WorldWideScience

Sample records for radioactive beam post-acceleration

  1. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  2. Post-acceleration of sup 7 Be at the Louvain-la-Neuve radioactive ion beam facility

    CERN Document Server

    Gaelens, M; Loiselet, M; Ryckewaert, G

    2003-01-01

    The development of an intense and pure post-accelerated sup 7 Be beam at Louvain-la-Neuve will be discussed. Given its properties (metallic nature, long half-life (53 days)) and the special beam parameters required (multi-charge ions, high purity), a range of special techniques had to be investigated. At Louvain-la-Neuve, sup 7 Be is produced by irradiating a lithium target with 30 mu A of 27 MeV protons and is extracted using offline chemical separation techniques. Because of the large amounts of activity required, the chemistry has to be adapted for use in hotcells. The ionization is performed with an Electron Cyclotron Resonance ion source with the sup 7 Be injected in the source by means of sputtering. Special techniques have to be used to prevent the beryllium atoms from being lost on the plasma chamber walls. A dedicated heated plasma chamber for the ion source was developed. The ionization efficiency was increased by studying the chemistry involved in the ion source. The atoms are ionized to the 1+ or ...

  3. Beam transport through electrostatic accelerators and matching into post accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1986-01-01

    Ion beam transport through electrostatic acceleration is briefly reviewed. Topics discussed include injection, matching into the low-energy acceleration stage, matching from the terminal stripper into the high-energy stage, transport to a post accelerator, space charge, bunching isochronism, dispersion and charge selection. Beam transport plans for the proposed Vivitron accelerator are described. (orig.)

  4. Beam dynamics studies of the ISOLDE post-accelerator for the high intensity and energy upgrade

    CERN Document Server

    Fraser, M A

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  5. Beam Dynamics Studies of the ISOLDE Post-accelerator for the High Intensity and Energy Upgrade

    CERN Document Server

    Fraser, Matthew Alexander; Pasini, M

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  6. New developments of 11C post-accelerated beams for hadron therapy and imaging

    Science.gov (United States)

    Augusto, R. S.; Mendonca, T. M.; Wenander, F.; Penescu, L.; Orecchia, R.; Parodi, K.; Ferrari, A.; Stora, T.

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10-20 MeV protons via 14N(p,α)11C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions 19F(p,X)11C and 23Na(p,X)11C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on 11C+ production [4] and proven post-acceleration of pure 10C3/6+ beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10711C6+ per spill. This intensity is appropriate using 11C ions alone for both imaging and treatment. Here we report on the ongoing feasibility studies of such approach, using the Monte Carlo particle transport code FLUKA [6,7] to simulate

  7. New developments of {sup 11}C post-accelerated beams for hadron therapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, R.S., E-mail: r.s.augusto@cern.ch [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Ludwig Maximilians – University of Munich, Munich (Germany); Mendonca, T.M.; Wenander, F. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Penescu, L. [MedAustron GmbH, Wiener Neustadt (Austria); Orecchia, R. [CNAO – Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori, Pavia (Italy); Parodi, K. [Ludwig Maximilians – University of Munich, Munich (Germany); Ferrari, A.; Stora, T. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland)

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on {sup 12}C could be combined or fully replaced with {sup 11}C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of {sup 11}C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10–20 MeV protons via {sup 14}N(p,α){sup 11}C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions {sup 19}F(p,X){sup 11}C and {sup 23}Na(p,X){sup 11}C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on {sup 11}C{sup +} production [4] and proven post-acceleration of pure {sup 10}C{sup 3/6+} beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10{sup 711}C{sup 6+} per spill. This intensity is appropriate using {sup 11}C ions alone for both imaging and treatment. Here we report on the ongoing feasibility

  8. New developments of 11C post-accelerated beams for hadron therapy and imaging

    CERN Document Server

    Augusto, R S; Wenander, F; Penescu, L; Orecchia, R; Parodi, K; Ferrari, A; Stora, T

    2016-01-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production...

  9. Post acceleration of a pseudospark-produced electron beam by an induction linac

    International Nuclear Information System (INIS)

    Ding, B.N.; Myers, T.J.; Rhee, M.J.

    1992-01-01

    Recently, a high-brightness electron beam produced by a simple pseudospark device has been reported. Typically, the electron beam has a peak current of up to 1 kA, FWHM pulse duration of 30 ns, and an effective emittance of 4[ 2 > r2 > - 2] 1/2 = 100 mm-mrad. The normalized brightness of the beam is estimated to be on the order of 10 11 A/(m 2 -rad 2 ). This high-brightness beam may be immediately useful for high current accelerators and free-electron lasers if the beam energy can be boosted up. In this paper, the authors present preliminary results of the post acceleration of the electron beam by using an induction linac. The pseudospark device is modified by adding a trigger electrode in the hollow cavity of the cathode so that the generation of the electron beam is synchronized with the induction linac. A simple induction linac system of 25 kV, 1 kA, 50 ns pulse is being constructed. The electron beam, which is born in a low pressure gas, will be accelerated in the same background gas. This gas provides a sufficient ion channel for necessary focusing of this high-current density beam. Preliminary results on the beam current, energy spectrum, and emittance measurements of the post-accelerated beam will be presented

  10. Design Study for 10MHz Beam Frequency of Post-Accelerated RIBs at HIE-ISOLDE

    CERN Document Server

    Fraser, M A; Magdau, I B

    2013-01-01

    An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28MHz REX (Radioactive ion beam EXperiment) RFQ [1] with a subharmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.

  11. Detection systems for radioactive ion beams

    International Nuclear Information System (INIS)

    Savajols, H.

    2002-01-01

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  12. Investigating the contamination of accelerated radioactive beams with an ionization chamber at MINIBALL

    CERN Document Server

    Zidarova, Radostina

    2017-01-01

    My summer student project involved the operation and calibration of an ionization chamber, which was used at MINIBALL for investigating and determining the contamination in post-accelerated radioactive beams used for Coulomb excitation and transfer reaction experiments.

  13. Charge breeding of intense radioactive beams

    CERN Document Server

    Kester, O

    2001-01-01

    The efficient transformation of radioactive beams by charge breeding devices will critically influence the lay-out of the post accelerator of presently built first generation radioactive ion beam (RIB) facilities as well as new second generation facilities. The size of the post-accelerator needed to bring the unstable nuclei to the energies required to study nuclear reactions depends on the charge state of the radioactive ions. The capability to raise that charge state from 1+ to n+, where n may correspond to a charge-to- mass ratio of 0.15 or higher, will therefore produce an enormous reduction in cost as well as the possibility to accelerate heavier masses. Thus the efficiency of the charge breeding scheme in comparison to the stripping scheme will be explored in the frame of the EU-network charge breeding. The two possible charge breeding schemes using either an Electron Beam Ion Source (EBIS) or an Electron Cyclotron Resonance Ion Source (ECRIS), the demands to the sources and the present status of existi...

  14. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  15. Transverse acceptance calculation for continuous ion beam injection into the electron beam ion trap charge breeder of the ReA post-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kittimanapun, K., E-mail: kritsadak@slri.or.th [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 (Thailand); Baumann, T.M.; Lapierre, A.; Schwarz, S. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Facility for Rare Isotope Beams (FRIB), Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)

    2015-11-11

    The ReA post-accelerator at the National Superconducting Cyclotron Laboratory (NSCL) employs an electron beam ion trap (EBIT) as a charge breeder. A Monte-Carlo simulation code was developed to calculate the transverse acceptance phase space of the EBIT for continuously injected ion beams and to determine the capture efficiency in dependence of the transverse beam emittance. For this purpose, the code records the position and time of changes in charge state of injected ions, leading either to capture or loss of ions. To benchmark and validate the code, calculated capture efficiencies were compared with results from a geometrical model and measurements. The results of the code agree with the experimental findings within a few 10%. The code predicts a maximum total capture efficiency of 50% for EBIT parameters readily achievable and an efficiency of up to 80% for an electron beam current density of 1900 A/cm{sup 2}.

  16. Accelerator complex for a radioactive ion beam facility at ATLAS

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1995-01-01

    Since the superconducting heavy ion linac ATLAS is an ideal post-accelerator for radioactive beams, plans are being developed for expansion of the facility with the addition of a driver accelerator, a production target/ion source combination, and a low q/m pre-accelerator for radioactive ions. A working group including staff from the ANL Physics Division and current ATLAS users are preparing a radioactive beam facility proposal. The present paper reviews the specifications of the accelerators required for the facility

  17. Overview of linac applications at future radioactive beam facilities

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1996-01-01

    There is considerable interest worldwide in the research which could be done at a next generation, advanced radioactive beam facility. To generate high quality, intense beams of accelerated radionuclides via the open-quotes isotope separator on-lineclose quotes (ISOL) method requires two major accelerator components: a high power (100 kW) driver device to produce radionuclides in a production target/ion source complex, and a secondary beam accelerator to produce beams of radioactive ions up to energies on the order of 10 MeV per nucleon over a broad mass range. In reviewing the technological challenges of such a facility, several types of modem linear accelerators appear well suited. This paper reviews the properties of the linacs currently under construction and those proposed for future facilities for use either as the driver device or the radioactive beam post-accelerator. Other choices of accelerators, such as cyclotrons, for either the driver or secondary beam devices of a radioactive beam complex will also be compared. Issues to be addressed for the production accelerator include the choice of ion beam types to be used for cost-effective production of radionuclides. For the post-accelerator the choice of ion source technology is critical and dictates the charge-to-mass requirements at the injection stage

  18. CERN: Producing radioactive beams

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Accelerating radioactive beams has long been of interest at CERN's ISOLDE on-line isotope separator - the possibility was discussed at a CERN Workshop on intermediate energy physics as early as 1977. Meanwhile, as was highlighted in the 1991 report of the Nuclear Physics European Collaboration Committee, widespread scientific interest in these beams has developed and a range of projects are proposed, under construction or operational throughout the world

  19. Radioactive beams in Europe

    International Nuclear Information System (INIS)

    Warner, D.D.

    1993-01-01

    In its report open-quotes Nuclear Physics in Europe - Opportunities and Perspectivesclose quotes, NuPECC concluded that physics with radioactive beams represents one of the foremost frontiers in nuclear physics. It therefore set up a study group to produce a report on the physics case for radioactive beams, together with a comparison of the relative merits of the various European facilities, operational or planned, and the R ampersand D required to achieve the desired goals. This paper presents some of the results of that report and concentrates on the latter two aspects of the task assigned to the Study Group. The facilities discussed are those planning to use the two-accelerator method to produce beams in the energy range of 0.5-25Mev/A. In addition, a report is given on the status of the recently-approved Test Bed facility at the Rutherford Appleton Laboratory, where the aim is to test the ability of existing ISOL target/ion-source technology to withstand a primary proton beam intensity of 100μA

  20. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  1. Present and future radioactive nuclear beam developments at Argonne

    International Nuclear Information System (INIS)

    Decrock, P.

    1996-01-01

    A scheme for building an ISOL-based radioactive nuclear beam facility at the Argonne Physics Division, is currently evaluated. The feasibility and efficiency of the different steps in the proposed production- and acceleration cycles are being tested. At the Dynamitron Facility of the ANL Physics Division, stripping yields of Kr, Xe and Ph beams in a windowless gas cell have been measured and the study of fission of 238 U induced by fast neutrons from the 9 Be(dn) reaction is in progress. Different aspects of the post-acceleration procedure are currently being investigated. In parallel with this work, energetic radioactive beams such as 17 F, 18 F and 56 Ni have recently been developed at Argonne using the present ATLAS facility

  2. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  3. Radioactive ion beams and techniques for solid state research

    International Nuclear Information System (INIS)

    Correia, J.G.

    1998-01-01

    In this paper we review the most recent and new applications of solid state characterization techniques using radioactive ion beams. For such type ofresearch, high yields of chemically clean ion beams of radioactive isotopesare needed which are provided by the on-line coupling of high resolution isotope separators to particle accelerators, such as the isotope separator on-line (ISOLDE) facility at CERN. These new experiments are performed by an increasing number of solid state groups. They combine nuclear spectroscopic techniques such as Moessbauer, perturbed angular correlations (PAC) and emission channeling with the traditional non-radioactive techniques liked deep level transient spectroscopy (DLTS) and Hall effect measurements. Recently isotopes of elements, not available before, were successfully used in new PAC experiments, and the first photoluminescence (PL) measurements, where the element transmutation plays the essential role on the PL peak identification, have been performed. The scope of applications of radioactive ion beams for research in solid state physics will be enlarged in the near future, with the installation at ISOLDE of a post-accelerator device providing radioactive beams with energies ranging from a few keV up to a few MeV. (orig.)

  4. Detection systems for radioactive ion beams; Systeme de detection en ions radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Savajols, H

    2002-07-01

    Two main methods are used to produce radioactive ion beams: -) the ISOL method (isotope separation on-line) in which the stable beam interacts with a thick target, the reaction products diffuse outside the target and are transferred to a source where they are ionized, a mass separator and a post-accelerator drive the selected radioactive ions to the right energy; -) the in-flight fragmentation method in which the stable beam interacts with a thin target, the reaction products are emitted from the target with a restricted angular distribution and a velocity close to that of the incident beam, the experimenter has to take advantage from the reaction kinetics to get the right particle beam. Characteristic time is far longer with the ISOL method but the beam intensity is much better because of the use of a post-accelerator. In both cases, the beam intensity is lower by several orders of magnitude than in the case of a stable beam. This article presents all the constraints imposed by radioactive beams to the detection systems of the reaction products and gives new technical solutions according to the type of nuclear reaction studied. (A.C.)

  5. Development and test of a cryogenic trap system dedicated to confinement of radioactive volatile isotopes in SPIRAL2 post-accelerator

    Science.gov (United States)

    Souli, M.; Dolégiéviez, P.; Fadil, M.; Gallardo, P.; Levallois, R.; Munoz, H.; Ozille, M.; Rouillé, G.; Galet, F.

    2011-12-01

    A cryogenic trap system called Cryotrap has been studied and developed in the framework of nuclear safety studies for SPIRAL2 accelerator. The main objective of Cryotrap is to confine and reduce strongly the migration of radioactive volatile isotopes in beam lines. These radioactive gases are produced after interaction between a deuteron beam and a fissile target. Mainly, Cryotrap is composed by a vacuum vessel and two copper thermal screens maintained separately at two temperatures T1=80 K and T2=20 K. A Cryocooler with two stages at previous temperatures is used to remove static heat losses of the cryostat and ensure an efficient cooling of the system. Due to strong radiological constraints that surround Cryotrap, the coupling system between Cryocooler and thermal screens is based on aluminum thermo-mechanical contraction. The main objective of this original design is to limit direct human maintenance interventions and provide maximum automated operations. A preliminary prototype of Cryotrap has been developed and tested at GANIL laboratory to validate its design, and determine its thermal performance and trapping efficiency. In this paper, we will first introduce briefly SPIRAL2 project and discuss the main role of Cryotrap in nuclear safety of the accelerator. Then, we will describe the proposed conceptual design of Cryotrap and its main characteristics. After that, we will focus on test experiment and analyze experimental data. Finally, we will present preliminary results of gas trapping efficiency tests.

  6. Techniques to produce and accelerate radioactive ion beams

    CERN Document Server

    Penescu, Liviu Constantin; Lettry, Jacques; Cata-Danil, Gheorghe

    The production and acceleration of the Radioactive Ion Beams (RIB) continues the long line of nuclear investigations started in the XIXth century by Pierre and Marie Curie, Henri Becquerel and Ernest Rutherford. The contemporary applications of the RIBs span a wide range of physics fields: nuclear and atomic physics, solid-state physics, life sciences and material science. ISOLDE is a world-leading Isotope mass-Separation On-Line (ISOL) facility hosted at CERN in Geneva for more than 40 years, offering the largest variety of radioactive ion beams with, until now, more than 1000 isotopes of more than 72 elements (with Z ranging from 2 to 88), with half-lives down to milliseconds and intensities up to 1011 ions/s. The post acceleration of the full variety of beams allows reaching final energies between 0.8 and 3.0 MeV/u. This thesis describes the development of a new series of FEBIAD (“Forced Electron Beam Induced Arc Discharge”) ion sources at CERN-ISOLDE. The VADIS (“Versatile Arc Discharge Ion Source�...

  7. Nuclear astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Gade, A.

    2010-01-01

    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.

  8. Laser spectroscopy of radioactive beams

    International Nuclear Information System (INIS)

    Otten, E.W.

    1983-01-01

    The problem of using the laser spectroscopy in investigations radioactive beams is considered. The main attention is payed to the isotope shift of nuclear charge radii delta 2 >. The general trend of delta 2 > is discussed. Predictions for delta>r 2 < in the framework of the droplet model are given. It is noted that two parameter interpretation of the isotope shift based on the droplet model works the better, the further the distance spans and the clearer the nuclear structure is

  9. Cyclotrons for the production of radioactive beams

    International Nuclear Information System (INIS)

    Clark, D.J.

    1990-01-01

    This paper describes the characteristics and design choices for modern cyclotrons. Cyclotrons can be used in 3 areas in the radioactive beam field: the production of high energy heavy ion beams for use in fragmentation, the spallation of targets with high energy protons, and the acceleration of radioactive beams from low energy to the MeV/u range. 16 refs., 6 figs

  10. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  11. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  12. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  13. National Centre for Radioactive Ion Beams (NCRIB)

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1999-01-01

    A dedicated National Centre for RIB (NCRIB) proposed discussed at several forums is presented. The production of (RIB) radioactive ion beams and applications of beams leading to competitive studies in nuclear structure, nuclear reactions, condensed matter, bio-science and radioactive isotope production etc. are mentioned

  14. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  15. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  16. Physics with energetic radioactive ion beams

    International Nuclear Information System (INIS)

    Henning, W.F.

    1996-01-01

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized

  17. Radioactive beam production at the Bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Feinberg, B.; Kalnins, J.G.; Krebs, G.F.; McMahan, M.A.; Tanihata, I.

    1989-10-01

    At the Bevalac radioactive beams are routinely produced by the fragmentation process. The effectiveness of this process with respect to the secondary beam's emittance, intensity and energy spread depends critically on the nuclear reaction kinematics and the magnitude of the incident beam energy. When this beam energy significantly exceeds the energies of the nuclear reaction process, many of the qualities of the incident beam can be passed on to the secondary beam. Factors affecting secondary beam quality are discussed along with techniques for isolating and purifying a specific reaction product. The on-going radioactive beam program at the Bevalac is used as an example with applications, present performance and plans for the future. 6 refs., 6 figs., 1 tab

  18. The ISOLDE Facility: Radioactive beams at CERN

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The Isope Separation On-Line (ISOL) technique evolved from chemical techniques used to separate radioactive isotopes off-line from irradiated "targets". The ISOL targets of today, used at e.g. ISOLDE, can be of many different types and in different phases but the isotopes are always delivered at very low energies making the technique ideal for study of ground state properties and collections for other applications such as solid state physics and medical physics. The possibility of accelerating these low energy beams for nuclear structure studies, and in the long term future for neutrino physics, is now being explored at first generation radioactive beam facilities. The upgrade towards HIE-ISOLDE aim to consolidate ISOLDE's position as a world leading radioactive nuclear beam facility and it will be a pre-cursor to a future all European ISOL facility, EURISOL, with order of magnitudes higher radioactive beam intensities and energies. Prerequisite knowledge and references: None

  19. Nucleon transfer reactions with radioactive beams

    Science.gov (United States)

    Wimmer, K.

    2018-03-01

    Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.

  20. Summary -- Experiments with Radioactive Beams Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D.J. [Los Alamos National Lab., NM (United States); Wiescher, M. [Notre Dame Univ., IN (United States)

    1992-12-31

    During the course of the workshop, a wide range of futuristic radioactive-beam experiments were discussed. These extended from the study of electroweak interactions in nuclei to materials science, nuclear astrophysics, and a host of nuclear physics investigations. Emphasis was placed on illustrating how these prototypical experiments could be done, discussing what types of detection systems would be needed, exploring the new problems which would be confronting the radioactive beam experimenter, and better defining the beam requirements. Contained herein is a summary of these discussions.

  1. Experimental studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Sastry, D.L.; Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.

    1991-01-01

    The sources of information presented are essentially taken from the papers reported at several international seminars and those appeared in the Journal of Nuclear Instruments and Methods in Physics Research. Production and usage of radioactive ion beams (RIB) in research have received the attention of scientists all over the world during the past six years. The first radioactive ion beams ( 19 Ne) were produced at Bevalac for the purpose of medical research using a primary beam of energy 800 MeV/a.m.u. (author). 19 refs., 2 figs., 3 tabs

  2. A post-accelerator for the US rare isotope accelerator facility

    CERN Document Server

    Ostroumov, P N; Kolomiets, A A; Nolen, J A; Portillo, M; Shepard, K W; Vinogradov, N E

    2003-01-01

    The proposed rare isotope accelerator (RIA) facility includes a post-accelerator for rare isotopes (RIB linac) which must produce high-quality beams of radioactive ions over the full mass range, including uranium, at energies above the Coulomb barrier, and have high transmission and efficiency. The latter requires the RIB linac to accept at injection ions in the 1+ charge state. A concept for such a post accelerator suitable for ions up to mass 132 has been previously described . This paper presents a modified concept which extends the mass range to uranium. A high resolution separator for purifying beams at the isobaric level precedes the RIB linac. The mass filtering process will provide high purity beams while preserving transmission. For most cases a resolution of about m/DELTA m=20 000 is adequate at mass A=100 to obtain a separation between isobars of mass excess difference of 5 MeV. The design for a device capable of purifying beams at the isobaric level includes calculations up to fifth order. The RIB...

  3. Post accelerator of the IH type structure

    International Nuclear Information System (INIS)

    Chen Ming

    2002-01-01

    The principle, structure, adjustment of the gap voltage, beam dynamic, RF system and the bunchers of the post-accelerator with Interdigital-H type structure, which was developed by the author and Technical University Munich in four years, is described. The energy of ions with mass of three was increased from 340 keV to 1.74 MeV, when resonant frequency of 84.2 MHz and input RF power of 3 kW. The effective shunt impedance reached to 408 MΩ/m. The commissioning was succeeded with H 3 + ion beams. The output energy of H 3 + ion beams reached the design value. The two harmonic double drift buncher used by the IH structure bunches the beam to the bunches with the width of 360 ps. Then the acceptance of the IH structure is increased to 240 degree. Its shunt impedance is three times higher than former single gap bunchers used by TUM and the length of the buncher system is one fifth of former one only because the use of λ/4 coaxial cavities with double gaps

  4. Radioactive Beam Measurements to Probe Stellar Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael Scott [ORNL

    2010-01-01

    Unique beams of unstable nuclei from the Holi eld Radioactive Ion Beam Facility at Oak Ridge National Laboratory are being used to measure the thermonuclear reactions that occur in novae, X-ray bursts, and supernovae. The astrophysical impact of these measurements is determined by synergistic nuclear data evaluations and element synthesis calculations. Results of recent measurements and explosion simulations are brie y described, along with future plans and software research tools for the community.

  5. Sciences with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Kawase, Yoichi

    1992-01-01

    The unstable nuclei which are produced with accelerators and nuclear reactors and are far apart from the stability line have been used mainly in nuclear physics field as the object of the systematic research on atomic nucleus structure. Recently, the projects for developing the advanced research in many fields by accelerating the obtained unstable nuclei have been proposed. The unstable nucleus beam which was accelerated to high energy and controlled precisely keeps the possibility of qualitatively improve further conventional ion beam science, and it is expected as the breakthrough in the interdisciplinary basic research related to atomic energy, therefore, its recent trend in the world is explained, hoping for the new development. The stable isotopes existing naturally distribute along the N-Z straight line, and as they are apart from the natural stability line, they become unstable to beta decay, and their life becomes short exponentially. The significance of unstable nucleus beam science and its recent trend, the production of unstable nucleus beam, the interdisciplinary research using unstable nucleus beam, and the present state and future plan in Research Reactor Institute, Kyoto University are reported. (K.I.)

  6. The ISOLDE Facility: Radioactive beams at CERN

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Some of the experimental techniques used will be introduced; more focus will be put on what physics questions can be answered by using radioactive beams. A brief overview is given of the present and future European developments in this rapidly evolving field. Prerequisite knowledge: none

  7. National Centre for Radioactive Ion Beams (NCRIB)

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1999-01-01

    Radioactive Ion (nuclear) Beams have become prolific recently. Nuclear physics and associated subjects have staged a comeback to almost the beginning with the advent of RIB. A dedicated National Centre for RIB (NCRIB) proposed, discussed at several forums and under serious consideration is described

  8. Improvements of present radioactive beam facilities and new projects

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1995-01-01

    A short overview is given over scheduled improvements of present radioactive beam facilities and of new projects. In order to put these into a coherent context the paper starts with a general section about the making of radioactive beams. (author)

  9. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  10. BEARS: Radioactive ion beams at LBNL

    International Nuclear Information System (INIS)

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-01-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron's Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min 11 C and 70-sec 14 O, produced by (p,n) and (p,α) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial 11 C beams of up to 2.5 x 10 7 ions/sec and 14 O beams of 3 x 10 5 ions/sec

  11. Post-accelerator issues at the IsoSpin Laboratory

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ''Post-Accelerator Issues at the Isospin Laboratory'' was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-β, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere

  12. Production and post acceleration scheme for spiral

    International Nuclear Information System (INIS)

    Bibet, D.

    2001-01-01

    SPIRAL, the R.I.B. facility of GANIL uses heavy ion beams to produce radioactive atoms inside a thick target. Atoms are ionised in a compact permanent magnet ECR ion source. The compact cyclotron CIME accelerates the radioactive ions in an energy range from 1.7 to 25 MeV/u. The cyclotron acts as a mass separator with resolving power of 2500. Plastic scintillator and silicon detectors are used to tune the machine at a very low intensity. An overview of the facility, stable beam tests results and the R and D program will be presented. (authors)

  13. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    CERN Document Server

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  14. Condensed matter physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Haas, H.

    1996-01-01

    An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)

  15. Radioactive ion beam facilities in Europe

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    2008-01-01

    The past two decades have seen extraordinarily rapid development of radioactive beam physics throughout the world and in particular in Europe. The important scientific advances have stemmed from a large number of facilities. Previously existing stable beam machines have been adapted to produce rare isotope beams and dedicated facilities have come on-line. This talk gives an overview of the present European installations highlighting their complementary nature. The European roadmap calls for the construction of two next generation facilities: FAIR making use of projectile fragmentation and EURISOL based on the ISOL technique. The future FAIR facility will be described and the path towards EURISOL presented in the light of the construction of 'intermediate' generation facilities SPIRAL2, HIE ISOLDE and SPES and results from the ongoing EURISOL Design Study.

  16. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2014-08-15

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of Sao Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the ''in-flight method'' to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are {sup 6}He, {sup 8}Li, {sup 7}Be, {sup 10}Be, {sup 8}B, {sup 12}B with intensities that can vary from 10{sup 4} to 10{sup 6} pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo ({sup 6}He and {sup 8}B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory. (orig.)

  17. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    Science.gov (United States)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  18. World new facilities for radioactive isotope beams

    International Nuclear Information System (INIS)

    Motobayashi, T.

    2014-01-01

    The use of unstable nuclei in the form of energetic beams for nuclear physics studies is now entering into a new era. 'New-generation' facilities are either in operation, under construction or being planned. They are designed to provide radioactive isotope (RI) beams with very high intensities over a wide range of nuclides. These facilities are expected to provide opportunities to study nuclear structure, astrophysical nuclear processes and nuclear matter with large proton-neutron imbalance in grate detail. This article reports on the current status of such new-generation RI-beam facilities around the world. In order to cover different energy domains and to meet various scientific demands, the designs of RI-beam facilities are of a wide variety. For example, RIBF in Japan, FAIR in Germany and FRIB in US are based on the fragmentation scheme for beams with energies of a few hundred MeV/nucleon to GeV/nucleon, whereas Spiral2 in France, SPES in Italy, HIE-ISOLDE in Switzerland/France, and the future facility EURISOL in Europe are based on the ISOL method, and aim at providing lower-energy RI beams. There are a many other projects including upgrades of existing facilities in the three continents, America, Asia and Europe

  19. Fundamental symmetries and astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Vogt, E.

    1996-04-01

    A major new initiative at TRIUMF pertains to the use of radioactive beams for astrophysics and for fundamental symmetry experiments. Some recent work is described in which the β-decay-followed by alpha particle emission of 16 N was used to find the resonance parameters dominating the alpha particle capture in 12 C and thus to find the astrophysical S-factor of this reaction which is of crucial importance for alpha-particle burning and the subsequent collapse of stars. In some work underway trapped neural atoms of radioactive potassium atoms will be used to study fundamental symmetries of the weak interactions. Trapping has been achieved and soon 38m K decay will be used to search for evidence of scalar interactions and 37 K decay to search for right-handed gauge-bosom interactions. Future experiments are planned to look for parity non-conservation in trapped francium atoms. This program is part of a revitalization for the TRIUMF laboratory accompanied by the construction of the radioactive beam facility (ISAC). (author)

  20. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  1. Particle beam generator using a radioactive source

    Science.gov (United States)

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  2. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  3. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  4. Radioactive beam studies of cosmological interest

    International Nuclear Information System (INIS)

    Sale, K.E.; Boyd, R.N.; Mathews, G.J.; Corn, B.P.; Islam, M.S.

