Nuclear Information System (INIS)

    Liu Yanling

    1988-01-01

    Some experiences in medical treatment of plutonium-contaminated wound gained through the animal experiments and clinical practices were described. For the treatment of plutonium-contaminated wound, much attention should be devoted to the early emergency measure at accident site. In some case when the surgical interference is needed, radioactivity in local wound and in regional lympho-nodes of wound, firstly, must be determined and the contaminated area must be demonstrated before operation. Selecting a proper approach for anaesthesia is one of the critical factors for successfulness of operation. The operation should be performed under the coordination of monitoring workers. During operation, the rules for decontamination should be followed to avoid recontamination. In addition to conventional administration of chelating agents, the local application of such agents during and after operation is a better supplementary therapeutic procedure for some cases when the residual amount of plutonium in wound is less and any other surgical procedures will not be performed further

  16. Rapid screening method for plutonium in mixed waste samples

    International Nuclear Information System (INIS)

    Somers, W.; Culp, T.; Miller, R.

    1987-01-01

    A waste stream sampling program was undertaken to determine those waste streams which contained hazardous constituents, and would therefore be regulated as a hazardous waste under the Resource Conservation and Recovery Act. The waste streams also had the potential of containing radioactive material, either plutonium, americium, or depleted uranium. Because of the potential for contamination with radioactive material, a method of rapidly screening the liquid samples for radioactive material was required. A counting technique was devised to count a small aliquot of a sample, determine plutonium concentration, and allow the sample to be shipped the same day they were collected. This technique utilized the low energy photons (x-rays) that accompany α decay. This direct, non-destructive x-ray analysis was applied to quantitatively determine Pu-239 concentrations in industrial samples. Samples contained a Pu-239, Am-241 mixture; the ratio and/or concentrations of these two radionuclides was not constant. A computer program was designed and implemented to calculate Pu-239 activity and concentration (g/ml) using the 59.5 keV Am-241 peak to determine Am-241's contribution to the 17 keV region. Am's contribution was subtracted, yielding net counts in the 17 keV region due to Pu. 2 figs., 1 tab

  17. Determination of curie content and {sup 134/137}cesium ratios by gamma spectroscopy of high burnup plutonium-aluminum fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, D.L.; Tanner, J.E.

    1997-06-01

    Nondestructive assay (NDA) gamma spectroscopy techniques were used to measure {sup 134/137}Cs ratios on nine PuAl Mark 42 fuel assemblies. The purpose of the ratio measurement was to confirm theoretical burnup calculations. {sup 134/137}Cs ratios were determined from the measured activity based on corrected net peak area counts for the 605 keV peak from {sup 134}Cs and the 662 keV peak from {sup 137}Cs/{sup 137m}Ba. Assembly No. 2 {sup 134/137}Cs ratio measured on 4-15-92 was 0.19. The measured {sup 134/137}Cs ratio was decay corrected to be 2.11 on 8-1-84 based on the half lives of {sup 134}Cs and {sup 137}Cs. The measured {sup 134/137}Cs ratio range was 1.90--2.14 for all nine assemblies. These measured values compare to a theoretical ratio of 1.7 on 8-1-84 determined by burnup calculations. Total cesium curie content was also requested and determined using the NDA direct measurements. Gamma spectral data were measured on the nine sectioned Mark 42 fuel assemblies. Measured cesium curie content, decay corrected to 8-1-84, ranged from 18170--24480 curies of {sup 134}Cs and 8620--11646 curies of {sup 137}Cs. Theoretical cesium curie content of 8-1-84 was 15200 curies {sup 134}Cs and 8973 curies {sup 137}Cs. Direct assay cesium ratio is 12% to 26% higher than the predicted ratio of 1.7. The measured {sup 134}Cs data indicate between 20%--61% more activity than that predicted by the burnup code, whereas the measured {sup 137}Cs activity is between 4% less to 30% more than the predicted activity. This information may be used to address issues concerning criticality safety, storage, and shipping of this type of material.

  18. Treatment of low-level liquid radioactive wastes by electrodialysis

    International Nuclear Information System (INIS)

    DelDebbio, J.A.; Donovan, R.I.

    1986-01-01

    This paper presents the results of pilot plant studies on the use of electrodialysis (ED) for the removal of radioactive and chemical contaminants from acidic low-level radioactive wastes resulting from nuclear fuel reprocessing operations. Decontamination efficiencies are reported for strontium-90, cesium-137, iodine-129, ruthenium-106 and mercury. Data for contaminant adsorption on ED membranes and liquid waste volumes generated are also presented

  19. Re-suspension of Cesium-134/137 into the Canadian Environment and the Contribution Stemming from the Fukushima-Daiichi Nuclear Incident

    Science.gov (United States)

    Mercier, Jean-Francois; Zhang, Weihua; Loignon-Houle, Francis; Cooke, Michael W.; Ungar, Kurt R.; Pellerin, Eric R.

    2013-04-01

    Cesium-137 (t1/2 = 30 yr) and cesium-134 (t1/2 = 2yr) constitute major fission by-products observed as the result of a nuclear incident. Such radioisotopes become integrated into the soil and biomass, and can therefore undergo re-suspension into the environment via activities such as forest fires. The Canadian Radiological Monitoring Network (CRMN), which consists of 26 environmental monitoring stations spread across the country, commonly observes cesium-137 in air filters due to re-suspension of material originating from long-past weapons testing. Cesium-134 is not observed owing to its relatively short half-life. The Fukushima-Daiichi nuclear power plant incident of March 2011 caused a major release of radioactive materials into the environment. In Canada, small quantities of both cesium-137 and cesium-134 fallout were detected with great frequency in the weeks which followed, falling off rapidly beginning in July 2011. Since September 2011, the CRMN has detected both cesium-137 and cesium-134 from air filters collected at Yellowknife, Resolute, and Quebec City locations. Using the known initial cesium-134/cesium-137 ratio stemming from this incident, along with a statistical assessment of the normality of the data distribution, we herein present evidence that strongly suggests that these activity spikes are due to re-suspended hot particles originating from the Fukushima-Daiichi nuclear power plant incident. Moreover, we have evidence to suggest that this re-suspension is localized in nature. This study provided empirical insight into the transport and uptake of radionuclides over vast distances, and it demonstrates that the CRMN was able to detect evidence of a re-suspension of Fukushima-Daiichi related isotopes.

  20. Understanding of amount and dynamics of radioactive cesium deposited on trees in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I. [The University of Tokyo, 113-8657, 1-1-1 Yayoi Bunkyo-ku, Tokyo (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, 263-8555, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan); Ohashi, Mizue [University of Hyogo, 670-0092, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo (Japan)

    2014-07-01

    The accident of Fukushima Daiichi nuclear power plant after the earthquake and Tsunami in March 11, 2011 caused large amount of radioactive cesium ({sup 134}Cs, {sup 137}Cs) deposition onto the forest in the surrounding areas. River water from the forest area is used for food production and also for drinking water in these regions. In order to predict how radioactive Cs diffuse and discharge from the forest catchments, it is important to understand the amount and dynamics of radioactive Cs deposited on the trees. In this report, we show our preliminary results of {sup 137}Cs deposition in forest. Study was conducted in the forest at the upstream of Kami-Oguni River catchment, northern part of Fukushima Prefecture. Three plots (2 deciduous stands and 1 Japanese cedar (Cryptomeria japonica) plantation) were set in the forest. Quercus serrata and C. japonica, a representative of deciduous and evergreen tree species in this region, were chosen from each plot. Sample trees were logged in October 2012. Stem samples were collected every 2 m from above the ground to tree top and separated into bark, sapwood and heartwood. Litter traps were set in each plot and collected every month. Leaf litter was classified among species. Also, soil samples were collected in the cylinder of 5 cm in diameter and maximum 30 cm in depth from the forest floor every month. {sup 137}Cs concentration of all samples were measured by germanium semiconductor detector or NaI(Tl) scintillation counter. Deposited {sup 137}Cs was attached strongly on the bark of Q. serrata at high concentration (9-18 kBq/kg) but there were no clear relationship with tree height. In C. japonica, {sup 137}Cs concentration was about half times lower than that of Q. serrata at 0-10 m part of the tree. {sup 137}Cs concentration in wood of C. japonica was higher than Q. serrata. {sup 137}Cs concentration of sapwood was as high as that of heartwood in C. japonica, but in Q. serrata, {sup 137}Cs concentration in sapwood was

  1. Derivation of residual radioactive material guidelines for 13 radionuclides present in Operable Unit IV at Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    Faillace, E.; Nimmagadda, M.; Yu, C.