    1989-01-01

    Experimental efforts by the LLNL/Ohio State radioactive ion beam collaboration are described. We are presently focusing on some reactions which are of great importance in the newly proposed inhomogeneous big bang cosmological models. Specifically we are using our system to make beams of 8 Li for measurements of the 8 Li(d, n) 9 Be and 8 Li(α, n) 11 B cross-sections. These are the key reactions which determine the production of heavy (A > 12) elements during the era of big bang nucleosynthesis, and thus the initial composition of stars and subsequent stellar isotope production. Plans for future experiments, including the measurement of the 7 Be(p, γ) 8 B cross section will be discussed. (orig.)

  5. Proceedings of national seminar on physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Shyam, R.

    1991-01-01

    This volume containing the proceedings of the national seminar on physics with radioactive ion beams gives a broad overview of the developments taking place in the area of nuclear physics and accelerator physics with special emphasis on the utilization of radioactive ion beams for various studies. Topics covered include studies on nuclear structure and nuclear astrophysics and the wide ranging applications of radioactive ion beams in these and other areas of nuclear sciences. Papers relevant to INIS are indexed separately

  6. A radioactive ion beam facility using photofission

    CERN Document Server

    Diamond, W T

    1999-01-01

    Use of a high-power electron linac as the driver accelerator for a Radioactive Ion Beam (RIB) facility is proposed. An electron beam of 30 MeV and 100 kW can produce nearly 5x10 sup 1 sup 3 fissions/s from an optimized sup 2 sup 3 sup 5 U target and about 60% of this from a natural uranium target. An electron beam can be readily transmitted through a thin window at the exit of the accelerator vacuum system and transported a short distance through air to a water-cooled Bremsstrahlung-production target. The Bremsstrahlung radiation can, in turn, be transported through air to the isotope-production target. This separates the accelerator vacuum system, the Bremsstrahlung target and the isotope-production target, reducing remote handling problems. The electron beam can be scanned over a large target area to reduce the power density on both the Bremsstrahlung and isotope-production targets. These features address one of the most pressing technological challenges of a high-power RIB facility, namely the production o...

  7. Experiments with radioactive nuclear beams II

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P.

    2001-12-01

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction 12 C + 12 C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  8. Studies of nuclei using radioactive beams

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden

  9. Production and use of radioactive nuclear beams

    International Nuclear Information System (INIS)

    Tanihata, Isao

    1994-01-01

    Two different production method of radioactive nuclear beams (RNB) are reviewed, in this paper. One is the secondary beam method that use a high-energy heavy-ion reaction and a separator and the other is the reacceleration method. The RNB is also expected to have following properties that are useful to the application in wider research and technical usage; 1. any elements and isotopes can be used as a beam. 2. it is easy to control a position and a depth of the implantation. 3. an extremely sensitive detection is possible because they emit radiations. 4. one can select the lifetime among the isotopes suitable for a specific phenomenon. 5. one can select a spin among the isotopes for specific selectivity to the phenomenon. These useful properties of the RNB and a few recent examples of study are discussed. Among them are the discovery of the neutron skin and the neutron halo in nuclei near the limit of existence, the first determinations of reactions relevant to the synthesis of the heavy elements in the universe, and an application to the PET. (J.P.N.)

  10. Development of the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1997-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility's radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date

  11. Nuclear astrophysics with radioactive beams: a TRIUMF perspective

    International Nuclear Information System (INIS)

    Shotter, A.C.

    2003-01-01

    Explosive nuclear burning in stellar environments involves reactions with a wide range of isotopes. For isotopes that are unstable, information on relevant reaction rates can only generally be obtained at radioactive beam facilities. The ISAC facility at TRIUMF is purpose built to provide a wide range of radioactive beams for nuclear astrophysics purposes as well as a range of other science

  12. Gamma spectroscopy: from steady beams to radioactive beams

    International Nuclear Information System (INIS)

    Stezowski, O.

    2008-06-01

    The author gives an overview of his research works in the field of gamma spectroscopy. First, he recalls some results of experiments performed for the study of peculiar structures associated with different modes of nucleus rotation, and notably in the case of collective rotation of deformed and even super-deformed nuclei. Then, he details tools and methods used to experimentally determine the level scheme. The main characteristics of steady and radioactive beams are briefly presented, and their complementarities and differences are highlighted. Specific spectrometers and sensors are described. In a last chapter, the author discusses several research projects he is involved in, and more particularly the 'gamma tracking' which is the fundamental principle for gamma multi-sensors of the next generations

  13. Recent results on reactions with radioactive beams at RIBRAS (Radioactive Ion Beams in Brazil)

    Science.gov (United States)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.; Arazi, A.; Barioni, A.; Benjamim, E. A.; de Faria, P. N.; Descouvemont, P.; Gasques, L. R.; E; Leistenschneider; Mendes, D. R., Jr.; Morais, M. C.; Morcelle, V.; Moro, A. M.; Pampa Condori, R.; Pires, K. C. C.; Rodriguez-Gallardo, M.; Scarduelli, V.; Shorto, J. M. B.; Zamora, J. C.

    2015-04-01

    We present a quick description of RIBRAS (Radioactive Ion beams in Brazil), which is a superconducting double solenoid system, installed at the Pelletron Laboratory of the University of São Paulo and extends the capabilities of the original Pelletron Tandem Accelerator of 8MV terminal voltage (8UD) by producing secondary beams of unstable nuclei. The experimental program of the RIBRAS covers the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B) projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, have also been included in our recent experimental program.

  14. Status of SPIRAL. The radioactive beam project at GANIL

    International Nuclear Information System (INIS)

    Lieuvin, M.

    1995-01-01

    SPIRAL, a radioactive ion beam facility (RIB) is under construction at GANIL (Caen, France). The heavy ion beams of GANIL will be used to produce radioactive atoms by the ISOL method. After ionisation by an ECR ion source (ECRIS), the low energy radioactive beam is axially injected on the first orbit of a k=265 compact cyclotron. The final energy will range between 1.7 and 25 MeV/u (harmonics 5 to 2) and the accelerated ions will be sent to the existing GANIL experimental areas. The present status of the project is described. (author)

  15. ISOL science at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Beene, James R [ORNL; Bardayan, Daniel W [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Gross, Carl J [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK); Liang, J Felix [ORNL; Nazarewicz, Witold [ORNL; Stracener, Daniel W [ORNL; Tatum, B Alan [ORNL; Varner Jr, Robert L [ORNL

    2011-01-01

    The Holi eld Radioactive Ion Beam Facility, located in Oak Ridge, Tennessee, is operated as a National User Facility for the U.S. Department of Energy, producing high quality ISOL beams of short-lived, radioactive nuclei for studies of exotic nuclei, astrophysics research, and various societal applications. The primary driver, the Oak Ridge Isochronous Cyclotron, produces rare isotopes by bombarding highly refractory targets with light ions. The radioactive isotopes are ionized, formed into a beam, mass selected, injected into the 25-MV Tandem, accelerated, and used in experiments. This article reviews HRIBF and its science.

  16. Radioactive nuclear beam facilities based on projectile fragmentation

    International Nuclear Information System (INIS)

    Sherrill, B.M.

    1992-01-01

    The production of radioactive beams using direct separation techniques is discussed. The reaction mechanisms which can be used to produce radioactive beams with these techniques can be broadly divided into three groups, projectile fragmentation, nucleon transfer, and Coulomb disassociation. Radioactive nuclei produced in these ways have large forward momenta with relatively sharp angular distributions peaked near zero degrees which are suitable for collection with magnetic devices. Secondary beam intensities of up to a few percent of the primary beam intensity are possible, although depending on the production mechanism the beam emittance may be poor. Further beam purification can be achieved using atomic processes with profiled energy degraders. The features of the production reaction mechanism, separation techniques, and a review of world wide efforts are presented. The advantages and disadvantages of the method are presented, with discussion of techniques to overcome some of the disadvantages. (Author)

  17. Status of radioactive ion beams at the HRIBF

    CERN Document Server

    Stracener, D W

    2003-01-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using sup 1 sup 7 F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include sup 2 sup 5 Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  18. The production of accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Olsen, D.K.

    1993-01-01

    During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL

  19. Design of the radioactive ion beam facility at the LNS

    International Nuclear Information System (INIS)

    Migneco, E.; Alba, R.; Calabretta, L.; Ciavola, G.; Cuttone, G.; Di Giacomo, M.; Gammino, S.; Gmaj, P.; Moscatello, M.H.; Raia, G.

    1992-01-01

    At the Laboratorio Nazionale del Sud the existing 15 MV Tandem will be coupled to the Superconducting Cyclotron booster, which will provide light and heavy ion beams in the energy range 100-20 MeV/n. Using these beams, secondary radioactive beams can be produced by projectile fragmentation. A fragment separator will collect the secondary beam produced at energies near that of the projectile and deliver it into the experimental areas. The possibility of using an ECRIS source for the axial injection into the Cyclotron and producing radioactive ions on a thick source placed inside the Tandem preinjector is also discussed. (author) 7 refs.; 2 figs.; 1 tab

  20. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...

  1. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  2. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  3. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  4. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    Taylor, R.D.

    1990-01-01

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  5. Measurement of nuclear cross sections using radioactive beams

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E.

    1999-01-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a 6 He nuclear radioactive beam (β emitting with half life 806.7 ms) for the study of the reaction 6 + 209 Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  6. Holifield Radioactive Ion Beam Facility Development and Status

    CERN Document Server

    Tatum, Alan

    2005-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility dedicated to nuclear structure, reactions, and nuclear astrophysics research with radioactive ion beams (RIBs) using the isotope separator on-line (ISOL) technique. An integrated strategic plan for physics, experimental systems, and RIB production facilities have been developed and implementation of the plan is under way. Specific research objectives are defined for studying the nature of nucleonic matter, the origin of elements, solar physics, and synthesis of heavy elements. Experimental systems upgrade plans include new detector arrays and beam lines, and expansion and upgrade of existing devices. A multifaceted facility expansion plan includes a $4.75M High Power Target Laboratory (HPTL), presently under construction, to provide a facility for testing new target materials, target geometries, ion sources, and beam preparation techniques. Additional planned upgrades include a second RIB production system (IRIS2), an external axi...

  7. Synthesis and investigation of superheavy elements - perspectives with radioactive beams

    International Nuclear Information System (INIS)

    Muenzenberg, G.

    1997-09-01

    The perspectives for the investigation of heavy and superheavy elements with intense beams of radioactive nuclei available from the new generation of secondary beam facilities in combination with modern experimental developments are the subject of this paper. The nuclear properties of the recently discovered shell nuclei centered at Z=108 and N=164 and predictions on the location of the superheavy region with improved theoretical models will be discussed. (orig.)

  8. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  9. RIKEN radioactive isotope beam factory project – Present status and ...

    Indian Academy of Sciences (India)

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis ... RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ...

  10. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Keywords. RIKEN; radioactive ion beams; magic numbers. PACS No. 21.10.-k. 1. Introduction. In RIKEN, there are several heavy ion accelerators. Main accelerator is the RIKEN ring cyclotron (RRC) with K = 540, that has been operated from 1986. The RRC has two injectors; one is heavy ion linear accelerator that has been ...

  11. Present and future radioactive beam studies at GANIL. From SISSI to SPIRAL

    International Nuclear Information System (INIS)

    Guerreau, D.

    1996-01-01

    The present status of radioactive beam developments at GANIL is discussed. The emphasis is put on the construction of the new SPIRAL radioactive beam facility presently underway and of the main trends in physics. (author)

  12. Radioactive beam diagnostics status and development at the Spiral facility

    International Nuclear Information System (INIS)

    Chautard, F.; Baelde, J.L.; Bucaille, F.; Duneau, P.; Galard, C.; Le Blay, J.P.; Loyant, J.M.; Martina, L.; Ulrich, M.; Laune, B.

    2001-01-01

    In 2001 the first radioactive beam will be accelerated in the CIME cyclotron of the SPIRAL project at GANIL. In order to be able to tune such low intensity beams in the cyclotron (down to few particles per second), a silicon and a scintillator detectors are mounted on probes. They measure the beam energy and the beam phase/RF in the cyclotron as a function of the radius. Such fragile diagnostics are meant to be used routinely from the control room by non-specialists in instrumentation and in presence of various beam intensities. Therefore, a program is developed to control and secure the acquisition procedure, the measurements and the isochronism correction. Additional detectors are installed at a fixed position in the ejection line before the experimental areas. Additionally, a diamond detector is foreseen to be installed in the machine to be tested in order to ease the CIME operation. (authors)

  13. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    International Nuclear Information System (INIS)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-01-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article

  14. Production of radioactive molecular beams for CERN-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, Christoph

    2015-06-15

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10{sup 11} ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  15. Production of radioactive molecular beams for CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)703149; Kröll, Thorsten

    SOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10^11 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computanional techniques have been used.

  16. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  17. Some thoughts on opportunities with reactions using radioactive beams

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1990-01-01

    I was asked to talk about the use of radioactive beams for nuclear reactions. My overall perspective is that the scientific justification for such studies must be done carefully. To go to the added complexity of radioactive beams one must clearly demonstrate the need for obtaining information about nuclear structure or processes, information that is not otherwise available. On the other hand, much of what we know about nuclear structure comes from nuclear reactions with stable nuclear beams and targets. While a certain amount of information about far from stability nuclei may be obtained from the study of their radioactive decays, this is limited. Our knowledge and understanding of nuclear structure comes from stable nuclei: energy levels, their spins and parties, and very importantly the matrix elements characterizing them. These are largely determined by reaction studies with normal stable nuclei. The extension of such studies to unstable nuclei, far from stability, may well hold qualitative surprises, or at the very least give a firmer basis to our understanding of nuclear structure. Perhaps it is a matter of taste, but if one wishes to start on this endeavor then it is best to begin with simple, easily accessible features. The ''simplest'' nuclei are the ones that form doubly-closed shells and the easiest features to explore initially are the single-particle states and the collective excitations that one can build on these. I would like to emphasize that a unique facility for this type of study is about to come into operation in Darmstadt where the ESR storage ring will capture radioactive beams from fragmentation products and cool them to useful energies for reaction studies

  18. Production of light radioactive ion beams (RIB) using inverse kinematics

    International Nuclear Information System (INIS)

    Das, J.J.; Sugathan, P.; Madhavan, N.; Madhusudhana Rao, P.V.; Jhingan, A.; Varughese, T.; Barua, S.; Nath, S.; Sinha, A.K.; Kumar, B.; Zacharias, J.

    2005-01-01

    At Nuclear Science Centre (NSC), New Delhi, we have implemented a facility to produce low energy light radioactive ion beams (RIBs) using (p,n) type of reactions in inverse kinematics. For this purpose primary beams from the 15-UD Pelletron accelerator impinged on a thin polypropylene foil mounted on a rotating/linearly moving target assembly. For efficiently separating the secondary beam from primary beam, the existing recoil mass spectrometer (RMS) HIRA was operated with new ion optics. Suitable hardware modifications were also made. Using this facility, we have extracted a 7 Be beam of purity better than 99% and spot-size ∼4 mm in diameter. This 7 Be beam has been utilized in a variety of experiments in the energy range of 15-22 MeV. Typical beam parameters are: intensity 10 4 pps, angular spread ±30 mrad and energy spread ±0.5 MeV. Development of appropriate detector setup/target arrangement were also made to perform these experiments. In this paper, we describe the implementation of this project

  19. Radioactive ion beam production by the ISOL method for SPIRAL

    International Nuclear Information System (INIS)

    Landre-Pellemoine, Frederique

    2001-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Lignes) of which the start up will begin in September 2001 at GANIL (Grand Accelerateur National d'Ions Lourds) in Caen. This thesis primarily concerns the development of radioactive ion production systems (target/ion source) by the thorough study of each production stage of the ISOL (Isotopic Separation On Line) method: target and/or projectile fragmentation production, diffusion out of target material, effusion into the ion source and finally the ionization of the radioactive atoms. A bibliographical research and thermal simulations allowed us to optimize materials and the shape of the production and diffusion targets. A first target was optimized and made reliable for the radioactive noble gases production (argon, neon...). A second target dedicated to the radioactive helium production was entirely designed and realised (from the specifications to the 'off line' and 'on line' tests). Finally, a third target source system was defined for singly-charged radioactive alkaline production. The intensities of secondary beams planned for SPIRAL are presented here. A detailed study of the diffusion effusion efficiency for these various targets showed that the use of a fine microstructure carbon (grain size of 1 μm) improved the diffusion and showed the importance of thickness of the lamella for the short lived isotope effusion. (author) [fr

  20. Positron emission medical measurements with accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Llacer, J.

    1988-01-01

    This paper reviews in some detail the process by which a heavy ion accelerator can be used to inject positron emitting radioactive particles into a human body for a range of possible medical measurements. The process of radioactive beam generation and injection is described, followed by a study of the relationship between activity that can be injected versus dose to the patient as a function of which of the positron emitting ions is used. It is found that 6 C 10 and 10 Ne 19 are the two isotopes that appear more promising for injection into humans. The design considerations for a non-tomographic instrument to obtain images from beam injections are outlined and the results of 10 Ne 19 preliminary measurements with human phantoms and actual patients for the determination of end-of-range of cancer therapy ion beams is reported. Accuracies in the order of ±1 mm in the measurements of stopping point of a therapy beam with safe doses to the patient are reported. The paper concludes with a simple analysis of requirements to extend the technique to on-line verification of cancer treatment and to nuclear medicine research and diagnostics measurements. 17 refs.; 16 figs.; 3 tabs

  1. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  2. From the discovery of radioactivity to the production of radioactive beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1999-01-01

    The evolution of the projectiles used to explore the nucleus influenced strongly the development of Nuclear Physics. The alpha particles from radioactivity were the projectiles mostly used up to the second world war. This period was marked by fundamental discoveries, as those of artificial radioactivity and of fission. From the 1930's to 1070, light accelerated particles (electrons, protons, deuterons, isotopes of helium) became universally used. A third period began in the 1960's with the emergence of heavy ion accelerators, the use of which led to a true revolution in the study of nuclear matter. Finally, the fourth period started in 1985 when the first secondary beams of radioactive nuclei were produced, and opened new ways in physics. (authors)

  3. Prospects for high-power radioactive beam facilities worldwide

    CERN Document Server

    Nolen, Jerry A

    2003-01-01

    Advances in accelerators, targets, ion sources, and experimental instrumentation are making possible ever more powerful facilities for basic and applied research with short-lived radioactive isotopes. There are several current generation facilities, based on a variety of technologies, operating worldwide. These include, for example, those based on the in-flight method such as the recently upgraded National Superconducting Cyclotron Laboratory at Michigan State University, the facility at RIKEN in Japan, GANIL in Caen, France, and GSI in Darmstadt, Germany. Present facilities based on the Isotope-Separator On-Line method include, for example, the ISOLDE laboratory at CERN, HRIBF at Oak Ridge, and the new high-power facility ISAC at TRIUMF in Vancouver. Next-generation facilities include the Radioactive-Ion Factory upgrade of RIKEN to higher energy and intensity and the upgrade of ISAC to a higher energy secondary beam; both of these projects are in progress. A new project, LINAG, to upgrade the capabilities at...

  4. RP process studies with radioactive beams at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K E [Argonne National Lab., Physics Div., Argonne, IL (United States)

    1998-06-01

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F(T{sub 1/2}=110 min) and {sup 56}Ni(T{sub 1/2}=6.1 d) have been produced. The reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed. (orig.)

  5. Investigations of the neutron halo by radioactive beam experiments

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    Recently, a new tool has become available to study the behaviour of nuclei at the limits of particle stability. Heavy-ion projectile fragmentation, in combination with efficient recoil spectrometers, allows to prepare 'exotic' beams which can be used to induce secondary nuclear reactions. First experiments have revealed surprising features in the reactions of the most neutron-rich light nuclei. There is now conclusive evidence that the observed effects are due to long-tail matter distributions ('neutron halo') which occur for the last, very weakly bound neutrons. The results of some recent radioactive beam experiments, made by means of the spectrometer LISE3 at GANIL, are presented. (author) 24 refs.; 7 figs

  6. Radioactive ion beam development for the SPIRAL 2 project

    International Nuclear Information System (INIS)

    Pichard, A.

    2010-01-01

    This thesis focuses on the study of radioactive ion beam production by the ISOL method for the SPIRAL 2 project. The production of light ion beams is studied and the potential in-target yields of two beams are appraised. The neutron-rich 15 C yield in an oxide target is estimated with simulations (MCNPx, EAF-07) and experimental data bases; the neutron-deficient 14 O yield is estimated thanks to a new measurement of the 12 C( 3 He, n) 14 O reaction excitation function. Based on thermal simulations, a first design of the production target is presented. This thermal study gives the necessary answers for the detailed design of the system able to reach a production yield 140 times higher than with SPIRAL 1. The production of radioactive ion beams coming from fissions in the UCx target is also studied and more particularly effusion and ionisation processes. A global study and an off-line tests campaign allow essential knowledge to the design of the surface ionisation source for SPIRAL 2 to be acquired. A first prototype of this ion source dedicated to alkali and alkaline-earth element production has been built and a thermal calibration performed. Ionisation efficiency and time response of the target-ion source system have been measured at different target temperatures and for different noble gases. These measurements allow evaluation of the impact of effusion and ionisation processes on the production efficiency of different alkali and noble gases isotopes as a function of their half-life. (author) [fr

  7. Low-energy radioactive ion beam production of 22Mg

    International Nuclear Information System (INIS)

    Duy, N.N.; Kubono, S.; Yamaguchi, H.; Kahl, D.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Kwon, Y.K.; Khiem, L.H.; Kim, Y.H.; Song, J.S.; Hu, J.; Ayyad, Y.

    2013-01-01

    The 22 Mg nucleus plays an important role in nuclear astrophysics, specially in the 22 Mg(α,p) 25 Al and proton capture 22 Mg(p,γ) 23 Al reactions. It is believed that 22 Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22 Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22 Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22 Mg beam used for the direct measurement of the scattering reaction 22 Mg(α,α) 22 Mg, and the stellar reaction 22 Mg(α,p) 25 Al in the energy region concerning an astrophysical temperature of T 9 =1–3 GK

  8. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  9. Post-acceleration of laser driven protons with a compact high field linac

    Science.gov (United States)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  10. Development of a radioactive ion beam test stand at LBNL

    International Nuclear Information System (INIS)

    Burke, J.; Freedman, S.J.; Fujikawa, B.; Gough, R.A.; Lyneis, C.M.; Vetter, P.; Wutte, D.; Xie, Z.Q.

    1998-01-01

    For the on-line production of a 14 O + ion beam, an integrated target--transfer line ion source system is now under development at LBNL. 14 O is produced in the form of CO in a high temperature carbon target using a 20 MeV 3 He beam from the LBNL 88'' Cyclotron via the reaction 12 C( 3 He,n) 14 O. The neutral radioactive CO molecules diffuse through an 8 m room temperature stainless steel line from the target chamber into a cusp ion source. The molecules are dissociated, ionized and extracted at energies of 20 to 30 keV and mass separated with a double focusing bending magnet. The different components of the setup are described. The release and transport efficiency for the CO molecules from the target through the transfer line was measured for various target temperatures. The ion beam transport efficiencies and the off-line ion source efficiencies for Ar, O 2 and CO are presented. Ionization efficiencies of 28% for Ar + , 1% for CO, 0.7% for O + , 0.33 for C + have been measured

  11. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K. L. [University of Tennessee, Knoxville (UTK); Ahn, S.H. [University of Tennessee, Knoxville (UTK); Allmond, James M [ORNL; Ayres, A. [University of Tennessee, Knoxville (UTK); Bardayan, Daniel W [ORNL; Baugher, T. [Michigan State University, East Lansing; Bazin, D. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Beene, James R [ORNL; Berryman, J. S. [Michigan State University, East Lansing; Bey, A. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Cartegni, L. [University of Tennessee, Knoxville (UTK); Chae, K. Y. [University of Tennessee, Knoxville (UTK)/Sungkyunkwan University, Korea; Cizewski, J. A. [Rutgers University; Gade, A. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Galindo-Uribarri, Alfredo {nmn} [ORNL; Garcia-Ruiz, R.F. [Instituut voor Kernen Stralingsfysica, KU Leuven, B-3001, Leuven, Belgium; Grzywacz, Robert Kazimierz [ORNL; Howard, Meredith E [ORNL; Kozub, R. L. [Tennessee Technological University (TTU); Liang, J Felix [ORNL; Manning, Brett M [ORNL; Matos, M. [Louisiana State University; McDaniel, S. [Michigan State University, East Lansing; Miller, D. [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Padgett, S [University of Tennessee, Knoxville (UTK); Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Pain, Steven D [ORNL; Pittman, S. T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Radford, David C [ORNL; Ratkiewicz, Andrew J [ORNL; Schmitt, Kyle [ORNL; Smith, Michael Scott [ORNL; Stracener, Daniel W [ORNL; Stroberg, S. [Michigan State University, East Lansing; Tostevin, Jeffrey A [ORNL; Varner Jr, Robert L [ORNL; Weisshaar, D. [Michigan State University, East Lansing; Wimmer, K. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL)/Central Michigan University; Winkler, R. [Michigan State University, East Lansing

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  12. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  13. Future prospects for radioactive nuclear beams in North America

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1993-05-01

    In 1989 this author proposed the construction of a dedicated, flexible, radioactive nuclear beams facility that would provide intense beams of nearly all elements for a program of scientific studies in nuclear structure, nuclear reaction dynamics, astrophysics, high-spin physics, nuclei far from stability, material- and surface science, and atomic- and hyperfine-interaction physics. The initial name proposed for the new facility was ''IsoSpin Factory'' to underscore the key feature of this new physics tool; it was later changed to ''IsoSpin Laboratory'' (ISL). The ISL is now supported by a broad base of nuclear scientists and has been identified in the US Long Range Plan on Nuclear Science as one of the new potential construction projects for the second part of this decade. Since 1989 a number of conferences and workshops has been held in which the scientific and technical case for RNB facilities has been made. The purpose of this paper is to focus on the North American plan for the ISL, which was initially summarized in a ''White Paper'' but has since evolved in its scientific and technical scop

  14. Radioactive Ions Production Ring for Beta-Beams

    CERN Document Server

    Benedetto, E; Wehner, J

    2010-01-01

    Within the FP7 EUROnu program, Work Package 4 addresses the issues of production and acceleration of 8Li and 8B isotopes through the Beta-Beam complex, for the production of electron-neutrino. One of the major critical issues is the production of a high enougth ion ßux, to fulÞll the requirements for physics. In alternative to the direct ISOL production method, a new ap- proach is proposed in [1]. The idea is to use a compact ring for Litium ions at 25 MeV and an internal He or D target, in which the radioactive-isotopes production takes place. The beam is expected to survive for several thousands of turns, therefore cooling in 6D is required and, according this scheme, the ionization cooling provided by the target itself and a suitable RF system would be sufÞcient. We present some preliminary work on the Production ring lat- tice design and cooling issues, for the 7Li ions, and propose plans for future studies, within the EUROnu program.

  15. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  16. Production of and studies with secondary radioactive ion beams at Lise

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1990-01-01

    The doubly achromatic spectrometer LISE, installed at GANIL has delivered secondary radioactive beams for the past 6 years. Essentially, it consists of by two dipole magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like fragment-beams emitted at 0 0 . Important features of LISE and selected experimental results will be discussed. LISE was substantially upgraded, recently, by adding a Wien-filter, providing secondary radioactive beams of still increased intensity and isotopic purity. (6 figs)

  17. High resolution line for secondary radioactive beams at the U400M cyclotron

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    For implementation of an experimental program for studying nuclear reactions with radioactive ion beams in the energy domain of 20 through 80 MeV · A the high resolution beam line ACCULINNA was put into commissioning on a primary beam line of the JINR U-400M cyclotron. By means of nuclear fragmentation of the 14 N beam with the energy of 51 MeV · A on the 170 mg/cm 2 carbon target radioactive beams of 6 He, 8 He and 8 B were obtained. Possibilities of further development of the set-up are discussed. 6 refs., 7 figs., 2 tabs

  18. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  19. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  20. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor

  1. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  2. The radioactive ion beams facility project for the legnaro laboratories

    Science.gov (United States)

    Tecchio, Luigi B.

    1999-04-01

    In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.

  3. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  4. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  5. Astrophysical r- and rp-processes, and radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    1998-01-01

    The modern description of the r-process follows naturally from α-rich freezeout, thought to occur in the hot neutrino wind just beyond the nascent neutron star in a type II supernova. Initially, all pre-existing nuclei are reduced to α-particles and neutrons. As the environment cools, nuclei up to about mass 90 to 100 u are synthesized, in nuclear statistical equilibrium, in about 1 s. In the next few seconds, the remaining neutrons are captured to form the r-process progenitors, which then decay to the r-process nuclides. The rp-process occurs in a high-temperature H-rich environment. It is one of the processes that synthesize the p-process nuclei, the most neutron-poor nuclei in the periodic table. It is thought to occur during the explosion of a C-O white dwarf in a type Ia supernova or in a binary system during accretion onto a white dwarf or a neutron star. It appears to be capable of forming the p-nuclei up to about mass 90 u. Both processes pass through nuclei that are far from stability. Thus, their description requires the masses, half-lives, decay modes, and structure of these nuclei. The next generation of radioactive beam facilities promises to allow the study of many such nuclei. (author)

  6. Laser-plasma booster for ion post acceleration

    Directory of Open Access Journals (Sweden)

    Satoh D.

    2013-11-01

    Full Text Available A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  7. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Recent experimental programs at RIKEN concerning RI beams are reviewed. RIKEN has the ring cyclotron (RRC) with high intense heavy-ion beams and large acceptance fragment separator, RIPS. The complex can provide high intense RI-beams. By using the high intense RI-beams, a variety of experiments have been ...

  8. MUST: A silicon strip detector array for radioactive beam experiments

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.; Marechal, F.; Ottini, S.; Alamanos, N.; Barbier, A.; Beaumel, D.; Bonnereau, B.; Charlet, D.; Clavelin, J.F.; Courtat, P.; Delbourgo-Salvador, P.; Douet, R.; Engrand, M.; Ethvignot, T.; Gillibert, A.; Khan, E.; Lapoux, V.; Lagoyannis, A.; Lavergne, L.; Lebon, S.; Lelong, P.; Lesage, A.; Le Ven, V.; Lhenry, I.; Martin, J.M.; Musumarra, A.; Pita, S.; Petizon, L.; Pollacco, E.; Pouthas, J.; Richard, A.; Rougier, D.; Santonocito, D.; Scarpaci, J.A.; Sida, J.L.; Soulet, C.; Stutzmann, J.S.; Suomijaervi, T.; Szmigiel, M.; Volkov, P.; Voltolini, G.

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and analog channels of the array in one crate placed adjacent to the reaction chamber and fully remote controlled, including pulse visualization on oscilloscopes. A stand alone data acquisition system devoted to the MUST array has been developed. Isotope identification of light charged particles over the full energy range has been achieved, and the capability of the system to measure angular distributions of states populated in inverse kinematics reactions has been demonstrated

  9. A neutron beam facility for radioactive ion beams and other applications

    Science.gov (United States)

    Tecchio, L. B.

    1999-06-01

    In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.

  10. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    Science.gov (United States)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  11. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  12. Ion sources for initial use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surfaceionization sources are also under design consideration for generating negative radioactive ion beams from high electron-affinity elements. A brief review of the HRIBF will be presented, followed by a detailed description of the design features, operational characteristics, ionization efficiencies, and beam qualities (emittances) of these sources

  13. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generationa

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  14. Investigating proton emitters at the limits of stability with radioactive beams from the Oak Ridge facility

    Energy Technology Data Exchange (ETDEWEB)

    Toth, K.S. [Oak Ridge National Lab., TN (United States); Batchelder, J.C.; Zganjar, E.F. [Louisiana State Univ., Baton Rouge, LA (United States); Bingham, C.R.; Wauters, J. [Tennessee Univ., Knoxville, TN (United States); Davinson, T.; MacKenzie, J.A.; Woods, P.J. [Edinburgh Univ. (United Kingdom)

    1996-10-01

    By using beams from the Holifield Radioactive Ion Beam Facility at ORNL, it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. In these investigations nuclei produced in fusion-evaporation reactions will be separated from incident ions and dispersed in mass/charge with a recoil mass separator and then implanted into a double-sided Si strip detector for study of proton (and {alpha}-particle) radioactivity. This paper summarizes data presently extant on proton emitters and then focuses on tests and initial experiments that will be carried out with stable beams and with radioactive ions as they are developed at the Oak Ridge facility.

  15. Prospects for studies of ground-state proton decays with the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Toth, K.S.

    1994-01-01

    By using radioactive ions from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. During this production and search process the limits of stability on the proton-rich side of the nuclidic chart will be delineated for a significant fraction of medium-weight elements and our understanding of the proton-emission process will be expanded and improved

  16. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chatterjee, A.; Llacer, J.

    1981-01-01

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11 C and 19 Ne beams, but the short half-life of 19 Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  17. Measurement of nuclear cross sections using radioactive beams; Medicion de secciones eficaces nucleares usando haces radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a {sup 6} He nuclear radioactive beam ({beta} emitting with half life 806.7 ms) for the study of the reaction {sup 6} + {sup 209} Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  18. Selection and design of ion sources for use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Haynes, D.L.; Mills, G.D.; Olsen, D.K.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report

  19. Charge breeding of radioactive isotopes at the CARIBU facility with an electron beam ion source

    Science.gov (United States)

    Vondrasek, R. C.; Dickerson, C. A.; Hendricks, M.; Ostroumov, P.; Pardo, R.; Savard, G.; Scott, R.; Zinkann, G.

    2018-05-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q 18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.

  20. A target concept for intense radioactive beams in the 132Sn Region

    International Nuclear Information System (INIS)

    Nolen, J.A. Jr.

    1993-01-01

    To produce intense secondary beams of radioactive isotopes, primary beams of up to 100 kW are being proposed at some facilities. There are plans to test production targets with 800 MeV protons at such higher power at the Rutherford Appleton Laboratory. In this paper the use of high energy neutrons as a possible alternative is presented. The concept is to generate an intense beam of neutrons in a well-cooled target with a primary deuteron beam. The neutrons have a high cross section for producing fission fragments in a thick uranium target which is coupled to the ion source for the secondary beams. The effective target thickness is large and the power dissipated in the ISOL target is relatively small, which should lead to intense beams of neutron-rich, intermediate-mass isotopes such as 132 Sn

  1. Nuclear Astrophysics Data from Radioactive Beam Facilities. Final report

    International Nuclear Information System (INIS)

    Chen, Alan A.

    2008-01-01

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): 21 Na(p,γ) 22 Mg and 18 Ne(α,p) 21 Na - The importance of the 21 Na(p,γ) 22 Mg and the 18 Ne(α,p) 21 Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope 22 Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: 21 Na(p,γ) 22 Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne(α,p) 21 Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,γ) 26 Si and 13 N(p,γ)14O reactions - For Year 2, we worked on evaluations of the 25 Al(p,γ) 26 Si and 13 N(p,γ) 14 O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The 25 Al(p,γ) 26 Si reaction is a key uncertainty in the understanding the origin of galactic 26 Al, a target radioisotope for gamma ray astronomy; the 13 N(p,γ) 14 O reaction in turn is the trigger

  2. Preliminary shielding estimates for the proposed Oak Ridge National Laboratory (ORNL) Radioactive Ion Beam Facility (RIBF)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Gabriel, T.A.; Lillie, R.A.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has proposed designing and implementing a new target-ion source for production and injection of negative radioactive ion beams into the Hollifield tandem accelerator. This new facility, referred to as the Radioactive Ion Beam Facility (RIBF), will primarily be used to advance the scientific communities' capabilities for performing state-of-the-art cross-section measurements. Beams of protons or other light, stable ions from the Oak Ridge Isochronous Cyclotron (ORIC) will be stopped in the RIBF target ion source and the resulting radioactive atoms will be ionized, charge exchanged, accelerated, and injected into the tandem accelerator. The ORIC currently operates with proton energies up to 60 MeV and beam currents up to 100 microamps with a maximum beam power less than 2.0 kW. The proposed RIBF will require upgrading the ORIC to generate proton energies up to 200 MeV and beam currents up to 200 microamps for optimum performance. This report summarizes the results of a preliminary one-dimensional shielding analysis of the proposed upgrade to the ORIC and design of the RIBF. The principal objective of the shielding analysis was to determine the feasibility of such an upgrade with respect to existing shielding from the facility structure, and additional shielding requirements for the 200 MeV ORIC machine and RIBF target room

  3. TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS): a versatile tool for radioactive beam physics

    Science.gov (United States)

    Ball, G. C.; Andreyev, A.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chen, A.; Churchman, R.; Cifarelli, F.; Cline, D.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Moisan, F.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2007-05-01

    TIGRESS is a new generation γ-ray spectrometer designed for use with radioactive beams from ISAC. This paper gives an overview of the project and presents results from the first radioactive beam experiment with TIGRESS, the Coulomb excitation of 20,21Na.

  4. Laser induced fluorescence spectroscopy in atomic beams of radioactive nuclides

    International Nuclear Information System (INIS)

    Rebel, H.; Schatz, G.

    1982-01-01

    Measurements of the resonant scattering of light from CW tunable dye lasers, by a well collimated atomic beam, enable hyperfine splittings and optical isotope shifts to be determined with high precision and high sensitivity. Recent off-line atomic beam experiments with minute samples, comprising measurements with stable and unstable Ba, Ca and Pb isotopes are reviewed. The experimental methods and the analysis of the data are discussed. Information on the variation of the rms charge radii and on electromagnetic moments of nuclei in long isotopic chains is presented. (orig.) [de

  5. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  6. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1996-01-01

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given

  7. First Nuclear Reaction Experiment with Stored Radioactive 56Ni Beam and Internal Hydrogen and Helium Targets

    NARCIS (Netherlands)

    Egelhof, P.; Bagchi, Soumya; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Furuno, T; Geissel, H.; Gernhauser, R.; Kalantar-Nayestanaki, Nasser; Kuilman, M.; Mahjour-Shafiei, M.; Najafi, M.A.; Rigollet, C.; Streicher, B.

    2014-01-01

    The investigation of light-ion induced direct reactions using stored and cooled radioactive beams, interacting with internal targets of storage rings, can lead to substantial advantages over external target experiments, in particular for direct reaction experiments in inverse kinematics at very low

  8. Nuclear Structure Studies On Exotic Nuclei With Radioactive Beams - Present Status And Future Perspectives At FAIR

    International Nuclear Information System (INIS)

    Peter Egelhof

    2011-01-01

    The investigation of nuclear reactions using radioactive beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The basic concept and the methods involved are briefly discussed, and an overview including some selected examples of recent results obtained with radioactive beams from the present fragment separator at GSI Darmstadt is presented. The experimental conditions expected at the future international facility FAIR will, among others, allow for a substantial improvement in intensity and quality of radioactive beams as compared to present facilities. Therefore, it is expected that FAIR will provide unique opportunities for nuclear structure studies on nuclei far off stability, and will allow to explore new regions in the chart of nuclides of high interest for nuclear structure and nuclear astrophysics. A brief overview on the new facility, and on the experimental setups planned for nuclear structure research with radioactive beams is given. For nuclear reaction studies several complex, highly efficient, high resolution, and universal detection systems such as R 3 B, EXL, ELISe, etc. are presently under design and construction. A brief overview on the research objectives and the technical realization will be presented. (author)

  9. The role fo the Pygmy resonance in the synthesis of heavy elements with radioactive beams

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1990-12-01

    It is suggested that the inclusion of the virtual excitation of the soft giant dipole (pygmy) resonance in the calculation of the cross-section for very neutron-rich radioactive beam-induced fusion reactions may enhance the formation probability of the heavy compound nucleus produced at low excitation energy. (author)

  10. Fast and slow radioactive beams in study of light nuclei far from stability

    International Nuclear Information System (INIS)

    Lewitowicz, M.

    2003-01-01

    Several examples of results of recent experiments performed with the SPIRAL ISOL-type and GANIL high energy radioactive beams on the properties of nuclei far from stability are presented. Future plans of the GANIL/SPIRAL facility related to the SPIRAL II project are shortly discussed. (orig.)

  11. Vietnam Project For Production Of Radioactive Beam Based On ISOL Technique With The Dalat Reactor

    International Nuclear Information System (INIS)

    Le Hong Khiem; Phan Viet Cuong; Fadi Ibrahim

    2011-01-01

    The presence in Vietnam of Dalat nuclear reactor dedicated to fundamental studies is a unique opportunity to produce Radioactive Ion (RI) Beams with the fission of a 235 U induced by the thermal neutrons produced by the reactor. We propose to produce RI beams at the Dalat nuclear reactor using ISOL (Isotope Separation On-Line) technique. This project should be a unique opportunity for Vietnamese nuclear physics community to use its own facilities to produce RI beams for studying nuclear physics at an international level. (author)

  12. Production of a radioactive 18F ion beam for nuclear reaction studies

    Science.gov (United States)

    Roberts, A. D.; Nickles, R. J.; Paul, M.; Rehm, K. E.; Jiang, C. L.; Blumenthal, D. J.; Gehring, J.; Henderson, D.; Nolen, J.; Pardo, R. C.; Schiffer, J. P.; Segel, R. E.

    1995-12-01

    A two-stage method for generating a radioactive 18F ion beam has been developed. 18F is produced with a medical cyclotron by 11 MeV proton activation of [ 18O]water, then chemically processed off-line for use in a tandem accelerator ion source. Azeotropic distillation reduces the 18O component by 10 5, with a resulting 18O to 18F beam ratio of about 10 3. The average 18F - beam intensity per synthesis is 1 ppA over 120 min from a cesium vapor, sputter negative ion source (SNICS), with a peak intensity of 4.5 ppA.

  13. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  14. A concept for emittance reduction of DC radioactive heavy-ion beams

    International Nuclear Information System (INIS)

    Nolen, J.A.; Dooling, J.C.

    1995-01-01

    Numerical simulations indicate that it should be possible to use an electron beam to strip 1+ DC radioactive ion beams to 2+ or higher charge states with on the order of 50% efficiency. The device, which the authors call an Electron-Beam Charge-State Amplifier, is similar to an Electron Beam Ion Source, except that it is not pulsed, the beams are continuous. The 2+ beams are obtained in a single pass through a magnetic solenoid while higher charge states may be reached via multiple passes. An unexpected result of the ion optics simulations is that the normalized transverse emittance of the ion beam is reduced in proportion to the charge-state gain. Ion beams with realistic emittances and zero angular momentum relative to the optic axis before entering the solenoid will travel though the solenoid on helical orbits which intercept the axis once per cycle. With an ion beam about 2 mm in diameter and an electron beam about 0.2 mm in diameter, the ion stripping only occurs very near the optic axis, resulting in the emittance reduction

  15. The Holifield Radioactive Ion Beams Facility (HRIBF) - getting ready to do experiments

    International Nuclear Information System (INIS)

    Shapira, D.; Lewis, T.A.

    1998-01-01

    The conversion of the HHIRF facility to a Radioactive Ion Beam facility started in 1994. In this ISOL type facility the Cyclotron has been re-fitted as a driver providing high intensity proton beams which react with the target from which the radioactive products are extracted and then accelerated in the Tandem Electrostatic Accelerator to the desired energy for nuclear science studies. Facilities for nuclear physics experiments are at different stages of development: A Recoil Mass Spectrometer (RMS) with a complement of detectors at the focal plane and around the target is used primarily for nuclear structure studies. A large recoil separator combining velocity and momentum selection, with its complement of focal plane detectors, will be dedicated to measurements relevant to nuclear astrophysics. The Enge Split Pole spectrograph is being re-fitted for operation in a gas filled mode, making it a more versatile tool for nuclear reaction studies. With the new experimental equipment being commissioned and the prospects of running experiments with low intensity radioactive beams a significant effort to develop equipment for beam diagnostics is underway. Some of the efforts and results in developing beam diagnostic tools will be described

  16. Exotic nuclei and radioactive beams; Noyaux exotiques et faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P.

    1996-12-31

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs.

  17. Measurement of residual radioactivity in cooper exposed to high energy heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjoo; Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Uwamino, Yoshitomo; Ito, Sachiko; Fukumura, Akifumi

    1999-03-01

    The residual radioactivities produced by high energy heavy ions have been measured using the heavy ion beams of the Heavy Ion Medical Accelerator (HIMAC) at National Institute of Radiological Sciences. The spatial distribution of residual radioactivities in 3.5 cm, 5.5 cm and 10 cm thick copper targets of 10 cm x 10 cm size bombarded by 290 MeV/u, 400 MeV/u-{sup 12}C ion beams and 400 MeV/u-{sup 20}Ne ion beam, respectively, were obtained by measuring the gamma-ray activities of 0.5 mm thick copper foil inserted in the target with a high purity Ge detector after about 1 hour to 6 hours irradiation. (author)

  18. Dealing with post-accelerated electrons in the ITER SINGAP accelerator

    International Nuclear Information System (INIS)

    Esch, H. de; Hemsworth, R.S.

    2006-01-01

    Electrons formed by stripping of the negative deuterium beam can be accelerated up to 960 keV in the 1 MeV SINGAP 40 A negative ion accelerator proposed by Europe for the ITER neutral beam injectors. SINGAP accelerates 1280 pre-accelerated 40 keV deuterium beamlets to 1 MeV in a single 350 mm wide gap. At the expected gas pressure of 0.03 Pa inside the accelerator, 2.7 MW of electrons are calculated to leave the accelerator and strike various beamline components, especially the neutraliser. The accelerators of the ITER injectors are designed to produce 4 '' column '' beams which pass through the 4 vertical channels of the neutraliser. Unperturbed the accelerated electrons create small, high power density, 3.3 kW/cm 2 , spots on the leading edges of the neutraliser channels, which is far in excess of their power handling capability. The hot spots arise from the overlapping of beamlets due to the bending induced by the far field of the magnetic filter in the ion source. The proposed solution bends the electrons further downwards, redistributing the power over the neutraliser floor, a vertical electron dump perpendicular to the beam axis located below the neutraliser entrance, and the neutraliser entrance. The bending is to be effected by a magnetic field transverse to the beam direction at the exit of the post-acceleration grid. This field is created by vertical columns of permanent magnets either side of each column beam. After passing between the magnet columns, the electron beams reach the electron dump with a maximum power density of 2.1 kW/cm 2 . The peak power density on the neutraliser entrance is 1.35 kW/cm 2 and on the neutraliser floor 0.82 kW/cm 2 . Electron backscattering would reduce all the numbers by 20%. To further reduce the average power density seen by the beamline components it is proposed to sweep the electron beam in an oscillatory fashion. It is suggested that a failsafe, inexpensive, way is to use a power supply with a ripple of ± 10% to

  19. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, F., E-mail: francis.osswald@iphc.cnrs.fr; Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A. [IPHC/IN2P3/CNRS, University of Strasbourg, 67037 Strasbourg (France); Kazarinov, N. [JINR/FLNR, 141980 Dubna (Russian Federation); Perrot, L. [IPNO/IN2P3/CNRS, University of Paris-Sud-11, 91406 Orsay (France)

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  20. Constraints due to the production of radioactive ion beams in the SPIRAL project

    International Nuclear Information System (INIS)

    Leroy, R.; Huguet, Y.; Jardin, P.; Marry, C.; Pacquet, J.Y.; Villari, A.C.C.

    1997-01-01

    The radioactive ion beams that will be delivered by the SPIRAL facility will be produced by the interaction of a stable high energy and high intensity primary ion beam delivered by the GANIL cyclotrons with a carbon target heated to 2000 deg C. During this interaction, some radioactive atoms will be created and will diffuse out of the target before entering into an electron cyclotron resonance ion source where they will be ionized and extracted. The production of radioactive ion beams with this method implies high radiation fields that activate and can damage materials located in the neighborhood of the target. Therefore, the production system which is composed of the permanent magnet ECR ion source coupled to a graphite target will be changed after two weeks of irradiation. As this ensemble will be very radioactive, this operation has to be supervised by remote control. The radiation levels around the target-ion source system and a detailed description of the different precautions that have been taken for safety and for prevention of contamination and irradiation are presented. (author)

  1. Charge breeding of stable and radioactive ion beams with EBIS/T devices

    CERN Document Server

    Kester, Oliver; Becker, R

    2004-01-01

    Radioactive ion beams (RIBs) are an important tool for experiments at the foremost frontier of nuclear physics. The quasi-continuous radioactive beams from target ion sources of RIB-facilities have to be accelerated to energies at and beyond the Coulomb barrier. An efficient acceleration requires a suitable A/q of the ions determined by the accelerator design, which can be reached via the stripping method or by using a charge state breeder like the REX-ISOLDE system. In order to get comparable efficiencies for a charge state breeder with the stripping scheme, the breeding efficiency in one charge state has to be optimized by narrowing the charge state distribution. In addition good beam quality and thus small emittances are required to achieve best transmission in the following accelerator, which is mandatory for high intensity RIBs. For EBIS/T devices the maximum intensity of the radioactive ion beam is a critical issue, and high current EBIS/T devices will be necessary to deal with intensities of second gen...

  2. Latest developments at GANIL for stable and radioactive ion beam production

    International Nuclear Information System (INIS)

    Jardin, P.; Barue, C.; Bajeat, O.; Canet, C.; Clement, E.; Cornell, J. C.; Delahaye, P.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Fraanberg, H.; Frigot, R.; Leboucher, C.; Lecesne, N.; Lecomte, P.; Leherissier, P.; Lemagnen, F.; Leroy, R.; Maunoury, L.; Mery, A.

    2010-01-01

    In the frame of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.

  3. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  4. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    Science.gov (United States)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  5. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

    International Nuclear Information System (INIS)

    Herfurth, F.; Dilling, J.; Kellerbauer, A.

    2000-05-01

    An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is to accumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. (orig.)

  6. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    Science.gov (United States)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  7. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  8. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    International Nuclear Information System (INIS)

    Raimbault-Hartmann, H.; Bollen, G.; Beck, D.; Koenig, M.; Kluge, H.-J.; Schwarz, S.; Schark, E.; Stein, J.; Szerypo, J.

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low-energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high-mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about 1 x 10 5 has been achieved. Isobar separation has been demonstrated for radioactive rare-earth ion beams delivered by the ISOLDE on-line mass separator. (orig.)

  9. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    CERN Document Server

    Raimbault-Hartmann, H; Bollen, G; König, M; Kluge, H J; Schark, E; Stein, J; Schwarz, S; Szerypo, J

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about $1\\cdot 10^{5}$ has been achieved. Isobar separation has been demonstrated for radioactive rare earth ion beams delivered by the ISOLDE on-line mass separator.

  10. Precision Lifetime Measurements Using LaBr3 Detectors With Stable and Radioactive Beams

    Directory of Open Access Journals (Sweden)

    Regan P.H.

    2013-12-01

    Full Text Available A range of high resolution gamma-ray spectroscopy measurements have been carried out using arrays which include a number of Cerium-doped Lanthanum-Tribromide (LrBr3(Ce scintillation detectors used in conjunction with high-resolution hyper-pure germanium detectors. Examples of the spectral and temporal responses of such set-ups, using both standard point radioactive sources 152Eu and 56Co, and in-beam fusionevaporation reaction experiments for precision measurements of nuclear excited states in 34P and 138Ce are presented. The current and future use of such arrays at existing (EURICA at RIKEN and future (NUSTAR at FAIR secondary radioactive beam facilities for precision measurements of excited nuclear state lifetimes in the 10 ps to 10 ns regime are also discussed.

  11. Radioactive ion beam facility at Louvain-La-Neuve, Belgium and its features

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.

    1991-01-01

    Use of radioactive ion beams for the study of nuclear structure as well as the astrophysical reaction cross sections become the current interest in physics. A full-fledged facility based on two coupled cyclotrons comprising a compact high current cyclotron and a medium energy cyclotron with an intermediate target and ion source system has been recently commissioned at the Louvain-La-Neuve University in Belgium by its accelerator group and has been successfully used for the measurement of cross sections for the primordial nucleosynthesis reactions of astrophysical interest, directly. A brief description of the system, its operational features together with some details of the target and the ion source arrangement for the production of the radioactive ion beams and their acceleration to energies required for the proposed studies is presented. Description of the reactions studied by the Louvain La Neuve group for astrophysical interest is also given. (author). 20 refs., 6 figs., 4 tabs

  12. Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

    1992-01-01

    The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated

  13. Targets for production of high-intensity radioactive ion-beams

    International Nuclear Information System (INIS)

    Hagebo, E.; Hoff, P.; Steffensen, K.

    1991-01-01

    The recent developments of target systems for production of high intensity radioactive ion-beams at the ISOLDE mass separators is described. Methods for chemically selective production through separation of molecular ions are outlined and the effects of the addition of reactive gases has been studied. Results and further possible applications in the light element region are discussed. (author) 10 refs.; 9 figs.; 1 tab

  14. Low (50 keV) and medium (∼10 MeV) energy radioactive beams at Louvain-la-Neuve

    International Nuclear Information System (INIS)

    Huyse, M.; Decrock, P.; Dendooven, P.; Reusen, G.; Duppen, P. Van; Wauters, J.

    1991-01-01

    Low energy radioactive beams are produced at the Leuven Isotope Separator On Line (LISOL) facility in Louvain-la-Neuve. The beams are used for standard nuclear spectroscopy studies and for nuclear orientation on line measurements. Since September 1987 a new project has been started up to accelerate radioactive beams to energies in the range of astrophysical interest. A beam of 10 6 13 N ions per seconde with an energy of 8.5 MeV has been produced last June. (author) 11 refs.; 1 fig.; 1 tab

  15. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1989-01-01

    Following the ''First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop

  16. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications

  17. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  18. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  19. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  20. Lifetime measurements using radioactive ion beams at intermediate energies and the Doppler shift method

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Melon, B.; Pissulla, T.; Rother, W.; Fransen, C.; Moeller, O.; Zell, K.O.; Jolie, J. [IKP, Univ. zu Koeln (Germany); Petkov, P. [Bulg. Acad. of Science, INRNE, Solfia (Bulgaria); Starosta, K.; Przemyslaw, A.; Miller, D.; Chester, A.; Vaman, C.; Voss, P.; Gade, A.; Glasmacher, T.; Stolz, A.; Bazin, D.; Weisshaar, D. [NSCL, MSU, East Lansing (United States)

    2007-07-01

    Absolute transition probabilities are crucial quantities in nuclear structure physics. Therefore, it is important to establish Doppler shift (plunger) techniques also for the measurement of level lifetimes in radioactive ion beam experiments. After a first successful test of the Doppler Shift technique at intermediate energy (52MeV/u) with a stable {sup 124}Xe beam, a plunger has been built and used in two experiments, performed at the NSCL/MSU with the SEGA Ge-array and the S800 spectrometer. The aim of the first experiment was to investigate the plunger technique after a knock-out reaction using a radioactive {sup 65}Ge beam at 100 MeV/u for populating excited states in {sup 64}Ge. The second experiment aimed to measure the lifetimes of the first 2{sup +} states in {sup 110,114}Pd with the plunger technique after Coulomb excitation at beam energies of 54 MeV/u. First results of both experiments will be presented and discussed. (orig.)

  1. Development of target ion source systems for radioactive beams at GANIL

    Energy Technology Data Exchange (ETDEWEB)

    Bajeat, O., E-mail: bajeat@ganil.fr [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Delahaye, P. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); Couratin, C. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France); LPC Caen, 6 bd Maréchal Juin, 14050 CAEN Cedex (France); Dubois, M.; Franberg-Delahaye, H.; Henares, J.L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M. [GANIL, BP 55027, 14076 CAEN Cedex 05 (France)

    2013-12-15

    Highlights: • For Spiral 1, a febiad ion source has been connected to a graphite target. • For Spiral 2, an oven made with a carbon resistor is under development. • We made some measurement of effusion in the Spiral 2 target. • A laser ion source is under construction. -- Abstract: The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  2. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  3. A positive (negative) surface ionization source concept for radioactive ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ ≅ 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered by continually feeding a highly electropositive vapor through the ionizer matrix. The use of this technique to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam (RIB) applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in the use at the Holifield radioactive ion beam facility (HRIBF). The design features and operational principles of the source are described in this report. (orig.)

  4. Experiments on the nuclear fragmentation and on the production of radioactive beams for direct reactions

    International Nuclear Information System (INIS)

    Weiss, A.

    1993-06-01

    In April 1992 at the GSI a prototype experiment on the production and study of the double-magic radioactive nucleus 56 Ni was successfully performed with proton scattering in inverse kinematics. A 350 MeV/u 56 Ni primary beam from the heavy ion synchrotron SIS was fragmented in a 4/g/cm 2 thick beryllium target. The separation of the formed isotopes ensued in the fragment separator FRS, which was operated in the achromatic mode with a degrader. Production cross sections for a whole series of fragments in the range 29≥Z≥19 and 57≥A≥41 were obtained. It succeeded to detect proton-rich isotopes at the boundary of the stability as for instance 52 Co, 51 Co, 50 Co, or 52 Ni and to determine for the first time their production cross sections. A further part of this thesis with regard to experiments with radioactive beams were first test experiments at the experimental storage ring ESR. The spotlight held luminosity measurements at the internal gas target with cooled, stable proton beam. For this the elastic scattering was stuided in inverse kinematics in the Rutherford range. Studied were different projectile beams (Ne, Xe) at energies of 150 MeV/u respectively 250 MeV/u and gas jets of nitrogen, argon, and hydrogen. The measured energy spectra of the recoils are in agreement with simulation calculations

  5. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    Carnelli, P.F.F.; Almaraz-Calderon, S.; Rehm, K.E.; Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C.L.; Lai, J.; Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C.; Paul, M.; Ugalde, C.