    1994-12-01

    Residual radioactive material guidelines for 13 radionuclides (americium-241; cobalt-60; cesium-137; europium-152, -154, and -155; plutonium-238, -239, and -240; strontium-90; and uranium-234, -235, and -238) were derived for Operable Unit (OU) IV at Brookhaven National Laboratory. This site has been identified for remedial action under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Single-nuclide guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of OU IV should not exceed a dose constraint of 30 mrem/yr following remedial action for the current use and plausible future use scenarios or a dose limit of 100 mrem/yr for plausible but less likely future use scenarios. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for determining residual radioactive material guidelines. Four potential scenarios were considered; each assumed that, for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The four scenarios varied with regard to the type of site use, time spent at the site, and sources of food consumed

  2. Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-10-01

    This document outlines the environmental, safety, and health (ES ampersand H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES ampersand H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing)

  3. Strontium-90 and cesium-137 in sea water (from July, 1982, to September, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in sea water collected at 11 locations across Japan from July to September, 1982, are given in pCi/l, respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, and the counting are also described. Sea water was collected at the fixed station where the effect of the terrestrial fresh water from rivers was negligibly small. The sampling was carried out when there was no rainfall for the last few days. The sample solution was prepared and was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 0.09 to 0.13 pCi/l for Sr-90 and 0.05 to 0.13 pCi/l for Cs-137 in the sea water. (Mori, K.)

  4. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Hirata, Masaru; Miyamoto, Fujio; Kurosawa, Makoto; Abe, Jiro; Sakai, Haruyuki; Suzuki, Tsuneo.

    1996-01-01

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  5. The radioactive waste management at IAEA laboratories

    International Nuclear Information System (INIS)

    Deron, S.; Ouvrard, R.; Hartmann, R.; Klose, H.

    1992-10-01

    The report gives a brief description of the nature of the radioactive wastes generated at the IAEA Laboratories in Seibersdorf, their origin and composition, their management and monitoring. The management of the radioactive waste produced at IAEA Laboratories in Seibersdorf is governed by the Technical Agreements of 1985 between the IAEA and the Austrian Health Ministry. In the period of 1982 to 1991 waste containers of low activity and radiotoxicity generated at laboratories other than the Safeguards Analytical Laboratory (SAL) were transferred to the FZS waste treatment and storage plant: The total activity contained in these drums amounted to < 65 MBq alpha activity; < 1030 MBq beta activity; < 2900 MBq gamma activity. The radioactive waste generated at SAL and transferred to the FZs during the same period included. Uranium contaminated solid burnable waste in 200 1 drums, uranium contaminated solid unburnable waste in 200 1 drums, uranium contaminated liquid unburnable waste in 30 1 bottles, plutonium contaminated solid unburnable waste in 200 1 drums. In the same period SAL received a total of 146 Kg uranium and 812 g plutonium and exported out of Austria, unused residues of samples. The balance, i.e.: uranium 39 kg, plutonium 133 g constitutes the increase of the inventory of reference materials, and unused residues awaiting export, accumulated at SAL and SIL fissile store as a result of SAL operation during this 10 year period. The IAEA reexports all unused residues of samples of radioactive and fissile materials analyzed at his laboratories, so that the amount of radioactive materials ending in the wastes treated and stored at FZS is kept to a minimum. 5 refs, 7 figs, 3 tabs

  6. Plutonium in nature; Le plutonium dans la nature

    Energy Technology Data Exchange (ETDEWEB)

    Madic, C.

    1994-12-31

    Plutonium in nature comes from natural sources and anthropogenic ones. Plutonium at the earth surface comes principally from anthropogenic sources. It is easily detectable in environment. The plutonium behaviour in environment is complex. It seems necessary for the future to reduce releases in environment, to improve predictive models of plutonium behaviour in geosphere, to precise biological impact of anthropogenic plutonium releases.

  7. Analysis of radioactive corrosion test specimens by means of ICP-MS. Comparison with earlier methods

    International Nuclear Information System (INIS)

    Forsyth, Roy

    1997-07-01

    In June 1992, an ICP-MS instrument (Inductively Coupled Plasma-Mass Spectrometry) was commissioned for use with radioactive sample solutions at Studsvik Nuclear's Hot Cell Laboratory. For conventional environmental samples the instrument permits the simultaneous analysis of many trace elements, but the software used in evaluation of the mass spectra is based on a library of isotopic compositions relevant only for elements in the lithosphere. Fission products and actinides, however, have isotopic compositions which are significantly different from the natural elements, and which also vary with the burnup of the nuclear fuel specimen. Consequently, a spread-sheet had to be developed which could evaluate the mass spectra with these isotopic compositions. Following these preparations, a large number of samples (about 200) from SKB's experimental programme for the study of spent fuel corrosion have been analyzed by the ICP-MS technique. Many of these samples were archive solutions of samples which had been taken earlier in the programme. This report presents a comparison of the analytical results for uranium, plutonium, cesium, strontium and technetium by both the ICP-MS technique, and the previously used analytical methods. For three products, a satisfactory agreement between the results from the various methods was obtained, but for uranium and plutonium the ICP-MS method gave results which were 10-20% higher than the conventional methods. The comparison programme has also shown, not unexpectedly, that significant losses of plutonium from solution had occurred, by precipitation and/or absorption, in the archive solutions during storage. It can be expected that such losses also occur for the other actinides, and consequently, all the analytical results for actinides in older archive solutions must be treated with great caution. 9 refs

  8. Thule-2007 - Investigation of radioactive pollution on land

    DEFF Research Database (Denmark)

    Nielsen, Sven Poul; Roos, Per

    the occurrence of radioactive particles in air. This involved col-lection of airborne particles with an air sampler, collection of airborne particles on sticky foils, collection of rain samples and collection of particles that could be resuspended by wind from the soil surface to the air. Small amounts...... of plutonium were found in air and rain samples, but the derived concentra-tions in air were very low corresponding to typical back-ground levels in Europe in the range 1-10 nBq m-3. A few small particles were found on the soil surface with activities up to 1000 Bq plutonium but the air and rain samples showed......A survey of radioactive pollution on land in the Thule area from an airplane accident in 1968 was carried out during 2007 and 2008. The results show levels of plutonium in soil at Narsaarsuk ranging from background values around 39 Bq m-2 up to levels of 1.7 MBq m-2. Local sub-areas of sizes...

  9. A review of research programs related to the behavior of plutonium in the environment

    International Nuclear Information System (INIS)

    Bartram, B.W.; Wilkinson, M.J.

    1983-01-01

    Plutonium-fueled radioisotopic heat sources find application in a spectrum of space, terrestrial, and underseas applications to generate electrical power by thermoelectric or dynamic-cycle conversion. Such systems under postulated accident conditions could release radioactivity into the environment resulting in risks to the general population. The released radioactivity could be dispersed into various environmental media, such as air, soil, and water and interact with people through various exposure pathways leading to inhalation, ingestion, and external radiological doses and associated health effects. The authors developed short-term exposure (RISK II) and long-term exposure (RISK III) models for use in safety risk assessments of space missions utilizing plutonium-fueled electric power systems. To effectively use these models in risk assessments, representative input values must be selected for a spectrum of environmental transfer parameters that characterize the behavior of plutonium in the environment. The selection of appropriate transfer parameters to be used in a given analysis will depend on the accident scenarios to be modeled and the terrestrial and aquatic environments to be encountered. The authors reviewed the availability of plutonium environmental data for use in risk assessments and the status of research programs being conducted by various organizations related to the behavior of plutonium in the environment. This report summarizes the research programs presently being conducted at six Department of Energy Laboratories and makes recommendations on areas where further research is needed to fill gaps in the data necessary for risk assessments. 19 refs., 2 figs., 1 tab

  10. Stability of plutonium contaminated sediments in the Miami--Erie Canal

    International Nuclear Information System (INIS)

    Farmer, B.M.; Carfagno, D.G.

    1978-01-01

    This study was conducted to evaluate the stability of plutonium-contaminated sediment in the Miami-Erie Canal. Correlations were sought to relate concentrations at air sampling stations to plutonium-238 concentrations in air and stack emissions, wind direction, particulate loading, rainfall, and construction activities. There appears to be some impact on airborne concentrations at air sampling stations 122 and 123 from the contaminated sediment in the canal and ponds area. For purposes of this evaluation, it was assumed that the plutonium-238 found in the air samples came from the contaminated sediment in the canal/ponds area. To complete the evaluation of the inhalation pathway, dose calculations were performed using actual airborne concentrations of plutonium-238 measured at sampler 123. The dose equivalent to an individual in that area was calculated for 1 yr and 70 yr. Dose calculations were also performed on potential uptake of contaminated vegetation from that area for 1 yr and 70 yr. This study indicates that, although the contaminated sediments in the canal and pond area appear to contribute to airborne plutonium-238, the observed maximum monthly concentration of plutonium-238 in air is a small fraction of the DOE Radioactivity Concentration Guide (RCG) and the nine-month average concentration of plutonium-238 in air observed thus far during 1977 is less than 1% of the RCG. Dose equivalents, conservatively calculated from these actual data, are well within existing DOE standards and proposed EPA guidance

  11. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  12. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    International Nuclear Information System (INIS)

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A ampersand M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV reg-sign IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV reg-sign IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies

  13. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  14. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE ' PO Mayak' , 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating

  15. Resuspension of uranium-plutonium oxide particles from burning Plexiglas

    International Nuclear Information System (INIS)

    Pickering, S.

    1987-01-01

    Nuclear fuel materials such as Uranium-Plutonium oxide must be handled remotely in gloveboxes because of their radiotoxicity. These gloveboxes are frequently constructed largely of combustible Plexiglas sheet. To estimate the potential airborne spread of radioactive contamination in the event of a glovebox fire, the resuspension of particles from burning Plexiglas was investigated. (author)

  16. Plutonium chemistry: a synthesis of experimental data and a quantitative model for plutonium oxide solubility

    International Nuclear Information System (INIS)

    Haschke, J.M.; Oversby, V.M.

    2002-01-01

    The chemistry of plutonium is important for assessing potential behavior of radioactive waste under conditions of geologic disposal. This paper reviews experimental data on dissolution of plutonium oxide solids, describes a hybrid kinetic-equilibrium model for predicting steady-state Pu concentrations, and compares laboratory results with predicted Pu concentrations and oxidation-state distributions. The model is based on oxidation of PuO 2 by water to produce PuO 2+x , an oxide that can release Pu(V) to solution. Kinetic relationships between formation of PuO 2+x , dissolution of Pu(V), disproportionation of Pu(V) to Pu(IV) and Pu(VI), and reduction of Pu(VI) are given and used in model calculations. Data from tests of pyrochemical salt wastes in brines are discussed and interpreted using the conceptual model. Essential data for quantitative modeling at conditions relevant to nuclear waste repositories are identified and laboratory experiments to determine rate constants for use in the model are discussed

  17. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Myers, B.F.; Bell, W.E.

    1979-09-01

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  18. Strontium-90 and cesium-137 in soil (from May, 1982, to September, 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in soil measured at 29 locations across Japan from May to September, 1982, are given in pCi/kg and mCi/km 2 , respectively. The methods of the collection and pretreatment of samples, the preparation of samples for analysis, the separation of strontium-90 and cesium-137, the determination of stable strontium, calcium and potassium, and the counting are also described. Soil was collected in the spacious and flat area without past disturbance on the surface. Soil was taken from two layers of different depths, 0 to 5 cm and 5 to 20 cm. The sample solution was prepared and was neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. After the radiochemical separation, the mounted precipitate was counted for activity using a low background beta counter normally for 60 min. The radioactivity ranged 6 to 1300 pCi/Kg for Sr-90 and 1 to 5000 pCi/Kg for Cs-137 in the sampling depth of 0 to 5 cm. (J.P.N.)

  19. Using the Integral Fast Reactor (IFR) to dispose of excess weapons plutonium

    International Nuclear Information System (INIS)

    Hannum, W.H.; Wade, D.C.

    1997-01-01

    Plutonium is a man-made radioactive element with a long half-life. The only way to dispose of plutonium permanently is by causing it to fission. The fission process is efficient only in a fast neutron spectrum, and multiple recycle with a minimal loss is required to approach complete destruction. To be consistent with nonproliferation objectives, the process should be compatible with rigorous safeguards, and should not involve handling separated plutonium; The Integral Fast Reactor (IFR) meets all of these requirements. In addition, several near-term denaturing options are available that are fully compatible with complete destruction. When coupled with electrical generation, ample revenues would be available to cover all handling, operating and safeguards costs, with a substantial residual net return on the investment. (author)

  20. Acid-digestion treatment of plutonium-containing waste

    International Nuclear Information System (INIS)

    Wieczorek, H.; Kemmler, G.; Krause, H.

    1981-01-01

    The Radioactive Acid-Digestion Test Unit (RADTU) has been constructed at Hanford to demonstrate the application of the acid-digestion process for treating combustible transuranic wastes and scrap materials. The RADTU, with its original tray digestion vessel, has recently completed a six-month campaign processing potentially contaminated non-glovebox wastes from a Hanford plutonium facility. During this campaign, it processed 2100 kg largely cellulosic wastes at an average sustained processing rate of 3 kg/h as limited by the acid-waste contact and the water boil-off rate from the acid feeds. The on-line operating efficiency was nearly 50% on a twelve-hour day, five-day week basis. Following this campaign, a new annular high-rate digester has been installed for testing. In preliminary tests with simulated wastes, the new digester demonstrated a sustained capacity of 10 kg/h with greatly improved intimacy of contact between the digestion acid and the waste. The new design also doubles the heat-transfer surface, which is expected to provide at least twice the water boil-off rate of the previous tray digester design. Following shakedown testing with simulated and low-level wastes, the new unit will be used to process combustible plutonium scrap and waste from Hanford plutonium facilities for the purposes of volume reduction, plutonium recovery, and stabilization of the final waste form. (author)

  1. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Nishi, Takashi; Baba, Tsutomu; Fukazawa, Tetsuo; Matsuda, Masami; Chino, Koichi; Ikeda, Takashi.

    1993-01-01

    As an adsorbent used for removing radioactive nuclides such as cesium and strontium from radioactive liquid wastes generated from a reprocessing plant, a silicon compound having siloxane bonds constituted by silicon and oxygen and having silanol groups constituted by silicon, oxygen and hydrogen, or an inorganic material mainly comprising aluminosilicate constituted with silicon, oxygen and aluminum is used. In the adsorbent of the present invention, since silica main skeletons are partially decomposed in an aqueous alkaline solution to newly form silanol groups having a cation adsorbing property, pretreatment such as pH adjustment is not necessary. (T.M.)