    2015-01-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15 C+ 12 C fusion reactions at energies around the Coulomb barrier

  6. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  7. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    Science.gov (United States)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  8. Nuclear reactions with 11C and 14O radioactive ion beams

    International Nuclear Information System (INIS)

    Guo, Fanqing

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8

  9. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  10. Estimates of post-acceleration longitudinal bunch compression

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    A simple analytic method is developed, based on physical approximations, for treating transient implosive longitudinal compression of bunches of heavy ions in an accelerator system for ignition of inertial-confinement fusion pellet targets. Parametric dependences of attainable compressions and of beam path lengths and times during compression are indicated for ramped pulsed-gap lines, rf systems in storage and accumulator rings, and composite systems, including sections of free drift. It appears that for high-confidence pellets in a plant producing 1000 MW of electric power the needed pulse lengths cannot be obtained with rings alone unless an unreasonably large number of them are used, independent of choice of rf harmonic number. In contrast, pulsed-gap lines alone can meet this need. The effects of an initial inward compressive drift and of longitudinal emittance are included

  11. Bunching and cooling of radioactive ions with REXTRAP

    CERN Document Server

    Schmidt, P; Bollen, G; Forstner, O; Huber, G; Oinonen, M; Zimmer, J

    2002-01-01

    The post-accelerator REX-ISOLDE at ISOLDE/CERN will deliver radioactive ion beams with energies up to 2.2 MeV/u. For this purpose, a Penning trap and an electron-beam ion source are combined with a linear accelerator. REXTRAP—a large gas-filled Penning trap—has started its commissioning phase. First tests have shown that REXTRAP is able to accumulate, cool and bunch stable ISOLDE ion beams covering a large mass range. Fulfilling the REX-ISOLDE demands, it can handle beam intensities from a few hundred up to 1×10 6 ions per pulse at repetition rates up to 50 Hz.

  12. Upgrade of the facility EXOTIC for the in-flight production of light Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Torresi, D.; Strano, E. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Costa, L. [INFN-LNL, Viale dell’Università 2, I-35020 Legnaro, PD (Italy); Glodariu, T. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania); Guglielmetti, A. [INFN-Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica,Università di Milano, Via Celoria 16, I-20133 Milano (Italy); La Commara, M. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Dipartimento di Scienze Fisiche, Università di Napoli, Via Cinthia, I-80126 Napoli (Italy); Parascandolo, C. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Pierroutsakou, D. [INFN-Sezione di Napoli, Via Cinthia, I-80126 Napoli (Italy); Signorini, C.; Soramel, F. [Dipartimento di Fisica e Astronomia, Universitá di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Stroe, L. [NIPNE, 407 Atomistilor Street, 077125 Magurele (Romania)

    2013-12-15

    Highlights: • Production of in-flight Radioactive Ion Beams via two-body reactions. • Development of a cryogenic gas target. • Event-by-event tracking via Parallel Plate Avalanche Counters (PPACs). -- Abstract: The facility EXOTIC for the in-flight production of light weakly-bound Radioactive Ion Beams (RIBs) has been operating at INFN-LNL since 2004. RIBs are produced via two-body reactions induced by high intensity heavy-ion beams impinging on light gas targets and selected by means of a 30°-dipole bending magnet and a 1-m long Wien filter. The facility has been recently upgraded (i) by developing a cryogenic gas target, (ii) by replacing the power supplies of the middle lenses of the two quadrupole triplets, (iii) by installing two y-steerers and (iv) by placing two Parallel Plate Avalanche Counters upstream the secondary target to provide an event-by-event reconstruction of the position hit on the target. So far, RIBs of {sup 7}Be, {sup 8}B and {sup 17}F in the energy range 3–5 MeV/u have been produced with intensities about 3 × 10{sup 5}, 1.6 × 10{sup 3} and 10{sup 5} pps, respectively. Possible light RIBs (up to Z = 10) deliverable by the facility EXOTIC are also reviewed.

  13. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    Science.gov (United States)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  14. Potential and limitations of nucleon transfer experiments with radioactive beams at REX-ISOLDE

    CERN Document Server

    Gund, C.; Cub, J.; Dietrich, A.; Hartlein, T.; Lenske, H.; Pansegrau, D.; Richter, A.; Scheit, H.; Schrieder, G.; Schwalm, D.

    2001-01-01

    As a tool for studying the structure of nuclei far off stability the technique of $\\gamma$-ray spectroscopy after low-energy single-nucleon transfer reactions with radioactive nuclear beams in inverse kinematics was investigated. Modules of the MINIBALL germanium array and a thin position-sensitive parallel plate avalanche counter (PPAC) to be employed in future experiments at REX-ISOLDE were used in a test experiment performed with a stable $^{36}$S beam on deuteron and $^{9}$Be targets. It is demonstrated that the Doppler broadening of $\\gamma$ lines detected by the MINIBALL modules is considerably reduced by exploiting their segmentation, and that for beam intensities up to 10$^{6}$ particles/s the PPAC positioned around zero degrees with respect to the beam axis allows not only to significantly reduce the gamma background by requiring coincidences with the transfer products but also to control the beam and its intensity by single particle counting. The predicted large neutron pickup cross-sections of neut...

  15. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  16. Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, U., E-mail: uwahl@itn.pt [Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2011-12-15

    The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from {approx}70 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently {approx}15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of {approx}80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions in biological systems. The characterisation methods used are typical radioactive probe techniques such as Moessbauer spectroscopy, perturbed angular correlation, emission channeling, and tracer diffusion studies. In addition to these 'classic' methods of nuclear solid state physics, also standard semiconductor analysis techniques such as photoluminescence or deep level transient spectroscopy profit from the application of radioactive isotopes, which helps them to overcome their chemical 'blindness' since the nuclear half life of radioisotopes provides a signal that changes in time with characteristic exponential decay or saturation curves. In this presentation an overview will be given on the recent research activities in materials science and biophysics at ISOLDE, presenting some of the highlights during the last five years, together with a short outlook on the new developments under way.

  17. Nuclear structure and astrophysics with accelerated beams of radioactive ions: A new multidisciplinary research tool

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1995-01-01

    After a brief discussion of the techniques for producing accelerated radioactive ion beams (RIBs), several recent scientific applications are mentioned. Three general nuclear structure topics, which can be addressed using RIBs, are discussed in some detail: possible modifications of the nuclear shell structure near the particle drip lines; various possibilities for decoupling the proton and neutron mass distributions for weakly bound nuclei; and tests of fundamental nuclear symmetries for self-conjugate and nearly self-conjugate nuclei. The use of RIBs to study r- and rp-process nucleosynthesis also is discussed

  18. Selection of targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    In this report, the authors describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the Holifield Radioactive Ion Beam Facility (HRIBF) as well as prototype ion sources that show promise for future use for RIB applications. A brief review of present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect fast and efficient diffusion release of the short-lived species is also given

  19. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  20. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    Science.gov (United States)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  1. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna (Italy); Dipartimento di Ingegneria Industriale, Universita di Bologna and INFN Sezione di Bologna (Italy); Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano (Italy)

    2012-12-21

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a= 30 over 10{sup 8} protons at 30 MeV with a 3% spread are selected, and at least10{sup 7} protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  2. Production of multicharged radioactive ion beams for spiral: studies and realization of the first target-ion source system

    International Nuclear Information System (INIS)

    Maunoury, L.

    1998-01-01

    In the framework of the SPIRAL project, which concerns the production and the acceleration of a multicharged radioactive ions beam, the following part has been studied: production and ionization of the radioactive ions beam. A first target-source (nanogan II), devoted exclusively to the production of multicharged radioactive ions gas type beams, has been studied and tested. The diffusion efficiency has been deduced from the diffusion equations (Fick laws). This efficiency is governed by the following parameters: the temperature, the grains size of the target, the Arrhenius parameters and the radioactive period. Another study concerning the production targets is presented. It deals with the temperature distribution allowing an utilization of more than one month at a temperature of 2400 K. Another development (SPIRAL II) is devoted to the production of high neutron content radioactive atoms created by the uranium fission, from fast neutrons. The neutrons beam is produced by the ''stripping break-up'' of a deutons beam in a converter. (A.L.B.)

  3. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  4. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    CERN Document Server

    Catherall, R; Gilardoni, S S; Köster, U

    2003-01-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN, tests have been made on standard ISOLDE actinide targets using fast neutron bunches produced by bombarding thick, high-Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten an...

  5. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    Science.gov (United States)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  6. Experimental methods in radioactive ion-beam target/ion source development and characterization

    International Nuclear Information System (INIS)

    Welton, R.F.; Alton, G.D.; Cui, B.; Murray, S.N.

    1998-01-01

    We have developed off-line experimental techniques and apparatuses that permit direct measurement of effusive-flow delay times and ionization efficiencies for nearly any chemically reactive element in high-temperature target/ion sources (TIS) commonly used for on-line radioactive ion-beam (RIB) generation. The apparatuses include a hot Ta valve for effusive-flow delay-time measurements, a cooled molecular injection system for determination of ionization efficiencies, and a gas flow measurement/control system for introducing very low, well-defined molecular flows into the TIS. Measurements are performed on a test stand using molecular feed compounds containing stable complements of the radioactive nuclei of interest delivered to the TIS at flow rates commensurate with on-line RIB generation. In this article, the general techniques are described and effusive-flow delay times and ionization efficiency measurements are reported for fluorine in an electron-beam plasma target/ion source developed for RIB generation and operated in both positive- and negative-ion extraction modes. copyright 1998 American Institute of Physics

  7. Proceedings of the workshop on the science of intense radioactive ion beams

    International Nuclear Information System (INIS)

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort

  8. Selection of RIB targets using ion implantation at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Dellwo, J.

    1995-01-01

    Among several major challenges posed by generating and accelerating adequate intensities of RIBs, selection of the most appropriate target material is perhaps the most difficult because of the requisite fast and selective thermal release of minute amounts of the short-lived product atoms from the ISOL target in the presence of bulk amounts of target material. Experimental studies are under way at the Oak Ridge National Laboratory (ORNL) which are designed to measure the time evolution of implanted elements diffused from refractory target materials which are candidates for forming radioactive ion beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF). The diffusion coefficients are derived by comparing experimental data with numerical solutions to a one-dimensional form of Fick's second law for ion implanted distributions. In this report, we describe the experimental arrangement, experimental procedures, and provide time release data and diffusion coefficients for releasing ion implanted 37 Cl from Zr 5 Si 3 and 75 As, 79 Br, and 78 Se from Zr 5 Ge 3 and estimates of the diffusion coefficients for 35 Cl, 63 Cu, 65 Cu, 69 Ga and 71 Ga diffused from BN; 35 Cl, 63 Cu, 65 Cu, 69 Ga, 75 As, and 78 Se diffused from C; 35 Cl, 68 Cu, 69 Ga, 75 As, and 78 Se diffused from Ta

  9. Experiments with radioactive nuclear beams II; Experimentos con haces nucleares radiactivos II

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-12-15

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction {sup 12}C + {sup 12}C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  10. Proceedings of the workshop on the science of intense radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J.B.; Vieira, D.J. (comps.)

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  11. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  12. Production of fast neutrons from deuteron beams in view of producing radioactive heavy ions beams; Etude de la production de neutrons rapides a partir de faisceaux de deutons en vue de la mise en oeuvre de faisceaux d'ions lourds radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N

    2000-11-01

    This thesis is part of two research and development programmes for the study of neutron rich radioactive nuclear beam production. The technique is based on the ISOL method and can be summarized as follows. Fast neutrons are generated by the break-up of deuterons in a thick target. These neutrons irradiate a fissionable {sup 238}U target. The resulting fission products are extracted from the target, ionised, mass selected and post-accelerated. The aim of the thesis is to study the neutron angular and energetic distributions. After a bibliographical research to justify the choice of deuterons as the best projectile, we developed more specifically three points: - the extension of the activation detector method for neutron spectroscopy to a wide energy range (1 to 150 MeV), - the experimental measurement of neutron angular and energetic distributions produced by deuterons on thick targets. The deuteron energy ranges from 17 to 200 MeV and the thick targets were Be, C and U, - the realization of a code based on Serber's theory to predict the neutron distribution for any couple (deuteron energy-thick target). We conclude that for our application the most suitable target is C and the best deuteron energy is about 100 MeV. (author)

  13. Measurement of g factors of excited states in radioactive beams by the transient field technique: 132Te

    International Nuclear Information System (INIS)

    Benczer-Koller, N.; Kumbartzki, G.; Gurdal, G; Gross, Carl J; Krieger, B; Hatarik, Robert; O'Malley, Patrick; Pain, S. D.; Segen, L.; Baktash, Cyrus; Bingham, C. R.; Danchev, M.; Grzywacz, R.; Mazzocchi, C.

    2008-01-01

    The g factor of the 2 1 + state in 52 132 Te, E(2 1 + ) = 0.9739 MeV, r = 2.6 ps, was measured by the transient field technique applied to a radioactive beam. The development of an experimental approach necessary for work in radioactive beam environments is described. The result g = 0.28(15) agrees with the previous measurement by the recoil-in-vacuum technique, but here the sign of the g factor is measured as well

  14. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  15. Studies of nuclei using radioactive beams. [Space Astronomy Lab. , Univ. of Florida, Gainesville, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  16. Studies of nuclei using radioactive beams. Progress report, May 1988--July 1989

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden.

  17. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    1998-02-01

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  18. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  19. Determination of the isomeric fraction in a postaccelerated radioactive ion beam using the coupled decay-chain equations

    CERN Document Server

    Ekstrom, A; Dijulio, D D; Cederkall, J; Van de Walle, J

    2010-01-01

    A method based on the coupled decay-chain equations for extracting the isotopic and the isomeric composition of a postaccelerated radioactive ion beam is presented and demonstrated on a data set from a Coulomb excitation experiment. This is the first attempt of analyzing the content of a postaccelerated radioactive ion beam using this technique. The beam composition is required for an absolute normalization of the measurement. The strength of the method, as compared to present online-based methods, lies in the determination of the isomeric fraction of a partially isomeric beam using all data accumulated during the experiment. We discuss the limitations and sensitivity of the method with respect to the gamma-ray detection efficiency and the accumulated flux. (C) 2010 Elsevier B.V. All rights reserved.

  20. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes

    International Nuclear Information System (INIS)

    Sifi, R.

    2007-07-01

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  1. Induced radioactivity in the target station and decay tunnel from a 4MW proton beam

    CERN Document Server

    Agosteo, S; Otto, T; Silari, Marco

    2003-01-01

    An important aspect of a future CERN Neutrino Factory is the material activation arising from a 2.2 GeV, 4 MW proton beam striking a mercury target. A first estimation of the hadronic inelastic interactions and the production of residual nuclei in the target, the magnetic horn, the decay tunnel, the surrounding rock and a downstream dump has been performed by the Monte Carlo hadronic cascade code FLUKA. The aim is both to assess the dose equivalent rate to be expected during maintenance work and to evaluate the amount of residual radioactivity, which will have to be disposed of after the facility has ceased operation. This paper discusses the first results of such calculations.

  2. Total cross section measurement of radioactive isotopes with a thin beam neutron spectrometer

    International Nuclear Information System (INIS)

    Razbudej, V.F.; Vertebnyj, V.P.; Padun, G.S.; Muravitskij, A.V.

    1975-01-01

    The method for measuring the neutron total cross sections of radioactive isotopes by a time-of-flight spectrometer with a narrow (0.17 mm in diameter) beam of thermal neutrons is described. The distinguishing feature of this method is the use of capillary samples with a small amount of substance (0.05-1.0 mg). The energy range is 0.01-0.3 eV. The total cross sections of irradiated samples of sub(153)Eu and sub(151)Eu are measured. From them are obtained the cross sections of sub(152)Eu (Tsub(1/2)=12.4 g) and of sub(154)E (Tsub(1/2)=8.6 yr); they equal 11400+-1400 and 1530+-190 barn at E=0.0253 eV. The cross section of the sub(152)Eu absorption for the thermal spectrum (T=333 K) is determined by the activation method; it is 8900+-1200 barn

  3. Development of a low-energy radioactive ion beam facility for the MARA separator

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Philippos, E-mail: philippos.papadakis@jyu.fi; Moore, Iain; Pohjalainen, Ilkka; Sarén, Jan; Uusitalo, Juha [University of Jyväskylä, Department of Physics (Finland)

    2016-12-15

    A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyväskylä, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

  4. A Monte Carlo code to optimize the production of Radioactive Ion Beams by the ISOL technique

    CERN Document Server

    Santana-Leitner, M

    2005-01-01

    Currently the nuclear chart includes around 3000 nuclides, distributed as ${\\beta}^+$, ${\\beta}^-$ and $\\alpha$-emitters, stable and spontaneously fissioning isotopes. A similar amount of unknown nuclei belongs to the so-called \\textit{terra incognita}, the uncertain region contained also within the proton, neutron and (fast) fission driplines and thereby stable against nucleon emission. The exploration of this zone is to be assisted by the use of radioactive ion beams (RIB) and could provide a new understanding of several nuclear properties. Moreover, besides pointing at crucial questions such as the validity of the shell model, the dilute matter and the halo structure, challenging experiments outside nuclear physics are also attended, e.g., explanations of the nucleosythesis processes that may justify why the matter in the universe has evolved to present proportions of elements, and which represents a major challenge to nuclear physics. These, together with other fascinating research lines in particle physi...

  5. Radioactivity

    International Nuclear Information System (INIS)

    Chelet, Y.

    2006-01-01

    The beginning of this book explains the why and how of the radioactivity, with a presentation of the different modes of disintegration. Are tackled the reports between radioactivity and time before explaining how the mass-energy equivalence appears during disintegrations. Two chapters treat natural radioisotopes and artificial ones. This book makes an important part to the use of radioisotopes in medicine (scintigraphy, radiotherapy), in archaeology and earth sciences (dating) before giving an inventory of radioactive products that form in the nuclear power plants. (N.C.)

  6. Radioactivity

    International Nuclear Information System (INIS)

    2002-01-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  7. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  8. Development of a surface ionization source for the production of radioactive alkali ion beams in SPIRAL

    International Nuclear Information System (INIS)

    Eleon, C.; Jardin, P.; Gaubert, G.; Saint-Laurent, M.-G.; Alcantara-Nunez, J.; Alves Conde, R.; Barue, C.; Boilley, D.; Cornell, J.; Delahaye, P.; Dubois, M.; Jacquot, B.; Leherissier, P.; Leroy, R.; Lhersonneau, G.; Marie-Jeanne, M.; Maunoury, L.; Pacquet, J.Y.; Pellemoine, F.; Pierret, C.

    2008-01-01

    In the framework of the production of radioactive alkali ion beams by the isotope separation on-line (ISOL) method in SPIRAL I, a surface ionization source has been developed at GANIL to produce singly-charged ions of Li, Na and K. This new source has been designed to work in the hostile environment whilst having a long lifetime. This new system of production has two ohmic heating components: the first for the target oven and the second for the ionizer. The latter, being in carbon, offers high reliability and competitive ionization efficiency. This surface ionization source has been tested on-line using a 48 Ca primary beam at 60.3 A MeV with an intensity of 0.14 pA. The ionization efficiencies obtained for Li, Na and K are significantly better than the theoretical values of the ionization probability per contact. The enhanced efficiency, due to the polarization of the ionizer, is shown to be very important also for short-lived isotopes. In the future, this source will be associated with the multicharged electron-cyclotron-resonance (ECR) ion source NANOGAN III for production of multicharged alkali ions in SPIRAL. The preliminary tests of the set up are also presented in this contribution.

  9. Spectroscopy of high lying resonances in {sup 9}Be produced with radioactive {sup 8}Li beams

    Energy Technology Data Exchange (ETDEWEB)

    Lepini-Szily, A.; Leistenschneider, E.; Lichtenthäler, R.; Guimaraes, V.; Condori, R. Pampa; Scarduelli, V.; Rossi, E.; Zagatto, V.A.; Aguiar, V.A.P.; Duarte, J., E-mail: alinka@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Mendes Junior, D.R.; Faria, P.N. de; Santos, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica; Descouvemont, P. [Physique Nucleaire Theorique et Physique Mathematique, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Pires, K.C.C. [Universidade Tecnologica Federal do Parana (UFTPR), Cornelio Procopio, PR (Brazil); Morcelle, V. [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil); Moraes, M.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Britos, T.; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Zamora, J.C. [Technische Universität Darmstadt, (Germany); Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    We present the results of the {sup 8}Li(p,α){sup 5}He and {sup 8}Li(p,p){sup 8}Li reactions measured at the RIBRAS (Radioactive Ion Beams in Brazil) system. The experiment was realized in inverse kinematics using a thick [CH{sub 2}]{sub n} polyethylene target and an incident {sup 8}Li beam, produced by RIBRAS. Using the thick target method, the complete excitation function could be measured between E{sub cm} = 0.2 - 2.1 MeV, which includes the Gamow peak energy region. The excitation function of the {sup 8}Li(p,α){sup 5}He reaction, populating resonances between 16.888 and 19.0 MeV in {sup 9}Be, was obtained[1] and the resonances were fitted using R-matrix calculations. This study shed light on spins, parities, partial widths and isospin values of high lying resonances in {sup 9}Be. The measurement of the resonant elastic scattering {sup 8}Li(p,p){sup 8}Li populating resonances in the same energy region can constrain the resonance parameters. Preliminary results of the elastic scattering are also presented. (author)

  10. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    International Nuclear Information System (INIS)

    Urrego-Blanco, J.P.; Bingham, C.R.; Brandt, B. van den; Galindo-Uribarri, A.; Gomez del Campo, J.; Hautle, P.; Konter, J.A.; Padilla-Rodal, E.; Schmelzbach, P.A.

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3 He- 4 He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4 He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12 C by protons in inverse kinematics are presented

  11. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    International Nuclear Information System (INIS)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented

  12. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [ed.

    1992-12-31

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  13. Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world's experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  14. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  15. Yrast spectroscopy in {sup 49-51}Ti via fusion-evaporation reaction induced by a radioactive beam

    Energy Technology Data Exchange (ETDEWEB)

    Niikura, M.; Ideguchi, E.; Michimasa, S.; Ota, S.; Shimoura, S.; Wakabayashi, Y. [University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Aoi, N.; Baba, H.; Fukuchi, T.; Ichikawa, Y.; Kubo, T.; Kurokawa, M.; Ohnishi, T.; Suzuki, H.; Yoshida, K. [RIKEN Nishina Center, Wako, Saitama (Japan); Iwasaki, H.; Onishi, T.K.; Suzuki, D. [University of Tokyo, Department of Physics, Tokyo (Japan); Liu, M.; Zheng, Y. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2009-12-15

    In-beam {gamma} -ray spectroscopy of high-spin states in {sup 49-51}Ti was performed via the fusion-evaporation reaction using a radioactive beam. By excitation function and {gamma} - {gamma} coincidence analysis, yrast high-spin levels up to I=(21/2{sup -}),(11{sup +}),(17/2{sup -}) in {sup 49-51}Ti were determined. The levels were compared with full-pf -shell model calculation. The level structure indicates the persistency of the N=28 shell gap at yrast states in {sup 49-51}Ti. (orig.)

  16. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  17. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  18. Status of the SPES-charge breeder (SPES-CB) and its beam line at INFN-LNL

    International Nuclear Information System (INIS)

    Galatá, Àlessio; Comunian, M.; Bellan, L.; Maggiore, M.; Patti, G.; Roncolato, C.; Bisoffi, G.; Russo, A.D.; Calabretta, L.; Angot, J.; Lamy, T.

    2016-01-01

    The Selective Production of Exotic Species (SPES) facility is under construction at INFN-LNL: aim of this project is the production, ionization and post-acceleration of radioactive ions to perform forefront research in nuclear physics. Radioactive species will be produced by fissions induced by a proton beam impinging on an UC_x target: the proton beam will be delivered by a room temperature cyclotron (built by the Best Company) with a maximum energy of 40 MeV and 0.25 mA of maximum current. The radioactive species produced in the Target-Ion-Source system, extracted as a 1+ beam, cooled in a RFQ-cooler and purified from the isobars contaminants through a High Resolution Mass Spectrometer (HRMS). In order to allow post acceleration with the superconducting linac ALPI at INFN-LNL (up to 10 MeV/A for A/q = 7), an ECR-based charge breeding technique (ECR-CB) was chosen: in particular the SPES-CB was developed by the LPSC Grenoble on the basis of the Phoenix booster. The SPES-CB will be equipped with a complete test bench, totally integrated with the SPES beam line: in particular, in order to avoid beam contaminations induced by the impurities present inside the SPES-CB, and to have high transmission for a beam of very low intensity, special attention was paid not only to the transport efficiency but also to the resolution of the spectrometer downstream the charge breeder, with the design of a Medium Resolution Mass Spectrometer (MRMS). In the following paper the technical aspects connected with SPES-CB, its beam line and the transport of highly charged radioactive ions will be described.

  19. Status of the SPES-charge breeder (SPES-CB) and its beam line at INFN-LNL

    Energy Technology Data Exchange (ETDEWEB)

    Galatá, Àlessio; Comunian, M. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Universitá 2, 35020 Legnaro, Padova (Italy); Bellan, L. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Universitá 2, 35020 Legnaro, Padova (Italy); Dipartimento di Fisica e Astronomia, Universitá degli Studi di Padova e Sezione INFN, Padova (Padova) (Italy); Maggiore, M.; Patti, G.; Roncolato, C.; Bisoffi, G. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Universitá 2, 35020 Legnaro, Padova (Italy); Russo, A.D.; Calabretta, L. [INFN-Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Angot, J.; Lamy, T. [LPSC – Université Grenoble Alpes – CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France)

    2016-06-01

    The Selective Production of Exotic Species (SPES) facility is under construction at INFN-LNL: aim of this project is the production, ionization and post-acceleration of radioactive ions to perform forefront research in nuclear physics. Radioactive species will be produced by fissions induced by a proton beam impinging on an UC{sub x} target: the proton beam will be delivered by a room temperature cyclotron (built by the Best Company) with a maximum energy of 40 MeV and 0.25 mA of maximum current. The radioactive species produced in the Target-Ion-Source system, extracted as a 1+ beam, cooled in a RFQ-cooler and purified from the isobars contaminants through a High Resolution Mass Spectrometer (HRMS). In order to allow post acceleration with the superconducting linac ALPI at INFN-LNL (up to 10 MeV/A for A/q = 7), an ECR-based charge breeding technique (ECR-CB) was chosen: in particular the SPES-CB was developed by the LPSC Grenoble on the basis of the Phoenix booster. The SPES-CB will be equipped with a complete test bench, totally integrated with the SPES beam line: in particular, in order to avoid beam contaminations induced by the impurities present inside the SPES-CB, and to have high transmission for a beam of very low intensity, special attention was paid not only to the transport efficiency but also to the resolution of the spectrometer downstream the charge breeder, with the design of a Medium Resolution Mass Spectrometer (MRMS). In the following paper the technical aspects connected with SPES-CB, its beam line and the transport of highly charged radioactive ions will be described.

  20. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  1. Lise: a recoil spectrometer at GANIL for the production and study of secondary radioactive beams. Present status and future

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1989-01-01

    The doubly achromatic spectrometer LISE, installed at the intermediate-energy heavy-ion facility GANIL is now operating since five years. Essentially, it is composed by two dipole-magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like radioactive fragment-beams emitted at 0 0 . We shall review some of the essential properties of LISE. Some selected examples will be used to demonstrate experimental results which have been obtained so far (discovery of numerous new nuclei up to the drip-lines, half-life measurements, β-γ and delayed-particle spectroscopy, spin-aligned beams, total reaction cross-sections). We shall also discuss several improvements, in particular a cross-field electrostatic/electromagnetic post separator, which are expected to provide in the near future secondary beams of still increased intensity and isotopic purity

  2. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    Science.gov (United States)

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-10-01

    We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  3. The rapid cycling synchrotron of the Eurisol / Beta-Beam facility

    International Nuclear Information System (INIS)

    Lachaize, A.

    2008-09-01

    In order to ask for physicians requests, some neutrinos facilities are under studies to produce pure, intense, well collimated neutrinos beams with a well determined energy spectrum. One of them, the Beta-Beam project, is based on neutrinos production by radioactive ion beams decay after acceleration. The thesis is focused on one step of the complex, namely the low energy ring required for accumulation and injection of ion beams between the post-acceleration linac of the EURISOL complex (dedicated complex for radioactive ion beam production) and the CERN PS. After the description of the EURISOL complex and the Beta-Beam complex, a description of charged particles beams transport formalism is given. Then, in the second part, studies on the definition and the optimisation of the ring are given, starting by optical structure then different simulations concerning beam dynamics, i.e. multiturn injection, synchronous acceleration with beam losses localization and intensity, fast extraction, chromaticity with eddy currents correction and space charge effects. Finally, a preliminary technical design of the RCS main magnets is proposed. (author)

  4. Production of secondary radioactive beams from 44 MeV/u Ar projectiles

    International Nuclear Information System (INIS)

    Bimbot, R.; Della Negra, S.; Aguer, P.; Bastin, G.; Anne, R.; Delagrange, H.; Hubert, F.