  2. Lingering radioactivity at the Bikini and Enewetak Atolls.

    Science.gov (United States)

    Buesseler, Ken O; Charette, Matthew A; Pike, Steven M; Henderson, Paul B; Kipp, Lauren E

    2018-04-15

    We made an assessment of the levels of radionuclides in the ocean waters, seafloor and groundwater at Bikini and Enewetak Atolls where the US conducted nuclear weapons tests in the 1940's and 50's. This included the first estimates of submarine groundwater discharge (SGD) derived from radium isotopes that can be used here to calculate radionuclide fluxes in to the lagoon waters. While there is significant variability between sites and sample types, levels of plutonium ( 239,240 Pu) remain several orders of magnitude higher in lagoon seawater and sediments than what is found in rest of the world's oceans. In contrast, levels of cesium-137 ( 137 Cs) while relatively elevated in brackish groundwater are only slightly higher in the lagoon water relative to North Pacific surface waters. Of special interest was the Runit dome, a nuclear waste repository created in the 1970's within the Enewetak Atoll. Low seawater ratios of 240 Pu/ 239 Pu suggest that this area is the source of about half of the Pu in the Enewetak lagoon water column, yet radium isotopes suggest that SGD from below the dome is not a significant Pu source. SGD fluxes of Pu and Cs at Bikini were also relatively low. Thus radioactivity associated with seafloor sediments remains the largest source and long term repository for radioactive contamination. Overall, Bikini and Enewetak Atolls are an ongoing source of Pu and Cs to the North Pacific, but at annual rates that are orders of magnitude smaller than delivered via close-in fallout to the same area. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  4. Study and modelling of an innovative coprecipitation reactor for radioactive liquid wastes decontamination

    International Nuclear Information System (INIS)

    Flouret, Julie

    2013-01-01

    In order to decontaminate radioactive liquid wastes of low and intermediate levels, the coprecipitation is the process industrially used. The aim of this PhD work is to optimize the continuous process of coprecipitation. To do so, an innovative reactor is designed and modelled: the continuous reactor/classifier. Two model systems are studied: the coprecipitation of strontium by barium sulphate and the sorption of cesium by PPFeNi. The simulated effluent contains sodium nitrate in order to consider the high ionic strength of radioactive liquid wastes. First, each model system is studied on its own, and then a simultaneous treatment is performed. The kinetic laws of nucleation and crystal growth of barium sulphate are determined and incorporated into the coprecipitation model. Kinetic studies and sorption isotherms of cesium by PPFeNi are also performed in order to acquire the necessary data for process modelling. The modelling realised enables accurate prediction of the residual strontium and cesium concentrations according to the process used: it is a valuable tool for the optimization of existing units, but also the design of future units. The continuous reactor/classifier presents many advantages compared to the classical continuous process: the decontamination efficiency of strontium and cesium is highly improved while the volume of sludge generated by the process is reduced. A better liquid/solid separation is observed in the reactor/classifier and the global installation is significantly more compact. Thus, the radioactive liquid wastes treatment processes can be intensified by the continuous reactor/classifier, which represents a very promising technology for future industrial application. (author) [fr

  5. Clean-up of liquid radiation wastes with elevated mineralization from cesium and cobalt radionuclides by the modified clinoptilolite of the Chankanaj deposit

    International Nuclear Information System (INIS)

    Plotnikov, V.I.; Tuleushev, A.Zh.; Zhabykbaev, G.T.; Kostsov, S.V.; Medvedeva, Z.V.; Plotnikova, O.M.; Chakrova, E.T.; Idrisova, U.R.; Idrisova, D.Zh.

    2003-01-01

    On the base of laboratory studies and semi-industrial testing the possibility of liquid radioactive wastes clean-up from cesium and cobalt radionuclides in elevated mineralization conditions with help of modified clinoptilolite is shown. In the work the synthesized thin-layer inorganic sorbent (TIS) with conventional name MC-2 (modified clinoptilolite) was used. The Chankanaj deposit's zeolite in the crushed form was base for the TIS production. The copper ferrocyanides serves as the modifier. This sorbent is selective one in relationship to cesium and cobalt radionuclides

  6. Development of cementitious grouts for the incorporation of radioactive wastes. Part 2. Continuation of cesium and strontium leach studies. [Hydrofracture

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.G.

    1976-09-01

    Additional leach studies were completed on the leachability of cesium and strontium from simulated hydrofracture grout. These studies followed the test method proposed by IAEA or a modification which exposed smaller specimens with a higher surface-to-volume ratio to a larger volume of leachant. Results showed that the amount of cesium or strontium leached from the grout varied directly with the degree of drying during curing and inversely with the time of curing. The leachability also depends on the composition of the leachant and varies in the order: distilled water greater than tap water greater than grout water. The total waste concentration had little effect on the leachability of either cesium or strontium. The credibility of the laboratory results was substantiated by a short-term continuous leach test made on a fragment of a core sample of actual hydrofracture grout. The modified effective diffusivities (10/sup -11/ to 10/sup -10/ cm/sup 2//s) calculated from these limited data were comparable to those obtained from laboratory studies containing Grundite clay. These tests also confirmed the effect of various clays on the leachability of cesium and the importance of leachant renewal frequency on the leach rate.

  7. Plutonium

    International Nuclear Information System (INIS)

    Watson, G.M.

    1976-01-01

    Discovery of the neutron made it easy to create elements which do not exist in nature. One of these is plutonium, and its isotope with mass number 239 has nuclear properties which make it both a good fuel for nuclear power reactors and a good explosive for nuclear weapons. Since it was discovered during a war the latter characteristic was put to use, but it is now evident that use of plutonium in a particular kind of nuclear reactor, the fast breeder reactor, will allow the world's resources of uranium to last for millennia as a major source of energy. Plutonium is very radiotoxic, resembling radium in this respect. Therefore the widespread introduction of fast breeder reactors to meet energy demands can be contemplated only after assurances on two points; that adequate control of the radiological hazard resulting from the handling of very large amounts of plutonium can be guaranteed, and that diversion of plutonium to illicit use can be prevented. The problems exist to a lesser degree already, since all types of nuclear reactor produce some plutonium. Some plutonium has already been dispersed in the environment, the bulk of it from atmospheric tests of nuclear weapons. (author)

  8. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    Haas, M.

    2007-01-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m f =2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m f =1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m f =4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  9. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Benjamin, T.M.; Rokop, D.J.; Stoker, A.K.

    1997-09-22

    For more than three decades Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry (TIMS) to determine the plutonium and uranium activity levels and atom ratios. Be measuring the {sup 240}Pu/{sup 239}Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of {sup 235}U and {sup 236}U were also used to identify non-natural components. The survey results indicate the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1000 fold along a 3000 ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicates off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary.

  10. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M. [Los Alamos National Lab., NM (United States); Stoker, A.K. [Science Applications, Inc., White Rock, NM (United States)

    1997-10-01

    For more than three decades, Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry to determine the plutonium and uranium activity levels and atom ratios. By measuring the {sup 240}Pu/{sup 239}Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of {sup 235}U and {sup 236}U were also used to identify non-natural components. The survey results indicate that the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1,000-fold along a 3,000-ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory-derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicate off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary.

  11. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    International Nuclear Information System (INIS)

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M.; Stoker, A.K.

    1997-10-01

    For more than three decades, Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry to determine the plutonium and uranium activity levels and atom ratios. By measuring the 240 Pu/ 239 Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of 235 U and 236 U were also used to identify non-natural components. The survey results indicate that the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1,000-fold along a 3,000-ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory-derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicate off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary

  12. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    International Nuclear Information System (INIS)

    Gallaher, B.M.; Benjamin, T.M.; Rokop, D.J.; Stoker, A.K.

    1997-01-01

    For more than three decades Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry (TIMS) to determine the plutonium and uranium activity levels and atom ratios. Be measuring the 240 Pu/ 239 Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of 235 U and 236 U were also used to identify non-natural components. The survey results indicate the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1000 fold along a 3000 ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicates off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary

  13. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 1: Rocky Flats working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The objective of the Plutonium Environment, Safety, and Health (ES ampersand H) Vulnerability Assessment Project was to conduct a comprehensive assessment of the ES ampersand H vulnerabilities arising from the Department of Energy (DOE) storage and handling of its current plutonium holdings. The purpose of this assessment was to identify and prioritize ES ampersand H vulnerabilities that could lead to unnecessary or increased radiation exposure of workers, release of radioactive materials to the environment, or radiation exposure of the public. The results will serve as an information base for identifying interim corrective actions and options for the safe management of fissile materials

  14. Sponsored research on radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in chapters entitled: introduction (background, responsibilities, options, structure of the programme); strategy development; disposal of accumulations; disposal of radioactive waste arisings; quality assurance for waste conditioning quality assurance related to radioactive waste disposal (effectiveness of different rock types as natural barriers to the movement of radioactivity, and non-site specific factors in the design of repositories; radiological assessment; environmental studies; research and development to meet requirements specific to UKAEA wastes; long term research (processes for the solidification of highly active liquid wastes); plutonium contamination waste minimisation. (U.K.)