    1985-01-01

    Secondary beams have been produced through interaction of a 1760 MeV Ar beam with a 99 mg/cm 2 Be target. An achromatic spectrometer is used to select the magnetic rigidity corresponding to a given beam, and to transport this beam over a distance of about 18 m. The beam purity is studied using a solid state ΔE-E telescope. Beams of 38 S and 39 Cl are produced with a purity of about 80% and production rates of 1.5 10 -6 Isub(o) and 5.10 -5 Isub(o) respectively. Here Isub(o) denotes the primary beam intensity. Beams of 38 Ar, 39 Ar and 41 Kr are produced with about the same abundances as 39 Cl but with lower purities. It is shown that, by setting properly the experimental parameters, the beam production can be improved by a factor 2 to 5. This could lead to intensities of about 2.10 6 pps for 38 S and of 10 7 to 10 8 pps for the four other beams. The possibility of purifying these beams by placing a degrader between the two dipoles of the spectrometer is shown experimentally

  5. Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Gross, C.J.; Ginter, T.N.; Shapira, D.; Milner, W.T.; McConnell, J.W.; James, A.N.; Johnson, J.W.; Mas, J.; Mantica, P.F.; Auble, R.L.; Das, J.J.; Blankenship, J.L.; Hamilton, J.H.; Robinson, R.L.; Akovali, Y.A.; Baktash, C.; Batchelder, J.C.; Bingham, C.R.; Brinkman, M.J.; Carter, H.K.; Cunningham, R.A.; Davinson, T.; Fox, J.D.; Galindo-Uribarri, A.; Grzywacz, R.; Liang, J.F.; MacDonald, B.D.; MacKenzie, J.; Paul, S.D.; Piechaczek, A.; Radford, D.C.; Ramayya, A.V.; Reviol, W.; Rudolph, D.; Rykaczewski, K.; Toth, K.S.; Weintraub, W.; Williams, C.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    2000-01-01

    The recently commissioned Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility (HRIBF) is described. Consisting of a momentum separator followed by an E-D-E Rochester-type mass spectrometer, the RMS is the centerpiece of the nuclear structure endstation at the HRIBF. Designed to transport ions with rigidities near K=100, the RMS has acceptances of ±10% in energy and ±4.9% in mass-to-charge ratio. Recent experimental results are used to illustrate the detection capabilities of the RMS, which is compatible with many detectors and devices

  6. First Results with TIGRESS and Accelerated Radioactive Ion Beams from ISAC: Coulomb Excitation of 20,21,29Na

    Science.gov (United States)

    Schumaker, M. A.; Hurst, A. M.; Svensson, C. E.; Wu, C. Y.; Becker, J. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Stoyer, M. A.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Barton, C. J.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Colosimo, S. J.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Djongolov, M.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Gray-Jones, C.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Kulp, W. D.; Lisetskiy, A. F.; Lee, G.; Lloyd, S.; Maharaj, R.; Martin, J.-P.; Millar, B. A.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Oxley, D. C.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Rigby, S. V.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Sumithrarachchi, C. S.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.

    2009-03-01

    The TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) is a state-of-the-art γ-ray spectrometer being constructed at the ISAC-II radioactive ion beam facility at TRIUMF. TIGRESS will be comprised of twelve 32-fold segmented high-purity germanium (HPGe) clover-type γ-ray detectors, with BGO/CsI(Tl) Compton-suppression shields, and is currently operational at ISAC-II in an early-implementation configuration of six detectors. Results have been obtained for the first experiments performed using TIGRESS, which examined the A = 20, 21, and 29 isotopes of Na by Coulomb excitation.

  7. First results of Trojan horse method using radioactive ion beams: {sup 18}F(p,α) at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, S.; Spitaleri, C.; Puglia, S.; Rapisarda, G.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); Gulino, M. [Università KORE, Enna, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); La Cognata, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Kubono, S.; Wakabayashi, Y. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address RIKEN Nishina Center, Wako, Saitama (Japan); Yamaguchi, H.; Hayakawa, S.; Kurihara, Y. [Center for Nuclear Study, University of Tokyo, Tokyo (Japan); Binh, D. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address Institute of Physics and Electronics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Bishop, S. [RIKEN Nishina Center, Wako, Saitama, Japan and present address Physik Department E12, Technische Universität München, Garching (Germany); Coc, A. [Centre de Spectrométrie Nucléaire et de Spectrométrie de masse, IN2P3, Orsay (France); De Séréville, N.; Hammache, F. [Institut de Physique Nucléaire, IN2P3, Orsay (France)

    2014-05-02

    The abundance of {sup 18}F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the {sup 18}F(p,α){sup 15}O is one of the most important {sup 18}F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam induced reaction.

  8. First results of Trojan horse method using radioactive ion beams: 18F(p,α) at astrophysical energies

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Puglia, S.; Rapisarda, G.; Romano, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Kubono, S.; Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Binh, D.; Bishop, S.; Coc, A.; De Séréville, N.; Hammache, F.

    2014-01-01

    The abundance of 18 F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the 18 F(p,α) 15 O is one of the most important 18 F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam induced reaction

  9. Performance Test Results of a Single-sided Silicon Strip Detector with a Radioactive Source and a Proton Beam

    International Nuclear Information System (INIS)

    Ki, Y. I.; Kah, D. H.; Son, D. H.; Kang, H. D.; Kim, H. J.; Kim, H. O.; Bae, J. B.; Ryu, S.; Park, H.; Kim, K. R.

    2007-01-01

    Due to high intrinsic precision and high speed properties of a silicon material, the silicon detector has been used in various applications such as medical imaging detector, radiation detector, positioning detectors in space science and experimental particle physics. High technology, modern equipment, and deep expertise are required to design and fabricate good quality of silicon sensors. Only few facilities in the world can develop silicon sensors which meet requirements of sensor performances. That is one of main reasons that the silicon sensor is so expensive and it takes time to purchase the silicon sensor once it is ordered. We designed and fabricated AC-coupled single-sided silicon strip sensors and developed front-end electronics and DAQ system to read out sensor signals. The silicon strip sensors were fabricated on a 5-in. n-type silicon wafer which has an orientation, high resistivity (>5 kΩ · cm) and a thickness of 380 μm. We measured the signal-to-noise ratio (SNR) of each channel by using a radioactive source and a 45 MeV proton beam from the MC-50 cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul. We present the measurement results of the SNRs of the silicon strip sensor with a proton beam and radioactive sources

  10. ISAC and ARIEL the TRIUMF radioactive beam facilities and the scientific program

    CERN Document Server

    Krücken, Reiner; Merminga, Lia

    2014-01-01

    The TRIUMF Isotope Separator and Accelerator (ISAC) facility uses the isotope separation on-line (ISOL) technique to produce rare-isotope beams (RIB). The ISOL system consists of a primary production beam, a target/ion source, a mass separator, and beam transport system. The rare isotopes produced during the interaction of the proton beam with the target nucleus are stopped in the bulk of the target material. They diffuse inside the target material matrix to the surface of the grain and then effuse to the ion source where they are ionized to form an ion beam that can be separated by mass and then guided to the experimental facilities. Previously published in the journal Hyperfine Interactions.

  11. A study of a superconducting heavy ion cyclotron as a post accelerator for the CRNL MP Tandem

    International Nuclear Information System (INIS)

    Fraser, J.S.; Tunnicliffe, P.R.

    1975-08-01

    A novel design for a heavy ion cyclotron is described utilizing superconducting coils. Acting as a post accelerator for the CRNL MP Tandem accelerator, the proposed cyclotron is capable of producing an output energy of 10 MeV/u and intensities up to approximately 10 10 particles/s for uranium. (E.C.B.)

  12. Application of ion beams in materials science of radioactive waste forms: focus on the performance of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Frederico [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)]. E-mail: garrido@csnsm.in2p3.fr; Nowicki, Lech [Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Thome, Lionel [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Ba-hat timents 104-108, 91405 Orsay Campus (France)

    2005-10-15

    Ion beam techniques provide unique tools for the qualification of radioactive waste forms. They address three major issues: (i) the simulation by ion irradiation of the stability of a matrix submitted to radiative environment; (ii) the doping of a material with stable or radioactive elements which simulate the species to be confined; (iii) the characterisation of a material via nuclear microanalysis techniques. Among various classes of nuclear matrices the spent nuclear fuel is widely considered as a potential candidate for the stabilisation of radioactive wastes in scenarios of long term interim storage or final geological disposal. Illustrative examples revealing the potentialities of the use of ion beams either as a pure characterisation tool - to investigate the chemical stability of the UO{sub 2} matrix under an oxygen potential - or in a combined way (e.g. irradiation/characterisation, doping/characterisation) - to explore the radiation stability and the behaviour of foreign species - are presented. Transformations (stoichiometry, depth and structure of growing hyperstoichiometric U{sub 4}O{sub 9}/U{sub 3}O{sub 7} oxides) occurring during low-temperature air oxidation of uranium dioxide single crystals are reported. Swift heavy ion irradiation of UO{sub 2} single crystals leads to a peculiar single crystal-polycrystal transformation (i.e. polygonisation of the fluorite-type structure of the material). Irradiation of UO{sub 2} at low energy shows that the damage production is directly linked to the energy deposited in nuclear elastic collisions. The lattice location of helium atoms (generated in large amount during the storage period) in interstitial octahedral positions is discussed.

  13. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F

  14. A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams

    CERN Document Server

    Kellerbauer, A G; Dilling, J; Henry, S; Herfurth, F; Kluge, H J; Lamour, E; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G; Szerypo, J

    2002-01-01

    A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line experiments. (12 refs).

  15. Production of zero energy radioactive beams through extraction across superfluid helium surface

    NARCIS (Netherlands)

    Takahashi, N; Huang, WX; Gloos, K; Dendooven, P; Pekola, JP; Aysto, J

    A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with

  16. Decontamination process and device of a radioactive surface with a coherent light beam. Procede et installation de decontamination d'une surface radioactive au moyen d'un faisceau de lumiere coherente

    Energy Technology Data Exchange (ETDEWEB)

    Gauchon, J.P.; Bournot, P.; Caminat, P.; Dupont, A.

    1994-07-29

    To decontaminate a radioactive surface, this one is swept with a focused laser beam and a liquid such as water or preferably a nitric acid solution on the whole surface. The liquid may be a film running on the surface and is recycled advantageously. The resulting decontamination is very efficient. 6 refs., 2 figs., 5 tabs.

  17. Off-line production of a sup 7 Be radioactive ion beam

    CERN Document Server

    Gialanella, L; De Cesare, N; D'Onofrio, A; Romano, M; Campajola, L; Formicola, A; Fülöp, Z; Gyürky, G; Imbriani, G; Lubritto, C; Ordine, A; Roca, V; Rogalla, D; Rolfs, C; Russo, M; Sabbarese, C; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P

    2002-01-01

    A sup 7 Be ion beam of several particle pA at 8 MeV has been produced at the TTT3 tandem of the University 'Federico II' in Naples. The sup 7 Be nuclides were formed via the sup 7 Li(p,n) sup 7 Be reaction using a metallic Li target and an 11.4 MeV proton beam of 20 mu A intensity, delivered by the cyclotron in Debrecen. Methods of hot chemistry were used to extract the sup 7 Be nuclides from the Li matrix and to prepare the sup 7 Be cathodes for the ion sputter source of the tandem. Examples of sup 7 Be beam applications are given.

  18. The Effusive-Flow Properties of Target/Vapor-Transport Systems for Radioactive Ion Beam Applications

    CERN Document Server

    Kawai, Yoko; Liu, Yuan

    2005-01-01

    Radioactive atoms produced by the ISOL technique must diffuse from a target, effusively flow to an ion source, be ionized, be extracted, and be accelerated to research energies in a time commensurate with the lifetime of the species of interest. We have developed a fast valve system (closing time ~100 us) that can be used to accurately measure the effusion times of chemically active or inactive species through arbitrary geometry and size vapor transport systems with and without target material in the reservoir. The effusive flow times are characteristic of the system and thus serve as figures of merit for assessing the quality of a given vapor transport system as well as for assessing the permeability properties of a given target design. This article presents effusive flow data for noble gases flowing through a target reservoir and ion source system routinely used to generate radioactive species at the HRIBF with and without disks of 6 times and 10 times compressed Reticulated Vitreous Carbon Foam (RVCF) with...

  19. On the usage of electron beam as a tool to produce radioactive isotopes in photonuclear reactions

    International Nuclear Information System (INIS)

    Bunatyan, G.G.; Nikolenko, V.G.; Popov, A.B.

    2009-01-01

    We treat the Bremsstrahlung, induced by initial electron beam in converter, and the production of a desirable radioisotope due to the photonuclear reaction caused by this Bremsstrahlung. By way of illustration, the yield of a number of some, the most applicable in practice, radioisotopes is evaluated. The acquired findings persuade us that usage of modern electron accelerators offers a practicable way to produce the radioisotopes needful nowadays for various valuable applications in the nuclear medicine

  20. Induced radioactivity of a GSO scintillator by secondary fragments in carbon ion therapy and its effects on in-beam OpenPET imaging.

    Science.gov (United States)

    Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga

    2016-07-07

    The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a (12)C beam with an energy of 290 MeV u(-1). Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.

  1. Development of an intense O-15 radioactive ion beam using low energy protons

    CERN Document Server

    Lapi, S; Zyuzin, A Yu; D'Auria, J M

    2003-01-01

    The production of copious quantities of sup 1 sup 5 O, (half-life = 122.2 s) for astrophysical applications has been a source of concern at TRIUMF and ISAC for some time. An sup 1 sup 5 O beam is needed for two experiments ( sup 1 sup 5 O(alpha,gamma) sup 1 sup 9 Ne and sup 1 sup 5 O( sup 6 Li,d) sup 1 sup 9 Ne) at ISAC. The beam flux required for these experiments is extremely high, (between 10 sup 9 and 10 sup 1 sup 1 sup 1 sup 5 O/s) and thus high efficiencies at all steps in the process will be required. Difficulties arise due to the fact that oxygen is very reactive chemically and thus is difficult to extract from a thick spallation target. The possibility of using one of the small cyclotrons on site (TR13, CP42 or TR30) for the production of this isotope ( sup 1 sup 5 O) has been discussed. This production approach will involve the use of low energy protons to interact with a nitrogen gas target via the sup 1 sup 5 N(p,n) sup 1 sup 5 O reaction, which is accessible with attainable particle energies usin...

  2. Production of radioactivity in local soil at AGS fast neutrino beam

    International Nuclear Information System (INIS)

    Gollon, P.J.; Hauptmann, M.G.; McIntyre, K.; Miltenberger, R.; Naidu, J.

    1984-01-01

    Brookhaven National Laboratory (BNL) has recently decided to construct a new neutrino production target station at the Alternating Gradient Synchrotron (AGS). To determine the environmental impact of this addition, a study is being conducted in the vicinity of the old target area to determine the radiological consequences of operating this experimental facility. Typical BNL soil samples were placed at two locations near an operating target: at right angles to the target and behind thick shielding close to the direction of the incident beam. These samples were used to determine radionuclide production and leaching information. A core was taken from beneath the concrete floor of the old target area and a monitoring well was installed down-gradient of the facility. Preliminary results from all areas of the study are presented along with estimates of the potential environmental impact of the old and new facilities. 9 figures

  3. Universal method for effusive-flow characterization target ion source/vapor transport systems for radioactive ion beam generation (abstract)

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, J.-C.; Liu, Y.; Cole, J. A.; Williams, C.

    2004-01-01

    Worldwide interest in the use of accelerated radioactive ion beams (RIBs) for exploring reactions important in understanding the structure of the nucleus and nuclear astrophysical phenomena has motivated the construction of facilities dedicated to their production and acceleration. Many facilities utilize the isotope-separator-on-line (ISOL) method in which species of interest are generated within a solid or liquid target matrix. Experimentally useful RIBs are often difficult to generate by this technique because of the times required for diffusion from the interior of the target material, and to effusively transport the species of interest to the ion source following diffusion release in relation to its lifetime. Therefore, these delay times must be minimized. We have developed an experimental method that can be used to determine effusive-flow times of arbitrary geometry target/vapor transport systems. The technique utilizes a fast valve to measure effusive-flow times as short as 0.1 ms for any chemically active or inactive species through any target system, independent of size, geometry and materials of construction. In this report, we provide a theoretical basis for effusive flow through arbitrary geometry vapor transport systems, describe a universal experimental apparatus for measuring effusive-flow times, and provide time spectra for noble gases through prototype RIB target/vapor-transport systems

  4. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    CERN Document Server

    Goodacre, T Day

    2017-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  5. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  6. Secondary beams at GANIL

    International Nuclear Information System (INIS)

    Doubre, H.

    1992-01-01

    GANIL, a user's facility since 1983, can deliver a broad spectrum of heavy-ion beams, from He to U, to well-equipped experimental areas. Their very large intensities are to be exploited to produce secondary beams, either using the fragmentation method (beams at energy per nucleon larger than 30 MeV/u), or the ISOL method. With the latter one, these ions have to be re-accelerated. The project of a cyclotron as a post-accelerator is described. (author) 11 refs.; 7 figs.; 3 tabs

  7. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  8. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  9. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  10. Recent results in the study of exotic nuclei using the 'Radioactive Ion Beams in Brazil' (RIBRAS) facility

    Energy Technology Data Exchange (ETDEWEB)

    Lepine-Szily, A.; Lichtenthaeler, R.; Guimaraes, V.; Alcantara Nunez, J.; Benjamim, E.A.; Faria, P.N. de; Leistenschneider, E.; Gasques, L.R.; Morais, M.C.; Pampa Condori, R.; Pires, K.C.C.; Scarduelli, V.; Zamora, J.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Mendes Junior, D.R.; Morcelle, V. [Universidade Federal Fluminense (IF/UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Descouvemont, P. [Universite Libre de Bruxelles (Belgium). Physique Nucleaire Theorique et Physique Matematique; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Moro, A.M. [Universidad de Sevilla (Spain). Fac. de Fisica. Dept. de Fisica Atomica, Molecular y Nuclear (FAMN); Arazi, A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Lab. TANDAR; Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    Full text: The 'Radioactive Ion Beams in Brasil' (RIBRAS) facility consists of two super-conducting solenoids of maxi- mum magnetic field B 6.5T, coupled to the 8UD-Pelletron tandem Accelerator installed at the University of Sao Paulo Physics Institute. It is the first radioactive beam facility of the Southern Hemisphere. The production mechanism of the radioactive ions is by transfer reactions, using {sup 9}Be, {sup 3}He, LiF and other production targets, and the forward focused reaction products are selected and focalized by the solenoids into a scattering chamber. Low energy (3-5 MeV/u) radioactive beams of {sup 6}He, {sup 8}Li, {sup 7,10}Be and {sup 8,12}B are produced currently and used to study elastic, inelastic, and transfer reactions on a variety of light, medium mass and heavy ({sup 9}Be, {sup 12}C, {sup 27}Al, {sup 51}V and {sup 120}Sn) secondary targets. The data are analyzed, using most of the time, the Sao Paulo Potential (SPP) and compared to optical model and continuum discretized coupled-channels (CDCC) calculations. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Some examples of reactions recently studied are {sup 1}H({sup 8}Li,{sup 4}He){sup 5}He, {sup 1}H({sup 8}Li,{sup 1}H){sup 8}Li using thick (CH{sub 2}){sub n} targets to measure their excitation functions. The transfer reaction {sup 12}C({sup 8}Li,{sup 4}He){sup 16}N, leading to well defined excited states of {sup 16}N, through the transfer of {sup 4}H or the sequential decay {sup 3}H+n, is also being studied. (author)

  11. ELSA, a proposed stretcher and post accelerator for the Bonn 2.5 GeV electron synchrotron

    International Nuclear Information System (INIS)

    Althoff, K.H.; Brefeld, W.; Drachenfels, W. von; Fischer, H.M.; Hofmann, M.; Husmann, D.; Knop, G.; Lindenberg, W.; Nietzel, Ch.; Nolden, F.; Noeldeke, G.; Paul, W.; Reichmann, K.; Schittko, F.J.

    1980-01-01

    ELSA (Electron Stretcher and Accelerator) operates in two different modes. Up to the maximum energy of the synchrotron it works at a constant magnetic field. The electrons from the synchrotron which runs at 50 Hz repetition rate are injected, stored and ejected at a constant rate. In this operation made the macroscopic duty cycle is 95 % at least. In the case of post acceleration which is possible up to 3.5 GeV the duty cycle is reduced to 70 %. The intensity in this operation mode is 6 % of that in the stretcher mode. Higher intensities are available at lower duty cycle. ELSA mainly is designed to feed a tagged photon facility. (Auth.)

  12. ELSA, a stretcher and post accelerator for the Bonn 2.5 GeV electron synchrotron

    International Nuclear Information System (INIS)

    Husmann, D.

    1983-03-01

    ELSA (Electron Stretcher and Accelerator) operates in two different modes. Up to the maximum energy of the synchrotron it works at a constant magnetic field. The electrons from the synchrotron which runs at 50 Hz repetition rate are injected, stored, and ejected at a constant rate. In this operation mode the macroscopic duty cycle is 95% at least. In the operation mode of post acceleration which is possible up to 3.5 GeV the duty cycle is reduced to 60%. The intensity in this operation mode is 5% of that in the stretcher mode. Higher intensities are available at lower duty cycle. ELSA mainly is dedicated to feed a tagged photon facility. (orig.)

  13. ELSA, a stretcher and post accelerator for the BONN 2.5-GeV electron synchrotron

    International Nuclear Information System (INIS)

    Husmann, D.

    1983-01-01

    ELSA (Electron Stretcher and Accelerator) operates in two different modes. Up to the maximum energy of the synchrotron it works at a constant magnetic field. The electrons from the synchrotron which runs at 50 Hz repetition rate are injected, stored, and ejected at a constant rate. In this operation mode the macroscopic duty cycle is 95 % at least. In the operation mode of post acceleration which is possible up to 3.5 GeV the duty cycle is reduced to 60 %. The intensity in this operation mode is 5 % of that in the stretcher mode. Higher intensities are available at lower duty cycle. ELSA mainly is dedicated to feed a tagged photon facility

  14. Use of Radioactive Ion Beams for Biomedical Research 1. in vivo labelling of monoclonal antibodies with radio-lanthanides and $^{225}$Ac

    CERN Multimedia

    2002-01-01

    % IS330 \\\\ \\\\\\begin{enumerate} \\item The aim of this study was to contribute to developments of new radiopharmaceuticals for tumour diagnosis and therapy. CERN-ISOLDE is the leading facility in the world to provide radioactive ion beams with high selectivity, purity and intensity. Radioisotope production by spallation makes available a complete range of rare earth isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. The availability of exotic nuclei, e.g. radionuclides of rare earth elements and $^{225}$Ac, opens new possibilities for the development of radiopharmaceuticals for diagnosis and therapy.\\\\ \\\\ \\item Two approaches were followed within the experimental program. The radioactive metal ions are bound either to bio-specific ligands (monoclonal antibodies or peptides) or to unspecific low molecular weight form. The aim of the experimental program is to evaluate relationships between physico-chemical parameters of the tracer m...

  15. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  16. First radioactive ions charge bred in REXEBIS at the REX-ISOLDE accelerator

    CERN Document Server

    Wolf, B H; Fostner, O; Wenander, F; Ames, F; Reisinger, K; Liljeby, L; Skeppstedt, Ö; Jonson, B; Nyman, G H

    2003-01-01

    REXEBIS is the charge breeder of the REX-ISOLDE post accelerator. The radioactive 1$^{+}$ ions produced at ISOLDE are accumulated, phase-space cooled and bunched in the REXTRAP, and thereafter injected into the EBIS with an energy up to 60 keV. The REXEBIS produced the first charge bred ions in August 2001 and has been running nearly non-stop during September to December 2001. It has delivered stable $^{39}$K$^{10+}$ and $^{23}$Na$^{6+}$ beams generated in the ion source in front of REXTRAP with a Na$^{7+}$ current exceeding 70 pA (6x10$^{7}$ p/s). Stable $^{27}$Al$^{7+}$ and $^{23}$Na$^{6+}$ from ISOLDE and also the first radioactive $^{26}$Na$^{7+}$ and $^{24}$Na$^{7+}$ beams (just 5x10$^{5}$ p/s) have been charge bred and accelerated for tests of the experimental setup. Despite some problems with the electron gun, which had one breakdown after about 1500 hours of operation and displays slow changes of the emission conditions, the EBIS is working remarkably stable (24 hours / 7 days a week). We will report ...

  17. Obtaining Empirical Validation of Shape-Coexistence in the Mass 70 Region: Coulomb Excitation of a Radioactive Beam of $^{70}$Se

    CERN Multimedia

    Andreoiu, C; Paul, E S; Czosnyka, T; Hammond, N

    2002-01-01

    We propose to study the Coulomb excitation of a radioactive beam of $^{70}$Se at 2.2 MeV/u obtained from the REX-ISOLDE facility in order to determine the sign of the quadrupole moment and, hence, the sign of the quadrupole deformation. Calculations suggest a 33~\\% sensitivity in Coulomb excitation yield for a nickel target depending on whether the nuclear shape is oblate or prolate. Such a determination would provide compelling evidence for the presence of oblate shapes in the vicinity of N=Z=34.

  18. Form coexistence in light krypton nuclei. Isomeric spectroscopy of 72,74Kr nuclei and Coulomb excitation of the 76Kr radioactive beam

    International Nuclear Information System (INIS)

    Bouchez, Emmanuelle

    2003-01-01

    The first part of this research thesis proposes an overview of the different theoretical calculations elaborated in the region of light krypton nuclei, and of published experimental results. The second part reports the electron and gamma isomeric spectroscopy of 72,74 Kr nuclei after fragmentation of the projectile by a magnetic separator (experimental installation, experimental results, discussion). The third part reports the study of the Coulomb excitation of the 76 Kr radioactive beam (method and experimental installation, data analysis and results in terms of germanium and silicon spectra, and form of the 76 Kr)

  19. Developments of the ISOLDE RILIS for radioactive ion beam production and the results of their application in the study of exotic mercury isotopes

    CERN Document Server

    AUTHOR|(CDS)2086245; Marsh, Bruce

    This work centres around development and applications of the Resonance Ionization Laser Ion Source (RILIS) of the ISOLDE radioactive ion beam facility based at CERN. The RILIS applies step-wise resonance photo-ionization, to achieve an unparalleled degree of element selectivity, without compromising on ion source efficiency. Because of this, it has become the most commonly used ion source at ISOLDE, operating for up to 75% of ISOLDE experiments. In addition to its normal application as an ion source, the RILIS can be exploited as a spectroscopic tool for the study of nuclear ground state and isomer properties, by resolving the influence of nuclear parameters on the atomic energy levels of the ionization scheme. There are two avenues of development by which to widen the applicability of the RILIS: laser ionization scheme development, enabling new or more efficient laser ionized ion beams and the development of new laser-atom interaction regions. New ionization schemes for chromium, tellurium, germanium, mercu...

  20. On the feasibility of producing secondary radioactive nuclear beams using reactions in reversed geometries at HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Bai Xixiang; Liu Weiping

    1993-01-01

    Some of (p,n),(d,p),(d,n) and (d, 3 He) reactions involving heavy-ions in reversed geometries are proposed for producing the kinematically compressed beams of ions such as 6 He, 7 Be, 8 Li, 11 C, 12 B, 13 N, 15 O and 17 F. A simple facility being constructed to produce and utilize these beams is briefly described

  1. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  2. Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver

    International Nuclear Information System (INIS)

    Ponton, A.

    2009-07-01

    EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)

  3. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    International Nuclear Information System (INIS)

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-01-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10 –9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10 13 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al

  4. Charge Breeding of Radioactive Ions in an Electron Cyclotron Resonance Ion Source(ECRIS) at ISOLDE

    CERN Multimedia

    Lindroos, M

    2002-01-01

    The development of an efficient charge breeding scheme for the next generation of RIB facilities will have a strong impact on the post-accelerator for several Radioactive Ion Beam (RIB) projects at European large scale facilities. At ISOLDE/CERN there will be the unique possibility to carry out experiments with the two possible charge breeding set-ups with a large variety of radioactive isotopes using identical injection conditions. One charge breeding set-up is the Penning trap/EBIS combination which feeds the REX-ISOLDE linear accelerator and which is in commissioning now. The second charge breeder is a new ECRIS PHOENIX developed at the ISN ion source laboratory at Grenoble. This ECRIS is now under investigation with a 14 GHz amplifier to characterize its performance. The experiments are accompanied by theoretical studies in computer simulations in order to optimize the capture of the ions in the ECRIS plasma. A second identical PHOENIX ECRIS which is under investigation at the Daresbury Laboratory is avai...

  5. A novel recession rate physics methodology for space applications at CIRA by means of CIRCE radioactive beam tracers

    Science.gov (United States)

    De Cesare, M.; Di Leva, A.; Del Vecchio, A.; Gialanella, L.

    2018-03-01

    Thermal protection systems (TPSs) of spacecrafts, either for single use or reusable, experience wear by ablation and erosion, due to the high heat fluxes during a re-entry phase in the atmosphere. The determination of the wear rate is a crucial point, which is presently mainly possible in aerospace on-ground measurements by means of invasive diagnostics. The purpose of this paper is to present novel contactless, online, high-sensitivity and non-intrusive diagnostics for wear measurements based on radioactive tracers. We propose the technique for future on-ground experiments that might later be developed to perform in-flight TPSs monitoring, thus significantly increasing the safety of the aerospace vehicles. The basic ideas of the method, its sensitivity investigated by GEANT4 simulations, and the future experimental validation are outlined.

  6. A very large Paul trap system for in-line capture of high-energy DC radioactive ion beams

    International Nuclear Information System (INIS)

    Dezfuli, A.M. Ghalambor; Moore, R.B.; Varfalvy, P.; Schwarz, S.

    2002-01-01

    A very large Paul trap (VLPTRAP) has built to test in-flight collection of DC ion beams. An iterative design process led to a Paul trap that was basically a cylindrical electrode of internal diameter 120 mm with two symmetrically placed coaxial end electrodes that approximated hyperboloids of revolution separated by 106 mm. The trap was operated at up to 20 kV pp at 1 MHz on the ring cylindrical electrode relative to the end electrodes with buffer gas pressures up to 40 mPa. Ions were delivered to the trap from a 60 keV + Cs ion gun and electrostatically decelerated to about 100 eV for entrance. After a cooling time of the order of 1 ms, the ions were extracted by biasing the end electrodes. Beam pulses of less than 1 s could be extracted, at repetition rates down to 1 Hz. An overall bunching efficiency of about 0.4% was obtained, resulting from a collection efficiency of 2% and an extraction efficiency of 20%. The trap could hold up to 10 7 ions at a temperature of 1000 K

  7. Fusion using radioactive ion beams

    Indian Academy of Sciences (India)

    of the above-barrier cross-section with respect to these theoretical models are also ... projectiles, one expects higher survival probability for completely fused ... the theoretical models (see figure 1 of [10]). .... Monte Carlo simulation to be 20%.

  8. Use of electron beams for the production of radioactive nuclei through photo-fission; Utilisation de faisceaux d'electrons pour la production des noyaux radioactifs par photo-fission

    Energy Technology Data Exchange (ETDEWEB)

    M' garrech, Slah

    2004-09-01

    The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 {mu}A average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  9. Radioactive Decay

    Science.gov (United States)

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  10. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  11. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  12. Using radioactivity

    International Nuclear Information System (INIS)

    1982-10-01

    The leaflet discusses the following: radioactivity; radioisotopes; uses of ionising radiations; radioactivity from (a) naturally occurring radioactive elements, and (b) artificially produced radioisotopes; uses of radioactivity in medicine, (a) clinical diagnostic, (b) therapeutic (c) sterilization of medical equipment and materials; environmental uses as tracers; industrial applications, e.g. tracers and radiography; ensuring safety. (U.K.)

  13. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  14. Radioactive beams produced by the ISOL method: development for laser ionization and for surface ionization; Faisceaux exotiques par methode ISOL: developpements pour l'ionisation par laser et l'ionisation de surface

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Faouzi

    2004-10-01

    The works were carried out in the framework of the research program PARRNe (production of radioactive neutron-rich nuclei). This program aims to determine optimal conditions to produce intense beams of neutron-rich isotopes. This thesis treats multiple technical aspects related to the production of separate radioactive isotopes in line (ISOL). It deals mainly with the development of the target-source unit which is the key element for projects such as SPIRAL-2 or EURISOL.The first part presents the various methods using fission as production mode and compares them: fission induced by thermal neutrons, induced by fast neutrons and photofission. The experiment carried out at CERN validated the interest of the photofission as a promising production mode of radioactive ions. That is why the institute of nuclear physics of Orsay decided to build a linear electron accelerator at the Tandem d'Orsay (ALTO).The second part of this thesis deals with the development of uranium targets. The X-rays diffraction and Scanning Electron Microscopy have been used as analysis techniques. They allowed to determine the chemical and structural characteristics of uranium carbide targets as function of various heating temperatures. After the production, the process of ionization has been studied. Two types of ion source have been worked out: the first one is a surface ion source and the second one is a source based on resonant ionization by laser. These two types of sources will be used for the ALTO project. (author)

  15. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  16. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes; Ionisation resonante par faisceaux laser: application aux sources d'ions et a l'etude de la structure des noyaux radioactifs de tellure

    Energy Technology Data Exchange (ETDEWEB)

    Sifi, R

    2007-07-15

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  17. Radioactive source

    International Nuclear Information System (INIS)

    Drabkina, L.E.; Mazurek, V.; Myascedov, D.N.; Prokhorov, P.; Kachalov, V.A.; Ziv, D.M.

    1976-01-01

    A radioactive layer in a radioactive source is sealed by the application of a sealing layer on the radioactive layer. The sealing layer can consist of a film of oxide of titanium, tin, zirconium, aluminum, or chromium. Preferably, the sealing layer is pure titanium dioxide. The radioactive layer is embedded in a finish enamel which, in turn, is on a priming enamel which surrounds a substrate

  18. Radioactivity metrology

    International Nuclear Information System (INIS)

    Legrand, J.

    1979-01-01

    Some aspects of the radioactivity metrology are reviewed. Radioactivity primary references; absolute methods of radioactivity measurements used in the Laboratoire de Metrologie des Rayonnements Ionisants; relative measurement methods; traceability through international comparisons and interlaboratory tests; production and distribution of secondary standards [fr

  19. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  20. 14. Euro summer school on exotic beams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This school is intended for thesis students and young post-docs working in areas related to radioactive beams. It consists of several lecture courses given by specialists in their field, starting from a basic level. This document gathers only the slides of the following presentations: 1) clusters in nuclei, 2) the production of radioactive ion beams - in-flight methods, 3) ab-initio calculations for light nuclei, 4) the production of radioactive ion beams - ISOL methods, 5) neutrons for science, and 6) the production of radioactive ion beams - charge breeding.

  1. 14. Euro summer school on exotic beams

    International Nuclear Information System (INIS)

    2007-01-01

    This school is intended for thesis students and young post-docs working in areas related to radioactive beams. It consists of several lecture courses given by specialists in their field, starting from a basic level. This document gathers only the slides of the following presentations: 1) clusters in nuclei, 2) the production of radioactive ion beams - in-flight methods, 3) ab-initio calculations for light nuclei, 4) the production of radioactive ion beams - ISOL methods, 5) neutrons for science, and 6) the production of radioactive ion beams - charge breeding

  2. Radioactive battery

    International Nuclear Information System (INIS)

    Deaton, R.L.; Silver, G.L.

    1975-01-01

    A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)

  3. Neutron and proton transmutation-activation cross section libraries to 150 MeV for application in accelerator-driven systems and radioactive ion beam target-design studies

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.; MacFarlane, R.E.; Mashnik, S.; Wilson, W.B.

    1998-05-01

    New transmutation-activation nuclear data libraries for neutrons and protons up to 150 MeV have been created. These data are important for simulation calculations of radioactivity, and transmutation, in accelerator-driven systems such as the production of tritium (APT) and the transmutation of waste (ATW). They can also be used to obtain cross section predictions for the production of proton-rich isotopes in (p,xn) reactions, for radioactive ion beam (RIB) target-design studies. The nuclear data in these libraries stem from two sources: for neutrons below 20 MeV, we use data from the European activation and transmutation file, EAF97; For neutrons above 20 MeV and for protons at all energies we have isotope production cross sections with the nuclear model code HMS-ALICE. This code applies the Monte Carlo Hybrid Simulation theory, and the Weisskopf-Ewing theory, to calculate cross sections. In a few cases, the HMS-ALICE results were replaced by those calculated using the GNASH code for the Los Alamos LA150 transport library. The resulting two libraries, AF150.N and AF150.P, consist of 766 nuclides each and are represented in the ENDF6-format. An outline is given of the new representation of the data. The libraries have been checked with ENDF6 preprocessing tools and have been processed with NJOY into libraries for the Los Alamos transmutation/radioactivity code CINDER. Numerous benchmark figures are presented for proton-induced excitation functions of various isotopes compared with measurements. Such comparisons are useful for validation purposes, and for assessing the accuracy of the evaluated data. These evaluated libraries are available on the WWW at: http://t2.lanl.gov/. 21 refs

  4. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  5. New radioactivities

    International Nuclear Information System (INIS)

    Greiner, W.; Sandulescu, A.

    1996-01-01

    Some atomic nuclei reorganize their structure by ejection of big protons and neutrons aggregates. The observation of these new radioactivities specifies the theories of the nuclear dynamics. (authors)

  6. Radioactive materials

    International Nuclear Information System (INIS)

    Sugiura, Yoshio; Shimizu, Makoto.

    1975-01-01

    The problems of radioactivity in the ocean with marine life are various. Activities in this field, especially the measurements of the radioactivity in sea water and marine life are described. The works first started in Japan concerning nuclear weapon tests. Then the port call to Japan by U.S. nuclear-powered naval ships began. On the other hand, nuclear power generation is advancing with its discharge of warm water. The radioactive pollution of sea water, and hence the contamination of marine life are now major problems. Surveys of the sea areas concerned and study of the radioactivity intake by fishes and others are carried out extensively in Japan. (Mori, K.)

  7. Radioactivity Handbook

    International Nuclear Information System (INIS)

    Firestone, R.B.; Browne, E.

    1985-01-01

    The Radioactivity Handbook will be published in 1985. This handbook is intended primarily for applied users of nuclear data. It will contain recommended radiation data for all radioactive isotopes. Pages from the Radioactivity Handbook for A = 221 are shown as examples. These have been produced from the LBL Isotopes Project extended ENDSF data-base. The skeleton schemes have been manually updated from the Table of Isotopes and the tabular data are prepared using UNIX with a phototypesetter. Some of the features of the Radioactivity Handbook are discussed here

  8. Transfer vs. Breakup in the interaction of the 7Be Radioactive Ion Beam with a 58Ni target at Coulomb barrier energies

    Directory of Open Access Journals (Sweden)

    Mazzocco M.

    2014-03-01

    Full Text Available We measured for the first time 7Be elastically scattered nuclei as well as 3,4He reaction products from a 58Ni target at 22.3 MeV beam energy. The data were analyzed within the optical model formalism to extract the total reaction cross section. Extensive kinematical, Distorted Wave Born Approximation (DWBAand Continuum Discretized Coupled Channel (CDCC calculations were performed to investigate the 3,4He originating mechanisms and the interplay between different reaction channels.

  9. Radioactivity. Centenary of radioactivity discovery

    International Nuclear Information System (INIS)

    Charpak, G.; Tubiana, M.; Bimbot, R.

    1997-01-01

    This small booklet was edited for the occasion of the exhibitions of the celebration of the centenary of radioactivity discovery which took place in various locations in France from 1996 to 1998. It recalls some basic knowledge concerning radioactivity and its applications: history of discovery, atoms and isotopes, radiations, measurement of ionizing radiations, natural and artificial radioactivity, isotope dating and labelling, radiotherapy, nuclear power and reactors, fission and fusion, nuclear wastes, dosimetry, effects and radioprotection. (J.S.)

  10. Determination of the 13N(p,γ)14O reaction rate through the Coulomb break-up of a 14O radioactive beam

    International Nuclear Information System (INIS)

    Kiener, J.; Lefebvre, A.; Aguer, P.; Bogaert, G.; Coc, A.; Pasquier, G.; Thibaud, J.P.; Bacri, C.O.; Bimbot, R.; Borderie, B.; Clapier, F.; Fortier, S.; Rivet, M.F.; Stephan, C.; Tassan-Got, L.; Disdier, D.; Kraus, L.; Linck, I.; Grunberg, C.; Laurent, F.S.

    1993-01-01

    In stellar-evolution models, the 13 N(p,γ) 14 O reaction plays an important role in the hot CNO cycle. Its reaction rate depends directly on the magnitude of the radiative width of the 5.17 MeV level in 14 O. That width has been measured using the Coulomb break-up technique. A 70 MeV/u 14 O beam was excited in the Coulomb field of a 208 Pb target, the 13 N and proton fragments being recorded using a magnetic spectrometer and CsI scintillators, respectively. The experimental value Γ γ =2.4±0.9 eV in overall agreement with other recent measurements. (orig.)

  11. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium.

  12. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  13. Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines

    International Nuclear Information System (INIS)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S.

    2014-01-01

    In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented

  14. Shape coexistence in krypton and selenium light isotopes studied through Coulomb excitation of radioactive ions beams; Etude de la coexistence de formes dans les isotopes legers du krypton et du selenium par excitation Coulombienne de faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E

    2006-06-15

    The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr{sup 78} to oblate in Kr{sup 72} with strong mixing of the configurations in Kr{sup 74} and Kr{sup 76} was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr{sup 74} and Kr{sup 76} beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se{sup 68} nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)

  15. Simulated Radioactivity

    Science.gov (United States)

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  16. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  17. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  18. Radioactive pollution

    International Nuclear Information System (INIS)

    Steiner, R.

    1987-01-01

    In the wake of the Chernobyl reactor accident on April 26, 1986, many individual values for radioactivity in the air, in foodstuffs and in the soil were measured and published. Prof. Dr. Rolf Steiner, Wiesbaden, the author of this paper, evaluated the host of data - mostly official pollution data -, drew conclusions regarding the radioactivity actually released at Chernobyl, and used the data to test the calculation model adotped by the Radiation Protection Ordinance. (orig./RB) [de

  19. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  20. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  1. Radioactive wastes

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    2007-01-01

    Managing radioactive wastes used to be a peripheral activity for the French atomic energy commission (Cea). Over the past 40 years, it has become a full-fledged phase in the fuel cycle of producing electricity from the atom. In 2005, the national radioactive waste management agency (ANDRA) presented to the government a comprehensive overview of the results drawn from 15 years of research. This landmark report has received recognition beyond France's borders. By broadening this agency's powers, an act of 28 June 2006 acknowledges the progress made and the quality of the results. It also sets an objective for the coming years: work out solutions for managing all forms of radioactive wastes. The possibility of recovering wastes packages from the disposal site must be assured as it was asked by the government in 1998. The next step will be the official demand for the creation of a geological disposal site in 2016

  2. Radioactivity measurement

    International Nuclear Information System (INIS)

    Bohme, R.F.; Lazerson, M.M.

    1984-01-01

    A problem with ore sorting arrangements is that radiation is difficult to measure accurately while particles are moving at speed past the detector. This is particulary so when dealing with ores such as gold ores which have weak emissions. A method of measuring radioactive emissions from moving radioactive material includes the steps of shielding the radiation detector(s) so that the angle of acceptance of the receptor surface is restricted, and further shielding the shielded portion of the detector with a second material which is less radiation emissive than the material of the first shield. This second shield is between the first shield and the detector

  3. The 8Li + 2H reaction studied in inverse kinematics at 3.15 MeV/nucleon using the REX-ISOLDE post-accelerator

    DEFF Research Database (Denmark)

    Tengborn, E.; Moro, A.M.; Nilsson, T.

    2011-01-01

    identified and the related angular distributions extracted and compared with coupled-channels, distorted-wave Born approximation (DWBA), and coupled-reaction-channels calculations. For the inelastic and (d,t) channels we find that higher order effects are very important and hence one needs to go beyond......The reaction 8Li + 2H has been studied in inverse kinematics at the incident energy of 3.15 MeV/nucleon, using the REX-ISOLDE post-accelerator. The reaction channels corresponding to (d,p), (d,d), and (d,t) reactions populating ground states and low-lying excited states in 7–9Li have been...

  4. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  5. Radioactivity measurements

    International Nuclear Information System (INIS)

    Schwach, G.

    1986-01-01

    This is an overview of radioactivity monitoring work done in the Austrian Research Centre Seibersdorf in the wake of the Chernobyl accident. It consists of air, rainwater, food and personnel monitoring. Additional services to the public are: information and development of a database and a computer code for predicting future radionuclide concentration in air, soil, water and food. (G.Q.)

  6. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  8. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  9. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  10. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  11. Radioactive waste

    International Nuclear Information System (INIS)

    Berkhout, F.

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author)

  12. Radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Berkhout, F

    1991-01-01

    Focusing on radioactive waste management and disposal policies in the United Kingdom, Sweden and the Federal Republic of Germany, this book gives a detailed historical account of the policy process in these three countries, and draws out the implications for theory and public policy. This comparative approach underlines how profoundly different the policy process has been in different countries. By comparing the evolution of policy in three countries, fundamental questions about the formation and resolution of technical decisions under uncertainty are clarified. The analysis of nuclear strategy, the politics of nuclear power, and the shifting emphasis of government regulation redefines the issue of radwaste management and sets it at the heat of the current debate about power, the environment and society. The combination of up-to-date technological assessment with an account of the social and political implications of radwaste management makes'Radioactive Waste'particularly useful to students of environmental studies, geography and public administration. (author).

  13. Radioactive transformations

    CERN Document Server

    Rutherford, Ernest

    2012-01-01

    Radioactive Transformations describes Ernest Rutherford's Nobel Prize-winning investigations into the mysteries of radioactive matter. In this historic work, Rutherford outlines the scientific investigations that led to and coincided with his own research--including the work of Wilhelm Rӧntgen, J. J. Thomson, and Marie Curie--and explains in detail the experiments that provided a glimpse at special relativity, quantum mechanics, and other concepts that would shape modern physics. This new edition features a comprehensive introduction by Nobel Laureate Frank Wilczek which engagingly explains how Rutherford's early research led to a better understanding of topics as diverse as the workings of the atom's nucleus, the age of our planet, and the fusion in stars.

  14. Beam-time for biology

    CERN Multimedia

    Jordan Juras

    2010-01-01

    There's no question that playing with mercury or handling radioactive cadmium with your bare hands is a risky business. But understanding how these and other toxic metals interact with biomolecules within the body is a challenging feat; one for which the ISOLDE IS488 collaboration hopes to provide valuable insight.   General view of the ISOLDE experimental area. Unlike most of the facilities at CERN's accelerator complex, ISOLDE is not targeted mainly at particle physics. Rather, it produces radioactive nuclei during proton bombardment to study, among other things, physical and biological chemistry. At ISOLDE, the 1.4 GeV proton beam of the PS Booster (an early stage in CERN's accelerator complex) produces nuclear reactions in a thick target, creating a large variety of radioactive nuclei, which are mass-separated for use in experiments. In the case of the IS488 collaboration, the ion beam is directed into ice. "We implant radioactive metal ions into ice", explains Monika Stac...

  15. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  16. Radiofrequency quadrupole-based beam cooler and buncher for the CANREB project at TRIUMF

    Science.gov (United States)

    Barquest, Brad; Pearson, Matt; Ames, Friedhelm; Dilling, Jens; Gwinner, Gerald; Kanungo, Rituparna; Kruecken, Reiner

    2016-09-01

    A new radiofrequency quadrupole-based ion beam cooler and buncher (BCB) and pulsed drift tube (PDT) have been designed as part of the CANREB project at TRIUMF. The BCB is designed to accept continuous 60 keV rare isotope beams from the ARIEL or ISAC production targets and efficiently deliver low-emittance, bunched beams of up to 107 ions per bunch to an electron beam ion source (EBIS) to charge-breed the bunch for post-acceleration. The PDT will adjust the energy of the bunched beam from 60 keV to 10-14 keV for injection into the EBIS. The injection energy is determined by the acceptance of the post-accelerating RFQ. The design of the BCB is nearing completion, and fabrication and assembly effort will proceed shortly. In addition, a PDT prototype is under development to test that the design concept satisfies the voltage and switching time requirements. Design features of the BCB and PDT will be discussed, and an update on BCB assembly and PDT testing progress will be presented. CANREB is funded by CFI, NSRIT, Manitoba Research and Innovation Fund, AAPS, Saint Mary's U, U of Manitoba and TRIUMF. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  17. Status of ACCULINNA beam line

    CERN Document Server

    Rodin, A M; Bogdanov, D D; Golovkov, M S; Fomichev, A S; Sidorchuk, S I; Slepnev, R S; Wolski, R; Ter-Akopian, G M; Oganessian, Yu T; Yukhimchuk, A A; Perevozchikov, V V; Vinogradov, Yu I; Grishenchkin, S K; Demin, A M; Zlatoustovskii, S V; Kuryakin, A V; Filchagin, S V; Ilkaev, R I

    2003-01-01

    The separator ACCULINNA was upgraded to achieve new experimental requirements. The beam line was extended by new ion-optical elements beyond the cyclotron hall. The new arrangements yield much better background conditions. The intensities of sup 6 He and sup 8 He radioactive beams produced in fragmentation of 35 A MeV sup 1 sup 1 B ions were increased up to a factor of 10. The upgraded beam line was used in experiments to study the sup 5 H resonance states populated in the t+t reaction. A cryogenic liquid tritium target was designed and installed at the separator beam line.

  18. Radioactive hazards

    International Nuclear Information System (INIS)

    Gill, J.R.

    1980-01-01

    The use of radioactive substances in hospital laboratories is discussed and the attendant hazards and necessary precautions examined. The new legislation under the Health and Safety at Work Act which, it is proposed, will replace existing legal requirements in the field of health and safety at work by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare already established, is considered with particular reference to protection against ionising radiations. (UK)

  19. Radioactive substances

    International Nuclear Information System (INIS)

    Butler, G.C.; Hyslop, C.

    1980-01-01

    The purpose of this chapter is to show how to assess the detriment resulting from the release of radioactive materials to the environment. The minimum information required for the assessments is given for seven radionuclides of interest from the point of view of environmental contamination. The seven radionuclides are tritium, krypton-85, strontium-90, iodine-131, cesium-137, radium-226 and plutonium-239. Information is given on the radiation doses and the radiation effects on man due to these radioisotopes. (AN)

  20. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  1. Nuclear physics with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kozub, Raymond L. [Tennessee Technological Univ., Cookeville, TN (United States)

    2015-07-23

    This is a final report on DOE Grant No. DE FG02 96ER40955, which was active at Tennessee Technological University (TTU) from 1 March 1996 to 29 May 2015. Generally, this report will provide an overall summary of the more detailed activities presented in the progress reports, numbered DOE/ER/40955-1 through DOE/ER/40955-18, which were submitted annually to the DOE Office of Nuclear Physics.

  2. Euroschool on Exotic Beams

    CERN Document Server

    Pfützner, Marek

    2018-01-01

    This is the fifth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II as LNP 700, Vol. III as LNP 764 and Vol. IV as LNP 879.

  3. Radioactivity telemetry

    International Nuclear Information System (INIS)

    Bouras, Florent; Legrand, Bernard; Montigaud, Jean-Marie; Grandin, Marc

    1969-05-01

    The authors present an assembly which aims at radio-transmitting from mobile stations information on radioactivity. It comprises 20 mobile stations which can be located within the Cadarache Centre or outside of it within a 10 km radius, and a central station which centralises information. The report proposes a general presentation of these stations, their characteristics and principles of operation. It describes operation sequences, central station functions (call programmer, address and memory management, recording, peripherals) and its energy supply, and mobile station functions. The last part presents the installation, its start-up and exploitation, its threshold devices and its safety device

  4. Installation And Test Of Electron Beam Generation System To Produce Far-Infrared Radiation And X-Ray Pulses

    International Nuclear Information System (INIS)

    Wichaisirimongkol, Pathom; Jinamoon, Witoon; Khangrang, Nopadon; Kusoljariyakul, Keerati; Rhodes, Michael W.; Rimjaem, Sakhorn; Saisut, Jatuporn; Chitrlada, Thongbai; Vilaithong, Thiraphat; Wiedemann, Helmut

    2005-10-01

    SURIYA project at the Fast Neutron Research Facility, Chiang Mai University, aims to establish a facility to generate femtosecond electron beams. This electron beam can be used to generate high intensity far-infrared radiation and ultra-short X-ray pulses. The main components of the system are a 3 MeV RF electron gun with a thermionic cathode, an a-magnet as a bunch compressor, and post acceleration 15-20 MeV by a linear accelerator (linac). Between the main components, there are focusing quadrupole magnets and steering magnets to maintain the electron beam within a high vacuum tube. At the end of the beam transport line, a dipole magnet has been installed to function as a beam dump and an energy spectrometer. After the installation and testing of individual major components were completed, we have been investigating the generation of the electron beam, intense far- infrared radiation and ultra short X-ray pulses

  5. Splitting of high power, cw proton beams

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2007-09-01

    Full Text Available A simple method for splitting a high power, continuous wave (cw proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility design study. The aim of the system is to deliver up to 4 MW of H^{-} beam to the main radioactive ion beam production target, and up to 100 kW of proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fraction of the main H^{-} beam, magnetic splitting of H^{-} and H^{0}, and stripping of H^{0} to H^{+}. The method allows slow raising and individual fine adjustment of the beam intensity in each branch.

  6. Environmental Radioactivity. Chapter 4

    International Nuclear Information System (INIS)

    Muhamat Omar; Ismail Sulaiman; Zalina Laili

    2015-01-01

    This chapter explains several things which consist radioactivity measurements, regular and high background radioactivity, radioactive contaminated soil and radioactivity in fertilizers, rocks, building materials, food, water, environments, sediments, flora and fauna. Besides, the natural radioactive gas concentration of radon and toron in the environment also been discussed specifically in this chapter.

  7. Radioactive wastes

    International Nuclear Information System (INIS)

    Straub, C.P.

    1975-01-01

    A review is presented on the environmental behavior of radioactive wastes. The management of high-level wastes and waste disposal methods were discussed. Some topics included were ore processing, coagulation, absorption and ion exchange, fixation, ground disposal, flotation, evaporation, transmutation and extraterrestrial disposal. Reports were given of the 226 Ra, 224 Ra and tritium activity in hot springs, 90 Sr concentrations in the groundwater and in White Oak Creek, radionuclide content of algae, grasses and plankton, radionuclides in the Danube River, Hudson River, Pacific Ocean, Atlantic Ocean, Lake Michigan, Columbia River and other surface waters. Analysis showed that 239 Pu was scavenged from Lake Michigan water by phytoplankton and algae by a concentration factor of up to 10,000. Benthic invertebrates and fish showed higher 239 Pu concentrations than did their pelagic counterparts. Concentration factors are also given for 234 Th, 60 Co, Fe and Mr in marine organisms. Two models for predicting the impact of radioactivity in the food chain on man were mentioned. In an accidental release from a light-water power reactor to the ocean, the most important radionuclides discharged were found to be 90 Sr, 137 Cs, 239 Pu and activation products 65 Zr, 59 Fe, and 95 Zr

  8. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  9. Radioactive colloids

    International Nuclear Information System (INIS)

    Bergqvist, L.

    1987-01-01

    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  10. Beam collimation and transport of laser-accelerated protons by a solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Tauschwitz, A; Bagnoud, V [GSI - Hemholtzzentrum fur Schwerionenforschung GmbH, Plasmaphysik and PHELIX, Planckstrasse 1, 64291 Darmstadt (Germany); Daido, H; Tampo, M [Photo Medical Research Center, JAEA, 8-1 Umemidai, Kizugawa-city, Kyoto, 619-0215 (Japan); Schollmeier, M, E-mail: k.harres@gsi.d [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2010-08-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10{sup 12} particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  11. Beam collimation and transport of laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M; Tauschwitz, A; Bagnoud, V; Daido, H; Tampo, M; Schollmeier, M

    2010-01-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10 12 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  12. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  13. The ideal neutrino beams

    Science.gov (United States)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  14. Accelerator complex for unstable beams at INS

    International Nuclear Information System (INIS)

    Tomizawa, M.; Arai, S.; Doi, M.; Katayama, T.; Niki, K.; Tokuda, N.; Yoshizawa, M.

    1992-11-01

    The construction of the prototype facility of the Exotic arena in the Japan Hadron Project (JHP) is started in 1992 at the Institute for Nuclear Study (INS), University of Tokyo. The purpose of this facility is to study the various technical problems of the Exotic arena, and to perform the experiment on nuclear and astrophysics with unstable nuclear beam. The unstable nuclei produced by bombarding a thick target with 40 MeV proton beam from the existing SF cyclotron are ionized in the ion sources, mass-analyzed by an ISOL, and transported to the accelerator complex. The accelerator complex consists of a split coaxial RFQ and an interdigital H type linac. The construction of accelerator will be completed in fiscal year 1994. The development of the SCRFQ and the IH linac which is suitable to the post-accelerator of the SCRFQ are reported. Charge stripper and the beam matching between the SCRFQ and the IH linac are explained. A buncher is necessary for the matching of longitudinal phase space between the SCRFQ and the IH linac. (K.I.)

  15. Low-intensity beam diagnostics with particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G. [INFN-LNS, Via S. Sofia 44/A Catania, 95125 (Italy); De Martinis, C.; Giove, D. [INFN-LASA, Via F.lli Cervi 201 Segrate (Midway Islands), 20090 (Italy)

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. {copyright} {ital 1997 American Institute of Physics.}

  16. Low-intensity beam diagnostics with particle detectors

    International Nuclear Information System (INIS)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G.; De Martinis, C.; Giove, D.

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. copyright 1997 American Institute of Physics

  17. Heavy-ion-linac post-accelerators

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1979-01-01

    The main features of the tandem-linac system for heavy-ion acceleration are reviewed and illustrated in terms of the technology and performance of the superconducting heavy-ion energy booster at Argonne. This technology is compared briefly with the corresponding technologies of the superconducting linac at Stony Brook and the room-temperature linac at Heidelberg. The performance possibilities for the near-term future are illustrated in terms of the proposed extension of the Argonne booster to form ATLAS

  18. Environmental radioactivity. Measurement and monitoring

    International Nuclear Information System (INIS)

    2009-11-01

    The contribution on environmental radioactivity covers the following issues: natural and artificial radioactivity; continuous monitoring of radioactivity; monitoring authorities and measurement; radioactivity in the living environment; radioactivity in food and feeding stuff; radioactivity of game meat and wild-growing mushrooms; radioactivity in mines; radioactivity in the research center Rossendorf.

  19. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  20. Environmental radioactivity

    International Nuclear Information System (INIS)

    1985-01-01

    Outline summary of a report prepared under contract to the DOE: Research Priorities and UK Estuaries: An Overview identifying Research Requirements. Topics considered include the study of radionuclides released into the NE Irish Sea from BNFL, Sellafields, differences in the isotopic composition of stable lead in various sediments, the concentration and distribution of 'hot particles' derived from BNFL in the Irish Sea and adjacent areas, together with attempts to separate hot particles from sediments, and the composition and properties of marine surfaces in relation to uptake and loss of radionuclides, particularly in relation to the common mussel, Mytilus edulis. The problem of the presence of transuranic radionuclides in the bottom sediments of the NE Irish Sea is considered. Profiles of radioactivity are being developed at the shelf-break in order to determine the transfer of radionuclides from the sea surface to the deep sea and to coastal waters; organisms examined include phytoplankton, zooplankton and crustacea (shrimps). Organisms such as Acantharia have been examined to determine transfer of elements and radionuclides to skeletal structures eg Sr, Ba and Si. (U.K.)