  15. A review of the properties of plutonium, its biological effects, and its place in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Harte, G.A.

    1978-03-01

    After a brief description of the sources of plutonium and its physical, chemical and radioactive characteristics, an attempt is made to describe quantitatively the biological effects of plutonium intake as they are currently understood by the organisations concerned with radiological protection. The conceptual basis of protection standards as put forward by ICRP has recently undergone a change; the idea of limiting dose to a critical organ has been superseded by that of limiting the overall risk of carcinogenic and genetic effects. Limits on plutonium intake are discussed in the light of both concepts. Finally the role of plutonium in the nuclear fuel cycle is described. (author)

  16. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    Science.gov (United States)

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  17. Disposition of plutonium-239 via production of fission molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A., E-mail: muahtaq_a1953@hotmail.co [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2011-04-15

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets.

  18. Process for cesium decontamination and immobilization

    Science.gov (United States)

    Komarneni, Sridhar; Roy, Rustum

    1989-01-01

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time.

  19. A review of research programs related to the behavior of plutonium in the environment

    International Nuclear Information System (INIS)

    Bartram, Bart W.; Wilkinson, Martha J.

    1983-01-01

    Plutonium-fueled radioisotopic heat sources find application in a spectrum of space, terrestrial, and underseas applications to generate electrical power by thermoelectric or dynamic-cycle conversion. Such systems under postulated accident conditions could release radioactivity into the environment resulting in risks to the general population. The released radioactivity could be dispersed into various environmental media, such as air, soil, and water and interact with people through various exposure pathways leading to inhalation, ingestion, and external radiological doses and associated health effects. The authors developed short-term exposure (RISK II) and long-term exposure (RISK III) models for use in safety risk assessments of space missions utilizing plutonium-fueled electric power systems. To effectively use these models in risk assessments, representative input values must be selected for a spectrum of environmental transfer parameters that characterize the behavior of plutonium in the environment. The selection of appropriate transfer parameters to be used in a given analysis will depend on the accident scenarios to be modeled and the terrestrial and aquatic environments to be encountered. The authors reviewed the availability of plutonium in the environment. This report summarizes the research programs presently being conducted at six Department of Energy Laboratories and makes recommendations on areas where further research is needed to fill gaps in the data necessary for risk assessments

  20. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph; Destombe, C; Grasseau, A; Mathieu, J; Chancerelle, Y; Mestries, J C [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1998-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  1. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  2. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  3. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    International Nuclear Information System (INIS)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage

  4. Distribution of radioactive Cesium in trees and effect of decontamination of forest contaminated by the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Iijima, K.; Funaki, H.; Tokizawa, T.; Nakayama, S.

    2013-01-01

    In decontamination pilot projects conducted by Japan Atomic Energy Agency (JAEA), many different techniques were tested to determine their applicability to remediate areas evacuated after the Fukushima Daiichi nuclear accident following the Great Tohoku earthquake and tsunami of March 11, 2011. In addition to buildings, roads and farmland, the forest adjacent to living areas was one of the main decontamination targets. The projects evaluated the radioactive contamination of trees and the effectiveness of decontaminating a highly contaminated evergreen forest. This forest was located 1.3 km southwest of the Fukushima Daiichi Nuclear Power Plant and is dominated by Japanese cedar trees and fir trees. As the first step, three Japanese cedar trees and three fir trees were cut down and the distributions of radioactive cesium (Cs) were measured in each. The total concentrations of 134 Cs and 137 Cs in the leaves and branches were about 1 MBq/kg for both cedar and fir trees, and were appreciably higher than in the bark for cedar. The concentrations in the outer part of the trunks (under the bark) were lower, on the order of 10 kBq/kg, and those in the core of the trunks were lower than 1 kBq/kg for both kinds of trees. The observation that the Cs concentrations are higher in the outer part of trees, is compatible with the assumption that radio-Cs was mostly adsorbed on the surface of trees and partly penetrated into the trunks through the bark. Evolution of air dose rates in a 100 x 60 m pasture adjacent to the forest was monitored during decontamination of the forest and of the pasture itself. The dose rates in the pasture decreased drastically after stripping contaminated topsoil from the pasture and decreased slightly more after stripping contaminated topsoil of the forest floor and pruning the trees. Cutting down and removing 84 trees in the outermost area (10- m width) of the forest also slightly decreased these dose rates. After decontamination, the residual dose

  5. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: fabrication of light-water reactor fuels containing plutonium

    International Nuclear Information System (INIS)

    Groenier, W.S.; Blanco, R.E.; Dahlman, R.C.; Finney, B.C.; Kibbey, A.H.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model light-water plutonium recycle reactor fuel fabrication plant, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 300 metric tons of LWR plutonium recycle fuel. Additional radwaste treatment equipment is added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Some of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costsand the radiological doses, detailed calculations, and tabulations are presented in Appendixes A and B. (U.S.)

  6. ALARA review for the 202-S plutonium loadout hood stabilization

    International Nuclear Information System (INIS)

    Patch, R.F.

    2000-01-01

    This as low as reasonably achievable (ALARA) review provides a description of the engineering and administrative controls used to manage personnel exposures, control contamination levels, and control airborne radioactivity concentrations while conducting stabilization of the Reduction-Oxidation (REDOX) Facility plutonium loadout hood and associated piping, and the isolation of the ER-8 ventilation system

  7. Stop plutonium

    International Nuclear Information System (INIS)

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  8. Daily radiation. 150 days after Chernobyl: food adviser and cesium map updated. Taegliche Strahlung. Lebensmittelratgeber und Caesiumkarte auf neuestem Stand

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains contributions of basic character about radioactivity, measurement of radioactivity, the fuel cycle, the temporal evolution of radiation burden, fuel reprocessing plants and limit values. Further there are a food adviser, an estimation of risk from food, and a cesium map for Austria from August 1986. Finally there are contributions about Wackersdorf in West Germany, Temelin in Czechoslovakia and on energy policy. The contributions are not connected with particular authors. 10 refs., 29 figs., 11 tabs. (qui).

  9. Strontium-90 and cesium-137 in soil (from Jun. 1983 to Sept. 1983)

    International Nuclear Information System (INIS)

    1983-01-01

    Results are presented for the determination of strontium-90 and cesium-137 in soils in Japan. Twenty-seven sampling points were selected all over Japan from Hokkaido to Okinawa by the criteria that the points were spacious and flat without past disturbance and those located in a forest, in a stony area or inside of river banks should be avoided. Soils were taken from two layers of depth, 0 to 5 cm and 5 to 20 cm. After drying, soils were passed through a 2 mm sieve and were employed for radiochemical leaching, separation, and purification of strontium-90 or cesium-137. Radioactivity of strontium-90 or cesium-137 was determined with a low background beta counter normally for 60 minutes. Determined values are presented as pCi/kg and mCi/km 2 for two different depth layers. As for strontium-90 contents, they were ranged from 13.0 +- 3.3 pCi/kg-dry (Aomori, 5 to 20 cm) to 1300 +- 20 pCi/kg-dry (Oota, Shimane Pref., 0 to 5 cm), or from 1.1 +- 0.14 mCi/km 2 (Tsuyama, Okayama Pref., 0 to 5 cm) to 50.0 +- 1.7 mCi/km 2 (Sapporo, 5 to 20 cm). As for cesium-137 contents, they were ranged from 0.5 +- 2.2 pCi/kg-dry (Saga, 5 to 20 cm) to 4700 +- 40 pCi/kg-dry (Oota, Shimane Pref., 0 to 5 cm) or from 0.1 +- 0.42 mCi/km 2 (Saga, 5 to 20 cm) to 120.0 +- 2.0 mCi/km 2 (Oota, Shimane Pref., 5 to 20 cm), and the variance for cesium-137 values were larger than those for strontium-90. Seasonal or local tendency for the contents of the two nuclides were not clarified. (Takagi, S.)