  1. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  2. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  4. Radioactive pollution

    International Nuclear Information System (INIS)

    Pohl, R.O.

    1976-01-01

    The widely published claims that the public health effects resulting from routine emissions are between 0.01 and 0.1 serious health effects per gigawattyear, and hence are at least a thousand times smaller than those resulting from air pollution by the burning of coal, cannot be true, for two reasons. The authors of these claims have ignored at least two of the more important isotopes, radon-222 and carbon-14, which are presently released to the environment, and thus contribute greatly to the health impact of nuclear energy. The health effects calculated in the earlier work cover only those which occur during the year in which the energy is generated. This means, figuratively speaking, that the authors have confused an annual installment payment with the full cost. This is unacceptable. The contribution to the health impact of nuclear energy arising from the single isotopic species radon-222 emanating from the mill tailings is estimated to 400 lung cancer deaths/GW(e)y, larger even than the most pessimistic estimates of the health impact of energy from coal through atmospheric pollution. We have no assurance that other long-lived isotopes do not contribute comparable amounts to the health impact of nuclear energy. The discussion of the health impact of radon-222 raises the fundamental moral question--how far into the future our responsibility extends. If such a long-termresponsibility is rejected, then we must at least try to predict the environmental buildup of radioactive pollutants, in order to avoid unacceptable and irreversible levels of radiation dose rate. The potential health consequences from long-lived radioisotopes seem to have been largely ignored so far, and should be explored in detail

  5. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Barquest, B.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Bale, J.C.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Gwinner, G. [University of Manitoba, Department of Physics and Astronomy, Allen Building, Winnipeg, MB R3T 2N2 (Canada); Kanungo, R. [Saint Mary’s University, Astronomy and Physics Department, 923 Robie Street, Halifax, NS B3H 3C3 (Canada); Krücken, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 10{sup 8} pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 10{sup 6} ions per bunch.

  6. Natural atmospheric radioactivity

    International Nuclear Information System (INIS)

    Renoux, A.

    1986-01-01

    After having summed up the different old or new units, used in radioactivity and radioprotection, the origins of atmospheric radioactivity are reported. Next the authors deal with the air content in radon, thoron and their radioactive descendants, insisting on the variations of the radon air content and on the radioactive balance between radon and its descendants. Then a few notions concerning the natural radioactive aerosol are developed: electric charge state, granulometric distribution. The possible effects of natural atmospheric radioactivity on man are studied with a distinction between inner irradiation and outer irradiation, an average assessment is shown. Finally the important problem of radon in inhabitations is approached [fr

  7. Beam loading

    OpenAIRE

    Boussard, Daniel

    1987-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superco...

  8. Molecular beams

    International Nuclear Information System (INIS)

    Pendelbury, J.M.; Smith, K.F.

    1987-01-01

    Studies with directed collision-free beams of particles continue to play an important role in the development of modern physics and chemistry. The deflections suffered by such beams as they pass through electric and magnetic fields or laser radiation provide some of the most direct information about the individual constituents of the beam; the scattering observed when two beams intersect yields important data about the intermolecular forces responsible for the scattering. (author)

  9. Experiments with SIRA - the radioactive ion separator

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1998-01-01

    There are two main techniques to obtain radioactive ion beams. One, consisting in the fragmentation of projectile in a thin target followed by a separation carried out with LISE or SISSI type spectrometers or by an alpha spectrometer is used currently at GANIL. The second one, the ISOL (Isotope Separator One-Line) is presently under study on the SIRa benchmark, as part of the SPIRaL (Source de Production d'Ions Radioactifs en Ligne). A high energy light ion beam is stopped by a thick target to produce radioactive nuclei by various reactions in the target. The target, usually of carbon, is heated at around 1800 deg. C in order to accelerate the migration of the atoms produced at the target surface. These atoms are then diffused by a transfer tube up to plasma region where they are ionized and then accelerated. As projectiles the GANIL project makes use of a large variety of heavy ions. A table containing the radioactive ion beam characteristics (charge state and lifetime), the primary beams, the yields and the expected intensities to be obtained with SPIRaL is presented. Also, data concerning the production rates of rare gases obtained during 1993 to 1994 are given

  10. Radioactive materials transporting container and vehicles

    International Nuclear Information System (INIS)

    Reese, S.L.

    1980-01-01

    A container and vehicle therefor for transporting radioactive materials is provided. The container utilizes a removable system of heat conducting fins made of a light weight highly heat conductive metal, such as aluminum or aluminum alloys. This permits a substantial reduction in the weight of the container during transport, increases the heat dissipation capability of the container and substantially reduces the scrubbing operation after loading and before unloading the radioactive material from the container. The vehicle utilizes only a pair of horizontal side beams interconnecting a pair of yoke members to support the container and provide the necessary strength and safety with a minimum of weight

  11. Environmental radioactivity in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Twining, John [Environmental Science Division, ANSTO, Menai (Australia)

    2002-06-01

    Environmental research mainly carried out at Australian Nuclear Science and Technology Organization (ANSTO) related to nuclear activities in Australia such as uranium mining, transfer factor studies related to U- and Th-series radionuclides, dose assessment modelling, radiation monitoring, and nuclear waste repository, is outlined. Many aspects of radioecology, marine and freshwater geochemistry and radiochemical dating techniques; bioaccumulation including archival monitoring and kinetics, ground water studies, atmospheric issues including climate change and geomorphology are being studied with the help of a high neutron flux reactor, a cyclotron and a tandem accelerator as well as modern analytical equipment. Only a very small number of examples of radioactivity applications are presented: Microbiotic crusts covering up to 50% of the soil surface at Maralinga nuclear test site where more than 80% of the residual Am-241 was found to retain within the top 5 mm after 30 years. SIMS analysis of crocodile bones indicating that the only metal affected by U mining in Kakadu region was lead (Pb). In mineral sands such as zircon, U(VI) is more stable than U(IV) as evidenced by ion beam and SEM imaging and XANES analysis. Use of radioisotopes in atmospheric and climate studies, terrestrial studies particularly in dating techniques, and aquatic-continental and aquatic-ocean waters, and in biological studies such as biokinetics of copper metabolism in rainbow fishes living downstream of a mine are presented. (S. Ohno)

  12. Radioactivity and geophysics

    International Nuclear Information System (INIS)

    Radvanyi, P.

    1992-01-01

    The paper recalls a few steps of the introduction of radioactivity in geophysics and astrophysics: contribution of radioelements to energy balance of the Earth, age of the Earth based on radioactive disintegration and the discovery of cosmic radiations

  13. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  14. Radioactivity in consumer products

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

    1978-08-01

    Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

  15. Radioactivity of bone cement

    International Nuclear Information System (INIS)

    Scherer, M.A.; Winkler, R.; Ascherl, R.; Lenz, E.

    1993-01-01

    A total of 14 samples of different types of bone cement from five different manufacturers were examined for their radioactivity. Each of the investigated bone cements showed a low radioactivity level, i.e. between [de

  16. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  17. Channel-accelerating gap interaction and beam acceleration and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.; Struve, K.

    1992-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for open-ended low energy devices. It dictates the number of allowable beam recirculations through the gaps. In the case of a closed racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. The authors have experimentally established that pulsing an accelerating gap perturbs the IFR channel. However for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition transparent grids of cusp fields positioned upstream and downstream from the gaps prevent them from perturbing the IFR channel. Experiments were performed with and without injected electron beams. For the experiments investigating the IFR channel interaction with the accelerating gap, the injector was removed and the beam line was extended downstream and upstream from the accelerating cavity. Only the first straight section of the RLA with one accelerating cavity (ET-2) was utilized. The acceleration and transport experiments were performed utilizing two injectors: first the low energy 1.3-MV Isolated Blumlein (IB) injector and most recently the new 4-MV 20-kA injector. Beams of 6--20 kA current were produced and successfully transported and accelerated through the ET-2 post-accelerating gap. For both injectors an apertured non-immersed ion-focused foilless diode was selected among various options. It is the simplest and easiest to operate and can be adjusted to provide variable beam impedance loads to the injector. The transport efficiencies were 90% for the low energy injector and 100% for the new 4-MV injector. The beam Gaussian profile and radius (5 mm) remain the same through acceleration. Experimental results will be presented and compared with numerical simulations

  18. A scintillating fibre-based profiler for low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Amato, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gu, M. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Raia, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Rovelli, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy)

    1997-01-11

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.).

  19. A scintillating fibre-based profiler for low intensity ion beams

    International Nuclear Information System (INIS)

    Finocchiaro, P.; Amato, A.; Ciavola, G.; Cuttone, G.; Gu, M.; Raia, G.; Rovelli, A.

    1997-01-01

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.)

  20. Transport of radioactive wastes

    International Nuclear Information System (INIS)

    Stuller, C.

    2003-01-01

    In this article author describes the system of transport and processing of radioactive wastes from nuclear power of Slovenske elektrarne, plc. It is realized the assurance of transport of liquid and solid radioactive wastes to processing links from places of their formation, or of preliminary storage and consistent transports of treated radioactive wastes fixed in cement matrix of fibre-concrete container into Rebublic storage of radioactive wastes in Mochovce

  1. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  2. Focus on radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, M

    1989-01-01

    Written for children, this book looks at the nature of radioactive materials, how they were discovered, what they are used for and how they affect the environment around us. The emphasis is on the benefits of radioactive materials, particularly in nuclear power stations, in medical diagnostics and radiotherapy, in industry and in agriculture. Nuclear fission and fusion are explained, how radioactive materials are handled and naturally occurring radioactivity are included. (UK).

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  4. Radioactive consumer products

    International Nuclear Information System (INIS)

    Sato, Otomaru

    1981-01-01

    Present situation of utilizing the radioactive consumer products and exposure dose were reviewed with published data. Practically, consumer products are divided into three categories, (1) radioactive nuclides intentionally incorporated into radioluminous dye, ionization chambers for smoke detector, eliminator of static electricity, and glow lamp (2) natural radioactive nuclides contained in false teeth, porcelain, glass, and gas mantle (3) natural radioactive nuclides accumulated as industrial waste at the consumption of coal, petroleum, and natural gas or in fertilizer and materials for construction. (Nakanishi, T.)

  5. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  6. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  7. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1989-01-01

    This book discusses the sources and health effects of radioactive wastes. It reveals the techniques to concentrate and immobilize radioactivity and examines the merits of various disposal ideas. The book, which is designed for the lay reader, explains the basic science of atoms,nuclear particles,radioactivity, radiation and health effects

  8. Transport of radioactive materials

    International Nuclear Information System (INIS)

    2013-01-01

    This ninth chapter presents de CNEN-NE--5.01 norm 'Transport of radioactive material'; the specifications of the radioactive materials for transport; the tests of the packages; the requests for controlling the transport and the responsibilities during the transport of radioactive material

  9. Radioactivity in the environment

    International Nuclear Information System (INIS)

    2011-01-01

    Illustrated by drawings, this publication briefly describes radioactive exposure modalities (external or internal irradiation), the ways they are measured and assessed (doses, units), the different natural radioactivity origins, the different radioactivity origins related to human activity, the share of each origin in population exposures

  10. Poster: The EURISOL Beta-beam facility

    CERN Document Server

    The beta-beam concept for the generation of an electron (anti-)neutrino beam was proposed by Piero Zucchelli (CERN) in 2002. A first study of the possibility of using the existing CERN machines for the acceleration for radioactive ions to a relativistic gamma of roughly 100, for later storage in a new decay ring of approximately the size of SPS, was made in 2002. The results from this very first short study were very encouraging.In 2004 it was decided to incorporate a design study for the beta-beam within the EURISOL DS proposal. EURISOL is a project name for a next-generation radioactive beam facility based on the ISOL method for the production of intense radioactive beams for nuclear physics, astrophysics and other applications. The proposal was accepted with the beta-beam task as an integral part. The design study officially started 1 February 2005 and will run for 4 years resulting in a conceptual design report for a beta-beam facility.

  11. Treating radioactive effluent

    International Nuclear Information System (INIS)

    Kirkham, I.A.

    1981-01-01

    In the treatment of radioactive effluent it is known to produce a floc being a suspension of precipitates carrying radioactive species in a mother liquor containing dissolved non-radioactive salts. It is also known and accepted practice to encapsulate the floc in a solid matrix by treatment with bitumen, cement and the like. In the present invention the floc is washed with water prior to encapsulation in the solid matrix whereby to displace the mother liquor containing the dissolved non-radioactive salts. This serves to reduce the final amount of solidified radioactive waste with consequent advantages in the storage and disposal thereof. (author)

  12. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  13. Nuclear moments of radioactive nuclei. Final report

    International Nuclear Information System (INIS)

    Greenlees, G.W.

    1985-01-01

    An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126 Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs

  14. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  15. Beam loading

    International Nuclear Information System (INIS)

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed. (author)

  16. Commissioning results of the ReA EBIT charge breeder at the NSCL: First reacceleration of stable-isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Lapierre, A., E-mail: lapierre@nscl.msu.edu; Schwarz, S.; Kittimanapun, K.; Rodriguez, J.A.; Sumithrarachchi, C.; Barquest, B.; Berryman, E.; Cooper, K.; Fogleman, J.; Krause, S.; Kwarsick, J.; Nash, S.; Perdikakis, G.; Portillo, M.; Rencsok, R.; Skutt, D.; Steiner, M.; Tobos, L.; Wittmer, W.; Bollen, G.; and others

    2013-12-15

    Highlights: • Latest results with the electron-beam ion trap of the ReA post-accelerator at the NSCL. • First reacceleration of stable-isotope beams. • First injection of stable-isotope beams from the NSCL’s beam stopping vault. -- Abstract: ReA is a reaccelerator of rare-isotope beams at the National Superconducting Cyclotron Laboratory (NSCL). The rare isotopes are produced by fast projectile fragmentation. After production, they are separated in-flight and thermalized in a He gas “catcher” cell before being sent to ReA for reacceleration to a few MeV/u. One of its main components is an electron-beam ion trap (EBIT) employed to convert injected singly charged ions to highly charged ions prior to injection into linear-accelerator structures. The ReA EBIT features a high-current electron gun, a long trap structure, and a two-field superconducting magnet to provide both the high electron-beam current density needed for fast charge breeding and high capture probability of injected beams. This paper presents recent commissioning results. In particular, {sup 39}K{sup +} ions have been injected, charge bred to {sup 39}K{sup 16+} and extracted for reacceleration up to 60 MeV. First charge-breeding results of beams injected from a commissioning Rb ion source in the NSCL’s beam “stopping” vault are also presented.

  17. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  18. Beam instrumentation for an ISOL test stand

    International Nuclear Information System (INIS)

    Mackenzie, G.H.; Dombsky, M.; Rawnsley, W.; Stanford, G.; Yin, Y.; Novikov, A.

    1995-09-01

    TRIUMF is constructing a test bed for the first stages of the proposed TISAC accelerated radioactive beam facility. The authors will present the requirements for the diagnostic system for this test stand and describe the design and development work underway. Scintillators, beamstops and a Faraday Cup have been tested using stable, mass analyzed, 12 keV beams of ions from mass 14 to 132. The design of a linear drive, with 10 microm resolution, for scanning wires and slits has begun

  19. Beam instrumentation for an ISOL test stand

    International Nuclear Information System (INIS)

    Mackenzie, G.H.; Dombsky, M.; Rawnsley, W.; Stanford, G.; Yin, Y.; Novikov, A.

    1995-09-01

    TRIUMF is constructing a test bed for the first stages of the proposed TISAC accelerated radioactive beam facility. We will present the requirements for the diagnostic system for this test stand and describe the design and development work underway. Scintillators, beamstops and Faraday Cup have been tested using stable, mass analyzed, 12 keV beams of ions from mass 14 to 132. The design of a linear drive, with 10 μm resolution, for scanning wires and slits has begun. (author)

  20. Superresolution beams

    CSIR Research Space (South Africa)

    Ngcobo, S

    2011-11-01

    Full Text Available The transformation of a Gaussian beam (GB) into a symmetrical higher order TEMp0 Laguerre Gaussian beam (LGB) intensity distribution of which is further rectified and transformed into a Gaussian intensity distribution in the plane of a converging...

  1. Overview of the KoRIA Facility for Rare Isotope Beams

    International Nuclear Information System (INIS)

    Hong, S.W.; Bak, S.I.; Chai, J.S.; Ahn, J.K.; Blumenfeld, Y.; Cheon, B.-G.; Choi, C.I.; Cheoun, M.-K.; Cho, D.; Cho, Y.S.; Choi, B.H.; Choi, E.M.; And others

    2013-01-01

    The Korea Rare Isotope Accelerator, currently referred to as KoRIA, is briefly presented. The KoRIA facility is aimed to enable cutting-edge sciences in a wide range of fields. It consists of a 70 kW isotope separator on-line (ISOL) facility driven by a 70 MeV, 1 mA proton cyclotron and a 400 kW in-flight fragmentation (IFF) facility. The ISOL facility uses a superconducting (SC) linac for post-acceleration of rare isotopes up to about 18 MeV/u, while the SC linac of IFF facility is capable of accelerating uranium beams up to 200 MeV/u, 8 pμA and proton beams up to 600 MeV, 660 μA. Overall features of the KoRIA facility are presented with a focus on the accelerator design. (author)

  2. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  3. Radioactivity and food

    International Nuclear Information System (INIS)

    Olszyna-Marzys, A.E.

    1990-01-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references

  4. Radioactive air sampling methods

    CERN Document Server

    Maiello, Mark L

    2010-01-01

    Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidance on measuring airborne radioactivity from industrial, research, and nuclear power operations, as well as naturally occuring radioactivity in the environment. Designed for industrial hygienists, air quality experts, and heath physicists, the book delves into the applied research advancing and transforming practice with improvements to measurement equipment, human dose modeling of inhaled radioactivity, and radiation safety regulations. To present a wide picture of the field, it covers the international and national standards that guide the quality of air sampling measurements and equipment. It discusses emergency response issues, including radioactive fallout and the assets used ...

  5. ORNL radioactive waste operations

    International Nuclear Information System (INIS)

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards

  6. Drainage of radioactive areas

    International Nuclear Information System (INIS)

    1981-04-01

    This Code of Practice covers all the drainage systems which may occur in the radioactive classified area of an establishment, namely surface water, foul, process and radioactive drainage. It also deals with final discharge lines. The Code of Practice concentrates on those aspects of drainage which require particular attention because the systems are in or from radioactive areas and typical illustrations are given in appendices. The Code makes references to sources of information on conventional aspects of drainage design. (author)

  7. Radioactivity and its measurement

    CERN Document Server

    Mann, W B; Garfinkel, S B

    1980-01-01

    Begins with a description of the discovery of radioactivity and the historic research of such pioneers as the Curies and Rutherford. After a discussion of the interactions of &agr;, &bgr; and &ggr; rays with matter, the energetics of the different modes of nuclear disintegration are considered in relation to the Einstein mass-energy relationship as applied to radioactive transformations. Radiation detectors and radioactivity measurements are also discussed

  8. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  9. Learning more about radioactivity

    International Nuclear Information System (INIS)

    2008-01-01

    This digest brochure explains what radioactivity is, where it comes from, how it is measured, what are its effects on the body and the way to protect it against these effects, the uses of radioactivity (In the medical field, In industry, In the food industry, and In the cultural world). It ends with some examples of irradiation levels, of natural radioactivity and with the distribution in France of various sources of exposure. (J.S.)

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  11. Handling of radioactive waste

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    1998-01-01

    Based on characteristics and quantities of different types of radioactive waste produced in the country, achievements in infrastructure and the way to solve problems related with radioactive waste handling and management, are presented in this paper. Objectives of maintaining facilities and capacities for controlling, processing and storing radioactive waste in a conditioned form, are attained, within a great range of legal framework, so defined to contribute with safety to people and environment (au)

  12. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  13. Study of the on line radioactive multicharged ion production

    International Nuclear Information System (INIS)

    Lecesne, N.

    1997-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) which will start at GANIL at the end of 1998. The aim of the thesis was to study the on line radioactive multicharged ion beam production stages, i.e. the production and diffusion of the radioactive nuclei in a thick target, their possible transfer up to an ECR ion source and their ionisation. Production cross sections of radioactive neutron rich nuclei, formed by fragmentation of a heavy ion beam in a thick target, were measured. An external target-ECR source system, dedicated to the radioactive noble gases production, and two internal target-ECR source systems, dedicated to the radioactive condensable element production, were built and tested on the SIRa tests bench (Separateur d'Ions Radioactifs). Different detection configurations were elaborated in order to identify the radioactive nuclei and estimate their production yields. Finally, a new method for measuring the overall efficiency of the separator was developed and allowed to study the diffusion properties of radioactive noble gases in various targets. (author)

  14. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  15. Radioactive Plumes Monitoring Simulator

    International Nuclear Information System (INIS)

    Kapelushnik, I.; Sheinfeld, M.; Avida, R.; Kadmon, Y.; Ellenbogen, M.; Tirosh, D.

    1999-01-01

    The Airborne Radiation Monitoring System (ARMS) monitors air or ground radioactive contamination. The contamination source can be a radioactive plume or an area contaminated with radionuclides. The system is based on two major parts, an airborne unit carried by a helicopter and a ground station carried by a truck. The system enables real time measurement and analysis of radioactive plumes as well as post flight processing. The Radioactive Plumes Monitoring Simulator purpose is to create a virtual space where the trained operators experience full radiation field conditions, without real radiation hazard. The ARMS is based on a flying platform and hence the simulator allows a significant reduction of flight time costs

  16. Controlling radioactive waste

    International Nuclear Information System (INIS)

    Wurtinger, W.

    1992-01-01

    The guideline of the Ministry for Environmental Protection for controlling radioactive waste with a negligible development of heat defines in detail what data are relevant to the control of radioactive waste and should be followed up on and included in a system of documentation. By introducing the AVK (product control system for tracing the course of waste disposal) the operators of German nuclear power plants have taken the requirements of this guideline into account. In particular, possibilities for determining the degree of radioactivity of radioactive waste, which the BMU-guidelines call for, were put into practice by means of the programming technology of the product control system's module MOPRO. (orig.) [de

  17. Environmental radioactivity 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Environmental Radioactivity in New Zealand and Rarotonga : annual report 1996 was published in May this year. The 1996 environmental radioactivity monitoring programme included, as usual, measurements in New Zealand and the Cook Islands of atmospheric, deposited and dairy product radioactivity. The environment in the New Zealand and Cook Island regions has now virtually returned to the situation in the 'pre-nuclear' era. The contination of monitoring, although at a reduced level of intensity, is basically to ensure that any change from the present state, due to any source of radioactivity does not go undetected or unquestioned. (author)

  18. Coherent beam-beam effect

    International Nuclear Information System (INIS)

    Chao, A.W.; Keil, E.

    1979-06-01

    The stability of the coherent beam-beam effect between rigid bunches is studied analytically and numerically for a linear force by evaluating eigenvalues. For a realistic force, the stability is investigated by following the bunches for many revolutions. 4 refs., 13 figs., 2 tabs

  19. Use of Radioactive Ion Beams for Biomedical Research 2. in-vivo dosimetry using positron emitting rare earth isotopes with the rotating prototype PET scanner at the Geneva Cantonal Hospital

    CERN Multimedia

    2002-01-01

    % IS331 \\\\ \\\\ The use of radioactive metal ions (such as $^{90}$Y, $^{153}$Sm or $^{186}$Re) in cancer therapy has made some progress, but has been hampered by factors that could be addressed at CERN with a greater likelihood of success than at any other installation in the world. The present proposal seeks to use the unique advantage of CERN ISOLDE to get round these problems together with the PET scanners at the Cantonal Hospital Geneva (PET~=~positron emission tomography). Radioisotope production by spallation at ISOLDE makes available a complete range of isotopes having as complete a diversity of types and energy of radiation, of half-life, and of ionic properties as one would wish. Among these isotopes several positron-emitters having clinical relevance are available.\\\\ \\\\Some free rare earth chelatas are used presently in palliation of painful bone metastases. Curative effects are not able for the moment with this kind of radiopharmaceuticals. More and better data on the biokinetics and bio-distribution...

  20. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  1. The PIAFE project: instrumentation and beam studies

    International Nuclear Information System (INIS)

    Laamyem, M.

    1996-01-01

    The beam transport of low energy radioactive ions over long distances was a key problem for the PIAFE project. The construction of a 18 m long portion validated the technical choices. Problems dealing with the alignment of the beam transport line supports and the quadrupoles have been solved. The beam/residual gas interaction model was confirmed through the measurement of both the charge exchange cross section and the growth of the emittance due to coulomb scattering. This work shows that low energy exotic ions can be transported over long distances with a vacuum around 10 -8 mbar

  2. Radioactive Wastes. Revised.

    Science.gov (United States)

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  3. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  4. Radioactivity in cigaratte

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Aksu, M. L.

    1998-01-01

    Cigaratte is known to be hazardous to health due to nicotine and tar it contains.This is indicated on cigaratte packets by health warnings.However there is less known hazard of smoking due to intake of radioactive compounds by inhalation. This study dwells upon the radioactive hazard of smoking

  5. Transport of Radioactive Materials

    International Nuclear Information System (INIS)

    2001-01-01

    This address overviews the following aspects: concepts on transport of radioactive materials, quantities used to limit the transport, packages, types of packages, labeling, index transport calculation, tags, labeling, vehicle's requirements and documents required to authorize transportation. These requirements are considered in the regulation of transport of radioactive material that is in drafting step

  6. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  7. Induced radioactivity at CERN

    CERN Multimedia

    1970-01-01

    A description of some of the problems and some of the advantages associated with the phenomenon of induced radioactivity at accelerator centres such as CERN. The author has worked in this field for several years and has recently written a book 'Induced Radioactivity' published by North-Holland.

  8. A Remote Radioactivity Experiment

    Science.gov (United States)

    Jona, Kemi; Vondracek, Mark

    2013-01-01

    Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one…

  9. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  10. Sealed radioactive sources toolkit

    International Nuclear Information System (INIS)

    Mac Kenzie, C.

    2005-09-01

    The IAEA has developed a Sealed Radioactive Sources Toolkit to provide information to key groups about the safety and security of sealed radioactive sources. The key groups addressed are officials in government agencies, medical users, industrial users and the scrap metal industry. The general public may also benefit from an understanding of the fundamentals of radiation safety

  11. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  12. Radioactive krypton gas separation

    International Nuclear Information System (INIS)

    Martin, J.R.

    1976-01-01

    Radioactive krypton is separated from a gas mixture comprising nitrogen and traces of carbon dioxide and radioactive krypton by selective adsorption and then cryogenic distillation of the prepurified gas against nitrogen liquid to produce krypton bottoms concentrate liquid, using the nitrogen gas from the distillation for two step purging of the adsorbent. 16 Claims, 8 Drawing Figures

  13. Beam transport

    International Nuclear Information System (INIS)

    1988-01-01

    Considerable experience has now been gained with the various beam transport lines, and a number of minor changes have been made to improve the ease of operation. These include: replacement of certain little-used slits by profile monitors (harps or scanners); relocation of steering magnets, closer to diagnostic harps or profile scanners; installation of a scanner inside the isocentric neutron therapy system; and conversion of a 2-doublet quadrupole telescope (on the neutron therapy beamline) to a 2-triplet telescope. The beam-swinger project has been delayed by very late delivery of the magnet iron to the manufacturer, but is now progressing smoothly. The K=600 spectrometer magnets have now been delivered and are being assembled for field mapping. The x,y-table with its associated mapping equipment is complete, together with the driver software. One of the experimental areas has been dedicated to the production of collimated neutron beams and has been equipped with a bending magnet and beam dump, together with steel collimators fixed at 4 degrees intervals from 0 degrees to 16 degrees. Changes to the target cooling and shielding system for isotope production have led to a request for much smaller beam spot sizes on target, and preparations have been made for rearrangement of the isotope beamline to permit installation of quadrupole triplets on the three beamlines after the switching magnet. A practical system of quadrupoles for matching beam properties to the spectrometer has been designed. 6 figs

  14. Objectives for radioactive waste packaging

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1982-04-01

    The report falls under the headings: introduction; the nature of radioactive wastes; how to manage radioactive wastes; packaging of radioactive wastes (supervised storage; disposal); waste form evaluation and test requirements (supervised storage; disposal); conclusions. (U.K.)

  15. Radioactive Iodine Treatment for Hyperthyroidism

    Science.gov (United States)

    ... Balance › Radioactive Iodine for Hyperthyroidism Fact Sheet Radioactive Iodine for Hyperthyroidism April, 2012 Download PDFs English Zulu ... prepare for RAI or surgery. How does radioactive iodine treatment work? Iodine is important for making thyroid ...

  16. Radioactivity and wildlife

    International Nuclear Information System (INIS)

    Kennedy, V.H.; Horrill, A.D.; Livens, F.R.