  10. Process for cesium decontamination and immobilization

    Science.gov (United States)

    Komarneni, S.; Roy, R.

    1988-04-25

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time. 6 figs., 2 tabs.

  11. Method for primary containment of cesium wastes

    International Nuclear Information System (INIS)

    Angelini, P.; Arnold, W.D.; Blanco, R.E.; Bond, W.D.; Lackey, W.J.; Stinton, D.P.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600 0 C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000* C. For a suitable duration

  12. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. The impetus for this effort was spawned in part by the decision of the Japanese government to move large quantities of reprocessed plutonium by air from France to Japan. The exploration of options for overflights of United States and Canadian airspace (among others) and landings in Anchorage, Alaska, generated intense debate in the US and countries that might have been overflown. The debate centered on general questions of the need to air transport plutonium in large quantities, package survival in an accident, prenotification, emergency response, routing, safeguards and other facets of the proposed operations. In the US, which already had the most stringent regulations for packaging of plutonium shipped by air (NUREG-0360), there was immediate additional legislative action to increase the stringency by requiring demonstration that an aircraft carrying plutonium in certified packagings could undergo a severe crash without release of plutonium (the Murkowski amendment). In the United Kingdom there was an official inquiry that resulted in a high visibility report (ACTRAM 88) and a conclusion that the IAEA should examine regulatory needs in the general area of air transport

  13. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  14. Thule-2003 - Investigation of radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Sven P.; Roos, P.

    2006-05-15

    Analyses of marine and terrestrial samples collected in August 2003 from Bylot Sound at Thule, Northwest Greenland, show that plutonium from nuclear weapons in the American B52 plane, which crashed on the sea ice in January 1968, persists in the environment. The highest concentrations of plutonium are found in the marine sediments under the location where the plane crashed. The distribution of plutonium in the marine sediment is very inhomogeneous and associated with hot particles with activities found up to 1500 Bq {sup 239,240}Pu. Sediment samples collected in Wolstenholme Fjord north of the accident site show plutonium concentrations, which illustrates the redistribution of plutonium after the accident. The total plutonium inventory in the sediments has been assessed based on systematic analyses considering hot particles. The inventory of {sup 239,240}Pu in the sediments within a distance of 17 km from the point of impact of the B52 plane is estimated at 2.9 TBq (1 kg). Earlier estimates of the inventory were approximately 1.4 TBq {sup 239,240}Pu. Seawater and seaweed samples show increased concentrations of plutonium in Bylot Sound. The increased concentrations are due to resuspension of plutonium-containing particles from the seabed and transport further away from the area. Plutonium concentrations in seawater, seaweed and benthic animals in Bylot Sound are low but clearly above background levels. All soil samples collected from Narssarssuk show accident plutonium with levels above background. Plutonium is very inhomogeneously distributed and associated with particles in the surface layers. Hot particles were found in soil with activities up to 150 Bq {sup 239,240}Pu. Plutonium in the marine environment at Thule presents an insignificant risk to man. Most plutonium remains in the seabed under Bylot Sound far from man under relatively stable conditions and concentrations of plutonium in seawater and animals are low. However, the plutonium contamination of

  15. Thule-2003 - Investigation of radioactive contamination

    International Nuclear Information System (INIS)

    Nielsen, Sven P.; Roos, P.

    2006-05-01

    Analyses of marine and terrestrial samples collected in August 2003 from Bylot Sound at Thule, Northwest Greenland, show that plutonium from nuclear weapons in the American B52 plane, which crashed on the sea ice in January 1968, persists in the environment. The highest concentrations of plutonium are found in the marine sediments under the location where the plane crashed. The distribution of plutonium in the marine sediment is very inhomogeneous and associated with hot particles with activities found up to 1500 Bq 239,240 Pu. Sediment samples collected in Wolstenholme Fjord north of the accident site show plutonium concentrations, which illustrates the redistribution of plutonium after the accident. The total plutonium inventory in the sediments has been assessed based on systematic analyses considering hot particles. The inventory of 239,240 Pu in the sediments within a distance of 17 km from the point of impact of the B52 plane is estimated at 2.9 TBq (1 kg). Earlier estimates of the inventory were approximately 1.4 TBq 239,240 Pu. Seawater and seaweed samples show increased concentrations of plutonium in Bylot Sound. The increased concentrations are due to resuspension of plutonium-containing particles from the seabed and transport further away from the area. Plutonium concentrations in seawater, seaweed and benthic animals in Bylot Sound are low but clearly above background levels. All soil samples collected from Narssarssuk show accident plutonium with levels above background. Plutonium is very inhomogeneously distributed and associated with particles in the surface layers. Hot particles were found in soil with activities up to 150 Bq 239,240 Pu. Plutonium in the marine environment at Thule presents an insignificant risk to man. Most plutonium remains in the seabed under Bylot Sound far from man under relatively stable conditions and concentrations of plutonium in seawater and animals are low. However, the plutonium contamination of surface soil at

  16. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B. (Atomic Energy Authority, Hot Lab. Center, Cairo (Egypt))

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs.

  17. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    International Nuclear Information System (INIS)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B.

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs

  18. Application of radiochemical method under radioecological situation study in locations of radioactive wastes damping in shallow gulfs of the Novaya Zemlya Archipelago

    International Nuclear Information System (INIS)

    Stepanets, O.V.; Borisov, A.P.; Komarevskij, V.M.; Ligachev, A.N.; Solov'eva

    2005-01-01

    Results of works carried out on the 'Boris Petrov Academician' research ship on burial locations examination of submarine potential hazardous objects in the Kara Sea and in the Stepovoj, Abrosimov and Stivol'ka gulfs are cited. Comprehensive radioecological studies in the damping locations of solid radioactive wastes in the Novaya Zemlya Archipelago conducted in 2002-2004 with application of radio-chemical methods for certain radionuclides determination in the samples of bottom sediments and water in the immediate vicinity from the submerged objects are allowing to revealing the objective picture of man-caused contamination of water environment near submerged objects and by the gulfs water area. The studies uniting instrumental tools of acoustic search and visual objects inspection, opportunity of sampling of bottom sediments and near bottom water in the object vicinity and away from it with subsequent analysis of selected samples by the method of direct gamma-spectroscopy and radio-chemical concentration of certain radionuclides are permitting to obtain the statistically assisted data set on special concentrations of cesium, strontium, cobalt, plutonium radionuclides in a water layer and bottom sediments. Obtained results with taking into account of hydrological conditions allow to explain the peculiarities of radioactivity distribution in separate water areas

  19. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of...

  20. Environmental radioactivity in Greenland in 1978

    International Nuclear Information System (INIS)

    Aarkrog, A.; Hansen, H.; Lippert, J.

    1979-07-01

    Measurements of fallout radioactivity in Greenland in 1978 are reported. Strontium-90 (and Cesium-137 in most cases) was determined in samples of precipitation, sea water, vegetation, animals, and drinking water. Tritium was determined in samples of drinking water. Estimates are given of the mean contents of 90 Sr and 137 Cs in the human diet in Greenland in 1978. (author)

  1. Preventive arms control. Case study: plutonium disposition. Final report

    International Nuclear Information System (INIS)

    Liebert, W.