    1990-01-01

    The official assumption is that if levels of radioactivity are safe for humans, they are safe for wildlife too. NCC sponsored a research project by the Institute of Terrestrial Ecology to find out what was known in this field. It appears that the assumption is justified to a certain extent in that mammals are identified as the organisms most vulnerable to the damaging effects of radioactivity. Other general principles are put forward: where there are radioactive discharges to the marine environment, coastal muds and saltmarshes can be particularly contaminated; upland habitats, with low nutrient status and subject to high rainfall, are likely to accumulate radioactivity from atmospheric discharges (e.g. Chernobyl, the wildlife effects of which are reported here). The document concludes that no deleterious effects of radioactivity on wild plants and animals have been detected in the UK, but acknowledges that there are still many gaps in our knowledge of the behaviour of radioisotopes in the natural environment. (UK)

  17. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  18. EPA's Radioactive Source Program

    International Nuclear Information System (INIS)

    Kopsick, D.

    2004-01-01

    The US EPA is the lead Federal agency for emergency responses to unknown radiological materials, not licensed, owned or operated by a Federal agency or an Agreement state (Federal Radiological Emergency Response Plan, 1996). The purpose of EPA's clean materials programme is to keep unwanted and unregulated radioactive material out of the public domain. This is achieved by finding and securing lost sources, maintaining control of existing sources and preventing future losses. The focus is on both, domestic and international fronts. The domestic program concentrates on securing lost sources, preventing future losses, alternative technologies like tagging of radioactive sources in commerce, pilot radioactive source roundup, training programs, scrap metal and metal processing facilities, the demolition industry, product stewardship and alternatives to radioactive devices (fewer radioactive source devices means fewer orphan sources). The international program consists of securing lost sources, preventing future losses, radiation monitoring of scrap metal at ports and the international scrap metal monitoring protocol

  19. Method of storing radioactive wastes

    International Nuclear Information System (INIS)

    Adachi, Toshio; Hiratake, Susumu.

    1980-01-01

    Purpose: To reduce the radiation doses externally irradiated from treated radioactive waste and also reduce the separation of radioactive nuclide due to external environmental factors such as air, water or the like. Method: Radioactive waste adhered with radioactive nuclide to solid material is molten to mix and submerge the radioactive nuclide adhered to the surface of the solid material into molten material. Then, the radioactive nuclide thus mixed is solidified to store the waste in solidified state. (Aizawa, K.)

  20. Consumer Products Containing Radioactive Materials

    Science.gov (United States)

    Fact Sheet Adopted: February 2010 Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials Everything we encounter in our daily lives contains some radioactive material, ...

  1. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  2. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  3. Recent Astrophysical Studies with Exotic Beams at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Bardayan, Daniel W [ORNL

    2006-02-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  4. Recent Astrophysical Studies with Exotic Beams at ORNL

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.

    2006-01-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  5. Problems raised by radioactive ion acceleration in the SPIRAL project. Accelerator tuning and stabilisation; Problemes poses par l`acceleration d`ions radioactifs dans le project SPIRAL. Reglage et stabilisation de l`accelerateur

    Energy Technology Data Exchange (ETDEWEB)

    Boy, L. [Paris-6 Univ., 75 (France)

    1997-12-31

    This study is related to the SPIRAL project. This facility uses a cyclotron to accelerate radioactive ion beams produced in a thick target by the Grant Accelerateur National d`Ions Lourds primary beam. The low intensity of radioactive beams and the mixing of several species imply special tuning methods and associated diagnostics. Also, a cyclotron and the beam line will be used to switch from this tuning beam to the radioactive one. We present a theoretical study and a numerical simulation of the tuning of five radioactive beams using three different methods. the beam dynamic is performed through the injection beam line and the cyclotron up to the electrostatic deflector. Within the frame of these methods we have described all the SPIRAL beam diagnostics. Construction and test of a new low intensity diagnosis based on a plastic scintillator for phase measurement inside the cyclotron is described in details. (author). 63 refs.

  6. Laser spectroscopy of radioactive barium and strontium isotopes

    International Nuclear Information System (INIS)

    Martin, A.G.

    1986-01-01

    An atomic beam system and a high resolution computer controlled dye laser system were developed to perform isotope shift measurements on accelerator-produced radioactive isotopes. Two different techniques were used to transport the radioactive isotopes to the laser interaction region. The first technique was based on the thermalization and deionization of the nuclear reaction products in a helium buffer gas. The reaction products were subsequently transported in the gas to the laser beam along a capillary tube. This technique suffered from problems with chemical reactions between impurities in the buffer gas and the reaction products and proved to be unsuccessful. The second technique was based on the implantation of the reaction products into a metal lattice. Subsequent heating of the metal lattice released the implanted ions from which an atomic beam was formed. The photon burst technique was used to enable detection of the extremely weak atomic beams formed in this manner. Measurements were performed of the known isotope shifts of radioactive 128 Ba and 126 Ba to test the sensitivity of the system. The previously unmeasured isotope shift of radioactive 82 Sr also was determined, and the result obtained was compared to predictions using the droplet model

  7. Quantum beams

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    Present state and future prospect are described on quantum beams for medical use. Efforts for compactness of linac for advanced cancer therapy have brought about the production of machines like Accuray's CyberKnife and TOMOTHERAPY (Tomo Therapy Inc.) where the acceleration frequency of X-band (9-11 GHz) is used. For cervical vein angiography by the X-band linac, a compact hard X-ray source is developed which is based on the (reverse) Compton scattering through laser-electron collision. More intense beam and laser are necessary at present. A compact machine generating the particle beam of 10 MeV-1 GeV (laser-plasma accelerator) for cancer therapy is also developed using the recent compression technique (chirped-pulse amplification) to generate laser of >10 TW. Tokyo University is studying for the electron beam with energy of GeV order, for the laser-based synchrotron X-ray, and for imaging by the short pulse ion beam. Development of advanced compact accelerators is globally attempted. In Japan, a virtual laboratory by National Institute of Radiological Sciences (NIRS), a working group of universities and research facilities through the Ministry of Education, Culture, Sports, Science and Technology, started in 2001 for practical manufacturing of the above-mentioned machines for cancer therapy and for angiography. Virtual Factory (Inc.), a business venture, is to be stood in future. (N.I.)

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  9. Radioactive Waste in Perspective

    International Nuclear Information System (INIS)

    2011-01-01

    Large volumes of hazardous wastes are produced each year, however only a small proportion of them are radioactive. While disposal options for hazardous wastes are generally well established, some types of hazardous waste face issues similar to those for radioactive waste and also require long-term disposal arrangements. The objective of this NEA study is to put the management of radioactive waste into perspective, firstly by contrasting features of radioactive and hazardous wastes, together with their management policies and strategies, and secondly by examining the specific case of the wastes resulting from carbon capture and storage of fossil fuels. The study seeks to give policy makers and interested stakeholders a broad overview of the similarities and differences between radioactive and hazardous wastes and their management strategies. Contents: - Foreword; - Key Points for Policy Makers; - Executive Summary; - Introduction; - Theme 1 - Radioactive and Hazardous Wastes in Perspective; - Theme 2 - The Outlook for Wastes Arising from Coal and from Nuclear Power Generation; - Risk, Perceived Risk and Public Attitudes; - Concluding Discussion and Lessons Learnt; - Strategic Issues for Radioactive Waste; - Strategic Issues for Hazardous Waste; - Case Studies - The Management of Coal Ash, CO 2 and Mercury as Wastes; - Risk and Perceived Risk; - List of Participants; - List of Abbreviations. (authors)

  10. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  11. MODELLING SLOW EXTRACTION INDUCED RADIOACTIVITY IN SPS LSS2

    CERN Document Server

    Araujo Martinez, Aurora Cecilia; CERN. Geneva. TE Department

    2017-01-01

    The Accelerator and Beam Transfer (ABT) group is investigating the impact of recent proposals to extract higher proton intensities to Fixed Target experiments at the SPS. The 400 GeV high-energy proton beam is typically extracted over a few seconds using a resonant slow-extraction technique that induces small but unavoidable beam losses on the extraction equipment in SPS LSS2. In this report, the induced radioactivity for 2016-2017 is used to predict future activation levels and cool-down times, using a past intervention as a reference to predict dose to the personnel carrying-out maintenance of the accelerator.

  12. Atmospheric natural radioactivity outdoors

    International Nuclear Information System (INIS)

    Renoux, A.

    1985-01-01

    Following a short account of natural atmospheric radioactivity, radon concentrations are given as well as their variations with time obtained by means of a original apparatus developped in Brest. The radioactive equilibrium of radon and its daughters is then considered, many experiments demonstrating that equilibrium is seldom reached even for 218 Po (RaA). Finally, some characteristics of natural radioactive aerosols are studied: charge, particle size distribution (demonstrating they are fine aerosols since only 30 per cent are made of particles with radii exceeding 0,1 μm) [fr

  13. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  14. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  15. Radioactivity; La radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This pedagogical document presents the origin, effects and uses of radioactivity: where does radioactivity comes from, effects on the body, measurement, protection against radiations, uses in the medical field, in the electric power industry, in the food (ionization, radio-mutagenesis, irradiations) and other industries (radiography, gauges, detectors, irradiations, tracers), and in research activities (dating, preservation of cultural objects). The document ends with some examples of irradiation levels (examples of natural radioactivity, distribution of the various sources of exposure in France). (J.S.)

  16. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  17. Radioactive waste containment

    International Nuclear Information System (INIS)

    Beranger, J.-C.

    1978-01-01

    The problem of confining the radioactive wastes produced from the nuclear industry, after the ore concentration stage, is envisaged. These residues being not released into the environment are to be stored. The management policy consists in classifying them in view of adapting to each type of treatment, the suitable conditioning and storage. This classification is made with taking account of the following data: radioactivity (weak, medium or high) nature and lifetime of this radioactivity (transuranians) physical nature and volume. The principles retained are those of volume reduction and shaping into insoluble solids (vitrification) [fr

  18. Radioactivity of fish II

    Energy Technology Data Exchange (ETDEWEB)

    Obo, F; Wakamatsu, C; Hiwatashi, Y; Tamari, T; Yoshitake, N; Tajima, D

    1955-01-01

    Various tissues of fish captured east of Formosa after the Bikini H-Bomb experiment had radioactivities (detected on May 27, 1954) in counts/min/ash from 5 g. fresh tissues: blood 2414, eyeball 49, heart muscle 111, white muscle 11, red muscle (chiai) 123, bone 46, skin 28, pancreas 131, liver 522, stomach muscle 106, stomach contents 52, spermatozoa 47, and spleen 504. High radioactivities in blood and blood synthesizing organs (liver and spleen) were emphasized. The radioactivity in the blood had a half-life of 34 to 35 days and the maximum energy of ..beta..-ray of approximate 0.4 m.e.v.

  19. Radioactive facilities classification criteria

    International Nuclear Information System (INIS)

    Briso C, H.A.; Riesle W, J.

    1992-01-01

    Appropriate classification of radioactive facilities into groups of comparable risk constitutes one of the problems faced by most Regulatory Bodies. Regarding the radiological risk, the main facts to be considered are the radioactive inventory and the processes to which these radionuclides are subjected. Normally, operations are ruled by strict safety procedures. Thus, the total activity of the radionuclides existing in a given facility is the varying feature that defines its risk. In order to rely on a quantitative criterion and, considering that the Annual Limits of Intake are widely accepted references, an index based on these limits, to support decisions related to radioactive facilities, is proposed. (author)

  20. Importance of beam-beam tune spread to collective beam-beam instability in hadron colliders

    International Nuclear Information System (INIS)

    Jin Lihui; Shi Jicong

    2004-01-01

    In hadron colliders, electron-beam compensation of beam-beam tune spread has been explored for a reduction of beam-beam effects. In this paper, effects of the tune-spread compensation on beam-beam instabilities were studied with a self-consistent beam-beam simulation in model lattices of Tevatron and Large Hodron Collider. It was found that the reduction of the tune spread with the electron-beam compensation could induce a coherent beam-beam instability. The merit of the compensation with different degrees of tune-spread reduction was evaluated based on beam-size growth. When two beams have a same betatron tune, the compensation could do more harm than good to the beams when only beam-beam effects are considered. If a tune split between two beams is large enough, the compensation with a small reduction of the tune spread could benefit beams as Landau damping suppresses the coherent beam-beam instability. The result indicates that nonlinear (nonintegrable) beam-beam effects could dominate beam dynamics and a reduction of beam-beam tune spread by introducing additional beam-beam interactions and reducing Landau damping may not improve the stability of beams

  1. Beam dynamics

    International Nuclear Information System (INIS)

    Abell, D; Adelmann, A; Amundson, J; Dragt, A; Mottershead, C; Neri, F; Pogorelov, I; Qiang, J; Ryne, R; Shalf, J; Siegerist, C; Spentzouris, P; Stern, E; Venturini, M; Walstrom, P

    2006-01-01

    We describe some of the accomplishments of the Beam Dynamics portion of the SciDAC Accelerator Science and Technology project. During the course of the project, our beam dynamics software has evolved from the era of different codes for each physical effect to the era of hybrid codes combining start-of-the-art implementations for multiple physical effects to the beginning of the era of true multi-physics frameworks. We describe some of the infrastructure that has been developed over the course of the project and advanced features of the most recent developments, the interplay betwen beam studies and simulations and applications to current machines at Fermilab. Finally we discuss current and future plans for simulations of the International Linear Collider

  2. Secondary beams and the synthesis of exotic nuclei

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1985-09-01

    With the advent of modern fast cycling synchrotrons capable of delivering high intensity heavy ion beams up to uranium, the production of secondary radioactive ion beams (RIBs) with sufficient intensity has become feasible. The basic production mechanism is the fragmentation of near relativistic heavy ion beams on light targets. The physical facts underlying the efficient conversion of stable beams into RIBs are: (1) at beam energies of several 100 MeV/A thick conversion targets (1 to 10 g/cm 2 ) can be used, which, for nuclei near stability, convert on the order of .1 to 1% of the primary beam into secondary beams, (2) the secondary beams are emitted into a narrow phase space (small transverse and longitudinal emittances), and (3) these emittances are of the correct magnitude to match the acceptances of suitably designed storage and accumulator rings. 14 refs

  3. Radioactivity in environmental samples

    International Nuclear Information System (INIS)

    Fornaro, Laura

    2001-01-01

    The objective of this practical work is to familiarize the student with radioactivity measures in environmental samples. For that were chosen samples a salt of natural potassium, a salt of uranium or torio and a sample of drinkable water

  4. Radioactivity content of books

    International Nuclear Information System (INIS)

    Lalit, B.Y.; Shukla, V.K.; Ramachandran, T.V.

    1981-01-01

    The natural and fallout radioactivity was measured in a large number of books produced in various countries after 1955. Results of these measurements showed that the books contained radioactivity due to fallout 137 Cs and 226 Ra, 228 Th and 40 K radioisotopes of primordial origin. Books printed in the U.S.A. had low radioactivity of 40K and 226 Ra origin compared to books printed in the European subcontinent. Books printed during high fallout rate (1962-64) or thereafter did not exhibit any significantly higher 137 Cs levels. The maximum radiation dose to the eyes calculated for the radioactivity content of the books was 0.8 μR/hr and the minimum was 0.07 μR/hr; most of the books were in the range 0.3-0.5 μR/hr. (U.K.)

  5. Law of radioactive minerals

    International Nuclear Information System (INIS)

    1980-01-01

    Legal device done in order to standardize and promote the exploration and explotation of radioactive minerals by peruvian and foreign investors. This device include the whole process, since the prospection until the development, after previous auction given by IPEN

  6. Radioactive contamination of environment

    International Nuclear Information System (INIS)

    Chytil, I.

    1981-01-01

    A computer model is discussed describing radioactivity transport between the source and the organism. The model is to be applied in assessing the effect of a nuclear installation on the organism. Fortran and Pascal appear to be the most appropriate computer languages. With respect to internal memory requirements, the program file is estimated to consist of a control program and a number of subprograms. Upon setting the radioactivity transport and the output requirements the control program should recall the necessary subprograms. The program file should allow the complete data file and the solutions of all possible radioactivity transport variants to be inputted. It is envisaged that several subprograms will be available for one type of radioactivity transport, this depending on different accuracy of the transport description. Thus, the requirements for input data will also differ. (Z.M.)

  7. Radioactive labelling of insects

    International Nuclear Information System (INIS)

    Thygesen, Th.

    Experiments are described with the internal contamination of insects with phosphorus 32 introduced previously in plants of the brassica type using three different techniques. The intake of radioactivity from the plants to the insects is shown. (L.O.)

  8. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  9. Miniature radioactive light source

    International Nuclear Information System (INIS)

    Caffarella, T.E.; Radda, G.J.; Dooley, H.H.

    1980-01-01

    A miniature radioactive light source for illuminating digital watches is described consisting of a glass tube with improved laser sealing and strength containing tritium gas and a transducer responsive to the gas. (U.K.)

  10. Advance in radioactive decontamination

    International Nuclear Information System (INIS)

    Basteris M, J. A.; Farrera V, R.

    2010-09-01

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  11. Radioactive pollution, ch. 6

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Disposal of radioactive wastes from nuclear power plants into surface waters as well as the atmosphere is discussed. Man-rem data are compared and expected quantities for disposal by power plants in the Netherlands are tabulated

  12. Radioactive Material Containment Bags

    National Research Council Canada - National Science Library

    2000-01-01

    The audit was requested by Senator Joseph I. Lieberman based on allegations made by a contractor, Defense Apparel Services, about the Navy's actions on three contracts for radioactive material containment bags...

  13. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  14. Radioactivity and environment

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, R N [Fertilizer Association of India, New Delhi

    1977-12-01

    Power generation from radioisotopes is one of the major applications of nuclear energy for peaceful purposes and is in practice in over twenty countries including India. Other well-known applications of radioactive substances are in medicine, industry, scientific and industrial research programs, and nuclear weapons. The only serious disadvantage with the radioisotopes and their waste products is the constant release of radiation energy which contaminates the environment and endangers the life. An attempt has been made to identify the major sources of radioactivity in the environment and assess its potential impact on the environment. Recent developments in safety measures for prevention of contamination and control of radioactivity and in radioactive wastes management are also discussed.

  15. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  16. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  17. Internal radioactive contamination treatment

    International Nuclear Information System (INIS)

    Tobajas, L. M.

    1998-01-01

    In a radiological emergency, the internal radioactive contamination becomes a therapeutic urgency and must be established as fast as possible. Just when a radioactive contamination accident occurs, it is difficult to know exactly the amount of radioactive materials absorbed and to estimate the dose received.. The decision to be taken after the incorporation of the radioactive material depends on the method and on the Radiological Protection Department collaboration. Any treatment achieving a reduction of the doses received or expected will be useful. The International Radiological Protection Commission doesn't recommend the use of the dose limit, to decide about the intervention necessity. However the LIA can be used as the reference point to establish the necessity and reach of the treatment. The object of the present work, is to introduce the general principles to carry out the internal people decontamination, under the last international recommendations. (Author) 4 refs

  18. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  19. Radioactivity of tobacco

    International Nuclear Information System (INIS)

    Nashawati, A.; Al-Dalal, Z.; Al-Akel, B.; Al-Masri, M. S.

    2002-04-01

    This report shows the results of studies related to radioactivity in tobacco and its pathways to human being. Tobacco contains high concentrations of natural radioactive materials especially polonium 210 and lead 210, which may reach a value of 27 mBq/g. The amount of polonium 210 in tobacco is related to the concentration of radon (the main source of polonium 210 in the agricultural areas) in addition to the over use of phosphate fertilizers for tobacco plantation. Radioactive materials present in tobacco enter the human body through smoking where 210 Po concentrates in the Alveolar lung; this may cause health risks including lung cancer. In addition, radiation doses due to smoking have been reported and some results of the studies carried out for radioactivity in tobacco at the Syrian Atomic Energy Commission. (author)

  20. Radioactive pollution in rainfall

    International Nuclear Information System (INIS)

    Jemtland, R.

    1985-01-01

    Routine measurements of radioactivity in rainfall are carried out at the National Institute for Radiation Hygiene, Norway. The report discusses why the method of ion exchange was selected and gives details on how the measurements are performed

  1. Radioactive gas solidification apparatus

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji; Yabu, Tomohiko; Matsunaga, Hiroyuki.

    1990-01-01

    Handling of a solidification container from the completion for the solidifying processing to the storage of radioactive gases by a remote control equipment such as a manipulator requires a great cost and is difficult to realize. In a radioactive gas solidification device for injection and solidification in accumulated layers of sputtered metals by glow discharge, radiation shieldings are disposed surrounding the entire container, and cooling water is supplied to a cooling vessel formed between the container and the shielding materials. The shielding materials are divided into upper and lower shielding materials, so that solidification container can be taken out from the shielding materials. As a result, the solidification container after the solidification of radioactive gases can be handled with ease. Further, after-heat can be removed effectively from the ion injection electrode upon solidifying treatment upon storage, to attain a radioactive gas solidifying processing apparatus which is safe, economical and highly reliable. (N.H.)

  2. Transporting radioactive rock

    International Nuclear Information System (INIS)

    Pearce, G.

    1990-01-01

    The case is made for exempting geological specimens from the IAEA Regulations for Safer Transport of Radioactive Materials. It is pointed out that many mineral collectors in Devon and Cornwall may be unwittingly infringing these regulations by taking naturally radioactive rocks and specimens containing uranium ores. Even if these collectors are aware that these rocks are radioactive, and many are not, few have the necessary equipment to monitor the activity levels. If the transport regulations were to be enforced alarm could be generated and the regulations devalued in case of an accident. The danger from a spill of rock specimens is negligible compared with an accident involving industrial or medical radioactive substances yet would require similar special treatment. (UK)

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2005-01-01

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  4. Radioactivity of building materials

    International Nuclear Information System (INIS)

    Terpakova, E.

    2000-01-01

    In this paper the gamma-spectrometric determination of natural radioactivity in the different building materials and wares applied in Slovakia was performed. The specific activities for potassium-40, thorium, radium as well as the equivalent specific activities are presented

  5. Measuring beam losses in the THI project

    International Nuclear Information System (INIS)

    David, L.; Duneau, P.; Lecorche, E.; Lermine, P.; Lemaitre, E.; Ulrich, M.

    1997-01-01

    The goal of the THI project (High Intensity Transport) is to upgrade the GANIL facilities by increasing the beam by a factor of 15, at least for light ions. This higher intensity is required by the radioactive beam facility SPIRAL starting in September 1997, to generate the new nuclear species in the solid target-source (ISOL method). For the control system, the most important issues are now to tune the accelerators while minimizing the beam losses at each stage of acceleration and when not possible, to have a fast beam loss detection signal. This system is composed of probes which deliver a signal to stop the beam when there's too much intensity lost and when not, a logarithmic value of the beam intensity. These probes are linked to a front end VME crate on the network, and in the control room, on the workstations, a graphical user interface program displays the beam variations using logarithmic scales. This program is also used to center the beam while injecting in or ejecting from the main cyclotrons by tuning the steerers, the magnetic elements inside, and the electrostatic deflector to be able to separate and extract the last beam turn. (author)

  6. The 1+ → n+ transformation for the radioactive ion acceleration

    International Nuclear Information System (INIS)

    Chauvin, N.; Lamy, T.; Bruandet, J.F.; Bouly, J.L.; Curdy, J.C.; Geller, R.; Sole, P.; Sortais, P.; Vieux-Rochaz, J.L.

    1999-01-01

    The radioactive ions are produced as single-charge ions either starting from nuclear reactions induced by a high energy primary beam, or by neutron bombarding of a target. However, in order to obtain beams of several MeV per nucleon, il will be convenient of transforming the mono-charged ions issued from the production source, in multicharged ions. Consequently, an operation should be implemented to transform the 1+ charge state into n+ state, with a double requirement of maximal yield and minimal response time. The objectives are a particle yield of several percents and a response time below 1 second, taking into account the low lifetimes of certain radioactive nuclei. The conjoint achievement of both high charged states and maximal beam intensity forced us to make a choice for an ECR (Electron Cyclotron Resonance) type source to realize the transformation 1+ → n+

  7. Transport of radioactive materials

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this Norm is to establish, relating to the TRANSPORT OF RADIOACTIVE MATERIALS, safety and radiological protection requirements to ensure an adequate control level of the eventual exposure of persons, properties and environment to the ionizing radiation comprising: specifications on radioactive materials for transport; package type selection; specification of the package design and acceptance test requirements; arrangements relating to the transport itself; administrative requirements and responsibilities. (author)

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  9. Radioactivity in the environment

    International Nuclear Information System (INIS)

    Fernandez Niello, Jorge

    2005-01-01

    The book summarizes general concepts on radiation, nuclear structure, radioactivity and the interaction of the nuclear radiation with matter. It describes also the basic principles of radio dosimetry. Natural and artificial sources of radiation are reviewed as well as the effects of radiation in man. Medical and industrial applications of ionizing radiation and the pollution produced by the discharge of radioactive materials are outlined. A short review is made of the safety rules and the regulations concerning the protection of the environment [es

  10. Foodstuffs (radioactive contamination)

    International Nuclear Information System (INIS)

    Thompson, Donald; Taylor, Teddy; Campbell-Savours, D.N.

    1987-01-01

    The proceedings are given of the debate in the UK House of Commons on the maximum permitted radioactivity levels for foodstuffs, feeding stuffs and drinking water in the case of abnormal levels of radioactivity or of a nuclear accident. The motion takes note of European Community Document no. 7183/87 and urges the Community to assure a common standard of health protection by adopting a rational set of scientifically based intervention levels for foodstuffs. (UK)

  11. Radiation and environmental radioactivity

    International Nuclear Information System (INIS)

    Muhamat Omar; Ismail Sulaiman; Zalina Laili

    2015-01-01

    This book is written based on 25 years authors experience especially in scientifc research of radiation and environmental radioactivity field at Malaysian Nuclear Agency (Nuklear Malaysia). Interestingly, from the authors experience in managing the services and consultancies for radiological environmental monitoring, it is also helpful in preparing the ideas for this book. Although this book focuses on Malaysian radiation information environmental radioactivity, but the data collected by the international bodies are also included in this book.

  12. Environmental radioactivity Ispra 1987

    International Nuclear Information System (INIS)

    Dominici, G.

    1988-01-01

    In this report there are briefly described the measurements of environmental radioactivity performed during 1987 by the site survey group of the Radioprotection Division at the Joint Research Centre Ispra Establishment. Data are given on the concentrations of Sr-90, Cs-137, and other radionuclides in precipitation, air, waters, herbage, milk and radioactive effluents. The environmental contamination is mainly a consequence of the nuclear accident of Chernobyl

  13. Radioactivity in fine papers

    International Nuclear Information System (INIS)

    Taylor, H.W.; Singh, B.

    1993-01-01

    The radioactivity of fine papers has been studied through γ-ray spectroscopy with an intrinsic Ge detector. Samples of paper from European and North American sources were found to contain very different amounts of 226 Ra and 232 Th. The processes which introduce radionuclides into paper are discussed. The radioactivity from fine papers makes only a small contribution to an individual's annual radiation dose; nevertheless it is easily detectable and perhaps, avoidable. (Author)

  14. Radioactive materials transport

    International Nuclear Information System (INIS)

    Talbi, B.

    1996-01-01

    The development of peaceful applications of nuclear energy results in the increase of transport operations of radioactive materials. Therefore strong regulations on transport of radioactive materials turns out to be a necessity in Tunisia. This report presents the different axes of regulations which include the means of transport involved, the radiation protection of the carriers, the technical criteria of security in transport, the emergency measures in case of accidents and penalties in case of infringement. (TEC). 12 refs., 1 fig

  15. Temporary Personal Radioactivity

    Science.gov (United States)

    Myers, Fred

    2012-01-01

    As part of a bone scan procedure to look for the spread of prostate cancer, I was injected with radioactive technetium. In an effort to occupy/distract my mind, I used a Geiger counter to determine if the radioactive count obeyed the inverse-square law as a sensor was moved away from my bladder by incremental distances. (Contains 1 table and 2…

  16. Environmental radioactivity Ispra 1989

    International Nuclear Information System (INIS)

    Dominici, G.

    1990-01-01

    In this report there are briefly described the measurements of environmental radioactivity performed during 1989 by the site survey group of the Radioprotection Division at the Joint Research Centre Ispra Establishment. Data are given on the concentrations of Sr-90, Cs-137, and other radionuclides in precipitation, air, waters, herbage, milk and radioactive effluents. The environmental contamination is mainly a consequence of the nuclear accident of Chernobyl

  17. Radioactive Substances Act 1960

    International Nuclear Information System (INIS)

    1960-01-01

    This Act regulates the keeping and use of radioactive material and makes provision for the disposal and storage of radioactive waste in the United Kingdom. It provides for a licensing system for such activities and for exemptions therefrom, in particular as concerns the United Kingdom Atomic Energy Authority. The Act repeals Section 4(5) of the Atomic Energy Authority Act, 1954 which made temporary provision for discharge of waste on or from premises occupied by the Authority. (NEA) [fr

  18. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  19. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  20. Sellafield (release of radioactivity)

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J; Goodlad, A; Morris, M

    1986-02-06

    A government statement is reported, about the release of plutonium nitrate at the Sellafield site of British Nuclear Fuels plc on 5 February 1986. Matters raised included: details of accident; personnel monitoring; whether radioactive material was released from the site; need for public acceptance of BNFL activities; whether plant should be closed; need to reduce level of radioactive effluent; number of incidents at the plant.