    2001-01-01

    Plutonium stored in separated form poses a severe threat of nuclear weapons proliferation. While options for the disposition of military plutonium stockpiles have been studied for several years, similar work has hardly been undertaken for plutonium stockpiles in the civilian sector. In the framework of this project, the various options to dispose of stockpiles of separated plutonium in the civilian sector were to be investigated. The project was embedded in the FONAS-project network on Preventive Arms Control, and the findings of this study were to be considered for the development of a concept of Preventive Arms Control. As a first step, the internationally available information on different options for plutonium disposition (MOX-use, immobilization together with radioactive wastes, elimination) were collected and compiled to allow further assessment of the different options. For some of the options, technical questions were examined in more detail. For this purpose, neutron transport and fuel burnup calculations were performed. In particular, the analysis focused on concepts for the elimination of plutonium by the use of uranium-free fuel in existing light-water reactors, since they are particularly attractive from the point of view of non-proliferation. The calculations were performed for a reference fuel based on yttrium-stabilized zirconia, with parameters like the initial plutonium content or the use of burnable neutron poisons varying. A systematic and complete analysis of the performed calculations, however, could not be undertaken due to project time restrictions. On the basis of assessment criteria for Preventive Arms Control developed by the project network, a specific set of criteria for the assessment of the pros and cons of different plutonium disposition methods has been defined. These criteria may then be used as part of a concept of prospective technology assessment. The project findings present a starting base for a comprehensive assessment of the

  2. Removal of sulfamic acid from plutonium sulfamate--sulfamic acid solution

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    Plutonium metal can be readily dissolved in aqueous solutions of sulfamic acid. When the plutonium sulfamate--sulfamic acid solutions are added to normal purex process streams, the sulfamate ion is oxidized by addition of sodium nitrite. This generates sodium sulfate which must be stored as radioactive waste. When recovery of ingrown 241 Am or storage of the dissolved plutonium must be considered, the sulfamate ion poses major and undesirable precipitation problems in the process streams. The present studies show that 40 to 80% of the sulfamate present in the dissolver solutions can be removed by precipitation as sulfamic acid by the addition of concentrated nitric acid. Addition of 64% nitric acid allows precipitation of 40 to 50% of the sulfamate; addition of 72% nitric acid allows precipitation of 50 to 60% of the sulfamate. If the solutions are chilled, additional sulfamic acid will precipitate. If the solutions are chilled to -10 0 C, about 70 to 80% of the orginal sulfamic acid in the dissolver will precipitate. A single, low-volume wash of the sulfamic acid crystals with concentrated nitric acid will decontaminate the crystals to a plutonium content of 5 dis/(min-gram)

  3. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during

  4. The transports in the French Plutonium Industry. A high risk activity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This study throws light on the scale of transport of plutonium in France nuclear industry, an activity involving quantities of high risk materials often unknown to the public. The study is a significantly extended update of the one carried out by WISE-Paris in 1995 for the Plutonium Forum. It was motivated by important developments in the French plutonium industry and the publication of numerous data concerning transport activities since 1995. The 2003 study presents, in particular, all of the flows of plutonium crossing France every year, as well as analysis of the risks associated with this particular transport activity. Putting these data into perspective in terms of a rapidly and permanently changing political and industrial context, and a description of the regulatory framework within which shipments of plutonium take place, serve as a guide and source of reference to help readers better understand the issues. The importance of transport in the plutonium ''chain'', i.e. the stages corresponding to various industrial processes, is often under-estimated, even by the nuclear industry itself. Transport is, in fact, the activity which involves the greatest quantities of plutonium in the entire nuclear chain. Plutonium, produced during the fission reactions in the cores of nuclear reactors, is transported, contained in the irradiated fuel, to the facilities at La Hague where reprocessing separates it from the other radioactive components of the spent fuel. Part of the plutonium, now isolated in powder form, is then shipped to one of the three plants able to produce the fuel known as MOX. These are located at Cadarache and Marcoule, in France, and at Dessel in Belgium. Once in the MOX form, this plutonium has to be re-transported to reactor sites to be used. Once irradiated, the spent MOX will return to the La Hague installations to be stored for an unknown period; the plutonium contained in the spent MOX is not, at present, destined to be re

  5. The transports in the French Plutonium Industry. A high risk activity

    International Nuclear Information System (INIS)

    2003-02-01

    This study throws light on the scale of transport of plutonium in France nuclear industry, an activity involving quantities of high risk materials often unknown to the public. The study is a significantly extended update of the one carried out by WISE-Paris in 1995 for the Plutonium Forum. It was motivated by important developments in the French plutonium industry and the publication of numerous data concerning transport activities since 1995. The 2003 study presents, in particular, all of the flows of plutonium crossing France every year, as well as analysis of the risks associated with this particular transport activity. Putting these data into perspective in terms of a rapidly and permanently changing political and industrial context, and a description of the regulatory framework within which shipments of plutonium take place, serve as a guide and source of reference to help readers better understand the issues. The importance of transport in the plutonium ''chain'', i.e. the stages corresponding to various industrial processes, is often under-estimated, even by the nuclear industry itself. Transport is, in fact, the activity which involves the greatest quantities of plutonium in the entire nuclear chain. Plutonium, produced during the fission reactions in the cores of nuclear reactors, is transported, contained in the irradiated fuel, to the facilities at La Hague where reprocessing separates it from the other radioactive components of the spent fuel. Part of the plutonium, now isolated in powder form, is then shipped to one of the three plants able to produce the fuel known as MOX. These are located at Cadarache and Marcoule, in France, and at Dessel in Belgium. Once in the MOX form, this plutonium has to be re-transported to reactor sites to be used. Once irradiated, the spent MOX will return to the La Hague installations to be stored for an unknown period; the plutonium contained in the spent MOX is not, at present, destined to be re-used. (author)

  6. Plutonium transport to and deposition and immobility in Irish Sea intertidal sediments

    Energy Technology Data Exchange (ETDEWEB)

    Aston, S R; Stanners, D A [Lancaster Univ. (UK)

    1981-02-12

    The results are presented of an investigation of plutonium in intertidal sediments of the Irish Sea, contaminated with radioactive wastes from the Windscale reprocessing facility. The deposition characteristics and lack of vertical migration of /sup 238/Pu and /sup 239/ and /sup 240/Pu are discussed.

  7. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume 2, Appendix B, Part 1: Rocky Flats site assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The most important vulnerability on a frequency basis is that liquids containing plutonium are stored in containers that are being attacked by the solutions. These containers are presently failing on a random basis. The most important vulnerability on a material at risk basis is that solid plutonium is packaged for short-term storage. These conditions are presently degrading the containers, potentially to failure, which allows release of the material in the building. This assessment comprehensively evaluated environmental, safety and health vulnerabilities resulting from the storage and handling of plutonium at the Rocky Flats Plant. The term ES and H vulnerability, for the purpose of this assessment, means any condition, other than diversion of material, that could lead to unnecessary or increased exposure of workers and the public to radiation or to the release of radioactive materials to the environment

  8. Environmental behaviour of plutonium accidentally released at Thule, Greenland

    International Nuclear Information System (INIS)

    Aarkrog, A.

    1977-01-01

    The environmental contamination resulting from the B-52 accident in 1968 at Thule was studied by scientific expeditions in 1968, 1970 and 1974. The contamination was mainly confined to the marine environment, where plutonium was preferentially located in the sediments and the benthic fauna. Plutonium concentrations down through the sediment layers decayed exponentially with a half-depth of 1 to 2 cm. The horizontal distribution of the plutonium may be described by an exponential expression: mCi sup(239,240)Pu km -2 = 460sub(e)sup(-0.28R) or by a power function: mCisup(239,240)Pu km -2 = 370 Rsup(-1.2), where R is the distance in km from the point of impact. The inventory of sup(239,240)Pu in the marine environment from the accident was estimated at 25 to 30 Ci. The amount of 238 Pu was approximately 0.5 Ci. The bottom animals, such as worms and molluscs, showed a horizontal distribution of radioactivity similar to that of the sediments. From 1968 to 1970 the sup(239,240)Pu concentrations in the biota decreased by an order of magnitude, since 1970 the decrease has been less evident. In 1970 and 1974 there were no indications of increased plutonium concentrations in surface seawater or in sea plants or zooplankton. Higher animals such as fish, seabirds and marine mammals have shown no tendency to increasing plutonium levels since the accident. (author)

  9. Validation of a method to measure plutonium levels in marine sediments in Cuba

    International Nuclear Information System (INIS)

    Sibello Hernández, Rita Y.; Cartas Aguila, Héctor A.; Cozzella, María Letizia

    2008-01-01

    The main objective of this research was to develop and to validate a method of radiochemical separation of plutonium, suitable from the economic and practical point of view, in Cuba conditions. This method allowed to determine plutonium activity levels in the marine sediments from Cienfuegos Bay. The selected method of radiochemical separation was that of anionic chromatography and the measure technique was the quadrupole inductively coupled plasma mass spectrometry. The method was applied to a certified reference material, six repetitions were carried out and a good correspondence between the average measured value and the average certified value of plutonium was achieved, so the trueness of the method was demonstrated. It was also proven the precision of the method, since it was obtained a variation coefficient of 11% at 95% confidence level. The obtained results show that the presence of plutonium in the analyzed marine sediment samples is only due to the global radioactive fallout. (author)

  10. The separation of plutonium from uranium and fission products on zirconium phosphate columns

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    In recent years special attention has been given to the ion-exchange properties of zirconium phosphate and similar compounds in aqueous solutions. These inorganic cation exchangers are stable in oxidizing media and at elevated temperatures. Their resistance to ionizing radiation makes them particularly suitable for work with radioactive solutions. On account of this we considered ir worthwhile to investigate the separation of plutonium from uranium and fission products on zirconium phosphate columns. We were interested in nitric and solutions containing macro-amounts of uranium (a few grams per litre), and micro-amounts of plutonium and long-lived fission products. To obtain a better insight into the ion-exchange behaviour of the different ionic species towards zirconium phosphate, we first determined the dependence of the distribution coefficients of uranium, plutonium and fission product cations on the aqueous nitric acid concentration. Then, taking the distribution data as a guide, we separated plutonium on small glass columns filled with zirconium phosphate and calculated the decontamination factors (author)

  11. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Singh, I.J.; Sathi Sasidharan, N.; Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2005-11-01

    Separation of 137 cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137 Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137 Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137 Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137 Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137 Cs leach rate was 0.001 gm/cm 2 /d. (author)

  12. Cesium Concentration in MCU Solvent

    International Nuclear Information System (INIS)

    Walker, D

    2006-01-01

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing ∼4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to ∼2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain ∼23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a ∼70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional

  13. Radioactivity and countermeasures like clean feeding of sheep

    International Nuclear Information System (INIS)

    2011-01-01

    It's been 25 years since the nuclear accident at Chernobyl, but there is still radioactivity remaining in the Norwegian nature. The radioactive cesium-137 is taken up by plants and fungi and transferred to animals on rangelands. In the grazing season of 2010 had 20 000 sheep on Countermeasures like clean feeding to reduce radioactivity levels in the meat before slaughter. Oppland had most sheep on Countermeasures like clean feeding with almost 12 000 animals. Total was paid 2.2 million in compensation to livestock owners in 2010. In the period 1986-2010 is about 2.2 million sheep have been suspended with a charge of approximately NOK 227 million. (AG)

  14. Determination of plutonium in pure plutonium nitrate solutions - Gravimetric method

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the concentration of plutonium in pure plutonium nitrate solutions and reference solutions, containing between 100 and 300 g of plutonium per litre, in a nitric acid medium. The weighed portion of the plutonium nitrate is treated with sulfuric acid and evaporated to dryness. The plutonium sulfate is decomposed and formed to oxide by heating in air. The oxide is ignited in air at 1200 to 1250 deg. C and weighed as stoichiometric plutonium dioxide, which is stable and non-hygroscopic

  15. PARC (Plutonium Accident Resistant Container) project

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1978-01-01

    Response by the US Nuclear Regulatory Commission (NRC) to a public law limiting the air transport of plutonium resulted in a new Qualification Criteria and led to the PARC project. The PARC project resulted in the design, development, and certification testing of a crashworthy air transportable radioactive materials package for certification by the NRC. This package, identified by the NRC as the Model PAT-1 Package (PAT = Plutonium Air Transportable), has a mass capacity of 2 kg of PuO 2 and a thermal capacity of 25 watts; the internal volume of the inner containment vessel is 1460 cm 3 ; the package dimensions are 62 cm (24 - 1/2 in.) O.D. x 108 cm (42 - 1/2 in.) length and a mass of 227 kg (500 lbs). The design rationale for very high energy absorption (impact, crush, puncture, and slash protection) with residual high-level fire protection, resulted in a reasonably small air-transportable package, advancing the packaging state-of-the-art. Optimization design interactions were utilized in the areas of impact energy absorption and stress and thermal analysis. Package test results are presented in relation to the containment acceptance criteria of the Qualification Criteria and ANSI N 14.5 leaktight standards and the IAEA Safety Series No. 6 A2 radioactive material release quantities. Acceptability of the pre-accident and post-accident package configuration with respect to shielding and criticality standards are ascertained

  16. Artificial radioactivity in Lough Foyle

    International Nuclear Information System (INIS)

    Cunningham, J.D.; Ryan, T.P.; Lyons, S.; Smith, V.; McGarry, A.; Mitchell, P.I.; Leon Vintro, L.; Larmour, R.A.; Ledgerwood, F.K.

    1996-04-01

    The purpose of this study was to assess the extent to which the marine environment of Lough Foyle, situated on the north coast of Ireland, has been affected by artificial radioactivity released from Sellafield. Although traces of plutonium, americium and radiocaesium from Sellafield are detectable in Lough Foyle, the concentrations in various marine media are significantly lower than those found along the NE coast of Ireland and in the western Irish Sea. The minute quantities of artificial radioactivity found in Lough Foyle are of negligible radiological significance

  17. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  18. Treatment of simulated plutonium-containing wastewater by ultrafiltration-reverse osmosis technology

    International Nuclear Information System (INIS)

    Xiong Zhonghua; Fan Xianhua; Luo Deli; Wang Tuo; Chen Qi

    2008-01-01

    Ultrafiltration and reverse osmosis were employed for the treatment of low level radioactive water containing plutonium. The system consists of ultrafiltration module with hollow fibre membrane and reverse osmosis module with spiral membrane. The decontamination efficiency and volume concentration ratio affected by technical parameters were explored in the experiment. The results show that the decontamination efficiency achieves 99.94% and the volume concentration ratio achieves 12.5 at pH=10 for solution fed into the membrane separation system. This technology will be applied in radioactive waste minimization as a new treatment method. (authors)

  19. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume 2, Appendix B, Part 2: Hanford site assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The Hanford Site Self Assessment of Plutonium Environmental Safety and Health (ES and H) Vulnerabilities was conducted in accordance with the US Department of Energy (DOE) Secretary's directive of February 1994. The implementation plans to carry out this directive are contained in the Project Plan and the Assessment Plan. For this assessment, vulnerabilities are defined as conditions or weaknesses that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public. The purpose for the Assessment is to evaluate environmental, safety and health vulnerabilities from plutonium operations and storage activities. Acts of sabotage or diversion of plutonium which obviously may have ES and H implications are excluded from this study because separate DOE programs evaluate those issues on a continuing basis. Security and safeguards activities which may have negative impacts on safety are included in the evaluation

  20. Stationary point of the radiometric control of cesium contamination of agricultural animals

    International Nuclear Information System (INIS)

    1997-01-01

    Stationary point of the radiometric control of cesium contamination of an agricultural animals. Is intended for vital measurements of the contents of radiocesium in muscular tissue of a cattle. Can be used on cattle-breeding farms, providing points, in meat factories and personal facilities. As a base means for accommodation of the control point the motor-car is used. Design of the car allows to automate operations on deployment of the control point on a place and translation of one to a transport mode. Limits of measured specific activity of cesium contamination of a cattle is up 5*10 -9 to 5*10 -6 Ci/kg. The basic error on the bottom limit of measurement at confidence coefficient 0,95 is no more than 30%. Measurement time for the bottom limit of determined specific activity is no more than 30 s. There is automatic measurement mode. Type of a power is 220 V, 50 Hz. Range of working temperatures is up -15 to +35 centigrade. Relative humidity is no more than 98% at 25 centigrade. External gamma background is till 0.035 mR/h. Time of installation and dismantle of stationary control point is no more than 1,5 hours. The direct radiometric control in divo allows to fulfil and to use biotechnological process of removing of cesium isotopes from body of animals for decrease of levels of radioactive contamination